
Chapter 5
Data Stream Analysis

Data stream is a typical big data. Data stream can be founded in many real-life
applications, such as wireless sensor networks, power consumption, information
security and financial market. Data stream classification has drawn increasing
attention from the data mining community in recent years. Data stream classification
in such real-world applications is typically subject to three major challenges:
concept drifting, large volumes, and partial labeling. As a result, training examples
in data streams can be very diverse and it is very hard to learn accurate models with
efficiency. This chapter provides two related research findings in the field. Section
5.1 describes a novel framework for application-driven classification of data streams
[1]. The section first reviews the concepts of data stream, then categorizes diverse
training examples into four types and assign learning priorities to them. Following
the discussion, it derives four learning cases based on the proportion and priority
of the different types of training examples. Finally, the respective support vector
machine models are presented. Section 5.2 studies the problem of learning from
concept drifting data streams with noise, where samples in a data stream may be
mislabeled or contain erroneous values [2]. It has three subsections. The first one is
about noisy description for data stream, the second one is the ensemble frameworks
for mining data stream and the third one is the theoretical studies of the Aggregate
Ensemble.

5.1 Application-Driven Classification of Data Streams

5.1.1 Data Streams in Big Data

Recent advances in computing technology and networking architectures have
enabled generation and collection of the unprecedented amount of data streams
of various kinds, such as network traffic data, wireless sensor readings, Web page
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visits, online financial transactions and phone call record [3]. Consequently, data
stream mining has emerged to be one of the most important research frontiers in
data mining. Common stream mining tasks include classification [4, 5], clustering
[6] and frequent pattern mining [7]. Among them, data stream classification has
drawn particular attention due to its vast real-world applications.

Example 5.1 In wireless sensor networks, data stream classification has been used
to monitor environment changes. For example, in the sensor data collected by the
Intel Berkeley Research Lab [8], each sensor reading contains information (temper-
ature, humidity, light and sensor voltage) collected from 54 sensors deployed in the
lab. The whole stream contains consecutive information recorded over a 2-month
period (1 reading per 1–3 min). By using the sensor ID as class label, the learning
task is to correctly identify the sensor ID (1 out of 54 sensors) purely based on the
sensor data and the corresponding recording time.

Example 5.2 In power consumption analysis, data stream classification has been
used to measure power consumptions. For example, the power supply stream
collected by an Italian electricity company [8] contains hourly power supply of the
company recording the power from two sources: power supplied from main grid
and power transformed from other grids. The stream contains 3-year power supply
records from 1995 to 1998, and the learning task is to predict which hour (1 out of
24 h) the current power supply belongs to.

Example 5.3 In information security, data stream classification has been widely
used to monitor Web traffic streams. For example, the KDDCUP‘99 intrusion
detection dataset [9] was provided by the MIT Lincoln Labs collecting 9 weeks
of raw TCP dump data for a local area network. The learning task is to build
a predictive model capable of distinguishing between normal connections and
intrusive connections such as DOS (denial-of-service), R2L (unauthorized access
from a remote machine), U2R (unauthorized access to local super user privileges),
and Probing (surveillance and other probing) attacks.

In these applications, the essential goal is to efficiently build classification models
from data streams for accurate prediction. Comparing to traditional stationary data,
building prediction models from stream data faces three additional challenges:

• Concept drifting. In data streams, hidden patterns continuously change with time
[29]. For example, in the wireless sensor stream, lighting during working hours
is generally stronger than off-hours. Figure 5.1 illustrates the concept drifting
problem, where the classification boundary (concept) continuously drifts from
b1 to b2, and finally to b3 down the streams.

• Large volumes. Stream data come rapidly and continuously in large volumes.
For example, the wireless sensor stream contains 2,219,803 examples recorded
over a 2-month period (1 reading per 1–3 min). It is impossible to maintain all
historical stream records for in-depth analysis.

• Partial labeling. Due to large volumes of stream data, it is infeasible to label
all stream examples for building classification models. Thus, data streams are
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Fig. 5.1 An illustration of concept drifting in data streams. In the three consecutive time stamps
T1, T2 and T3, the classification boundary gradually drifts from b1 to b2 and finally to b3

typically partially labeled and training data contain both labeled and unlabeled
examples.

As a result, training examples in data streams are very diverse. To see why,
let us assume data streams are buffered chunk by chunk. Examples in the most
recent up-to-date chunk are training data, and examples in the yet-to-come chunk are
testing data [8]. Due to concept drifting, training examples in the up-to-date chunk
often exhibit two distributions: target domain and similar domain, where the former
represents the distribution of the testing data, and the latter represents a distribution
similar to the target domain [10]. Then, training examples can be categorized into
four types: labeled and from the target domain (Type I), labeled and from a similar
domain (Type II), unlabeled and from the target domain (Type III) and unlabeled
and from a similar domain (Type IV).

In order to build accurate prediction models from such diverse training examples
with efficiency, it is necessary to closely examine the characteristics, in particular,
the proportion and learning priority, of the different types of examples in the training
chunk.

• Proportion. The proportion of training examples from different types is deter-
mined by the concept drifting probability and labeling percentage (percentage
of labeled examples). For example, when concept drifting is low and labeling
percentage is high (low), the raining chunk will have a large portion of Type I
(III) examples. When concept drifting is high and labeling percentage is high
(low), the training chunk will have a large portion of Type II (IV) examples.

• Learning priority. Generally, examples from the target domains (Types I and III)
are capable of capturing the genuine concept of the testing data and have a higher
priority than examples from similar domains (Type II and IV). Besides, since
Type I examples are labeled, they have a higher priority than Type III examples.
Similarly, Type II examples have a higher priority than Type IV examples.
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5.1.2 Categorization of Training Examples and Learning
Cases

Consider a data stream S consisting of an infinite sequence of examples {xi, yi},
where xi ∈ R

d , d is the dimensionality and yi ∈ { − 1,+1} indicates the class label
of xi. Note that yi may not be always observed. Assume that the stream S arrives at a
speed of n examples per second. The decision boundary (concept) underneath drifts
with a probability of c, where 0 ≤ c ≤ 1. Besides, assume that at each time stamp,
a training chunk D = {x1, · · · , xn} is buffered and labeled by experts with a labeling
rate of 1 per chunk where 0 < l < 1.

5.1.2.1 Categorization of Training Examples

As discussed previously, due to concept drifting, not all examples in the up-to-date
chunk share the same distribution with the testing data in the yet-to-come chunk.
In other words, examples in the up-to-date chunk could be generated from some
similar domain instead of the target domain. Besides, since it is impractical to label
all examples in the up-to-date training chunk, the training chunk will contain both
labeled and unlabeled examples. By combining these two factors, we categorize
training examples in data streams into four types.

Definition 5.1 (Four types of training examples): In an up-to-date training chunk,
there are four types of examples: labeled and from the target domain (Type I),
labeled and from a similar domain (Type II), unlabeled and from the target domain
(Type III) and unlabeled and from a similar domain (Type IV).

Figure 5.2 illustrates the four types of training examples, where blue solid circles
denote the Type I examples, red solid circles denote the Type II examples, blue
hollow circles denote the Type III examples, and red hollow circles denote the Type
IV examples. Due to the temporal correlation of concepts [11], Type I and Type III
examples are usually located at the tail of a training chunk and close to the yet-
to-come chunk. Type II and Type IV examples are usually located at the head of a
training chunk and relatively far away from the yet-to-come chunk.

Estimation of number of examples By estimating the number of examples of each
type, we can gain insights into the training chunk and apply an appropriate learning
model. Intuitively, the percentage of labeled examples depends on how fast labeling
can be done by the experts, and the number of target domain examples depends
on the concept drifting probability. By considering the two factors, the number of
examples of each type can be estimated as follows.
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Fig. 5.2 An illustration of the four types of training examples in an up-to-date training chunk

Theorem 5.1 Let L1, L2, L3 and L4 be the number of examples of Type I, Type II,
Type III and Type IV respectively in the up-to-date chunk. Then,

L1 ∝ γ · c−1· l· n
L2 ∝ (

1 − γ · c−1
) · l· n

L3 ∝ γ · c−1· (1 − l) · n
L4 ∝ (

1 − γ · c−1
) · (1 − l) · n

(5.1)

where γ > 0 is a constant coefficient.

Proof Recall that stream S flows at a speed of n examples per second, the concept
drifting probability is c, and the labeling rate is l. The number of target domain
examples is inversely proportional to the concept drifting rate c with a coefficient
of γ , so it can be easily estimated that γ · c−1 · n examples in the up-to-date chunk
have the same distribution as the testing data. The remaining (1 − γ · c−1) · n
examples have a similar distribution to the testing examples. From the estimates the
theorem follows immediately.

Learning priority Not all the four types of training examples have to be used in
model construction. For example, consider a data stream where concept drifting is
low and labeling rate is high, the training chunk will have a large portion of Type I
examples. In this case, we are able to build a satisfactory model by training only on
the Type I examples. We observe that the four types of training examples have the
following learning priorities.

Remark 5.1 The learning priority of the four types of training examples are:

Type I > Type III > Type II > Type IV (5.2)
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What is the intuition behind Remark 5.1. Generally, examples from the target
domain (Type I and Type III) are capable of capturing the genuine concept of the
testing data, and thus have a high priority than examples from similar domains (Type
II and Type IV). Besides, since Type I examples are labeled, they have a higher
priority than Type III examples. Similarly, Type II examples have a higher priority
than Type IV examples.

Based on Remark 5.1, when a particular type dominates the training examples,
examples with lower priorities will not be used for training. For example, if Type
III dominates the training examples, only Type I and Type III examples will be used
for training. This is because Type I examples have a higher priority than Type III
examples, and the remaining two types have lower priorities. By doing so, we gain
in efficiency by building a simple model, comparing to a very complex model if we
have to learn from all four types of training examples. On the other hand, the most
informative examples are utilized in model construction and the learning accuracy
is not sacrificed.

Learning cases Aiming at both accuracy and efficiency in learning prediction
models, we categorize learning from data streams into the following four cases.

• Case 1: Type I dominates. When labeling rate is high and concept drifting
probability is low, Type I dominates the training examples. In this case, we can
train a satisfactory model by using only Type I examples.

• Case 2: Type III dominates. When both labeling rate and concept drifting
probability are low, Type III dominates the training examples. According to the
learning priority, it is necessary to combine both Type I and Type III examples
for training.

• Case 3: Type II dominates. When both labeling rate and concept drifting
probability are high, Type II dominates the training examples, and we will use
Type I, Type II and Type III examples for training.

• Case 4: Type IV dominates. When labeling rate is low and concept drifting
probability is high, Type IV dominates the training examples. This is the most
difficult case because most examples are unlabeled and not from the target
domain. According to the learning priority, we need to use all the four types
of training examples for training.

These learning cases are further illustrated in Fig. 5.3.

5.1.3 Learning Models of Data Stream

We have introduced the four learning cases. In this section, we present their
corresponding learning models.

Throughout the section, T1 = (x1, y1) , . . . ,
(
xL1, yL1

)
denotes the set of Type I

examples. T2 =
{ (

xL1+1, yL1+1
)
, . . . ,

(
xL, yL

)}
denotes the set of Type II exam-
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Fig. 5.3 The proportion of the four types of training examples with respect to different labeling
rate l and concept drifting probability c. (a) l is high and c is low. Case 1, (b) both l and c are low.
Case 2, (c) Both l and l are high. Case 3 and (d) l is low and c is high. Case 4

ples, where L = L1 + L2. T3 = {xL + 1, . . . , xL + U} denotes the set of Type III exam-
ples, where U is the set of unlabeled examples. T4 = {xL + U + 1, . . . , xL + U + N}
denotes the set of Type IV examples, where N is the set of unlabeled examples.

Case 5.1 Type I Dominates In this case, Type I examples T1 dominate the training
chunk and has the highest learning priority. Thus, only T1 will be used for training.

Formally, to learn from T1 =
{

(x1, y1) , . . . ,
(
xL1, yL1

)}
, a generic SVM model

can be trained bymaximizing themargin distance between classes while minimizing
the error rates as,

min1
2‖w‖2 + C

∑L1
i=1 ξi

s.t.yi (wxi + b) ≥ 1 − ξi

ξi ≥ 0, 1 ≤ i ≤ L1

(5.3)

where w is the projection direction, b is the classification boundary, ξ i is the error
distance from xi to b, and parameter C is the penalty for the examples inside the
margin.

The SVMmodel given in Eq. (5.3) is a constrained convex optimization problem.
To simplify the expression, the Hinge loss function [12] in Fig. 5.4 can be used to
transform Eq. (5.3) into an unconstrained convex optimization problem as,

min
θ

1

2
‖w‖2 + C

L1∑

i=1

H
(
yifθ (xi)

)

(5.4)

where θ = (w, b) and fθ (x) = (wx + b).
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Fig. 5.4 An illustration of the Hinge loss function (a) H(t) = max (0, 1 − t), and the Symmetric
Hinge loss function (b) H(t) = max (0, 1−| t| ). The Hinge loss function is equivalent to the
following optimization problem: min ξ s. t. ξ ≥ 0, ξ ≥ 1 − t

Case 5.2 Type III Dominates In this case, Type III examples T3 dominate the
training chunk and Type I examples T1 have a higher learning priority than Type
III examples. Thus, both T1 and T3 will be used for training.

Learning from T1 and T3 is a semi-supervised learning problem [13]. Generally
speaking, adding unlabeled T3 examples into learning will further improve the
performance for the following reasons: (1) Labeled examples in T are too few to
build a satisfactory model. (2) T3 contains a relatively large number of examples that
come from the target domain, which can greatly help in differentiating the genuine
classification boundaries.

Formally, in order to learn from both T1 and T3, semi-supervised SVM (TS3VM)
[14] can be used as the learning model. The logic behind TS3VM is to find
a classification boundary that achieves a maximum margin not only between
labeled examples, but also unlabeled examples. That is, adding an extra term

C∗ ∑L+U
i=L+1 H

(
| fθ (xi) |) to penalize the misclassification of unlabeled examples

located inside the margin as,

min
θ

1

2
‖w‖2 + C

L1∑

i=1

H (yifθ (xi)) + C∗
L+U∑

i=L+1

H (|fθ (xi)|) (5.5)

Balance constraint A possible limitation of the TS3VMmodel is that all unlabeled
examples in T3 may be classified into one class with a very large margin, leading to
deteriorated performance. To address this issue, an additional balance constraint
should be added to ensure that unlabeled examples in T3 be assigned into both
classes. In the case that we do not have any prior knowledge about the class ratio in
T3, a reasonable approach [12] is to estimate its class ratio from T1 and T2 as,

1

U

L+U∑

i=L+1

fθ (xi) = 1

L1

L1∑

i=1

yi (5.6)
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where L denotes the number of labeled examples and U denotes the number of
unlabeled examples.

By taking account of the balance constraint, we can derive a modified semi-
supervised SVM model as,

min
θ

1
2‖w‖2 + C

∑L1
i=1 H (yifθ (xi)) + C∗ ∑L+U

i=L+1 H (|fθ (xi)|)
s.t. 1

U

∑L+U
i=L+1 fθ (xi) = 1

L1

∑L1
i=1 yi

(5.7)

where θ = (w, b). Obviously, Eq. (5.7) is a standard TS3VMmodel and can be easily
solved by using off-the-shelf tools [15].

Case 5.3 Type II Dominates In this case, Type II examples T2 dominate the training
chunk, and Type I and Type III examples T1 and T3 have higher learning priorities
than Type II examples. Thus, T1, T2 and T3 will be used for training.

Accurately learning from these three types of examples is non-trivial. For this
purpose, we design a novel transfer semi-supervised SVM model (TS3VM for
short). Intuitively, the TS3VM model can be formulated by incorporating examples
in T1, T2 and T3 sequentially. Specifically, we can first formulate a generic SVM
model by taking T1 into consideration. Then, a transfer SVM model can be
formulated by taking T2 into consideration.

Finally, we can include T2 and formulate the TS3VM model.
Learning from T1 has been discussed in Eq. (5.4), based on which T2 can be

incorporated by applying the transfer learning strategy. Practically, transfer learning
can use labeled examples in T2 to refine the classification boundary by transferring
the knowledge from T2 to T1. An effectiveway of doing so is to consider the problem
as a multi-task learning procedure [16]. A common two-task learning SVM model
on T1and T2 can be formulated as,

min 1
2‖w‖2 + C1‖v1‖2 + C2‖v2‖2 + C

∑L
i=1 ξi

s.t. yi ((w + v1) xi + b) ≥ 1 − ξi , 1 ≤ i ≤ L1

yi ((w + v2) xi + b) ≥ 1 − ξi, L1 + 1 ≤ i ≤ L

ξi ≥ 0, 1 ≤ i ≤ L

(5.8)

where parameters C1 and C2 are the penalties on the two tasks, and v1 and v2 are the
discrepancies between the global optimal decision boundaryw and the local optimal
decision boundary (i.e., w + v1 for the task of learning from T1 and w + v2 for the
task of learning from T2).

In Eq. (5.8), parameters C1 and C2 control the preference between the two tasks.
If C1 > C2, task 1 is preferred over task 2; otherwise, task 2 is preferred over task 1.
By using the Hinge loss function, Eq. (5.8) can be transformed into an unconstrained
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form,

min
θ

1

2
‖w‖2 + C1‖V1‖2 + C2‖V2‖2 + C

L∑

i=1

H (yifθ (xi)) (5.9)

where θ = (w, v1, v2, b), fθ (x) = (w + v1)x + b for task 1 and fθ (x) = (w + v2)x + b
for task 2.

In addition to T1 and T2, an additional semi-supervised learning method can be
used to learn from the remaining T3. As we discussed in Eq. (5.5), by adding an
extra term C∗ ∑L+U

i=L+1 H (|fθ (xi)|) to penalize the misclassification of unlabeled
examples in T3 located inside the margin decided by Eq. (5.9), as well as the balance
constraint in Eq. (5.6), we can finally get the TS3VM model as,

min
θ

1
2‖w‖2 + C1‖v1‖2 + C2‖v2‖2

+ C
∑L

i=1 H (yifθ (xi)) + C∗ ∑L+U
i=L+1 H (|fθ (xi)|)

s.t. 1
U

∑L+U
i=L+1 fθ (xi) = 1

L

∑L
i=1 yi

(5.10)

where θ = (w, v1, v2, b), fθ (xi)= (w+ v1)xi + b for 1≤ i≤ L1, fθ (xi)= (w+ v2)xi + b
for L1 + 1 ≤ i ≤ L, and fθ (xi) = wxi + b for L + 1 ≤ i ≤ L + U.

5.1.3.1 Solution to the TS3VM Objective Function

As shown in Eq. (5.10), optimizing the objective function of TS3VM is a non-
convex optimization problem, which is difficult to find global minima especially
for large scale problems. We propose to solve this non-convex problem by using
Concave-Convex Procedure (CCCP), which has been developed by the optimization
community [6, 10, 26]. CCCP decomposes a non-convex function into the sum of
a convex function and a concave function, and then approximates the concave part
by using a linear function (a tangential approximation). By doing so, the whole
optimization procedure can be carried out iteratively by solving a sequence of
convex problems. Algorithm 5.1 describes the CCCP algorithm in detail.

Algorithm 5.1 CCCP Algorithm

Input: the objective function J(θ)
1: Get the initial point θ0 with a best guess
2: J(θ) = Jvex(θ) + Jcav(θ)
3: repeat
4: θt+1 = argminθJvex (θ) + J′cav (θt) · θ

5: until convergence of θ

6: return a local minima solution θ*
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From the CCCP perspective, we can observe that the first four terms of
TS3VM are convex functions, whereas the last Symmetric Hinge loss part
C∗ ∑L+U

i=L+1 H (|fθ (xi)|) makes it a non-convex model. Thus, we will decompose
and analyze the last part by using the CCCP method. To simplify the notation,

we denote zi = fθ (xi), so the last part can be rewritten as C∗ ∑L+U
i=L+1 H

(
| zi |).

Considering a specific zi (without loss of generality, we denote it as z here), the
Symmetric Hinge loss on z can be denoted by J(z) as,

J (z) = C∗H
(
|z|

)
(5.11)

Equation (5.11) is a non-convex function, which can be split into a convex part and
a concave part as,

J (z) = C∗H (|z|) = C∗max (0, 1 − |z|) + C∗ | z |︸ ︷︷ ︸
Jvex(t)

−C∗ | z |︸ ︷︷ ︸
Jcav(t)

(5.12)

According to Algorithm 5.1, the next iterative point can be calculated by the
approximation of the concave part Jcav as,

∂Jcav

(
z
)

∂z
· z =

{
C∗z, z < 0

− C∗z, z ≥ 0
(5.13)

and then minimizing,

J (z) = C∗·max (0, 1 − |z|) + C∗ | z | +
∂Jcav

(
z
)

∂z
z (5.14)

If z < 0 in the current iteration, then in the next iteration, the current effective loss
can be denoted as

L (z,−1) = C∗max (0, 1 − |z|) + C∗ | z | +C∗z =
⎧
⎨

⎩

2C∗z, z ≥ 1
C∗ (1 + z) , | z |< 1

0, z ≤ −1
(5.15)

On the other hand, if z > 0, then in the next iteration, the current effective loss
can be denoted as

L (z,+1) = C∗max (0, 1 − |z|) + C∗ | z | −C∗z =
⎧
⎨

⎩

0, z ≥ 1
C∗ (1 − z) , | z |< 1

− 2C∗z, z ≤ −1
(5.16)
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By doing so, within each iteration, when taking all zi = fθ (xi) into consideration,
solving the TS3VM model is equivalent to solving Eq. (5.17) under the balance
constraint Eq. (5.6),

min
θ

1
2‖w‖2 + +C1‖v1‖2 + C2‖v2‖2

+ C
∑L

i=1 H (yifθ (xi)) + ∑L+U
i=L+1 L (fθ (xi) , yi)

(5.17)

where yi(L + 1 ≤ i ≤ L + U) is the class label of xi that has been assigned in the
previous iteration. If yi < 0, Eq. (5.15) will be used to calculate the loss function;
otherwise, Eq. (5.16) will be used to calculate the loss function.

The detailed description of solving TS3VM is given in Algorithm 5.2.

Algorithm 5.2 TS3VM Learning Model

Input: T1, T2 and T3
Use T1 and T2 to build a transfer SVM model as shown in Eq. (6.8), and get

the initial point θ0 = (w0, v10, v20, b0)
repeat
yi ← sgn(wxi + b), ∀L + 1 ≤ i ≤ L + U
θ ← Calculate Eq. (5.17) under the balance constraint Eq. (5.6)

until yi remains unchanged, ∀L + 1 ≤ i ≤ L + U
return f(x) = sgn(wx + b)

Theorem 5.2 (Convergence of TS3VM) The TS3VM learning model in Algorithm
5.2 converges after a limited number of iterations.

Proof In Algorithm 5.2, in each iteration t, the objective function J(θ t) is split into
a convex part Jvex(θ t) and a concave part Jcav(θ t). Then, in the next iteration t + 1,
the point θ t + 1 is the minimal solution of the current objective function, and we
have

Jvex (θt+1) + J ′
cav (θt ) θt+1 ≤ Jvex (θt ) + J ′

cav (θt ) θt (5.18)

Meanwhile, because the concavity of Jcav(θ ), we have,

Jcav (θt+1) ≤ Jcav (θt ) + J ′
cav (θt )

(
θt+1 − θt

)
(5.19)

By adding both sides of Eq. (5.18) and Eq. (5.19), we have

Jvex (θt+1) + Jcav (θt+1) + J ′
cav (θt ) θt+1

≤ Jvex (θt ) + J ′
cav (θt ) θt + Jcav (θt ) + J ′

cav (θt )
(
θt+1 − θt

) (5.20)

http://dx.doi.org/10.1007/978-981-16-3607-3_6#Equ8
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Move the third item on the left-hand side of Eq. (5.20) to the right-hand side, we
have

Jvex (θt+1) + Jcav (θt+1) ≤ Jvex (θt ) + J ′
cav (θt ) θt

+ Jcav (θt ) + J ′
cav (θt ) (θt+1 − θt ) − J ′

cav (θt+1) θt+1
(5.21)

The right-hand side of the above inequation equals to Jvex((θ t))+ Jcav(θ t). There-
fore, the objective function will decrease after each iteration Jvex(θ t + 1) ≤ J(θ t).

Consequently, Algorithm 5.2 will converge after a limited number of iterations.
In fact, as long as the initial point is carefully selected (i.e., using a multi-task SVM
model built on T1, and T2 as the initial point), Algorithm 5.2 will converge very fast.

Case 5.4 Type IV Dominates This is the most complex learning case. In this case,
Type IV examples T4 dominate the training chunk and has the lowest learning
priority. Thus, it is necessary to use all T1, T2, T3 and T4 for training.

To solve this learning problem, we design a novel Relational K-means-based
Transfer Semi-Supervised learning model (RK-TS3VM for short). The TS3VM
model, as discussed previously, is used to learn from T1, T2 and T3. Now we discuss
how to learn from T4 using a Relational K-means model [17] (RK for short).

Learning from T4 is more challenging than from other three types of training
examples, mainly because examples in T4 are unlabeled and have different distri-
butions from the target domain. The aim of the RK model is to transfer knowledge
from T4 to T1, T2 and T3 by constructing some new features for the three types of
examples using the relational information between T1, T2, T3 and T4.

An example of RK learning is shown in Fig. 5.5, where T4 examples are first
clustered into k clusters, G1, · · · , Gk based on a relational matrix built between T1
and T4. After that, k new features f (xi,Gτ ) (τ = 1· · · , k) are added to each example
xi in T1 to construct a new data set T ′

1 by calculating the relationship between xi
and each cluster center. By doing so, the new data set T ′

1 will contain information
transferred from T4, which can help build a more accurate prediction model.

Given L1 examples in T1 and N examples in T4, the purpose of the relational
k-means clustering is to cluster instances in T4 into k groups, by taking the
relationships between instances in T1 and T4 into consideration. Let W ∈ R

L1×N

denote the similarity matrix between T1 and T4 with each wi, j indicating the

Fig. 5.5 An illustration of the RK learning model
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similarity (which can be calculated according to the Euclidian distance) between
instance xi in T1 and instance xj in T4. For each clusterGτ onW the average pairwise
similarity for all examples in Gτ can be defined as

SGτ = 1

|Gτ |2
∑

x∈Gτ

∑

x ′∈Gτ

S
(
x, x ′) (5.22)

where S(x, x
′
) denotes the similarity between two examples of x and x

′
. On the other

hand, the variance of the relationship values of all examples in Gτ can be calculated
as

δGτ = 1

|Gτ |
∑

yi∈Gτ

(
βj − βGτ

)T (
βj − βGτ

)
(5.23)

where βGτ denotes the average relationship vector of all instances in Gτ , and βi ∈
R
1×L1 denotes the relationships of instance xj with respect to all examples in T1.
The objective of the relational k-means is to find k groups, Gτ , τ = 1, · · · , k,

such that the sum of the similarities is maximized while the sum of variances is
minimized as

J ′
e = max

k∑

τ=1

JGτ = max
k∑

τ=1

SGτ

δGτ

(5.24)

Explicitly solving Eq. (5.24) is very difficult. Alternatively, we can use a
recursive hill-climbing search process as an approximation solution. Assume that
examples in T4 are clustered into k clusters, G1, · · · , Gk. Moving an instance x
from cluster Gi to cluster Gj changes only the cluster objective values JGi andJGj .
Therefore, in order to maximize Eq. (5.24), at each step t, we randomly select an
example x from a cluster Gi, and move it to cluster Gj. Such a move is accepted only
if the Inequity (5.25) achieves a higher value at step t + 1.

JGi (t) + JGj (t) < JGi (t + 1) + JGj

(
t + 1

)
(5.25)

Based on the search process in Inequity (5.25), major steps of the relational k-
means are listed in Algorithm 5.3.

Algorithm 5.3 has three tiers of loops. Within each tier, it needs to frequently

recalculate JGc

(
t
)

when the current examples are removed from its current

group to another. Nevertheless, because JGc

(
t
)
, as shown in Eq. (5.24), contains

information from both the similarity SGi and variance δGi in the relationship

matrix, frequently recalculating JGc

(
t
)
will be time-consuming. To alleviate this
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problem, we introduce an addictive update method and a subtractive update method

to recalculate JGc

(
t
)
.

Algorithm 5.3 Relational k-Means Clustering

Input: T1, T4, number of clusters k, and number of iterations T
1: W ← calculate similarity matrix between T1 and T4
2: G1, . . . , Gk ← apply k-means to W
3: for t ← 1 to T do
4: x ← randomly select an example from T4
5: Gi ← current cluster of example x
6: JGi (t) ← calculate Gi’s objective value in Eq. (5.24)
7: JGi (t + 1) ← Gi’s new value after excluding x
8: for j ← 1 to k, j �= i do
9: JGj (t) ← calculate Gj’s objective value
10: JGj (t + 1) ← Gj’s new value after including x
11: if inequity (6.25) is true then
12: Gj ← Gj ∪ x; Gi ← Gi \ x
13: break
14: end if
15: end for
16: end for
17: μ1, . . . , μk ← calculate cluster centers for G1, . . . , Gk
18: return μ1, . . . , μk

Consider an example x in T4 that moves from group Gi to Gj. Before the move,
βGi and βGj are the mean vectors, δGiand δGj are the variance vectors. After the
move, the new groups are G′

i and G′
j . Then the addictive update is given in the

following theorem:

Theorem 5.3 (Additive Update) When adding an example x into Gj, the mean
vector of Gj, βGi , can be updated to β ′

Gi
as follows,

β′
Gj

= 1

| G′
j |

∑

xi∈
βl = 1

nj + 1

(
nj· βGj + βk

) = βGi + βk − βGj

nj + 1
, (5.26)

Meanwhile, the variance δGj can be updated to δ′
Gj

as follows,

δ′
Gj

= 1∣
∣
∣G′

j

∣
∣
∣

∑
yl∈G′

j

(
βl − β ′

Gj

)T (
βl − β ′

Gj

)

= nj

nj +1δGj + nj

(nj +1)
2

(
βk − βGj

)T (
βk − βGj

) (5.27)

where nj is the number of examples in Gj.

http://dx.doi.org/10.1007/978-981-16-3607-3_6#Equ25
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Therefore, the updated mean and variance vectors of group Gj can be incremen-
tally calculated, without recalculating Eq. (5.24). Similarly, for a group Gi, where
an example x is removed, its mean and variance vectors can be updated using the
following theorem.

Theorem 5.4 (Subtractive Update) When an example x is removed from group Gi,
the mean vector βGi can be updated to β ′

Gi
as follows,

β ′
Gi

= 1

| G′
i |

∑

yl∈G′
i

βl = 1

ni − 1

(
ni · βGi − βk

) = βGi − βk − βGi

ni − 1
, (5.28)

Meanwhile, the variance δGi can be updated to δ′
Gi

as follows, where ni is the
number of examples in Gi.

δ′
Gj

= 1|G′
i |

∑
yl∈G′

i

(
βl − β ′

Gi

)T (
βl − β ′

Gi

)

= ni

ni−1δGi − ni

(ni−1)2
(
βk − βGi

)T (
βk − βGi

) (5.29)

where ni is the number of examples in Gi.

Time complexity Now we analyze the time complexity of Algorithm 5.3. In
Algorithm 5.3, when searching for a new group for each example in the relationship
matrix, the updating operation, by using Theorems 5.3 and 5.4, can be executed
within constant time O(1). Besides, Algorithm 5.3 is a greedy algorithm. In each
iteration, it uses a local optimization technique to cluster examples into groups that
maximizes Eq. (5.24). There are three tiers of loops in the algorithm. The first tier
aims to find the best group for each example x with the worst-case complexity
of O(k) (i.e., traversing all the k groups). The second tier aims to find the best
groups for all examples in T4, which has the worst-case complexity of O(N) (i.e.,
searching over all the N examples). The last tier aims to make the algorithm
converge to a stable solution. Obviously, the first two tiers dominate the time
consumption of the whole algorithm, and thus the time complexity of Algorithm
5.3 is O(k) × O(N) = O(kN).

RK- TS3VM learning model Algorithm 5.4 lists the detailed procedures of the
RK- TS3VM learning model, which is the combination of the TS3VM and RK
learning models. Given a training chunk D, Step 1 identifies the four types of
examples T1, T2, T3 and T4. Step 2 constructs a group of k feature vectors, denoted
by μ = {μ1, · · · ,μk}, by applying RK to T1 and T4. In Step 3 and Step 4, the k
new features are appended to each example in T1, T2 and T3 to form three new
sets denoted by T ′

1, T ′
2and T ′

3, respectively. Step 5 builds a TS3VM model F from
T ′
1, T ′

2, and T ′
3. In Step 6, the feature vectors μ and F are combined to form the

final prediction model. For any example x in the testing chunk, RK- TS3VM first
calculates k new features for x, then uses the TS3VM model to predict a label for x.
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Algorithm 5.4 RK-TS3VM Learning Framework

Input: training chunk D, chunk size n, labeled rate l, concept drifting rate c, number
of clusters k

Step 1: Identify the four types of data T1, T2, T3, T4 in D according to the
labeled rate l and concept drifting probability c using Eq. (5.1)

Step 2: Using RK model on T1 and T4 to get k cluster centers denoted by
μ = {μ1, . . . , μk}

Step 3: for each instance x in T1, T2, and T3, add k attributes using the inner
produce between x and μ

Step 4: Get the new samples T′
1, T

′
2, and T

′
3 from Step 3

Step 5: Construct a TS3 VM model using T′
1, T

′
2, and T

′
3, and get the model F

return μ and F together as the prediction model

The data analysis of implementing the above algorithms can be found in Zhang
et al. [13].

5.2 Robust Ensemble Learning for Mining Noisy Data
Streams

5.2.1 Noisy Description for Data Stream

Based on the characteristics of the stream data, existing work roughly describes
data streams into the following two styles: stationary data streams [11, 18–20] and
dynamic data streams [5, 21–23].

According to the stationary description, if data streams are divided into data
chunks as shown in Fig. 5.6, then training data chunks (which include both historical
data chunks and the up-to-date chunk) will have a similar or identical distribution
to the yet-to-come data chunk. Thus, classifiers built from the training data chunks
will have reasonably good performance in classifying data from the yet-to-come
data chunk. The advantage of the stationary description is that we may directly
apply traditional classification techniques to the data streams. For example, since
the up-to-date data chunks have the same distribution as the yet-to-come data chunk,
we can collect all historical classifiers to build a classifier ensemble. However, this
stationary description takes no consideration of the concept drifting in stream data,
so it can hardly, if not impossible, be used to describe most real-world data streams.

Noticing the limitations of the stationary description, a recent work [21]
describes the data streams in a dynamic scenario where training chunks have
different distributions p(x,y) (where x denotes the feature vector and y denotes
the class label) from that of the yet-to-come data chunk, and classifiers built on
the training set may perform only slightly better than random guessing or simply
predicting all examples to belong to one single class. Comparing to the stationary
description, the dynamic description emphasizes on the situation that training data
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Yet-to-come
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Up-to-date
Data Chunk
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Fig. 5.6 An illustration of the “historical”, “up-to-date” and “yet-to-come” data chunks. A data
stream can be split into two parts: the observed data stream (which is denoted by the solid lines)
and the unobserved data stream (which is denoted by the dotted lines). Assume the data stream is
processed chunk-by-chunk. The observed data stream can be further categorized into two types:
the latest data chunk is called the “up-to-date” chunk, while the remaining data chunks are called
the “historical” data chunks. Besides, the “yet-to-come” data chunk is the first data chunk of the
unobserved data streams

chunks do not necessarily have the same distribution as the yet-to-come data chunk.
Under this description, building classifiers from the up-to-date data chunk to predict
the yet-to-come data chunk is better than building classifiers from the aggregation of
all historical chunks because the buffered chunks (probably outdated with respect
to the newly arrived data chunk) will deteriorate the ensemble performance. In
a narrow sense, this dynamic description is much looser than the stationary
description, which makes it more applicable for mining concept drifting data
streams. However, the disadvantage of the dynamic description is also obvious, in
the sense that it doesn’t discriminate concept drifting from data errors. If the up-to-
date data chunk contains noisy samples, building classifiers on this noisy data chunk
to predict the yet-to-come data chunk may cause more errors than using a classifier
ensemble built on previously buffered data chunks. Consequently, although the
dynamic description is more reasonable than the stationary description for data
streams, in practice, it is still not capable of describing all the realistic data streams.

Consider a data stream management system whose buffer contains five consec-
utive data chunks as shown in Fig. 5.7. The stationary description can only cover
the process from D1 to D2, where the distribution p1(x,y) remains unchanged. The
dynamic description covers the process fromD2 toD3, where the concept drifts from
p1(x,y) to p2(x,y) without being interrupted by noisy data chunks. A more general
situation, as depicted in the process from D3 to D5, is that the concept drifting
(p2(x,y) evolves to p3(x,y)) is mixed with noise (a noisy data chunk D4 is observed).
To explicitly describe this type of data streams, we define a noisy description of data
streams as follows:

Noisy Description for Data streams Mining from real-world data streams may
confront the challenges of concept drifting and data errors simultaneously.
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Stream Query SubsystemStream Loading Subsystem 

Stream Mining Subsystem Stream Scheduler Subsystem

               Stream Buffer Subsystem
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p1(x,y)     p1(x,y)      p2(x,y)      Noise     p3(x,y)

D3 D4 D5D2

Fig. 5.7 A conceptual view of noisy data in data stream management system. The data stream
management system can be separated into five parts: a stream buffer subsystem, a stream loading
subsystem, a stream query subsystem, a stream mining subsystem, and a stream scheduler
subsystem. In the stream buffer subsystem, there are five buffered data chunks, D1, D2, . . . , D5, of
which D4 is a noise data chunk. D1 and D2 share the same distribution P1(x,y). From D2 to D3, the
underlying concept changes from P1(x,y) to P2(x,y). From D3 to D4 and finally to D5, the concept
changes from P2(x,y) to P3(x,y), meanwhile, a noisy chunk D4 is observed between D3 and D5.
The stationary description of data streams can only cover the process from D1 to D2, while the
dynamic description of data streams only covers the process from D2 to D3. Our noisy description
covers a much more common process from D3 to D5

The noisy description addresses both concept drifting and data errors in a
data stream management system. It is much more general than the stationary and
dynamic descriptions. It then can be adapted for generic data streams.

5.2.2 Ensemble Frameworks for Mining Data Stream

The nature of continuous volumes of the stream data raises the needs of designing
effective classifiers with high accuracy in predicting future testing instances as well
as good efficiency in handling massive volumes of training instances. In the past
few years, many solutions have been proposed to build prediction models from data
streams. An early solution is to build model by using online incremental methods
[18, 19] which update a single model by incorporating newly arrived data. During
the learning process, incremental methods continuously revise the model to discover
new patterns in the most recent data chunk. For example, Domingos and Hulten
[10] introduced an ultra fast decision tree learner VFDT which incrementally builds
Hoeffding trees from the high-volume data streams. Similar approach was extended
to CVFDT [19] which handles time changing and concept drifting streams. By doing
so, most of the incremental methods violate the efficiency rule because updating a
classifier according to the newly arrived data can be a time-consuming process.
An alternative solution is to build a single and simple classifier on the up-to-date
chunk without considering historical data chunks, i.e., discarding old classifiers and
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rebuilding a new classifier on the new data chunk. This build-then-discard method,
unfortunately, may not work well because of the important loss incurred by the
discarded classifiers. To overcome this challenge, a number of ensemble methods
have been proposed.

Different from the incremental learning where the goal is to deliver a single
model, ensemble learning intends to produce a number of models and relies on
their voting for final predictions. Such design brings two advantages for ensemble
learning to handle data streams: (1) because models are trained from a small portion
of stream data, it can efficiently handle streams with fast growing data volumes;
and (2) because the final predictions are the voting of a number of base models,
the concept drifting in the stream can be adaptively and rapidly addressed by
changing the weight value of each voting member. For example, Street and Kim [24]
proposed a SEA algorithm, which combines decision tree models using majority-
voting. Kolter and Maloof [25] proposed an ensemble method by using weighted
online learners to handle drifting concepts. Wang et al. [11] proposed a weighted
ensemble, in which they assign each classifier a weight reversely proportional to
the classifier’s accuracy on the most recent data chunk. Yang et al. [26] proposed
proactive learning where concepts (models) learnt from previous chunks are used to
foresee the best model to predict data in the current chunk. Zhu et al. [27] proposed
an active learning framework to selectively label instances for concept drifting data
streams. Gao et al. [21] proposed to build different base classifiers on a most recent
data chunk to construct the classifier ensemble.

In summary, the above ensemble frameworks for stream data mining can be
roughly categorized into the following two categories, according to their ways of
forming the base classifiers: horizontal ensemble (including weighted ensemble)
frameworks which build base classifiers using several buffered data chunks (as illus-
trated in Fig. 5.8a), and vertical ensemble framework which build base classifiers on
the up-to-date data chunk using different algorithms (as illustrated in Fig. 5.8b).

5.2.2.1 Horizontal Ensemble and Weighted Ensemble Frameworks

Consider a data stream containing an infinite number of data chunks {Di}+∞
i=1 . Due

to the limitation of the storage space, the system buffer can only accommodate at
most n consecutive chunks each of which contains a certain number of instances.
Assume at the current time stamp we are observing the nth chunk Dn, and the
buffered data chunks are denoted by D1, D2, . . . , Dn. In order to predict data in
a newly arrived chunk Dn+1, one can choose a learning algorithm L to build a base
classifier fi from each of the buffered data chunks Di, say fi = L (Di), and then
predict each instance x in Dn+1 by combining the predictions of the base classifiers
fi (i = 1, 2, . . . , N) to form a classifier ensemble through the model averaging
mechanism shown in Eq. (5.30) [11, 25, 27, 28]:

fHE(x) = 1

N

∑N

i=1
fi(x) (5.30)
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Fig. 5.8 A conceptual flowchart of the classifier ensemble framework for stream data mining
where (a) shows the horizontal ensemble framework, which builds different classifiers on different
data chunks; (b) shows the vertical ensemble framework, which builds different classifiers on the
up-to-date data chunk with different learning algorithms; and (c) shows the aggregate ensemble
framework, which builds classifiers on different data chunks using different learning algorithms
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An alternative version of the horizontal ensemble is to add weight values to the
base classifiers [11, 27]. Different from the model averaging, a weighted ensemble
minimizes the variance error ev of each base classifier on the up-to-date data
chunk, then assigns each classifier a weight that is reversely proportional to the
error rate ev. The advantage of the horizontal ensemble and weighted ensemble is
twofold: (1) they can reuse information of the buffered data chunks, which may
be beneficial for the testing data chunk; and (2) they are robust to noisy streams
because the final decisions are based on the classifiers trained from different chunks.
Even if noisy data chunks may deteriorate some base classifiers, the ensemble can
still maintain relatively stable prediction accuracy. The disadvantage of such an
ensemble framework, however, lies in the fact that if the concepts of the stream
continuously change, information contained in previously buffered classifiers may
be invalid to the current data chunk. As a result, combining old-fashioned classifiers
may not improve the overall prediction accuracy. In summary, both horizontal and
weighted ensembles, in fact, are based on the stationary description of the data
streams that buffered data chunks share similar or identical distributions to the yet-
to-come data chunk, such that information in the buffered data chunks can be used
to predict the yet-to-come data chunk.

5.2.2.2 Vertical Ensemble Framework

Assume we have m learning algorithms Lj (j = 1,2, . . . ,m), a vertical ensemble [17]
builds base classifiers using each algorithm on the up-to-date data chunkDn as fj =
L| (Dn), and then combines all base classifiers through model averaging as given in
Eq. (5.31),

f n
V E(x) = 1

m

m∑

i=1

fin(x) (5.31)

In the case that prior knowledge of the yet-to-come data chunk is unknown,
model averaging on the most recent chunk can achieve minimum expectation error
on the test set. In other words, building classifiers using different learning algorithms
can decrease the expected bias error compared to any single classifiers. For example,
assuming a data stream whose joint probability p(x,y) evolves continuously, if we
only use a stable learner such as SVM, then SVM may perform better than an
unstable classifier when p(x) changes while p(y|x) remains unchanged. On the other
hand, if we only use an unstable learner such as decision trees, then decision trees
may perform better than SVM when p(x) does not evolve much but p(y|x) changes
dramatically. When we have no prior knowledge on whether the evolving of p(x,y)
is triggered by p(x) or p(y|x), it is difficult to determine whether a stable classifier or
an unstable classifier is better, so combining these two types of classifiers is likely
to be a better solution than simply choosing either of them. Although the vertical
ensemble has a much looser condition (distribution p(x,y)may continuously change)
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than the stationary description (distribution p(x,y) remains unchanged), it also has
a severe pitfall for realistic data streams. The vertical ensemble builds classifiers
only on a single up-to-date data chunk, but as we have discussed before, a realistic
data stream system may contain data errors. If the up-to-date data chunk is a noisy
data chunk, the results may suffer from severe performance deterioration. Without
realizing the noise problems, the vertical ensemble limits itself merely to the concept
drifting scenarios, but not to the realistic data streams.

5.2.2.3 Aggregate Ensemble Framework

The disadvantages of the above two ensemble frameworks motivate the proposed
Aggregate Ensemble framework (which is illustrated in Fig. 5.8c). We first use m
learning algorithms Li (i = 1, 2, . . . , m) to build classifiers on n buffered data
chunks j (j = 1, . . . , n), and then train m-by-n base classifiers fij = Li

(
Dj

)
, where

i denotes the ith algorithm, and j denotes the jth data chunk. Then we combine
these base classifiers to form an aggregate ensemble through model averaging
defined in Eq. (5.32), which indicates that the aggregate ensemble is a mixture of
the horizontal ensemble and vertical ensemble, and its base classifiers constitute a
Classifier Matrix (CM) in Eq. (5.33).

fAE = 1

mn

n∑

i=1

m∑

j=1

fij (x) (5.32)

CM =

⎡

⎢
⎢
⎣

f11 f12 . . . . . . f1n

f21 f22 . . . . . . f2n

. . . . . . . . . . . . . . . . . . . . . .

fm1 fm2 . . . . . . fmn

⎤

⎥
⎥
⎦

m∗n

(5.33)

In Eq. (5.33), each element fij in CM represents a base classifier built by using
algorithm i on data chunk j. As we have mentioned in the vertical ensemble,
classifiers on each column of CM (i.e., classifiers built on the same data chunk using
different learning algorithms) are used to reduce the expected classifier bias error on
unknown test data. Classifiers on each row of CM (i.e., classifiers built on different
data chunks using the same learning algorithm) are used to reduce the impact of
noisy data chunks. For example, when the up-to-date training chunk is a noisy
chunk, combining classifiers built from the historical data chunks may alleviate the
noisy impact. By building a classifier matrix CM, the aggregate ensemble is capable
of solving a realistic data stream containing both concept drifting and data errors.
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5.2.3 Theoretical Studies of the Aggregate Ensemble

5.2.3.1 Performance Study of AE Framework

In this section, we explore why and when AE performs better than HE and VE
methods. As we have described in the above section, on each data chunk, the
aggregate ensemble builds m classifiers by using m different learning algorithms.
For a specific test instance x in the yet-to-come data chunk, the horizontal ensemble
uses classifiers on a row in matrix CM to predict x, i.e., if we choose learning
algorithm i (1 ≤ i ≤ m), then the horizontal ensemble can be denoted by Eq. (5.34)

f i
HE(x) = 1

n

n∑

j=1

fij (x) (5.34)

The vertical ensemble can be denoted by model averaging on the last column
(column n) of the Matrix CM, which is given in Eq. (5.35)

f n
V E(x) = 1

m

m∑

i=1

fin(x) (5.35)

An aggregate ensemble combines all classifiers in CM as base classifiers, through
the averaging rule defined by Eq. (5.35). Accordingly, the horizontal ensemble and
vertical ensemble are, in fact, two special cases of the aggregate ensemble. Gao et al.
[21] proved that in data stream scenario, the performance of a single classifier within
a classifier ensemble is expected to be inferior to the performance of the entire
classifier ensemble. The horizontal ensemble and vertical ensemble, as special cases
of the aggregate ensemble, are not expected as good as the aggregate ensemble. For
example, when combining each column in CM, one can have a variant of CM as
CMc = [g1, g2, . . . , gn], where each gi = [f1i, f2i, . . . , fmi]T is independent of each
other and shares the same distribution, say p(g). Then the mean squared error of the
horizontal ensemble (with the ith learning algorithm) on a test instance x (with class
label y) can be denoted by

MSEi
HE(x) = Ep(g)(y − gi(x))2 = y2 − 2y · Ep(g)gi(x) + Ep(g)g

2
i (x)

(5.36)

For the aggregate ensemble, the mean squared error on x can be calculated as

MSEAE(x) = Ep(g)

(
y − Ep(g)gi(x)

)2 = y2 − 2y · Ep(g)gi(x) + E2
p(g)gi(x)

(5.37)



5.2 Robust Ensemble Learning for Mining Noisy Data Streams 329

Thus, the difference between Eqs. (5.35) and (5.36) is denoted by Eq. (5.38),

MSEAE(x) − MSEi
HE(x) = E2

p(g)gi (x) − Ep(g)g
2
i (x) ≤ 0.

(
since E2(x) ≤ E

(
x2

))

(5.38)

Accordingly, we assert that the error rate of the aggregate ensemble is expected
to be less or equal to the error rate of the horizontal ensemble. Similarly, if we regard
CM as a column vector where each element is a combination of different rows in
CM, we can show that the mean squared error of the aggregate ensemble is also
expected to be less or equal to that of the vertical ensemble.

In the following we provide some intuitive explanations on why and when AE
performs better than HE and VE by using two toy examples in Figs. 5.9 and 5.10.
Note that our comparisons here are rather intuitive and qualitative, and rigorous
numeric comparisons will be reported in the experimental results in the next section.
As shown in Fig. 5.8, assume that AE is trained using three learning algorithmsM1,
M2, and M3, where HE(Mi) denotes an HE model trained using learning algorithm
Mi. For each model, we list three results: (1) training accuracy at time A, (2) test
accuracy at time A, and (3) test accuracy at time B which immediately follows A.
We can observe that for concept drifting data streams, it is difficult to find a single
“optimal” learning algorithm with the best performance across the whole stream.
For example, model HE(M2) has the best prediction accuracy at time stamp A,
but unfortunately, it has the worst performance at the next time stamp B. Model
HE(M3) has the worst performance at time A, but it performs the best at time
stamp B. On the other hand, AE can guarantee the most reliable performance by
combining different learning algorithms. This is because in dynamic data stream

Fig. 5.9 A toy example for comparisons between AE and three HE ensemble methods trained
with different learning algorithms (i.e., algorithms M1, M2, and M3). For each ensemble method,
three results (bars) are listed for comparisons. The left bar denotes the training accuracy at time A,
the bar in the middle denotes the test accuracy at time A, and the bar on the right denotes the test
accuracy at time B which follows time stamp A. It is obvious that at time A, the higher the training
accuracy, the better the prediction result. However, this result doesn’t hold when the concept drifts
at the next time stamp B
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D1 D2 D4D3

VEAE

Fig. 5.10 A toy example for comparison between AE and VE. The concept (i.e., the classification
boundary) drifts marginally from chunk D1 to D2, and finally to D4. Notice that the up-to-date
chunk D3 is a noisy chunk that carries useless or erroneous. Information when predicting the yet-
to-come data chunk D4

environments it is essentially difficult to know which learning algorithm performs
the best at a particular time point. By integrating different learning algorithms as a
unified model, we can expect AE to have the smallest variance error and thus have
the best prediction accuracy.

AE performs better than VE when the concept drifts marginally and the up-to-
date training chunk contains a significant amount of noisy samples. As illustrated
in Fig. 5.10, assume that the concept drifts slightly along data chunks, and the
up-to-date chunk D3 is a noisy chunk. VE built on the up-to-date chunk D3 will
show deteriorated performance in predicting D4. On the other hand, AE can largely
avoid such a limitation by incorporating information from classifiers trained from
the historical data chunks D1 and D2.

Although we have demonstrated that AE, on average, outperforms HE and VE,
we are not claiming that AE always performs the best in data stream scenarios. For
example, HE may outperform AE if the concept drifts marginally in data streams.
In this case, the joint probability distribution p(x,y) will stay stable across the data
streams, and thus we can select a strong learning algorithm (i.e., SVM) to construct
HE and expect HE to outperform AE. On the other hand, VE may outperform AE
if the concept drifts significantly and the up-to-date chunk contains very few noisy
samples. In such a case, old-fashioned historical information in AE will deteriorate
the learner performance even worse.

5.2.3.2 Time Complexity Analysis

In this section, we study the time complex of the AE framework and discuss whether
it is a suitable model, from computational cost perspective, for mining noisy data
streams. As discussed above, compared to its peers, AE combines much more base
classifiers to build an ensemble predictor. This raises the concern on the efficiency
of AE due to its additional cost for training extra base classifiers.



5.2 Robust Ensemble Learning for Mining Noisy Data Streams 331

To study AE’s time complexity, let’s consider the following example. Assume
the buffer of the system contains d data chunks, each of which containsN instances.
Assume further that m learning algorithms are used to build models. Each time
when a new data chunk arrives, we need to follow two steps to update an ensemble:
(1) build new base classifier(s) on the new data chunk; and (2) update classifier
ensemble by incorporating new base classifier(s). Without loss of generality, we
assume that training a new base classifier needs O(N lg N) time on average, while
updating the classifier ensemble to include one base classifier requires O(	) time,
where 	 is related to the dimensionality of attributes. Then the updating of the HE
ensemble for each new data chunk needs to (1) build a new base classifier (which
costsO(N lg N)time), and then (2) combine the most recent d base classifiers (which
costs O(d	) time) together for prediction. The total time cost can be calculated by
Eq. (5.39),

O(HE) = O (N lgN) + O (dΓ ) . (5.39)

Since training a base classifier dominates the total cost (i.e.,O(	) < <O(N lgN)),
and the number of data chunks d in the buffer is rather small. The time complexity
of the HE ensemble can be simplified as in Eq. (5.40),

O(HE) = O (N lgN) + O (dΓ ) = O (N lgN) . (5.40)

In comparison, VE builds m base classifiers for each new data chunk. Accord-
ingly, its time complexity O(VE) can be calculated by Eq. (5.41),

O(V E) = O(m) ∗ (O (N lgN) + O (Γ )) = O (mN lgN) (5.41)

For AE, it first builds m classifiers when a new data chunk arrives and combines
all the d*m base classifiers to build an ensemble. Therefore, its time complexity can
be calculated by Eq. (5.42),

O(AE) = O (mN lgN) + O (dmΓ ) = O (mN lgN) . (5.42)

Combining Eqs. (5.40), (5.41), and (5.42), we have the following two conclu-
sions: (1) AE is, asymptotically, as efficient as VE. Both of them have the same time
complexityO(mN lgN); (2) AE requires more time complexity than HE because AE
needs to trainm base classifiers for each new data chunk. This limitation, in practice,
can be alleviated by using a multi-core or multi-processor computing system, where
base classifiers can be dispatched and trained on different computation units in
parallel. The detailed data analysis of this section can be found in [4].
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