
Chapter 6
Learning Analysis

It is event that most big data represented as non-structured or semi-structured forms,
such as images, text and others. It is important to study how to use an abstract
form to show data, either structured, non-structured or semi-structured or use label
proportions to categorize the nature of data so that a data mining or data analytic
algorithm can be performed smoothly. Leaning methods are very useful tools
for understanding the data. Learning algorithms can be considered from different
aspects, such as cognitive computing, mathematics, and machine learning.

This chapter deals with different learning techniques in the contexts of data
science. Section 6.1 discusses the view of learning through the concept (the abstract
of big data), which includes four subsections. Section 6.1.1 is about concept-
cognitive learning model for Incremental concept learning [58]. Section 6.1.2 is
a concurrent concept-cognitive learning model for classification [60]. Section 6.1.3
is a semi-supervised concept learning by concept-cognitive learning and conceptual
clustering [42]. Section 6.1.4 is a fuzzybased concept learning method-exploiting
data with fuzzy conceptual clustering [43]. Section 6.2 presents how to use the label
proportion for learning that consists of another four subsections. Section 6.2.1 is a
fast algorithm for learning from label proportions [84]. Section 6.2.2 is a learning
from label proportions with generative adversarial networks [39]. Section 6.2.3 is
a learning from label proportions on high-dimensional data [57]. Section 6.2.4 is a
learning from label proportions with pinball loss [59]. Section 6.3 explores other
enlarged learning models with two subsections. Section 6.3.1 is about classifying
with adaptive hyper-spheres: an incremental classifier based on competitive learning
[38]. Section 6.3.2 is a construction of robust representations for small data sets
using broad learning system [66].
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6.1 Concept of the View of Learning

6.1.1 Concept-Cognitive Learning Model for Incremental
Concept Learning

Cognitive computing is viewed as an emerging computing paradigm of intelligent
science that implements computational intelligence by trying to solve the problems
of imprecision, uncertainty and partial truth in biological system [44, 68, 72]. As far
as we know, it has been investigated by simulating human cognitive processes such
as memory [33, 62] learning [14, 30, 36], thinking [69] and problem solving [70].

In this subsection, a novel CCLM is proposed based on a formal decision context.
Moreover, to reduce its computational complexity, granular computing is included
in our model. The main contributions are as follows:

(1) We describe a new model for incremental learning from the perspective of
cognitive learning by the fusion of concept learning, granular computing, and
formal decision context theory. More precisely, it is an attempt to construct a
novel incremental algorithm by imitating human cognitive processes, and a new
theory has been proposed for concept classification under a formal decision
context.

(2) Beyond traditional CCL systems such as approximate CCL system [35, 36],
three-way CCL system [37] and theoretical CCL system [68–70], CCLM has
obtained incremental concept learning and generalization ability.

(3) Different from other classifiers, similar to the human learning processes, the
previously acquired knowledge can be directly stored into concept lattice space
in CCLM and it performs a good interpretation by concept hierarchies (e.g.,
Hasse diagram [16]).

6.1.1.1 Preliminaries

Now, we briefly review some basic notions related to (1) formal context, (2) formal
decision context and (3) concept-cognitive learning.

A. Formal Context and Formal Decision Context

Definition 6.1 ([75]) A formal context is a triplet (G,M, I), where G is a set of
objects, M is a set of attributes, and I ⊆ G×M is a binary relation between G and
M . Here, gIm means that the object g has the attribute m.
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Furthermore, the derivation operator (·)′ is defined for A ⊆ G and B ⊆ M as
follows:

A′ = {m ∈ M|gIm for all g ∈ A},
B ′ = {g ∈ G|gIm for all m ∈ B}. (6.1)

A′ is the maximal set of the attributes that all the objects in A have in common and
B ′ is the maximal set of the objects shared by all the attributes in B. A concept in
the context (G,M, I) is defined to be an ordered pair (A,B) if A′ = B and B ′ = A,
where the elements A and B of the concept (A,B) are called the extent and intent,
respectively. The set of all concepts forms a complete lattice, called the concept
lattice and denoted by L(G,M, I).

Definition 6.2 ([74, 82]) A formal decision context is a quintuple (G,M, I,D, J ),
where (G,M, I) and (G,D, J ) are two formal contexts. M and D are respectively
called the conditional attribute set and the decision attribute set with M ∩D = ∅.
Definition 6.3 ([34]) Let (G,M, I,D, J ) be a formal decision context and E ⊆
M . For any (A,B) ∈ L(G,E, IE) and (Y,Z) ∈ L(G,D, J ), if A ⊆ Y , andA,B, Y

and Z are nonempty, then we say that (Y,Z) can be implied by (A,B), which is
denoted by (A,B)→ (Y,Z).

By Definitions 6.2 and 6.3, we obtain the relationship between the conditional
attribute set and the decision attribute set.

B. Concept-Cognitive Learning

Let G be an object set and M be an attribute set. We denote the power sets of G

and M by 2G and 2M , respectively. In addition, F : 2G → 2M and H : 2M → 2G

are supposed to be two set-valued mappings, and they are rewritten as F andH for
short.

Definition 6.4 ([36]) Set-valued mappingsF andH are called cognitive operators
if for any A1, A2 ⊆ G and B ⊆ M , the following properties hold:

(i) A1 ⊆ A2 ⇒ F (A2) ⊆ F (A1),

(ii) F (A1 ∪ A2) ⊇ F (A1) ∩ F (A2),

(iii) H(B) = {g ∈ G|B ⊆ F ({g})}.

For convenience, hereinafter F ({g}) is rewritten as F (g) for short when there is no
confusion.

Definition 6.5 ([36]) Let F andH be cognitive operators. For g ∈ G and m ∈ M ,
we say that (HF (g),F (g)) and (H(m),FH(m)) are granular concepts.
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Definition 6.6 ([36]) Let Gi−1,Gi be object sets of {Gt } ↑ and Mi−1,Mi be
attribute sets of {Mt } ↑, where {Gt } ↑ is a non-decreasing sequence of object
sets G1,G2, . . . ,Gn and {Mt } ↑ is a non-decreasing sequence of attribute sets
M1,M2, . . . ,Mm. Denote�Gi−1 = Gi−Gi−1 and�Mi−1 = Mi−Mi−1. Suppose

1) Fi−1 : 2Gi−1→ 2Mi−1, Hi−1 : 2Mi−1→ 2Gi−1,

2) F�Gi−1 : 2�Gi−1→ 2Mi−1, H�Gi−1 : 2Mi−1→ 2�Gi−1,

3) F�Mi−1 : 2Gi→ 2�Mi−1, H�Mi−1 : 2�Mi−1→ 2Gi ,

4) Fi : 2Gi→ 2Mi , Hi : 2Mi→ 2Gi

are four pairs of cognitive operators satisfying the following properties:

Fi (g) =
{
Fi−1(g) ∪ F�Mi−1(g), if g ∈ Gi−1,
F�Gi−1(g) ∪ F�Mi−1(g), otherwise,

(6.2)

Hi (m) =
{
Hi−1(m) ∪H�Gi−1(m), if m ∈ Mi−1,
H�Mi−1(m), otherwise,

(6.3)

where F�Gi−1(g) and H�Gi−1(m) are set to be empty when �Gi−1 = ∅, and
F�Mi−1(g) and H�Mi−1(m) are set to be empty when �Mi−1 = ∅. Then we say
that Fi and Hi are extended cognitive operators of Fi−1 and Hi−1 with the newly
input information �Gi−1 and �Mi−1.

In other words, based on Definitions 6.4 and 6.5, the basic mechanism of concept-
cognitive process is shown in Definition 6.6.

6.1.1.2 Theoretical Foundation

In this section, for adapting to dynamic learning and classification task, we show
some new notions and properties for the proposed CCLM.

A. Initial Concept Generation

Definition 6.7 A regular formal decision context is a quintuple (G,M, I,D, J ),
where for any z1, z2 ∈ D, H(z1) ∩H(z2) = ∅. (G,M, I) and (G,D, J ) are called
the conditional formal context and the decision formal context, respectively.

Note that it means that each real-world object is associated with a single label.

Definition 6.8 Let (G,M, I,D, J ) be a regular formal decision context, and F
andH be cognitive operators. For g ∈ G and m ∈ M , we say that (HF (g),F (g))
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and (H(m),FH(m)) are conditional granular concepts. Similarly, for y ∈ G and
z ∈ D, (HF (y),F (y)) and (H(z),FH(z)) are decision granular concepts. For
simplicity, we denote

GC = {(HF (g),F (g))|g ∈ G} ∪ {(H(m),FH(m))|m ∈ M},
GD = {(HF (y),F (y))|y ∈ G} ∪ {(H(z),FH(z))|z ∈ D},

where GC and GD are respectively called as condition-concept space and decision-
concept space (or class-concept space) under cognitive operators F andH .

Property 6.1 Let (G,M, I,D, J ) be a regular formal decision context, and F and
H be cognitive operators. Then for any A,Y ⊆ G,B ⊆ M and Z ⊆ D, we have

F (A) =
⋂
g∈A

F (g),F (Y ) =
⋂
y∈Y

F (y),

H(B) =
⋂
m∈B

H(m),H(Z) =
⋂
z∈Z

H(z). (6.4)

Proof It is immediate from Definitions 6.4 and 6.7. �

Property 6.2 Let (G,M, I,D, J ) be a regular formal decision context. For any
(AG,BG) ∈ GC and (YG,ZG) ∈ GD , if AG ⊆ YG, and AG,BG, YG and ZG

are nonempty, then we say that AG is associated with the class of ZG under the
attribute set BG. It means that the object g can be represented by a single label z

when AG = HF (g) and ZG = FH(z).

Proof It is immediate from Definitions 6.3 and 6.8. �

Definition 6.9 Let (G,M, I,D, J ) be a regular formal decision context and
D1,D2, . . .,Dl be nonempty and finite class sets ofD, whereD = D1∪D2∪. . .∪Dl

and Dr ∩Dj = ∅(1 ≤ r, j ≤ l, r �= j). We call GD
i = G

D1
i ∪G

D2
i ∪ . . . ∪G

Dl

i is
class-object set under the i-th cognitive state.

For brevity, we write GD
i as Gi and the corresponding set of Gi is denoted by

{Gi} =
l⋃

j=1
{
G

Dj

i

}
. Considering that the information will be updated by different

classes, we initiate and learn concepts by different labels. For convenience, for any

Dj ⊆ D, the subclass-object sets G
Dj

1 ,G
Dj

2 , . . . ,G
Dj
n with G

Dj

1 ⊆ G
Dj

2 ⊆ . . . ⊆
G

Dj
n are denoted by

{
G

Dj

t

}↑.
Property 6.3 Let (G,M, I,D, J ) be a regular formal decision context, we have

{
GD

t

}
↑= {GD1

t

}↑ ∪{GD2
t

}↑ ∪ . . . ∪ {GDl
t

}↑ . (6.5)

Proof It is immediate from Definitions 6.6 and 6.9. �
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From Definitions 6.7 and 6.8, and Property 6.1, the initial concepts can be
constructed by condition-concept space and class-concept space in a regular formal
decision context. Then, an object can be associated with a single label by the inter-
action between condition-concept space and class-concept space from Property 6.2.
Property 6.3 means that a cognitive state can be decomposed into some cognitive
sub-states by different categories in a regular formal decision context. Therefore,
hereinafter we only discuss the situation under a cognitive sub-state Dj .

B. Concept-Cognitive Process

Considering the information on the object set G and the attribute set M will be
updated as time goes by in the real world, we discuss that how the concept spaces
are timely updated in a regular formal decision context.

Definition 6.10 Let (G,M, I,D, J ) be a regular formal decision context,

G
Dj

i−1,G
Dj

i be two subclass-objects of
{
G

Dj

t

} ↑ and Mi−1,Mi be attribute sets

of
{
Mt

}↑. Denote �G
Dj

i−1 = G
Dj

i −G
Dj

i−1,�Mi−1 =Mi−Mi−1. Suppose

1) FM
Dj ,i−1:2G

Dj
i−1→2Mi−1 , HM

Dj ,i−1:2Mi−1→2G
Dj
i−1 ,

2) F D
Dj ,i−1:2G

Dj
i−1→2D, HD

Dj ,i−1:2D→2G
Dj
i−1 ,

3) FM

Dj ,�G
Dj
i−1
:2�G

Dj

i−1→2Mi−1, HM

Dj ,�G
Dj
i−1
:2Mi−1→2�G

Dj

i−1,

4) F D

Dj ,�G
Dj
i−1
:2�G

Dj
i−1→2D, HD

Dj ,�G
Dj
i−1
:2D→2�G

Dj
i−1,

5) FM
Dj ,�Mi−1:2G

Dj
i →2�Mi−1 , HM

Dj ,�Mi−1:2�Mi−1→2G
Dj
i ,

6) FM
Dj ,i:2G

Dj
i →2Mi , HM

Dj ,i:2Mi→2G
Dj
i ,

7) F D
Dj ,i:2G

Dj
i →2D, HD

Dj ,i:2D→2G
Dj
i

are seven pairs of cognitive operators in a regular formal decision context satisfying
the following properties:

FM
Dj ,i(g) =

⎧⎨
⎩
FM

Dj ,i−1(g) ∪ FM
Dj ,�Mi−1(g), if g ∈ G

Dj

i−1,
FM

Dj ,�G
Dj
i−1

(g) ∪ FM
Dj ,�Mi−1(g), otherwise,

(6.6)

HM
Dj ,i(m) =

⎧⎨
⎩
HM

Dj ,i−1(m) ∪HM

Dj ,�G
Dj
i−1

(m), if m ∈ Mi−1,

HM
Dj ,�Mi−1(m), otherwise,

(6.7)
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FD
Dj ,i(y) =

⎧⎨
⎩
F D

Dj ,i−1(y), if y ∈ G
Dj

i−1,
F D

Dj ,�G
Dj

i−1
(y), otherwise,

(6.8)

HD
Dj ,i(z) = HD

Dj ,i−1(z) ∪HD

Dj ,�G
Dj
i−1

(z), if z ∈ D, (6.9)

where FM

Dj ,�G
Dj

i−1
(g),HM

Dj ,�G
Dj

i−1
(m) and HD

Dj ,�G
Dj

i−1
(z) are set to be empty when

�G
Dj

i−1 = ∅, and FM
Dj ,�Mi−1(g) and HM

Dj ,�Mi−1(m) are set to be empty when
�Mi−1 = ∅.

Then we say that FM
Dj ,i,F D

Dj ,i and HM
Dj ,i ,HD

Dj ,i are respectively extended

cognitive operators ofFM
Dj ,i−1,F D

Dj ,i−1 andHM
Dj ,i−1,HD

Dj ,i−1 with the newly input

data �G
Dj

i−1 and �Mi−1. For convenience, cognitive operators FM
D,i and HM

D,i

denote the combination of FM
D1,i

,FM
D2,i

, . . . ,FM
Dl,i

and HM
D1,i

,HM
D2,i

, . . . ,HM
Dl,i

,

respectively. Similarly, we can define F D
D,i andHD

D,i .

Meanwhile, for any Dj ⊆ D, GC

FM
Dj ,i−1,HM

Dj ,i−1
means subcondition-concept

space under cognitive operators FM
Dj ,i−1 and HM

Dj ,i−1, and GC

FM
D,i−1,HM

D,i−1
is

called as condition-concept space under cognitive operators FM
D,i−1 and HM

D,i−1.
In a similar manner, we can define GD

FD
D,i−1,HD

D,i−1
and GD

FD
Dj ,i−1,HD

Dj ,i−1
. In

GC

FM
D,i−1,HM

D,i−1
, we can obtain the k-th granular concept

(
A

Dj

G,k, B
Dj

G,k

)
from

GC

FM
D,i−1,HM

D,i−1
with a class set Dj . Moreover, for dynamic information �G

Dj

i−1,

we write GC

F M

Dj ,�G
Dj
i−1

,HM

Dj ,�G
Dj
i−1

and GD

F D

Dj ,�G
Dj
i−1

,HD

Dj ,�G
Dj
i−1

as GC

�G
Dj
i−1

and GD

�G
Dj
i−1(

Similarly,GC
�Mi−1andGD

�Mi−1 for�Mi−1
)
under operatorsFM

Dj ,�G
Dj
i−1

,HM

Dj ,�G
Dj
i−1

and F D

Dj ,�G
Dj
i−1

,HD

Dj ,�G
Dj
i−1

(
FM

Dj ,�Mi−1,HM
Dj ,�Mi−1 and F D

Dj ,�Mi−1,HD
Dj ,�Mi−1

)
.

In theory, although we can update concepts by objects and attributes simulta-
neously, we are extremely interested in the new object information because the
attributes can be regarded as relatively stable under certain conditions.

Theorem 6.1 Let G
Dj

i be a subclass-object set under a set Dj and(GFDj ,i−1,HDj ,i−1 , FM

Dj ,�G
Dj

i−1
,F D

Dj ,�G
Dj

i−1
,HM

Dj ,�G
Dj

i−1
,HD

Dj ,�G
Dj

i−1

)
be an object-

oriented cognitive computing state, where GFDj ,i−1,HDj ,i−1 is the concept space

under cognitive operators FDj ,i−1 and HDj ,i−1. Then the following statements
hold:
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1) For any g ∈ G
Dj

i , if g ∈ G
Dj

i−1, then(HM
Dj ,iFM

Dj ,i(g),F M
Dj ,i(g)

) = (HM
Dj ,i−1FM

Dj ,i−1(g) ∪HM

Dj ,�G
Dj
i−1

FM
Dj ,i−1(g),

FM
Dj ,i−1(g)

);
otherwise,(HM

Dj ,iFM
Dj ,i(g),F M

Dj ,i(g)
) = (HM

Dj ,i−1FM

Dj ,�G
Dj

i−1
(g) ∪HM

Dj ,�G
Dj

i−1
FM

Dj ,�G
Dj

i−1
(g),

FM

Dj ,�G
Dj
i−1

(g)
)
.

2) For any m ∈Mi−1,we have(HM
Dj ,i (m),FM

Dj ,iHM
Dj ,i(m)

) = (HM
Dj ,i−1(m) ∪HM

Dj ,�G
Dj
i−1

(m),FM
Dj ,i−1HM

Dj ,i−1(m)∩

FM

Dj ,�G
Dj
i−1

HM

Dj ,�G
Dj
i−1

(m)
)
.

3) For any y ∈ G
Dj

i , if y ∈ G
Dj

i−1, then(HD
Dj ,iFD

Dj ,i (y),FD
Dj ,i(y)

) = (HD
Dj ,i−1FD

Dj ,i−1(y) ∪HD

Dj ,�G
Dj

i−1
FD

Dj ,i−1(y),

FD
Dj ,i−1(y)

);
otherwise,(HD

Dj ,iFD
Dj ,i (y),FD

Dj ,i(y)
) = (HD

Dj ,i−1FD

Dj ,�G
Dj

i−1
(y) ∪HD

Dj ,�G
Dj

i−1
FD

Dj ,�G
Dj

i−1
(y),

FD

Dj ,�G
Dj

i−1
(y)
)
.

4) For any z ∈ D,we obtain(HD
Dj ,i (z),FD

Dj ,iHD
Dj ,i(z)

) = (HD
Dj ,i−1(z) ∪HD

Dj ,�G
Dj

i−1
(z),FD

Dj ,i−1HD
Dj ,i−1(z)∩

FD

Dj ,�G
Dj

i−1
HD

Dj ,�G
Dj

i−1
(z)
)
.

Proof The proof of Theorem 6.1 can be found in the original paper [58]. �

From Theorem 6.1, we observe that the i-th concept space can be constructed

under cognitive operators FDj ,i−1 andHDj ,i−1, and the concept space GFDj ,i ,HDj ,i
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can be obtained by GFDj ,i−1,HDj ,i−1 with the newly input data �G
Dj

i−1. This means
that we can obtain concepts based on the past concepts rather than reconstructing
them from the beginning.

However, in the previous discussions, we still do not know which class-object

set G
D∗
i−1 should be theoretically updated with �G

Dj

i−1. In other words, although we

obtain class-object set G
Dj

i−1 which will be actually updated by �G
Dj

i−1, we are not
sure if the updated class-object set in the model is in accordance with G

Dj

i−1. Thus,
we will further discuss the relationship between G

Dj

i−1 and G
D∗
i−1.

Definition 6.11 Let (HF (g),F (g)) be a granular concept, for any (AG,e, BG,e) ∈
GC , where e ∈ {1, 2, . . . , |GC |}. Then we can define concept-similarity degree (CS)
as follows:

θCS = CS(F (g), BG,e) = Wp ·MT

|F (g) ∪ BG,e| , (6.10)

where MT is the transpose of the vector M , and Wp = (w1, w2, . . . , wm)

is a cognitive weight vector that is associated with an attribute vector M =
(m1,m2, . . . ,mm) consisting of (1) the elements from F (g) ∩ BG,e which are all
set to be 1, and (2) the elements from M − (F (g) ∩ BG,e) which are all set to be 0.

Let E be training times. For any t ∈ E, the cognitive weight vector of the t-th
training is denoted by Wt

i,p = (wt
i,1, w

t
i,2, . . . , w

t
i,m). Then we denote

⎡
⎢⎣

Wt
1,p
...

Wt
n,p

⎤
⎥⎦ =
⎡
⎢⎣

wt
1,1 · · · wt

1,m
... · · · ...

wt
n,1 · · · wt

n,m

⎤
⎥⎦ , (6.11)

where n = ∣∣ n⋃
i=1
{Gi}
∣∣. Our purpose is to obtain an optimal cognitive weight vector

Wt
n,p by computing concept-similarity degree vectors.

Definition 6.12 Let {Gi−1} be a class-object set under GD
i−1, �G

D∗
i−1 be a

new object set under D∗, and G
Dj

i−1 and G
Dr

i−1 be class-object sets under
class sets Dj and Dr (Dj ∩ Dr = ∅), respectively. For any granu-

lar concept
(
A

Dj

G,e, B
Dj

G,e

) ∈ GC

FM
Dj ,i−1,HM

Dj ,i−1
and a new granular concept(HM

D∗,�G
D∗
i−1

FM

D∗,�G
D∗
i−1

(g),F M

D∗,�G
D∗
i−1

(g)
)
, the degree of similarity between the

concepts is defined as CS
Dj

i−1 = CS
(
B

Dj

G,e,FM

D∗,�G
D∗
i−1

(g)
)
. Then, we denote

MCSDj = n
max
e=1
(
CS

Dj

i−1
) = n

max
e=1

(
CS
(
B

Dj

G,e,FM

D∗,�G
D∗
i−1

(g)
))

,
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where n =
∣∣∣GC

FM
Dj ,i−1,HM

Dj ,i−1

∣∣∣. Then, we further denote
MMCSDj = l

max
j=1
(
MCSDj

)
. (6.12)

From (6.12), we know that the subclass-object set G
Dj

i−1 should be updated in the
class-object setGD

i−1. Therefore, if D∗ = Dj , it means that the theoretically updated

subclass-object set G
D∗
i−1 is in accordance with the actually updated subclass-object

set G
Dj

i−1. Otherwise, we should adjust cognitive weight vectors as follows.

wt
i ← wt

i ±�wt
i ,

�wt
i = activationFunction(ηwt

i),
(6.13)

where the operator + is adopted when the attributes are from B
Dj

G,e

⋂FM

D∗�G
D∗
i−1

(g)

and the another operator− is used for the elements from B
Dr

G,e

⋂FM

D∗�G
D∗
i−1

(g), and

activationFunction(ηwt
i) = exp(ηwt

i )−exp(−ηwt
i )

exp(ηwt
i )+exp(−ηwt

i )
with the learning rate η ∈ (0, 1).

6.1.1.3 Proposed Model

In this section, based on the above discussion, we put forward a CCLM with
dynamic learning, which can perform a good performance in incremental learning
and classification task.

A. Initial Concept Learning

We split raw data into training data G and testing data G. For the training data, let
{G} be the set of the objects sets G1,G2, . . . ,Gn with Gi ∩ Gj = ∅(i �= j), we
denote

{G} =
n⋃

i=1
{Gi}. (6.14)

Here, G1 is an initial training data, and the rest of training data
n⋃

i=2
{Gi} is used for

concept cognition.
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From Definitions 6.7 and 6.8, the initial concept learning consists of two parts:
constructing condition-concept space and decision-concept space. The details are

shown in Algorithm 6.1, and its time complexity is O
(|{G1}|(|M|+ |D| + |GDj

1 |)
)
.

Algorithm 6.1 Initial concept learning
1: Input: the initial training data set G1.

2: Output: the initial concept space.

3: for each G
Dj

1 ∈ {G1} do
4: for each m ∈ M do
5: GC

FM
D,1,HM

D,1
← (HM

Dj ,1(m),F M
Dj ,1HM

Dj ,1(m)
)

6: end for
7: for each g ∈ G

Dj

1 do
8: GC

FM
D,1,HM

D,1
← (HM

Dj ,1F M
Dj ,1(g),F M

Dj ,1(g)
)

9: end for
10: for each z ∈ D do
11: GD

FD
D,1,HD

D,1
← (HD

Dj ,1(z),FD
Dj ,1HD

Dj ,1(z)
)

12: end for
13: for each y ∈ G

Dj

1 do
14: GD

FD
D,1,HD

D,1
← (HD

Dj ,1FD
Dj ,1(y),F D

Dj ,1(y)
)

15: end for
16: end for
17: Return GC

FM
D,1,HM

D,1
and GD

FD
D,1,HD

D,1

B. Concept-Cognitive Process

Let E, err0,W,AW, IW be the training epochs, learning error rate, cognitive
weight vector, active weight vector and inhibited weight vector, respectively. It
should be pointed out that AW and IW are to enhance and weaken the corre-
sponding attributes, respectively. Based on the theory in Sect. 6.1.1 Theoretical
Foundation, the concept-cognitive process can be briefly represented as follows:

Firstly, construct a conditional granular concept
(
A

D∗
G,k, B

D∗
G,k

)
and a decision

granular concept
(
Y

D∗
G,k, Z

D∗
G,k

)
.

Secondly, for a new concept
(
A

D∗
G,k, B

D∗
G,k

)
, we compute its concept-similarity

degree with each granular concept
(
A

Dj

G,e, B
Dj

G,e

)
from GC

FM
D,i−1,HM

D,i−1
.

Thirdly, if the predicted label is not in accordancewith the actual label, the weight
vectors W , AW and IW will be updated.

Finally, for the first training, we will update the condition-concept space
and decision-concept space by dynamic concepts

(
A

D∗
G,k, B

D∗
G,k

)
and
(
Y

D∗
G,k, Z

D∗
G,k

)
,

respectively. Using recursive approach,we can obtain a final cognitive weight vector
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WE
n,p and a final concept space (i.e., the condition-concept space GC

F M
D,n,HM

D,n

and

decision-concept space GD

FD
D,n,HD

D,n

).

The details of concept-cognitive process are shown in Algorithm 6.2. Note

that params[1], params[2] and params[3] are
((

A
D∗
G,k, B

D∗
G,k

)
,GC

F M
D,i−1,HM

D,i−1
,

GD

FD
D,i−1,HD

D,i−1
, Wt−1

i−1,p
)
,
(
η, j, type, B

Dtype

G,k , θLmax[|D|],Wt−1
i−1,p, AWt−1

i−1,p,

IWt−1
i−1,p
)
and
(
GC

F M
D,i−1,HM

D,i−1
, GD

F D
D,i−1,HD

D,i−1
,
(
A

Dtype

G,k , B
Dtype

G,k

)
,
(
Y

Dtype

G,k , Z
Dtype

G,k

))
,

respectively.
Now, we analyze the time complexity of Algorithm 6.2. Running Step 18 takes

O(1) because of updating objects one by one in CCLM. In Step 20, it will revoke
Algorithm 6.3, and the running time is decided by two for loops. Thus, running

Steps 18–26 takesO
(∣∣GC

FM
D,i−1,HM

D,i−1

∣∣∣∣GD

F D
D,i−1,HD

D,i−1

∣∣), where ∣∣GD

FD
D,i−1,HD

D,i−1

∣∣ is the
number of |D| and often very small. For Steps 27–32, it will call Algorithms 6.4

and 6.5. Therefore, the time complexity of Steps 27–32 is O
(
|D|((|activeSet| +

|inhibitSet|) + (|M| + |D|))). To sum up, the time complexity of Algorithm 6.2

is O
(
P
∣∣ n⋃
i=2
{Gi}
∣∣ (∣∣GD∗

i

∣∣+ ∣∣GC

FM
D,i−1,HM

D,i−1

∣∣|D| +Q
)) (

P = max{E,Eerr0},Q =
(|M| + |D|)(|D| + 1)+ |D|(|activeSet| + |inhibitSet|)), where E is the number
of training epochs and Eerr0 is the running times about err0.

C. Overall Procedure and Concept Prediction

Figure 6.1 shows the overall procedure of CCLMwhich includes three stages: initial
concept generation, concept-cognitive process and concept prediction. Suppose
there are still three classes to predict. The stage of initial concept generation is to
generate concept space by mapping objects into concepts, and then the second stage
will update the concept space by the concept-similarity degree with labeled data.

In the stage of concept prediction, for any test instance, concept-similarity degree
is further used to compute similarity degree, and then the final prediction will be
completed by the sum of the maximum class vector as shown in the right of Fig. 6.1.
Note that, compared with the second stage, the concept space will not be updated in
the third stage.

Based on the final concept spaceGC

FM
D,n,HM

D,n

,GD

FD
D,n,HD

D,n

, and the final weight vec-

tor WE
n,p , we can make predictions in G. The details are described in Algorithm 6.6.

Considering that running Step 6 will revoke the function of Algorithm 6.3, it is easy

to verify that the time complexity of Algorithm 6.6 is O
(∣∣G∣∣∣∣GC

FM
D,i−1,HM

D,i−1

∣∣∣∣D∣∣).
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Algorithm 6.2 Concept-cognitive process
1: Input: initial concept spaces GC

FM
D,1,HM

D,1
and GD

FD
D,1,HD

D,1
.

2: Output: a final concept space and a final weight vector.
3: Initialize W 1

1,p, AW 1
1,p, IW 1

1,p, η, err0, and E.

4: while t ≤ E||errmin ≤ err0 do � Initialize t=2.
5: for each G

D∗
i ∈

n⋃
i=2
{Gi} do

6: for each m ∈ M do
7: GC

G
D∗
i

← (HM
D∗,i(m),F M

D∗ ,iHM
D∗,i (m)

)
8: end for
9: for each g ∈ G

D∗
i do

10: GC

G
D∗
i

← (HM
D∗,iFM

D∗,i (g),FM
D∗,i (g)

)
11: end for
12: for each z ∈ D do
13: GD

G
D∗
i

← (HD
D∗,i (z),FD

D∗,iHD
D∗,i(z)
)

14: end for
15: for each y ∈ G

D∗
i do

16: GD

G
D∗
i

← (HD
D∗,iFD

D∗,i (y),F D
D∗,i (y)

)
17: end for
18: for each

(
A

D∗
G,k, B

D∗
G,k

)∈GC

G
D∗
i

do

19: Get a concept
(
Y

D∗
G,k, Z

D∗
G,k

) ∈ GD

G
D∗
i

.

20: Get concept-similarity degrees by Algorithm 6.3.
21: θmax [index] ← max

(
θmax [|D|]

)
22: type← indexType

(
Y

D∗
G,k

) � Get a label.
23: if index �= type then
24: errFunctioni

(
A

D∗
G,k

)=1 �Misclassification.
25: end if
26: end for
27: for j=0 to |D| do
28: if θmax [j ] ≥ θmax [type] then
29: Update weight vector by Algorithm 6.4.
30: end if
31: Update concept space by Algorithm 6.5.
32: end for
33: end for

34: errmin ← minimize

( n∑
i=2

errFunctioni

(
A

D∗
G,k

)
∣∣ n⋃

i=2
Gi

∣∣
)

35: ++ t

36: end while
37: Return GC

FM
D,n,HM

D,n

, GD

FD
D,n,HD

D,n

and WE
n,p.
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Algorithm 6.3 Concept-similarity degree
1: function GETCONCEPTSIMILARITY(params[1])
2: Initialize θmax [|D|], θLmax [|D|]
3: for

(
A

Dj

G,e, B
Dj

G,e

) ∈ GC

FM
D,i−1,HM

D,i−1
do

4: for
(
Y

Dr

G,q , Z
Dr

G,q

) ∈ GD

FD
D,i−1,HD

D,i−1
do

5: if ADj

G,e ⊆ Y
Dr

G,q then

6: θ t−1
CSi−1 = CSi−1

(
B

D∗
G,k, B

Dj

G,e

)
7: type← indexType(YDr

G,q )

8: if θ t−1
CSi−1 ≥ θmax [type] then

9: θmax [type] = θ t−1
CSi−1

10: θLmax [type] = B
Dj

G,e

11: end if
12: end if
13: end for
14: end for
15: return θmax [|D|], θLmax [|D|]
16: end function

Algorithm 6.4 Adjust weight
1: function ADJUSTWEIGHT(params[2])
2: typeSet=θL∗[type]⋂B

type

G,k

3: jSet=θL∗[j ]⋂B
type

G,k

4: activeSet=typeSet -jSet
5: inhibitSet=jSet - typeSet
6: while m1 ∈ activeSet do
7: indexA=indexAttribtue(m1)

8: Update AWt−1
i−1,p by awt−1

i−1,indexA ++.

9: Update Wt−1
i−1,p by (6.13). � Input ηawt−1

i−1,indexA.
10: end while
11: while m2 ∈ inhibitSet do
12: indexB=indexAttribtue(m2)

13: Update IW t−1
i−1,p by iwt−1

i−1,indexB ++.
14: Update Wt−1

i−1,p by (6.13). � Input ηiwt−1
i−1,indexB .

15: end while
16: return Wt−1

i−1,p, AWt−1
i−1,p, IW t−1

i−1,p
17: end function
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Algorithm 6.5 Update concept space
1: function UPDATECONCEPTS(params[3])
2: for each m ∈ M do
3: Update GC

FM
D,i−1,HM

D,i−1
by Theorem 6.1.

4: end for
5: for each z ∈ D do
6: Update GD

FD
D,i−1,HD

D,i−1
by Theorem 6.1.

7: end for
8: return GC

FM
D,i−1,HM

D,i−1
,GD

FD
D,i−1,HD

D,i−1
9: end function

Fig. 6.1 Illustration of overall procedure for CCLM. Suppose there are three classes to predict,
and the maximum class vector is obtained by concept-similarity degree

Algorithm 6.6 Concept prediction

1: Input: the testing data G,WE
n,p,GC

FM
D,n

,HM
D,n

,GD

FD
D,n

,HD
D,n

.

2: Output: the class labels of test data.

3: for each gi ∈ G do
4:
(
A

D∗
G,k, B

D∗
G,k

)← (HM
D∗,iFM

D∗,i (gi ),FM
D∗,i (gi )

)
5:
(
Y

D∗
G,k, Z

D∗
G,k

)← (HD
D∗,iFD

D∗,i (yi ),F D
D∗,i(yi )

)
6: θmax [|D|] ← getConceptSimilarity(params[1])
7: θmax [index] ← max(θmax [|D|])
8: type← indexType

(
Y

D∗
G,k

)
9: if index=type then
10: correctNum+ = 1
11: else
12: incorrectNum+ = 1
13: end if
14: end for
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6.1.2 Concurrent Concept-Cognitive Learning Model for
Classification

In this subsection, we discuss the design of a new theoretical framework for
concurrent computing, which comprises three aspects: initial concurrent concept
learning, the concurrent concept-cognitive process, and the concept generalization
process.

6.1.2.1 Initial Concurrent Concept Learning in C3LM

In the real world, not all methods can be concurrent, as this often depends on their
separability. In order to guarantee concurrency for the C3LM in theory, we need to
consider the following definitions and propositions.

Definition 6.13 Let (G,M, I,D, J ) be a regular formal decision context. Suppose
that D1,D2, . . . ,DK is a partition of D by class labels, and let G = GD1 ∪GD2 ∪
. . . ∪GDK . Then, we say that GDk (k ∈ {1, 2, . . . ,K}) is a subclass-object set. For
the sake of brevity, hereinafter we write GDk as Gk .

Definition 6.13 indicates that an object set G can be decomposed into several
subclass-object sets in a regular formal decision context. Moreover, we only
consider objects that are updated by newly input objects, as attributes can be taken
as relatively stable in real life. Therefore, in the following, we discuss the scenario
of a subclass-object Gk .

Let Gk be a subclass-object set, and M and D be attribute sets. The set-valued
mappingsF k : 2Gk → 2M,Hk : 2M → 2Gk

and F̃ k : 2Gk → 2D, H̃k : 2D → 2Gk

are respectively referred to as the conditional and decision cognitive operators with
a subclass-object set Gk when no confusion exists.

Definition 6.14 Let Gk
1,G

k
2, . . . ,G

k
n be a partition of an object set Gk. If the

following cognitive operators:

F k
j : 2Gk

j → 2M, Hk
j : 2M → 2Gk

j , j = 1, 2, . . . , n,

F k : 2Gk → 2M, Hk : 2M → 2Gk

satisfy F k(g) = F k
j (g), where g ∈ Gk

j , we say that HSF kHk =
(F k

1 , . . . ,F k
n ;Hk

1 , . . .,Hk
n ) is a conditional horizontal partition state.

Proposition 6.1 Let HSF kHk = (F k
1 , . . . ,F k

n ;Hk
1 , . . . ,Hk

n ) be a conditional
horizontal partition state. For any g ∈ Gk

j1
(j1 ∈ {1, 2, . . . , n}), if there exist

objects g1, g2, . . . , gn ∈ Gk
j2

(j2 ∈ {1, 2, . . . , n}) such that F k
j1

(g) ⊆ F k
j2

(gi) (i =
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1, 2, . . . , n), we have

(HkF k(g),F k(g)) =
({

g ∪ (
n∪

i=1 gi)
}
,F k

j1
(g)
)
; (6.15)

otherwise,

(HkF k(g),F k(g)) = ({g},F k
j1

(g)). (6.16)

Proof The proof of Proposition 6.1 can be found in the original paper [60]. �

In fact, from the perspective of objects, Definition 6.14 and Proposition 6.1

demonstrate that the separability holds for C3LM in the conditional formal context
(G,M, I). Analogously, we can determine that the separability also holds for C3LM
in the decision formal context (G,D, J ) under the decision cognitive operators F̃ k

and H̃k .

Definition 6.15 Let M1,M2, . . . ,Md be a partition of M . For any Gk ⊆ G, if the
following cognitive operators:

F k
j : 2Gk → 2Mj , Hk

j : 2Mj → 2Gk

, j = 1, 2, . . . , d,

F k : 2Gk → 2M, Hk : 2M → 2Gk

satisfy F kHk(m) =
d⋃

j=1
F k

j Hk(m) where m ∈ M , we say that VSF kHk =
(Hk

1 , . . . ,Hk
d ;F k

1 , . . . ,F k
d ) is a conditional vertical partition state.

Proposition 6.2 Let VSF kHk = (Hk
1 , . . . ,Hk

d ;F k
1 , . . . ,F k

d ) be a conditional
vertical partition state. For any m ∈ Mj1 (j1 ∈ {1, 2, . . . , d}), if there exist
attributes m1,m2, . . . ,mr ∈ Mj2 (j2 ∈ {1, 2, . . . , d}) such that Hk

j1
(m) ⊆

Hk
j2

(mi) (i = 1, 2, . . . , r), we have

(Hk(m),F kHk(m)) =
(
Hk(m),

{
m ∪ (

r∪
i=1mi)

}); (6.17)

otherwise,

(Hk(m),F kHk(m)) = (Hk(m), {m}). (6.18)

Proof The proof of Proposition 6.2 can also be found in the original paper [60]. �

FromDefinition 6.15 and Proposition 6.2, we know that the separability holds for

C3LM in the conditional formal context (G,M, I) from the attribute perspective.
Similarly, under decision cognitive operators F̃ k and H̃k , there exists the same
property for C3LM in the decision formal context (G,D, J ).

Based on the above theory, we present an initial concurrent computing frame-
work (see Fig. 6.2 for details) and its corresponding algorithm (see Algorithm 6.7)
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Fig. 6.2 Framework of constructing initial concepts in C3LM

Algorithm 6.7 Concurrent computation of initial concept space

1: Input: Initial training dataset Gk and chunk size.
2: Output: The initial concept spaces GC

F k,Hk and GD

F̃ k,H̃k
.

3: n = �|Gk |/chunk-size�, d = �|M |/chunk-size�, and l = �|D|/chunk-size� are the numbers
of threads for the objects, conditional attributes, and decision attributes, respectively.

4: for Gk
j = Gk

1 to Gk
n do in parallel

5: for each g ∈ Gk
j (j ∈ {1, 2, . . . , n}) do

6: GC
F k,Hk ←

(Hk
j F k

j (g),F k
j (g)
)

7: end for
8: end for
9: for Mj = M1 to Md do in parallel
10: for each m ∈ Mj(j ∈ {1, 2, . . . , d}) do
11: GC

F k ,Hk ←
(Hk

j (m),F k
j Hk

j (m)
)

12: end for
13: end for
14: for Gk

j = Gk
1 to Gk

n do in parallel

15: for each y ∈ Gk
j (j ∈ {1, 2, . . . , n}) do

16: GD

F̃ k ,H̃k
← (H̃k

j F̃ k
j (y), F̃ k

j (y)
)

17: end for
18: end for
19: for Dj = D1 to Dl do in parallel
20: for each z ∈ Dj (j ∈ {1, 2, . . . , l}) do
21: GD

F̃ k ,H̃k
← (H̃k

j (z), F̃ k
j H̃k

j (z)
)

22: end for
23: end for
24: Return GC

F k,Hk and GD

F̃ k ,H̃k
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for constructing the initial concepts. The overall process in Fig. 6.2 can be described
as follows: first, a task can be divided into many subtasks by the recursion method,
based on Definitions 6.14 and 6.15, and Propositions 6.1 and 6.2. Second, according
to Propositions 6.1 and 6.2, threads can concurrently calculate the concepts of each
task. Finally, the results of different threads will be collected by Propositions 6.1
and 6.2.Moreover, the right of Fig. 6.2 illustrates that four threads calculate granular
concepts based on the object and attribute sets. It should be pointed out that the
proposed C3LM is based on the fork/join framework.1

Furthermore, it is easy to determine that the time complexity of Algorithm 6.7 is
O( 1

n
|Gk| + 1

d
|M| + 1

l
|D|). For an object set G, by means of Algorithm 6.7, we can

obtain the conditional concept space GC
FH and decision concept space GD

F̃ H̃ .

6.1.2.2 Concurrent Concept-Cognitive Process in C3LM

In the real world, objects will be updated as time passes, which means that the
obtained concept spaces need to be updated accordingly. For a person, learning
is not simply a matter of acquiring a description, but involves taking something
new and integrating it sufficiently with the existing thought processes [41]. The
learning ability in humans is known as a gradual cognitive process. Therefore,
in this subsection, we explore the concept-cognitive process under a concurrent
environment.

As with the classical cognitive process [36], combining Definitions 6.6 and 6.13,
we obtain the cognitive operators for C3LM with the newly input objects �Gk

i−1 =
Gk

i −Gk
i−1, as follows:

(i) F k
i−1 : 2Gk

i−1 → 2M, Hk
i−1 : 2M → 2Gk

i−1,

(ii) F k

�Gk
i−1
: 2�Gk

i−1 → 2M, Hk

�Gk
i−1
: 2M → 2�Gk

i−1,

(iii) F k
i : 2Gk

i → 2M, Hk
i : 2M → 2Gk

i ,

(6.19)

and

(iv) F̃ k
i−1 : 2Gk

i−1 → 2D, H̃k
i−1 : 2D → 2Gk

i−1,

(v) F̃ k

�Gk
i−1
: 2�Gk

i−1 → 2D, H̃k

�Gk
i−1
: 2D → 2�Gk

i−1,

(vi) F̃ k
i : 2Gk

i → 2D, H̃k
i : 2D → 2Gk

i .

(6.20)

1https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html.

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
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Definition 6.16 Let �Gk
i−1 = Gk

i − Gk
i−1 be a singleton set with a new

object, and F k

�Gk
i−1

,Hk

�Gk
i−1

and F̃ k

�Gk
i−1

,H̃k

�Gk
i−1

be cognitive operators. For

any g ∈ �Gk
i−1, if

(Hk

�Gk
i−1

F k

�Gk
i−1

(g),F k

�Gk
i−1

(g)
) = ({g},F k

�Gk
i−1

(g)
)

and
(H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g), F̃ k

�Gk
i−1

(g)
) = ({g}, F̃ k

�Gk
i−1

(g)
)
,
(Hk

�Gk
i−1

F k

�Gk
i−1

(g),

F k

�Gk
i−1

(g)
)
and
(H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g), F̃ k

�Gk
i−1

(g)
)
are referred to as the newly

formed conditional atomic concept and decision atomic concept, respectively,
with a single object g.

In fact, we consider that the obtained concept spaces GC
F kHk and GD

F̃ kH̃k
are

updated by a newly input object, rather than addingmultiple objects simultaneously.
For the sake of convenience, we denote the initial concept spaces obtained by
Algorithm 6.7, namely GC

F kHk ,GD

F̃ kH̃k
and GC

FH ,GD

F̃ H̃ , as GC

F k
0 Hk

0
,GD

F̃ k
0 H̃k

0
and

GC
F0H0

,GD

F̃0H̃0
, respectively. According to Eqs. (6.19) and (6.20), the cognitive

operators F k
i ,Hk

i and F̃ k
i ,H̃k

i in the i-th period can be obtained by the cognitive
operators F k

i−1,Hk
i−1 and F̃ k

i−1,H̃k
i−1 in the (i − 1)-th period with incremental

objects, respectively. Moreover, we denote their corresponding concept spaces by
GC

F k
i Hk

i

and GD

F̃ k
i H̃k

i

. Furthermore, the entire concept spaces in the i-th period are

further denoted by GC
FiHi

and GD

F̃iH̃i
.

Proposition 6.3 Let
(Hk

�Gk
i−1

F k

�Gk
i−1

(g),F k

�Gk
i−1

(g)
)

and
(H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g), F̃ k

�Gk
i−1

(g)
)
be the newly formed conditional and decision atomic

concepts, respectively. Then, the following statements hold:

(i) For any granular concept (Ak,j , Bk,j ) ∈ GC

F k
i−1Hk

i−1
(j ∈ {1, 2, . . . , |GC

F k
i−1Hk

i−1
|}), if

Bk,j ∩ F k

�Gk
i−1

(g) �= ∅, (Ak,j , Bk,j ) =
(
Ak,j∪Hk

�Gk
i−1

F k

�Gk
i−1

(g),Bk,j ∩ F k

�Gk
i−1

(g)
);

otherwise,

GC

F k
i Hk

i

= GC

F k
i−1Hk

i−1
∪ (Hk

�Gk
i−1

F k

�Gk
i−1

(g),F k

�Gk
i−1

(g)
)
.

(ii) For any granular concept (Yk,j , Zk,j ) ∈ GD

F̃ k
i−1H̃k

i−1
(j ∈ {1, 2, . . . , |GD

F̃ k
i−1H̃k

i−1
|}), if

Zk,j ∩ F̃ k

�Gk
i−1

(g) �= ∅, (Yk,j , Zk,j ) = (Yk,j ∪ H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g),Zk,j ∩ F̃ k

�Gk
i−1

(g)
);

otherwise,

GD

F̃ k
i H̃k

i

= GD

F̃ k
i−1H̃k

i−1
∪ (H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g), F̃ k

�Gk
i−1

(g)
)
.

Proof The proof of Proposition 6.3 can be found in the original paper [60]. �
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For any object g, according to Definitions 6.5 and 6.6, we can obtain a concept({g},F�Gi−1(g)
)
, as the concept spaces are updated by adding objects sequentially.

The concept similarity (CS) degree [58] is used in this study to explore the
interaction of attributes in the concept-cognitive process.

Definition 6.17 ([58]) Suppose that
({g},F�Gi−1(g)

)
is a new concept. For any

(Ak,j , Bk,j ) ∈ GC

F k
i−1,Hk

i−1
(j ∈ {1, 2, . . . , |GC

F k
i−1,Hk

i−1
|}), the CS degree can be

defined as follows:

θk,j = W ·MT∣∣F�Gi−1(g)
⋃

Bk,j

∣∣ , (6.21)

where W = (w1, w2, . . . , wm) is a cognitive weight vector regarding a conditional
attribute set M , and M = (m1,m2, . . . ,mm) is an attribute vector that contains
(1) the value of attributes from F�Gi−1(g) ∩ Bk,j , which are set to 1, and (2) the
elements from M − (F�Gi−1(g) ∩ Bk,j ), which are all set to 0.

For any object, there always exists a unique class that is most similar to it by the
sample separation axiom [79]. Thus, based on Definition 6.17, we can determine
the maximum CS degree θ∗k,j∗ = max

j∈{1,2,...,|GC

F k
i−1 ,Hk

i−1
|}
{θk,j } and its corresponding

concept (Ak,j∗, Bk,j∗) in the concept space GC

F k
i−1,Hk

i−1
. Moreover, for the entire

concept space GC
Fi−1,Hi−1 , we can further determine the global maximum CS degree

θ∗k∗,j∗ = max
k∈{1,2,...,K}{θ

∗
k,j∗} and its corresponding concept (Ak∗,j∗, Bk∗,j∗).

Definition 6.18 If θ∗k∗,j∗ is the global maximum CS degree in the entire concept

space GC
Fi−1,Hi−1 , we say that a new concept

({g},F�Gi−1(g)
)
can be classified into

the concept space GC

F k∗
i−1,Hk∗

i−1
by the optimal concept (Ak∗,j∗, Bk∗,j∗). Moreover, for

any (Yk, Zk) ∈ GD

F̃i−1,H̃i−1
(k ∈ {1, 2, . . . , |GD

F̃i−1,H̃i−1
|}), if Ak∗,j∗ ⊆ Yk , we say that

the object g is associated with a single label z, where Zk = {z} in a regular formal
decision context.

From Definition 6.18, we can determine that an object g is associated with a class
label z if and only if the real class label F̃�Gi−1(g) is consistent with the predicted
class label z. However, when the ground truth label is not the same as the predicted
value, we adjust the cognitive weight as follows:

wi ← wi ±�wi,

�wi = activationFunction(ηwi),
(6.22)

where the operator + is adopted when the attributes are from F�Gi−1(g) ∩ Bk∗,j∗ ,
and the other operator− is used for the elements fromF�Gi−1(g)∩Bk,j∗ . Moreover,
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activationFunction(ηwi) = eηwi−e−ηwi

eηwi+e−ηwi
, where η ∈ (0, 1) is known as the learning

rate.
In the following, a computational procedure for a concurrent concept-cognitive

process (see Algorithm 6.8) is proposed based on the above discussion. The inputs
of Algorithm 6.8 are the concept spaces obtained from the output results of Algo-
rithm 6.7. In Algorithm 6.8, running steps 9 and 12 requires O

(|GC

F k
i−1Hk

i−1
|) and

O
(|GD

F̃ k
i−1H̃k

i−1
|), respectively. In line 15, the runtime is O

(|GC

F k
i−1Hk

i−1
|). Hence, it is

easy to determine that the time complexity of Algorithm 6.8 is O
(
n( 1

m
|GC

F k
i−1Hk

i−1
|+

1
p
|GD

F̃ k
i−1H̃k

i−1
|+|GD

F̃i−1,H̃i−1
|)). Then, we can obtain the collections of all conditional

and decision concepts in the final period, which are denoted by GC
Fn,Hn

and GD

F̃n,H̃n
,

respectively.

6.1.2.3 Concept Generalization Process in C3LM

Based on the final concept spaces obtained, we can achieve classification ability.
This can be understood in terms of two aspects: (1) it can complete the static
classification task when the final concept spaces are directly obtained from the initial
concept learning, and (2) by combining the initial concept construction process with
the CCL process, it is suitable for the dynamic classification task. However, both
methods predict label information by means of the CS degree.

For a test instance g, let �Gi−1 = {g}, and we obtain a new concept(H�Gi−1F�Gi−1 (g),F�Gi−1(g)
) = ({g},F�Gi−1(g)

)
by Definitions 6.5 and 6.16.

Furthermore, according to Definitions 6.17 and 6.18, a procedure is proposed for
the concept generalization task (see Algorithm 6.9). It is easy to determine that the
time complexity of Algorithm 6.9 is O

(|G|(|GC
Fn,Hn

| + |GD

F̃n,H̃n
|)).

6.1.3 Semi-Supervised Concept Learning by Concept-Cognitive
Learning and Conceptual Clustering

In this subsection, we will first introduce the initial concept spaces with labeled
data, and then the concept-cognitive process with unlabeled data, followed by the
concept recognition and theoretical analysis of S2CL. Finally, we present the whole
procedure and computational cost of our methods.

6.1.3.1 Concept Space with Structural Information

Definition 6.19 Suppose Gk is a sub-object set which is associated with a label k,
and a quintuple (Gk,M, I,D, J ) is known as a regular sub-object formal decision
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Algorithm 6.8 Concurrent concept-cognitive process
1: Input: Initial concept spaces GC

F k
0 ,Hk

0
, GD

F̃ k
0 ,H̃k

0
and GC

F0,H0
, GD

F̃0,H̃0
, chunk size, and adding

new object set �Gk .
2: Output: The final concept spaces GC

F k
n ,Hk

n
and GD

F̃ k
n ,H̃k

n

.

3: Initialize �Gk = {�Gk
0,�Gk

1, . . . ,�Gk
n−1} = {{g0}, {g1}, . . . , {gn−1}} and W =

(w1, w2, . . . , wm)

4: for i=1 to n do
5: m = ⌈|GC

F k
i−1Hk

i−1
|/chunk-size⌉ and p = ⌈|GD

F̃ k
i−1H̃k

i−1
|/chunk-size⌉ are the numbers of

threads
for GC

F k
i−1Hk

i−1
and GD

F̃ k
i−1H̃k

i−1
6: get gi−1 from �Gk

i−1
7: construct new concepts

(Hk

�Gk
i−1

F k

�Gk
i−1

(gi−1),F k

�Gk
i−1

(gi−1)
)
and(H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(gi−1), F̃ k

�Gk
i−1

(gi−1)
)
by Definition 6.16

8: for GC

F k
i−1Hk

i−1,j
= GC

F k
i−1Hk

i−1,1
to GC

F k
i−1Hk

i−1,m
do in parallel

9: get GC

F k
i Hk

i

by updating GC

F k
i−1Hk

i−1
based on Proposition 6.3

10: end for
11: for GD

F̃ k
i−1H̃k

i−1,j
= GD

F̃ k
i−1H̃k

i−1,1
to GD

F̃ k
i−1H̃k

i−1,p
do in parallel

12: get GD

F̃ k
i H̃k

i

by updating GD

F̃ k
i−1H̃k

i−1
based on Proposition 6.3

13: end for
14: for GC

F k
i−1Hk

i−1,j
= GC

F k
i−1Hk

i−1,1
to GC

F k
i−1Hk

i−1,m
do in parallel

15: compute the maximum CS degree θ∗k,j∗ and the corresponding concept (Ak,j∗ , Bk,j∗ )
by Eq. (6.21)

16: end for
17: compute the global maximum CS degree θ∗k∗,j∗ and corresponding concept

(Ak∗,j∗ , Bk∗,j∗ )
in GC

Fi−1,Hi−1
18: for each (Yk, Zk) ∈ GD

F̃i−1,H̃i−1
(k ∈ {1, 2, . . . , |GD

F̃i−1,H̃i−1
|}) do

19: if Ak∗,j∗ ⊆ Yk then
20: get the predicted label z by Definition 6.18
21: end if
22: if z �= F̃ k

�Gk
i−1

(gi−1) then
23: update the cognitive weight vector W by Eq. (6.22)
24: end if
25: end for
26: end for
27: Return GC

F k
n ,Hk

n
and GD

F̃ k
n ,H̃k

n
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Algorithm 6.9 Generalization process
1: Input: The final concept spaces GC

Fn,Hn
and GD

F̃n,H̃n
, and test data G.

2: Output: The class labels of test data.
3: for each g ∈ G do
4: construct a new concept

(H�Gi−1F�Gi−1 (g),F�Gi−1 (g)
)

5: for each (Ak,j , Bk,j ) ∈ GC
Fn,Hn

do
6: get θ∗k∗,j∗ by Eq. (6.21)
7: end for
8: for each (Yk, Zk) ∈ GD

F̃n,H̃n
(k ∈ {1, 2, . . . , |GD

F̃n,H̃n
|}) do

9: get the class label z by Definition 6.18
10: end for
11: end for
12: Return class labels

context. Then (Gk,M, I) and (Gk,D, J ) are respectively called the conditional
sub-object formal context and decision sub-object formal context.

Moreover, the set-valued mappings F k : 2Gk → 2M,Hk : 2M → 2Gk
, and

F̃ k : 2Gk → 2D, H̃k : 2D → 2Gk
are respectively called the conditional sub-object

cognitive operators and decision sub-object cognitive operators with a sub-object
set Gk .

Definition 6.20 Let (Gk,M, I) be a conditional sub-object formal context, and
F k , Hk be the conditional sub-object cognitive operators. For any x ′, x ′′ ∈ Gk ,
if HkF k(x ′) = {x ′} and HkF k(x ′′) ⊃ {x ′′}, then the pairs (HkF k(x ′),F k(x ′))
and (HkF k(x ′′),F k(x ′′)) are referred to as object-oriented conditional granular
concepts (or simply object-oriented conditional concepts). For convenience, we
denote

OGF kHk ={(HkF k(x ′),F k(x ′))|x ′ ∈ Gk}∪
{(HkF k(x ′′),F k(x ′′))|x ′′ ∈ Gk}.

Simultaneously, for any a′, a′′ ∈ M , if F kHk(a′) = {a′} and F kHk(a′′) ⊃ {a′′},
then the pairs (Hk(a′),F kHk(a′)) and (Hk(a′′),F kHk(a′′)) are called attribute-
oriented conditional granular concepts (or simply attribute-oriented conditional
concepts). For brevity, we further denote

AGF kHk ={(Hk(a′),F kHk(a′))|a′ ∈ M}∪
{(Hk(a′′),F kHk(a′′))|a′′ ∈ M}.

Definition 6.21 Let (Gk,D, J ) be a decision sub-object formal context and F̃ k ,
H̃k be the decision sub-object cognitive operators. For any x ′, x ′′ ∈ Gk , if
H̃kF̃ k(x ′) = {x ′} and H̃kF̃ k(x ′′) ⊃ {x ′′}, then the pairs (H̃kF̃ k(x ′), F̃ k(x ′)) and
(H̃kF̃ k(x ′′), F̃ k(x ′′)) are known as object-oriented decision granular concepts (or



6.1 Concept of the View of Learning 359

simply object-oriented decision concepts). For convenience, we denote

OGF̃ kH̃k ={(H̃kF̃ k(x ′), F̃ k(x ′))|x ′ ∈ Gk}∪
{(H̃kF̃ k(x ′′), F̃ k(x ′′))|x ′′ ∈ Gk}.

Meanwhile, for any k′, k′′ ∈ D, if F̃ kH̃k(k′) = {k′} and F̃ kH̃k(k′′) ⊃ {k′′},
then the pairs (H̃k(k′), F̃ kH̃k(k′)) and (H̃k(k′′), F̃ kH̃k(k′′)) are called attribute-
oriented decision granular concepts (or simply attribute-oriented decision concepts).
For brevity, we further denote

AGF̃ kH̃k ={(H̃k(k′), F̃ kH̃k(k′))|k′ ∈ D}∪
{(H̃k(k′′), F̃ kH̃k(k′′))|k′′ ∈ D}.

To facilitate the subsequent discussion, in a regular sub-object formal decision
context, the conditional concept space and decision concept space are respectively
denoted by

GF kHk = OGF kHk ∪AGF kHk

= {(HkF k(x),F k(x))|x ∈ Gk}∪
{(Hk(a),F kHk(a))|a ∈ M}, and

GF̃ kH̃k = OGF̃ kH̃k ∪AGF̃ kH̃k

= {(H̃kF̃ k(x), F̃ k(x))|x ∈ Gk}∪
{(H̃k(k′), F̃ kH̃k(k′))|k′ ∈ D}.

It means that the concept spaces of sub-object set Gk can be constructed by
means of the object-oriented concepts and attribute-oriented concepts.

Theorem 6.2 LetGF kHk andGF̃ kH̃k be the conditional concept space and decision
concept space, respectively. Then the following statements hold:

(1) For any conditional concepts (HkF k(x),F k(x)) and (Hk(a),F kHk(a)),
if there exists a conditional concept (HkF k(xi),F k(xi)) ∈ GF kHk such
that F k(x) ⊆ F k(xi) (i ∈ {1, 2, . . . , |Gk|}) and a conditional concept
(Hk(aj ),F kHk(aj ))

∈ GF kHk such thatHk(a) ⊆ Hk(aj ) (j ∈ {1, 2, . . . , |M|}), then we have

(HkF k(x),F k(x)) = ({x ∪
⋃

i∈{1,2,...,|Gk |}
xi},F k(x)),

(Hk(a),F kHk(a)) = (Hk(a), {a ∪
⋃

j∈{1,2,...,|M|}
aj });

(6.23)
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otherwise,

(HkF k(x),F k(x)) = ({x},F k(x)),

(Hk(a),F kHk(a)) = (Hk(a), {a}).
(6.24)

(2) For any decision concepts (H̃kF̃ k(x), F̃ k(x)) and (H̃k(k′), F̃ kH̃k(k′)),
if there exists a decision concept (H̃kF̃ k(xi), F̃ k(xi)) ∈ GF̃ kH̃k such

that F̃ k(x) ⊆ F̃ k(xi) (i ∈ {1, 2, . . . , |Gk|}) and a decision concept
(H̃k(kj ), F̃ kH̃k(kj )) ∈ GF̃ kH̃k such that H̃k(k′) ⊆ H̃k(kj ) (j ∈
{1, 2, . . . , |D|}), then following statements hold:

(H̃kF̃ k(x), F̃ k(x)) = ({x ∪
⋃

i∈{1,2,...,|Gk |}
xi}, F̃ k(x)),

(H̃k(k′), F̃ kH̃k(k′)) = (H̃k(k′), {k′∪⋃
j∈{1,2,...,|D|}

kj });
(6.25)

otherwise,

(H̃kF̃ k(x), F̃ k(x)) = ({x}, F̃ k(x)),

(H̃k(k′), F̃ kH̃k(k′)) = (H̃k(k′), {k′}).
(6.26)

Proof The proof of Theorem 6.2 can be found in the original paper [43]. �

Property 6.4 LetG�F kHk andG�F̃ kH̃k

be two concept spaces,AGF kHk andAGF̃ kH̃k

be the attribute-oriented conditional concept space and attribute-oriented deci-
sion concept space, respectively; meanwhile, initialize G�F kHk = AGF kHk and
G�F̃ kH̃k

= AGF̃ kH̃k . Then we have

(1) For each x ∈ Gk , if there exists (Hk(a),F kHk(a)) ∈ AGF kHk such
that F k(x) = F kHk(a), then (HkF k(x),F k(x)) = (Hk(a),F kHk(a));

otherwise,
G�F kHk = G�F kHk ∪ (HkF k(x),F k(x)).

(2) For each x ∈ Gk , if there exists (H̃k(k′), F̃ kH̃k(k′)) ∈ AGF̃ kH̃k such that

F̃ k(x) = F̃ kH̃k(k′), then (H̃kF̃ k(x), F̃ k(x)) = (H̃k(k′), F̃ kH̃k(k′));
otherwise,
G�F̃ kH̃k

= G�F̃ kH̃k
∪ (H̃kF̃ k(x), F̃ k(x)).

Proof The proof of Property 6.4 can be found in the original paper [43]. �

Property 6.4 means that we do not need to construct concepts (HkF k(x),F k(x))

and (H̃kF̃ k(x), F̃ k(x)) like [58] when F k(x) = F kHk(a) and F̃ k(x) =
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F̃ kH̃k(k′). Then, using this approach, we can finally obtain GF kHk = G�F kHk and
GF̃ kH̃k = G�F̃ kH̃k

.
For convenience, we denote the labeled dataset SL by G0, and the initial concept

spaces by GF0H0 and GF̃0H̃0
. Note that, in the initial concept space period, if

the object set Gk is replaced with Gk
0, then the corresponding cognitive operators

F k,Hk and F̃ k, H̃k can be expressed as F k
0 ,Hk

0 and F̃ k
0 , H̃k

0 , respectively.

6.1.3.2 Cognitive Process with Unlabeled Data in Concept Learning

In the concept-cognitive process, suppose the obtained concept spaces will
be updated by a newly added object instead of inputting multi-objects
simultaneously. Then, for the unlabeled set SU , we can denote SU as �G =
{�G0,�G1, . . . ,�Gn−1} in which each learning step only consists of one object
x (i.e., �Gi = {xi}). For brevity, in what follows, we write {xi} as xi and then we
have �G = {x0, x1, . . . , xn−1}.

Different from [58], we assume that an object x is connected with a virtual label
k∗ due to no label information. Then we have the conditional sub-object cognitive
operators and decision sub-object cognitive operators with the newly input data
�Gk∗

i−1 = Gk∗
i −Gk∗

i−1 as follows:

(i) F k∗
i−1 : 2Gk∗

i−1 → 2M, Hk∗
i−1 : 2M → 2Gk∗

i−1,

(ii) F k∗
�Gk∗

i−1
: 2�Gk∗

i−1 → 2M, Hk∗
�Gk∗

i−1
: 2M → 2�Gk∗

i−1,

(iii)F k∗
i : 2Gk∗

i → 2M, Hk∗
i : 2M → 2Gk∗

i ,

(6.27)

and

(i) F̃ k∗
i−1 : 2Gk∗

i−1 → 2D, H̃k∗
i−1 : 2D → 2Gk∗

i−1,

(ii) F̃ k∗
�Gk∗

i−1
: 2�Gk∗

i−1 → 2D, H̃k∗
�Gk∗

i−1
: 2D → 2�Gk∗

i−1,

(iii)F̃ k∗
i : 2Gk∗

i → 2D, H̃k∗
i : 2D → 2Gk∗

i .

(6.28)

Theorem 6.3 Let AGF k∗
i−1Hk∗

i−1
, AGF̃ k∗

i−1H̃k∗
i−1

and OGF k∗
i−1Hk∗

i−1
, OGF̃ k∗

i−1H̃k∗
i−1

be the

attribute-oriented concept spaces and object-oriented concept spaces, respectively.
Then we have

(1) For any a′ ∈ M and (Hk∗
i−1(a′′),F k∗

i−1Hk∗
i−1(a′′)) ∈ AGF k∗

i−1Hk∗
i−1

, if

F k∗
i−1Hk∗

i−1(a′′) ∩
F k∗

�Gk∗
i−1

Hk∗
�Gk∗

i−1
(a′) �= ∅, then
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(Hk∗
i (a′′),F k∗

i Hk∗
i (a′′)) = (Hk∗

i−1(a′′) ∪Hk∗
�Gk∗

i−1
(a′),F k∗

i−1Hk∗
i−1(a′′) ∩

F k∗
�Gk∗

i−1
Hk∗

�Gk∗
i−1

(a′));
otherwise,
(Hk∗

i (a′),F k∗
i Hk∗

i (a′)) = (Hk∗
�Gk∗

i−1
(a′),F k∗

�Gk∗
i−1

Hk∗
�Gk∗

i−1
(a′)).

(2) For any x ′ ∈ �Gk∗ and (Hk∗
i−1F k∗

i−1(x ′′),F k∗
i−1(x ′′)) ∈ OGF k∗

i−1Hk∗
i−1

, if

F k∗
i−1(x ′′) ⊆
F k∗

�Gk∗
i−1

(x ′), then (Hk∗
i F k∗

i (x ′′),F k∗
i (x ′′)) = (Hk∗

i−1F k∗
i−1(x ′′) ∪Hk∗

�Gk∗
i−1

F k∗
�Gk∗

i−1
(x ′),F k∗

i−1(x ′′));

if F k∗
�Gk∗

i−1
(x ′) ⊆ F k∗

i−1(x ′′), then

(Hk∗
i F k∗

i (x ′′),F k∗
i (x ′′)) = (Hk∗

i−1F k∗
i−1(x ′′) ∪Hk∗

�Gk∗
i−1

F k∗
�Gk∗

i−1
(x ′),

F k∗
�Gk∗

i−1
(x ′));

otherwise,
(Hk∗

i F k∗
i (x ′),F k∗

i (x ′)) = (Hk∗
�Gk∗

i−1
F k∗

�Gk∗
i−1

(x ′),F k∗
�Gk∗

i−1
(x ′)).

(3) For any k′ ∈ D and (H̃k∗
i−1(k′′), F̃ k∗

i−1H̃k∗
i−1(k′′)) ∈ AGF̃ k∗

i−1H̃k∗
i−1

, if

F̃ k∗
i−1H̃k∗

i−1(k′′) ∩ F̃ k∗
�Gk∗

i−1
H̃k∗

�Gk∗
i−1

(k′) �= ∅, then
(H̃k∗

i (k′′), F̃ k∗
i H̃k∗

i (k′′)) = (H̃k∗
i−1(k′′) ∪ H̃k∗

�Gk∗
i−1

(k′), F̃ k∗
i−1H̃k∗

i−1(k′′) ∩
F̃ k∗

�Gk∗
i−1

H̃k∗
�Gk∗

i−1
(k′));

otherwise,
(H̃k∗

i (k′), F̃ k∗
i H̃k∗

i (k′)) = (H̃k∗
�Gk∗

i−1
(k′), F̃ k∗

�Gk∗
i−1

H̃k∗
�Gk∗

i−1
(k′)).

(4) For any x ′ ∈ �Gk∗ and (H̃k∗
i−1F̃ k∗

i−1(x ′′), F̃ k∗
i−1(x ′′)) ∈ OGF̃ k∗

i−1H̃k∗
i−1

, if

F̃ k∗
i−1(x ′′) ⊆
F̃ k∗

�Gk∗
i−1

(x ′), then (H̃k∗
i F̃ k∗

i (x ′′), F̃ k∗
i (x ′′)) = (H̃k∗

i−1F̃ k∗
i−1(x ′′) ∪ H̃k∗

�Gk∗
i−1

F̃ k∗
�Gk∗

i−1
(x ′), F̃ k∗

i−1(x ′′));

if F̃ k∗
�Gk∗

i−1
(x ′) ⊆ F̃ k∗

i−1(x ′′), then

(H̃k∗
i F̃ k∗

i (x ′′), F̃ k∗
i (x ′′)) = (H̃k∗

i−1F̃ k∗
i−1(x ′′) ∪ H̃k∗

�Gk∗
i−1

F̃ k∗
�Gk∗

i−1
(x ′),

F̃ k∗
�Gk∗

i−1
(x ′));

otherwise,
(H̃k∗

i F̃ k∗
i (x ′), F̃ k∗

i (x ′)) = (H̃k∗
�Gk∗

i−1
F̃ k∗

�Gk∗
i−1

(x ′), F̃ k∗
�Gk∗

i−1
(x ′)).

Proof The proof of Theorem 6.3 can be found in the original paper [42]. �

Although Theorem 6.3 shows how to update the concept spaces when adding

an instance, concept recognition is exceedingly difficult since we cannot directly
recognize the real class label of each instance x. Namely, unlike the initial concept
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spaces generation, there is still a mystery that which sub-concept space will be
updated when inputting a new object without label information.

6.1.3.3 Concept Recognition

For any newly input object x, the concept (Hk∗
�Gk∗

i

F k∗
�Gk∗

i

(x),F k∗
�Gk∗

i

(x)) can be

rewritten as ({x},F k∗
�Gk∗

i

(x)) due to |�Gk∗
i | = 1. Meanwhile, to meet the demand

of lots of unlabeled data, a new similarity metric for concept learning is proposed in
this subsection. As a matter of fact, a good assessing similarity for concepts is a key
success of S2CL.

Definition 6.22 Let GFi−1,Hi−1 be the concept space and GF k∗
i−1,Hk∗

i−1
be a sub-

concept space with a virtual label k∗ in the (i − 1)-th state. For any concept
(Xj , Bj ) ∈ GF k∗

i−1,Hk∗
i−1

, where j ∈ {1, 2, . . . , |GF k∗
i−1,Hk∗

i−1
|}, the global information

wi−1,k∗ and the local information zk∗
i−1,j in the (i − 1)-th state are, respectively,

defined as

wi−1,k∗ =
|GF k∗

i−1,Hk∗
i−1
|

|GFi−1,Hi−1 |
, (6.29)

zk∗
i−1,j =

|Xj |
|GF k∗

i−1,Hk∗
i−1
| . (6.30)

More generally, considering the entire concept space GFi−1,Hi−1 in the (i − 1)-th
state, we denote

wi−1 = (wi−1,1, wi−1,2, . . . , wi−1,l), (6.31)

zi−1 =
⎡
⎢⎣

z1i−1
...

zl
i−1

⎤
⎥⎦ =
⎡
⎢⎢⎣

z1i−1,1 · · · z1i−1,m1
...

. . .
...

zl
i−1,1 · · · zl

i−1,ml

⎤
⎥⎥⎦ , (6.32)

where mk∗ =
∣∣GF k∗

i−1,Hk∗
i−1

∣∣ and k∗ ∈ {1, 2, . . . ,K}.
Definition 6.23 Let C = ({x},F

�Gk∗
i

(x)) be a newly input concept. For any

concept (Xj , Bj ) ∈ GF k∗
i−1,Hk∗

i−1
, where j ∈ {1, 2, . . . , |GF k∗

i−1,Hk∗
i−1
|}, the concept

similarity (CS) can be defined as:

θI
j = I

|A∗ ∩ Bj |
|A∗ ∩ Bj | + 2(α|A∗ − Bj | + (1− α)|Bj − A∗|) , (6.33)

where I = 1/(1+wi−1,k∗ × e
−zk∗

i−1,j ), A∗ = F
�Gk∗

i
(x) and α ∈ [0, 1].
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For Eq. (6.33), I is set to be 1 when without considering the global and local
information. In this case, Eq. (6.33) can further be formulated as

θj = |A∗ ∩ Bj |
|A∗ ∩ Bj | + 2(α|A∗ − Bj | + (1− α)|Bj − A∗|) . (6.34)

In Eq. (6.34), A∗ − Bj represents the characteristics appearing in A∗ but not
in Bj , and it has the same meaning for Bj − A∗. Moreover, the parameters α and
(1−α) can be, respectively, considered as the weight information added to |A∗−Bj |
and |Bj − A∗|, which express the importance of different features of A∗ − Bj and
Bj − A∗ relative to the overall similarity degree. In fact, when α = 0.5, Eq. (6.34)
is degenerated into Jaccard similarity [27, 65].

According to sample separation axiom [79], for any instance, there always exists
a unique class that is most similar to it. Hence, given an instance x, the class
vector can be generated as follows: each sub-concept space will first produce
a set of CS degrees by computing the CS degree between the given concept
and any concept from a sub-concept space. Then, the maximum CS degree (θ̂ I

j )

of each sub-concept space will be obtained, namely, θ̂ I
j = max

j∈J {θ
I
j }, where

J = {1, 2, . . . , |GF k∗
i−1,Hk∗

i−1
|}. Finally, the estimated class distribution will form a

maximum class vector (θ̂ I
1 , θ̂ I

2 , . . . , θ̂ I
l )T. In the same manner, we can obtain an

average class vector (θ
I

1, θ
I

2, . . . , θ
I

l )
T.

Note that a SSL method, which is designed by combining the concept-cognitive
process with the structural concept similarity θj , is referred to as a semi-supervised
concept learning method, and it is abbreviated as S2CL for convenience. In
the meanwhile, an extended version of S2CL is further proposed by taking full
advantage of the global and local conceptual information (i.e., the structural concept
similarity θI

j ) within a concept space. For conciseness, we also write it as S2CLα

when no confusion exists.

6.1.3.4 Theoretical Analysis

Essentially, α mainly reflects the influences of different characteristics in sets
A∗ − Bj and Bj − A∗ for the overall concept similarity measure. Hence, it is very
important to discuss how to select an appropriate α on each dataset.

Let Y = {1, 2, . . . , l} be the label space. The concept spaces with different αr

(αr ∈ [0, 1]) in the (i − 1)-th period can be formulated as⎡
⎢⎢⎣
Gα1
Fi−1,Hi−1

...

Gαn

Fi−1,Hi−1

⎤
⎥⎥⎦ =
⎡
⎢⎢⎣
Gα1,1
Fi−1,Hi−1 · · · G

α1,l

Fi−1,Hi−1
...

. . .
...

Gαn,1
Fi−1,Hi−1 · · · G

αn,l

Fi−1,Hi−1

⎤
⎥⎥⎦ , (6.35)

where
n∑

r=1
αr = 1.
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For an object xi , we can obtain its corresponding concept Ci = ({xi}, Bi). Then,
based on Definition 6.23, we denote

Sim(Ci,Gαr ,k
Fi−1,Hi−1) = {Sim(Ci, C

αr

j )}mk

j=1 = {θI
j }mk

j=1, (6.36)

where C
αr

j ∈ Gαr ,k
Fi−1,Hi−1(k ∈ Y) and mk = |Gαr ,k

Fi−1,Hi−1 |.
Combining Eqs. (6.35) with (6.36), the corresponding concept similarity in the

(i − 1)-th state can be described as

⎡
⎢⎣

S(Ci,Gα1
i−1)

...

S(Ci,Gαn

i−1)

⎤
⎥⎦ =
⎡
⎢⎣

S(Ci,Gα1,1
i−1 ) · · · S(Ci ,Gα1,l

i−1)
...

. . .
...

S(Ci,Gαn,1
i−1 ) · · · S(Ci,Gαn,l

i−1 )

⎤
⎥⎦ , (6.37)

where S(Ci,Gαr

i−1) = Sim(Ci,Gαr

Fi−1,Hi−1) (r ∈ {1, 2, . . . , n}) and S(Ci,Gαr ,k
i−1 ) =

Sim(Ci,Gαr ,k
Fi−1,Hi−1).

Furthermore, inspired by [79], the category similarity function between the given
concept Ci and a class space Gαr ,k

Fi−1,Hi−1 can be defined as

φSim(Ci,Gαr ,k
Fi−1,Hi−1) =

|Nαr

k (Ci)|
K

, (6.38)

where N
αr

k (Ci) = {Cj |Cj ∈ Gαr ,k

Fi−1,Hi−1 ∧ Cj ∈ N
αr

K (Ci)}, and N
αr

K (Ci) is a set of
near neighbor instances related to xi under the parameter αr .

According to top-K set similarity [77], if k̂ = argmaxk∈Y
|Nαr

k (Ci)|
K

, then the
instance xi is classified into the k̂-th class. Therefore, given the parameter K , the
objective function can be formulated as

α̂r = argmin
αr∈[0,1]

m∑
i=1

( |Nαr

k (Ci)|
K

− yi

)2

s.t.
n∑

r=1
αr = 1.

(6.39)

In Eq. (6.39), our aim is to capture an optimal concept space with the concept
structural information.

6.1.3.5 Framework and Computational Complexity Analysis

For brevity, we can consider that there are three classes to predict. Figure 6.3
illustrates the whole procedure of S2CL. From a dataset (that contains a small set of
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labeled data and a large amount of unlabeled data), we first obtain a corresponding
regular formal decision context. Then, the initial concept spaces (that include
a conditional concept space and its corresponding decision concept space) with
concept structural information will be constructed based on the cognitive operators.
Specifically speaking, the conditional concept space contains three sub-concept
spaces, where each sub-concept space is composed of different concepts. As shown
in the stage of initial concept spaces of Fig. 6.3 (see the left of Fig. 6.3 for details),
there exist three sub-concept spaces corresponding to three classes in a conditional
concept space, and each sub-concept space contains two different types of concepts,
namely object-oriented conditional concepts (indicated by red shapes in Fig. 6.3)
and attribute-oriented conditional concepts (denoted by black shapes in Fig. 6.3).
Meanwhile, each sub-concept space is also associated with a decision concept in the
corresponding decision concept space as shown in the first stage of Fig. 6.3. Thirdly,
for any newly input unlabeled data, they are first used to form concepts, and then
the concept-cognitive process is completed by concept recognition. Finally, given
the parameter K , S2CL (or S2CLα) trys to learn an optimal concept space based on
the concept recognition and concept-cognitive process under different parameters
αr(r = 1, 2, . . . , n). In other words, the objective of S2CL (or S2CLα) is to seek
an appropriate concept space to represent the underlying data distributions by the
concept-cognitive process.

In the prediction stage, given an instance, the final concept space can produce two
estimates of class distribution (including a maximum class vector and an average
class vector) by employing the CS degree θj (or θI

j ). Then the final CS degree
vector will be obtained by the sum of the two 3-dimensional class vectors, and the
class with maximum value will be output as shown in Fig. 6.3.

Based on the above discussion, we are ready to propose the corresponding
algorithm of S2CL (see Algorithm 6.10 for details). In Algorithm 6.10, Step 3 is
to generate the initial concept spaces; then the concept recognition and concept-
cognitive process are conducted by running Steps 4–8; at last, the final prediction
will be completed by Steps 9–12. In Steps 9–12, if the prediction value k̂ is
consistent with the ground truth label, then it means that the predicted value of S2CL
is correct. Formally, the accuracy on a test dataset T can be descried as acc = N

|T | ,
where N denotes the number of correct predicted values. Simultaneously, it will be
easy to obtain the algorithm of S2CLα by means of replacing the structural concept
similarity θj with θI

j in Step 6 of Algorithm 6.10.
The time complexity of S2CL is mainly composed of two parts, i.e. constructing

the initial concept spaces and the concept-cognitive process with concept structural
information. Let the time complexity of constructing a concept, computing the CS
degree and updating the concept space be O(t1),O(t2) and O(t3), respectively.
Then, it is easy to verify that the time complexity of Step 3 is O(t1|SL|(|M|+ |D|)),
and the complexity of accomplishing the concept-cognitive process by concept
recognition is O(|SU |(t1 + t2 + t3)). Note that, CCL is an incremental learning
process, as the proposed method is updated by inputting objects one by one.
Therefore, S2CL can also be regarded as an incremental method for SSL in dynamic
environments. For convenience, let E and C (that randomly selects instances from
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SU ) be the incremental learning step and the sample size of each incremental
learning step, respectively. Thus, the time complexity of incremental learning (see
Algorithm 6.11 for details) is O(E(|SU |(t1 + t2 + t3))+ |T |).

Algorithm 6.10 S2CL algorithm
1: Input: Labeled dataset SL, unlabeled dataset SU , test dataset T , and hyperparameters K and

αr .
2: Output: The class labels of the test dataset T .
3: Based on labeled dataset SL, S2CL can construct two initial concept spaces GF0H0 and GF̃0H̃0

by Theorem 6.2.
4: for each xi ∈ SU do
5: Get two concepts ({xi},F�Gk∗

i
(xi )) and ({xi }, F̃�Gk∗

i
(xi )).

6: Compute the CS degree by Eq. (6.33) (or Eq. (6.34)).
7: Update concept spaces Gαr

Fi−1Hi−1 and Gαr

F̃i−1H̃i−1
by Theorem 6.3.

8: end for
9: for each xj ∈ T do
10: Construct a concept Cj = ({xj }, Bj ).

11: k̂ = argmaxk∈Y
|Nαr

k
(Cj )|

K
.

12: end for
13: return class labels.

Algorithm 6.11 Incremental learning
1: function INCREMENTALLEARNINGMETHOD

2: for e=1 to E do
3: Conduct the same operation as Steps 4–8 of Algorithm 6.10.
4: Conduct the same operation as Steps 9–12 of Algorithm 6.10.
5: end for
6: return class labels.
7: end function

6.1.4 Fuzzy-Based Concept Learning Method: Exploiting Data
with Fuzzy Conceptual Clustering

6.1.4.1 Preliminaries

In this subsection, we review some notions related to the fuzzy formal decision
context.

In a classical formal decision context, the conditional attributes are discrete.
However, in the real world, many tasks (e.g., classification, image segmentation,
etc.) are described with numerical (or fuzzy) data, which means that classical formal



6.1 Concept of the View of Learning 369

decision contexts cannot cope with them directly. Therefore, a fuzzy formal decision
context is proposed based on fuzzy sets [81].

Let G be a universe of discourse. A fuzzy set X̃ on G can be defined as follows:

X̃ = {< x,μX̃(x) > |x ∈ G},

where μX̃ : G→ [0, 1], and μX̃(x) is referred to as the membership degree to X̃ of
the object x ∈ G. And we denote by LG the set of all fuzzy sets on G.

Definition 6.24 ([83]) A fuzzy formal context (G,M, Ĩ ) is a triple, where G is a
set of objects, M is a set of attributes, and Ĩ is a fuzzy relation between G and M .
Each relation (x, a) ∈ Ĩ has a membership degree μĨ (x, a) in [0, 1], and we denote
by Ĩ (x, a) = μĨ (x, a) for the sake of convenience.

Definition 6.25 ([4, 78, 83]) Let (G,M, Ĩ ) be a fuzzy formal context. For X ⊆ G

and B̃ ∈ LM , the operator (·)∗ is defined as follows:

X∗(a) =
∧
x∈X

Ĩ (x, a), a ∈ M,

B̃∗ = {x ∈ G|∀a ∈ M, B̃(a) ≤ Ĩ (x, a)}.
(6.40)

Then, we say that a pair (X, B̃) is a fuzzy concept of a fuzzy formal context
(G,M, Ĩ ) if X∗ = B̃, B̃∗ = X, and X and B̃ are respectively known as the
extent and intent of the fuzzy concept (X, B̃). For convenience, the set of all fuzzy
concepts is denoted by L(G,M, Ĩ ). In [83], L(G,M, Ĩ ) is called a special crisp-
fuzzy variable threshold concept lattice under the circumstance of the threshold
being set to be 1. For (X1, B̃1), (X2, B̃2) ∈ L(G,M, Ĩ ), we define the order relation
(X1, B̃1) ≤ (X2, B̃2) if and only if X1 ⊆ X2 (or B̃2 ⊆ B̃1). Then we say that
(X1, B̃1) is a sub-concept of (X2, B̃2) and (X2, B̃2) is a super-concept of (X1, B̃1).

Definition 6.26 ([55]) Let (G,M, Ĩ ) and (G,D, J̃ ) be two fuzzy formal contexts,
where Ĩ : G × M → [0, 1] and J̃ : G × D → [0, 1]. Then (G,M, Ĩ ,D, J̃ ) is
referred to as a fuzzy formal decision context, where M ∩D = ∅, and M and D are
the conditional and decision attribute sets, respectively.

Note that a quintuple (G,M, I,D, J̃ ) is called a crisp-fuzzy formal decision
context in [48], where (G,M, I) and (G,D, J̃ ) are respectively a classical formal
context and fuzzy formal context.

6.1.4.2 Fuzzy Concept Learning Method

In this subsection, we first show some new notions and properties for the proposed
FCLM, which includes a regular fuzzy formal decision context, an object-oriented
fuzzy conceptual clustering, and the related theoretical analysis. Based on them, we
further present the detailed procedure of FCLM.
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Fig. 6.4 Illustration of three different forms of fuzzy formal decision contexts

A. Regular Fuzzy Formal Decision Context

According to Definition 6.26, Fig. 6.4a and b represents two different fuzzy
formal decision contexts (G,M, Ĩ ,D, J̃ ) and (G,M, I,D, J̃ ), respectively. More
precisely, Fig. 6.4a expresses a fuzzy formal decision context in which M and D

are both numerical; Fig. 6.4b denotes a fuzzy formal decision context, where M is
discrete and D is numerical. However, in the real application, most original data are
often presented in the form of Fig. 6.4c. It means that the decision attribute set D

is described with discrete label information and the conditional attribute set M is
constitutive of fuzzy data.

Definition 6.27 Let (G,M, Ĩ ) be a fuzzy formal context and (G,D, J ) be a
classical formal context. Then the quintuple (G,M, Ĩ ,D, J ) is known as a fuzzy-
crisp formal decision context, where Ĩ : G×M → [0, 1] and J : G×D→ {0, 1}.
Definition 6.28 Let (G,M, Ĩ ,D, J ) be a fuzzy-crisp formal decision context. For
any k1, k2 ∈ D, if Hd(k1) ∩ Hd(k2) = ∅, then we say that (G,M, Ĩ ,D, J ) is a
regular fuzzy-crisp formal decision context.

Generally speaking, constructing a fuzzy concept lattice in a standard fuzzy
context is sometimes quite complicated, as it is completed in exponential time
complexity in the worst case. Hence, GrC should be introduced into the process
of generating fuzzy concept lattices for greatly reducing the amount of calculation.

Let (G,M, Ĩ ) be a fuzzy formal context. F̃ c : 2G → LM and H̃c : LM →
2G are supposed to be two mappings. Hence, X∗(a) and B̃∗ in Definition 4 can
be rewritten as F̃ c(X)(a) and H̃c(B̃), respectively. Especially, for an object set
{x}(x ∈ G), F̃ c({x})(a) is abbreviated as F̃ c(x) for brevity.
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Definition 6.29 Let (G,M, Ĩ ,D, J ) be a fuzzy-crisp formal decision context, and
F̃ c : 2G → LM ,H̃c : LM → 2G and F d : 2G → 2D ,Hd : 2D → 2G be
four mappings. For any x ∈ G, (H̃cF̃ c(x), F̃ c(x)) and (HdF d (x),F d(x)) are
called a fuzzy conditional granular concept and classical decision granular concept,
respectively. The sets of all fuzzy conditional granular concepts and classical
decision granular concepts are respectively represented as follows:

GF̃ cH̃c = {(H̃cF̃ c(x), F̃ c(x))|x ∈ G},
GF dHd = {(HdF d(x),F d(x))|x ∈ G},

where GF̃ cH̃c and GF dHd are respectively referred to as the fuzzy conditional
concept space and classical decision concept space.

It should be pointed out that fuzzy concept lattice has a good performance
on classification but is very time-consuming. To the best of our knowledge, the
reason is that fuzzy concept lattice may consist of many redundant elements. So,
similar to classical concept lattice, it is better to replace fuzzy concept lattice with
fuzzy concept space (only containing part of elements of fuzzy concept lattice) in
achieving classification tasks with the purpose of improving learning efficiency.

Property 6.5 Let (G,M, Ĩ ,D, J ) be a fuzzy-crisp formal decision context. For any
(X1, B̃) ∈ GF̃ cH̃c and (X2,K) ∈ GF dHd , if X1 ⊆ X2, and X1, B̃,X2 and K are
nonempty, then the object setX1 is connectedwith the decision attribute setK under
the conditional attribute set B̃.

Proof The proof is immediate from Definition 6.3 and Property 6.2. �

From Definition 6.29 and Property 6.5, we know that an object can also be

connected with a label in a fuzzy-crisp formal decision context.
Based on the above discussion, the complete algorithm of constructing two

concept spaces (including a fuzzy conditional concept space and classical decision
concept space) is presented in Algorithm 6.12.

Algorithm 6.12 Constructing two concept spaces
1: Input: A dataset G.
2: Output: The fuzzy conditional concept space GF̃ cH̃c and classical decision concept space

GF dHd .
3: for each x ∈ G do
4: % Construct a conditional concept space.
5: Construct a fuzzy concept

(H̃cF̃ c(x), F̃ c(x)
)
.

6: GF̃ cH̃c ← (H̃cF̃ c(x), F̃ c(x)
)
.

7: % Construct a decision concept space.
8: Construct a classical concept

(HdF d (x),F d (x)
)
.

9: GF dHd ← (HdF d (x),F d (x)
)
.

10: end for
11: Return GF̃ cH̃c and GF dHd .
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B. Object-Oriented Fuzzy Conceptual Clustering

In order to generate fuzzy ontologies, a fuzzy conceptual clustering [50] was
adopted in [67]. In fact, it was based on a crisp-crisp variable threshold concept
lattice and implemented conceptual clustering via fuzzy sets intersection and union.
However, to adapt to granular concepts based on a crisp-fuzzy variable threshold
concept lattice, we need to consider the following notions.

Let (G,M, Ĩ ) be a fuzzy formal context. For any (X, B̃) ∈ GF̃ cH̃c , |X| is called
the object-oriented cardinality with reference to (X, B̃).

Definition 6.30 Let (Xj , B̃j ) be a fuzzy granular concept and (Xi, B̃i ) be its sub-
concept, then the object-oriented fuzzy concept similarity (object-oriented FCS) is
defined as follows:

θo = CO(Xi,Xj ) = |Xi

⋂
Xj |

|Xi

⋃
Xj | . (6.41)

Definition 6.31 Let (Xj , B̃j ) and (Xl, B̃l) be two fuzzy granular concepts, then
the attribute-oriented fuzzy concept similarity (attribute-oriented FCS) is defined as
follows:

θa = CA(B̃j , B̃l ) = ||B̃j − B̃l ||22. (6.42)

Definition 6.32 Let GSλ

F̃ cH̃c
be a sub-concept space of GF̃ cH̃c . For any (Xi, B̃i ) ∈

GSλ

F̃ cH̃c
, we say that GSλ

F̃ cH̃c
is an object-oriented conceptual cluster of the concept

space with an object-oriented FCS threshold λ if the following properties hold:

1. There exists a supremum concept (Xp, B̃p) ∈ GSλ

F̃ cH̃c
that is not similar to any

of its super-concepts.
2. There exists at least one super-concept (Xj , B̃j ) ∈ GSλ

F̃ cH̃c
such that

CO(Xi,Xj ) > λ when Xi �= Xp.
3. Any fuzzy concept (Xi, B̃i ) only belongs to one object-oriented conceptual

cluster GSλ

F̃ cH̃c
.

Definition 6.33 Let GSλ

F̃ cH̃c
be an object-oriented conceptual cluster. For (X1, B̃1),

(X2, B̃2), . . . , (Xp, B̃p) ∈ GSλ

F̃ cH̃c
(p = |GSλ

F̃ cH̃c
|), let XSλ =

p⋃
i=1

Xi and B̃Sλ =

(B̃Sλ(a1), B̃Sλ(a2), . . . , B̃Sλ (a|M|)), where B̃Sλ(aj ) = 1
p

p∑
i=1

B̃i (aj ) (j ∈ {1, 2, . . . ,
|M|}). Then we say that the crisp-fuzzy pair (XSλ, B̃Sλ ) is a pseudo concept induced
by the object-oriented conceptual cluster GSλ

F̃ cH̃c
.

In what follows, the pseudo concept (XSλ, B̃Sλ) is called the representation of the
object-oriented conceptual cluster GSλ

F̃ cH̃c
. Note that the process of generating a new
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pseudo concept is known as concept generation. Hereinafter, we do not distinguish
pseudo concepts from fuzzy concepts since pseudo concepts are only intermediate
variables in the subsequent fuzzy conceptual clustering. In other words, sometimes
we also call pseudo concepts as fuzzy concepts when no confusion exists.

Statistically speaking, Definition 6.33 can completely characterize a new fuzzy
concept. However, in cognitive science, concept cognition was often considered to
be incremental due to individual cognitive limitations and incomplete cognitive
environments. Inspired by this issue, the process of constructing a new fuzzy
concept can be rephrased as follows.

Definition 6.34 Let (Xp, B̃p) be the supremum concept of GSλ

F̃ cH̃c
. For (X1, B̃1),

(X2, B̃2), . . . , (Xp, B̃p) ∈ GSλ

F̃ cH̃c
, each dimension of the intent of a new fuzzy

concept (XSλ, B̃Sλ) can be rewritten as follows:

B̃Sλ(aj ) = 1

2p−1 (B̃1(aj )+ B̃2(aj )+ 2B̃3(aj )+

4B̃4(aj )+, . . . ,+2p−2B̃p(aj )),

(6.43)

where j ∈ {1, 2, . . . , |M|}.
Theorem 6.4 Let B̃Sλ(aj ) be any dimension of the intent of a new fuzzy concept
(XSλ, B̃Sλ). Then we have

B̃p(aj )

2
≤ B̃Sλ(aj ) ≤ 1. (6.44)

Proof It is immediate from Definitions 6.24 and 6.34. �

For any (Xi, B̃i ), (Xj , B̃j ) ∈ GSλ

F̃ cH̃c
, if (Xj , B̃j ) is a super-concept of (Xi, B̃i ),

we say that (Xj , B̃j ) presents more strongly conceptual representation ability than
(Xi, B̃i ). Equation (6.43) represents that the process of incremental cognition for
concept formation by means of the hierarchical relations between sub-concepts and
super-concepts, and the coefficient of each dimension will be heighten along with
the increase of conceptual representation ability. Equation (6.44) denotes that the
upremum concept has a great influence on the process of constructing new fuzzy
concepts.

Definition 6.35 Let GSλ,1

F̃ cH̃c
,GSλ,2

F̃ cH̃c
, . . . ,GSλ,m

F̃ cH̃c
be a partition of GF̃ cH̃c with an

object-oriented FCS threshold λ. Then a new concept space can be defined as
follows:

GSλ,∗
F̃ cH̃c

=
m⋃

i=1
GSλ,i

F̃ cH̃c
=

m⋃
i=1

(XSλ,i , B̃Sλ,i ). (6.45)
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Theorem 6.5 Let GSλ,∗
F̃ cH̃c

be a concept space with an object-oriented FCS threshold
λ. We have

1 ≤ |GSλ,∗
F̃ cH̃c
| ≤ |GF̃ cH̃c |. (6.46)

Proof The proof of Theorem 6.5 can be found in the original paper [43]. �

Based on the above theory, the procedure of object-oriented fuzzy conceptual

clustering is summarized in Algorithm 6.13.

Algorithm 6.13 Object-oriented fuzzy conceptual clustering method
1: Input: A fuzzy concept space GF̃ cH̃c and an object-oriented FCS threshold λ.

2: Output: A new fuzzy conceptual cluster space GSλ,∗
F̃ cH̃c

.

3: GSλ,∗
F̃ cH̃c

= ∅ and GSλ,i

F̃ cH̃c
= ∅.

4: GSλ,i

F̃ cH̃c
← (Xp, B̃p).

5: for each sub-concept (Xj , B̃j ) ∈ GF̃ cH̃c of (Xp, B̃p) do
6: Get θO by Definition 6.30.
7: if θO > λ then
8: GSλ,i

F̃ cH̃c
← (Xj , B̃j ).

9: end if
10: end for
11: Construct a new fuzzy concept (XSλ,i , B̃Sλ,i ) by Definition 6.34.

12: GSλ,∗
F̃ cH̃c

= GSλ,∗
F̃ cH̃c

⋃
(XSλ,i

, B̃Sλ,i
).

13: Return GSλ,∗
F̃ cH̃c

.

6.1.4.3 Theoretical Analysis

From Definition 6.35 and Theorem 6.5, we know that the object-oriented FCS
threshold has a significant impact on the construction of a new concept space.
Hence, it is very necessary to select an optimal (or approximate optimal) λ for each
dataset.

Let λ = λ(i) (i ∈ {1, 2, . . . , n}), and λ(i) ∝ i. For all the newly constructed
concept spaces with different λ(i), we denote

⎡
⎢⎢⎢⎢⎢⎣

GSλ(1),∗
F̃ cH̃c

GSλ(2),∗
F̃ cH̃c

...

GSλ(n),∗
F̃ cH̃c

⎤
⎥⎥⎥⎥⎥⎦=
⎡
⎢⎢⎢⎢⎢⎣

GSλ(1),1

F̃ cH̃c
GSλ(1),2

F̃ cH̃c
· · · GSλ(1),m1

F̃ cH̃c

GSλ(2),1

F̃ cH̃c
GSλ(2),2

F̃ cH̃c
· · · GSλ(2),m2

F̃ cH̃c

...
...

. . .
...

GSλ(n),1

F̃ cH̃c
GSλ(n),2

F̃ cH̃c
· · · GSλ(n),mn

F̃ cH̃c

⎤
⎥⎥⎥⎥⎥⎦ , (6.47)

where mi = |GSλ(i),∗
F̃ cH̃c

|, and GSλ(i),∗
F̃ cH̃c

is computed with λ(i).
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In Eq. (6.47), we say that GSλ(i),j

F̃ cH̃c
(j ∈ {1, 2, . . . ,mi}) is a conceptual subcluster

of GSλ(i),∗
F̃ cH̃c

. Meanwhile, according to Definition 6.33, each object-oriented concep-
tual cluster can be represented as a new fuzzy concept. Hence, Eq. (6.47) can be
rewritten as Eq. (6.48).

Note that there is only the fuzzy conditional concept space GF̃ cH̃c which will

be influenced by the object-oriented FCS threshold λ(i). The concept space GSλ(i),∗
F̃ cH̃c

can be simplified by omitting the suffix F̃ cH̃c when no confusion exists, namely
GSλ(i),∗ .

Property 6.6 Let GSλ(i),∗ be a set of object-oriented conceptual clusters with the
object-oriented FCS threshold λ(i). Then we have

⎡
⎢⎢⎢⎢⎢⎣

GSλ(1),∗
F̃ cH̃c

GSλ(2),∗
F̃ cH̃c

...

GSλ(n),∗
F̃ cH̃c

⎤
⎥⎥⎥⎥⎥⎦ =
⎡
⎢⎢⎢⎢⎣

(
XSλ(1),1, B̃Sλ(1),1

) (
XSλ(1),2, B̃Sλ(1),2

) · · · (XSλ(1),m1
, B̃Sλ(1),m1

)(
XSλ(2),1, B̃Sλ(2),1

) (
XSλ(2),2, B̃Sλ(2),2

) · · · (XSλ(2),m2
, B̃Sλ(2),m2

)
...

...
. . .

...(
XSλ(n),1, B̃Sλ(n),1

) (
XSλ(n),2 , B̃Sλ(n),2

) · · · (XSλ(n),mn
, B̃Sλ(n),mn

)

⎤
⎥⎥⎥⎥⎦ .

(6.48)

|GSλ(i),∗ | ∝ λ(i). (6.49)

Proof The proof can be derived by means of λ(i) = λ, and Definition 6.35. �

In the above discussion, we only consider the situation that there exists one

concept cluster in FCLM. However, in the real-life world, studying the situation
of multiple concept clusters with the label information is also highly desirable, as
there are at least two concept clusters for classification tasks.

We denote by G = {x1, x2, . . . , xm} a set of instances and K = {1, 2, . . . , l}
the label space. There does exist a partition of the instances into l clusters
C1,C2, . . . ,Cl by means of the label information such that they can cover all
the instances, and formally, C1 ∪ C2 ∪ · · · ∪ Cl = G, where Ci ∩ Cj =
∅ (∀i �= j). Meanwhile, we denote the corresponding fuzzy conceptual

clusters by GSλ(i),∗
1 ,GSλ(i),∗

2 , . . . ,GSλ(i),∗
l with λ(i). Moreover, the set of all

fuzzy conceptual clusters with λ(i) is denoted by CSλ(i) , namely CSλ(i) =
{GSλ(1),∗

1 ,GSλ(1),∗
2 , · · · ,GSλ(1),∗

l }. For different object-oriented FCS thresholds, we
further denote

⎡
⎢⎢⎢⎣
CSλ(1)

CSλ(2)

...

CSλ(n)

⎤
⎥⎥⎥⎦=
⎡
⎢⎢⎢⎢⎣
GSλ(1),∗
1 GSλ(1),∗

2 · · · GSλ(1),∗
l

GSλ(2),∗
1 GSλ(2),∗

2 · · · GSλ(2),∗
l

...
...

. . .
...

GSλ(n),∗
1 GSλ(n),∗

2 · · · GSλ(n),∗
l

⎤
⎥⎥⎥⎥⎦ . (6.50)
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Our aim is to select an optimal λ(i) in the interval [0,1] for each dataset. Let
(Xr, B̃r ) (r ∈ {1, 2, . . . ,m}) be a fuzzy granular concept. Then, the objective
function can be formulated as

E(λ(i), j) = min
i∈I,j∈J,k

′

m∑
r=1
||(Xr, B̃r )− GSλ(i),j

k
′ ||22−

max
i∈I

min
j∈J
∑

k
′′ ∈K

m∑
r=1
||(Xr, B̃r )− GSλ(i),j

k
′′ ||22

s.t. mi ∝ λ(i), 0 ≤ λ(i) ≤ 1,

(6.51)

where I = {1, 2, . . . , n}, J = {1, 2, . . . ,mi}, K = K \ {k′ }, and k
′
represents the

real class label of the fuzzy granular concept (Xr, B̃r ). Hence, in Eq. (6.51), the first
item denotes that samples are classified into the ground truth conceptual subcluster,
while the second item indicates the opposite situation.

Let (Xk
Sλ(i),j

, B̃k
Sλ(i),j

) (k ∈ K) be the representation of the conceptual subcluster

GSλ(i),j

k . For any fuzzy granular concept (Xr, B̃r ), it can be considered as an instance
xr with M-dimensional features. Therefore, according to Definition 6.31 and Eq.
(6.48), the objective function can be reformulated as

E(λ(i), j) = min
i∈I,j∈J,k

′

m∑
r=1
||B̃r − B̃k

′
Sλ(i),j
||22−

max
i∈I

min
j∈J
∑

k
′′ ∈K

m∑
r=1
||B̃r − B̃k

′′
Sλ(i),j
||22

s.t. mi ∝ λ(i), 0 ≤ λ(i) ≤ 1.

(6.52)

Based on Eq. (6.48) and Property 6.6, we know that the variable j is dependent on
another variable λ(i). Hence, we can optimize the objective function of our FCLM
by means of updating λ(i):

λ̂(i) = argmin
i∈I,j∈J

E(λ(i), j)

s.t. mi ∝ λ(i), 0 ≤ λ(i) ≤ 1.
(6.53)

In theory, we can obtain an optimal λ̂(i) by solving Eq. (6.53) directly.
Unfortunately, it is quite difficult to obtain analytical solutions due to lacking
of a concrete functional expression between mi and λ(i). Hence, we select an
approximate optimal λ̂(i) by a method similar to grid search. The complete
procedure for selecting an approximate optimal solution (see Algorithm 6.14 for
details) is proposed based on the above discussion.
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Algorithm 6.14 Select λ̂(i) for FCLM

1: Input: Training set G, validation set V , and step size ε.
2: Output: An approximate optimal λ̂(i).
3: Construct a fuzzy conditional concept space GF̃ cH̃c and classical decision concept space

GF dHd by Algorithm 6.12.
4: for λ(i) = 0 to 1 do
5: Get CSλ(i) by Algorithm 6.13.
6: for xr ∈ V do
7: Compute E(λ(i), j) by Eq. (6.52).
8: end for
9: λ(i)=λ(i)+ε.
10: end for
11: Get λ̂(i) by Eq. (6.53).
12: Return λ̂(i).

6.2 Label Proportion for Learning

6.2.1 A Fast Algorithm for Multi-Class Learning from Label
Proportions

Learning from label proportions (LLP) is a new kind of learning problem which
has attracted wide interest in machine learning. Different from the well-known
supervised learning, the training data of LLP is in form of bags and only the
proportion of each class in each bag is available. In this subsection, we propose a
fast algorithm called multi-class learning from label proportions by extreme learning
machine (LLP-ELM), which takes advantage of extreme learning machine with fast
learning speed to solve multi-class learning from label proportions.

6.2.1.1 Background

In this section, we give a brief introduction of the traditional extreme learning
machine [21, 22]. Figure 6.5 shows the architecture of ELM. In detail, it is a
single-hidden layer feed-forward networks with three parts: input neurons, hidden
neurons and output neurons. In particular, h(x) = [h1(x), . . . , hL(x)] is nonlinear
feature mapping of ELM with the form of hj (x) = g(wj.x + bj ) and βj =
[βj1, . . . , βjc]T , j = 1, . . . , L is the output weights between the j th hidden layer
and the output nodes.

Given N samples (xi, ti ), i = 1, . . . , N , where xi = [xi1, . . . , xid ]T denotes the
input feature vectors and ti = [ti1, . . . , tic]T is the corresponding label in a one-
hot fashion. In particular, c and d respectively represent the total classes and feature
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Fig. 6.5 The architecture of ELM. In detail, it is a single-hidden layer feed-forward network
with three parts: input neurons, hidden neurons and output neurons. In particular, h(x) =
[h1(x), . . . , hL(x)] is nonlinear feature mapping of ELM with the form of hj (x) = g(wj.x + bj )

and βj = [βj1, . . . , βjc]T , j = 1, . . . , L is the output weights between the j th hidden layer and
the output nodes

number. Consequently, a standard feed-forward neural network with L hidden nodes
can be expressed as:

L∑
j=1

βjg(wj.xi + bj ) = oi, i = 1, . . . , N, (6.54)

where wj = [wj1, wj2, . . . , wjL]T is the weight vector between the j th hidden
neuron and the input neurons, and βj = [βj1, βj2, . . . , βjc]T , j = 1, . . . , L is the
weight vector connecting the output neuron and the j th hidden neurons. According
to [21], the ELM can approximate those N samples to zero error with the equation∑N

i=1 ‖oi − ti‖ = 0. Thus, the above equations can be expressed as:

L∑
j=1

βjg(wj.xi + bj ) = ti, i = 1, . . . , N. (6.55)

In particular, we can use matrix to express the above N equations with form of:

Hβ = T, (6.56)
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where H is the hidden layer output matrix of the single-hidden layer feed-forward
network and T is output matrix. More specifically,H and T have the form of:

H =
⎡
⎢⎣
h(x1)

...

h(xN)

⎤
⎥⎦ =
⎡
⎢⎢⎣

h1(x1) · · · hL(x1)
...

...
...

h1(xN)
... hL(xN)

⎤
⎥⎥⎦ (6.57)

and

T =
⎡
⎢⎣
tT1
...

tTN

⎤
⎥⎦ =
⎡
⎢⎢⎣

t11 · · · t1c
...

...
...

tN1
... tNc

⎤
⎥⎥⎦ (6.58)

In practice, the hidden node parameters (w,b) of ELM are randomly generated
and then fixed without iteratively tuning, which is different to the traditional BP
neural networks [21]. As a result, training an ELM is equivalent to find the optimal
solution to β, which is in defined as:

β =
⎡
⎢⎣

βT
1
...

βT
L

⎤
⎥⎦ =
⎡
⎢⎢⎣

β11 · · · β1c
...

...
...

βL1
... βLc

⎤
⎥⎥⎦ (6.59)

Furthermore, β can computed by the following expression:

β∗ = H†T (6.60)

whereH† is the Moore-Penrose generalized inverse of matrix H.

6.2.1.2 The LLP-ELM Algorithm

In this section, we propose a fast method for multi-class learning from label
proportions algorithm called LLP-ELM, which employs extreme learning machine
to solve multi-class LLP problem. In order to leverage extreme learning machine
to LLP, we reshape the hidden layer output matrix H and the training data target
matrix T to new forms, such that H is in bag level and T contains the proportion
information instead of a label one.
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A. Learning Setting

The LLP problem is described by a set of training data, which is divided into several
bags. Furthermore, compared to the traditional supervised learning, we only know
the proportions of different categories in each bag instead of the ground-truth labels.
In this paper, we consider the situation that different bags are disjoint, and the nth
bag of the training data can be denoted as Bn, n = 1, . . . , h. Consequently, the total
training data is in form of:

D = B1 ∪ B2 ∪ . . . . ∪ Bh (6.61)

Bi ∩ Bj = ∅,∀i �= j.

where there are n bags and N is the number of total instances. Each bag consists of
mn instances with the constraint

∑h
n=1 mn = N , and can be expressed as:

Bn = {x1
n, ..., x

mn
n }, n ∈ {1, 2, . . . , h}. (6.62)

Meanwhile, pn is the corresponding class proportion vector of Bn and c represents
the total classes number. More specifically, pn can be written as a vector form:

pn =
⎡
⎢⎣

pn1
...

pnc

⎤
⎥⎦ , (6.63)

where the mth element pm
n is the proportion of the mth class in the nth bag with

the constraint
∑c

m=1 pm
n = 1. Furthermore, the total proportion information can be

defined in form of matrix:

P =
⎡
⎢⎣
pT1
...

pTh

⎤
⎥⎦ =
⎡
⎢⎢⎣

p11 · · · p1c
...

...
...

ph1
... phc

⎤
⎥⎥⎦ . (6.64)

B. The LLP-ELM Framework

From the above learning setting of LLP, a classifier in instance level is the
final objective. To this end, we modify the original equations in ELM to the
new equations in bag level. Specifically, we add all the equations in each bag
straightforward, and the final equations in nth bag can be expressed as follows:

L∑
j=1

mn∑
k=1

βjg(wj.xnk + bj ) =
mn∑
k=1

tnk, n = 1, . . . , h (6.65)
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where tnk is the real label for the kth instances in nth bag. Obviously, the real label
information in the right part is inaccessible to us, with only label proportions in
each bag available. To this end, we derive the right part of the above equation as the
following form:

mn∑
k=1

tnk = mn ∗ pn, n = 1, . . . , h (6.66)

where pn is the label proportion of nth bag. Substituting the formula (6.66) to (6.65),
we can naturally obtain the following equations:

L∑
j=1

βj

mn∑
k=1

g(wj.xnk + bj ) = mn ∗ pj, n = 1, . . . , h, (6.67)

In particular, similar to the method from ELM [21], we can write the above
equations in the form of matrix computing as follows:

Hpβ = P (6.68)

where Hp is the hidden layer output matrix in the bag level, and P is the training
data target proportion matrix. More specifically, Hp and P are given in form of:

Hp =

⎡
⎢⎢⎢⎢⎢⎣

m1∑
k=1

h(x1k)

...
mh∑
k=1

h(xhk)

⎤
⎥⎥⎥⎥⎥⎦ =
⎡
⎢⎢⎢⎢⎢⎣

m1∑
k=1

h1(x1k) · · ·
m1∑
k=1

hL(x1k)

...
...

...
mh∑
k=1

h1(xhk)
...

mh∑
k=1

hL(xhk)

⎤
⎥⎥⎥⎥⎥⎦

and

P =
⎡
⎢⎣

m1 ∗ pT1
...

mh ∗ pTh

⎤
⎥⎦ =
⎡
⎢⎢⎣

m1 ∗ p11 · · · m1 ∗ p1c
...

...
...

mh ∗ ph1
... mh ∗ phc

⎤
⎥⎥⎦

Meanwhile, the final solution β is the same with the original form in ELM with
dimension L× c. Again, the optimal solution to (6.68) is given by

β∗ = H†
pP (6.69)

whereH†
p is the Moore-Penrose generalized inverse of matrix Hp.
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In order to obtain a better generalization performance of ELM, we also follow
the method from [22] to study the regularized ELM. In detail, the final objective
function of ELM is formulated as follows:

min
β∈RL×c

1

2
‖β‖2 + C

2

N∑
i=1
‖ei‖2

s.t. h(xi)β = tTi − eTi ,i = 1, . . . , N, (6.70)

in which the first term of the objective function is a regularization term and C is a
parameter to make a trade-off between the first and second term.

We equivalently reformulate the problem (6.70) as follows by substituting the
constraints to its objective function:

min
β∈RL×c

LELM = 1

2
‖β‖2 + C

2
‖T−Hβ‖2 (6.71)

Note that the second term of (6.71) can be replaced by C
2 ‖P−Hpβ‖2, which is

the matrix form in bag level. In other words, the final unconstrained optimization
problem can be written as:

min
β∈RL×c

LELM = 1

2
‖β‖2 + C

2
‖P−Hpβ‖2 (6.72)

In practice, the final objection is widely known as the ridge regression or regularized
least squares.

C. How to Solve the LLP-ELM

We follow the strategy from [22] to solve (6.72), and the final purpose is to minimize
the training error as well as the norm of the output weights. Obviously, the final
objective function is a convex problem, which is always solved by way of gradient.
More specifically, by setting the gradient of (6.72) to zero with respect to β, we can
obtain the following expression:

β − CHT
p (P−Hpβ) = 0. (6.73)

This yields

(
I
C
+HT

pHp)β = HT
pP, (6.74)

where I is an identity matrix with dimension L.
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The above equation is very intuitive, and we can obtain the final optimization
result by inverting a L×L matrix directly. However, it is less efficient to directly
invert a L×L matrix when the number of bag is less than the number of hidden
neurons(h < L). Therefore, there are two methods which are shown in Remark 1
and Remark 2. In summary, in the case where the number of bags are plentiful than
hidden neurons, we useRemark 1 to compute the output weights, otherwise we use
Remark 2.

Remark 1 The solution for formula (6.73) when h > L.

• Hp has more rows than columns, which means the number of bag is larger than
the number of hidden neurons.

• By inverting a L×Lmatrix directly andmultiplying both sides by (HT
pHp + I

C )−1
, we can obtain the following expression

β = (HT
pHp + I

C
)−1HT

pP, (6.75)

which is the optimal solution of (6.73).

Remark 2 The solution for formula (6.73) when h < L.

• Notice that Hp is full row rank and HpHT
p is invertible when h < L.

• Restrict β to be a linear combination of the row in Hp : β = HT
pα

• Substitute β = HT
pα into (6.73), and multiply by (HpHT

p )−1Hp.
• By the above step, we can obtain the following equation:

α − C(P−HpHT
pα) = 0. (6.76)

• As a result, the final optimal solution of (6.73) is in form of

β = HT
pα = HT

p (HpHT
p +

I
C

)−1P = 0. (6.77)

The solution process of LLP-ELM model can be concluded to the following two
steps:

• Compute training data target proportion matrix P and the hidden layer output
matrix Hp.

• Obtain the final optional solution of β according to Remark 1 or Remark 2. The
details of the process are shown in Algorithm 6.15.

D. Computational Complexity

From the Remark 1 and Remark 2, we can observe that the main time cost of our
method is to calculate the matrix inversion. Furthermore, the dimension of matrix is
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Algorithm 6.15 LLP-ELM
1: Input: Training datasets in bags{Bn}; The corresponding proportion pn of Bn; Activation

function g(x) and the number of hidden nodes N.
2: Output: Classification model f(x,β)
3: Begin
4: • Randomly initialize the value wj and bj for the j th node, j = 1, . . . , L.

5: • Compute the training data target proportion matrix P by the proportion information of each
bag.

6: • Compute the hidden layer output matrix in the bag level Hp.
7: • Obtain the weight vector according to Remark 1 or Remark 2.
8: End

minimum of the number of bags h and the hidden neurons L, which is determined
by us. As we all know, the complexity of matrix inversion is proportional to the O3,
where O is the dimension of matrix, and is equal to Min(L,h) in this paper.

6.2.2 Learning from Label Proportions with Generative
Adversarial Networks

6.2.2.1 Preliminaries

A. The Multi-Class LLP

Before further discussion, we formally describe multi-class LLP. For simplicity, we
assume that all the bags are disjoint and let Bi = {x1i , x2i , · · · , xNi

i }, i = 1, 2, · · · , n
denote bags in training set. Then, training data isD = B1∪B2∪· · ·∪Bn,Bi∩Bj =
∅,∀i �= j , where the total number of bags is n.

In addition, pi is a K-element vector where the kth element pk
i is instance

proportion in Bi belonging to the kth class with the constraint
∑K

k=1 pk
i = 1 and K

represents the total number of classes, i.e.,

pk
i :=

|{j ∈ [1 : Ni]|xj

i ∈ Bi , y
j∗
i = k}|

|Bi| . (6.78)

Here, [1 : Ni ] = {1, 2, · · · , Ni} and y
j∗
i is the unaccessible ground-truth instance-

level label of xj
i . In this way, we can denote the available training data as L =

{(Bi,pi )}ni=1. The goal of LLP is to learn an instance-level classifier based on this
kind of dataset.
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B. Deep Discriminant Approach for LLP

In terms of deep learning, DLLP firstly leveraged CNNs to solve multi-class LLP
problem [1]. Since CNNs can give a probabilistic interpretation for classification, it
is straightforward to adapt cross-entropy loss into a bag-level version by averaging
the probability outputs in every bag as the proportion estimation. To this end,
inspired by [71], DLLP reshaped standard cross-entropy loss by substituting
instance-level label with label proportion, in order to meet the proportion consis-
tency.

In detail, suppose that p̃j
i = pθ(y|xj

i ) is the vector-valued CNNs output for xj
i ,

where θ is the network parameter. Let ⊕ be element summation operator, then the
bag-level label proportion in the ith bag is obtain by incorporating the element-wise
posterior probability:

pi =
1

Ni

Ni⊕
j=1

p̃j

i =
1

Ni

Ni⊕
j=1

pθ (y|xj

i ), (6.79)

In order to smooth max function [5], p̃j
i is in a vector-type softmax manner

to produce the distribution for class probabilities. Taking log as element-wise
logarithmic operator, objective of DLLP can be intuitively formulated using cross-
entropy loss Lprop = −∑n

i=1 p
ᵀ
i log(pi ). It penalizes the difference between prior

and posterior probabilities in bag-level, and commonly exists in GAN-based SSL
[61].

C. Entropy Regularization for DLLP

Following the entropy regularization strategy [18], we can introduce an extra loss
Ein with a trade-off hyperparameter λ to constrain instance-level output distribution
in a low entropy accordingly:

L = Lprop + λEin = −
n∑

i=1
pᵀi log(pi )− λ

n∑
i=1

Ni∑
j=1

(p̃j
i )

ᵀlog(p̃j
i ). (6.80)

This extension is similar to a KL divergence between two distributions. It takes
advantage of DNN’s output distribution to cater to the label proportions require-
ment, as well as minimizing output entropy as a regularization term to guarantee
strong true-fake belief. This is believed to be linked with an inherent MAP
estimation with certain prior distribution in network parameters.
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6.2.2.2 Adversarial Learning for LLP

In this section, we propose LLP-GAN, which devotes GANs to harnessing LLP
problem.

A. The Objective Function of Discriminator

We illustrate the LLP-GAN framework in Fig. 6.6. The generator is employed to
generate images with input noise, which is labeled as fake. On the other hand, the
discriminator yields class confidence maps for each class (including the fake one)
by taking both fake and real data as the inputs. In particular, our discriminator is
not only to identify whether it is a sample from the real data or not, but also to
elaborately distinguish each real input’s label assignment as a K classes classifier.
This idea is fairly intuitive, and we conclude its loss as the Lunsup term.

Next, the main issue becomes how to exploit the proportional information to
guide this unsupervised learning correctly. To this end, we replace the supervised
information in semi-supervised GANs with label proportions, resulting in Lsup,
same as Lprop in (6.80).

Definition 6.36 Suppose that P is a partition to divide the data space into n

disjoint sections. Let pi
d(x), i = 1, 2, · · · , n be marginal distributions with respect

to elements in P respectively. Accordingly, n bags in LLP training data spring from
sampling upon pi

d(x), i=1, 2, · · · , n. In the meantime, let p(x, y) be the unknown
holistic joint distribution.

We normalize the first K classes in PD(·|x) into the instance-level posterior
probability p̃D(·|x) and compute p based on (6.79). Then, the ideal optimization
problem for the discriminator of LLP-GAN is:

Fig. 6.6 An illustration of our LLP-GAN framework
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max
D

V (G, D) = Lunsup + Lsup = Lreal + Lfake− λCEL(p,p)

=
n∑

i=1
Ex∼pi

d

[
logPD(y ≤ K|x)

]
+ Ex∼pg

[
logPD(K + 1|x)

]
+ λ

n∑
i=1

pᵀi log(pi ).

(6.81)

Here, pg(x) represents the distribution of the synthesized data.
The normalized instance-level posterior probability p̃D(·|x) is:

p̃D(k|x) = PD(k|x)
1− PD(K + 1|x), k = 1, 2, · · · ,K. (6.82)

Note that weight λ in (6.81) is added to balance between supervised and unsuper-
vised terms, which is a slight revision of SSL with GANs [13, 54]. Intuitively, we
reckon the proportional information is too weak to fulfill supervised learning pur-
suit. As a result, a relatively small weight should be preferable in the experiments.
However, we fix λ=1 in the following theoretical analysis on discriminator.

Aside from identifying the first two terms in (6.81) as that in semi-supervised
GANs, the cross-entropy term harnesses the label proportions consistency. In order
to justify the non-triviality of this loss, we first look at its lower bound. More
important, it is easier to perform the gradient method on the lower bound, because
it swaps the order of log and the summation operation. For brevity, the analysis will
be done in a non-parametric setting, i.e. we assume that both D and G have infinite
capacity.

Remark (The Lower Bound Approximation) Let pi(k)=pk
i =
∫
pi(y=k|x)pi

d(x)dx
be the class k proportion in the ith bag. By applying Monte-Carlo sampling, we
have:

−CEL(p,p) =
n∑

i=1

K∑
k=1

pi(k)log
[ 1
Ni

Ni∑
j=1

p̃D(k|xj
i
)
]

�
n∑

i=1

K∑
k=1

pi(k)log
[∫

pi
d (x)p̃D(k|x)dx

]
�

n∑
i=1

K∑
k=1

pi(k)Ex∼pi
d

[
logp̃D(k|x)

]
.

(6.83)

Similar to EM mechanism for mixture models, by approximating−CEL(p,p) with
its lower bound, we can perform gradient ascend independently on every sample.
Hence, SGD can be applied.

Property 6.7 The maximization on the lower bound in (6.83) induces an optimal
discriminator D∗ with a posterior distribution p̃D∗(y|x), which is consistent with
the prior distribution pi(y) in each bag.
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Proof Taking the aggregation with respect to one bag, for example, the ith bag, we
have:

Ex∼pi
d
[logp(x)]=Ex∼pi

d
log
[ p(x, y)

p̃D(y|x)
p̃D(y|x)
p(y|x)

]

=Ex∼pi
d

∫
pi(y)log

[pi(y)p(x|y)

p̃D(y|x)
p̃D(y|x)
p(y|x)

]
dy

=Ex∼pi
d

∫ [
p(yi)logp̃D(y|x)+log

p(x|y)

p(y|x)
]
dy

+Ex∼pi
d
KL(pi(y)‖p̃D(y|x))

�
K∑

k=1
pi(k)Ex∼pi

d

[
logp̃D(k|x)

]
+

K∑
k=1

pi(k)Ex∼pi
d

[
log

p(x|k)

p(k|x)
]

(6.84)

Note that the last term in (6.84) is free of the discriminator, and the aggregation can
be independently performed within every bag due to the disjoint assumption. Then,
maximizing the lower bound in (6.83) is equivalent to minimizing the expectation
of KL-divergence between pi(y) and p̃D(y|x). Because of the infinite capacity
assumption on discriminator and the non-negativity of KL-divergence, we have:

D∗ = argmin
D

Ex∼pi
d
KL(pi(y)‖p̃D(y|x))⇔ p̃D∗(y|x) a.e.= pi(y), x ∼ pi

d(x).

(6.85)

That concludes the proof. �

Property 6.7 tells us that if there is only one bag, then p̃D∗(y|x) a.e.= p(y).

However, there is normally more than one bag in LLP, the final classifier will
somehow be a trade-off among all the prior proportionspi(y), i = 1, 2,· · ·, n. Next,
we will show how the adversarial learning on the discriminator helps to determine
the formulation of this trade-off into a weighted aggregation.

B. Global Optimality

As shown in (6.83), in order to facilitate the gradient computation, we substitute
cross entropy in (6.81) by its lower bound and denote this approximate objective
function for discriminator by Ṽ (G,D).

Theorem 6.6 For fixed G, the optimal discriminator D∗ for Ṽ (G,D) satisfies:

PD∗(y = k|x) =
∑n

i=1 pi(k)pi
d(x)∑n

i=1 pi
d(x)+ pg(x)

, k = 1, 2, · · · ,K. (6.86)
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Proof According to (6.81) and (6.83) and given any generator G, we have:

Ṽ (G,D) =
n∑

i=1
Ex∼pi

d

[
log(1− PD(K + 1|x))

]
+ Ex∼pg

[
logPD(K + 1|x)

]
+

n∑
i=1

K∑
k=1

pi(k)Ex∼pi
d

[
logp̃D(k|x)

]
=
∫ { n∑

i=1
pi

d(x)
[
log
[ K∑

k=1
PD(k|x)]+

K∑
k=1

pi(k)log
PD(k|x)

1− PD(K + 1|x)
]
+ pg(x)log

[
1−

K∑
k=1

PD(k|x)
]}

dx

(6.87)

By taking the derivative of the integrand, we find the maximum in [0, 1] as that in
(6.86). �

Remark (Beyond the Incontinuity of pg) According to [2], the problematic scenario
is that the generator is a mapping from a low dimensional space to a high
dimensional one, which results in the density of pg(x) infeasible. However, based
on the definition of p̃D(y|x) in (6.82), we have:

p̃D∗(y|x)=
∑n

i=1 pi(y)pi
d(x)∑n

i=1 pi
d(x)

=
n∑

i=1
wi(x)pi(y). (6.88)

Hence, our final classifier does not depend on pg(x), and (6.88) explicitly expresses
the weights of the aggregation.

Remark (Relationship to One-Side Label Smoothing) Notice that the optimal
discriminator D∗ is also related to the one-sided label smoothing mentioned in
[54], which was inspirited by [64] and shown to reduce the vulnerability of neural
networks to adversarial examples [73].

In our model, we only smooth labels of real data (multi-class classifier) in the
discriminator by setting the targets as the holistic proportions (the prior) pi(y) in
corresponding bags.

C. The Objective Function of Generator

Normally, for the generator, we should solve the following optimization problem
with respect to pg .

min
G

Ṽ (G,D∗) = min
G

Ex∼pg logPD∗(K + 1|x). (6.89)

If denoting C(G) = maxD Ṽ (G,D) = Ṽ (G,D∗), because Ṽ (G,D) is convex
in pg and the supremum of a set of convex function is still convex, we have the
following conclusion.
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Theorem 6.7 The global minimum of C(G) is achieved if and only if pg =
1
n

∑n
i=1 pi

d .

Proof Denote pd = ∑n
i=1 pi

d . Hence, according to Theorem 6.6, we can reformu-
late C(G) as:

C(G) =
n∑

i=1
Ex∼pi

d

[
log

pd(x)
pd(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)
pd(x) + pg(x)

]
+

n∑
i=1

K∑
k=1

pi(k)Ex∼pi
d

[
logp̃D(k|x)

]
= 2 · JSD(pd‖pg)− 2log(2)−

n∑
i=1

Ex∼pi
d

[
CE(pi(y), p̃D∗ (y|x))

]
,

(6.90)

where JSD(·‖·) and CE(·, ·) are the Jensen-Shannon divergence and cross entropy
between two distributions, respectively. However, note that pd is a summation of n

independent distributions, so 1
n
pd is a well-defined probabilistic density. Then, we

have:

C(G∗) = min
G

C(G) = nlog(n)− (n + 1)log(n+ 1)−
n∑

i=1
Ex∼pi

d

[
CE(pi(y), p̃D∗ (y|x))

]

⇐⇒ pg∗
a.e.= 1

n
pd .

(6.91)

That concludes the proof. �

Remark When there is only one bag, the first two terms in (6.91) will degenerate as
nlog(n)− (n+1)log(n+1) = −2log2, which adheres to results in original GANs.
On the other hand, the third term manifests the uncertainty on instance label, due to
the concealment in the form of proportion.

Remark According to the analysis above, ideally, we can obtain the Nash equilib-
rium between the discriminator and the generator, i.e. the solution pair (G∗,D∗)
satisfies:

Ṽ (G∗,D∗) � Ṽ (G∗,D),∀D; Ṽ (G∗,D∗) � Ṽ (G,D∗),∀G. (6.92)

However, as shown in [13], a well-trained generator would lead to the ineffi-
ciency of supervised information. In other words, the discriminator would possess
the same generalization ability as merely training it on Lprop. Hence, we apply
feature matching (FM) to the generator, and obtain its alternative objective by
matching the expected value of the features (statistics) on an intermediate layer
of the discriminator [54]: L(G) = ‖Ex∼ 1

n pd
f (x) − Ex∼pgf (x)‖22. In fact, FM is

similar to the perceptual loss for style transfer in a concurrent work [26] and the
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goal of this improvement is to impede the “perfect” generator resulting in unstable
training and discriminator with low generalization.

D. LLP-GAN Algorithm

So far, we have clarified the objective functions of both discriminator and generator
in LLP-GAN. In particular, note that we execute Monte-Carlo sampling for the
expectations. When accomplishing the training stage in GAN manner, the discrimi-
nator can be put into effect as the final classifier.

The strict proof for algorithm convergence is similar to that in [17]. Because
maxD Ṽ (G,D) is convex in G and the subdifferential of maxD Ṽ (G,D) contains
that of Ṽ (G,D∗) in every step, the exact line search method gradient descent
converges [7]. We present the LLP-GAN algorithm as follows.

Algorithm 6.16 LLP-GAN training algorithm
1: Input: The training set L = {(Bi ,pi )}ni=1; L: number of total iterations; λ: weight parameter.
2: Input: The parameters of the final discriminator D.
3: Set m to the total number of training data points.
4: for i=1:L do
5: Draw m samples {z(1), z(2),· · ·, z(m)} from a simple-to-sample noise prior p(z) (e.g.,

N(0, I)).
6: Compute {G(z(1)),G(z(2)), · · · ,G(z(m))} as sampling from pg(x).
7: Fix the generator G and perform gradient ascent on parameters of D in Ṽ (G,D) for one

step.
8: Fix the discriminator D and perform gradient descent on parameters of G in L(G) for one

step.
9: end for
10: Return The parameters of the discriminator D in the last step.

6.2.3 Learning from Label Proportions on High-Dimensional
Data

6.2.3.1 Background

In this subsection, the random forests which is used for our classification is
presented.

Random forests are an ensemble learning method together with a bagging
procedure for classification and other tasks, where each basic classifier is a decision
tree and each tree depends on a collection of random variables. More specifically,
during splitting of a randomized tree, each decision node randomly selects a set of
features and then picks the best among them according to some quality measurement
(e.g., information gain or Gini index) [53]. Furthermore, as each tree in the forest
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is built and tested independently from other trees, the overall training and testing
procedures can be performed in parallel [31].

We denote the mth tree of random forests as f (x, θm), where θm is a random
vector representing the various stochastic elements of the tree. Meanwhile, let
pm(k|x) represent the estimated density of class labels for the mth tree and M be
total number of the trees in the forests. In practice, the final prediction results of
random forests are given by probability towards different classes. As a result, the
estimated probability for predicting class k in random forests can be defined as:

Fk(x) = 1

M

M∑
m=1

pm(k|x), k ∈ γ = {1, 2, . . . ,K}, (6.93)

where K is the total number of classes. In particular, a decision can be made by
simply taking the maximum over all individual probabilities of the trees for a class
k with

C(x) = argmax
k∈γ Fk(x), γ = {1, 2, . . . ,K} (6.94)

where the final result of C(x) is the index of the corresponding class.
The classification margin measures the extent to which the average number of

votes for the right class exceeds the average for any other class, which is introduced
by Breiman [8], and is expressed as:

mg(x, y) = Fy(x)−max
k �=y

Fk(x). (6.95)

Obviously, if the classification is correct, there should be mg(x, y) > 0. In other
words, the larger the margin is, the more confidence in the classification. The
generalization error of random forests is in form of:

GE = E(X,Y )(mg(x, y) < 0), (6.96)

where the expectation is measured over the entire distribution of (X,Y).
Random forests have shown its advantages in both classification [8] and cluster-

ing [45]. In particular, experiments have shown that high accuracy can be achieved
by random forests when classifying high dimensional data [3]. Meanwhile, Caruana
[9] presented an empirical evaluation on high dimensional data of differentmethods,
and found that random forests perform consistently well across all dimensions
compared with other methods. Additionally, it is easy for random forests to be
parallelized, which makes them very easy for multi-core and GPU implementations.
Sharp [56] have show that GPU can accelerate the random forests and have great
advantage compared to CPU in processing speed, which is very useful for practical
applications. Recently, random forests have been applied in video segmentation
[49], object detection [15], image classification [6] and remote sensing [46] due
to its advantages.
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6.2.3.2 The LLP-RF Algorithm

In this subsection, we present a novel learning from label proportions algorithm
called LLP-RF, which use random forests to solve high-dimensional LLP problem.
In order to leverage random forests to LLP, the hidden class labels insides bags
are defined as the optimization variables. Meanwhile, we formulate a robust loss
function based on random forests and take the corresponding proportion information
into LLP-RF by penalizing the difference between the ground-truth and estimated
label proportion. A binary learning setting is considered in the following.

A. Learning Setting

Similar to the standard supervised learning, the problem is also described by a set
of training data. But the training data of LLP is only provided in form of bags and
the ground-truth labels of training data are not available. In this paper, we assume
the bags are disjoint. Let Bi, i = 1, . . . , n denote the ith bag in the training set. As
a result, the total training data can be expressed as:

D = B1 ∪ B2 ∪ . . . . ∪ Bn (6.97)

Bi ∩ Bj = ∅,∀i �= j,

where the total number of training data is N . The ith bag consists of mi instances
and is in form of:

Bi = {x1
i , ..., x

mi

i }{pi}, i ∈ {1, 2, . . . , n}, (6.98)

where the associated pi indicates the label proportion of the ith bag. As a result, the
j th instance in the ith bag can be expressed as x

j

i .
The ground-truth labels of instances are modeled as y = (y1, . . . , yN)T , where

yi is the unknown label of xi . Furthermore, we can define the proportion of ith bag
as:

pi = |{k|k ∈ Bi, y
∗
k = 1}|

|Bi | ,∀k ∈ {1, 2, . . . , N}, (6.99)

in which y∗k ∈ {1,−1} is the unknown ground-truth label of xk and |Bi | denotes the
bag size of ith bag. In practice, the above formulation is equivalent to the following:

pi =
∑

k∈Bi
y∗k

2|Bi | +
1

2
,∀k ∈ {1, 2, . . . , N}. (6.100)
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B. The LLP-RF Framework

The above LLP learning setting is very intuitive and the final objective is to train
a classifier in the instance level. To this end, inspired by [32], we formulate a
robust loss function based on random forests and take the corresponding proportion
information into LLP-RF by penalizing the difference between the ground-truth
and estimated label proportion. Therefore, the final objective function of LLP-RF
is formulated as follows:

arg min
F(·),yj

i

C

n∑
i=1

mi∑
j=1

L[F
y

j
i

(x
j
i )] + Cp

n∑
i=1

Lp[pi(y), pi]

s.t. ∀ni=1,∀mi

j=1 y
j

i ∈ {1,−1}, (6.101)

where the hidden class labels y are defined as the optimization variables and the task
is to simultaneously optimize the labels y and the model F().

Specifically,L() is a loss functionwhich is defined over the entire set of instances
and Lp() is a loss function used to penalize the difference between the ground-truth
label proportion and the estimated label proportion based on y. Different weights
can be added for the loss of bag proportions by changing the value of Cp.

Note that Fk(x) is the confidence of classifier for the kth class, which is got from
random forests.

Furthermore, our proposed framework permits choosing different loss functions
for L(). In our paper, different loss function including hinge loss, logistic loss and
entropy are tuned to obtain better classification results. In this paper, we consider
Lp() as the absolute loss:

Lp[pi(y), pi] = |pi(y)− pi |, (6.102)

where pi is the true label proportion of ith bag and pi(y) is the estimated label
proportion of ith bag.

The above LLP-RF framework is fairly straightforward and intuitive. However,
it leads to a non-convex integer programming problem because it needs to simulta-
neously optimize the labels y

j
i and trains a random forest. In practice, the problem

is often NP-hard. Therefore, one key issue is how to solve the optimization problem
efficiently. In this paper, a simple but efficient alternating optimization strategy
based on annealing is employed to minimize the overall learning objective.

C. How to Solve the LLP-RF

The strategy to solve (6.101) is similar to the rule from [80]. There are two variables
F and y in the optimization formula, where the unknown instance labels y can
be seen as a bridge between supervised learning loss and label proportion loss.
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Therefore, we solve the problem by alternating optimizing the two variables F

and y.

• We fix the y. The optimization problem becomes a native random forests
problem, which can be expressed as below:

argmin
F(·)

C

n∑
i=1

mi∑
j=1

L[F(x
j
i )]. (6.103)

• Then, F is fixed. The problem can be transformed to the following:

argmin
y

j
i

C

n∑
i=1

mi∑
j=1

L[F
y

j
i

(x
j
i )] + Cp

n∑
i=1

Lp[pi(y), pi]

s.t. ∀ni=1,∀mi

j=1 y
j

i ∈ {1,−1}. (6.104)

The first term of the objective is defined over the entire instances. However, the
proportion information pi of the second term is provided in the bag level. In order
to use the proportion information efficiently, the above formula can be written to the
following:

argmin
y

j
i

n∑
i=1

{
C

mi∑
j=1

L[F
y

j
i

(x
j
i )] + CpLp[pi(y), pi ]

}

s.t. ∀ni=1,∀mi

j=1 y
j

i ∈ {1,−1}. (6.105)

As the bags are disjoint to each other, the contribution of each bag to the objective
is independent. As a result, the objective can be optimized on each bag separately
and the final result is equivalent to the summation of every bag. In particular, solving
{yj

i |j ∈ Bi} yields the following optimization problem:

arg min
{yj

i |j∈Bi }
C
∑
j∈Bi

�[F
y

j
i

(x
j
i )] + CpLp[pi(y), pi]

s.t. ∀j ∈ Bi, y
j
i ∈ {1,−1}. (6.106)

Obviously, the original optimization problem has changed to solve the formula
(6.106), whose solution can be found by the following optimization strategy.
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Remark The steps for solving formula (6.106).

• Compute all the possible values of the second term in formula (6.106), where
there are total |Bi | + 1 values. In practice, the kth value can be expressed as:

F2(k) = |k − 1

|Bi | − pi |, k ∈ {1, 2, . . . , |Bi |, |Bi | + 1}. (6.107)

• Obtain all the values of first term F1(k) corresponding to the second term F2(k).
• Pick the smallest objective value from

C ∗ F1(k)+ Cp ∗ F2(k), k ∈ {1, 2, . . . , |Bi |, |Bi | + 1}, (6.108)

yielding the optimal solution of (6.106).

The above strategy is fairly intuitive and straightforward. The main focus is how
to obtain the value of first term corresponding to the second term. In practice, there
are total |Bi | + 1 values about the second term. For a fixed value of second term,
steps can be taken as Proposition 6.4.

Proposition 6.4 For a fixed pi(y) = θ , we can find the solution of (6.106) by the
iterative steps as below.

• Initialize y
j
i = −1,∀j ∈ {1, 2, . . . , |Bi |}, where |Bi | is the number of instances

in ith bag.
• Compute the value of �[F−1(xj

i )]), j ∈ {1, 2, . . . , |Bi |}.
• Flip the sign of yj

i = 1,∀j ∈ {1, 2, . . . , |Bi |}.
• Compute the value of �[F1(x

j

i )]), j ∈ {1, 2, . . . , |Bi |}.
• Let δ

j
i = C(�[F1(x

j
i )] − �[F−1(xj

i )]), j ∈ {1, 2, . . . , |Bi |} denote the reduction
of the first term in (6.106) through flipping the sign of yj

i .

• Sort δj
i ,∀j ∈ {1, 2, . . . , |Bi |} in descending way. Then flip the signs of yj

i of the
top-R (R = θ |Bk|) which have the highest reduction. For each bag, we only need
to sort the δ

j
i ,∀j ∈ {1, 2, . . . , |Bi |} once.

Obviously, the minimum value of each bag and the corresponding y can be
obtained using the above steps. In detail, the solution process of the LLP-RF
model can be concluded to the following two alternative steps: solve random forests
optimization problems and renovate the labels of y until the objective function value
is no longer changing or the reduction of objective is smaller than a threshold. The
details of the process are shown in Algorithm 6.17.

Furthermore, in order to avoid the local solutions, similar to T-SVM [10]
and SVM [80], the novelly proposed LLP-RF algorithm also takes an additional
annealing loop to gradually increase C. The annealing can be seen as a step to avoid
the local optimal solution. In detail, the annealing loop is achieved by the following
equation C∗ = min{(1+!)C∗, C}, where ! is a step to control the increase of C.
Throughout this work, we set ! = 0.5.
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In practice, the different values of initializing y can lead to different results. In
order to reduce the randomness, we should repeat the process several times and pick
the smallest objective value as the final result.

Algorithm 6.17 LLP-RF
1: Require: Bags{Bi };
2: The corresponding proportion pi of Bi ;
3: Randomly initialize y

j
i ∈ {1,−1},∀ni=1,∀mi

j=1;
4: C∗ = 10−5C.

5: while C∗ < C do
6: C∗ = min{(1+!)C∗, C}.
7: repeat
8: Fix y to solve F(Train the Random Forests: trainRF (y

j

i )).
9: Fix F to solve y(using the strategy discussed in the above Remark).
10: Update y

j

i ,∀ni=1,∀mi

j=1.
11: until the decrease of the objective is smaller than a threshold or reach the setting iteration.
12: end while

6.2.4 Learning from Label Proportions with Pinball Loss

6.2.4.1 Preliminary

In this subsection, we introduce the basic formulation of learning from label
proportions and give corresponding symbol description.

In learning from label proportions, although the proportion of each bag is
given, the label of each instance is unknown. Suppose we are given a sample set
{xi, y

∗
i }Ni=1, where x ∈ Rn and y∗i ∈ {1, 1} denotes the unknown ground truth label

of xi . The sample set is grouped into K bags. In this subsection, we assume that the
bags are disjoint.

The ground truth label proportion of the k-th bag Sk can be defined as

Pk := |{i|i ∈ Sk, y
∗
i = 1}|

|Sk | .

The goal is to find a decision function f (x) = sign(wT φ(x) + b) such that the
label y for any instance x can be predicted, where φ(·) is a map of the input data.

Assume the instance labels are explicitly modeled as {yi}Ni=1, where yi ∈ {1, 1}.
The modeled label proportion of the k-th bag can be defined as

Pk = |{i|i ∈ Sk, yi = 1}|
|Sk| .
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The Learning from label proportions model can be formulated as below:

min
y,w,b

1

2
‖w‖2 + C

N∑
i=1

Lτ + C2

K∑
k=1
|pk(y)− Pk|,

s.t. yi ∈ {−1, 1},
(6.109)

in which Lτ (·) is the supervised loss function. Notice the instance labels y is also a
variable, which can be seen as a bridge between empirical loss and label proportion
loss.

Here, we first discuss the noise generated in the framework of learning from
label proportions, and introduce pinball loss to address this issue. Next, we give the
learning from label proportions model with pinball loss. Also, the dual problem is
given. Then, an alternating optimization method is applied to solve the proposed
model. Finally, the complexity of our method is discussed.

6.2.4.2 Noise and Pinball Loss

Unlike traditional hinge loss, pinball loss pushes the surfaces that define the margin
to quantile positions by penalizing also the correctly classified sampling points [24].
The distance between these two classes is easily affected by the noise on feature x.
Also, improper initialization of label y causes noise as well. As a result, the classifier
with hinge loss is sensitive to feature noise. The pinball loss is related to quantiles
and has been well studied in regression (parametricmethods [52] and nonparametric
methods [12, 63]. And it is also used for binary classification recently [23].

The pinball loss is defined as follows:

Lτ (u) =
{

u, u ≥ 0,

−τu, u < 0.
(6.110)

Particularly, when τ = 0, the pinball loss Lτ (u) reduces to the hinge loss. When a
positive τ is used, minimizing the pinball loss results in the quantile value.

To intuitively show the properties of pinball loss, we are going to compare
the classifiers based on the hinge loss and the pinball loss, respectively. Here,
let’s consider a two dimensional example: points are generated from two Gaussian
distribution N(μ1, σ ) and N(μ2, σ ), where μ1 = [0.5,−3]T , μ2 = [0.5, 3]T and
σ = [0.1, 0; 0, 2]. As shown in Fig. 6.7, the solid lines indicate the classification
hyperplane achieved by classifier based on the hinge loss and the dashed lines rep-
resent the hyperplane obtained by pinball loss. The data points are generated from
the same distribution. However, the hinge loss classifier obtains the significantly
different results while the pinball loss hyperplane achieve more stable results. It
is mainly because that the hinge loss classifier measures the distance between two
sets by the nearest points. But pinball loss takes the nearest τ (e.g. 35%) points



6.2 Label Proportion for Learning 399

Fig. 6.7 Comparison between the classifiers based on hinge loss and pinball loss. As it is shown,
the results of pinball loss classifier are more stable

to measure this distance, which makes its result less sensitive to noise around the
boundary.

6.2.4.3 Learning from Label Proportions Model with Pinball Loss

With pinball loss, we can formulate the learning from label proportions model as
below:

min
y,w,b

1

2
‖w‖2 + C

N∑
i=1

Lτ (1− yi(w
T φ(xi)+ b))+ C2

K∑
k=1
|pk(y)− Pk|,

s.t. yi ∈ {−1, 1}.
(6.111)

As the instance labels y is also a variable, one natural way for solving Eq. (6.111)
is via alternating optimization.

Step 1 For a fixed y, the optimization of Eq. (6.109) w.r.t w and b becomes a classic
SVM with pinball loss:

min
w,b

1

2
‖w‖2 + C

N∑
i=1

Lτ (1− yi(w
T φ(xi)+ b)). (6.112)
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Step 2 When w and b are fixed, the problem becomes:

min
y

N∑
i=1

Lτ (1− yi(w
T φ(xi)+ b))+ C2

C

K∑
k=1
|pk(y)− Pk |,

s.t. yi ∈ {−1, 1}.
(6.113)

By taking the strategy presented in [80], we show that the second step above can
be solved efficiently. Since the influence of each bag on the objective is independent,
we can optimize Eq. (6.113) on each bag separately. For a fixed pk(y) = θ , Eq.
(6.113) can be optimally solved by the steps below.

• Initialize yi , i ∈ Bk .
• Suppose the reduction of the first term in (6.113) is δi . Sort δi , i ∈ Bk .
• Flip the signs of the top-R yi which have the highest reduction δi , where R =

θ |Bk|.
By conducting Step 1 and Step 2 alternately until the decrease of objective is

smaller than a threshold (e.g. 10−4), we can obtain the optimal solution.

6.2.4.4 Dual Problem

The problem in Eq. (6.112) can be transformed into:

min
w,b

1

2
‖w‖2 + C

N∑
i=1

ξi ,

s.t. yi(w
T φ(xi)+ b) ≥ 1− ξi, i = 1, 2, · · · , N,

yi(w
T φ(xi)+ b) ≤ 1+ 1

τ
ξi , i = 1, 2, · · · , N.

(6.114)

According to the Karush-Kuhn-Tucker (KKT) sufficient and necessary optimal-
ity conditions, the dual problem of Eq. (6.114) is obtained as follows,

max
α,β
−1

2

N∑
i=1

N∑
j=1

(αi − βi)yiφ(xi)
T φ(xj )yj (αj − βj )+

N∑
i=1

(αi − βi),

s.t.
N∑

i=1
(αi − βi)yi = 0,

αi + 1

τ
βi = C, i = 1, 2, · · · , N,

αi ≥ 0, i = 1, 2, · · · , N,

βi ≥ 0, i = 1, 2, · · · , N.

(6.115)
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Introduce the variables γi , αi and βi . Let γi = αi − βi . The dual problem Eq.
(6.115) has the same solution set w.r.t. α as that to the following convex quadratic
programming problem:

min
γ,β

1

2

N∑
i=1

N∑
j=1

γiyiφ(xi)
T φ(xj )yjγj −

N∑
i=1

γi,

s.t.
N∑

i=1
γiyi = 0,

− τC ≤ γi ≤ C, i = 1, 2, · · · , N.

(6.116)

Suppose γ ∗ = (γ ∗1 , γ ∗2 , . . . , γ ∗l ) is the solution to problem Eq. (6.116). We can
have

w∗ =
N∑

i=1
γ ∗i yiφ(xi), and

b∗ = yj −
N∑

i=1
yiγ
∗
i φ(xi)

T φ(xj ),

where ∀j : −τC < γ ∗j < C.
Then the obtained function can be represented as

f (x) =
N∑

i=1
yiγ
∗
i φ(xi)

T φ(xj )+ b∗,

where ∀j : −τC < γ ∗j < C.

6.2.4.5 Overall Optimization Procedure

Based on the detailed explanation above, the overall optimization procedure is
summarized in Algorithm 6.18.

By alternating between solving w∗, b∗ and y, the objective is guaranteed to
converge, for the reason that the objective function is lower bounded, and non-
increasing. Empirically, the alternating optimization typically terminates fast within
ten iterations.

In practice, the stopping criterion of the overall optimization procedure is that
the objective function does not decrease any more (or if its decrease is smaller than
a threshold).
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Algorithm 6.18 Optimization procedure of learning from label proportions

1: Input: {xi}Ni=1, {Pk}Kk=1, C,C2 and C∗ = 10−5C.
2: Output: w∗, b∗ and y.
3: Randomly initialize yi ∈ {−1, 1}.
4: while C∗ < C do
5: C∗ = min{(1+!)C∗, C}.
6: while not converged do
7: % Fix y.
8: w∗ =∑N

i=1 γiyiφ(xi ).
9: b∗ = yi −∑N

i=1 yiγ
∗
i (xi · xj ).

10: % Fix w∗ and b∗.
11: Solve y (Eq.(6.113) with C ← C).
12: end while
13: end while

6.2.4.6 Complexity

Step 1 takes the complexity of SVM with pinball loss. As described in the paper,
the bags are disjoint, the influences of the bags are independent. In Step 2, for
each bag Sk , sorting takes O(|Sk|log(|Sk|)), which is same with [80]. Overall, the
complexity is O(

∑K
k=1 |Sk|log(|Sk |)). We know that

∑K
k=1 |Sk| = N and denote

J = maxk=1,2,...,K |Sk|. The complexity is O(Nlog(J )) time.

6.3 Other Enlarged Learning Models

6.3.1 Classifying with Adaptive Hyper-Spheres: An
Incremental Classifier Based on Competitive Learning

6.3.1.1 Basic Theory

A. Basic Theory of Supervised Competitive Learning

We partially borrow the topological structure of CPN to introduce our model. CPNs
are a combination of competitive networks and Grossberg’s outstar networks [19].
The topological structure of CPN has three layers: input layer, hidden layer, and
output layer (Fig. 6.8).

Suppose there are N elements in the input layer, M neurons in the hidden layer,
and L neurons in the output layer. Let vector Vi = (vi1, . . . , viN )T denote the
weights of neuron i in the hidden layer connecting to each of the elements of the
input layer. Then V = (V1, . . . , VM) denotes weight matrix of the instars. If the
training in stage 1 can be viewed as a clustering process, then neuron i is cluster ci

and Vi is the centroid of cluster ci .
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Fig. 6.8 Topological structure of CPN.

When an instance is coming, it will compute the proximity between the instance
and each Vi in the weight matrix, i.e., the centroid of cluster ci . Here, proximity can
be measured by computing inner product netj = V T

j x, (j = 1, 2, . . . ,m). It adopts
a winner-takes-all strategy to determine which neuron’s weights are to be adjusted.
The winner is netj∗ = max{netj }. In other words, the winner is cj∗ whose centroid
is the closest to the incoming instance. The winning neuron’s weights would be
adjusted as follows:

Vj∗(t + 1) = Vj∗(t)+ α[x − Vj∗(t)],

where α is the learning rate, indicating that the centroid of the winning cluster will
move in the direction of x. As instances keep coming, the weights vector—i.e.,
the centroid of the hyper-spheres—tend to move toward the densest region of the
space. This first stage of the CPN’s training algorithm is a process of self-organizing
clustering, although it is structured using a network.

The second part of the structure is a Grossberg learning [19]. We will redesign a
different hidden layer and different connection from the hidden layer to the output
layer.

B. Advantages and Disadvantages of the Original Model

To illustrate the advantage and disadvantage of original model, a set of two-
dimensional artificial data were created and visualized in Fig. 6.9.

In Fig. 6.9a, instances can be grouped into six clusters. Setting the number of
neurons in the hidden layer to six, the first training stage of the model in Fig. 6.8
can automatically find the centroids of the six clusters, which are represented by
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Fig. 6.9 Artificial datasets and the proposed clustering solutions

the weights of the six neurons. The second training stage can learn each cluster’s
connection to the right class. The distance from each instance in Fig. 6.9a to its
cluster centroid is smaller than the distances to the centroids of other clusters. The
dataset shown in Fig. 6.9 is ideal for CPN to classify.

Data distribution in Fig. 6.9a is simplified and idealistic. Data with distribution
similar to Fig. 6.9b will cause two kinds of problems to the original model.

(1) First, the self-organized clustering process depends on the similarity measures
between data points and hyper-sphere’s centroid. Points closer to one cluster’s
centroid may belong to another cluster. Therefore, every cluster should have a
definite scope or radius, and the scope should be as far away from others as
possible.

(2) Second, the number of clusters in the hidden layer is fixed in the original
model. However, it is difficult to estimate the number of clusters in advance.
Given different numbers of neurons in the hidden layer, the accuracy varies
dramatically. The training of the instar layer-i.e., the clustering process-is
contingent on this fixed number.
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C. Building of the DMZ

To solve the first aforementioned problem, we should have a general knowledge
of the scope of the clusters. For example, points of cluster A (in Fig. 6.9b) near
the border may be closer to the centroid of cluster B, so these points will be
considered belong to cluster B in the original model. We must identify the decision
border that separates clusters according to their labels. When two instances with
conflicting labels fall into the same cluster, it gives us an opportunity to identify the
border point that is somewhere between the two conflicting instances (as long as
the instance is not an outlier). To maintain the maximum margin and for the sake of
simplicity, the median point of two instances could be selected as a point in a zone
called a Demilitarized Zone (DMZ), and clusters should be as far away from the
DMZ as possible. As the number of conflicting instances increases, a general zone
gradually forms as the DMZ. This mechanism can find borders of any shapes that
are surrounded by many hyper-spheres.

To solve the second problem, the number of clusters should not be predetermined.
The clusters should be formed dynamically and merged or split if necessary. The
scope of the hyper-spheres, represented by the corresponding radii, should be
adjusted on demand. As an example, consider the situation presented in Fig. 6.9b:
with instances of conflicting labels found in the top cluster, the original cluster
should tune its radius. After training, a new cluster would be formed beneath the top
cluster containing instances of different labels from the ones in the top cluster. The
radii of the two clusters should be tuned according to their distance to the borders.

One single hyper-sphere may not enclose an area whose shape is not hyper-
spherical [51]. However, any shape could be enclosed as long as the number of the
formed hyper-spheres is unlimited. Consider the clusters represented by the two-
dimensional circles in Fig. 6.9c. All of the instances can be clustered no matter what
the data distribution is and what the shape of the border is, as long as there are
enough hyper-spheres of varying radii and are properly arranged.

D. Proposed Topological Structure

Given the solutions above, the structure of our improved model is as follows
(Fig. 6.10):

The first difference is that our model has an adaptive dynamic hidden layer and
the number of neurons in hidden layer is adaptive. The second difference is that
each neuron Hi connects to only one particular neuron in the output layer, and wij

is used to record the radius of neuron Hi .

E. Kernelization

It is challenging for competitive learning models to apply kernel methods because
they cannot be denoted in inner-product forms. Some previous studies use approx-
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Fig. 6.10 Topological structure of the proposed model

imation methods for the kernelization of competitive learning [29, 76]. This paper
uses Nyström method to kernelize the proposed model [28, 40].

Let the kernel matrix written in blocks form:

A =
[

A11 A12

A21 A22

]
,

Let C = [A11 A12]T , Nyström method uses A11 and C to approximate large
matrix A. Suppose C is a uniform sampling of the columns, Nyström method
generates a rank-k approximation of A(k ≤ n) and is defined by:

A
nys

k = CA+11C
T =
[

A11 A21

A21 A21A
+
11A

T
21

]
≈ A,

where A+11 denotes the generalized pseudo inverse of A11.
There exists an Eigen decomposition A+11 = V Λ−1V T such that each element

A
nys
k ij

in A
nys
k can be decomposed as:

A
nys

k ij
= (CT

i V Λ−1V T Cj )

= (Λ−1/2V T Ci)
T (Λ−1/2V T Ci)

= (Λ−1/2V T (κ(xi, x1), . . . , κ(xi , xm)))T • (Λ−1/2V T (κ(xj , x1), . . . , κ(xj , xm))),

where κ(xi, xj ) is the base kernel function, x1, x2, . . . , xm are representative data
points and can be obtained by uniform sampling or clustering methods such as K-
means and SOFM.
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Fig. 6.11 Artificial dataset 3 after Nyström and SVD transformation

Let φm(x) = Λ−1/2V T (κ(x, x1), . . . , κ(x, xm))T , such that A
nys
k ij

=
φm(xi)

T φm(xj ) = κ(xi, xj ).
With Nyström method, we can get an explicit approximation of the nonlinear

projection φm(x), which is:

x → φm(x). (6.117)

To justify why we use kernel methods for our model, we first used Nyström
method to raise the dimension of dataset 3 to 403, then used Singular Value
Decomposition (SVD) to reduce the dimension to 2 for the purpose of visualization.
Figure 6.11 illustrates the transformed dataset 3 from Fig. 6.9c.

Compared with Fig. 6.9c, the data in Fig. 6.11 can be covered with less hyper-
spheres, or each hyper-sphere can enclose more data points. Because the sampling
points in Nyström methods can be obtained dynamically, the projection of Eq.
(6.117) can be used for every single instance in competitive learning and can be
applied directly to our incremental model.

Without loss of generality, we use φm(x) to denote a potential projection of x in
the reminder of this paper. If it works in the original space, the projection of x is to
itself.
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6.3.1.2 Proposed Classifier: ADA-HS

The main characteristic of the proposed model is to adaptively build hyper-spheres.
Therefore, we call the model Adaptive Hyper-Spheres (AdaHS), and the version
after Nyström projection is called Nys-AdaHS.

A. Training Stages

Our algorithms are trained in three stages, which are described below.

Stage 1. Forming Hyper-Spheres and Adjusting Centroids and Radii
(1) Forming hyper-spheres and adjusting centroids

Given that instances are read dynamically, there is no hyper-sphere at the
beginning. The first instance inputted forms a hyper-sphere whose centroid is
itself and initial radius is set to a large value. When a new instance is inputted
and does not fall into any existing hyper-spheres, a new hyper-sphere will be
formed in the same way. If a new instance falls into one or more existing hyper-
spheres, the winner is the one whose centroid is the closest to the new instance.
The winning cluster’s centroid is recalculated as:

ci(t + 1) = ci(t)+ α[φ(x)− ci(t)],

where x is the new inputted instance, c(t) is the original centroid of the hyper-
sphere, c(t + 1) is the new centroid, and α is the learning rate.

When the number of instances that fall within a particular hyper-sphere
grows, its centroid tends to move toward the densest zone.

In order to speed up the search of the winner, we build simple k-dimension
trees for all hyper-spheres. With the knowledge of the radius, it is easy to figure
out the upper and lower bounds of the selected k dimensions. In this way, it
avoids extensive computation of all Euclidean distance of instance and hyper-
sphere pairs.

(2) Building decision border zone: DMZ

The goal of this step is to find the DMZ’s median points that approximate
the shape of the DMZ.

We find the points using the following technique. The first time a labeled
instance falls into a hyper-sphere, the hyper-sphere will be labeled using the
label of this instance. If another instance with a conflicting label falls into the
same hyper-sphere, it indicates that the hyper-sphere has entered the DMZ.
We identify the nearest data point in the hyper-sphere to the newly inputted
conflicting instance, and let pi represent the median point as follows:

pi = 1

2
(φ(xconf lict ing)+ ci),

where φ(xconf lict ing), pi ∈ ci and pi is recorded and used in the posterior
clustering process.
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(3) Adjusting the radii of hyper-spheres
Once aDMZ point is found in a hyper-sphere, the radius of the hyper-sphere

should be updated such that it does not enter the DMZ. The new radius of
hyper-sphere ci should therefore be set as:

ri = d(pi, ci)− dsaf e,

where dsaf e represents a safe distance at which a hyper-sphere should be
from the closest DMZ point. And the logics of this stage are outlined in
Algorithm 6.19 below.

Algorithm 6.19 The forming of hyper-spheres and the adjusting of the centroids
and radii
1: Input: x, the newly read instance.
2: Output: C: A set of hyper-spheres whose centroids and radii are tuned properly;

DMZ: A set of points who shape the decision border approximately.
3: Method:
4: ct = Null, len = −1.
5: for each ct in C do
6: if φ(x) falls into C then
7: % Find the winner of the hyper-spheres.
8: if label(x) = label(ci ) and (len = −1 or dE(φ(x), ci ) < len) then
9: ct = ci .% Store the present temporary nearest hyper-sphere
10: len = dE(φ(x), ci ).%Store the present temp nearest distance
11: else if label(x) �= label(ci ) then %//Split the hyper-sphere
12: pi = 1

2 (φ(xconf licting)+ ci ), φ(xconf licting), pi ∈ ci .
13: Add pi to DMZ.
14: ri = d(pi , ci )− dsaf e.% Adjusting radii rj of hyper-sphere cj

15: Mark ci as “support hyper-sphere”.
16: end if
17: end if
18: end for
19: if ct �= Null then
20: % Adjust the winning hyper-sphere’s centroid
21: ci(t + 1) = ci(t)+ α[φ(x) − ci (t)].
22: else
23: Form a new hyper-sphere, and make φ(x) be the centroid.
24: Let the label of the new hyper-sphere be label(x).
25: end if

Stage 2. Merging Hyper-Spheres
Hyper-spheres may overlap with one another or even be contained in others.
Therefore, after certain period of training, a merging operation should be performed.
Suppose that we have two hyper-spheres, cA and cB , and the radii of them are
not the same. Let cbig = maxradius(cA, cB), csmall = minradius(cA, cB), dt =
d(cbig, csmall), and θ be the merging coefficient. If dt + rsmall ≤ rbig + θ × rsmall ,
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the prerequisite to merge is met. Then let rtemp = dt + rsmall , and the new radius of
the cbig will be rnew = max(rtemp, rbig).

The details of this stage are outlined in Algorithm 6.20.

Algorithm 6.20Merging of hyper-spheres
1: Input: C: A set of hyper-spheres which are formed in stage 1.
2: Output: C: The remaining hyper-spheres after merging.
3: Method:
4: for each ci in C do
5: for each cj in C except ci do
6: cbig = maxradius(ci , cj ), csmall = minradius(ci , cj ), dt = d(cbig, csmall ).
7: if dt + rsmall ≤ rbig + θ × rsmall then % θ is the merging coefficient
8: Merge ci and cj .
9: end if
10: end for
11: end for

Stage 3. Selecting Hyper-Spheres
Since the training process is entirely autonomous, the number of generated hyper-
spheres could be large. Therefore, the final stage needs to select hyper-spheres.

There are three types of hyper-spheres that are prominent, which are described
as follows:

(1) The first type of hyper-spheres includes large number of instances. Because
these are the fundamental hyper-spheres that contain most data points, they are
marked as “Core Hyper-spheres”.

(2) The second type of hyper-spheres has less instances but locates near the border.
They are marked as “Support Hyper-spheres” because such hyper-spheres can
be found by measuring the distance between hyper-spheres and the nearest
DMZ points.

(3) The third type of hyper-spheres has small number of instances and is far away
from the border. These hyper-spheres can be discarded.

To achieve high classification accuracy, both core hyper-spheres and support
hyper-spheres should be selected. The logic of the third stage is outlined in
Algorithm 6.21.

B. Mini-Batch Learning and Distributed Computing

To make it applicable in large scale applications, we encapsulate the proposed
algorithms into a Map-Reduce framework. We can collect the incoming instances
as mini-batch set and then train them in MapReduce tasks. The computing model of
the algorithms is illustrated in Fig. 6.12.

The collected mini-batch instances can be encapsulated in key-value pairs and
mapped into mapper tasks.
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Algorithm 6.21 Selection of hyper-spheres
1: Input: C: The set of hyper-spheres which are formed in preceding stages.
2: Output: C: The remaining hyper-spheres after selection.
3: Method:
4: for each ci in C do
5: % T is the threshold of the instances number which one hyper-sphere must at least have.
6: % num(c) is a function computing the number of instances in a hyper-sphere.
7: if num(ci ) < T then
8: % Let d(ci ,DMZ) be the distance from the centroid of ci to the nearest data point in

DMZ.
9: if ri < d(ci ,DMZ) then
10: Discard ci .
11: end if
12: else
13: Mark ci as “core hyper-sphere”.
14: end if
15: end for

Fig. 6.12 MapReduce computing model

In each mapper tasks, the operations are based on instances. It queries local cache
for every instance to find out in which hyper-spheres the instance falls, marks the
winning hyper-sphere and the conflicting ones, and sents the hyper-spheres along
with the description of the needed operations in another form of key-value<id,
hyper-sphere> pairs.

In each reducer task, the operations are based on every hyper-sphere, which
is aggregated according to the hyper-sphere id emitted from mapper tasks. The
competitive learning can be conducted collectively with the aggregated instances.
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The tuning of a radius can be performed for only once with the closest conflicting
instance, and it should find out the orphan points and return the tuned hyper-sphere
at the end.

After a turn of the MapReduce tasks, the merging and selection of the hyper-
spheres should be performed. After all of the operations, the tuned hyper-spheres
should be saved to the cache. The orphan points should be retrained in the next turn.
In the whole MapReduce process, sub-tasks do not coordinate with each other. Thus
the hyper-spheres and DMZ are not updated in real time in a mini-batch turn, and
they are updated collectively after all reducer tasks return.

C. Predicting Labels

Just like other supervised competitive neural networks, AdaHS must determine the
winning hyper-sphere in the hidden layer to predict the label of a new instance.
There are two situations. In the first situation, the new instance falls into an existing
hyper-sphere and the label of the instance is determined by the label of the hyper-
sphere. In the second situation, the new instance does not fall into an existing hyper-
sphere, and the label of the new instance is coordinated by the k nearest hyper-
spheres’ labels:

y = argmax
lj

∑
ci∈Nk(x)

wj I (yi = lj ),

where wj = exp(−([dE(φ(x), cj )
2]/[2r2j ])); i = 1, 2, . . . , L; j = 1, 2, . . . , k;

Nk(x) is the k nearest hyper-spheres; and I is the indicator function. The default
value of k is set to 3.

6.3.2 A Construction of Robust Representations for Small Data
Sets Using Broad Learning System

6.3.2.1 Review of Broad Learning System

This subsection is mainly a simple introduction to the BLS. The details of this
system can be found in [11]. The BLS is designed based on the random vector
functional-link neural network (RVFLNN) [25, 47]. In the BLS, the mapped features
and enhancement features instead of the original features are used to feed into a
single layer neural network. Figure 6.13 shows the structure of the BLS.

In Fig. 6.13, X means the input features, and Y means the corresponding labels.
The label Y uses one-hot encoding, which means all neurons are set to 0 except the
one that belongs to the label is set to 1. The mapped features can be represented as



6.3 Other Enlarged Learning Models 413

Fig. 6.13 The structure of the BLS

follows:

Zi = φi(XWei + βei), (6.118)

whereZi is the i-th mapped features andWei is the randomweights. All the mapped
features are concatenated as Zn ≡ [Z1, Z2, . . . , Zn], then the enhancement features
can be represented as follows:

Hj = ξj (Z
nWhj + βhj ). (6.119)

All the enhancement features are concatenated as Hm ≡ [H1,H2, . . . , Hm].
Therefore, the broad model can be represented as follows:

Y = [Zn|Hm]Wm, (6.120)

whereWm = [Zn|Hm]+Y is the weights of the single-layer neural network and can
be easily calculated through the ridge regression approximation of [Zn|Hm]+ using
the following equation:

A+ = lim
λ→0

(λI + AAT )−1AT . (6.121)

Theoretically, the φi(·) and ξj (·) used in mapped features and enhancement
features can be different functions. The sparse autoencoder is applied to fine-tune the
Wei of mapped features, and the sigmoid function is used to generate enhancement
features in [11].
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6.3.2.2 Proposed BLS Framework and BLS with RLA

A. BLS Framework

To extend the BLS to a framework of transforming inputs into robust representa-
tions, feature extraction methods instead of random mapping are used to generate
mapped features. Let Zi = φi(X) denote the i-th mapped features, where φi(·) can
be any feature extraction method. Different feature extraction methods can generate
different mapped features. Even if all mappings of mapped features use the same
AE method, the mapped features are different due to the randomness of neural
networks. All the mapped features are concatenated as Zn ≡ [Z1, Z2, . . . , Zn], and
the ensemble of mapped features Zn can provide a robust representation of inputs.

The setting of a large number of enhancement nodes in the original BLS is
removed. Deep representations, called enhancement features, are learned from the
ensemble mapped features Zn. The enhancement features can be denoted as Hj =
ξj (Z

n), where ξj (·) can be any feature extraction method. All the enhancement
features are concatenated as Hm ≡ [H1,H2, . . . , Hm]. The concatenation of
mapped features Zn and enhancement features Hm can provide more robust
representations to enhance the performance of downstream tasks.

Figure 6.14 shows the structure of the BLS framework. It should be noted that w
and β used in (6.118) and (6.119) are random, so their method is random mapping.
The mappings φ(·) and ξ(·) in Fig. 6.14 can be any feature extraction method,
including random mapping, autoencoder, convolution feature extraction, recursive
feature extraction, etc. Therefore,w and β are omitted in the new equations.

Further, to generate more different mapped features and enhancement features
in the BLS framework, samples and features can be randomly selected for each
mapping. Figure 6.15 shows the structure of a random version of the BLS
framework.

Fig. 6.14 The structure of the BLS framework
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Fig. 6.15 The structure of a random version of the BLS framework

B. BLS with RLA

Deep autoencoder (DA) is a nonlinear dimensionality reduction approach and
usually works much better than PCA [20]. Instead of the unsupervised architecture
used in DA, LA uses supervised architecture to connect the features and the labels
together. The representation features learned from the LA not only contain the
information of original features but also contain the estimated label belonging to
the sample. In that case, the representation features can provide more information
to the machine learning models and may promote the performance of these models.
Figure 6.16 shows the structure of the LA.

Fig. 6.16 The structure of the LA
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In Fig. 6.16, X means the input features, and Y means the corresponding labels
using one-hot encoding. The label layer is added on the top of the representation
layer, and a softmax function is used to forecast the label. The loss of the
reconstruction of X is measured by the mean squared error (MSE), and the loss
of forecasting label Y is measured by the cross-entropy error (CEE). Therefore, the
loss function of LA can be represented as follows:

loss = 1

n

n∑
i=1

(α(xi − x̂i)
2 − βyilogŷi ),

where n is the number of samples, xi is the i-th sample, x̂l is the i-th reconstruction
sample, yi is the i-th sample’s one-hot label, ŷl is the i-th sample’s softmax output,
α and β are the scale factors.

To illustrate how the BLS framework works, LA is embedded in the BLS
framework as an example. More specifically, the mappings φi(·) and ξj (·) in the
BLS framework is the same feature extraction method, LA. The mapped feature Zn

is learned by using the original data X as the input and output of the LA. After
learning n mapped features, all the mapped features are concatenated as Zn. The
enhancement feature Hm is learned by using the Zn as the input and output of the
LA, then all the mapped features and enhancement features are concatenated as the
final input and fed into any machine learning model.

Because of the random initialization of the weights of LA, each mapped feature
and enhancement feature will be different. Further, randomly picked samples and
randomly picked features can be used as inputs for each LA, and the random
label-based autoencoder (RLA) can generate more different mapped features and
enhancement features in the BLS. The randomness of RLA is controlled by two
parameters: selected sample size and selected feature size. If the selected sample
size and the selected feature size are less than 1, samples and features are randomly
picked according to these two selected sizes. If the selected sample size and the
selected feature size are equal to 1, all samples and features are used to train RLA.
Therefore, LA is a special case of RLA.

Given a two-layer encoder structure, the input fed into a machine learning model
is as follows:

input = [Zn|Hm]
= [Z1, . . . , Zn|H1, . . . , Hm]

=
[

σ(w11σ(w12x + b12)+ b11), . . . , σ (wn1σ(wn2x + bn2)+ bn1)|
σ(w

′
11σ(w

′
12Z

n + b
′
12)+ b

′
11), . . . , σ (w

′
m1σ(w

′
m2Z

n + b
′
m2)+ b

′
m1)

]
,

where w is the weight, b is the bias, and σ(·) is the activation function.
The number of mapped features n and the number of enhancement featuresm are

different and depend on the complexity of modeling problems. Additional mapped
features and enhancement features can be added to achieve a better performance
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when the setting (n,m) cannot reach the desired accuracy. The pseudocode of the
BLS with RLA is shown in Algorithms 6.22 and 6.23.

Algorithm 6.22 Broad learning: increment of additional enhancement features
1: for i = 0, i < n do
2: Train RLA model with training data set.
3: Generate Zi using the RLA.
4: end for
5: Concatenate the mapped features Zn ≡ [Z1, Z2, . . . , Zn].
6: for j = 0, j < m do
7: Train RLA model with data set Zn.
8: Generate Hj using the RLA.
9: end for
10: Concatenate the mapped features and enhancement features [Zn|Hm] as inputs.
11: Train the machine learning model.
12: while VALIDATION ERROR is not satisfied do
13: Train RLA model with data set Zn.
14: Generate Hm+1 using the RLA.
15: Concatenate the mapped features and enhancement features [Zn|Hm+1] as inputs.
16: Train the machine learning model.
17: m = m+ 1.
18: end while

Algorithm 6.23 Broad learning: increment of additional mapped features
1: for i = 0, i < n do
2: Train RLA model with training data set.
3: Generate Zi using the RLA.
4: end for
5: Concatenate the mapped features Zn ≡ [Z1, Z2, . . . , Zn].
6: for j = 0, j < m do
7: Train RLA model with data set Zn.
8: Generate Hj using the RLA.
9: end for
10: Concatenate the mapped features and enhancement features [Zn|Hm] as inputs.
11: Train the machine learning model.
12: while VALIDATION ERROR is not satisfied do
13: Train RLA model with training data set.
14: Generate Zn+1 using the RLA.
15: Concatenate the mapped features Zn+1 ≡ [Zn,Zn+1].
16: for j = 0, j < m do
17: Train RLA model with data set Zn+1.
18: Generate Hj using the RLA.
19: Concatenate the mapped features and enhancement features [Zn+1|Hm] as inputs.
20: Train the machine learning model.
21: end for
22: n = n+ 1.
23: end while
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In addition, it should be noted that the BLS is not conflicted with feature selection
methods. The BLS can be used before or after the feature selection methods,
and the selected features can also be concatenated with the mapped features and
enhancement features.
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