
Chapter 2
Multiple Criteria Optimization
Classification

As the increasingly strong computational power of computers fills the shortage
of human brain at calculating, data mining, a major component of data science,
has emerged as the times require due to its merit of being capable of extracting
novel and useful knowledge which has potential value from large scale of complex
data. However, from the mathematical perspective, some data mining methods,
such as decision tree, genetic algorithm, and association rules could be considered
as heuristic algorithms: which means to select a “better solution” from several
alternative solutions as the criterion of classification. These methods lack of
exploring how to locate the “best solution” systematically.

Based on [1] and [2], this chapter describes the advanced techniques of apply-
ing multi-criteria decision making methods and multi-criteria mathematical pro-
gramming to conducting data mining process for selecting the “best solution”
from multiple alternative solutions, instead of using heuristic algorithms. Sec-
tion 2.1 is Multi-Criteria Linear Programming (MCLP) for supervised learn-
ing, which includes error correction method in classification by using Multiple-
Criteria and Multiple-Constraint Levels Linear Programming (MC2LP) [3], Multi-
Instance classification based on regularized Multiple Criteria Linear Programming
(RMCLP) [4], supportive instances for RMCLP classification [5], and kernel
based simple RMCLP for binary classification and regression [6]. Then, Sect. 2.2
describes a group of knowledge-incorporatedMCLP classifier [7] and decision rule
extraction for RMCLP model [1]. Finally, Sect. 2.3 summarizes three methods
of MCDM based data analytics. They are a MCDM approach for estimating
the number of clusters [8], parallel RMCLP classification algorithm [9], and
an effective intrusion detection framework based on MCLP and support vector
machine.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Shi, Advances in Big Data Analytics,
https://doi.org/10.1007/978-981-16-3607-3_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3607-3_2&domain=pdf
https://doi.org/10.1007/978-981-16-3607-3_2

24 2 Multiple Criteria Optimization Classification

2.1 Multi-criteria Linear Programming for Supervised
Learning

2.1.1 Error Correction Method in Classification by Using
Multiple-Criteria and Multiple-Constraint Levels Linear
Programming

First, the MCLP model for classification is outlined as below [10, 11]:
Given a set of n variables about the records XT = (x1, x2, . . . , xl), and then

let xi = (xi1, xi2, . . . , xin)T be one sample of data, where i = 1, 2, . . . , l and l is
the sample size. In linear discriminant analysis, data separation can be achieved by
two opposite objectives, that is, minimizing the sum of the deviations (MSD) and
maximizing the minimum distances (MMD) of observations from the critical value.
That is to say, in order to solve classification problem, we need to minimize the
overlapping of data, i.e. α, at the same time, to maximize the distances from the
well classified points to the hyperplane, i.e. β.

However, it is difficult for traditional linear programming to optimize MMD
and MSD simultaneously. According to the concept of Pareto optimality, we can
check all the possible trade-offs between the objective functions by using multiple-
criteria linear programming algorithm. The MCLP model can be described by Fig.
2.1.

Moreover, the first Multiple Criteria Linear Programming (MCLP) model can be
described as follows:

min
∑

i

αi

min
∑

i

βi

s.t.AiX = b + αi − βi,Ai ∈ Bad,

AiX = b + αi − βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

Fig. 2.1 MCLP model Ax = b

B G

bi

bi

ai

ai

2.1 Multi-criteria Linear Programming for Supervised Learning 25

Here, αi is the overlapping and β i is the distance from the training sample xi to
the discriminator (w · xi) = b (classification separating hyperplane).

Then, the MC2LP model for classification is introduced in [10].
According to the discussion above, a non-fixed b is very important to our

problem. At the same time, for the simplicity and existence of the solution, b should
be fixed in some interval.

As a result, for different data, we fix b in different pairs of intervals [bl, bu],
where bl and bu are two fixed numbers. Now our problem is to search the best cutoff
between bl and bu at every level of their tradeoffs, that is to say, to test every point
in the interval [bl, bu]. We keep the multiple-criteria the same as MCLP, which is,
MMD and MSD. And then, the following model is posed:

min
∑

i

αi

min
∑

i

βi

s.t.AiX = [bl, bu] + αi − βi,Ai ∈ Bad,

AiX = [bl, bu] + αi − βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

where Ai, bl and bu are given, and X is unrestricted.
In the model, [bl, bu] represents a certain tradeoff in the interval. By virtue of

the technical of Multiple-criteria and multiple-constraint levels linear programming
(MC2LP), we can test each tradeoff between the multiple-criteria and multiple-
constraint levels as follows:

minλ1
∑

i

αi − λ2
∑

i

βi

s.t.AiX = γ1bl + γ2bu + αi − βi,Ai ∈ Bad,

AiX = γ1bl + γ2bu + αi − βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

Here, the parameters of λ × γ are fixed for each programming problem.
Moreover, the advantage of MC2LP is that it can find the potential solutions for
all possible trade-offs in the parameter space systematically [12, 13] where the
parameter space is

{(λ, γ) |λ1 + λ2 = 1, γ1 + γ2 = 1} .

Of course, in this model, choosing a suitable pair for the goal problem is a
key issue and needs domain knowledge. Consequently, a non-parameter choosing
MC2LP method should be posed.

26 2 Multiple Criteria Optimization Classification

For the original MCLP model, one cutoff b is used to predict a new sample’s
class, that is to say, there is only one hyperplane. The former MC2LP model points
out that we can define two cutoffs bl and bu instead of the original single cutoff.
And then a systematical method can be used to solve this problem. Consequently,
all potential solutions at each constrain level tradeoff can be acquired. However, one
problem is how to find the cutoffs bl and bu.

On one hand, we utilize two cutoffs to discover the solution of higher accuracy;
on the other hand, we hope the cutoffs can be obtained from the system directly.
Inspired by the idea above, we address our first MC2LP model, which solves the
classification problem twice.

For the first step, MCLP model is used to find the vector of external deviations α.
It is a function of λ. For simplicity, we set b = 1. And then, we fix the parameter of
λ to get one potential solution. Now a non-parameter vector of external deviations α

is acquired. The component (αi > 0) means the corresponding sample in the training
set is misclassified. In other words, Type I and Type II errors occur. According to
the idea of MC2LP, we can detect the result of every single MCLP by fixing the
parameter of γ at each level in the interval [bl, bu]. Now, we find the maximal
component of α:

αmax = max {αi, 1 ≤ i ≤ l} . (2.1)

Indeed, the smaller the weight of external deviations is, the bigger αmax is.
The misclassified samples are all projected into the interval [1 − αmax, 1 + αmax]

according to the weight vector X obtained from the MCLP model. In this way, we
define bl and bu as 1 − αmax and 1 + αmax, respectively. It is easy to see, if we
want to lessen the number of two types of error, in effect, we just need to inspect the
cutoffs by altering the cutoff in the interval

[1 − αmax, 1 + αmax] .

Moreover, for the second step, a new MC2LP classification model can be stated
as follows:

minλ1
∑

i

αi − λ2
∑

i

βi

s.t.AiX = [1 − αmax, 1 + αmax] + αi − βi,Ai ∈ Bad,

AiX = [1 − αmax, 1 + αmax] + αi − βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

whereAi, αmax are given, and X is unrestricted, [1− αmax, 1+ αmax] means a certain
tradeoff in the interval. At the same time, λ = (λ1, λ2) is the parameter chosen in
the first step.

2.1 Multi-criteria Linear Programming for Supervised Learning 27

The most direct modification of the new MC2LP model is to transfer the single
objective function to be a multiple-criteria one. Because the vector of external
deviations is a function of λ, it is easy to observe that if the weight between external
deviations and internal deviations changes, α changes. Consequently, αmax alters.
And the ideal α is the one that makes αmax not too huge. In other words, we do not
hope to check the weight that satisfies λ1 not too small. Actually, some papers have
proved that only if λ1 > λ2, then α · β = 0, which makes the model meaningful
[14]. As a result, we only need to check the parameters of objective functions that
make αmax not too big, in short, not too far away from the original one.

On the other hand, we expect αmax not too small. That is to say, we hope the
model has some generalization. Hence, two small positive numbers ε1 and ε2 are
chosen manually. And then, the interval is built as [(1 − αmax − ε1, 1 − αmax + ε1),
(1 + αmax − ε2, 1 + αmax + ε2)]. This means that the lower and the upper bound of
the interval should be trade-off of some intervals, i.e. the multiple-constrained levels
are actually multiple-constrained intervals. Indeed, checking every tradeoff of the
intervals is the same as checking every tradeoff of 1− αmax − ε1 and 1 + αmax + ε2.
In this case, we can consider the objective function as a multiple-criteria one. It can
be stated as follows:

min
∑

i

αi

min
∑

i

βi

s.t.AiX = [1 − αmax − ε1, 1 + αmax + ε2] + αi − βi,Ai ∈ Bad,

AiX = [1 − αmax − ε1, 1 + αmax + ε2] − αi + βi,Ai ∈ Bad,

αi, βi ≥ 0, i = 1, 2, . . . , l

(2.2)

where Ai, αmax, ε1 and ε2 are given, and X is unrestricted. Here, ε1 and ε2 are two
nonnegative numbers.

Lemma 2.1 For certain trade-off between the objective functions, if b is maintained
to be the same sign, then hyperplanes, which are obtained in the MCLP model, keep
the same. Furthermore, different signs result in different hyperplanes.

Proof Assume that the tradeoff between the objective functions is λ = (λ1, λ2) and
X1 is the solution obtained by fixing b to be 1. Then, set b1 as an arbitrary positive
number. The MCLP model can be transformed as follows:

minλ1
∑

i

αi − λ2
∑

i

βi

s.t.AiX = b1 + αi − βi,Ai ∈ Bad,

AiX = b1 − αi + βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

28 2 Multiple Criteria Optimization Classification

The problem above is the same as:

minλ1

∑

i

αi

b1
− λ2

∑

i

βi

b1

s.t.Ai
X
b1

= 1 + αi

b1
− βi

b1
, Ai ∈ Bad,

Ai
X
b1

= 1 − αi

b1
+ βi

b1
, Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

And then, we let αi′ = αi

b1
, βi′ = βi

b1
, X′ = X

b1
. It is obvious that the solution is X′ = X

b1

and the hyperplane AX′ = b1 is the same as AX1 = 1.
Similarly, we can prove that when b is a negative number, the solution is the same

as the one that is obtained from b = −1.
As a result, we just need to compare the solutions (hyperplanes) resulted from

b = 1 and b = −1. For this case, it is easy to see that the signs before αi and
β i swap when we transform b = 1 into b = 1. If this happens, then the objective
function changes into −λ1

∑

i

αi + λ2
∑

i

βi . This means that the solutions will be

different.

According to the lemma, we have the theorem below:

Theorem 2.1 For our MC2LP model (2.2) above, according to the solutions
(hyperplanes), space γ is divided into two non-intersect parts.

Remark 2.1 When [1 − αmax, 1 + αmax] is achieved, ε1 and ε2 are chosen to satisfy
that 0 is contained by the interval [1 − αmax − ε1, 1 + αmax + ε2]. In this case, for
any λ, the solutions belong to the trade-offs with same sign will result in the same
hyperplane. In other words, there are only two different hyperplanes corresponding
to model (2.2). In short, the flexibility of model (2.2) is limited.

In many classification models, including original MCLP model, two types of
error is a big issue. In credit card account classification, to correct two types of
error can not only improve the accuracy of classification but also help to find some
important accounts.

Accordingly, many researchers have focused on this topic. Based on this
consideration, more attention should be paid to the samples that locate between two
hyperplanes acquired by the original MCLP model, that is, the points in the grey
zone [15]. Consequently, we define the external deviations and internal deviations
related to two different hyperplanes, the left one and the right one, that is, αl, αr , β l

and βr.

2.1 Multi-criteria Linear Programming for Supervised Learning 29

Definition 2.1 The conditions the deviations should satisfy are stated as follows:

αl
i =

⎧
⎪⎪⎨

⎪⎪⎩

0, AiX < 1 − αmaxandAi ∈ Bad;
AiX − (1 − αmax) , AiX ≥ 1 − αmaxandAi ∈ Bad;
0, AiX ≥ 1 − αmaxandAi ∈ Good;
(1 − αmax) − AiX, AiX < 1 − αmaxandAi ∈ Good.

αr
i =

⎧
⎪⎪⎨

⎪⎪⎩

0, AiX < 1 + αmaxandAi ∈ Bad;
AiX − (1 + αmax) , AiX ≥ 1 + αmaxandAi ∈ Bad;
0, AiX ≥ 1 + αmaxandAi ∈ Good;
(1 + αmax) − AiX, AiX < 1 + αmaxandAi ∈ Good.

βl
i =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − αmax) − AiX, AiX < 1 − αmaxandAi ∈ Bad;
0, AiX ≥ 1 − αmaxandAi ∈ Bad;
AiX − (1 − αmax) , AiX ≥ 1 − αmaxandAi ∈ Good;
0, AiX < 1 − αmaxandAi ∈ Good.

βr
i =

⎧
⎪⎪⎨

⎪⎪⎩

(1 + αmax) − AiX, AiX < 1 + αmaxandAi ∈ Bad;
0, AiX ≥ 1 + αmaxandAi ∈ Bad;
AiX − (1 + αmax) , AiX ≥ 1 + αmaxandAi ∈ Good;
0, AiX < 1 + αmaxandAi ∈ Good.

Figure 2.2 is a sketch for the model. In the graph, the green and the red lines
are the left and right hyperplane, bl and br respectively, which are some trade-
offs in two intervals, i.e. [1 − αmax − ε2, 1] and [1, 1 + αmax + ε1]. And all

Bad Good

bi
l

bi
l

bi
l

ai
l

1-amax- e2 1+amax+e11bl br

ai
r

bi
r

bi
r

bi
r

AX = b

Fig. 2.2 MC2LP model

30 2 Multiple Criteria Optimization Classification

the deviations are measured according to them in different colors. For instance, if
a sample in “Good” class is misclassified as “Bad” class, it means αi

r > β i
l ≥ 0

and αi
l = β i

r = 0. And then, if a sample in “Bad” class is misclassified as “Good”
class, it means αi

l > β i
r ≥ 0 and αi

r = β i
l = 0. Thus, for the misclassified ones,

αi
r + αi

l − β i
r − β i

l should be minimized.
As a result, a more meticulous model could be stated as follows:

min
∑

i

(
αr

i + αl
i

)

min
∑

i

(
αl

i − βr
i

)

min
∑

i

(
αr

i − βl
i

)

max
∑

i

(
βr

i + βl
i

)

s.t.AiX = 1 + [0, αmax + ε1] + αr
i − βr

i , Ai ∈ Bad,

AiX = 1 − [0, αmax + ε2] + αl
i − βl

i , Ai ∈ Bad,

AiX = 1 + [0, αmax + ε1] − αr
i + βr

i , Ai ∈ Good,

AiX = 1 − [0, αmax + ε2] − αl
i + βl

i , Ai ∈ Good,

αr
i , α

l
iβ

r
i , β

l
i ≥ 0, i = 1, 2, . . . , l.

where Ai, αmax, ε1 > 0, ε2 > 0 are given, and X is unrestricted.
In Fig. 2.2, for each point, there are at most two kinds of deviations nonzero.

The objective functions appear to deal with the deviations according to the position
shown in Fig. 2.2, respectively, whereas they have their own special meaning. That
is to say, it measures two types of error in some degree by means of the second and
third objective functions. As a result, in this new version of MC2LP, we not only
consider the deviations respectively, but also take the relationship of the deviations
based on two types of error into account in the objective functions. By virtue of
MC2LP method, each tradeoff between 1 − αmax − ε2 and 1 for the left hyperplane
as well as each tradeoff between 1 and 1 + αmax + ε1 for the right hyperplane can
be checked.

After obtaining the weight vector X of the hyperplane, AX = 1 is still used
to be the classification hyperplane. However, in our new model, we minimize the
distance between the left hyperplane and the right one. In other words, we discover
the hyperplane that genders the smallest grey area.

Actually, in statistics, Type I and Type II errors are two opposite objectives. That
is to say, it is very hard to correct both of them at the same time. As a result, we
modify the former model into two different models focusing on two types of error

2.1 Multi-criteria Linear Programming for Supervised Learning 31

respectively as follows:

min
∑

i

(
αr

i + αl
i

)

min
∑

i

(
αl

i − βr
i

)

max
∑

i

(
βr

i + βl
i

)

s.t.AiX = 1 + [0, αmax + ε] + αr
i − βr

i , Ai ∈ Bad,

AiX = 1 + αl
i − βl

i , Ai ∈ Bad,

AiX = 1 + [0, αmax + ε] − αr
i + βr

i , Ai ∈ Good,

AiX = 1 − αl
i + βl

i , Ai ∈ Good,

αr
i , α

l
iβ

r
i , β

l
i ≥ 0, i = 1, 2, . . . , l.

(2.3)

where Ai, αmax and ε > 0 are given, and X is unrestricted. In this model,
∑

iα
r
i − βl

i

is not contained in the objective functions. This model can deal with Type II error,
that is, classifying a “Good” point to be a “Bad” one. Now we provide an example
to illustrate the effect of model (2.2).

As the result shown above, model (2.3) can correct Type II error in some degree.
We conclude this in the proposition below.

Proposition 2.1 Model (2.3) can correct Type II error by moving the right
hyperplane to the right based on the concept of multiple-constraint levels.

Note that the second objective function in model (2.3) is nonzero for the samples
in class “Bad” and getting negative when the right hyperplane moving to the right.
That is to say, we tolerate some Type I errors. At the same time, the first objective
function in model (2.3) renders Type II errors an increasing punishment with moving
the right hyperplane to the right. As a result, it can correct Type II error in some
degree.

Similar to model (2.3), (2.4) is posed to deal with Type I error as follows:

min
∑

i

(
αr

i + αl
i

)

min
∑

i

(
αl

i − βr
i

)

min
∑

i

(
βr

i + βl
i

)

s.t. AiX = 1 + αr
i − βr

i , Ai ∈ Bad,

AiX = 1 − [0, αmax + ε2] + αl
i − βl

i , Ai ∈ Bad,

AiX = 1 − αr
i + βr

i , Ai ∈ Good,

AiX = 1 − [0, αmax + ε2] − αl
i + βl

i , Ai ∈ Good,

αr
i , α

l
iβ

r
i , β

l
i ≥ 0, i = 1, 2, . . . , l.

(2.4)

where Ai, αmax and ε > 0 are given, and X is unrestricted. In this model,
∑

iα
l
i − βr

i

is not contained in the objective functions. This model focuses on Type I error, that
is, classifying a “Bad” point to be a “Good” one.

32 2 Multiple Criteria Optimization Classification

The numerical examples to illustrate the theoretical results of this section can be
found in [3].

2.1.2 Multi-instance Classification Based on Regularized
Multiple Criteria Linear Programming

Multi-instance learning (MIL) has received intense interest recently in the field
of machine learning. This idea was originally proposed for handwritten digit
recognition by [16]. The term multi-instance learning was first introduced by [17]
when they were investigating the problem of binding ability of a drug activity
prediction. In MIL framework, the training set consists of positive and negative
bags of points in the n-dimensional real-space Rn, and each bag contains a number
of points (instances). A positive training bag contains at least one positive instance,
whereas a negative bag contains only negative instances. The aim of MIL is to
construct a learned classifier from the training set for correctly labeling unseen bags.
Multi-instance learning has been found useful in diverse domains such as object
detection, text categorization, image categorization, image retrieval, web mining,
computer-aided medical diagnosis, etc. [12–14, 18].

In this subsection, we propose a novel Multi-instance Learning method based
on Regularized Multiple Criteria Linear Programming (called MI-RMCLP), which
includes two algorithms for linear and nonlinear cases separately. To our knowledge,
MI-RMCLP is the first RMCLP implementation based on MIL, which is a useful
extension of RMCLP. The original MI-RMCLP model proposed itself is a noncon-
vex optimization problem. By an appropriate modification, we will the model to
derive two quadratic programming subproblems, which can arrive at the optimal
value by an iterative strategy solving these sequential subproblems. All preliminary
numerical experiments show that our approach is competitive with other multiple
learning formulations.

We first give a brief introduction of RMCLP in the following. For classification
about the training data:

T = {(x1, y1) , · · · , (xl, yl)} ∈ (Rn × y
)l

,

where xi ∈ Rn, yi ∈ = {1,−1}, i = 1, · · · , l, data separation can be achieved by two
opposite objectives. The first objective separates the observations by minimizing
the sum of the deviations (MSD) among the observations. The second maximizes
the minimum distances (MMD) of observations from the critical value [19]. The
overlapping of data u should be minimized, while the distance v has to be
maximized. However, it is difficult for traditional linear programming to optimize
MMD and MSD simultaneously. According to the concept of Pareto optimality, we
can seek the best trade-off of the two measurements [2, 20]. So MCLP model can

2.1 Multi-criteria Linear Programming for Supervised Learning 33

be described as follows:

min
u

eT u&max
v

eT v, (2.5)

s.t. (w · xi) + (ui − vi) = b, for {i |yi = 1 } , (2.6)

(w · xi) − (ui − vi) = b, for {i |yi = −1 } , (2.7)

u, v ≥ 0, (2.8)

where e ∈ Rl be vector whose all elements are 1, w and b are unrestricted, ui is
the overlapping, and vi the distance from the training sample xi to the discriminator
(w · xi) = b (classification separating hyperplane). By introducing penalty parameter
c, d > 0, MCLP has the following version

min
u,v

ceT u − deT v, (2.9)

s.t. (w · xi) + (ui − vi) = b, for {i |yi = 1 } , (2.10)

(w · xi) − (ui − vi) = b, for {i |yi = −1 } , (2.11)

u, v ≥ 0, (2.12)

The geometric meaning of the model is shown in Fig. 2.3.
A lot of empirical studies have shown that MCLP is a powerful tool for

classification. However, we cannot ensure this model always has a solution under
different kinds of training samples. To ensure the existence of solution, recently,
Shi et al. proposed a RMCLP model by adding two regularized items 1

2w
T Hw and

Fig. 2.3 Geometric meaning of MCLP

34 2 Multiple Criteria Optimization Classification

1
2u

T Qu on MCLP as follows (more theoretical explanation of this model can be
found in [2]):

min
z

1

2
wT Hw + 1

2
uT Qu + deT u − ceT v, (2.13)

s.t. (w · xi) + (ui − vi) = b, for {i |yi = 1 } , (2.14)

(w · xi) − (ui − vi) = b, for {i |yi = −1 } , (2.15)

u, v ≥ 0, (2.16)

where z = (wT , uT , vT , b)T ∈ Rn + l + l + 1, H ∈ Rn × n, Q ∈ Rl × l are symmetric
positive definite matrices. Obviously, the regularized MCLP is a convex quadratic
programming.

Compared with traditional SVM, we can find that the RMCLP model is similar
to the Support Vector Machine model in terms of the formation by considering min-
imization of overlapping of the data. However, RMCLP tries to measure all possible
distances v from the training samples xi to separating hyperplane, while SVM fixes
the distance as 1 (through bounding planes (w · x) = b± 1) from the support vectors.
Although the interpretation can vary, RMCLP addresses more control parameters
than the SVM, which may provide more flexibility for better separation of data
under the framework of the mathematical programming. In addition, different with
SVM, RMCLP considers all the samples to solve classification problem. These
make RMCLP have stronger insensitivity to outliers.

One of the drawbacks of applying the supervised learning model is that it
is not always possible for a teacher to provide labeled examples for training.
Multiple instance learning (MIL) provides a new way of modeling the teachers’
weakness. MIL considers a particular form of weak supervision in which training
class labels are associated with sets of patterns, or bags, instead of individual
patterns. A negative bag only consists of negative instances, whereas a positive bag
comprises both positive and negative instances. The goal of MIL is to find a separate
hyperplane, which can decide the label of any new instance.

In the following, we give the formal description of multiple instance learning
problem. Given a training set

{
B+
1 , · · · ,B+

m+ ,B−
1 , · · · ,B−

m−
}

(2.17)

where a bag B+
i =

{
xi1, · · · , xim+

i

}
, xij ∈ Rn, j = 1, · · · ,m+

i , i =
1, · · · ,m+;B−

i =
{
xi1, · · · , xim−

i

}
, xij ∈ Rn, j = 1, · · · ,m−

i , i = 1, · · · ,m−;
B+ means that the positive bag B+ contains at least one positive instance xij; B−
means that all instance xij of the negative bag B− are negative. The goal is to induce

2.1 Multi-criteria Linear Programming for Supervised Learning 35

a real-valued function

y = sgn (g(x)) (2.18)

such that the label of any instance x in Rn space can be predicted.
Now we rewrite the training set (2.17) as

Train =
{
B+
1 , · · · ,B+

m+ ,B−
m++1, · · · ,B−

m++m− ,
}

=
{
B+
1 , · · · ,B+

m+ , xz+1, · · · , xz+f

}

(2.19)

where z is the number of the instances in all positive bags and f the number of the
instances in negative bags.

The set consisting of subscripts of Bi is expressed as:

�(i) = {i |xi ∈ Bi } (2.20)

For a separable multi-instance classification problem, if a positive bag can be
correctly classified, it should satisfy the following constraint:

max
j∈�(i)

(
w · xj

)− b > 0. (2.21)

In RMCLP, vi means the distance from the training sample xi to the separating
hyperplane and be a nonnegative number. Thus, we can always find an appropriate
vi such that

max
j∈�(i)

(
w · xj

)− b = vi . (2.22)

For nonseparable multi-instance classification, we need to add corresponding
slack variable ui ≥ 0. Finally, the (2.22) is expressed by

max
j∈�(i)

(
w · xj

)− b = vi − ui . (2.23)

Similar to [21], it is equivalent to the fact that there exist convex combination

coefficients set
{
λi

j

∣
∣j ∈ �(i), i = 1, · · · ,m+

}
, such that

⎛

⎝w ·
∑

j∈�(i)

λi
j xj

⎞

⎠+ ui − vi = b, (2.24)

λi
j ≥ 0,

∑

j∈�(i)

λi
j = 1. (2.25)

36 2 Multiple Criteria Optimization Classification

For solving multi-instance classification, so (2.6–2.9) can be converted as:

min
z

1

2
‖w‖2 + 1

2
‖u‖2 + d

m+
∑

i=1

ui + d

z+f∑

i=z+1

ui − c

m+
∑

i=1

vi − c

z+f∑

i=z+1

vi, (2.26)

s.t.

⎛

⎝w ·
∑

j∈�(i)

λi
j xj

⎞

⎠+ (ui − vi) = b, i = 1, · · · ,m+, (2.27)

(w · xi) − (ui − vi) = b, i = z + 1, · · · , z + f, (2.28)

λi
j ≥ 0, j ∈ �(i), i = 1, · · · ,m+, (2.29)

∑

j∈�(i)

λi
j = 1, i = 1, · · · ,m+, (2.30)

u, v ≥ 0, (2.31)

where z = (
wT , uT , vT , b, λT

)T
, λ =

{
λi

j |j ∈ �(i) , i = 1, · · · ,m+
}
, �(i) =

{
i
∣
∣xi ∈ B+

i

}
.

As both λi
j and w are variables, the constraint (2.27) is no longer a linear

constraint and (2.26–2.31) becomes a nonlinear optimization problem.
In the following, we give an approximate iterative solution via solving successive

quadratic programming problem. Firstly, we fix λ, and solve a quadratic program-
ming with respect to w, u, v, b; then fix w, solve a quadratic programming with
respect to u, v, b, λ.

1. For fixed λi
j , i = 1, · · · ,m+, j ∈ �(i), we can obtain

x̂i =
∑

j∈�(i)

λi
j xj , i = 1, · · · ,m+, (2.32)

So the problem (2.26–2.31) can be written as

min
z

1

2
wT Hw + 1

2
uT Qu + deT u − ceT v, (2.33)

s.t.
(
w · x̂i

)+ (ui − vi) = b, i = 1, · · · ,m+, (2.34)

(
w · x̂i

)− (ui − vi) = b, i = z + 1, · · · , z + f, (2.35)

u, v ≥ 0, (2.36)

The problem (2.33–2.36) is a standard quadratic programming problem and
as same as RMCLP. We choose H and Q to be identity matrix. Its dual problem

2.1 Multi-criteria Linear Programming for Supervised Learning 37

can be formulated as

max
α,u

− 1

2

m+
∑

i=1

m+
∑

j=1

((
x̂i · x̂j

)+ 1
)
αiαj

−1

2

m+
∑

i=1

z+f∑

j=z+1

((
x̂i · x̂j

)+ 1
)
αiαj

−1

2

z+f∑

i=2+1

m+
∑

j=1

((
x̂i · x̂j

)+ 1
)
αiαj (2.37)

−1

2

z+f∑

i=2+1

z+f∑

j=z+1

((
x̂i · x̂j

)+ 1
)
αiαj

−1

2

m+
∑

i=1

m+
∑

j=1

uiuj − 1

2

m+
∑

i=1

z+f∑

j=z+1

uiuj

−1

2

z+f∑

i=z+1

m+
∑

j=1

uiuj
1

2

z+f∑

i=z+1

z+f∑

j=z+1

uiuj

s.t. − ui − d ≤ αi ≤ −c, i = 1, · · · ,m+, (2.38)

−ui − d ≤ −αi ≤ −c, i = z + 1, · · · , z + f, (2.39)

where c, d > 0. We can compute: α̂ = (
α̂1, · · · , α̂m+ , α̂z+1, · · · , α̂z+f

)T
by

solving the problem of (2.37–2.39), and (w, b) can be expressed as

ŵ = −
m+
∑

i=1

α̂i x̂i −
z+f∑

i=z+1

α̂i x̂i , (2.40)

b̂ =
m+
∑

i=1

α̂i +
z+f∑

i=z+1

α̂i , (2.41)

ŵ, b̂ is the updating value of (w, b).
2. For fixed w, the formula (2.26–2.31) can be substituted as:

min
λ,u,v,b

1

2

m+
∑

i=1

m+
∑

j=1

uiuj + 1

2

m+
∑

i=1

z+f∑

j=z+1

uiuj + 1

2

z+f∑

i=z+1

m+
∑

j=1

uiuj + 1

2

z+f∑

i=z+1

z+f∑

j=z+1

uiuj

+d

m+
∑

i=1

ui + d

z+f∑

i=z+1

ui − c

m+
∑

i=1

vi − c

z+f∑

i=z+1

vi (2.42)

38 2 Multiple Criteria Optimization Classification

s.t.

⎛

⎝w ·
∑

j∈�(i)

λi
j xj

⎞

⎠+ (ui − vi) = b, i = 1, · · · ,m+, (2.43)

(w · xi) − (ui − vi) = b, i = z + 1, · · · , z + f, (2.44)

λi
j ≥ 0, j ∈ �(i), i = 1, · · · ,m+, (2.45)

∑

j∈�(i)

λi
j = 1, i = 1, · · · ,m+, (2.46)

u, v ≥ 0, (2.47)

thus we are able to establish the following Algorithm 2.1 based on the
formulas above.

Algorithm 2.1 Linear MI-RMCLP

Initialize: Given a training set (see (2.19));
Choose appropriate penalty parameters c, d > 0;
Choose Q and H to be identity matrixes;

Setting initial values for λ (k = 1), where
{
λi

j (1)
∣
∣j ∈ �(i), i = 1, · · · ,m+

}
;

Process: 1. For fixed λ(k) =
{
λi

j (k)
}
, the goal is to compute w(k):

1.1. Compute
{
x̂1, · · · , x̂m+ , x̂r1, · · · , x̂z+f

}
by (2.32);

1.2. Solve quadratic programming (2.38) ~ (2.39),
obtaining the solution α̂ = (

α̂1, · · · , α̂p, α̂z+1, · · · , α̂z+f

)T ;
1.2. Compute ŵ from (2.40);
1.4. Set w(k) = ŵ.
2. For fixed w(k), the goal is to compute λ(k + 1):
2.1. Solve quadratic programming (2.42) ~ (2.47) with the
variables λ, u, v, b, obtaining the solution λ̂, b̂.

2.2. Set λ (k + 1) = λ̂, b (k + 1) = b̂;
2. If |λ(k + 1) − λ(k)| < ε, goto Output:; otherwise,
goto the step 1, setting k = k + 1.

Output: Obtain the decision function f (x) = sgn ((w∗ · x) + b∗),
where w∗ = w(k), b∗ = b(k).

For nonlinear MI-RMCLP, we firstly introduce the kernel function K(x, x
′
) =

(�(x) · �(x
′
)) to replace (x, x

′
), where �(x) is a mapping from the input space Rn to

some Hilbert space H:

Φ : Rn → H

x → x = Φ(x) (2.48)

2.1 Multi-criteria Linear Programming for Supervised Learning 39

Therefore, the problem (2.26–2.31) can be expressed as

min
z

1

2
‖w‖2 + 1

2
‖u‖2 + d

m+
∑

i=1

ui + d

z+f∑

i=z+1

ui − c

m+
∑

i=1

vi − c

z+f∑

i=z+1

vi (2.49)

s.t.

⎛

⎝w ·
∑

j∈�(i)

λi
jΦ

(
xj

)
⎞

⎠+ (ui − vi) = b, i = 1, · · · ,m+, (2.50)

(w · Φ (xi)) − (ui − vi) = b, i = z + 1, · · · , z + f, (2.51)

λi
j ≥ 0, j ∈ �(i), i = 1, · · · ,m+, (2.52)

∑

j∈�(i)

λi
j = 1, i = 1, · · · ,m+, (2.53)

u, v ≥ 0, (2.54)

Similar to Algorithm 2.1, as a given λ, the current problem can be solved by the
following quadratic programming problem:

max
α,u

− 1

2

m+
∑

i=1

m+
∑

j=1

⎛

⎝
∑

k∈�(i)

λi
k

∑

l∈I (j)

λ
j

l K (xk · xl) + 1

⎞

⎠αiαj

−1

2

m+
∑

i=1

z+f∑

j=z+1

⎛

⎝
∑

k∈�(i)

λi
kK

(
xk · xj

)+ 1

⎞

⎠αiαj

−1

2

z+f∑

i=z+1

m+
∑

j=1

⎛

⎝
∑

l∈I (j)

λ
j

l K (xi · xl) + 1

⎞

⎠αiαj (2.55)

−1

2

z+f∑

i=z+1

z+f∑

j=z+1

(
K
(
xi · xj

)+ 1
)
αiαj

−1

2

m+
∑

i=1

m+
∑

j=1

uiuj − 1

2

m+
∑

i=1

z+f∑

j=z+1

uiuj

−1

2

z+f∑

i=z+1

m+
∑

j=1

uiuj − 1

2

z+f∑

i=z+1

z+f∑

j=z+1

uiuj (2.56)

s.t. − ui − d ≤ αi ≤ −c, i = 1, · · · ,m+, (2.57)

−ui − d ≤ −αi ≤ −c, i = z + 1, · · · , z + f, (2.58)

40 2 Multiple Criteria Optimization Classification

We can obtain a solution of
(
ŵ, b̂

)
by computing

ŵ = −
m+
∑

i=1

α̂i

∑

j∈�(i)

λi
jΦ (xi) −

z+f∑

i=z+1

α̂iΦ (xi) , (2.59)

b̂ =
m+
∑

i=1

α̂i +
z+f∑

i=z+1

α̂i , (2.60)

where α̂ = (
α̂1, · · · , α̂p, α̂z+1, · · · , α̂z+f

)T is a solution of the problem (2.56)–
(2.58).

For fixed w, the problem (2.49–2.54) can be written as

min
λ,u,v,b

1
2

m+∑

i=1

m+∑

j=1
uiuj + 1

2

m+∑

i=1

z+f∑

j=z+1
uiuj + 1

2

z+f∑

i=z+1

m+∑

j=1
uiuj + 1

2

z+f∑

i=z+1

z+f∑

j=z+1
uiuj

+ d
m+∑

i=1
ui + d

z+f∑

i=z+1
ui − c

m+∑

i=1
vi − c

z+f∑

i=z+1
vi

(2.61)

s.t. −
m+
∑

j=1

α̂j

∑

k∈I (j)

λ̃
j
k

∑

l∈�(i)

λi
lK (xk, xl) −

z+f∑

j=z+1

α̂j

∑

l∈�(i)

λi
lK

(
xj , xl

)− (ui − vi) = b,

i = 1, · · · ,m+, (2.62)

−
m+
∑

j=1

α̂j

∑

k∈I (j)

λ̃
j
kK (xk, xi) −

z+f∑

j=z+1

α̂jK
(
xj , xi

)+ (ui − vi) = b, i = z + 1, · · · , z+f

(2.63)

λi
j≥0, j ∈ �(i), i = 1, · · · ,m+, (2.64)

∑

j∈�(i)

λi
j = 1, i = 1, · · · ,m+, (2.65)

u, v ≥ 0, (2.66)

where λ̃ =
(
λ̃i

i |j ∈ �(i), i = 1, . . . ,m+
)
and α̂ = (

α̂1, · · · , α̂z+1, · · · , α̂z+f

)T

are known.
The ultimate separating hypersurface can be expressed as

g(x) = −
m+
∑

j=1

α̂j

∑

k∈I (j)

λ̃
j
kK (xk, x) −

z+f∑

j=z+1

α̂jK
(
xj , x

)+ b̂, (2.67)

In the following, we give out Algorithm 2.2 for nonlinear MI-RMCLP.

2.1 Multi-criteria Linear Programming for Supervised Learning 41

Algorithm 2.2 Nonlinear MI-RMCLP

Initialize: Given a training set (see (2.19));
Choose appropriate penalty parameters c, d > 0;
Choose Q and H to be identity matrixes;
Choose appropriate

Setting initial values for λ (k = 1), where
{
λi

j (1)
∣
∣j ∈ �(i), i = 1, · · · ,m+

}
;

Process: 1. For fixed λ(k) =
{
λi

j (k)
}
, the goal is to compute w(k):

1.1. Solve quadratic programming (2.56) ~ (2.58), obtaining the solution.
α̂ = (

α̂1, · · · , α̂p, α̂z+1, · · · , α̂z+f

)T
;

1.2. Set λ̃ = λ(k);

2. For fixed α̂, λ̃, the goal is to compute λ̂ =
{
λi

j

}
:

2.1. Solve quadratic programming (2.61) ~ (2.66) with the

variables (λ, u, v, b), obtaining the solution λ̂ =
{
λi

j

}
.

2.2. Set λ (k + 1) = λ̂, b (k + 1) = b̂;
2. If |λ(k + 1) − λ(k)| < ε, goto Output:; otherwise,
goto the step 1, setting k = k + 1.

Output: Obtain the decision function f (x) = sgn (g(x)),
where g(x) by (2.18).

To demonstrate the capabilities of our algorithm, we report results on 12 data sets,
2 from the UCI machine learning repository [22], and 10 from [23]. “Elephant,”
“Fox” and “Tiger” data sets are from an image annotation task in which the goal
is to determine whether or not a given animal is present in an image. The other
seven data sets are from the OHSUMED data, and the task is to learn binary
concepts associated with the Medical Subject Headings of MEDLINE documents.
The “Musk1” and “Musk2” data sets from the UCI machine learning repository are
used to test our nonlinear multi-instance RMCLP, which involves bags of molecules
and their activity levels and is commonly used in multi-instance classification.
Detailed information about these data sets can be found in [21].

Our algorithm code was written in MATLAB 2010. The experiment environment
is Intel Core i5 CPU, 2 GB memory. The “quadprog” function with MATLAB is
employed to solve quadratic programming problem related to this section. The test-
ing accuracies for our method are computed using standard tenfold cross-validation
[24]. The RBF kernel parameter σ is selected from the set {2i|i = − 7, · · · , 7} by
tenfold cross-validation on the tuning set comprising of random 10% of the training
data. Once the parameters are selected, the tuning set was returned to the training
set to learn the final decision function. The (c, d) are set 1. If the difference between
2 is less than 10−4 or the iterations K > 100, our algorithms will be stopped.

We compare our results with MICA [21], mi-SVM [23], MI-SVM [25], EM-DD
[25] and SVM-CC [26]. MI-RMCLP is our method in Table 2.1 and Fig. 2.4. The
results of tenfold cross-validation accuracy are listed in Table 2.1 and Fig. 2.4. The
results for mi-SVM, MI-SVM and EM-DD are taken from [21].

42 2 Multiple Criteria Optimization Classification

Table 2.1 Results of all methods in the case of rbf kernel

Data Sets
MICA
(%)

mi-SVM
(%)

MI-SVM
(%)

EM-DD
(%)

SVM-CC
(%)

MI-RMCLP
(%)

Elephant 80.5 82.2 81.4 78.3 81.5 79.3
Fox 58.7 58.2 57.8 56.1 57.3 57.6
TST1 94.5 92.6 92.9 85.8 95.0 91.2
TST2 85.0 78.2 84.5 84.0 82.7 86.0
TST3 86.0 87.0 82.2 69.0 86.4 85.1
TST4 87.7 82.8 82.4 80.5 82.1 81.4
TST7 78.9 81.3 78.0 75.4 77.4 82.7
TST9 61.4 67.5 60.2 65.5 62.0 62.9
TST10 82.3 79.6 79.5 78.5 81.5 77.6
Musk-1 84.4 87.4 77.9 84.8 88.9 85.8
Musk-2 90.5 82.6 84.3 84.9 89.6 91.7

Note: Best accuracy is in bold

Fig. 2.4 Results of all methods in the case of linear kernel. X-axis represents different methods:
1: MICA; 2: mi-SVM; 3: MI-SVM; 4: EM-DD; 5: SVM-CC; 6: Mi-RMCLP. Y-axis represents the
accuracy

2.1.3 Supportive Instances for Regularized Multiple Criteria
Linear Programming Classification

Although RMCLP performs excellently in classifying lots of benchmark datasets,
its shortage is also obvious. By taking account of every training instances into
consideration, RMCLP is sensitive to noisy and imbalanced training samples. In

2.1 Multi-criteria Linear Programming for Supervised Learning 43

other words, the classification boundary may shift significantly even if there is
merely a slight change of training samples. This difficulty can be described in Fig.
2.5, assume there is a two groups classification problem, the first group is denoted
by “.” and the second group is denoted by “✩” . We can observe that it is a linear-
separable dataset and the classification boundary is denoted by a line “/”. Figure
2.5a shows that on an ideal training sample, RMCLP successfully classify all the
instances. In Fig. 2.5b, when we add some noisy instances into the first group, the
classification boundary shifts towards the first group, making more instances in the
first group misclassified. In Fig. 2.5c, we can observe that when we add instances
into the second group to make the number of instances in two groups imbalanced,
the classification boundary also changes significantly, causing a great number of
misclassifications. In Fig. 2.5d, we can see that if we choose some representative
instances (also called supportive instances) for RMCLP, which locate inside the
blue circle, then although more noisy and imbalanced instances are added into the
training sample, the classification boundary always keeps unchanged and will have
a good ability to do prediction. That is to say, building RMCLP model only on
supportive instances can improve its accuracy and stability.

According to the above observation, in this subsection, we propose a clustering-
based sample selection method, which chooses the instances in the clustering
center as the supportive samples (just as SVM [27] chooses the support vectors
to draw a classification boundary). Experimental results on synthetic and real-life
datasets show that our new method not only can significantly improve the prediction
accuracy, but also can dramatically reduce the number of training instances.

Lots of empirical studies have shown that MCLP is a powerful tool for
classification. However, there is no theoretical work on whether MCLP always can

(a) (b)

(c) (d)

Fig. 2.5 (a) The original RMCLP model built on an ideal training sample; (b) when adding two
noisy instances in the left side, the classification boundary shifts towards the left side; (c) when the
training sample is imbalanced, the boundary also shifts significantly; (d) if we select representative
training instances which locate around the distribution centers (inside the circle), the classification
boundary becomes satisfactory

44 2 Multiple Criteria Optimization Classification

find an optimal solution under different kinds of training samples. To go over this
difficulty, recently, [2] proposed a RMCLP model by adding two regularized items
1
2x

T Hx and 1
2α

T Qα on MCLP as follows:

Minimize
1

2
xT Hx + 1

2
αT Qα + dT α − cT β (2.68)

Subject to :
Aix − αi + βi = b,∀Ai ∈ G1;
Aix + αi − βi = b,∀Ai ∈ G2;

αi, βi ≥ 0.

where H ∈ Rr ∗ r, Q ∈ Rn ∗ n are symmetric positive definite matrices. dT , cT ∈ Rn.
The RMCLP model is a convex quadratic program. Theoretically studies [2] have
shown that RMCLP can always find a global optimal solution.

Besides two groups classification problem, a recent work [28] also introduced
a multiple groups RMCLP model. As far as three groups classification problem be
considered, we first find a projection direction x and a group of hyper planes (b1,
b2), to an arbitrary training instance Ai, if Aix < b1, then Ai ∈ G1; if b1 ≤ Aix < b2
then Ai ∈ G2; and if Aix ≥ b2, then Ai ∈ G3. Extending this method to n
group classification, we can also find a direction x and n − 1 dimension vector
b = [b1, b2, . . . , bn − 1] ∈ Rn − 1, to make sure that to any training instance Ai:

Aix < b1,∀Ai ∈ G1;
bj−1 ≤ Aix < bj ,∀Ai ∈ Gi, 1 < i < n;
Aix ≥ bn−1,∀Ai ∈ Gn;

(2.69)

We first define ci = bi−1+bi

2 as the midline in group i(1 < i < n). Then, to the
misclassified records, we define α+

i as the distance from ci to Aix, which equals
(ci − Aix), when misclassify a group i’s record into group j (j < i), and we define
α−

i as the distance from Aix to ci, which equals (ci − Aix), when misclassify a
group i’s record into group j (j > i). Similarly, to the correct classified records, we
define β−

i when Ai is in the left side of ci, and we define β+
i when Ai is in the

right side of ci. When we have a n groups training sample with size m, we have
α = {

α+
i , α−

i

} ∈ Rm∗2, β = {
β+

i , β−
i

} ∈ Rm∗2, and we can build a multiple
groups Regularized Multi-Criteria Linear Programming (SRMCLP) as follows:

Minimize
1

2
xT Hx + 1

2
αT Qα + dT α + cT β

Subject to :
Aix − α−

i − β−
i + β+

i = 1
2b1,∀Ai ∈ G1;

Aix − α−
i + α+

i − β−
i + β+

i = 1
2 (bi−1 + bi) ,∀Ai ∈ Gi, 1 < i < n;

Aix + α+
i − β−

i + β+
i = 2bn−1,∀Ai ∈ Gn;

α−
i , α+

i , β−
i , β+

i ≥ 0.
(2.70)

2.1 Multi-criteria Linear Programming for Supervised Learning 45

Input: training sample Tr, testing sample Ts, parameter , exclusion percentage s
Output: selected sample Tr’
Begin
1.Set Tr’=Tr
2. While (|PrevClusteringCenter-CurrClusteringCenter| <)

{

2.1. Calculate current clustering center;

2.2. For each instances do

{

2.2.1 Calculate the Euclidean distance of the clustering center,

2.2.2 get s% of the instances which are farthest from the clustering

center, denoted as the subset {P}
2.2.3 exclude {P} from the training, Tr’=Tr\{P}.
}

}

3. Return the selected sample Tr’

End

Fig. 2.6 Clustering method to get the supportive method

Since this multiple groups RMCLP model is mainly designed to solve the ordinal
separable dataset, we also call it Ordinal RMCLP model [28].

Figure 2.6 gives the whole procedure of the sample selection algorithm. The
main idea of our algorithm is that it iteratively discards training instances in each
group which are far away from the clustering center until the clustering center for
each group is stable (with the given threshold ε), then the remained instances will
be taken as the supportive instances (just as the support vectors to SVM) and used
to build a classifier. From Fig. 2.6, We can observe that this algorithm is similar to
the well-known k-means algorithm. However, the main difference between them is
that, our algorithm is based on supervised learning framework, while k-means is an
unsupervised learning algorithm. In our algorithm, although the clustering centers
shift in each iteration, each instance keeps a constant class label. But in k-means, the
class label of each instance may change frequently. An important issue of k-means
clustering is how to choose the initial points, if we choose a good initial point,
we can get a global optimal solution; otherwise, we may only get a local optimal
solution. On the contrast, our sample selection method can avoid this problem. It
always leads to a global minimal solution.

46 2 Multiple Criteria Optimization Classification

There are some important parameters in our algorithm. The first important
parameter is ε, which determinates when the algorithm stops. The second parameter
is the exclusion percentage s, which indicates how many instances that are far away
from the clustering center should be discarded in each iteration. This parameter, in
fact, determines the convergence speed. The larger value of s, the faster algorithm
converges. To analyze the computation complexity of our new algorithm, we take
an extremely bad situation into consideration. Assume there are n instances in
the training sample, we assign the values s = 1 and ε = 0. Then, the algorithm
will discard only one instances in each iteration. To the worst case, after n times
iterations, the algorithm converges to the clustering center. In the ith iteration, it
needs to calculate the (n− i) instances to get the clustering center, so we can roughly
infer that the computation complexity is about O(n2).

To investigate whether our new algorithm works, we use two synthetic datasets
and a well-known US bank’s real-life credit card dataset for testing. In our
experiments, the RMCLP is implemented by Visual Fortran 6.5.

The 6000 credit card records are randomly selected from 25,000 real-life credit
card records of a major US bank. Each record has 113 variables, with 38 original
variables and 65 derived variables. The 38 original variables are balance, purchase,
payment, cash advance, and related variables, with the former 5 items each have six
variables that represent raw data of six consecutivemonths and the last item includes
interest charges, data of last payment, times of cash advance, account open data
and so on. The 65 derived variables (CHAR01–CHAR65) are derived from original
38 variables using simple arithmetic methods to reinforce the comprehension of
cardholders’ behaviors. In this section, we use the derived 65 variables. We then
define five classes for this dataset using a label variable: The Number of Over-limits.
The five classes are defined as Bankrupt charge-off accounts (THE NUMBER
OF OVER-LIMITS≥13), Non-bankrupt charge-off accounts (7≤THE NUMBER
OF OVER-LIMITS≤12), Delinquent accounts (3≤THE NUMBER OF OVER-
LIMITS≤6), Current accounts (1≤THE NUMBER OF OVER-LIMITS≤2), and
Outstanding accounts (no over limit). Bankrupt charge-off accounts are accounts
that have been written off by credit card issuers due to reasons other than bankrupt
claims. The charge-off policy may vary among authorized institutions. Delinquent
accounts are accounts that haven’t paid the minimum balances for more than
90 days. Current accounts are accounts that have paid the minimum balances. The
outstanding accounts are accounts that have not balances. In our randomly selected
6000 records, there are 72 Bankrupt charge-off accounts, 205 Non-bankrupt charge-
off accounts, 454 Delinquent accounts, 575 Current accounts and 4694 outstanding
accounts.

Two groups credit card dataset To acquire a two groups training sample, we
combine the Bankrupt charge-off accounts, Non-bankrupt charge-off accounts and
Delinquent accounts together to form a “bad” group. And then we combine the
current accounts and the outstanding accounts into a “good” group. According to
the previous research work on this dataset, we first randomly select a benchmark
training size of 700 bad records and 700 good records, and the remained 4600

2.1 Multi-criteria Linear Programming for Supervised Learning 47

Table 2.2 Comparison of different percentage of training instances

Percent. of training Training sample Testing sample (4600 instances)
Right instances Accuracy (%) Right instances Accuracy (%)

100 (1400) 1096 78.29 3394 72.78
90 (1260) 998 79.20 3295 71.63
80 (1120) 912 81.43 3292 71.57
70 (980) 789 80.51 3571 77.63
60 (840) 667 79.40 3761 81.76
50 (700) 559 79.86 3881 84.37
40 (560) 449 80.18 3964 86.17
30 (420) 331 78.81 4050 88.04
20 (280) 232 82.86 4073 88.54
10 (140) 116 82.86 1971 42.85

records are combined to test the performance. Now what we need to do is to
examine three assumptions: first, is the randomly selected 1400 points are suitable
to build model? second, are there any noisy instances in this randomly selected
dataset? third, can we reduce the 1400 points in a much smaller size and improve
the accuracy synchronously? Experimental results in Table 2.2 tell us the answers.
The first column of Table 2.2 is the current training sample’s size, from the 1400
instances to 140 instances, the second and the third columns list the performance
on different training samples and the fourth and the fifth columns exhibit the
performance on the same 4600 testing instances. The experiment is conducted
as follows: firstly, we build a RMCLP model on all the 1400 training instances,
and we get a benchmark accuracy as 72.78%. Then we call our sample selection
algorithm with parameter s = 1 and ε = 0.1. We do experiments on night special
datasets, 10%, 20%, . . . , 90% of the original 1400 training sample. We finally list
the performance of RMCLP in Table 2.2. Intuitionally, we though the larger the
training sample, the more information we could get, and thus the model would be
more accurate when do prediction. However, Table 2.2, we can see that the 1400
randomly selected instances is not the best training set for RMCLP model, there
exist noisy and useless instances which deteriorate its performance.Our new sample
selection method reduces the training samples continuously. When get 20% of the
original training sample (that is 280 instances), we can build a RMCLP with the
highest accuracy of 88.54% on the testing set.

Multiple Groups credit card dataset Besides two groups RMCLP model, in this
part, we also study the performance of our new algorithm on multiple groups
RMCLP model. For three groups classification, we choose the Bankrupt charge-
off accounts as the first group, the Non-bankrupt charge-off as the second group and
the Delinquent as the third group. Based upon the three groups dataset, we construct
the four groups dataset by adding the Current account as the fourth group. At last,
we construct a five groups dataset by adding the Outstanding accounts as the fifth
group.

48 2 Multiple Criteria Optimization Classification

Table 2.3 Comparison on three groups credit card dataset

3 Groups
(22 + 155 + 404) Original RMCLP RMCLP After sample selection

Corrected Rec. Accuracy (%) Corrected Rec. Accuracy (%)

Group1 12 54.5 19 86.36
Group2 12 7.7 89 57.42
Group3 402 99.5 390 96.53
Average 426 72.32 481 85.71

Table 2.4 Comparison on four groups credit card dataset

4 Groups
(22 + 155 + 404 + 525) Original RMCLP RMCLP After sample selection

Corrected Rec. Accuracy (%) Corrected Rec. Accuracy (%)

Group1 16 72.7 19 86.36
Group2 52 32.5 122 78.71
Group3 38 9.4 267 66.09
Group4 525 100.0 510 97.14
Average 631 57.05 918 82.00

Table 2.5 Comparison on five groups credit card dataset

5 Groups
(22 + 155 + 404 +
525 + 4644) Original RMCLP RMCLP After sample selection

Corrected Rec. Accuracy (%) Corrected Rec. Accuracy (%)

Group1 13 59.1 16 72.73
Group2 130 82.9 130 82.87
Group3 273 67.6 365 90.35
Group4 161 30.7 438 82.43
Group5 4644 100.0 4520 97.33
Average 5221 90.80 5469 95.11

Tables 2.3, 2.4 and 2.5 list the results of comparisons. The second and the third
columns list the results of the original RMCLP method, the fourth and the fifth
columns list the results of RMCLP after selecting the supportive instances. We can
observe that in three groups classification, the original RMCLP’s average accuracy
is 72.32%, while that of the supportive instances is 85.71%. The improvement of
accuracy is as large as 12.39%. In four groups classification, the average accuracy
of the original RMCLP is 57.05%, on the contrast, after selecting the supportive
instances, the accuracy improves to 82.00%, as high as 25.95% improvement. To
the five groups classification, the improvement after selecting supportive instances is
4.31%. From these compressive results, we can validate our former conclusion that
selecting supportive instances for RMCLP can significantly improve its accuracy.

2.1 Multi-criteria Linear Programming for Supervised Learning 49

2.1.4 Kernel Based Simple Regularized Multiple Criteria
Linear Programming for Binary Classification
and Regression

In this section, a novel kernel based regularized multiple criteria linear program are
proposed for both classification and regression scenarios.

Given an observed dataset T = {(x1, y1), (x2, y2), . . . , (xl, yl)} with l instances.
Each instance xi belongs to the category yi. xi ∈ χ ⊆ Rn and yi ∈ y are the n
attributes values and corresponding label for the instance i. The goal of classification
problem is to predict the corresponding label yi ∈ y when new instance xj ∈ χ

arrives. When Card(y) = 2, the issue is binary classification problem. In order to
facilitate description, here we let y = {−1, 1} for following introduction. Under this
binary classification problem, supposed we have positive instances number is l1,
negative instances number is l2, where l1 + l2 = l. ξA = 0, ξB = 0 which are not
marked in the picture.

In contrast to points A and B, points C and D are improperly predicted. Hence
their distance could be constructed as βC = 0, βD = 0 and ξC > 0, ξD > 0.
In summary, following the idea described above the basic MCLP model [29] for
classification could be written as this:

min
w,b,ξ,β

l∑

i=1

ξi

max
w,b,ξ,β

l∑

i=1

βi (2.71)

s.t.yi

(
xT
i w + b

)
= βi − ξi,

ξi ≥ 0, βi ≥ 0, i = 1, · · · , l;

Here w and b could be seem as the slope and intercept of the discriminant
hyperplane. One of the objectives

∑
ξ i could be considered as the measure of

misclassification, thus we minimized it to avoid the inappropriate model construc-
tion.

And the other goal
∑

β i is to maximize the generalization capability of the
chosen classification function. As we introduced before, there exist no single
solution that could make the both these two goals in conflict optimal at the
same time. In [30, 31], compromise solution is introduced and analyzed for
this multiple objective model Eq. (2.71). However, the algorithm that obtained
compromise solution were usually time consuming and not suitable for real world
application.

50 2 Multiple Criteria Optimization Classification

As a result, many methods convert model Eq. (2.71) into single objective linear
program:

min
w,b,ξ,β

l∑

i=1

ξi − γ

l∑

i=1

βi

s.t.yi

(
xT
i w + b

)
= βi − ξi, (2.72)

ξi ≥ 0, βi ≥ 0, i = 1, · · · , l;

Unfortunately, naive model Eq. (2.72) confronts the unsolvable defect because
of the nature of linear programming. More sophisticated approaches need to be
investigated. Therefore, an improved model would be illustrated in next section.

Althoughmodel Eq. (2.72) avoided the computational cost of multiple objectives,
it had a fatal solvability problem. Therefore, we added new quadratic term to the
objective function and proposed a new simple regularized MCLP model showed as
below:

min
w,b,ξ,β

l∑

i=1

ξi − γ

l∑

i=1

βi + 1

2
τβT Hβ

s.t.yi

(
xT
i w + b

)
= βi − ξi, (2.73)

ξi ≥ 0, βi ≥ 0, i = 1, · · · , l;

b ∈ {−1, 1} .

Furthermore, users want to guarantee the slope of the hyperplane not too large.
Then, we made the regularization term wTKw as a part of the goal and obtained the
following model:

min
w,b,ξ,β

l∑

i=1

ξi − γ

l∑

i=1

βi + 1

2
τβT Hβ + 1

2
κwT Kw

s.t.yi

(
xT
i w + b

)
= βi − ξi, (2.74)

ξi ≥ 0, βi ≥ 0, i = 1, · · · , l;

b ∈ {−1, 1} ;

2.1 Multi-criteria Linear Programming for Supervised Learning 51

In order to write the formulas in matrix form, we let

A =

⎡

⎢
⎢
⎢
⎣

xT
1

xT
2
...

xT
l

⎤

⎥
⎥
⎥
⎦

l∗n

, Y =

⎡

⎢
⎢
⎣

y1 0 · · · 0
0 y2 · · · 0
· · · · · · · · · · · ·
0 · · · 0 yl

⎤

⎥
⎥
⎦

l∗l

(2.75)

So model Eq. (2.74) could be rewritten as this:

min
w,β,ξ

1

2
wT Hw + 1

2
λ1β

T Kβ − λ2e
T β + λ3e

T ξ

s.t.Y (Aw + be) − β + ξ = 0, (2.76)

b ∈ {−1, 1} , β ≥ 0, ξ ≥ 0

Where w ∈ Rn, β ∈ Rl, ξ ∈ Rl, e = [1, · · · , 1]Tl is the vector of all ones. K and H
are n × n and l × l positive matrix, respectively. We simply set positive matrix H,
K in model Eq. (2.76) as identity matrix. And to solve the problem with inequality
type constraints, we have to find the saddle point of the Lagrangian function for
model Eq. (2.76)

L
(
w,β, ξ, αequ, αβ, αξ

) =
(
1

2
wT w + 1

2
λ1β

T β − λ2e
T β + λ3e

T ξ

)

+αT
equ (Y (Aw + be) − β + ξ) − αT

β β − αT
ξ ξ (2.77)

where αequ is free, αβ ≥ 0, αξ ≥ 0 are Lagrangian multipliers. Minimization with
respect to w, β, ξ implies the following

∇wL
(
w,β, ξ, αequ, αβ, αξ

) = w + AT Yαequ = 0 (2.78)

∇βL
(
w,β, ξ, αequ, αβ, αξ

) = λ1β − λ2e − αequ − αβ = 0 (2.79)

∇ξL
(
w,β, ξ, αequ, αβ, αξ

) = λ3e + αequ − αξ = 0 (2.80)

Sustaining Eq. (2.78) into function Eq. (2.77), we get

L
(
w,β, ξ, αequ, αβ, αξ

) = −1

2
αT

equYAAT Yαequ − 1

2
λ1β

T β + beT Yαequ

52 2 Multiple Criteria Optimization Classification

Therefore, the dual problem for model Eq. (2.76) is obtained as

max−1

2
αT

equYAAT Yαequ − 1

2
λ1β

T β + beT Yαequ

s.t.λ1β − λ2e − αequ ≥ 0,

λ3e + αequ ≥ 0, (2.81)

β ≥ 0,

b ∈ {−1, 1}

According to the Eq. (2.78), the decision function is

f (x) = sign (w · x + b) = sign
(
−YAT αequx + b

)
.

When introduce kernel functions

Rn → H

x → Φ(x) (2.82)

We have K(xi, xj) = �(xi) · �(xj). Therefore, the dual problem Eq. (2.81) could
be rewritten as

min
1

2
αT

equYK (A,A) Yαequ + 1

2
λ1β

T β − beT Yαequ

s.t.λ1β − λ2e − αequ ≥ 0,

λ3e + αequ ≥ 0, (2.83)

β ≥ 0,

b ∈ {−1, 1}

Furthermore, the decision boundary turns into

f (x) = sign (w · Φ(x) + b) = sign
(−YK (A, x) αequ + b

)
.

Theorem 2.2 Given the solution of the dual problem Eq. (2.83) as
(
α∗

equ, β∗
)
,

the solution of its corresponding primal problem w.r.t. H space can be obtained as

2.1 Multi-criteria Linear Programming for Supervised Learning 53

below:

w∗ = −YΦ(A)T α∗
equ (2.84)

Proof From dual problem Eq. (2.83), we can get its Lagrangian function as:

L
(
αequ, β, α1, α2

) = 1

2
αT

equYK (A,A) Yαequ + 1

2
λ1β

T β − beT Yαequ

−αT
1

(
λ1β − λ2e − αequ

)− αT
2

(
λ3e + αequ

)− αT
3 β (2.85)

Where α1 ≥ 0, α2 ≥ 0, α3 ≥ 0. From the KTT condition, we have the equations
below:

λ1β − λ2e − αequ ≥ 0 (2.86)

λ3e + αequ ≥ 0 (2.87)

β ≥ 0 (2.88)

(
λ1β − λ2e − αequ

)T
α1 = 0 (2.89)

(
λ3e + αequ

)T
α2 = 0 (2.90)

βT α3 = 0 (2.91)

∇αequL
(
αequ, β, α1, α2

) = YK (A,A) Yαequ − bYe + α1 − α2 = 0 (2.92)

∇βL
(
αequ, β, α1, α2

) = λ1β − λ1α1 − α3 = 0 (2.93)

Sustaining Eq. (2.84) into Eq. (2.92), so

∇αequL
(
αequ, β, α1, α2

) = YK (A,A) Yαequ − bYe + α1 − α2

= −Y
(
w∗ · Φ(A) + be

)+ α∗
1 − α∗

2 = 0 (2.94)

This satisfies the constraint of problem Eq. (2.76) when β = α∗
1 , ξ = α∗

2 .
Therefore,

(
w∗, α∗

1 , α
∗
2

)
is the feasible solution of primal problem Eq. (2.76) w.r.t.

H space. Furthermore, introducing Eqs. (2.89), (2.90) and (2.92), the objective
function of primal problem Eq. (2.76) turns into:

1

2
w∗T w∗ + 1

2
λ1β

∗T β∗ − λ2e
T β∗ + λ3e

T ξ∗

= −1

2
α∗T

equYK (A,A) Yα∗
equ − 1

2
λ1β

∗T β∗ + beT Yα∗
equ (2.95)

54 2 Multiple Criteria Optimization Classification

As a result, the object value of the primal problem at points (w∗ , β∗ , ξ ∗) is the
optimal value of its dual problem at points (αequ, β∗) w.r.t. H space.

Base on the Theorem 2.2, we introducedAlgorithm 2.3 using kernel based simple
regular multiple constraint linear program (KSRMCLP) for binary classification
problem.

Given a training set {(x1, y1), · · · , (xl, yl)}, being different from classification
problem, regression is not to give a new arrival instance xi a category label
but a real number value, yi ∈ R. That is mean the possible set of yi has
been changed from finite labels set y to infinite R. Following the idea of
ε − tube, a model for regression problem could be constructed from a binary
classification model [32]. Given a real number ε, two different category points
could be generated when we add and minus ε on the regression output yi.
When we have l instances {(x1, y1), · · · , (xl, yl)} for regression, 2 × l instances
{(x1, y1 + ε)pos, · · · , (xl, yl + ε)pos, (x1, y1 − ε)neg, · · · , (x�, y� − ε)neg} could be
constructed. According to the binary classification model we propose in the last
section, a model for regression problem could be given as:

min 1
2w

T Hw + 1
2λ1β

T Kβ − λ2e
T β + λ3e

T ξ

s.t.Y
(
Aregw + be

) = β − ξ, (2.96)

β ≥ 0, ξ ≥ 0

Algorithm 2.3 KSRMCLP Algorithm for Binary Classification
Input:

Training dataset S = {(x1, y1), (x2, y2), · · · , (xl, yl)} with l instances, xi ∈ Rn

andyi ∈ {−1, 1}, kernel function Kθ (xi, xj) and its parameters θ , model parameters
λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0.

Output:
Binary classification discriminate function f (x).
1: Begin
2: Construct data matrix A, label matrix Y according to Eq. (2.75).

A =

⎡

⎢
⎢
⎢
⎣

xT
1

xT
2
...

xT
l

⎤

⎥
⎥
⎥
⎦

l∗n

, Y =

⎡

⎢
⎢
⎣

y1 0 · · · 0
0 y2 · · · 0
· · · · · · · · · · · ·
0 · · · 0 yl

⎤

⎥
⎥
⎦

l∗l

3: Construct and solve the optimization problem according to model Eq. (2.83).
min 1

2α
T
equYKθ (A,A) Yαequ + 1

2λ1β
T β − beT Yαequ,

s. t. λ1β − λ2e − αequ ≥ 0,
λ3e + αequ ≥ 0,
β ≥ 0,

b ∈ {−1, 1}

2.1 Multi-criteria Linear Programming for Supervised Learning 55

4: Obtain the decision function f (x) = sign (−YKθ (A, x)αequ + b).
5: End

where w ∈ Rn + 1, β, ξ ∈ R2l, and

Areg =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xT
1 , y1 + ε

...

xT
l , yl + ε

xT
1 , y1 − ε

...

xT
l , yl − ε

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2l×(n+1)

, Y =
[

Il×l O

O −Il×l

]

2l×2l

(2.97)

The constraint of Eq. (2.96) could be divided into two parts, the positive and the
negative. For positive points, the corresponding target value is yi + ε, for negative
points is yi − ε. Thus matrix Y is useless and variables β, ξ , also change into Boos,
βpos, βneg, ξpos, ξneg. Then, model Eq. (2.96) could be written as,

min 1
2w

T Hw + 1
2λ1β

T
posKβpos + 1

2λ1β
T
negKβneg − λ2e

T
(
βpos + βneg

) +
λ3e

T
(
ξpos + ξneg

)

s.t.Aw + be + η (y + εe) = βpos − ξpos (2.98)

Aw + be + η (y − εe) = − (
βneg − ξneg

)

βpos ≥ 0, βneg ≥ 0, ξpos ≥ 0, ξneg ≥ 0

where w ∈ Rn, βpos, βneg, ξpos, ξneg ∈ Rl, b ∈ R are variables.

A =

⎡

⎢
⎢
⎢
⎣

xT
1

xT
2
...

xT
l

⎤

⎥
⎥
⎥
⎦

l×n

, y =

⎡

⎢
⎢
⎢
⎣

y1

y2
...

yl

⎤

⎥
⎥
⎥
⎦

l×1

(2.99)

We know η = 0, w, b, βpos, βneg, ξpos, ξneg are all variables, so η could be
removed from the expression. Model Eq. (2.98) turns into:

min 1
2w

T Hw + 1
2λ1β

T
posKβpos + 1

2λ1β
T
negKβneg − λ2e

T
(
βpos + βneg

) +
λ3e

T
(
ξpos + ξneg

)

s.t.Aw + be + (y + εe) = βpos − ξpos (2.100)

Aw + be + (y − εe) = − (
βneg − ξneg

)
,

βpos ≥ 0, βneg ≥ 0, ξpos ≥ 0, ξneg ≥ 0

56 2 Multiple Criteria Optimization Classification

where w ∈ Rn, βpos, βneg, ξpos, ξneg ∈ Rl, b ∈ R are variables. And ε, λ1, λ2, λ3 ∈ R,
positive matrices H, K are given in advance. Similar to the procedure last part, we
set K, H as identity matrix, the Lagrangian function of model Eq. (2.100) is derived
as

L
(
w, βpos, βneg, ξpos, ξneg

) = − 1
2

(
αpos + αneg

)T
AAT

(
αpos + αneg

)− 1
2λ1β

T
posβpos

− 1
2λ1β

T
negβneg + (be + y)T

(
αpos + αneg

)+ εeT
(
αpos − αneg

)
(2.101)

where αpos, αneg are free variables, αβpos ≥ 0, αβneg ≥ 0, αξpos ≥ 0, αξneg ≥ 0 are
corresponding Lagrangian multipliers. Also, from KKT condition, we have

∇wL
(
w,βpos, βneg, ξpos, ξneg

) = w + AT
(
αpos + αneg

) = 0 (2.102)

∇βpos L
(
w,βpos, βneg, ξpos, ξneg

) = λ1βpos − λ2e − αpos − αβpos = 0
(2.103)

∇βnegL
(
w,βpos, βneg, ξpos, ξneg

) = λ1βneg − λ2e + αneg − αβneg = 0
(2.104)

∇ξpos L
(
w,βpos, βneg, ξpos, ξneg

) = λ3e + αpos − αξpos = 0 (2.105)

∇ξnegL
(
w,βpos, βneg, ξpos, ξneg

) = λ3e − αneg − αξneg = 0 (2.106)

Therefore, the dual problem for model Eq. (2.100) is obtained:

max−1

2

(
αpos + αneg

)T
AAT

(
αpos + αneg

)− 1

2
λ1

(
βT

posβpos + βT
negβneg

)
+

(be + y)T
(
αpos + αneg

)+ εeT
(
αpos − αneg

)

s.t.λ1βpos − λ2e − αpos ≥ 0,

λ1βneg − λ2e + αneg ≥ 0, (2.107)

λ3e + αpos ≥ 0,

λ3e − αneg ≥ 0,

βpos ≥ 0,

βneg ≥ 0,

b ∈ {−1, 1}

2.1 Multi-criteria Linear Programming for Supervised Learning 57

where αpos, αneg, βpos, βneg ∈ Rl, b ∈ R are variables. And ε ≥ 0, λ1 ≥ 0, λ2 ≥ 0,
λ3 ≥ 0 are given in advance.

When introducing kernel function Eq. (2.82), model Eq. (2.107) turns into

min 1
2

(
αpos + αneg

)T
K (A,A)

(
αpos + αneg

)+ 1
2λ1

(
βT

posβpos + βT
negβneg

)

−(be + y)T
(
αpos + αneg

)− εeT
(
αpos − αneg

)

s.t.λ1βpos − λ2e − αpos ≥ 0,

λ3e + αpos ≥ 0, (2.108)

λ3e − αneg ≥ 0,

βpos ≥ 0,

βneg ≥ 0,

b ∈ {−1, 1}

From the decision hyperplane w · x + b + y = 0, the regression function could
be obtained as

f (x) = − (w · x + b) = AT
(
αpos + αneg

) · x − b

With kernel function, regression function could be derived from

f (x) = Φ(A)T
(
αpos + αneg

)
Φ(x) − b = K (A, x)

(
αpos + αneg

)− b

Theorem 2.3 Given the solution of Dual Problem Eq. (2.108)
(
α∗

pos, α
∗
neg, β∗

pos,

β∗
neg

)
, the solution of its corresponding primal problem w.r.t. H space can be

obtained as below:

w∗ = −Φ
(
AT
) (

α∗
pos + α∗

neg

)
(2.109)

Proof From dual problem Eq. (2.108), we can get its Lagrangian function as:

L
(
αpos, αneg, βpos, βneg

) = 1

2

(
αpos + αneg

)T
K (A,A)

(
αpos + αneg

)

+1

2
λ1

(
βT

posβpos + βT
negβneg

)

−(be + y)T
(
αpos + αneg

)− εeT
(
αpos − αneg

)

−αT
1

(
λ1βpos − λ2e − αpos

)
(2.110)

58 2 Multiple Criteria Optimization Classification

−αT
2

(
λ1βneg − λ2e + αneg

)

−αT
3

(
λ3e + αpos

)

−αT
4

(
λ3e − αneg

)

−αT
5 βpos

−αT
6 βneg

where α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, α4 ≥ 0, α5 ≥ 0, α6 ≥ 0. from the KTT condition,
we have the equation below:

λ1βpos − λ2e − αpos ≥ 0 (2.111)

λ1βneg − λ2e + αneg ≥ 0 (2.112)

λ3e + αpos ≥ 0 (2.113)

λ3e − αneg ≥ 0 (2.114)

βpos ≥ 0 (2.115)

βneg ≥ 0 (2.116)

αT
1

(
λ1βpos − λ2e − αpos

) = 0 (2.117)

αT
2

(
λ1βneg − λ2e + αneg

) = 0 (2.118)

αT
3

(
λ3e + αpos

) = 0 (2.119)

αT
4

(
λ3e − αneg

) = 0 (2.120)

αT
5 βpos = 0 (2.121)

αT
6 βneg = 0 (2.122)

∇αpos L = K (A,A)
(
αpos + αneg

)− (be + y) − εe + α1 − α3 = 0 (2.123)

∇αnegL = K (A,A)
(
αpos + αneg

)− (be + y) + εe − α2 + α4 = 0 (2.124)

∇βpos L = λ1βpos − λ1α1 − α5 = 0 (2.125)

∇βnegL = λ1βneg − λ1α2 − α6 = 0 (2.126)

2.1 Multi-criteria Linear Programming for Supervised Learning 59

Sustaining Eq. (2.109) into Eqs. (2.123) and (2.124), we have

∇αpos L
(
αpos, αneg, βpos, βneg

)

= K (A,A)
(
αpos + αneg

)− (be + y) − εe + α1 − α3 (2.127)

= − (
w∗ · Φ(A) + be + (y + εe) − α1 + α3

) = 0

∇αpos L
(
αpos, αneg, βpos, βneg

)

= K (A,A)
(
αpos + αneg

)− (be + y) + εe − α1 + α3 (2.128)

= − (
w∗ · Φ(A) + be + (y − εe) + α1 − α3

) = 0

This satisfies the constraint of primal problem Eq. (2.100), so
(
w∗, α∗

1 , α
∗
2 , α

∗
3 ,

α∗
4

)
is the feasible solution of primal problem Eq. (2.100) w.r.t. H space. Further-

more, introducing Eqs. (2.117)–(2.122), the objective function of primal problem
Eq. (2.100) turns into:

1

2
wT w + 1

2
λ1

(
βT

posβpos + βT
negβneg

)
− λ2e

T
(
βpos + βneg

)+ λ3e
T
(
ξpos + ξneg

)

= −1

2

(
αpos + αneg

)T
K (A,A)

(
αpos + αneg

)− 1

2
λ1

(
βT

posβpos + βT
negβneg

)

+(be + y)T
(
αpos + αneg

)+ εeT
(
αpos − αneg

)

As a result, the object value of the primal problem at points
(
w∗, β∗

pos, β
∗
neg, ξ∗

pos,

ξ∗
neg

)
is the optimal value of its dual problem at points

(
α∗

pos, α
∗
neg, β∗

pos, β
∗
neq

)
.

Base on the Theorem 2.3, we introduced Algorithm 2.4 from kernel based
simple regular multiple constraint linear programming (KSRMCLP) for regression
problem.

Algorithm 2.4 KSRMCLP Algorithm for Regression
Input:

Training dataset S = {(x1, y1), (x2, y2), · · · , (xl, yl)}, xi ∈ Rn and yi ∈ R. Kernel
function Kθ (xi, xj) and its parameters θ , model parameters ε ≥ 0, λ1 ≥ 0, λ2 ≥ 0,
λ3 ≥ 0.

Output:
Regression estimated function f (x).
1: Begin
2: Construct data matrix A, target value vector y according to equation formula

60 2 Multiple Criteria Optimization Classification

below:

A =

⎡

⎢
⎢
⎢
⎣

xT
1

xT
2
...

xT
l

⎤

⎥
⎥
⎥
⎦

l∗n

, y =

⎡

⎢
⎢
⎢
⎣

y1

y2
...

yl

⎤

⎥
⎥
⎥
⎦

l×1
3: Construct and solve the optimization problem according to Eq. (2.108).

min 1
2

(
αpos + αneg

)T
Kθ (A,A)

(
αpos + αneg

)+ 1
2λ1

(
βT

posβpos + βT
negβneg

)

−(be + y)T (αpos + αneg) − εeT (αpos − αneg),
s. t. λ1βpos − λ2e − αpos ≥ 0,
λ1βneg − λ2e + αneg ≥ 0,
λ3e + αpos ≥ 0,
λ3e − αneg ≥ 0,
βpos ≥ 0,
βneg ≥ 0,
b ∈ {−1, 1}
4: Obtain the decision function f (x) = Kθ (A, x)(αpos + αneg) − b.
5: End

2.2 Multiple Criteria Linear Programming with Expert
and Rule Based Knowledge

2.2.1 A Group of Knowledge-Incorporated Multiple Criteria
Linear Programming Classifier

Prior knowledge in some classifiers usually consists of a set of rules, such as, if A
then x ∈ G (or x ∈ B), where condition A is relevant to the attributes of the input data.
One example of such form of knowledge can be seen in the breast cancer recurrence
or nonrecurrence prediction. Usually, doctors can judge if the cancer recur or not
in terms of some measured attributes of the patients. The prior knowledge used by
doctors in the breast cancer dataset includes two rules which depend on two features
of the total 32 attributes: tumor size (T) and lymph node status (L). The rules are
[33]:

If L ≥ 5 and T ≥ 4 Then RECUR and If L = 0 and T ≤ 1.9 Then NONRECUR

The conditions L ≥ 5 and T ≥ 4 (L = 0 and T ≤ 1.9) in the above rules can be
written into such inequality asCx≤ c, whereC is a matrix driven from the condition,
x represents each individual sample, c is a vector. For example, if each sample x
is expressed by a vector [x1, . . . , xL, . . . , xT , . . . , xr]T , for the rule: if L ≥ 5 and
T ≥ 4 then RECUR, it also means: if xL ≥ 5 and xT ≥ 4, then x ∈ RECUR, where
xL and xT are the corresponding values of attributes L and T of a certain sample
data, r is the number of attributes. Then its corresponding inequality Cx ≤ c can be

2.2 Multiple Criteria Linear Programming with Expert and Rule Based. . . 61

written as:

[
0 . . . −1 . . . 0 . . . 0
0 . . . 0 . . . −1 . . . 0

]

x ≤
[−5

− 4

]

.

where x is the vector with r attributes include two features relevant to prior
knowledge.

Similarly, the condition L = 0 and T ≤ 1.9 can also be reformulated to be
inequalities. With regard to the condition L = 0, in order to express it into the
formulation of Cx ≤ c, we must replace it with the condition L ≥ 0 and L ≤ 0. Then
the condition L = 0 and T ≤ 1.9 can be represented by two inequalities: C1x ≤ c1

and C2x ≤ c2, as follows:

[
0 . . . −1 . . . 0 . . . 0
0 . . . 0 . . . 1 . . . 0

]

x ≤
[

0
1.9

]

and

[
0 . . . 1 . . . 0 . . . 0
0 . . . 0 . . . 1 . . . 0

]

x ≤
[

0
1.9

]

We notice the fact that the set {x|Cx ≤ c} can be regarded as polyhedral convex
set. In Fig. 2.7, the triangle and rectangle are such sets.

In two-class classification problem, the result RECUR or NONRECUR is equal
to the expression x ∈ B or x ∈ G. So according to the above rules, we have:

Cx ≤ c ⇒ x ∈ G (or x ∈ B) (2.129)

In MCLP classifier, if the classes are linearly separable, then x ∈ G is equal to
xTw ≥ b, similarly, x ∈ B is equal to xTw ≤ b. That is, the following implication
must hold:

Cx ≤ c ⇒ xT w ≥ b
(
or xT w ≤ b

)
(2.130)

Fig. 2.7 The classification result by MCLP (line a) and knowledge-incorporated MCLP (line b)

62 2 Multiple Criteria Optimization Classification

For a given (w, b), the implication Cx ≤ c ⇒ xTw ≥ b holds, this also means that
Cx ≤ c, xTw < b has no solution x. According to nonhomogeneous Farkas theorem,
we can conclude that CTu + w = 0, cTu + b ≤ 0, u ≥ 0, has a solution (u, w)
[33].

The above statement is able to be added to constraints of an optimization
problem. In this way, the prior knowledge in the form of some equalities and
inequalities in constraints is embedded to the original multiple linear programming
(MCLP) model. The knowledge-incorporated MCLP model is described in the
following.

Knowledge-incorporated MCLP model Now, we are to explain the knowledge-
incorporated MCLP model. This model is to deal with linear knowledge and linear
separable data. The combination of the two kinds of input can help to improve the
performances of both methods.

Suppose there are a series of knowledge sets as follows:

If Cix ≤ ci, i = 1, . . . , k Then x ∈ G

If Djx ≤ dj , j = 1, . . . , l Then x ∈ B

This knowledge also means the convex sets {x|Cix ≤ ci}, i = 1, . . . , k lie on the
G side of the bounding plane, the convex sets {x|Djx ≤ dj}, j = 1, . . . , l on the B
side.

Based on the above theory in the last section, we converted the knowledge to the
following constraints:

There exist ui, i = 1, . . . , k, vj, j = 1, . . . , l, such that:

CiT ui + w = 0, ciT ui + b ≤ 0, ui ≥ 0, i = 1, . . . , k
DjT vj − w = 0, djT vj − b ≤ 0, vj ≥ 0, j = 1, . . . , l

(2.131)

However, there is no guarantee that such bounding planes precisely separate all
the points. Therefore, some error variables need to be added to the above formulas.
The constraints are further revised to be:

There exist ui, ri, ρi, i = 1, . . . , k and vj, sj, σ j, j = 1, . . . , l, such that:

−ri ≤ CiT ui + w ≤ ri, ciT ui + b ≤ ρi, ui ≥ 0, i = 1, . . . , k
− sj ≤ DjT vj − w ≤ sj , djT vj − b ≤ σj , vj ≥ 0, j = 1, . . . , l

(2.132)

2.2 Multiple Criteria Linear Programming with Expert and Rule Based. . . 63

After that, we embed the above constraints to the MCLP classifier, and obtained
the knowledge-incorporatedMCLP classifier:

Minimize d+
α + d−

α + d+
β + d−

β + C
(∑ (

ri + ρi
)+∑(

sj + σ j
))

Subject to :
α∗ +

n∑

i=1
αi = d−

α − d+
α

β∗ −
n∑

i=1
βi = d−

β − d+
β

x11w1 + · · · + x1rwr = b + α1 − β1, for A1 ∈ B,

.

.

.

xn1w1 + · · · + xnrwr = b − αn + βn, for An ∈ G,

− r i ≤ Ci’ui + w ≤ r i, i = 1, . . . , k

ci’ui + b ≤ ρi

− sj ≤ Dj’vj − w ≤ sj, j = 1, . . . , l

dj’vj − b ≤ σ j

α1, . . . , αn ≥ 0, β1, . . . , βn ≥ 0,
(
ui, vj, r i, ρi, sj, σ j

) ≥ 0
(2.133)

In this model, all the inequality constraints are derived from the prior knowledge.
The last objective C(

∑
(ri + ρi) + ∑

(sj + σ j)) is about the slack error variables
added to the original knowledge equality constraints. The last objective attempts to
drive the error variables to zero. We want to get the best bounding plane (w, b) by
solving this model to separate the two classes.

We notice the fact that if we set the value of parameter C to be zero, this means
to take no account of knowledge. Then this model will be equal to the original
MCLP model. Theoretically, the larger the value of C, the greater impact on the
classification result of the knowledge sets.

Knowledge-incorporated KMCLP Model If the data set is nonlinear separable,
the above model will be inapplicable. We need to figure out how to embed prior
knowledge into the KMCLP model, which can solve nonlinear separable problem.

As is shown in the above part, in generating KMCLP model, we suppose:

w =
n∑

i=1

λiyiXi (2.134)

64 2 Multiple Criteria Optimization Classification

If expressed by matrix, the above formulation will be:

w = XT Yλ (2.135)

where Y is n*n diagonal matrix, the value of each diagonal element depends on the
class label of the corresponding sample data, which can be +1 or −1. X is the n*r
input matrix with n samples, r attributes. λ is a n-dimensional vector λ = (λ1, λ2,
. . . , λn)T.

Y =

⎡

⎢
⎢
⎢
⎣

y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...

0 0 . . . yn

⎤

⎥
⎥
⎥
⎦

, X =

⎡

⎢
⎢
⎢
⎣

x11 x12 . . . x1r

x21 x22 . . . x2r
...

...
. . .

...

xn1 xn2 . . . xnr

⎤

⎥
⎥
⎥
⎦

Therefore, w in the original MCLP model is replaced by XTYλ, thus forming the
KMCLP model. And in this new model, the value of each λi is to be worked out by
the optimization model.

In order to incorporate prior knowledge into KMCLP model, the inequalities
about the knowledge must be transformed to be the form with λi instead of w.
Enlightened by the KMCLP model, we also introduce kernel to the expressions of
knowledge. Firstly, the equalities in (2.131) are multiplied by input matrix X [34].
Then replacing w with XTYλ, (2.131) will be:

XCiT ui + XXT Yλ = 0, ciT ui + b ≤ 0, ui ≥ 0, i = 1, . . . , k
XDjT vj − XXT Yλ = 0, djT vj − b ≤ 0, vj ≥ 0, j = 1, . . . , l

(2.136)

Kernel function is introduced here to replace XCiT and XXT . Also slack errors
are added to the expressions, then such kind of constraints are formulated:

−r i ≤ K
(
X,CiT

)
ui + K

(
X,XT

)
Yλ ≤ r i, i = 1, . . . , k

ciTui + b ≤ ρi

− sj ≤ K
(
X,DjT

)
vj − K

(
X,XT

)
Yλ ≤ sj, j = 1, . . . , l

djT vj − b ≤ σ j

(2.137)

These constraints can be easily embedded to KMCLP model as the constraints
acquired from prior knowledge.

2.2 Multiple Criteria Linear Programming with Expert and Rule Based. . . 65

Knowledge-incorporated KMCLP classifier:

Min
(
d+
α + d−

α + d+
β + d−

β

)
+ C

(
k∑

i=1

(
ri + ρ i

)+
l∑

j=1

(
s j + σ j

)
)

s.t. λ1y1K (X1,X1) + · · · + λnynK (Xn,X1) = b + α1 − β1, , for X1 ∈ B,

.

.

.

λ1y1K (X1,Xn) + · · · + λnynK (Xn,Xn) = b − αn + βn, for Xn ∈ G,

α∗ +
n∑

i=1
αi = d−

α − d+
α ,

β∗ −
n∑

i=1
βi = d−

β − d+
β ,

− r i ≤ K
(
X,CiT

)
ui + K

(
X,XT

)
Yλ ≤ r i, i = 1, . . . , k

ciTui + b ≤ ρ i

− s j ≤ K
(
X,DjT

)
vj − K

(
X,XT

)
Yλ ≤ s j, j = 1, . . . , l

djT vj − b ≤ σ j

α1, . . . , αn ≥ 0, β1, . . . , βn ≥ 0, λ1, . . . , λn ≥ 0,
(
ui, vj, r i, ρ i, s j, σ j

) ≥ 0
d−
α , d+

α , d−
β , d+

β ≥ 0

(2.138)

In this model, all the inequality constraints are derived from prior knowledge. ui,
vi ∈ Rp, where p is the number of conditions in one knowledge. For example, in the
knowledge if xL ≥ 5 and xT ≥ 4, then x ∈ RECUR, the value of p is 2. ri, ρi, sj and
σj are all real numbers. And the last objective Min

∑
(ri + ρi) + ∑

(sj + σ j) is
about the slack error variables added to the original knowledge equality constraints.
As we talked in last section, the larger the value of C, the greater impact on the
classification result of the knowledge sets.

In this model, several parameters need to be set before optimization process.
Apart from C we talked about above, the others are parameter of kernel function q
(if we choose RBF kernel) and the ideal compromise solution α* and β*. We want to
get the best bounding plane (λ, b) by solving this model to separate the two classes.
And the discrimination function of the two classes is:

λ1y1K (X1, z) + · · · + λnynK (Xn, z) ≤ b, then z ∈ B

λ1y1K (X1, z) + · · · + λnynK (Xn, z) ≥ b, then z ∈ G
(2.139)

where z is the input data which is the evaluated target with r attributes. Xi represents
each training sample. yi is the class label of ith sample.

In the above models, the prior knowledge we deal with is linear. That means the
conditions in the above rules can be written into such inequality as Cx ≤ c, where
C is a matrix driven from the condition, x represents each individual sample, c is a
vector. The set {x| Cx ≤ c} can be viewed as polyhedral convex set, which is a linear

66 2 Multiple Criteria Optimization Classification

geometry in input space. But, if the shape of the region which consists of knowledge
is nonlinear, for example, {x| ||x||2 ≤ c}, how to deal with such kind of knowledge?

Suppose the region is nonlinear convex set, we describe the region by g(x) ≤ 0.
If the data is in this region, it must belong to class B. Then, such kind of nonlinear
knowledge may take the form of:

g(x) ≤ 0 ⇒ x ∈ B

h(x) ≤ 0 ⇒ x ∈ G
(2.140)

Here g(x): Rr → Rp (x ∈ Γ) and h(x): Rr → Rq (x ∈ �) are functions defined on
a subset Γ and � of Rr which determine the regions in the input space. All the data
satisfied g(x) ≤ 0 must belong to the class B and h(x) ≤ 0 to the class G.

With KMCLP classifier, this knowledge equals to:

g(x) ≤ 0 ⇒ λ1y1K (X1, x) + · · · + λnynK (Xn, x) ≤ b, (x ∈ Γ)

h(x) ≤ 0 ⇒ λ1y1K (X1, x) + · · · + λnynK (Xn, x) ≥ b, (x ∈ Δ)

(2.141)

This implication can be written in the following equivalent logical form [35]:

g(x) ≤ 0 , λ1y1K (X1, x) + · · · + λnynK (Xn, x) − b > 0, has no solution x ∈ Γ.

h(x) ≤ 0 , λ1y1K (X1, x) + · · · + λnynK (Xn, x) − b < 0, has no solution x ∈ Δ.

(2.142)

The above expressions hold, then there exist v ∈ Rp, r ∈ Rq, v,r ≥ 0 such that:

−λ1y1K (X1, x) − · · · − λnynK (Xn, x) + b + vT g(x) ≥ 0, (x ∈ Γ)

λ1y1K (X1, x) + · · · + λnynK (Xn, x) − b + rT h(x) ≥ 0, (x ∈ Δ)

(2.143)

Add some slack variables on the above two inequalities, then they are converted
to:

−λ1y1K (X1, x) − · · · − λnynK (Xn, x) + b + vT g(x) + s ≥ 0, (x ∈ Γ)

λ1y1K (X1, x) + · · · + λnynK (Xn, x) − b + rT h(x) + t ≥ 0, (x ∈ Δ)

(2.144)

The above statement is able to be added to constraints of an optimization
problem.

2.2 Multiple Criteria Linear Programming with Expert and Rule Based. . . 67

Suppose there are a series of knowledge sets as follows:

If gi(x) ≤ 0,Then x ∈ B
(
gi(x) : Rr → Rp

i (x ∈ Γi) , i = 1, . . . , k
)

If hj (x) ≤ 0,Then x ∈ G
(
hj (x) : Rr → Rq

j

(
x ∈ Δj

)
, j = 1, . . . , l

)

Based on the above theory in last section, we converted the knowledge to the
following constraints:

There exist vi ∈ Rp
i, i = 1, . . . , k, rj ∈ Rq

j, j = 1, . . . , l, vi,rj ≥ 0 such that:

−λ1y1K (X1, x) − · · · − λnynK (Xn, x) + b + vi
T gi(x) + si ≥ 0, (x ∈ Γ)

λ1y1K (X1, x) + · · · + λnynK (Xn, x) − b + rj
T hj (x) + tj ≥ 0, (x ∈ Δ)

(2.145)

These constraints can be easily imposed to KMCLP model as the constraints
acquired from prior knowledge.

Nonlinear knowledge in KMCLP classifier [36]:

Min
(
d+
α + d−

α + d+
β + d−

β

)
+ C

(
k∑

i=1
si +

l∑

j=1
tj

)

s.t. λ1y1K (X1, X1) + · · · + λnynK (Xn,X1) = b + α1 − β1, , for X1 ∈ B,

.

.

.

λ1y1K (X1, Xn) + · · · + λnynK (Xn,Xn) = b − αn + βn, for Xn ∈ G,

α∗ +
n∑

i=1
αi = d−

α − d+
α ,

β∗ −
n∑

i=1
βi = d−

β − d+
β ,

− λ1y1K (X1, x) − · · · − λnynK (Xn, x) + b + vi
T gi(x) + si ≥ 0, i = 1, . . . , k

si ≥ 0, i = 1, . . . , k
λ1y1K (X1, x) + · · · + λnynK (Xn, x) − b + rj

T hj (x) + tj ≥ 0, j = 1, . . . , l
tj ≥ 0, j = 1, . . . , l
α1, . . . , αn ≥ 0, β1, . . . , βn ≥ 0, λ1, . . . , λn ≥ 0,
(
vi , rj

) ≥ 0
d−
α , d+

α , d−
β , d+

β ≥ 0

(2.146)

In this model, all the inequality constraints are derived from the prior knowledge.

The last objective C

(
k∑

i=1
si +

l∑

j=1
tj

)

is about the slack error. Theoretically, the

larger the value of C, the greater impact on the classification result of the knowledge
sets.

68 2 Multiple Criteria Optimization Classification

The parameters need to be set before optimization process are C, q (if we choose
RBF kernel), α* and β*. The best bounding plane of this model decided by (λ, b) of
the two classes is the same with formula (2.139).

2.2.2 Decision Rule Extraction for Regularized Multiple
Criteria Linear Programming Model

In this section, we present a clustering-based rule extraction method to generate
decision rules from the black box RCMLP model. Our method can improve the
interpretability of the RMCLP model by using explicit and explainable decision
rules. To achieve this goal, a clustering algorithm will first be used to generate
prototypes (which are the clustering centers) for each group of examples identified
by the RMCLP model. Then, hyper cubes (whose edges are parallel to the axes)
will be extracted around each prototype. This procedure will be repeated until all
the training examples are covered by a hyper cube. Finally, the hyper cubes will be
translated to a set of if-then decision rules. Experiments on both synthetic and real-
world data sets have demonstrate the effectiveness of our rule extraction method.

For ease of description, we introduce some notations first. Assume a r-
dimensional space, the coordinate of the clustering center p is p = (p1, . . . , pr),
and the classification hyper plane is

∑r
i=1aixi = b (where xi is the direction of the

hyper plane). For each class, we prefer hyper cubes which cover as many examples
as possible. Intuitively, if we pick a point u on the classification boundary and then
draw cubes based on both clustering center p and u, then the generated hyper cube
will cover the largest area with respect to the current prototype p. The distance from
p to the hyper plane can be calculated by Eq. (2.147) as follows:

d = Distance (f, pi) =
∑r

i=1 pixi − b
√

x2
i

(2.147)

After computing d, Step 2.3 draws hyper cubes H = DrawHC(d, Pi) by using
the prototype point Pi as the central point, and each edge has a length of

√
2d

meanwhile parallel with the axis. By so doing, we can get if-then rules which are
easily understood. For example, for a specific example a1 ∈ G1, a decision rule can
be described in the following form:

if (l1 ≤ a11 ≤ u1) and (l2 ≤ a12 ≤ u2) and (lr ≤ a1r ≤ ur)

then a1 belongs to class 1
(2.148)

2.2 Multiple Criteria Linear Programming with Expert and Rule Based. . . 69

Fig. 2.8 An illustration of Algorithm 2.5 which generates hyper cubes from RMCLP models.
Based on the RMCLP model’s decision boundary (the red line), Algorithm 2.5 first calculates
several clustering centers for each class (e.g., the red circle in Group 1), then it calculates the
distance d from the classification boundary to the clustering center (the blue line). After that, it
generates a series of hyper cubes. Each hyper cube’s edge is parallel to the axes and the length
is

√
2d. Finally, the hyper cubes can be easily translated into rules that are explainable and

understandable

Figure 2.8 illustrates an example with two dimensions. Examples in G1 (ai ∈ G1)
are covered by hyper cubes with a central point as its clustering center and a vertex
on the hyper plane

∑r
i=1aixi = b.

The main computational cost of Algorithm 2.5 is from Steps 2.1~2.3, where a
K-Means clustering model and two distance functions are calculated. Assume there
are l iterations of K-Means. In each iteration, there are k clusters. Therefore, the
total time complexity of K-Means will be O(lknr), where n is the number of training
examples, r is the number of dimensions.

On the other hand, calculating distance d for each clustering center by (2.147)
will take a linear time complexity, so the computational cost of Step 2.2will be O(k)
for k clustering centers. Finally, the time cost of extracting hyper cubes in Step 2.3
will be O(kr) for k clustering centers in r dimensional space. To sum up, the total
computational complexity of Algorithm 2.5 can be denoted by (2.149),

O(lknr) + O(k) + O(kr) = O(lknr) (2.149)

The above analysis indicates that the hyper cube extracting method in Steps 2.2
and 2.3 is dominated by the K-Means clustering model in Step 2.1. It is in linear
time complexity with respect to training example size.

70 2 Multiple Criteria Optimization Classification

Algorithm 2.5 Extract Rules from MCLP Models

Input: The data set A = {a1, a2, . . . , an}, RMCLP model f
Output: Rule Set {w}
Begin
Step 1. Classify all the examples in A using model f ;
Step 2. Define Covered set C = �, Uncovered set U = A;
Step 3. While (U is not empty) do
Step 3.1 For each group Gi,

Calculate the clustering center Pi = K-means(Gi ∩ U);
End for

Step 3.2 Calculate distances between each Pi and boundary d = Distance(f, Pi);
Step 3.3 Draw a new hypercubeH = DrawHC(d, Pi);
Step 3.4 For all the examplesai ∈ U,

If ai is covered by H
U = U\ai, C = C ∪ ai;

End If
End For

End While
Step 4 Translate each hypercube H into rule;
Step 5 Return the rule set {w}
End

To demonstrate the effectiveness of the proposed rules extraction method, we
will test our method on both synthetic and real-world data sets. The whole testing
system is implemented in a Java environment by integrating WEKA data mining
tools [37]. The clustering method used in our experiments is the simple K-Means
package in WEKA.

As shown in Fig. 2.9a, we generate a 2-dimensional 2-class data set containing
60 examples, with 30 examples for each class. In each class, we use 50% of the
examples to train a RMCLP model. That is, 30 training examples in total are
used to train the RMCLP model. All examples comply with Gaussian distribution
x~N(μ,�), where μ is mean vector and � is covariate matrix. The first group is

generated by a mean vector μ1 = [1,1] with a covariance matrix Σ1 =
[
0.1 0
0 0.1

]

.

The second group is generated by a mean vectorμ2 = [2,2] with a covariancematrix
�2 = �1.

Here we only discuss the two-group classification problem. It is not difficult
to extend to multiple-group classification applications. It is expected to extract
knowledge from the RMCLP model in the form of:

if (a ≤ x1 ≤ b, c ≤ x2 ≤ d) then Def inition 1 (2.150)

2.2 Multiple Criteria Linear Programming with Expert and Rule Based. . . 71

Fig. 2.9 (a) The synthetic dataset; (b) Experimental results. The straight line is the RMCLP
model’s classification boundary, and the squares are hyper cubes generated by using Algorithm
2.5. All the examples are covered by the squares whose edges are parallel to the axes

The result is shown in Fig. 2.9b; we can observe that for the total of 60 examples,
three examples in group 1, and one example in group 2 are misclassified by the
RMCLP model. That is to say, the accuracy of RMCLP on this synthetic dataset
is 56/60 = 92.3%. By using our rule extraction algorithm, we can generate nine
squares, four squares for group 1, and five squares for group 2. All the squares can
be translated to explainable rules in the form of (6) as follows:

K1: if 0.6 ≤ x1 ≤ 0.8 and 2 ≤ x2 ≤ 2.8, then x ∈ G1;
K2: if 1.1 ≤ x1 ≤ 1.3 and 1.8 ≤ x2 ≤ 2.1, then x ∈ G1;
K3: if 0.4 ≤ x1 ≤ 1.5 and −1 ≤ x2 ≤ 1.6, then x ∈ G1;
K4: if 0.9 ≤ x1 ≤ 2.2 and −0.8 ≤ x2 ≤ 0, then x ∈ G1;
K5: if 1.2 ≤ x1 ≤ 1.6 and 2.2 ≤ x2 ≤ 3.2, then x ∈ G2;
K6: if 1.4 ≤ x1 ≤ 1.6 and 1.8 ≤ x2 ≤ 2.0, then x ∈ G2;
K7: if 1.7 ≤ x1 ≤ 2.8 and 1.0 ≤ x2 ≤ 4.0, then x ∈ G2;
K8: if 1.9 ≤ x1 ≤ 2.0 and 0.7 ≤ x2 ≤ 0.8, then x ∈ G2;
K9: if 2.1 ≤ x1 ≤ 2.4 and 0.1 ≤ x2 ≤ 0.5, then x ∈ G2;

where ki (i = 1, . . . , 9) denotes the ith rule. From the results on this synthetic data
set, we can observe that by using the proposed rule extraction method, we can not
only obtain prediction results from RMCLP, but also comprehensible rule.

As one of the basic services offered by the Internet, E-Mail usage is becoming
increasingly widely adopted. Along with constant global network expansion and
network technology improvement, people’s expectations of an E-Mail service are
increasingly demanding. E-Mail is no longer merely a communication tool for
people to share their ideas and information; its wide acceptance and technological
advancement has given it the characteristics of a business service [38], and it is
being commercialized as a technological product.

At the same time, many business and specialized personal users of E-Mail want
an E-Mail account that is safe, reliable, and equipped with a first-class customer

72 2 Multiple Criteria Optimization Classification

support service. Therefore, many websites have developed their own user-pays E-
mail service to satisfy this market demand. According to statistics, the Chinese
network has advanced so much in the past few years that, by 2005, the total
market size of Chinese VIP E-mail services reached 6.4 hundred million RMB. This
enormous market demand and market prospect also means increasing competition
between the suppliers. How to analyze the pattern of lost customer accounts and
decrease the customer loss rate have become a focal point of competition in today’s
market [39, 40].

Our partner company’s VIP E-Mail data are mainly stored in two kinds of
repository systems; one is customer databases, the other is log files. They are
mainly composed of automated machine recorded customer activity journals and
large amount of manually recorded tables; these data are distributed among servers
located in different departments of our partnering companies, coving more than 30
kinds of transaction data charts and journal documents, with over 600 attributes.

If we were to directly analysis these data, it would lead to a “course of
dimensionality”, that is to say, a drastic rise in computational complexity and
classification error with data of large dimensions. Hence, the dimensionality of the
feature space must be reduced before classification is undertaken. According to the
accumulated experience functions, we eventually selected 230 attributes from the
original 600 attributes.

Figure 2.10 displays the procedure of feature selection of the VIP E-Mail dataset.
We selected a part of the data charts and journal documents from the VIP E-Mail
System. The left upper part of Fig. 2.10 displays the three logging journal documents
and two email transaction journal documents; when the user logs into the pop3
server, the machine will record the user’s login into the log file pop3login; similarly
when the user logs into the smtp server, the machine will record this into the log
file smtplogin; when the user logs into the E-Mail system through http protocol, the
machine will record it into the log file weblogin; when the user successfully sends
an E-Mail by smtp protocol, the system will record it into the log file smtprcptlog;
when receiving a letter, it will be recorded into the log file mx_rcptlog.

We extracted 37 attributes from these five log files, that is, 184 attributes in total,
to describe user logins and transactions. From the databases, shown in the left lower
section of Fig. 2.8, we extracted six features about “customer complaint about the
VIP E-Mail Service”, 24 features about “customer payment” and 16 features about
“customer’s personal information” (for example, age, gender, occupation, income
etc.) to form the operational table. Thus, 185 features from log files and 65 features
from databases eventually formed the Large Table, and the 230 attributes depicted
the features of the customers. The accumulated experience functions used in the
feature selection are confidential, and further discussion of them exceeds the range
of this section.

Considering the integrality of the customer records, we eventually extracted
two groups from a huge number of data: the current and the lost. Ten thousand
nine hundred and ninety-six customers, 5498 for each class, were chosen from the
dataset. Combining the 10,996 SSN with the 230 features, we eventually acquired
the Large Table with 5498 current records and 5498 lost records, which became the
dataset for data mining.

2.2 Multiple Criteria Linear Programming with Expert and Rule Based. . . 73

pop3login

smtplogin

F
eatu

re E
xtractio

n

V
IP

E
-M

ail S
Y

S
T

E
M

smtplogin_table

Pop3login_table

weblogin weblogin_table

smtprcptlog smtprcptlog_table

mx_rcptlog mx_rcptlog_table The Large

Table

Jo
in

t

DB

Feature

Extraction
Operational Table

Fig. 2.10 The roadmap of the VIP Email Dataset

Table 2.6 Ten Folder Cross Validation on VIP Email Dataset

Cross
validation

Training set (500 Bad data + 500
Good data)

Testing set (4998 Bad data + 4998
Good data)

LOST
Accuracy
(%) CURRENT

Accuracy
(%) LOST

Accuracy
(%) CURRENT

Accuracy
(%)

DataSet 1 444 88.80 455 91.00 4048 80.99 4311 86.25
DataSet 2 447 89.40 459 91.80 4081 81.65 4355 87.13
DataSet 3 449 89.80 465 92.00 4079 81.61 4362 87.27
DataSet 4 440 88.00 467 92.40 4006 80.15 4286 85.75
DataSet 5 435 87.00 460 92.00 4010 80.23 4420 88.44
DataSet 6 436 87.20 460 92.00 3995 79.93 4340 86.83
DataSet 7 445 89.00 464 92.80 4008 80.19 4403 88.10
DataSet 8 443 88.60 455 91.00 4052 81.07 4292 85.87
DataSet 9 429 85.80 457 91.40 3955 79.13 4436 88.76
DataSet10 440 88.00 456 91.20 4087 81.77 4355 87.13

Table 2.6 lists the ten-folder cross validation results of the RMCLP model’s
performance on the VIP Email Dataset. The columns “LOST” and “CURRENT”
refer to the number of records that were correctly classified as “lost” and “current”
respectively. The column “Accuracy” was calculated using correctly classified
records divided by the total records in that class. From Table 2.6, we can observe
that the average prediction accuracy of the RMLCP on this data set is 80.67% on
the first class and 87.15% on the second class. That is, on the whole 10,996 test
examples, the average accuracy of RMCLP is 82.91%.

74 2 Multiple Criteria Optimization Classification

Table 2.7 Comparisons between RMCLP’s Rule and Decision Tree’s Rule

RMCLP’s Rule Decision Tree’s Rule

RULE 1:
if 0 <= The number of emails <= 3
and 0 <= the number of POP3 login on
Tuesday <= 6
and 0 <= the number of HTTP login <= 1
and 0 <= Free Email Service <= 1
and 0 <= The percentage of Charge Type
7 <= 0.3
and 0 <= The total Charge Fee <= 45 . . .

then class LOST [0.816]
RULE 6:
if 0 <= The number of HTTP Login <= 5
and 0 <= Free Email Service Status <= 1
and 0.2 <= The percentage of Charge Type
11 <= 0.5
and 0 <= The total Charge Fee <= 4
and 0 <= The number of emails <= 3
and 0 <= CONTACT_NUMBER <= 1
and 0 <= IDNUM <= 1 . . .

then class CURRENT [0.802]

RULE 1′:
if The number of emails <= 1
and the number of POP3 login on
Tuesday <= 3
and number of HTTP login <= 1
and Free Email Service = 1
and The percentage of Charge Type
7 <= 0.25
and The total Charge Fee <= 50 . . .

then class LOST [0.746]
RULE 6′:
if The number of HTTP Login <= 3
and Free Email Service Status = 0
and The percentage of Charge Type
11 > 0.294
and The total Charge Fee <= 5
and The number of Emails <= 1
and CONTACT_NUMBER = 1
and IDNUM = 0 . . .

then class CURRENT [0.739]
Average Accuracy: 80.90% Average Accuracy: 74.25%

As discussed above, a decision tree is widely used to extract rules from training
examples. In the following experiments, we will compare our method with a
decision tree (which is implemented by the WEKA J48 package).

Table 2.7 shows the comparison results between our method and the decision
tree. By using our rule extraction method, we obtain more than 20 hyper cubes.
Due to space limitation, we only list the two most representative rules (i.e., Rule 1
for class “LOST” and Rule 6 for class “CURRENT”) in the left side of Table 2.7.
Then we find the corresponding rules from the decision tree (i.e., Rule 1′ for class
“LOST” and Rule 6′ for class “CURRENT”), and list them in the right side of Table
2.7.

From these results, we can observe that our rule extraction method acquires much
more accurate rules than the decision tree method. For example, when comparing
Rule 1 with Rule 1′, we can safely say that Rule 1 is supported by 81.6% examples
in the “LOST” class; by contrast, rules from decision tree only get 74.6% supportive
examples. Similarly, when comparing Rule 6 with Rule 6′, our method also achieves
better support than the decision tree.

At the bottom of Table 2.7, we list the average accuracy of the two methods.
It is obvious that the average accuracy of rules extracted from RMCLP is 80.90%.
This is better than the decision tree’s accuracy of 74.25%. Moreover, compared to
the RMCLP’s performance in Table 2.6 (which equals 82.91%), we can say that
the average accuracy of the extracted rules (i.e., 80.90%) suffers only a little loss
in performance. Therefore, our rule extraction method from the RMCLP model can
effectively extract comprehensible rules from the RMCLP model.

2.3 Multiple-Criteria Decision Making Based Data Analysis 75

2.3 Multiple-Criteria Decision Making Based Data Analysis

2.3.1 A Multicriteria Decision Making Approach for
Estimating the Number of Clusters

Estimating the number of clusters for a given data set is closely related to the
validity measures and the data set structures. Many validity measures have been
proposed and can be classified into three categories: external, internal, and relative
[41]. External measures use predefined class labels to examine the clustering results.
Because external validation uses the true class labels in the comparison, it is an
objective indicator of the true error rate of a clustering algorithm. Internal measures
evaluate clustering algorithms by measuring intra- and inter-cluster similarity.
An algorithm is regarded as good if the resulting clusters have high intra-class
similarities and low inter-class similarities. Relative measures try to find the best
clustering structure generated by a clustering algorithm using different parameter
values. Extensive reviews of cluster validation techniques can be found in [41] and
[42, 43].

Although external measures perform well in predicting the clustering error in
previous studies, they require a priori structure of a data set and can only be applied
to data sets with class labels. Since this study concentrates on data sets without class
labels, it utilizes relative validity measures. The proposed approach can be applied
to a wide variety of clustering algorithms. For simplicity, this study chooses the
well-known k-means clustering algorithm. Figure 2.11 describes the MCDM-based
approach for determining the number of clusters in a data set. For a given data set,
different numbers of clusters are considered as alternatives and the performances
of k-means clustering algorithm on the relative measures with different numbers of
clusters represent criteria byMCDMmethods. The output is a ranking of numbers of
clusters, which evaluates the appropriateness of different numbers of clusters for a
given data set based on their overall performances for multiple criteria (i.e., selected
relative measures).

2.3.1.1 MCDM Methods

This study chooses three MCDM methods for estimating the number of clusters
for a data set. This section introduces the selected MCDM methods (i.e., WSM,
PROMETHEE, and TOPSIS) and explains how they are used to estimate the optimal
number of clusters for a given data set.

MCDM Method 1: Weighted Sum Method (WSM)

The weighted sum method (WSM) was introduced by Zadeh [44]. It is the most
straightforward and widely-used MCDM method for evaluating alternatives. When

76 2 Multiple Criteria Optimization Classification

Ranking of different
numbers of clusters

MCDM MethodsClustering
Algorithm

Relative
measures

Dataset

Fig. 2.11 AMCDM-based approach for determining the number of clusters in a dataset

an MCDM problem involves both benefit and cost criteria, two approaches can be
used to deal with conflicting criteria. One is the benefit to cost ratio and the other
is the benefit minus cost [45]. For the estimation of optimal number of clusters for
a data set, the relative indices Dunn, silhouette, and PBM are benefit criteria and
have to be maximized, while Hubert, normalized Hubert, Davies-Bouldin index,
SD, S_Dbw, CS, and C-index are cost criteria and have to be minimized. This study
chooses the benefit minus cost approach and applies the following formulations to
rank different numbers of clusters.

Suppose there are m alternatives, k benefit criteria, and n cost criteria. The total
benefit of alternative A

benef it
i is defined as follows:

A
benef it
i =

k∑

j=1

wjaij , f or i = 1, 2, 3, . . . ,m

where aij represents the performance measure of the jth criterion for alternative Ai.
Similarly, the total cost of alternative Acos t

i is defined as follows:

Acos t
i =

n∑

j=1

wjaij , f or i = 1, 2, 3, . . . ,m

where
k∑

j=1
wj +

n∑

j=1
wj = 1; 0 < wj ≤ 1. Then the importance of alternative

AWSM−score
i is defined as follows:

AWSM−score
i = A

benef it

i − Acos t
i , f or i = 1, 2, 3, . . . ,m

The best alternative is the one has the largest WSM score [45].

2.3 Multiple-Criteria Decision Making Based Data Analysis 77

MCDM Method 2: Preference Ranking Organization Method for Enrichment
of Evaluations (PROMETHEE)

Brans proposed the PROMETHEE I and PROMETHEE II, which use pairwise
comparisons and outranking relationships to choose the best alternative [46]. The
final selection is based on the positive and negative preference flows of each
alternative. The positive preference flow indicates how an alternative is outranking
all the other alternatives and the negative preference flow indicates how an
alternative is outranked by all the other alternatives [47]. While PROMETHEE
I obtains partial ranking because it does not compare conflicting actions [48],
PROMETHEE II ranks alternatives according to the net flow which equals to the
balance of the positive and the negative preference flows. An alternative with a
higher net flow is better [47]. Since the goal of this study is to provide a complete
ranking of different numbers of clusters, PROMETHEE II is utilized. The following
procedure presented by Brans and Mareschal [47] is used in the experimental
study:

Step 1. Define aggregated preference indices.
Let a,b ∈A, and let

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π (a, b) =
k∑

j=1
pj (a, b)wj ,

π (a, b) =
k∑

j=1
pj (b, a)wj .

where A is a finite set of possible alternatives {a1, a2, . . . , an}, k represents
the number of evaluation criteria, and wj is the weight of each criterion. For
estimating the number of clusters for a given data set, the alternatives are different
numbers of clusters and the criteria are relative indices. Arbitrary numbers
for the weights can be assigned by decision-makers. The weights are then
normalized to ensure that

∑k
j=1wj = 1. π(a, b) indicates how a is preferred

to b over all the criteria and π(b, a) indicates how b is preferred to a over all
the criteria. Pj(a,b) and Pj(b, a) are the preference functions for alternatives a
and b. The relative indices Dunn, silhouette, and PBM have to be maximized,
and Hubert, normalized Hubert, DB, SD, S_Dbw, CS, and C-index have to be
minimized.

Step 2. Calculate π(a, b) and π(b, a) for each pair of alternatives of A.
There are six types of preference functions and the decision-maker needs
to choose one type of the preference functions for each criterion and
the values of the corresponding parameters [49]. The usual preference
function, which requires no input parameter, is used for all criteria in the
experiment.

78 2 Multiple Criteria Optimization Classification

Step 3. Define the positive and the negative outranking flow as follows:
The positive outranking flow:

φ+(a) = 1

n − 1

∑

x∈A

π (a, x) ,

The negative outranking flow:

φ−(a) = 1

n − 1

∑

x∈A

π (x, a) ,

Step 4. Compute the net outranking flow for each alternative as follows:

φ(a) = φ+(a) − φ−(a).

When φ(a) > 0, a is more outranking all the alternatives on all the evaluation
criteria. When φ(a)<0, a is more outranked.

MCDM Method 3: Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS)

The Technique for order preference by similarity to ideal solution (TOPSIS) method
was proposed by Hwang and Yoon [50] to rank alternatives over multiple criteria.
It finds the best alternatives by minimizing the distance to the ideal solution and
maximizing the distance to the nadir or negative-ideal solution [37]. This section
uses the following TOPSIS procedure, which was adopted from [51] and [37], in
the empirical study:

Step 1. Calculate the normalized decision matrix. The normalized value rij is
calculated as

rij = xij /

√
√
√
√

J∑

i=1

x2
ij , j = 1, . . . , J ; i = 1, .., n.

Step 2. Develop a set of weights wi for each criterion and calculate the weighted
normalized decision matrix. The weighted normalized value vij is calculated as:

vij = wirij , j = 1, .., J ; i = 1, .., n.

Weight of the ith criterion, and
∑n

i=1wi = 1.

2.3 Multiple-Criteria Decision Making Based Data Analysis 79

Step 3. Find the ideal alternative solution S+, which is calculated as:

S+ = {
v+
1 , . . . , v+

n

} =
{(

max
j

vij |i ∈ I ’
)

,
(
min

j
vij |i ∈ I ’’

)}

where I′ is associated with benefit criteria and I′′ is associated with cost criteria.
In this study, benefit and cost criteria of TOPSIS are defined the same as the
benefit and cost criteria in WSM.

Step 4. Find the negative-ideal alternative solution S2, which is calculated as:

S− = {
v−
1 , . . . , v−

n

} =
{(

min
j

vij |i ∈ I ’
)

,
(
max

j
vij |i ∈ I ’’

)}

Step 5. Calculate the separation measures, using the n-dimensional Euclidean
distance. The separation of each alternative from the ideal solution is calculated
as:

D+
j =

√
√
√
√

n∑

i=1

(
vij − v+

i

)2
, j = 1, . . . , J.

The separation of each alternative from the negative-ideal solution is calculated
as:

D−
j =

√
√
√
√

n∑

i=1

(
vij − v−

i

)2
, j = 1, . . . , J.

Step 6. Calculate a ratio R+
j that measures the relative closeness to the ideal solution

and is calculated as:

R+
j = D−

j /
(
D+

j + D−
j

)
, j = 1, . . . , J.

Step 7. Rank alternatives by maximizing the ratio R+
j .

2.3.1.2 Clustering Algorithm

The k-means algorithm, the most well-known partitioning method, is an iterative
distance-based technique [32]. The input parameter k predefines the number of
clusters. First, k objects are randomly chosen to be the centers of these clusters.
All objects are then partitioned into k clusters based on the minimum squared-error
criterion, which measures the distance between an object and the cluster center.
The new mean of each cluster is calculated and the whole process iterates until
the cluster centers remain the same [11, 52]. Let X = {xi} be the n objects to be

80 2 Multiple Criteria Optimization Classification

clustered, C = {C1, C2, . . . , Ck} is the set of clusters. Let mi be the mean of cluster
Ci. The squared-error between μi and the objects in cluster Ci is defined as.

WCSS (Ci) =
∑

xj∈Ci

∥
∥xj − μi

∥
∥2

Then the aim of k-means algorithm is to minimize the sum of the squared error
over all k clusters, that is

min
(
WCSS(C) = argmin

C

∑

xj∈Ci

∥
∥xj − μi

∥
∥2

where WCSS denotes the sum of the squared error in the inner-cluster.
Two critical steps of k-means algorithm have impact on the sum of squared error.

First, generate a new partition by assigning each observed point to its closest cluster
center, the formula is as follows:

Ci
(t) =

{
xj :

∥
∥
∥xj − mi

(t)
∥
∥
∥ ≤

∥
∥
∥xj − mi∗(t)

∥
∥
∥ f oralli∗ = 1, .., k

}

where mi
(t) denotes the mean of the ith cluster in tth times clustering, while Ci

(t)

represents all sets contained in the ith cluster in tth times clustering. Second, compute
new cluster mean centers using the following formula.

mi
(t+1) = 1

| Ci
(t+1) |

∑

xj ∈C
(t)
i

xj

where mi
(t + 1) denotes the mean of the ith cluster in (t + 1)th times clustering while

Ci
(t + 1) represents all sets contained in the ith cluster in (t + 1)th times clustering.

The algorithm is implemented using WEKA (Waikato Environment for Knowledge
Analysis), a free machine learning software [53].

2.3.1.3 Clustering Validity Measures

Ten relative measures are selected for the experiment, namely, the Hubert� statistic,
the normalized Hubert �, the Dunn’s index, the Davies-Bouldin index, the CS
measure, the SD index, the S_Dbw index, the silhouette index, PBM, and the
C-index. Relative measures can also be used to identify the optimal number of
clusters in a data set and some of them, such as the C-index and silhouette, have
exhibited good performance in previous studies. The following paragraphs define
these relative measures.

2.3 Multiple-Criteria Decision Making Based Data Analysis 81

• Hubert � statistic [54]:

Γ = (1/M)

n−1∑

i=1

n∑

j=i+1

P (i, j) · Q(i, j)

where n is the number of objects in a data set, M = n(n − 1)/2, P is the
proximity matrix of the data set, and Q is an n*n matrix whose (i, j) element
is equal to the distance between the representative points (vci,vcj) of the clusters
where the objects xi and xj belong [42]. C indicates the agreement between P and
Q.

• Normalized Hubert �:

Γ̂ =

[

(1/M)
n−1∑

i=1

n∑

j=i+1
(P (i, j)−μP) · (Q(i, j

)−μQ

)
]

σP σQ

where μP, μQ, σ p, and σQ represent the respective means and variances of P
and Q matrices [43].

Dunn’s index [55] evaluates the quality of clusters by measuring inter cluster
distance and intra cluster diameter.

D = min
i=1,...,K

⎧
⎨

⎩
min

j=i+1,...,K

⎡

⎣
d
(
Ci,Cj

)

max
l=1,...,K

diam (Cl)

⎤

⎦

⎫
⎬

⎭

where K is the number of clusters, Ci is the ith cluster, d(Ci,Cj) is the distance
between cluster Ci and Cj, and diam(Cl) is the diameter of the lth cluster. Larger
values of D suggest good clusters, and a D larger than 1 indicates compact
separated clusters.

• Davies-Bouldin index is defined as [56]:

DBK = 1

K

K∑

i=1

Ri,Ri max
i=1,...,K,i =j

Rij , Rij = si + sj

dij

, i = 1, . . . ,K

where K is the number of clusters, si and sj represent the respective dispersion
of clusters i and j, dij measures the dissimilarity between two clusters, and Rij
measures the similarity between two clusters [42, 43]. It is the average similarity
between each cluster and its most similar one.

82 2 Multiple Criteria Optimization Classification

• The CS measure is proposed to evaluate clusters with different densities
and/or sizes [57]. It is computed as:

CS =

K∑

i=1

{

1
Ni

∑

xj∈Ci

max
xk∈Ci

{
d
(
xj , xk

)}
}

K∑

i=1

{

min
j∈{1,2,...,K},j =i

{
d
(
vi, vj

)}
} , vi = 1

Ni

∑

xj ∈Ci

xj

where Ni is the number of objects in cluster i and d is a distance function. The
smallest CS measure indicates a valid optimal clustering.

• SD index combines the measurements of average scattering for clusters and
total separation between clusters [42]:

SD(K) = Dis (cmax) × Scat (K) + Dis(K)

where cmax is the maximum number of input clusters,

Scat (K) = 1

K

K∑

i=1

‖σ (vi)‖ / ‖σ(X)‖ and

Dis(K) = Dmax

Dmin

K∑

k=1

(
K∑

z=1

‖vk − vz‖
)−1

Dmax is the maximum distance between cluster centers and the Dmin is the
minimum distance between cluster centers.

S_Dbw index is similar to SD index and is defined as [42]:

SDbw(K) = Scat (K) + Densbw(K),

Densbw(K) = 1
K ·(K−1)

K∑

i=1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

K∑

j = 1
j = i

density(uij)
max{density(vi),density(vj)}

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

density(u) =
Nij∑

l=1
f (xl, u)

2.3 Multiple-Criteria Decision Making Based Data Analysis 83

where Nij is the number of objects that belong to the cluster Ci and Cj, and
function f(x,u) is defined as:

f (x, u) =
{
0, if d (x, u) > stdev

1, otherwise
, stdev = 1

K

√
√
√
√

K∑

i=1

‖σ (vi)‖

Silhouette is an internal graphic display for clustering methods evaluation. It
represents each cluster by a silhouette, which shows how well objects lie within
their clusters. It is defined as [58]:

s(i) = b(i) − a(i)

max {a(i), b(i)}
where i represents any object in the data set, a(i) is the average dissimilarity

of i to all other objects in the same cluster A, and b(i) is the average dissimilarity
of i to all objects in the neighboring cluster B, which is defined as the cluster
that has the smallest average dissimilarity of i to all objects in it. Note that A =B
and the dissimilarity is computed using distance measures. Since a(i) measures
how dissimilar i is to its own cluster and b(i) measures how dissimilar i is to its
neighboring cluster, an s(i) close to one indicates a good clustering method. The
average s(i) of the whole data set measures the quality of clusters.

• PBM is developed by [40] and it is based on the intra-cluster and inter-
cluster distances:

PBM =
(

1
K

E1
EK

DK

)2

where E1 = ∑N
i=1 ‖xi − x‖ , EK = ∑N

l=1
∑

xi∈Cl
‖xi − xl‖ ,

DK = max
l,m=1,...,K

‖xl − xm‖

The C-index [59] is based on intra-cluster distances and their maximum and
minimum possible values [60]:

CI = θ − min θ

max θ − min θ
, θ =

n−1∑

i=1

n∑

j=i+1

qi,j

∥
∥xi − xj

∥
∥

2.3.2 Parallel Regularized Multiple Criteria Linear
Programming Classification Algorithm

In this section, the focus is on the RMCLP, and the designed and proposed Parallel
version of RMCLP algorithm (PRMCLP). In order to overcome the compute and

84 2 Multiple Criteria Optimization Classification

storage requirements that increase rapidly with the number of training sample, the
second strategy is adopted, inspire by some findings in [61].

Let us give a brief introduction of MCLP as follows. For classification of the
training data:

T = {(x1, y1) , . . . , (xl, yl)} ∈ (�n × y
)l (2.151)

where xi ∈ �n, yi ∈ y = {1, -1}, i = 1, . . . , l, data separation can be achieved by two
opposite objectives. The first objective separates the observations by minimizing
the sum of the deviations (MSD) among the observations. The second maximizes
the minimum distances (MMD) of observations from the critical value [62]. The
overlapping of data ξ (1) should be minimized while the distance ξ (2) has to be
maximized. However, it is difficult for traditional linear programming to optimize
MMD and MSD simultaneously. According to the concept of Pareto optimality, we
can seek the best trade-off between the two measurements [10, 63]. SoMCLPmodel
can be described as follows:

min eTξ(1)&max eTξ(2) (2.152)

s.t. (w · xi) +
(
ξi

(1) − ξi
(2)
)

= b, f or {i|yi = 1} , (2.153)

(w · xi) −
(
ξi

(1) − ξi
(2)
)

= b, f or {i|yi = −1} , (2.154)

ξ(1), ξ (2) ≥ 0 (2.155)

where e ∈ Rl be vector whose all elements are 1, w and b are unrestricted, ξ(1)
i is

the overlapping and ξ
(2)
i the distance from the training sample xi to the discriminator

(w · xi) = b (classification separating hyperplane). By introducing penalty parameter
C,D > 0, MCLP has the following version

min
ξi

(1),ξi
(2)

CeTξ(1) − DeTξ(2),<?pag? > (2.156)

s.t. (w · xi) +
(
ξi

(1) − ξi
(2)
)

= b, f or {i|yi = 1} , (2.157)

(w · xi) −
(
ξi

(1) − ξi
(2)
)

= b, f or {i|yi = −1} , (2.158)

ξ(1), ξ (2) ≥ 0 (2.159)

A lot of empirical studies have shown that MCLP is a powerful tool for
classification. However, we cannot ensure that this model always has a solution
under different kinds of training samples. To ensure the existence of solution,
recently, Shi et al. proposed a RMCLP model by adding two regularized items
1
2ω

THω and 1
2ξ

(1)TQξ(1) in MCLP as follows (more theoretical explanation of this

2.3 Multiple-Criteria Decision Making Based Data Analysis 85

model can be found in [63]):

min
z

1

2
wTHw + 1

2
ξ(1)TQξ(1) + 1

2
b2 + CeTξ(1) − DeTξ(2), (2.160)

s.t. (w · xi) +
(
ξi

(1) − ξi
(2)
)

= b, f or {i|yi = 1} , (2.161)

(w · xi) −
(
ξi

(1) − ξi
(2)
)

= b, f or {i|yi = −1} , (2.162)

ξ(1), ξ (2) ≥ 0 (2.163)

where z= (wT, ξ (1)T , ξ (2)T , b)T ∈ Rn + l + l + 1,H ∈ Rn × n is symmetric positive defi-
nite matrices. Obviously, the regularizedMCLP is a convex quadratic programming.
According to the dual theorem, (2.160)–(2.163) can be formulated as:

min
α,ξ (1)

1

2
αT
(
K
(
A,AT

)
+ eeT

)
α + 1

2
ξ(1)TQξ(1), (2.164)

s.t. − Qξ(1) − Ce ≤ Eα ≤ −De, (2.165)

where A = [
xT
1 , . . . , xT

l

]T ∈ Rl×n,E = diag {y1, . . . , yl}
and
K
(
A,AT

) = Φ(A)Φ(A)T = (
Φ(A) · Φ(A)T

)
l×l

and � is a mapping from the input space Rn to some Hilbert space H [64].
In order to realize the parallelization of RMCLP, we firstly translate RMCLP into

a unconstrained optimization problem. To simplify, (2.164) can be rewritten as

min
π

1
2π

TΛπ,

s.t.Gπ − Ce ≤ 0,
Hπ + De ≤ 0,

(2.166)

where π = [αT, ξ (1)T]T, and G = [−Q,−E], H = [E,O], O ∈ Rl × l is a null matrix,
� is written as

(
K
(
A,AT

)+ eeT 0
0 Q

)

(2.167)

Next, we represent the objective (2.164) as the following unconstrained optimiza-
tion problem

min
π

f (π) = 1

2
πTΛπ + λT max {Gπ − Ce, 0}2 + μmax {Hπ + De, 0}2

(2.168)

86 2 Multiple Criteria Optimization Classification

where C,D ∈R are the artificial parameters, and λ = {λ1, . . . ,λl}, μ = {μ1, . . . ,μl}.
Define d is the search direction of the optimization problem (2.168), here, we

choose the negative gradient direction as the feasible direction:

d = −∇f (π) / ‖∇f (π)‖ (2.169)

where

∇f (π) = Λπ + 2λTdiag
(
GT max {Gπ − Ce, 0}

)
+ 2μTdiag

(
HT max {Hπ + De, 0}

)

(2.170)

Now, we use PVD idea to split our model [61]. Suppose we can use p processors,
the variable of the unconstrained optimization problem (2.168) can be divided into
p chunks: {1, . . . , p}, where the dimension of the ith chunk is mi

π = {π1, . . . , πm} , πi ∈ Rmi , i = 1, . . . , p,

p∑

i=1

mi = 2l (2.171)

In the next step, we allocate the p-th variable to p-th processor, and decompose
the problem (2.168) into the subproblemwith mi dimensions. Each processor solves
one corresponding subproblem, which update other variables on the basis of some
rules except for computing the mi variables itself. After each processor finishes
updating, a quick synchronous step is performed: searching the results obtained
by each processor and computing the current solution. Repeating then this, our
algorithm can be described as

Theorem 2.4 The sequence generated by {πk} of Algorithm 2.4 either terminates
at a stationary point {πk}, or is an infinite sequence, whose accumulation point is
stationary and lim

k→∞∇f
(
πk
) = 0.

Proof

For ∀π,π’ ∈ R2l ,we have

∇f (π) = Λπ + 2λTdiag
(
GT max {Gπ − Ce, 0}

)
+ 2μTdiag

(
HT max {Hπ + De, 0}

)

So

(2.172)

∥
∥
∥∇f (π) − ∇f

(
π ’
)∥
∥
∥ =

∥
∥
∥Λ

(
π − π ’

)
+ 2λTdiag

(
GT (max {Gπ − Ce, 0} − max {Gπ − Ce, 0})

)

+ 2μTdiag
(
HT max {Hπ + De, 0} − max {Hπ + De, 0}

)
)‖

≤ ‖Λ‖
∥
∥
∥π − π ’

∥
∥
∥ + 2

∥
∥
∥λT

∥
∥
∥
∥
∥
∥diag

(
GT (max {Gπ − Ce, 0} − max {Gπ − Ce, 0})

)∥
∥
∥

+ 2
∥
∥
∥μT

∥
∥
∥
∥
∥
∥diag

(
HT max {Hπ + De, 0} − max {Hπ + De, 0}

)) ∥
∥
∥

(2.173)

2.3 Multiple-Criteria Decision Making Based Data Analysis 87

i
)

For any Gπi,Gπ’i ≤ Ce,wherei = 1, . . . ,m,we have
∥
∥diag

(
GT (max {Gπ − Ce, 0} − max {Gπ − Ce, 0}))∥∥=0 ≤

∥
∥
∥GTG

(
πi−πi

’
)∥
∥
∥

(2.174)

ii
)

For any Gπi,Gπ’i > Ce,wherei = 1, . . . ,m,we have
∥
∥diag

(
GT (max {Gπ − Ce, 0} − max {Gπ − Ce, 0}))∥∥ =

∥
∥
∥GTG

(
πi − πi

’
)∥
∥
∥

(2.175)

Taken together,we can obtain∥
∥
∥diag

(
GT

(
max {Gπ − Ce, 0} − max

{
Gπ’ − Ce, 0

}))∥
∥
∥

≤
∥
∥
∥GTG

(
π − π’

)∥
∥
∥ ≤ ∥

∥GT
∥
∥ ‖G‖

(
π − π’

) ∥
∥
∥

(2.176)

Similarly,we have∥
∥
∥diag

(
HT

(
max {Hπ − De, 0} − max

{
Hπ’ − De, 0

}))∥
∥
∥

≤
∥
∥
∥HT

(
π − π’

)∥
∥
∥ ≤ ∥

∥HT
∥
∥ ‖H‖

(
π − π’

) ∥
∥
∥

(2.177)

As the result, let ‖Λ‖ + 2 ‖Λ‖ ∥∥GT
∥
∥ ‖G‖ +

2 ‖μ‖ ∥∥HT
∥
∥ ‖H‖ = K,

we can obtain

∥
∥
∥∇f (π) − ∇f

(
π’
)∥
∥
∥ ≤

∥
∥
∥π − π’

∥
∥
∥ (2.178)

According to the Theorem 2.2 in [19], {πk} either terminates at a stationary

point
{
πk
}
, or is an infinite sequence, whose accumulation point is stationary and

lim
k→∞∇f

(
πk
) = 0.

Theorem 2.5 If A of Algorithm 2.4 is positive definite, then the sequence of iterates
{πk} generated by the subproblem of (2.168) converges linearly to the unique
solution π , and the rate of convergence is

∥
∥
∥πk − π

∥
∥
∥ ≤

(
2

γ

(
f
(
πk
)

− f (π)

)) 1
2
(

1 − 1

p

(γ

K

)2
) 1

2

, (2.179)

where γ ,K > 0 are constants.

88 2 Multiple Criteria Optimization Classification

Proof For

∀π, π’ ∈ R2l
(
∇f (π) − ∇f

(
π’
)) (

π − π’
)

= (π − π’)TΛ
(
π − π’

)
+ (

2λTdiag
(
GT
(
max {Gπ − Ce, 0}

− max {Gπ − Ce, 0})) + 2μTdiag
(
HT max {Hπ + De, 0}

− max {Hπ + De, 0}))))
(
π − π’

)

(2.180)

It is known that

diag
(
GT (max {Gπ − Ce, 0} − max {Gπ − Ce, 0}))

(
π − π’

)
≥ 0,

diag
(
GT (max {Gπ − Ce, 0} − max {Gπ − Ce, 0}))

(
π − π’

)
≥ 0

(2.181)

Since � is a positive definite matrix, we have

(
∇f (π) − ∇f

(
π’
)) (

π − π’
)

≥ (π − π’)TΛ
(
π − π’

)
≥ γ

2 ‖π − π’‖2,
∀π ∈ R2l

(2.182)

where γ is a constant. As a result, subproblem of (2.168) converges linearly to the
unique solution π , and the rate of convergence is

∥
∥
∥πk − π

∥
∥
∥ ≤

(
2

γ

(
f
(
πk
)

− f (π)
)) 1

2
(

1 − 1

p

(γ

K

)2
) 1

2

(2.183)

2.3.3 An Effective Intrusion Detection Framework Based
on Multiple Criteria Linear Programming and Support
Vector Machine

The main contributions of this section include the following:

(a) Modifications to the chaos particle swarm optimization have been proposed by
adopting the time-varying inertia weight factor (TVIW) and time-varying accel-
eration coefficients (TVAC), namely TVCPSO, to make it faster in searching for
the optimum and avoid the search being trapped into local optimum.

(b) A weighted objective function that simultaneously takes into account trade-
off between the maximizing the detection rate and minimizing the false alarm
rate, along with considering the number of features is proposed to eliminate the
redundant and irrelevant features, as long as increase the attacks’ detection rate.

2.3 Multiple-Criteria Decision Making Based Data Analysis 89

(c) An extended version of multiple criteria linear programming, namely PMCLP,
has been adopted to increase the performance of this classifier in dealing with
the unbalance intrusion detection dataset.

(d) The proposed TVCPSO has been adopted to provide an effective IDS frame-
work by determining parameters and selecting a subset of features for multiple
criteria linear programming and support vector machines.

In the recent years, biology inspired approaches has been used to solve complex
problems in a variety of domains such as computer science, medicine, finance
and engineering [65]. Swarm intelligence considered as an artificial intelligence
techniques which inspired from a flock of birds, a school of fish swims or a colony
of ants and their unique capability to solve complex problems [65]. Briefly, swarm
intelligence (SI) considered as some methodologies, techniques and algorithms
inspired by study of collective behaviors in decentralized systems [66]. Particle
swarm optimization is one of these techniques, which introduced by Eberhart and
Kennedy in 1995 [67]. Particle swarm optimization is a population based meta-
heuristic optimization technique that simulates the social behavior of individuals,
namely, particles. This technique, compare with the other algorithms in this group
has several advantages such as simple to implement, scalability, robustness, quick
in finding approximately optimal solutions and flexibility [39].

In particle swarm optimization, each individual of a population that considered
as a representative of the potential solution move through an n-dimensional search
space. After the initialization of the population, at each iteration particle seeks
the optimal solution by changing its direction which consists of its velocity and
position according to two factors, its own best previous experience (pbest) and the
best experience of all particles (gbest). Equations (2.184) and (2.185), respectively
represents updating the velocity and position of each percale at iteration [t + 1].
At the end of each iteration the performance of all particles will be evaluated by
predefined fitness functions.

vid [t + 1] = w.vid [t] + c1 r1
(
pid,best [t] − xid [t]

)

+ c2 r2
(
pgd,best [t] − xid [t]

)
d = 1, 2, . . . ,D

(2.184)

xid [t + 1] = pid [t] + vid [t + 1] d = 1, 2, . . . ,D (2.185)

Where, i = 1, 2, . . . , N, N is the number of swarm population. In D-
dimensional search space, xi[t] = {xi1[t], xi2[t], . . . , xiD[t]} represent the current
position of the ith particle at iteration [t]. Likewise, the velocity vector of
each particle at iteration [t] represented by vi[t] = {vi1[t], vi2[t], . . . , viD[t]}.
pi, best[t] = {pi1[t], pi2[t], . . . , piD[t]} represent the best position that particle i
has obtained until iteration t, and pg, best[t] = {pg1[t], pg2[t], . . . , pgD[t]} represent
the previous best position of whole particle until iteration t.

To control the pressure of local and global search, the concept of an inertia weight
w was introduced in the PSO algorithm by [68]. r1 and r2 are two D-dimensional
vectors with random number between 0 and 1. c1 and c2 are positive acceleration
coefficients which respectively called cognitive parameter and social parameter. In

90 2 Multiple Criteria Optimization Classification

fact, these two parameters control the importance of particles’ self-learning versus
learning from all the swarm’s population.

In this research, in order to balance the global exploration and local exploitation,
time-varying acceleration coefficients (TVAC) [68, 69] and time-varying inertia
weight (TVIW) [69, 70] is adopted to justify the acceleration coefficients and inertia
weight, respectively. Both of these concepts help PSO algorithm to have better
performance to find the region of global optimum and do not trap in local minima
[68, 69, 71].

In TVAC, the acceleration coefficients adjusted by decreasing the value of c1
from initial value of c1i to c1f , while the value of c2 is increasing from its initial
value of c2i to c2f as shown in Eqs. (2.186) and (2.187). Moreover, in TVIW, the
inertia weight w is updated according to the Eq. (2.188), which means a large inertia
weight makes PSO has more global search ability at the beginning of the run and by
a linearly decreasing the inertia weight makes PSO has better local search.

c1 = c1i + t

tmax

(
c1f − c1i

)
(2.186)

c2 = c2i + t

tmax

(
c2f − c2i

)
(2.187)

w = wmax − t

tmax
(wmax − wmin) (2.188)

Here, t represents the current iteration and tmax means the maximum number of
iterations, c1i, c1f,c2i, c2f are the constant values and wmax, wmin are the predefined
maximum and minimum inertia weight.

2.3.3.1 Discrete Binary PSO

Although the original PSO was proposed to act in continuing space, Kennedy
and Eberhart [67] proposed the discrete binary version of PSO. In this model
particle moves in a state space restricted to zero and one on each dimension,
in terms of the changes in probabilities that a bit will be in one state or the
other. The formula proposed in Eq. (2.8) remains unchanged except that xid[t],
pgd, best[t] and pid, best[t] ∈ {0, 1} and vid restricted to the [0.0, 1.0] [15, 65]. By
introducing the sigmoid function, the velocity mapped from a continuous space to
probability space as following:

sig
(
vid
)

= 1

1 + e(−vid)
d = 1, 2, . . . ,D (2.189)

The new particle position calculated by using the following rule:

xid [t + 1] =
{
1, if rnd () < sig

(
vid
)

0 if rnd () ≥ sig
(
vid
) , d = 1, 2, . . . ,D (2.190)

2.3 Multiple-Criteria Decision Making Based Data Analysis 91

Where, sig(vid) is a sigmoid function and rnd() is a random number in range [0.0,
1.0].

Although traditional PSO gains considerable results in different fields, however,
the performance of the PSO depends on the preset parameters and it often suffers
the problem of being trapped in local optima. In order to further enhance the search
ability of swarm in PSO and avoids the search being trapped in local optimum,
chaotic concept has been introduced by [68, 69, 71]. Here, chaos is characterized as
ergodicity, randomicity and regularity.

In this section, Logistic equation which is a typical chaotic system adopted to
make the chaotic local search as represented in the following:

zj+1 = μzj

(
1 − zj

)
j = 1, 2, . . .m (2.191)

Here, by considering n-dimensional vector zj = (zj1, zj2, . . . , zjn), each com-
ponent of this system is a random value in the range [0, 1], μ is the control
parameter and the system of Eq. (2.15) has been proved to be completely chaotic
when 0 ≤ z0 ≤ 1 and μ = 4. Chaos queues z1, z2, z3, . . . , zm are generated by
iteration of Logistic equation.

In fact, the basic ideas of chaotic are adopted in this section are described as
follows:

Chaos initialization: In spite of standard PSO, which particle’s position in the
search space initialized randomly, here chaos initialization is adopted to better
initialize the position of each particle and to increase the diversity of the
population.

Chaotic local search (CLS): By using the chaos queues, it helps PSO to does not
trapped in a local optimum besides it can cause to search the optimum quickly.
It will happen by generating the chaos queues based on the optimal position
(pg, best), and then replace the position of one particle of the population with the
best position of the chaos queues.

Although different performance metrics has been proposed to evaluate the
effectiveness of IDSs, the most two popular of these metrics are detection rate (DR)
and false alarm rate (FAR). By comparing the actual nature of a given record which
here “Positive” means an “attack classes” and “Negative” means a “normal record”
to the prediction ones, it’s possible to consider four outcomes for this situation as
shown in Table 2.8, which known as the confusion matrix.

Table 2.8 Confusion matrix

Test Result Positive
(Predicted as an attack)

Test Result Negative
(Predicted as a normal record)

Actual Positive Class
(Attack record)

True positive (TP) False negative (FN)

Actual Negative Class
(Normal record)

False positive (FP) True negative (TN)

92 2 Multiple Criteria Optimization Classification

Here, true positive and true negative means correctly labeled the records as an
attack and normal, respectively, that is, IDSs predict the labels perfectly. False
positive (FP), refer to normal record is considered as an attack and False negative
(FN) means those attack records falsely considered as a normal one.

A well performed IDS should has a high detection rate (DR) as well as
low false positive rate. In intrusion detection domain false positive rate typically
named false alarm rate (FAR). Thus, the particles with higher detection rate, lower
false positive rate and the small number of selected features can produce a high
objective function value. Hence, in this research a weighted objective function that
simultaneously takes into account trade-off between the maximizing the detection
rate and minimizing the false alarm rate, along with considering the number of
features is proposed according to the following equation:

Objective function
(
Ff it

) =
wDR.

[
T P

(TP+FN)

]
+ wFAR.

[
1 − FP

(FP+TN)

]
+ wF .

[

1 −
∑nF

i=1 fi
nF

]
(2.192)

Since any of these three elements of objective function have different effect
on the performance of IDS, we convert this multiple criteria problem to a sin-
gle weighted fitness function that combines the three goals linearly into one.
Where wDR, wFAR and wF represents the importance of detection rate, false alarm
rate and number of selected features in the objective function. Detection rate or
sensitivity in biomedical informatics terms, known as a true positive rate (TPR),
which means the ratio of true positive recognition to the total actual positive
class; T P

(TP+FN)
. False alarm rate (FAR) or false positive rate (FPR) defined as:

FP
(FP+TP)

. fi represents the value of feature mask (“1” represents that feature i is
selected and “0” represents that feature i is not selected), and nF indicates the
number of features.

The specific steps of TVCPSO–MCLP and TVCPSO–SVM are described as
follows:

Step 1: Chaotic initialization for n + 2 particle, for the MCLP algorithm, the first
two parameters are α∗ and β∗ and for SVM algorithm the first two parameters are
c and γ . The rest of n particle is binary features mask of feature sets which here
is 41 features of NSL-KDD cup 99 datasets. Here in binary features mask, 1 and
0 adopted to present as selected features and discarded features, respectively.

(a) Initialize a vector z0 = (z01, z02, . . . , z0n), each component of it is set as
a random value in the range [0, 1], and by iteration of Logistic equation a
chaos queue z1, z2, . . . , zn is obtained.

(b) In order to transfer the chaos queue zj into the parameter’s range the
following equation is used:

Ẑjk = ak + (bk − ak) .zjk (k = 1, 2, . . . , n) (2.193)

References 93

Where the value range of each particle defined by [ak, bk].
Step 2: Compute the fitness value of the initial vector Ẑj (j = 1, 2, . . . ,m) and

then choose the best M solutions as the initial positions of M particles.
Step 3: Randomly initialize the velocity of M particles, here, vj = (vj1,

vj2,, vjn) j = (1, 2, . . . ,M.)
Step 4: Update the velocity and position of each classifier’s parameters (α∗ , β∗ in

MCLP and c, γ in SVM) according to Eqs. (2.184) and (2.185), and in order to
update the velocity and position of the features in each particle Eqs. (2.184) and
(2.190) have been used, respectively.

Step 5: Evaluate the fitness of each particle according to Eq. (2.192) and then
compare the evaluated fitness value of each particle (personal optimal fitness
(pfit)) to its personal best position (pi, best):

(a) If the pfit is better than pi, best then update the pi, best as the current position,
otherwise keep the previous ones in memory.

(b) If the pfit is better than pg, best then update the pg, best as the current position,
otherwise keep the previous pg, best.

Step 6: Optimize pg, best by chaos local search according to the following steps:

(a) Consider T = 0, scale the pgk, best into the range of [0,1] by zT
k =

pgk,best−ak

bk−ak
(k = 1, 2, . . . , n) .

(b) Generate the chaos queues ZT
j (T = 1, 2, . . . ,m) by iteration of Logistic

equation.
(c) Obtain the solution set p = (p1, p2, . . . , pm) by scale the chaotic variables

ZT
j into the decision variable according to the pT

k = ak + (bk − ak) .zT
k .

(d) Evaluate the fitness value of each feasible solution p = (p1, p2, . . . , pm), and
get the best solution p̂g,best .

Step 7: If the stopping criteria are satisfied, then stop the algorithms and get the
global optimum that are the optimal value of (α∗ , β∗ in MCLP and c, γ in SVM)
and the most appropriate subset of features. Otherwise, go to step 5.

References

1. Sun, D., Liu, L., Zhang, P., Zhu, X., Shi, Y.: Decision rule extraction for regularized multiple
criteria linear programming model. Int. J. Data Warehousing Mining. 7(3), 88–101 (2011)

2. Shi, Y., Tian, Y., Chen, X., Zhang, P.: Regularized multiple criteria linear programs for
classification. Sci. China Ser. F Inf. Sci. 52(10), 1812–1820 (2009)

3. Wang, B., Shi, Y.: Error correction method in classification by using multiple-criteria and
multiple-constraint levels linear programming. Int. J. Comput. Commun. Contr. 7(5), 976–989
(2014)

4. Qi, Z., Tian, Y., Shi, Y.: Multi-instance classification based on regularized multiple criteria
linear programming. Neural Comput. Applic. 23(3), 857–863 (2013)

5. Zhang, P., Tian, Y., Zhang, Z., Shi, Y., Li, X.: Supportive instances for regularized multiple
criteria linear programming classification. Int. J. Oper. Quant. Manag. 14(4), 249–263 (2008)

94 2 Multiple Criteria Optimization Classification

6. Zhao, X., Shi, Y., Niu, L.: Kernel based simple regularized multiple criteria linear program for
binary classification and regression. Intellig. Data Anal. 19(3), 505–527 (2015)

7. Zhang, D., Tian, Y., Shi, Y.: A group of knowledge-incorporated multiple criteria linear
programming classifiers. J. Comput. Appl. Math. 235(13), 3705–3717 (2011)

8. Peng, Y., Zhang, Y., Kou, G., Shi, Y.: A multicriteria decision making approach for estimating
the number of clusters in a data set. PLoS One. 7(7), e41713 (2012)

9. Qi, Z., Tian, Y., Shi, Y., Alexandrov, V.: Parallel rmclp classification algorithm and its
application on the medical data. IEEE Trans. Cloud Comput. (2015). https://doi.org/10.1109/
TCC.2015.2481381

10. Shi, Y., Wise, W., Lou, M., et al.: Multiple criteria decision making in credit card portfolio
management. In: Multiple Criteria Decision Making in New Millennium, pp. 427–436 (2001)

11. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Practical Machine Learning Tools and Tech-
niques, p. 578. Morgan Kaufmann, Burlington, MA (2005)

12. Qi, Z., Xu, Y., Wang, L., Song, Y.: Online multiple instance boosting for object detection.
Neurocomputing. 74(10), 1769–1775 (2011)

13. Shao, Y., Yang, Z., Wang, X., Deng, N.: Multiple instance twin support vector machines. Lect.
Note Oper. Res. 12, 433–442 (2010)

14. Zhou, Z.: Multi-instance learning: a survey. Department of Computer Science & Technology,
Nanjing University, Tech. Rep 2 (2004)

15. Chen, Y., Zhang, L., Shi, Y.: Post mining of multiple criteria linear programming classification
model for actionable knowledge in credit card churning management. In: 2011 IEEE 11th
International Conference on Data Mining Workshops, pp. 204–211. IEEE, New York (2011)

16. Keeler, J.D., Rumelhart, D.E., Leow, W.K.: Integrated segmentation and recognition of hand-
printed numerals. In: Proceedings of the NIPS, pp. 557–563 (1990)

17. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with
axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

18. Viola, P., Platt, J., Zhang, C.: Multiple instances boosting for object detection. In: Proceedings
of the NIPS, pp. 1417–1424 (2006)

19. Ferris, M.C., Mangasarian, O.L.: Parallel variable distribution. SIAM J. Optim. 4(4), 815–832
(1994)

20. Shi, Y., Liu, R., Yan, N., Chen, Z.: Multiple criteria mathematical programming and data
mining. In: International Conference on Computational Science, pp. 7–17. Springer, New York
(2008)

21. Mangasarian, O.L., Wild, E.W.: Multiple instance classification via successive linear program-
ming. J. Optim. Theory Appl. 137(3), 555–568 (2008)

22. Murphy, P.M., Aha, D.W.: UCI machine learning repository (1992)
23. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple instance

learning. In: NIPS, vol. 2, pp. 561–568 (2002)
24. Deng, N., Tian, Y.: Support vector machines: theory, algorithms and extensions. Science Press,

Beijing (2009)
25. Zhang, Q., Goldman, S.A.: Em-dd: an improved multiple-instance learning technique. In:

Advances in Neural Information Processing Systems, pp. 1073–1080 (2001)
26. Yang, Z.X., Deng, N.: Multi-instance support vector machine based on convex combination.

In: The Eighth International Symposium on Operations Research and Its Applications, vol.
481, p. 487. Citeseer (2009)

27. Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (2000)
28. Zhang, J., Shi, Y., Zhang, P.: Several multi-criteria programming methods for classification.

Comput. Oper. Res. 36(3), 823–836 (2009)
29. He, J., Shi, Y., Xu, W.: Classifications of credit cardholder behavior by using multiple criteria

non-linear programming. In: CASDMKM, pp. 154–163 (2004)
30. Kou, G., Liu, X., Peng, Y., Shi, Y., Wise, M., Xu, W.: Multiple criteria linear programming

approach to data mining: models, algorithm designs and software development. Optim.
Methods Softw. 18(4), 453–473 (2003)

31. Yu, P.L.: A class of solutions for group decision problems. Manag. Sci. 19(8), 936–946 (1973)

http://dx.doi.org/10.1109/TCC.2015.2481381

References 95

32. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations.
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

33. Fung, G., Mangasarian, O.L., Shavlik, J.W.: Knowledge-based support vector machine classi-
fiers. In: NIPS, pp. 521–528. Citeseer (2002)

34. Fung, G., Mangasarian, O.L., Shavlik, J.W.: Knowledge-based nonlinear kernel classifiers. In:
Learning Theory and Kernel Machines, pp. 102–113. Springer, New York (2003)

35. Mangasarian, O.L., Wild, E.W.: Nonlinear knowledge in kernel machines. In: Data Mining and
Mathematical Programming. Centre de Recherches Mathématiques Montréal Proceedings and
& Lecture Notes, pp. 181–198 (2008)

36. Zhang, D., Tian, Y., Shi, Y.: Nonlinear knowledge in kernel-based multiple criteria linear
programming classifier. In: Proceedings of the MCDM, pp. 622–629 (2009)

37. Olson, D.L.: Comparison of weights in topsis models. Math. Comput. Model. 40(7–8), 721–
727 (2004)

38. Thomsen, C., Pedersen, T.B.: A survey of open source tools for business intelligence. Int. J.
Data Warehousing Mining. 5(3), 56–75 (2009)

39. Olariu, S., Zomaya, A.Y.: Handbook of Bioinspired Algorithms and Applications. CRC Press,
Boca Raton, FL (2005)

40. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters.
Pattern Recogn. 37(3), 487–501 (2004)

41. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR).
31(3), 264–323 (1999)

42. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: Part I. ACM SIGMOD
Rec. 31(2), 40–45 (2002)

43. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity checking methods: Part II.
ACM SIGMOD Rec. 31(3), 19–27 (2002)

44. Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom.
Control. 8(1), 59–60 (1963)

45. Triantaphyllou, E.: Multi-criteria Decision Making: A Comparative Study. Kluwer Academic
Publishers, Dordrecht, The Netherlands (2000)

46. Brans, J.P.: L’ingénierie de la décision: l’élaboration d’instruments d’aide a la décision.
Université Laval, Faculté des sciences de l’administration (1982)

47. Brans, J.P., Mareschal, B.: Promethee methods. In: Multiple Criteria Decision Analysis: State
of the Art Surveys, pp. 163–186. Springer, New York (2005)

48. Brans, J.: How to decide with promethee. http://www.visualdecision.com/Pdf/
How%20to%20use%20PROMETHEE.pdf (1994)

49. Brans, J.P., Vincke, P.: Note—a preference ranking organisation method: (the promethee
method for multiple criteria decision-making). Manag. Sci. 31(6), 647–656 (1985)

50. Hwang, C.L., Yoon, K.: Multiple attribute decision making methods and applications. Springer,
Berlin (1981)

51. Opricovic, S., Tzeng, G.H.: Compromise solution by mcdm methods: a comparative analysis
of vikor and topsis. Eur. J. Oper. Res. 156(2), 445–455 (2004)

52. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann,
Burlington, MA (2006)

53. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data
mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

54. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, Cambridge
(2008)

55. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-
separated clusters. J. Cybernetics. 3, 32–57 (1973)

56. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach.
Intell. 1(2), 224–227 (1979)

57. Chou, C., Su, M., Lai, E.: A new cluster validity measure and its application to image
compression. Pattern. Anal. Applic. 7(2), 205–220 (2004)

http://www.visualdecision.com/Pdf/How%20to%20use%20PROMETHEE.pdf

96 2 Multiple Criteria Optimization Classification

58. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

59. Hubert, L.J., Levin, J.R.: A general statistical framework for assessing categorical clustering
in free recall. Psychol. Bull. 83(6), 1072–1080 (1976)

60. Vendramin, L., Campello, R.J., Hruschka, E.R.: Relative clustering validity criteria: a compar-
ative overview. Statist. Anal. Data Mining. 3(4), 209–235 (2010)

61. Mangasarian, L.: Parallel gradient distribution in unconstrained optimization. SIAM J. Control.
Optim. 33(6), 1916–1925 (1995)

62. Freed, N., Glover, F.: Evaluating alternative linear programming models to solve the two-group
discriminant problem. Decis. Sci. 17(2), 151–162 (1986)

63. Shi, Y., Peng, Y., Xu, W., Tang, X.: Data mining via multiple criteria linear programming:
applications in credit card portfolio management. Int. J. Inf. Technol. Decis. Making. 1(01),
131–151 (2002)

64. Chen, W., Tian, Y.: Kernel regularized multiple criteria linear programming. In: 3rd Interna-
tional Symposium on Optimization and Systems Biology, pp. 345–352. Citeseer (2009)

65. Kolias, C., Kambourakis, G., Maragoudakis, M.: Swarm intelligence in intrusion detection: a
survey. Comput. Secur. 30(8), 625–642 (2011)

66. Wu, S.X., Banzhaf, W.: The use of computational intelligence in intrusion detection systems:
a review. Appl. Soft Comput. 10(1), 1–35 (2010)

67. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-
International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE, New York (1995)

68. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Con-
ference on Evolutionary Computation Proceedings. IEEE World Congress on Computational
Intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE, New York (1998)

69. Chen, H., Yang, B., Wang, S., Wang, G., Liu, D., Li, H., Liu, W.: Towards an optimal support
vector machine classifier using a parallel particle swarm optimization strategy. Appl. Math.
Comput. 239, 180–197 (2014)

70. Huang, C.L., Dun, J.F.: A distributed pso–svm hybrid system with feature selection and
parameter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)

71. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–
255 (2004)

	2 Multiple Criteria Optimization Classification
	2.1 Multi-criteria Linear Programming for Supervised Learning
	2.1.1 Error Correction Method in Classification by Using Multiple-Criteria and Multiple-Constraint Levels Linear Programming
	2.1.2 Multi-instance Classification Based on Regularized Multiple Criteria Linear Programming
	2.1.3 Supportive Instances for Regularized Multiple Criteria Linear Programming Classification
	2.1.4 Kernel Based Simple Regularized Multiple Criteria Linear Programming for Binary Classification and Regression

	2.2 Multiple Criteria Linear Programming with Expert and Rule Based Knowledge
	2.2.1 A Group of Knowledge-Incorporated Multiple Criteria Linear Programming Classifier
	2.2.2 Decision Rule Extraction for Regularized Multiple Criteria Linear Programming Model

	2.3 Multiple-Criteria Decision Making Based Data Analysis
	2.3.1 A Multicriteria Decision Making Approach for Estimating the Number of Clusters
	2.3.1.1 MCDM Methods
	2.3.1.2 Clustering Algorithm
	2.3.1.3 Clustering Validity Measures

	2.3.2 Parallel Regularized Multiple Criteria Linear Programming Classification Algorithm
	2.3.3 An Effective Intrusion Detection Framework Based on Multiple Criteria Linear Programming and Support Vector Machine
	2.3.3.1 Discrete Binary PSO

	References

