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Preface

Today, we are in the big data era. Big data has become a reality that no one can
ignore. Big data is our environment whenever we need to make decision. Big data
is a buzz word that makes everyone understand how important it is. Big data shows
a big opportunity for academia, industry, and government. Big data then is a big
challenge for all parties. The meaning of big data contains both data science and
applications, where big data analysis, across data science and applications, is also a
subset of big data.

This book is called Advances in Big Data Analytics: Theory, Algorithms, and
Practices. Based on more than 80 published papers and reports, it provides the
reader an up-to-date research progress and application findings of my students and
colleagues and that of mine in big data analytics and related areas in the last decade
(2010–2020). Since the contents of big data vary from the application domains, the
book summarizes the algorithms, procedures, analyses, and empirical studies as a
general picture of big data analytics development.

This book is organized into three parts and each part contains several related
chapters. Part I addresses the basic concepts of big data and theoretical foundations.
It contains Chaps. 1–3. Chapter 1, based on three published papers and a big
data world report, first discusses the big data evolution and challenges and then
presents the concepts of big data, big data analytics, data science, and application
as well as some open research problems. Chapter 2 outlines the recent advances of
multiple criteria linear programming classification in ten related published papers.
It has three sections. They are multi-criteria linear programming for supervised
learning, multi-criteria linear programming with expert, and rule-based knowledge
and multi-criteria decision-making-based data analytics. Chapter 3 presents research
findings in support vector machine classification based on 15 published papers.
There are five sections in this chapter. They are support vector machine in data
science, twin support vector machine in classification, nonparallel support vector
machine classifiers, Laplacian support vector machine classifiers, and loss functions
of support vector machine classification.

Part II mainly presents different functional research in big data analytics. It
consists of Chaps. 4–9. Among them, Chap. 4 is about feature selection with three

v
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sections. They are feature selection in classification, feature selection with regular-
ization programming, and feature selection with knowledge functions. Chapter 5
shows data stream analysis. Its first section is application-driven classification of
data streams while the second section is robust ensemble learning for mining noisy
data streams. Chapter 6 discusses learning analysis with three sections. They are
concept learning, label proportion-based learning, and enlarged learning models.
Chapter 7 presents sentiment analysis in three sections. They are development of
sentiment analysis, word embedding analysis, and domain-based sentiment analysis.
Chapter 8 is about link analysis with two sections. They are market-oriented link
analysis and variation of link analyses. Chapter 9 is called evaluation analysis. It
has three sections. They are evaluation for methodologies, evaluation for software,
and evaluation for sociology and economics.

Part III presents different applications and future analysis. It contains Chaps. 10–
12. Chapter 10 is about business and engineering applications with three sections.
They are banking and financial market analysis, agriculture classification, and
engineering problems. Chapter 11 deals with healthcare applications with two
sections. They are the underlying transmission patterns of COVID-19 outbreak—
an age-specific social contact characterization and evaluating doctor performance.
Finally, Chap. 12 is the ongoing research for Artificial Intelligence test problems in
three sections. They are basic concepts of Artificial Intelligence (AI) Intelligence-
Quotient (IQ) tests, laws of intelligence based on AI-IQ research, and a fuzzy
cognitive map approach to characteristics AI-IQ test.

I would like to express my sincere thanks to my colleagues and graduate students
who have been co-authors of the papers and reports that formed the basis of this
book. They are Prof. Gang Kou and Prof. Yi Peng, Prof. Daji Ergu, Prof. Wikil
Kwak, Prof. Zhengxin Chen, Prof. Yingjie Tian, Prof. Lingling Zhang, Prof. Xiaohui
Liu, Prof. Xianhua Wei, Prof. Xiaofei Zhou, Prof. Jiming Liu, Dr. Zhiquan Qi,
Dr. Peng Zhang, Dr. Bo Wang, Dr. Huimin Tang, Dr. Jianyu Miao, Dr. Yunlong Mi,
Mr. Wei Li and Miss Luyao Zhu, Dr. Xi Zhao, Dr. Zhuofan Yang, Dr. Guangli Nie
and Dr. Yibing Chen, Dr. Limeng Cui, Dr. Fan Meng, Dr. Zhensong Chen, Dr. Peijia
Li, Dr. Fangyao Liu, and Dr. Feng Liu.

I am also indebted to my graduate students who helped me organize this book
with different chapters for the consistency of formation, notation, figures, and
mathematical symbols. They are Dr. Bo Wang for Chap. 2, Miss Jiayu Xue, Mr. Yi
Qu, Miss Mengyu Shang, and Miss Linzi Zhang for Chap. 3, Dr. Jianyu Miao for
Chaps. 4 and 5, Dr. Yunlong Mi for Chap. 6, Mr. Wei Li and Miss Luyao Zhu for
Chap. 7, Dr. Xi Zhao and Dr. Wei Dai for Chap. 8, Dr. Yang Xiao and Dr. Huimin
Tang for Chap. 9, Dr. Fangyao Liu and Dr. Bo Li for Chaps. 10 and 11, and Dr. Wei
Dai for Chap. 12.

In addition, I would like to thank several individuals who have encouraged
me to prepare and publish this book. They are Prof. Daniel Berg (University of
Miami, USA), Prof. James M. Tien (University of Miami, USA), Prof. Zhengxin
Chen (University of Nebraska at Omaha, USA), Prof. Florin G. Filip (Romania
Academy of Sciences, Romania), Prof. Svetozar D. Margenov (Bulgarian Academy
of Sciences, Bulgaria), Prof. Enrique Herrera-Viedma (University of Granada,
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Spain), and Prof. Fuad Aleskerov (National Research University Higher School of
Economics, Russia).

Finally, we would like to acknowledge the funding agencies who provided their
generous support to our research activities on this book. They are Nebraska Furni-
ture Market—a unit of Berkshire Hathaway Investment Co., Omaha, USA for credit
scoring and recommendation system fund (2008–2009, 2016–2017); Nebraska
EPScOR, the National Science Foundation of USA for industrial partnership fund
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National Science Foundation of China (Key Project: #71932008, 2020–2024, Key
Project: #91546201, 2016–2020, Key Project: #71331005, 2014–2018, International
Collaboration Project: #71110107026, 2012–2016).

The first draft of this book was compiled during the COVID-19 pandemic from
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book was finally completed in December 2020, Qingshuiwan, Hannan, China.

Beijing, China Yong Shi
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Part I
Concept and Theoretical Foundation



Chapter 1
Big Data and Big Data Analytics

Big data now is a common term. However, the evolution of big data comes from
twofold. The creation of the computer in the 1940s gradually provides tools for
human beings to collect massive data, while the term “big data” becomes a popular
slogan to represent the collection, processing, and analysis of various data [1]. The
data has been exponentially growing for the last 70 decades. EMC2 [2] estimated
that the world generated 1.8 zettabytes of data (1.8 multiple 21 zeros) by 2011.
In fact, this figure has grown to 44 zettabytes, about 24 times in 2020. Big Data
Analytics has arisen as the technical means dealing with both theory and application
of big data. This chapter elaborates on the understanding of big data and its
analytics. Section 1.1 briefly describes big data evolution and challenges. Section
1.2 is about big data’s current status, including its development in the world as well
as in China. Section 1.3 explores big data analysis and data science problems.

1.1 Big Data Evolution and Challenges

Nowadays, in human society, big data is the environment that we cannot ignore
in our daily activities. Big data occurs as a phenomenon. Whenever we make a
decision, the impact of big data must be considered. Big data is a “buzz” word that
is a better capture about the name of data collection and analysis which went through
the stages of database management in 1960s, data warehouse in 1970s, knowledge
discovery in databases (KDD) in 1980s, enterprise resource planning (ERP) and data
mining in 1990s, customer relationship management (CRM) and business analytics
(BA) in 2000s. Big data, as a good term, unifies all of the above concepts so that
the majority of people know what it means. Big data is also a big challenge for
those people who analyze the data due to its complex structure and lack of available
technology. Furthermore, big data provides a big opportunity to the business world
for increasing productivity [3].
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The common concept of big data contains the applications, engineering, and
scientific issues of big data. The definition of big data varies from academic and
business communities and there is no unified definition about big data. In some
professional communities, the terms of business intelligence and business analytics
are also used to represent big data analytics [4].

In 2012, the National Science Foundation of USA [5] provided the following
definition:

Definition 1.1 Big data is “large, diverse, complex, longitudinal, and/or distributed
datasets generated from instruments, sensors, internet transactions, email, video,
click streams, and/or all other digital sources available today and in the future”.

In May 2013, a group of international scholars has brain-stormed two versions of
big data definitions at the 462nd Session: Data Science and Big Data in Xiangshan
Science Conferences [6] at Beijing, China, where the author served as one of
co-chairs. The first version of big data was given for academic and business
communities as:

Definition 1.2 Big data is a collection of data with complexity, diversity, het-
erogeneity and high potential value, which are difficult to process and analyze in
reasonable time.

The second version is for organizations and governmental policy making as:

Definition 1.3 Big data is a new type of strategic resource in digital era and the
key factor to drive innovation, which is changing the way of human being’s current
production and living.

In addition, “4V’s” have been commonly used to capture the main characteristics
of big data: Volume, Velocity, Variety and Veracity [7, 8].

The history of data analytics can be traced back to more than 200 years ago when
people used statistics to solve real-life problems. In the area of statistics, Bayes’
Theorem has been playing a key role in developing probability theory and statistical
applications. However, it was Richard Price (1723–1791), a famous statistician,
edited Bayes’ Theorem after Thomas Bayes’ death [9]. Richard Price was also
one of the scientists who initiated the use of statistics in analyzing social and
economic datasets. In 1783, Price published “Northampton table”, which collected
observations for calculating of the probability of the duration of human life in
England. In this work, Price showed the observations via tables with rows for
records and columns for attributes as the basis of statistical analysis. Such tables now
are commonly used in data mining as multi-dimensional tables. Therefore, from the
historical point of view, the multi-dimensional table should be called as “Richard
Price Table” and Price should be honored as the father of data analytics, later
called data mining. Since the 1950s, as computing technology has been gradually
used in commercial applications, many corporations have developed databases
to store and analyze collected datasets. Mathematical tools employed to handle
datasets revolute from statistics to methods of artificial intelligence, including neural
networks and decision trees. In the 1990s, the database community started using the
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term “data mining”, which is interchangeable with the term “knowledge discovery
in databases (KDD)” [10]. Now data mining becomes the common technology
of data analytics over the intersection of human intervention, machine learning,
mathematical modeling, and databases.

In recent years, many authors published their opinions about how big data is
deeply impacting the evolution of science and engineering as well as the devel-
opment of society. One of the popular books, written by Mayer-Schönberger and
Cukier [11] showed three advantages of big data: (1) access to all data undermines
the sampling; (2) rough measurements for big data replace the requirement of high-
quality data preparation; and (3) decision making is based on correlations of big
data, instead of the reasoning. Although such advantages represent the importance
of big data analytics, they cannot change the fundamentals of data analytics, which
are still sampling, accuracy and reasoning (see Sect. 1.3). Big data does not mean
the entire data. It is impossible to collect the entire data, which is a relative concept.
However, big data, comparing with small data, can provide a very large sample.
The larger the sample is, the more robust the results are. Big data may lead a better
learning result, but the sampling process is needed to test and predict. With a rough
data preparation, big data may produce a quick response or rough knowledge for
people to make decision. However, such a decision could be good for a short run,
not for a long run. The long run decision requires the solid and high-quality data
preparation. In addition, for decision makers, seeking the reasoning of big data
is more important than finding the correlations. Using of big data in engineering
practice or business actions is not only for what we can do, but more on what
we should do for the future. Therefore, big data needs data mining techniques to
discover knowledge and predict the future. Based on known data mining methods,
big data analytics should consider the large sample from all available data (structure
or non-structured data); look for the precise solution based on the rough solutions;
and identify the reasoning from the correlations. Big data analysis does not remove
the fundamentals of data analysis or data mining. Instead, it improves the analytic
methodologies since all data are supposedly are available.

Among many challenges of the big data problems, it is believed that the following
three problems are urgent to solve in order to gain benefits from big data in science,
engineering and business applications:

Challenge 1.1 Transforming Semi-structured and Non-structured Data into
“Structured Format”
In the academic field of big data, it is not clear about the principle, basic rules
and properties of data, especially semi-structured and non-structured data due to
complexity of such data. The data complexity reflects not only the variety of
the objects that data represents, but also a partial image that each dataset can
present for a given object. The relationship of data representation and a real
object just likes that of “the blind men and an elephant” [12]. Even though each
data set truly represents an angle of the object, it cannot be its whole picture.
The investigation of theoretical components of big data, which can be viewed as
“data science” deserves the interdisciplinary efforts from mathematics, sociology,

https://www.google.co.kr/search?newwindow=1&client=firefox-a&hs=hy1&rls=org.mozilla:zh-CN:official&channel=sb&q=interdisciplinary&spell=1&sa=X&ei=TiyYU6vYDImRkwX-xYHIBg&ved=0CBoQvwUoAA&biw=1150&bih=657
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economics, computational science and management science. However, the term of
data science is still under discussion among the research communities. Thanks to
the advancement of information technology in recent years, the techniques, such
Hadoop and MapReduce allow us to collect a large amount of semi-structured
and non-structured data in a reasonable amount of time. Now, the key engineering
challenge is how to effectively analyze these data and discover knowledge from
them in an expected time. The answer could be that first transform the given
semi-structured and/or non-structured data into a structured data-like format (or
pseudo multi-dimensional table), and then conduct a data mining process by
taking advantage of the existing data mining algorithms that are mainly developed
for the structured data. Note that, the transformation from semi-structured and
non-structured data into structured format should be subject-oriented. Once the
structured data-like format is built up, the “first-order mining” by using data mining
tools can result “rough knowledge” (called hidden patterns in data mining). To
upgrade such knowledge into the “intelligent knowledge” that can be used for
decision support, the analysts should combine some sort of human knowledge, such
as experience, common sense, domain preference with the rough knowledge. This
is viewed as the “second-order mining” [13].

Since most big data is based on semi-structured and/or non-structured represen-
tations, the “structured rough knowledge” from big data may reflect new properties,
which can be captured by decision makers when it is upgraded as intelligent
knowledge. The key value of big data analytics or data mining is to obtain intelligent
knowledge.

Challenge 1.2 Exploring the Complexity, Uncertainty and SystematicModeling
of Big Data
As mentioned as in the above, any data representation of a given object is its
partial picture of the facts. The complexity of big data comes from the coherent
of data representation while the uncertainty of big data causes from the changes
of the objects in the nature as well as the variety of data representations duo to
measurements. Although a certain data analytic method is applied on big data, the
knowledge discovered from the analysis is just knowledge from that particular angle
of the real object. Once the angle is changed by the way of collecting or viewing
the data from the object, the knowledge is no longer to be useful. For example, in
petroleum exploration engineering, which can be viewed as a big data problem, the
data mining has been done on spatial database generated from seismic tests and
well log data collection. The underground geological structure itself is complicated.
The non-linear patterns of data are changeable via different dimension and angles.
Any results of data mining or data analysis could be knowledge that is only true
for the given surface. If the surface is changed, the result is changes as well.
Therefore, how can one derive the intelligent knowledge from knowledge from a
surface and knowledge from a surface turning around 90◦ is challengeable [14]. The
breakthrough to a systematic modeling on complexity and uncertainty of big data
analysis and mining is needed for gaining knowledge from big data. Form a long-run
point of view, it could be not easy for us to establish a comprehensive mathematic
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system design about big data as a whole. However, through the understanding of
particular complexity or uncertainty in given subjects or domain of fields, it is
possible to build a domain-based systematic modeling for the specific big data.
As long as a series of such modeling structures are founded, the collection of
them can be viewed as a systematic modeling of the big data. From a short-run
point of view, if the engineers can find out some general approaches to deal with
complexity and uncertainty of big data in a certain field, say in financial market (with
data stream and media news) or internet retails (images and media evaluations),
it will bring added value to social and economic development. In addition, the
formats of complexity and uncertainty of big data result in the measurement and
evaluation on the rough knowledge from big data mining. Many known techniques
in engineering, such as optimization, utility theorem, expectation analysis, can
be used to measure how the rough knowledge gaining from big data should be
better combined with human judgment into the “second-order mining” process to
effectively elicit the intelligent knowledge for decision support. Note that since the
knowledge changes with individual and situation, the machine-man (big data mining
vs. human knowledge) is still playing a key role in big data modeling.

Challenge 1.3 Exploring the Relationship of Data Heterogeneity, Knowledge
Heterogeneity and Decision Heterogeneity
At the big data environment, decision makers face three heterogeneous problems:
data heterogeneity, knowledge heterogeneity and decision heterogeneity. Tradi-
tionally speaking, decision making depends on the learning of knowledge from
others and accumulation of experience. Learning of knowledge now is more based
on the data analysis and data mining. In a theory of management information
system, decision making can be classified as three levels: structured decision, semi-
structured decision and non-structured decision depending on the responsibilities of
individuals in an organization [15]. The operational staffs handling routine works
relate to structured decision. The managers’ decision is based on subordinates’
reports (almost of them are structured) and their own judgments and refers as semi-
structured. The top-managers or chief executive officer (CEO) make a final decision
is non-structured, which is most likely text or voice. The demand of decision makers
for data or information (quantitative forms) and knowledge (qualitative forms) are
different according to different levels of the responsibilities. However, big data is
disruptively changing the decision-making process. Based on big data analysis or
mining, the functions of business operation (structured decision), manager (semi-
structured decision), and CEO (non-structured decision) can be combined as a whole
picture for decision making. For instance, a marketing person may use a real-time
credit card approval system based on big data mining technology to quickly approve
a credit limit to a customer without reporting to a supervisor. Such a decision has
almost zero risk. He or she is a final decision maker, representing both manager and
CEO.

In a data mining process using structured data, the rough knowledge normally
is structured knowledge due to its numerical formats. In big data mining, although
rough knowledge in the “first-order mining” is derived from heterogeneous data,
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it can be still reviewed as structure knowledge since the data mining is carried
out on structured data-like format or pseudo multi-dimensional table. When the
“second-order mining” is used, the structured knowledge is combined with domain
knowledge of managers or CEO that are semi-structured or non-structured and grad-
ually upgraded into intelligent knowledge [16]. Therefore, intelligent knowledge
may be the representation of non-structured knowledge. Note that if the business
operations only involve with semi-structured data and/or non-structured data, either
it results in non-structured knowledge without data analysis (mining) or structured
knowledge which is from data mining. Such structured or non-structured knowledge
can impact semi-structured decision or non-structured decision depending on the
levels of management involvements. Big data, nevertheless, creates a challenge to
traditional decision-making process. Research on how the impact of big data on
decision making is complicate and perhaps philosophy oriented. An observation
is that no matter which kind of data heterogeneity is presented by big data,
rough knowledge is in the domain of “first-order mining” and searching intelligent
knowledge by the “second-order mining” is a key to study the relationship between
data heterogeneity, knowledge heterogeneity and decision heterogeneity. Exploring
how decision making can be changed in big data environment is equivalent to
investigating the relationships of processing heterogeneous data, big data mining,
domain knowledge of decision makers and involvement in decision making.

It can be predicted that any of theoretical contribution and engineering tech-
nologic breakthrough on the above three challenges can enhance the applications
of big data in our society. It will start from the field of information technology,
and then widely spreads to multi-media, finance, insurance, education, etc. for the
formulation of new business models, boosting investment, driving the consumption,
improving production, increasing productivity. In a word, it generates the big data
revolution.

1.2 Big Data Development

It is not easy to describe how big data deeply and quickly influences the world.
However, four big data events in academic community should be first mentioned.
They are the big data associations, big data conferences, big data journals and big
data sources opened by governments.

1.2.1 Big Data in Academic Community

Recent years, both academic and professional communities built various big data
related non-profit organizations to exchange and disseminate theoretical findings,
practical experience and case studies about big data as well as data science. Some of
them are the National Consortium for Data Science (NCDS), the Big Data Institute
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(BDI), Data Science Association (DSA), Institute for Big Data Analytics (IBDA),
Institute for Data Science, Institute for Data Sciences & Engineering (IDSE), Data &
Society Research Institute (DSRI), the Data Warehousing Institute (TDWI), Global
Association for Research Methods and Data Science, ACM Special Interest Group
on Knowledge Discovery and Data Mining (SIGKDD), SNIA—Analytics and Big
Data Committee (ABDC), Association of BIG DATA professionals (aBIGDATAp),
The Big Data Alliance (BDA), Digital Analytics Association (DAA), and Data
Science Consortium. It can be observed that, in some academic communities, the
term “big data” means the information technology business applications of dealing
with massive data problems while the scientific components or research aspects of
big data is called data science. This is why data science somehow is interchangeable
with big data. In some professional communities, terms “business intelligent and
business analytics” are used to describe big data analysis or big data mining [4].

In 2013–2020, for example, numerous big data conferences have been held
around the world. Some of them are International Conference on Big Data and
Cloud Computing, IEEE International Conference on Big Data, ISC Big Data
Conference, Big Data Technology Conference, CCF Big Data, IEEE International
Congress on Big Data, the series of Big Data Conferences (Stanford, Beijing and
Cambridge), International Conference on Algorithms for Big Data, International
Conference on Data Science (ICDS, which was founded by the author and his insti-
tutions), the Conference on Nonparametric Statistics for Big Data and INFORMS
Conference on the Business of Big Data. Most of the above conferences have
been held annually since 2014. And these conferences have attracted thousands
of scholars, engineers and practitioners for their common interests in big data
problems.

There two categories of big data related academic journals. One is under the
name of big data and another is under names of data science. The big data journals
are Journal of Big Data, Big Data Research, International Journal of Big Data
Intelligence, International Journal of Big Data, Big Data Journal and Big Data
& Society Journal. The data science journals are Annals of Data Science, The
Data Science Journal, Journal of Data Science, EPJ Data Science, Data Science
Journal, and International Journal of Data Science. Most of these journals are newly
established in recent years and need to demonstrate the reputations by publish
cutting-edge research findings and technological advances in big data related areas.

1.2.2 Big Data in the World

It has been recognized that most data of “big data” come from three sources: The
large amount of data generated from social and economic activities are controlled
by governments. The enterprises, especially the well-known big data companies
such as Google in U.S., Baidu in China and Yandex in Russia, own their business
data as the important assets. The rest of open data accesses from online are free
for anyone to download or use. Therefore, governments play a key role in making

https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=24&ved=0CFQQFjADOBQ&url=http://algorithms-for-big-data.org/&ei=BtNtU_rbFo6ikgWqgIHQDQ&usg=AFQjCNExw0Six4TfQdSSPaFYYpo-4xcTHg
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDAQFjAC&url=http%3A%2F%2Fwww.epjdatascience.com%2F&ei=sL2bU6CBKsaBlAX71IGYBg&usg=AFQjCNH0RDZPwXl_JyuvPmG0JBsj6cyTtg&sig2=j6zD3m4OD9ddNDWrbOFEgw&bvm=bv.68911936,d.dGI&cad=rjt
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDYQFjAD&url=http%3A%2F%2Fwww.jstage.jst.go.jp%2Fbrowse%2Fdsj&ei=sL2bU6CBKsaBlAX71IGYBg&usg=AFQjCNFfKZGm1yjHQSfO2pybQmmKck66mQ&sig2=qIfpaL3J6wp9q9NvmHJtOA&bvm=bv.68911936,d.dGI&cad=rjt


10 1 Big Data and Big Data Analytics

policies and promoting big data applications. Governmental actions on big data can
be categorized as two stages.

1.2.2.1 Stage 1 (2009–2012): Start-Up

In 2009 the U.S. government launched its Data.gov website to offer governmental
datasets to the public, and later in 2011 the Open Government Partnership (OGP)
initiated by a United Nation General Assembly meeting. The United States and the
United Kingdom, both are founders of OGP, delivered their national action plans
for the first time, in order to open the government data as their main priority and
promise to accomplish this goal. In 2011 the McKinsey Global Institute (MGI)
published a special report called “Big Data: The next frontier for innovation,
competition, and productivity”, which was for the first-time a thorough introduction
and prospection of big data released from a distinguished institute. Around that time,
big data was widely discussed among both academic circles and economic circles.
The Obama Administration launched the “Big Data Research and Development
Initiative” on the White House official website in 2012, demonstrating that big
data technologies evolved from early commercial operations to national scientific
and technological strategies. Meanwhile, as the ongoing development of Internet
and mobile communication technologies are increasing exponentially, (including
intelligent terminal devices, semi structures and unstructured data), mathematical
tools used to process datasets were shifted from statistics to artificial intelligence.
Hence, the Age of Big data began.

1.2.2.2 Stage 2 (2013–Today): High-Speed Developing

Along with matured big data fundamental technologies and techniques, academic
and business domains steered to applications research accordingly.

Big data technologies started to infiltrate into all society sectors, such as
government administration, finance, science and technology, health care, education,
transportation, industry. These sectors formed a complete big data industrial chain
and developed amounts of applications in diverse fields: smart government, smart
city, intelligent manufacturing, new retailing, etc. And this is when Hereupon big
data entered its high-speed development stage. In 2013 at the G8 Summit, eight
G8 members signed an Open Data Charter, which established the basic principles
and standards for members to improve transparency of government information
[17]. It encourages the governments open their data to public on five principles:
Open Data by Default, Quality and Quantity, Usable by All, Releasing Data
for Improved Governance, and Releasing Data for Innovation. So far, a number
of countries have set up their data.gov style websites. The released big data
covers broad categories, including Agriculture, Climate & Weather, Infrastructure,
Energy, Finance & Economy, Environment, Health, Crime & Justice, Government &

http://data.gov
http://data.gov
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Policy, Law, Job & Employment, Public Safety & Security, Science & Technology,
Education, Society & Culture, Tourism and Transportations [18].

In terms of the subject of “Open Data”, Europe is at the forefront. In 2014, the
European Commission adopted the “Towards a Thriving Data-driven Economy”
strategy and advocated European countries to seize the opportunities in data
economy development. In March 2018, news of Facebook data leakage scandal
started spreading and it is now still heating up. In the Age of Big Data (data sharing
and data safety), individual privacy balancing and protection became a worldwide
problem. In 2016, General Data Protection Regulation (GDPR) was approved by
the European Parliament and came into effect on May 25 2018. On April 25 the
same year, the European Commission released the policy document “Towards a
Common European Data Space”, addressing principles on how public sectors open
datasets, retain and collect research data, and how private companies are processing
and opening data. On October 4 2018, the European Parliament voted through the
Regulation on “The Free Flow of Non-personal Data”. Henceforth, the European
Union has built a systematical legal system for individuals’ privacy protection, as
well as data opening and sharing.

In 2019, the Tianfu Institute of International Big Data Strategy and Technology
(TIBD, which was founded by the author and local government and institutions),
Chengdu Government Service Management & Network Administration Office, the
Research Center on Fictitious Economy and Data Science Chinese Academy of
Science, and the Key Laboratory of Big Data Mining and Knowledge Management
Chinese Academy of Sciences jointly released the first “Annual Big Data World
Report”, called “Global Big Data Development Analysis Report 2018” [19]. This
report was based on the source data of 79 OGP-membership countries as well as that
of China. It produced many interesting findings regarding how big data developed in
the world. For example, the proportion of OGP membership countries by continents
making commitments to open government data in November 2018 is distributed
as the following: European countries account for 36.5%, African 19.2%, North
American 13.5%, Asian 13.5%, Latin American 13.5%, and Oceania 3.8% (see Fig.
1.1).

Another example is in terms of correlation between per capita GDP growth
and government’s efforts in opening-up data in major countries, the former is
proportional to the latter with an exception of India (see Fig. 1.2). Though the per
capita GDP growth rate in India is comparatively low, India is also a pioneering
country in government open data efforts.

In 2021, the second “Annual Big Data World Report” named “Global Big
Data Development Analysis Report 2020” was released by the TIBD and these
agencies mentioned above. This report introduces the COVID-19 pandemic and its
acceleration of big data development. It also incorporates the current status of data
opening efforts around the world with its promotional effect on digitalization and
“High-quality Development”.
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Fig. 1.1 OGP participating countries making commitments of open data (2018)

Fig. 1.2 The Relationship between Per Capita GDP and the score of construction level of
Governmental Big Data Open in world’s main countries (2018)

1.2.3 Big Data in China

In 2015, the State Council of the People’s Republic of China issued the “Action Plan
for Promoting the Development of Big Data” with the purpose of comprehensively
promoting the development and application of big data in China and accelerating
the construction of a powerful data nation [20]. Big data industry in China comes
into flourish in all fields. Later, Big data becomes one of China’s national strategies
of economic development in it’s the 13th Five-year plan (2016–2020).

The action framework can be interpreted as a Top-Level Design, which consists
of three national platforms: National Data Opening Platform, Trans-Departmental
Data Sharing Platform and Internet based National Data Service Platform (see Fig.
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Fig. 1.3 China’s big data top-down design

1.3). By 2020, the Chinese government commits to complete ten key big data
projects for three platforms so as to provide big data applications in a number of pub-
lic areas, including credit, transportation, healthcare, employment, social security,
geography, culture, education, science and technology, agriculture, environment,
safety and security, product quality, statistics, meteorology and ocean service. These
projects will finally assemble a numbers of big data systems across a wide range of
governmental departments, industries, academic and education institutes. After the
announcement of the Action Framework, the Chinese government has published a
planning program to further nail down key tasks for related departments to carry
out its respective potions of Fig. 1.3 in terms of the responsibilities, road maps and
target dates into 2020. This program offers a strong support for the completion of
the Action Framework [21].

Importantly, the Chinese government tries to use the implementation of the
framework to influence the Chinese culture and social value towards data and
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builds social data awareness. In May 2013, a group of the Chinese and international
scholars, including the author of this book, brain-stormed the meanings of big data
and provided Definition 1.2 and Definition 1.3. These definitions had a positive
influence on the Chinese leadership in the following events to build China’s big
data strategy. A Chinese version of big data can be regarded as the large-scale
data set produced and being utilized from China’s modern informatization process,
the totality of data source in the current information society and the whole set
of data, not only internet data, but also governmental and commercial data [22].
The framework calls for the entire Chinese society to have big data thinking and
emphases social data awareness. The traditional Chinese decision making relies on
qualitative thinking, not quantitative thinking. Such a cultural behavior has burdened
nation’s science and technology development. Thus, the Action Framework aims to
change the current Chinese culture by enhancing data awareness and promoting data
spirit.

Since the release of the Action Framework, the importance of big data has been
highly recognized by leaders. An integrated national big data center was proposed as
the country seeks to enhance governance capability. Not only has the national level
paid attention to big data development, local governments also attach importance
to big data increasingly. Up to June 2017, more than 40 provinces and cities issued
nearly 100 big data development policies and big data industrial plans. An expert
committee is composed of academicians, scholars from scientific research institutes,
and representatives of industrial circles. The innovation alliance is made up of
more than 70 related entities of the 14 Big Data National Engineering Laboratory.
Through these two mechanisms, big data scientists and companies would be
gathered contributing to policy making, technology consulting and technology
transformation. In addition, a series of open data competitions will be hold in eight
National Big Data Comprehensive Test Areas, to promote pubic data opening and
encourage innovative applications.

1.3 Big Data Analytics

This subsection presents some fundamental scientific problems in big data analytics.
Section 1.3.1 describes an overview of big data analytics based on multiple domains.
They include the influences of Management Science on data acquisition and data
management, Information Science on data access and processing, Mathematics and
Statistics on data understanding, and Engineering on data applications. Section 1.3.2
outlines six open research problems in big data analytics.

https://en.wikipedia.org/wiki/Qualitative_%28disambiguation%29
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1.3.1 Overview of Big Data Analytics

Although there are many different interpretations of big data, big data analytics
and data science, one can view that big data is consist of both data science and
applications, where big data analytics is an intersection of both. To distinguish these
three concepts, the following definition of data science is used in the book:

Definition 1.4 Data Science is mathematical means and algorithm to extract
knowledge from big data.

The definition above is very rough, not precise at this point due to the complexity
of big data. The boundary of data science for a given filed can be change because
the nature of big data in the field differs from others.

With Definitions 1.1–1.4, it can be viewed that if the common-known big data
is represented as a set, then data science and application are two subsets while big
data analytics is also a subset of big data, across both data science and application
since big data analytics is used data science to deal with some specific application
problems. A relationship of big data, big data analysis, data science and application
can be shown as Fig. 1.4.

In general, the process of big data analytics, as a subset of big data can be
shown in Fig. 1.5. It is consisting of several steps, including data acquisition
and management, data access and processing, data mining and interpretation, and
data applications [23]. However, due to the “4Vs” characteristics of big data, the
activities of each step in the process also face Challenges 1.1–1.3. The techniques
of multidisciplinary fields need to apply in addressing such challenges.

For Challenge 1.1, majority of big data are represented as semi-structured and
non-structured formats. Even though the technologies of MapReduce (Hadoop) can
be used to acquire big data, the traditional data acquisition and management of
Computer Science should be reinforced by the knowledge of Management Science.
For example, the organizational strategy of using big data must be considered
before performing the big data acquisition. The basic design of big data base and
management should be built up in terms of data capabilities, value, ethic, ownership,
policy, quality assurance etc. [15] With help of Management Science, big data can
play as an important role for us to make effective decision.

Fig. 1.4 Relationship of big
data, big data analytics, data
science and application
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For Challenge 1.2, the complex formats and features of big data lead the difficulty
of assessing, especially processing the data for data mining and interpretation. Many
existing techniques of Information Science are ready to respond this challenge.
Since most data mining or machine leaning algorithms are constructed to handle
structured data, they cannot be used directly analyze a large-scale of semi-structured
and non-structured data. Note that the current information technology still lacks the
ability of computing big volume of semi-structured and non-structured data, such
as clustering millions of text files, images or both in a reasonable time. To do this,
we must find a way to transform the semi-structured and non-structured data to
structured data or pseudo structured formats which can be analyzed by many known
data mining or machine leaning algorithms [18]. This transformation process can
be done by using the existing information retrieval algorithms in documents such
as for information within documents and metadata about documents and web page.
For a given objective of the transformation, some information retrieval algorithm
can be applied to turn each text file into a single record with many attributes into a
“structured or pseudo structured format”. Similarly, an image can be transformed
by using a known pattern recognition algorithm as a record of the transformed
format. It can be observed that whenever the transformation objective is changed,
the structured or pseudo structured format will vary. Therefore, the knowledge of
Information Science can be effectively applied to treat the big data access and
processing problem.

For Challenge 1.3, it is necessary to utilize rules and principles of Mathematics
and Statistics in big data analytics and its interpretation. With the analyzable big data

http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Metadata_%28computing%29
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formats, all possible methods in Mathematics and Statistics may be used to conduct
Big data analysis. For instance, the modeling methods can include parent space
identification and sampling; clustering, classification, regression, prediction and
variable selection in data mining methods; relevance analysis, latent variable ana-
lytics and statistical inference in analytical methods; and sub sampling, complexity
and distributed computation in computation methods. The challenge reflects when
and which method is appropriate to be used in a particular case of big data analysis.
Because the transformation of Big data is subject to the pre-determined objective,
it can be useful to choose a method for data mining or knowledge discovery. Like
traditional data mining procedure, experimental design for method choice should
be conducted in such Big data mining for most of cases. However, the results of
big data mining should be interacted with the user’s judgment for the reason which
knowledge changes with the individual and situation [16]. In order to let the user has
a better understanding of knowledge from big data analysis, different representation
or visualization methods, like uniform scheme can be employed to show the simple
versions of big data complexity.

In addition, how to use knowledge from big data analysis in the real-life
applications is not easy. This perhaps turns to an Engineering problem. Engineering
is generally defined as “the application of scientific, economic, social, and practical
knowledge in order to invent, design, build, maintain, research, and improve
structures, machines, devices, systems, materials and processes” [24]. Use of big
data knowledge in most of situations has to do with enhancing the current stages of
either scientific, economic, or social conditions. Nowadays every corner and event
of our human society depends on big data. Data-driven decision eventually becomes
the most reliable approach to any problem. A good engineering design for Big data
application will naturally yield the better way to achieve scientific, social and/or
economic benefits.

Variety of big data applications can form a new industry, which can be called big
data Industry. In such an industry, big data is the input, through big data analytic
process mentioned in the above, the output will be data generated knowledge that
can be easily turned into products, such as value chain management, business
pattern, etc., to create a remarkable productivity.

1.3.2 Some Open Big Data Research Problems

In the notion of the theoretical and technical components of big data, big data
analytics has the following open problems.

Problem 1 High Dimensionality
Given a database, when the number of features (p) is far larger than the sample size
(n), and n varies with p (n = n(p)), the situation is called high dimensionality (HD)
problem. When the problem occurs at Big data, p� n(p). HD frequently appears in

http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Invention
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Process_%28engineering%29
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Economics


18 1 Big Data and Big Data Analytics

medical science, such as DNA scanning. In the linear case a basic solution can be
shown as:

Consider a linear model as y = β1x1 + β2x2 + , · · · , βpxp for dataset,
D = {(x1, y1), (x2, y2), · · · , (xn, yn)}. Then, the matrix format can be represented as
Y = Xn × pβp × 1 and the solution is β̂ = (X’X)−1X’Y .

An asymptotical normality of this is:
√
n
(
β̂ − β

)
∼ N

(
0, 1

n
(X’X)−1σ 2

)
d→ N

(
0, σ 2Ip×p

)

There are a number of recent approaches that may categorized as sparse
modeling, including compressed sensing, low rank decomposition of matrix and
sparse learning to deal with HD problems (for instance, see [25–28]). Some of
these developed algorithms are available to be used to handle HD problems in big
data. The open research questions for HD problems are how to add priors so that
a HD problem can be well defined; and how to find effective sparse modeling, etc.
Eventually, systematically solving HD problems need a build-up on the theory and
methodology of either HD statistics or HD data mining.

Problem 2 Sub-sampling
The current technologies, like Hadoop system of processing Big data are some
types of “divide-and-conquer” schemes, where sub-sampling techniques have been
employed. For example, in MapReduce, Map is designed as random sub-sampling
of sub datasets with intermediate solutions from given large database, where Reduce
is an aggregation process of intermediate solutions for the final estimation of a
given database [29]. Although sub-sample is one of the key concepts in big data
processing, there are many open questions that need to address so that the more
advanced technologies on big data can be developed. For example, how to sub-
sampling/aggregate so that the final estimation model of the given original database
is properly representing the database? Is the distributed processing feasible? How
about traditional sub-sampling/re-sampling technologies working? Are there sub-
sampling axioms, such as similarity and transitivity?

Problem 3 Computational Complexity
Traditionally, computational complexity concerns with how difficult a problem can
be solved, or how much computation cost must be paid if an algorithm is used to
solve a problem.

As an illustration, if a traditional setting can be R = A(P) := A(D), where D is
database, A is computation and R is the complexity. Then a Big data setting should
be Rt = At(Dt), where all D, A and R are changed with time associated with the
cost. In this case, the core open questions are how to properly define complexity in
big data setting? Is the complexity easy or difficult to measure for a given big data
problem? How to establish complexity theory for some specific types of big data
problems?

Problem 4 Real and Distributed Computation
Parallel and distributed processing become necessary, perhaps is a unique way of
processing for Big data [30]. The main challenges of such a real and distributed
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(R/D) computation in handling Big data come from the relationship of three
components of Hadoop system: the Hadoop Distributed File System (HDFS) which
is a distributed file system designed to run on commodity hardware, HBase which
is an open source, non-relational, distributed database, and MapReduce. The quality
measurements of Hadoop system for a real and distributed computation include
real time, feasibility, efficiency, scalability, etc. It should be noted that some of the
measures are conflicted each other and a compromised standard among them is a
way to look for a good computational result. There are some open questions in this
area. For example, does the R/D computation support fast storage/reading/ranking?
For problem of decomposability, can a data modeling problem be decomposed into
a series of sub-data set dependent problems? For solution assemblies, how can the
solution of a problem be assembled with its sub-solution (component solutions)?
When the distributed process is conducted, can the forward and incremental steps
be performed by on-line computation?

Problem 5 Unstructured Processing
It has been commonly recognized that structured data are those that can be
represented with finite number of rules and can be processed within acceptable
time. Otherwise, the data are unstructured (some of them are also called semi-
structured), which are difficulty to process (for example, thousands of images or
text files). The main challenge of processing unstructured data is that they are
multi-sourced and heterogeneous. In most of cases, the understanding of the data is
cognition dependent. In this area, the core open questions are how to build a uniform
platform on which different types of unstructured data (e.g., mixture of images, text,
video and audio) can be processed simultaneously? How to develop the cognition
consistent approaches for unstructured data modeling?

Problem 6 Visualization
Using visual-consistent figures or graphics to exhibit the intrinsic structure and
patterns in HD big data is challenge visualization analysis. This requires building a
basic tool for human-machine interface and expanding applications. For example, by
using feature extraction, a HD data space can be transformed into feature space with
low dimension (LD), and then by using to visualization techniques, the latter can be
turned into visualized space with 2-dimension or 3-dimension. The key concept
of judging a good visualization tool is that the end user can easily understand
the meaning of big data results without knowing any technical analysis behind.
Some current visualization techniques used in showcases, such as The Second Life
(http://secondlife.com/) and video games, can be effectively applied to Big data
visualization. The core open questions are: is there essential feature extraction of HD
data (say, dimension-reduction)? What is structured representation of imaginable
thinking? How to construct appropriate visualized space? How to map a problem in
feature space (or data space) to a representation problem in visualized space? [31].

Big data analytics is still a very pre-mature field at this point. Fundamentally
speaking, in order to conduct an applicable big data analysis, one should think
about how to design big data analytic algorithm structure. Here are some ideas

http://secondlife.com/
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open to be discussed. First, a big data analytic algorithm should be an algorithm
that can process and analyze big data under available computational resource and
complete in a reasonable time. The big data can be handled by it has at least one
of following characteristics: large-size, heterogeneous, distributed, multi-sources,
data steam, high-dimension, and high-uncertainty. The algorithm can be performed
at appropriate degree of time, storage and communication complexity. It also
has some unique properties, such as highly fault toleration, solution integration
and assembled capability. Second, the key ideas of designing a big data analytic
algorithm could include maintaining the proper ratio of data sample and population;
simple modeling and simple procedure; inferior preciseness, complex inherence and
theory based. Finally, in addition to well-known statistics or data mining methods,
other computational methods, such as set-based processing, stochastic comput-
ing, online computing, distributed/parallel computing, cloud computing may be
employed to construct a high-efficient big data analytic algorithm. These concepts
and discussions about big data and big data analytics have been implemented in the
following chapters of this book.

Looking around the world, big data development is just at the beginning. Big
data is treasure created by the people and should be used to benefit the people.
Even the precise meaning of big data analytics is not clear yet, the data scientists
and engineers should figure out the fundamental issues of big data which may
lead a context of data science. The advancement of data science will provide more
theoretical findings and creative or innovative techniques to support the big data
development into the future.
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Chapter 2
Multiple Criteria Optimization
Classification

As the increasingly strong computational power of computers fills the shortage
of human brain at calculating, data mining, a major component of data science,
has emerged as the times require due to its merit of being capable of extracting
novel and useful knowledge which has potential value from large scale of complex
data. However, from the mathematical perspective, some data mining methods,
such as decision tree, genetic algorithm, and association rules could be considered
as heuristic algorithms: which means to select a “better solution” from several
alternative solutions as the criterion of classification. These methods lack of
exploring how to locate the “best solution” systematically.

Based on [1] and [2], this chapter describes the advanced techniques of apply-
ing multi-criteria decision making methods and multi-criteria mathematical pro-
gramming to conducting data mining process for selecting the “best solution”
from multiple alternative solutions, instead of using heuristic algorithms. Sec-
tion 2.1 is Multi-Criteria Linear Programming (MCLP) for supervised learn-
ing, which includes error correction method in classification by using Multiple-
Criteria and Multiple-Constraint Levels Linear Programming (MC2LP) [3], Multi-
Instance classification based on regularized Multiple Criteria Linear Programming
(RMCLP) [4], supportive instances for RMCLP classification [5], and kernel
based simple RMCLP for binary classification and regression [6]. Then, Sect. 2.2
describes a group of knowledge-incorporated MCLP classifier [7] and decision rule
extraction for RMCLP model [1]. Finally, Sect. 2.3 summarizes three methods
of MCDM based data analytics. They are a MCDM approach for estimating
the number of clusters [8], parallel RMCLP classification algorithm [9], and
an effective intrusion detection framework based on MCLP and support vector
machine.
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2.1 Multi-criteria Linear Programming for Supervised
Learning

2.1.1 Error Correction Method in Classification by Using
Multiple-Criteria and Multiple-Constraint Levels Linear
Programming

First, the MCLP model for classification is outlined as below [10, 11]:
Given a set of n variables about the records XT = (x1, x2, . . . , xl), and then

let xi = (xi1, xi2, . . . , xin)T be one sample of data, where i = 1, 2, . . . , l and l is
the sample size. In linear discriminant analysis, data separation can be achieved by
two opposite objectives, that is, minimizing the sum of the deviations (MSD) and
maximizing the minimum distances (MMD) of observations from the critical value.
That is to say, in order to solve classification problem, we need to minimize the
overlapping of data, i.e. α, at the same time, to maximize the distances from the
well classified points to the hyperplane, i.e. β.

However, it is difficult for traditional linear programming to optimize MMD
and MSD simultaneously. According to the concept of Pareto optimality, we can
check all the possible trade-offs between the objective functions by using multiple-
criteria linear programming algorithm. The MCLP model can be described by Fig.
2.1.

Moreover, the first Multiple Criteria Linear Programming (MCLP) model can be
described as follows:

min
∑
i

αi

min
∑
i

βi

s.t.AiX = b + αi − βi,Ai ∈ Bad,

AiX = b + αi − βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

Fig. 2.1 MCLP model Ax = b
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Here, αi is the overlapping and β i is the distance from the training sample xi to
the discriminator (w · xi) = b (classification separating hyperplane).

Then, the MC2LP model for classification is introduced in [10].
According to the discussion above, a non-fixed b is very important to our

problem. At the same time, for the simplicity and existence of the solution, b should
be fixed in some interval.

As a result, for different data, we fix b in different pairs of intervals [bl, bu],
where bl and bu are two fixed numbers. Now our problem is to search the best cutoff
between bl and bu at every level of their tradeoffs, that is to say, to test every point
in the interval [bl, bu]. We keep the multiple-criteria the same as MCLP, which is,
MMD and MSD. And then, the following model is posed:

min
∑
i

αi

min
∑
i

βi

s.t.AiX = [bl, bu]+ αi − βi,Ai ∈ Bad,

AiX = [bl, bu]+ αi − βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

where Ai, bl and bu are given, and X is unrestricted.
In the model, [bl, bu] represents a certain tradeoff in the interval. By virtue of

the technical of Multiple-criteria and multiple-constraint levels linear programming
(MC2LP), we can test each tradeoff between the multiple-criteria and multiple-
constraint levels as follows:

minλ1
∑
i

αi − λ2
∑
i

βi

s.t.AiX = γ1bl + γ2bu + αi − βi,Ai ∈ Bad,

AiX = γ1bl + γ2bu + αi − βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

Here, the parameters of λ × γ are fixed for each programming problem.
Moreover, the advantage of MC2LP is that it can find the potential solutions for
all possible trade-offs in the parameter space systematically [12, 13] where the
parameter space is

{(λ, γ) |λ1 + λ2 = 1, γ1 + γ2 = 1} .

Of course, in this model, choosing a suitable pair for the goal problem is a
key issue and needs domain knowledge. Consequently, a non-parameter choosing
MC2LP method should be posed.
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For the original MCLP model, one cutoff b is used to predict a new sample’s
class, that is to say, there is only one hyperplane. The former MC2LP model points
out that we can define two cutoffs bl and bu instead of the original single cutoff.
And then a systematical method can be used to solve this problem. Consequently,
all potential solutions at each constrain level tradeoff can be acquired. However, one
problem is how to find the cutoffs bl and bu.

On one hand, we utilize two cutoffs to discover the solution of higher accuracy;
on the other hand, we hope the cutoffs can be obtained from the system directly.
Inspired by the idea above, we address our first MC2LP model, which solves the
classification problem twice.

For the first step, MCLP model is used to find the vector of external deviations α.
It is a function of λ. For simplicity, we set b = 1. And then, we fix the parameter of
λ to get one potential solution. Now a non-parameter vector of external deviations α
is acquired. The component (αi > 0) means the corresponding sample in the training
set is misclassified. In other words, Type I and Type II errors occur. According to
the idea of MC2LP, we can detect the result of every single MCLP by fixing the
parameter of γ at each level in the interval [bl, bu]. Now, we find the maximal
component of α:

αmax = max {αi, 1 ≤ i ≤ l} . (2.1)

Indeed, the smaller the weight of external deviations is, the bigger αmax is.
The misclassified samples are all projected into the interval [1− αmax, 1+ αmax]

according to the weight vector X obtained from the MCLP model. In this way, we
define bl and bu as 1 − αmax and 1 + αmax, respectively. It is easy to see, if we
want to lessen the number of two types of error, in effect, we just need to inspect the
cutoffs by altering the cutoff in the interval

[1− αmax, 1+ αmax] .

Moreover, for the second step, a new MC2LP classification model can be stated
as follows:

minλ1
∑
i

αi − λ2
∑
i

βi

s.t.AiX = [1− αmax, 1 + αmax]+ αi − βi,Ai ∈ Bad,

AiX = [1− αmax, 1+ αmax]+ αi − βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

whereAi, αmax are given, and X is unrestricted, [1− αmax, 1+ αmax] means a certain
tradeoff in the interval. At the same time, λ = (λ1, λ2) is the parameter chosen in
the first step.
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The most direct modification of the new MC2LP model is to transfer the single
objective function to be a multiple-criteria one. Because the vector of external
deviations is a function of λ, it is easy to observe that if the weight between external
deviations and internal deviations changes, α changes. Consequently, αmax alters.
And the ideal α is the one that makes αmax not too huge. In other words, we do not
hope to check the weight that satisfies λ1 not too small. Actually, some papers have
proved that only if λ1 > λ2, then α · β = 0, which makes the model meaningful
[14]. As a result, we only need to check the parameters of objective functions that
make αmax not too big, in short, not too far away from the original one.

On the other hand, we expect αmax not too small. That is to say, we hope the
model has some generalization. Hence, two small positive numbers ε1 and ε2 are
chosen manually. And then, the interval is built as [(1− αmax − ε1, 1− αmax + ε1),
(1+ αmax − ε2, 1+ αmax + ε2)]. This means that the lower and the upper bound of
the interval should be trade-off of some intervals, i.e. the multiple-constrained levels
are actually multiple-constrained intervals. Indeed, checking every tradeoff of the
intervals is the same as checking every tradeoff of 1− αmax − ε1 and 1+ αmax + ε2.
In this case, we can consider the objective function as a multiple-criteria one. It can
be stated as follows:

min
∑
i

αi

min
∑
i

βi

s.t.AiX = [1− αmax − ε1, 1 + αmax + ε2]+ αi − βi,Ai ∈ Bad,

AiX = [1− αmax − ε1, 1+ αmax + ε2]− αi + βi,Ai ∈ Bad,

αi, βi ≥ 0, i = 1, 2, . . . , l

(2.2)

where Ai, αmax, ε1 and ε2 are given, and X is unrestricted. Here, ε1 and ε2 are two
nonnegative numbers.

Lemma 2.1 For certain trade-off between the objective functions, if b is maintained
to be the same sign, then hyperplanes, which are obtained in the MCLP model, keep
the same. Furthermore, different signs result in different hyperplanes.

Proof Assume that the tradeoff between the objective functions is λ = (λ1, λ2) and
X1 is the solution obtained by fixing b to be 1. Then, set b1 as an arbitrary positive
number. The MCLP model can be transformed as follows:

minλ1
∑
i

αi − λ2
∑
i

βi

s.t.AiX = b1 + αi − βi,Ai ∈ Bad,

AiX = b1 − αi + βi,Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l
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The problem above is the same as:

minλ1

∑
i

αi

b1
− λ2

∑
i

βi

b1

s.t.Ai
X
b1
= 1+ αi

b1
− βi

b1
, Ai ∈ Bad,

Ai
X
b1
= 1− αi

b1
+ βi

b1
, Ai ∈ Good,

αi, βi ≥ 0, i = 1, 2, . . . , l

And then, we let αi′ = αi

b1
, βi′ = βi

b1
, X′ = X

b1
. It is obvious that the solution is X′ = X

b1

and the hyperplane AX′ = b1 is the same as AX1 = 1.
Similarly, we can prove that when b is a negative number, the solution is the same

as the one that is obtained from b = −1.
As a result, we just need to compare the solutions (hyperplanes) resulted from

b = 1 and b = −1. For this case, it is easy to see that the signs before αi and
β i swap when we transform b = 1 into b = 1. If this happens, then the objective
function changes into −λ1

∑
i

αi + λ2
∑
i

βi . This means that the solutions will be

different.

According to the lemma, we have the theorem below:

Theorem 2.1 For our MC2LP model (2.2) above, according to the solutions
(hyperplanes), space γ is divided into two non-intersect parts.

Remark 2.1 When [1− αmax, 1+ αmax] is achieved, ε1 and ε2 are chosen to satisfy
that 0 is contained by the interval [1 − αmax − ε1, 1 + αmax + ε2]. In this case, for
any λ, the solutions belong to the trade-offs with same sign will result in the same
hyperplane. In other words, there are only two different hyperplanes corresponding
to model (2.2). In short, the flexibility of model (2.2) is limited.

In many classification models, including original MCLP model, two types of
error is a big issue. In credit card account classification, to correct two types of
error can not only improve the accuracy of classification but also help to find some
important accounts.

Accordingly, many researchers have focused on this topic. Based on this
consideration, more attention should be paid to the samples that locate between two
hyperplanes acquired by the original MCLP model, that is, the points in the grey
zone [15]. Consequently, we define the external deviations and internal deviations
related to two different hyperplanes, the left one and the right one, that is, αl, αr , β l

and βr.
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Definition 2.1 The conditions the deviations should satisfy are stated as follows:

αl
i =

⎧
⎪⎪⎨
⎪⎪⎩

0, AiX < 1− αmaxandAi ∈ Bad;
AiX − (1− αmax) , AiX ≥ 1− αmaxandAi ∈ Bad;
0, AiX ≥ 1− αmaxandAi ∈ Good;
(1− αmax)− AiX, AiX < 1− αmaxandAi ∈ Good.

αr
i =

⎧
⎪⎪⎨
⎪⎪⎩

0, AiX < 1+ αmaxandAi ∈ Bad;
AiX − (1+ αmax) , AiX ≥ 1+ αmaxandAi ∈ Bad;
0, AiX ≥ 1+ αmaxandAi ∈ Good;
(1+ αmax)− AiX, AiX < 1+ αmaxandAi ∈ Good.

βl
i =

⎧⎪⎪⎨
⎪⎪⎩

(1− αmax)− AiX, AiX < 1− αmaxandAi ∈ Bad;
0, AiX ≥ 1− αmaxandAi ∈ Bad;
AiX − (1− αmax) , AiX ≥ 1− αmaxandAi ∈ Good;
0, AiX < 1− αmaxandAi ∈ Good.

βr
i =

⎧
⎪⎪⎨
⎪⎪⎩

(1+ αmax)− AiX, AiX < 1+ αmaxandAi ∈ Bad;
0, AiX ≥ 1+ αmaxandAi ∈ Bad;
AiX − (1+ αmax) , AiX ≥ 1+ αmaxandAi ∈ Good;
0, AiX < 1+ αmaxandAi ∈ Good.

Figure 2.2 is a sketch for the model. In the graph, the green and the red lines
are the left and right hyperplane, bl and br respectively, which are some trade-
offs in two intervals, i.e. [1 − αmax − ε2, 1] and [1, 1 + αmax + ε1]. And all

Bad Good

bi
l

bi
l

bi
l

ai
l

1-amax- e2 1+amax+e11bl br

ai
r

bi
r

bi
r

bi
r

AX = b

Fig. 2.2 MC2LP model
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the deviations are measured according to them in different colors. For instance, if
a sample in “Good” class is misclassified as “Bad” class, it means αi

r > β i
l ≥ 0

and αi
l = β i

r = 0. And then, if a sample in “Bad” class is misclassified as “Good”
class, it means αi

l > β i
r ≥ 0 and αi

r = β i
l = 0. Thus, for the misclassified ones,

αi
r + αi

l − β i
r − β i

l should be minimized.
As a result, a more meticulous model could be stated as follows:

min
∑
i

(
αr
i + αl

i

)

min
∑
i

(
αl
i − βr

i

)

min
∑
i

(
αr
i − βl

i

)

max
∑
i

(
βr
i + βl

i

)

s.t.AiX = 1+ [0, αmax + ε1]+ αr
i − βr

i , Ai ∈ Bad,

AiX = 1− [0, αmax + ε2]+ αl
i − βl

i , Ai ∈ Bad,

AiX = 1+ [0, αmax + ε1]− αr
i + βr

i , Ai ∈ Good,

AiX = 1− [0, αmax + ε2]− αl
i + βl

i , Ai ∈ Good,

αr
i , α

l
iβ

r
i , β

l
i ≥ 0, i = 1, 2, . . . , l.

where Ai, αmax, ε1 > 0, ε2 > 0 are given, and X is unrestricted.
In Fig. 2.2, for each point, there are at most two kinds of deviations nonzero.

The objective functions appear to deal with the deviations according to the position
shown in Fig. 2.2, respectively, whereas they have their own special meaning. That
is to say, it measures two types of error in some degree by means of the second and
third objective functions. As a result, in this new version of MC2LP, we not only
consider the deviations respectively, but also take the relationship of the deviations
based on two types of error into account in the objective functions. By virtue of
MC2LP method, each tradeoff between 1 − αmax − ε2 and 1 for the left hyperplane
as well as each tradeoff between 1 and 1 + αmax + ε1 for the right hyperplane can
be checked.

After obtaining the weight vector X of the hyperplane, AX = 1 is still used
to be the classification hyperplane. However, in our new model, we minimize the
distance between the left hyperplane and the right one. In other words, we discover
the hyperplane that genders the smallest grey area.

Actually, in statistics, Type I and Type II errors are two opposite objectives. That
is to say, it is very hard to correct both of them at the same time. As a result, we
modify the former model into two different models focusing on two types of error
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respectively as follows:

min
∑
i

(
αr
i + αl

i

)

min
∑
i

(
αl
i − βr

i

)

max
∑
i

(
βr
i + βl

i

)

s.t.AiX = 1+ [0, αmax + ε]+ αr
i − βr

i , Ai ∈ Bad,

AiX = 1+ αl
i − βl

i , Ai ∈ Bad,

AiX = 1+ [0, αmax + ε]− αr
i + βr

i , Ai ∈ Good,

AiX = 1− αl
i + βl

i , Ai ∈ Good,

αr
i , α

l
iβ

r
i , β

l
i ≥ 0, i = 1, 2, . . . , l.

(2.3)

where Ai, αmax and ε > 0 are given, and X is unrestricted. In this model,
∑

iα
r
i − βl

i

is not contained in the objective functions. This model can deal with Type II error,
that is, classifying a “Good” point to be a “Bad” one. Now we provide an example
to illustrate the effect of model (2.2).

As the result shown above, model (2.3) can correct Type II error in some degree.
We conclude this in the proposition below.

Proposition 2.1 Model (2.3) can correct Type II error by moving the right
hyperplane to the right based on the concept of multiple-constraint levels.

Note that the second objective function in model (2.3) is nonzero for the samples
in class “Bad” and getting negative when the right hyperplane moving to the right.
That is to say, we tolerate some Type I errors. At the same time, the first objective
function in model (2.3) renders Type II errors an increasing punishment with moving
the right hyperplane to the right. As a result, it can correct Type II error in some
degree.

Similar to model (2.3), (2.4) is posed to deal with Type I error as follows:

min
∑
i

(
αr
i + αl

i

)

min
∑
i

(
αl
i − βr

i

)

min
∑
i

(
βr
i + βl

i

)

s.t. AiX = 1+ αr
i − βr

i , Ai ∈ Bad,

AiX = 1− [0, αmax + ε2]+ αl
i − βl

i , Ai ∈ Bad,

AiX = 1− αr
i + βr

i , Ai ∈ Good,

AiX = 1− [0, αmax + ε2]− αl
i + βl

i , Ai ∈ Good,

αr
i , α

l
iβ

r
i , β

l
i ≥ 0, i = 1, 2, . . . , l.

(2.4)

where Ai, αmax and ε > 0 are given, and X is unrestricted. In this model,
∑

iα
l
i − βr

i

is not contained in the objective functions. This model focuses on Type I error, that
is, classifying a “Bad” point to be a “Good” one.
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The numerical examples to illustrate the theoretical results of this section can be
found in [3].

2.1.2 Multi-instance Classification Based on Regularized
Multiple Criteria Linear Programming

Multi-instance learning (MIL) has received intense interest recently in the field
of machine learning. This idea was originally proposed for handwritten digit
recognition by [16]. The term multi-instance learning was first introduced by [17]
when they were investigating the problem of binding ability of a drug activity
prediction. In MIL framework, the training set consists of positive and negative
bags of points in the n-dimensional real-space Rn, and each bag contains a number
of points (instances). A positive training bag contains at least one positive instance,
whereas a negative bag contains only negative instances. The aim of MIL is to
construct a learned classifier from the training set for correctly labeling unseen bags.
Multi-instance learning has been found useful in diverse domains such as object
detection, text categorization, image categorization, image retrieval, web mining,
computer-aided medical diagnosis, etc. [12–14, 18].

In this subsection, we propose a novel Multi-instance Learning method based
on Regularized Multiple Criteria Linear Programming (called MI-RMCLP), which
includes two algorithms for linear and nonlinear cases separately. To our knowledge,
MI-RMCLP is the first RMCLP implementation based on MIL, which is a useful
extension of RMCLP. The original MI-RMCLP model proposed itself is a noncon-
vex optimization problem. By an appropriate modification, we will the model to
derive two quadratic programming subproblems, which can arrive at the optimal
value by an iterative strategy solving these sequential subproblems. All preliminary
numerical experiments show that our approach is competitive with other multiple
learning formulations.

We first give a brief introduction of RMCLP in the following. For classification
about the training data:

T = {(x1, y1) , · · · , (xl, yl)} ∈
(
Rn × y

)l
,

where xi ∈ Rn, yi ∈ = {1,−1}, i = 1, · · · , l, data separation can be achieved by two
opposite objectives. The first objective separates the observations by minimizing
the sum of the deviations (MSD) among the observations. The second maximizes
the minimum distances (MMD) of observations from the critical value [19]. The
overlapping of data u should be minimized, while the distance v has to be
maximized. However, it is difficult for traditional linear programming to optimize
MMD and MSD simultaneously. According to the concept of Pareto optimality, we
can seek the best trade-off of the two measurements [2, 20]. So MCLP model can
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be described as follows:

min
u

eT u&max
v

eT v, (2.5)

s.t. (w · xi)+ (ui − vi) = b, for {i |yi = 1 } , (2.6)

(w · xi)− (ui − vi) = b, for {i |yi = −1 } , (2.7)

u, v ≥ 0, (2.8)

where e ∈ Rl be vector whose all elements are 1, w and b are unrestricted, ui is
the overlapping, and vi the distance from the training sample xi to the discriminator
(w · xi)= b (classification separating hyperplane). By introducing penalty parameter
c, d > 0, MCLP has the following version

min
u,v

ceT u− deT v, (2.9)

s.t. (w · xi)+ (ui − vi) = b, for {i |yi = 1 } , (2.10)

(w · xi)− (ui − vi) = b, for {i |yi = −1 } , (2.11)

u, v ≥ 0, (2.12)

The geometric meaning of the model is shown in Fig. 2.3.
A lot of empirical studies have shown that MCLP is a powerful tool for

classification. However, we cannot ensure this model always has a solution under
different kinds of training samples. To ensure the existence of solution, recently,
Shi et al. proposed a RMCLP model by adding two regularized items 1

2w
T Hw and

Fig. 2.3 Geometric meaning of MCLP



34 2 Multiple Criteria Optimization Classification

1
2u

T Qu on MCLP as follows (more theoretical explanation of this model can be
found in [2]):

min
z

1

2
wT Hw + 1

2
uT Qu+ deT u− ceT v, (2.13)

s.t. (w · xi)+ (ui − vi) = b, for {i |yi = 1 } , (2.14)

(w · xi)− (ui − vi) = b, for {i |yi = −1 } , (2.15)

u, v ≥ 0, (2.16)

where z = (wT , uT , vT , b)T ∈ Rn + l + l + 1, H ∈ Rn × n, Q ∈ Rl × l are symmetric
positive definite matrices. Obviously, the regularized MCLP is a convex quadratic
programming.

Compared with traditional SVM, we can find that the RMCLP model is similar
to the Support Vector Machine model in terms of the formation by considering min-
imization of overlapping of the data. However, RMCLP tries to measure all possible
distances v from the training samples xi to separating hyperplane, while SVM fixes
the distance as 1 (through bounding planes (w · x)= b± 1) from the support vectors.
Although the interpretation can vary, RMCLP addresses more control parameters
than the SVM, which may provide more flexibility for better separation of data
under the framework of the mathematical programming. In addition, different with
SVM, RMCLP considers all the samples to solve classification problem. These
make RMCLP have stronger insensitivity to outliers.

One of the drawbacks of applying the supervised learning model is that it
is not always possible for a teacher to provide labeled examples for training.
Multiple instance learning (MIL) provides a new way of modeling the teachers’
weakness. MIL considers a particular form of weak supervision in which training
class labels are associated with sets of patterns, or bags, instead of individual
patterns. A negative bag only consists of negative instances, whereas a positive bag
comprises both positive and negative instances. The goal of MIL is to find a separate
hyperplane, which can decide the label of any new instance.

In the following, we give the formal description of multiple instance learning
problem. Given a training set

{
B+1 , · · · ,B+

m+ ,B
−
1 , · · · ,B−

m−
}

(2.17)

where a bag B+i =
{
xi1, · · · , xim+i

}
, xij ∈ Rn, j = 1, · · · ,m+i , i =

1, · · · ,m+;B−i =
{
xi1, · · · , xim−i

}
, xij ∈ Rn, j = 1, · · · ,m−i , i = 1, · · · ,m−;

B+ means that the positive bag B+ contains at least one positive instance xij; B−
means that all instance xij of the negative bag B− are negative. The goal is to induce
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a real-valued function

y = sgn (g(x)) (2.18)

such that the label of any instance x in Rn space can be predicted.
Now we rewrite the training set (2.17) as

Train =
{
B+1 , · · · ,B+

m+ ,B
−
m++1, · · · ,B−m++m− ,

}
=
{
B+1 , · · · ,B+

m+ , xz+1, · · · , xz+f

}

(2.19)

where z is the number of the instances in all positive bags and f the number of the
instances in negative bags.

The set consisting of subscripts of Bi is expressed as:

�(i) = {i |xi ∈ Bi } (2.20)

For a separable multi-instance classification problem, if a positive bag can be
correctly classified, it should satisfy the following constraint:

max
j∈�(i)

(
w · xj

)− b > 0. (2.21)

In RMCLP, vi means the distance from the training sample xi to the separating
hyperplane and be a nonnegative number. Thus, we can always find an appropriate
vi such that

max
j∈�(i)

(
w · xj

)− b = vi . (2.22)

For nonseparable multi-instance classification, we need to add corresponding
slack variable ui ≥ 0. Finally, the (2.22) is expressed by

max
j∈�(i)

(
w · xj

)− b = vi − ui . (2.23)

Similar to [21], it is equivalent to the fact that there exist convex combination

coefficients set
{
λi
j

∣∣j ∈ �(i), i = 1, · · · ,m+
}

, such that

⎛
⎝w ·

∑
j∈�(i)

λi
j xj

⎞
⎠+ ui − vi = b, (2.24)

λi
j ≥ 0,

∑
j∈�(i)

λi
j = 1. (2.25)
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For solving multi-instance classification, so (2.6–2.9) can be converted as:

min
z

1

2
‖w‖2 + 1

2
‖u‖2 + d

m+∑
i=1

ui + d

z+f∑
i=z+1

ui − c

m+∑
i=1

vi − c

z+f∑
i=z+1

vi, (2.26)

s.t.

⎛
⎝w ·

∑
j∈�(i)

λi
j xj

⎞
⎠+ (ui − vi) = b, i = 1, · · · ,m+, (2.27)

(w · xi)− (ui − vi) = b, i = z+ 1, · · · , z+ f, (2.28)

λi
j ≥ 0, j ∈ �(i), i = 1, · · · ,m+, (2.29)

∑
j∈�(i)

λi
j = 1, i = 1, · · · ,m+, (2.30)

u, v ≥ 0, (2.31)

where z = (
wT , uT , vT , b, λT

)T
, λ =

{
λi
j |j ∈ �(i) , i = 1, · · · ,m+

}
, �(i) ={

i
∣∣xi ∈ B+i

}
.

As both λi
j and w are variables, the constraint (2.27) is no longer a linear

constraint and (2.26–2.31) becomes a nonlinear optimization problem.
In the following, we give an approximate iterative solution via solving successive

quadratic programming problem. Firstly, we fix λ, and solve a quadratic program-
ming with respect to w, u, v, b; then fix w, solve a quadratic programming with
respect to u, v, b, λ.

1. For fixed λi
j , i = 1, · · · ,m+, j ∈ �(i), we can obtain

x̂i =
∑

j∈�(i)
λi
j xj , i = 1, · · · ,m+, (2.32)

So the problem (2.26–2.31) can be written as

min
z

1

2
wT Hw + 1

2
uT Qu+ deT u− ceT v, (2.33)

s.t.
(
w · x̂i

)+ (ui − vi) = b, i = 1, · · · ,m+, (2.34)

(
w · x̂i

)− (ui − vi) = b, i = z + 1, · · · , z + f, (2.35)

u, v ≥ 0, (2.36)

The problem (2.33–2.36) is a standard quadratic programming problem and
as same as RMCLP. We choose H and Q to be identity matrix. Its dual problem
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can be formulated as

max
α,u

− 1

2

m+∑
i=1

m+∑
j=1

((
x̂i · x̂j

)+ 1
)
αiαj

−1

2

m+∑
i=1

z+f∑
j=z+1

((
x̂i · x̂j

)+ 1
)
αiαj

−1

2

z+f∑
i=2+1

m+∑
j=1

((
x̂i · x̂j

)+ 1
)
αiαj (2.37)

−1

2

z+f∑
i=2+1

z+f∑
j=z+1

((
x̂i · x̂j

)+ 1
)
αiαj

−1

2

m+∑
i=1

m+∑
j=1

uiuj − 1

2

m+∑
i=1

z+f∑
j=z+1

uiuj

−1

2

z+f∑
i=z+1

m+∑
j=1

uiuj
1

2

z+f∑
i=z+1

z+f∑
j=z+1

uiuj

s.t.− ui − d ≤ αi ≤ −c, i = 1, · · · ,m+, (2.38)

−ui − d ≤ −αi ≤ −c, i = z + 1, · · · , z + f, (2.39)

where c, d > 0. We can compute: α̂ = (
α̂1, · · · , α̂m+ , α̂z+1, · · · , α̂z+f

)T
by

solving the problem of (2.37–2.39), and (w, b) can be expressed as

ŵ = −
m+∑
i=1

α̂i x̂i −
z+f∑

i=z+1

α̂i x̂i , (2.40)

b̂ =
m+∑
i=1

α̂i +
z+f∑

i=z+1

α̂i , (2.41)

ŵ, b̂ is the updating value of (w, b).
2. For fixed w, the formula (2.26–2.31) can be substituted as:

min
λ,u,v,b

1

2

m+∑
i=1

m+∑
j=1

uiuj + 1

2

m+∑
i=1

z+f∑
j=z+1

uiuj + 1

2

z+f∑
i=z+1

m+∑
j=1

uiuj + 1

2

z+f∑
i=z+1

z+f∑
j=z+1

uiuj

+d

m+∑
i=1

ui + d

z+f∑
i=z+1

ui − c

m+∑
i=1

vi − c

z+f∑
i=z+1

vi (2.42)
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s.t.

⎛
⎝w ·

∑
j∈�(i)

λi
j xj

⎞
⎠+ (ui − vi) = b, i = 1, · · · ,m+, (2.43)

(w · xi)− (ui − vi) = b, i = z+ 1, · · · , z+ f, (2.44)

λi
j ≥ 0, j ∈ �(i), i = 1, · · · ,m+, (2.45)

∑
j∈�(i)

λi
j = 1, i = 1, · · · ,m+, (2.46)

u, v ≥ 0, (2.47)

thus we are able to establish the following Algorithm 2.1 based on the
formulas above.

Algorithm 2.1 Linear MI-RMCLP

Initialize: Given a training set (see (2.19));
Choose appropriate penalty parameters c, d > 0;
Choose Q and H to be identity matrixes;

Setting initial values for λ (k = 1), where
{
λi
j (1)

∣∣j ∈ �(i), i = 1, · · · ,m+
}

;

Process: 1. For fixed λ(k) =
{
λi
j (k)

}
, the goal is to compute w(k):

1.1. Compute
{
x̂1, · · · , x̂m+ , x̂r1, · · · , x̂z+f

}
by (2.32);

1.2. Solve quadratic programming (2.38) ~ (2.39),
obtaining the solution α̂ = (α̂1, · · · , α̂p, α̂z+1, · · · , α̂z+f

)T ;
1.2. Compute ŵ from (2.40);
1.4. Set w(k) = ŵ.
2. For fixed w(k), the goal is to compute λ(k + 1):
2.1. Solve quadratic programming (2.42) ~ (2.47) with the

variables λ, u, v, b, obtaining the solution λ̂, b̂.
2.2. Set λ (k + 1) = λ̂, b (k + 1) = b̂;
2. If |λ(k + 1) − λ(k)| < ε, goto Output:; otherwise,

goto the step 1, setting k = k + 1.
Output: Obtain the decision function f (x) = sgn ((w∗ · x) + b∗),

where w∗ = w(k), b∗ = b(k).

For nonlinear MI-RMCLP, we firstly introduce the kernel function K(x, x
′
) =

(�(x) · �(x
′
)) to replace (x, x

′
), where �(x) is a mapping from the input space Rn to

some Hilbert space H:

Φ : Rn → H

x → x = Φ(x) (2.48)
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Therefore, the problem (2.26–2.31) can be expressed as

min
z

1

2
‖w‖2 + 1

2
‖u‖2 + d

m+∑
i=1

ui + d

z+f∑
i=z+1

ui − c

m+∑
i=1

vi − c

z+f∑
i=z+1

vi (2.49)

s.t.

⎛
⎝w ·

∑
j∈�(i)

λi
jΦ

(
xj
)
⎞
⎠+ (ui − vi) = b, i = 1, · · · ,m+, (2.50)

(w ·Φ (xi))− (ui − vi) = b, i = z+ 1, · · · , z+ f, (2.51)

λi
j ≥ 0, j ∈ �(i), i = 1, · · · ,m+, (2.52)

∑
j∈�(i)

λi
j = 1, i = 1, · · · ,m+, (2.53)

u, v ≥ 0, (2.54)

Similar to Algorithm 2.1, as a given λ, the current problem can be solved by the
following quadratic programming problem:

max
α,u

− 1

2

m+∑
i=1

m+∑
j=1

⎛
⎝ ∑

k∈�(i)
λi
k

∑
l∈I (j)

λ
j

l K (xk · xl)+ 1

⎞
⎠αiαj

−1

2

m+∑
i=1

z+f∑
j=z+1

⎛
⎝ ∑

k∈�(i)
λi
kK

(
xk · xj

)+ 1

⎞
⎠αiαj

−1

2

z+f∑
i=z+1

m+∑
j=1

⎛
⎝ ∑

l∈I (j)
λ
j

l K (xi · xl)+ 1

⎞
⎠αiαj (2.55)

−1

2

z+f∑
i=z+1

z+f∑
j=z+1

(
K
(
xi · xj

)+ 1
)
αiαj

−1

2

m+∑
i=1

m+∑
j=1

uiuj − 1

2

m+∑
i=1

z+f∑
j=z+1

uiuj

−1

2

z+f∑
i=z+1

m+∑
j=1

uiuj − 1

2

z+f∑
i=z+1

z+f∑
j=z+1

uiuj (2.56)

s.t.− ui − d ≤ αi ≤ −c, i = 1, · · · ,m+, (2.57)

−ui − d ≤ −αi ≤ −c, i = z + 1, · · · , z + f, (2.58)
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We can obtain a solution of
(
ŵ, b̂

)
by computing

ŵ = −
m+∑
i=1

α̂i

∑
j∈�(i)

λi
jΦ (xi)−

z+f∑
i=z+1

α̂iΦ (xi) , (2.59)

b̂ =
m+∑
i=1

α̂i +
z+f∑

i=z+1

α̂i , (2.60)

where α̂ = (
α̂1, · · · , α̂p, α̂z+1, · · · , α̂z+f

)T is a solution of the problem (2.56)–
(2.58).

For fixed w, the problem (2.49–2.54) can be written as

min
λ,u,v,b

1
2

m+∑
i=1

m+∑
j=1

uiuj + 1
2

m+∑
i=1

z+f∑
j=z+1

uiuj + 1
2

z+f∑
i=z+1

m+∑
j=1

uiuj + 1
2

z+f∑
i=z+1

z+f∑
j=z+1

uiuj

+ d
m+∑
i=1

ui + d
z+f∑

i=z+1
ui − c

m+∑
i=1

vi − c
z+f∑

i=z+1
vi

(2.61)

s.t.−
m+∑
j=1

α̂j

∑

k∈I (j)
λ̃
j
k

∑

l∈�(i)
λilK (xk, xl )−

z+f∑
j=z+1

α̂j

∑

l∈�(i)
λilK

(
xj , xl

)− (ui − vi) = b,

i = 1, · · · ,m+, (2.62)

−
m+∑
j=1

α̂j

∑
k∈I (j)

λ̃
j
kK (xk, xi )−

z+f∑
j=z+1

α̂jK
(
xj , xi

)+ (ui − vi ) = b, i = z + 1, · · · , z+f

(2.63)

λi
j≥0, j ∈ �(i), i = 1, · · · ,m+, (2.64)

∑
j∈�(i)

λi
j = 1, i = 1, · · · ,m+, (2.65)

u, v ≥ 0, (2.66)

where λ̃ =
(
λ̃i
i |j ∈ �(i), i = 1, . . . ,m+

)
and α̂ = (

α̂1, · · · , α̂z+1, · · · , α̂z+f

)T
are known.

The ultimate separating hypersurface can be expressed as

g(x) = −
m+∑
j=1

α̂j

∑
k∈I (j)

λ̃
j
kK (xk, x)−

z+f∑
j=z+1

α̂jK
(
xj , x

)+ b̂, (2.67)

In the following, we give out Algorithm 2.2 for nonlinear MI-RMCLP.
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Algorithm 2.2 Nonlinear MI-RMCLP

Initialize: Given a training set (see (2.19));
Choose appropriate penalty parameters c, d > 0;
Choose Q and H to be identity matrixes;
Choose appropriate

Setting initial values for λ (k = 1), where
{
λi
j (1)

∣∣j ∈ �(i), i = 1, · · · ,m+
}

;

Process: 1. For fixed λ(k) =
{
λi
j (k)

}
, the goal is to compute w(k):

1.1. Solve quadratic programming (2.56) ~ (2.58), obtaining the solution.
α̂ = (α̂1, · · · , α̂p, α̂z+1, · · · , α̂z+f

)T
;

1.2. Set λ̃ = λ(k);

2. For fixed α̂, λ̃, the goal is to compute λ̂ =
{
λi
j

}
:

2.1. Solve quadratic programming (2.61) ~ (2.66) with the

variables (λ, u, v, b), obtaining the solution λ̂ =
{
λi
j

}
.

2.2. Set λ (k + 1) = λ̂, b (k + 1) = b̂;
2. If |λ(k + 1) − λ(k)| < ε, goto Output:; otherwise,

goto the step 1, setting k = k + 1.
Output: Obtain the decision function f (x) = sgn (g(x)),

where g(x) by (2.18).

To demonstrate the capabilities of our algorithm, we report results on 12 data sets,
2 from the UCI machine learning repository [22], and 10 from [23]. “Elephant,”
“Fox” and “Tiger” data sets are from an image annotation task in which the goal
is to determine whether or not a given animal is present in an image. The other
seven data sets are from the OHSUMED data, and the task is to learn binary
concepts associated with the Medical Subject Headings of MEDLINE documents.
The “Musk1” and “Musk2” data sets from the UCI machine learning repository are
used to test our nonlinear multi-instance RMCLP, which involves bags of molecules
and their activity levels and is commonly used in multi-instance classification.
Detailed information about these data sets can be found in [21].

Our algorithm code was written in MATLAB 2010. The experiment environment
is Intel Core i5 CPU, 2 GB memory. The “quadprog” function with MATLAB is
employed to solve quadratic programming problem related to this section. The test-
ing accuracies for our method are computed using standard tenfold cross-validation
[24]. The RBF kernel parameter σ is selected from the set {2i|i = − 7, · · · , 7} by
tenfold cross-validation on the tuning set comprising of random 10% of the training
data. Once the parameters are selected, the tuning set was returned to the training
set to learn the final decision function. The (c, d) are set 1. If the difference between
2 is less than 10−4 or the iterations K > 100, our algorithms will be stopped.

We compare our results with MICA [21], mi-SVM [23], MI-SVM [25], EM-DD
[25] and SVM-CC [26]. MI-RMCLP is our method in Table 2.1 and Fig. 2.4. The
results of tenfold cross-validation accuracy are listed in Table 2.1 and Fig. 2.4. The
results for mi-SVM, MI-SVM and EM-DD are taken from [21].
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Table 2.1 Results of all methods in the case of rbf kernel

Data Sets
MICA
(%)

mi-SVM
(%)

MI-SVM
(%)

EM-DD
(%)

SVM-CC
(%)

MI-RMCLP
(%)

Elephant 80.5 82.2 81.4 78.3 81.5 79.3
Fox 58.7 58.2 57.8 56.1 57.3 57.6
TST1 94.5 92.6 92.9 85.8 95.0 91.2
TST2 85.0 78.2 84.5 84.0 82.7 86.0
TST3 86.0 87.0 82.2 69.0 86.4 85.1
TST4 87.7 82.8 82.4 80.5 82.1 81.4
TST7 78.9 81.3 78.0 75.4 77.4 82.7
TST9 61.4 67.5 60.2 65.5 62.0 62.9
TST10 82.3 79.6 79.5 78.5 81.5 77.6
Musk-1 84.4 87.4 77.9 84.8 88.9 85.8
Musk-2 90.5 82.6 84.3 84.9 89.6 91.7

Note: Best accuracy is in bold

Fig. 2.4 Results of all methods in the case of linear kernel. X-axis represents different methods:
1: MICA; 2: mi-SVM; 3: MI-SVM; 4: EM-DD; 5: SVM-CC; 6: Mi-RMCLP. Y-axis represents the
accuracy

2.1.3 Supportive Instances for Regularized Multiple Criteria
Linear Programming Classification

Although RMCLP performs excellently in classifying lots of benchmark datasets,
its shortage is also obvious. By taking account of every training instances into
consideration, RMCLP is sensitive to noisy and imbalanced training samples. In
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other words, the classification boundary may shift significantly even if there is
merely a slight change of training samples. This difficulty can be described in Fig.
2.5, assume there is a two groups classification problem, the first group is denoted
by “.” and the second group is denoted by “✩” . We can observe that it is a linear-
separable dataset and the classification boundary is denoted by a line “/”. Figure
2.5a shows that on an ideal training sample, RMCLP successfully classify all the
instances. In Fig. 2.5b, when we add some noisy instances into the first group, the
classification boundary shifts towards the first group, making more instances in the
first group misclassified. In Fig. 2.5c, we can observe that when we add instances
into the second group to make the number of instances in two groups imbalanced,
the classification boundary also changes significantly, causing a great number of
misclassifications. In Fig. 2.5d, we can see that if we choose some representative
instances (also called supportive instances) for RMCLP, which locate inside the
blue circle, then although more noisy and imbalanced instances are added into the
training sample, the classification boundary always keeps unchanged and will have
a good ability to do prediction. That is to say, building RMCLP model only on
supportive instances can improve its accuracy and stability.

According to the above observation, in this subsection, we propose a clustering-
based sample selection method, which chooses the instances in the clustering
center as the supportive samples (just as SVM [27] chooses the support vectors
to draw a classification boundary). Experimental results on synthetic and real-life
datasets show that our new method not only can significantly improve the prediction
accuracy, but also can dramatically reduce the number of training instances.

Lots of empirical studies have shown that MCLP is a powerful tool for
classification. However, there is no theoretical work on whether MCLP always can

(a) (b)

(c) (d)

Fig. 2.5 (a) The original RMCLP model built on an ideal training sample; (b) when adding two
noisy instances in the left side, the classification boundary shifts towards the left side; (c) when the
training sample is imbalanced, the boundary also shifts significantly; (d) if we select representative
training instances which locate around the distribution centers (inside the circle), the classification
boundary becomes satisfactory
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find an optimal solution under different kinds of training samples. To go over this
difficulty, recently, [2] proposed a RMCLP model by adding two regularized items
1
2x

T Hx and 1
2α

T Qα on MCLP as follows:

Minimize
1

2
xT Hx + 1

2
αT Qα + dT α − cT β (2.68)

Subject to :
Aix − αi + βi = b,∀Ai ∈ G1;
Aix + αi − βi = b,∀Ai ∈ G2;

αi, βi ≥ 0.

where H ∈ Rr ∗ r, Q ∈ Rn ∗ n are symmetric positive definite matrices. dT , cT ∈ Rn.
The RMCLP model is a convex quadratic program. Theoretically studies [2] have
shown that RMCLP can always find a global optimal solution.

Besides two groups classification problem, a recent work [28] also introduced
a multiple groups RMCLP model. As far as three groups classification problem be
considered, we first find a projection direction x and a group of hyper planes (b1,
b2), to an arbitrary training instance Ai, if Aix < b1, then Ai ∈ G1; if b1 ≤ Aix < b2
then Ai ∈ G2; and if Aix ≥ b2, then Ai ∈ G3. Extending this method to n
group classification, we can also find a direction x and n − 1 dimension vector
b = [b1, b2, . . . , bn − 1] ∈ Rn − 1, to make sure that to any training instance Ai:

Aix < b1,∀Ai ∈ G1;
bj−1 ≤ Aix < bj ,∀Ai ∈ Gi, 1 < i < n;
Aix ≥ bn−1,∀Ai ∈ Gn;

(2.69)

We first define ci = bi−1+bi
2 as the midline in group i(1 < i < n). Then, to the

misclassified records, we define α+i as the distance from ci to Aix, which equals
(ci − Aix), when misclassify a group i’s record into group j (j < i), and we define
α−i as the distance from Aix to ci, which equals (ci − Aix), when misclassify a
group i’s record into group j (j > i). Similarly, to the correct classified records, we
define β−i when Ai is in the left side of ci, and we define β+i when Ai is in the
right side of ci. When we have a n groups training sample with size m, we have
α = {

α+i , α−i
} ∈ Rm∗2, β = {

β+i , β−i
} ∈ Rm∗2, and we can build a multiple

groups Regularized Multi-Criteria Linear Programming (SRMCLP) as follows:

Minimize
1

2
xT Hx + 1

2
αT Qα + dT α + cT β

Subject to :
Aix − α−i − β−i + β+i = 1

2b1,∀Ai ∈ G1;
Aix − α−i + α+i − β−i + β+i = 1

2 (bi−1 + bi) ,∀Ai ∈ Gi, 1 < i < n;
Aix + α+i − β−i + β+i = 2bn−1,∀Ai ∈ Gn;

α−i , α+i , β−i , β+i ≥ 0.
(2.70)



2.1 Multi-criteria Linear Programming for Supervised Learning 45

-------------------------------------------------------------------------------------------------------

Input: training sample Tr, testing sample Ts, parameter , exclusion percentage s
Output: selected sample Tr’
Begin 
1.Set Tr’=Tr
2. While (|PrevClusteringCenter-CurrClusteringCenter| < )

{

2.1. Calculate current clustering center; 

2.2. For each instances do

{

2.2.1 Calculate the Euclidean distance of the clustering center, 

2.2.2 get s% of the instances which are farthest from the clustering 

center, denoted as the subset {P} 
2.2.3 exclude {P} from the training, Tr’=Tr\{P}.
}

}

3. Return the selected sample Tr’

End 
-------------------------------------------------------------------------------------------------------

Fig. 2.6 Clustering method to get the supportive method

Since this multiple groups RMCLP model is mainly designed to solve the ordinal
separable dataset, we also call it Ordinal RMCLP model [28].

Figure 2.6 gives the whole procedure of the sample selection algorithm. The
main idea of our algorithm is that it iteratively discards training instances in each
group which are far away from the clustering center until the clustering center for
each group is stable (with the given threshold ε), then the remained instances will
be taken as the supportive instances (just as the support vectors to SVM) and used
to build a classifier. From Fig. 2.6, We can observe that this algorithm is similar to
the well-known k-means algorithm. However, the main difference between them is
that, our algorithm is based on supervised learning framework, while k-means is an
unsupervised learning algorithm. In our algorithm, although the clustering centers
shift in each iteration, each instance keeps a constant class label. But in k-means, the
class label of each instance may change frequently. An important issue of k-means
clustering is how to choose the initial points, if we choose a good initial point,
we can get a global optimal solution; otherwise, we may only get a local optimal
solution. On the contrast, our sample selection method can avoid this problem. It
always leads to a global minimal solution.
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There are some important parameters in our algorithm. The first important
parameter is ε, which determinates when the algorithm stops. The second parameter
is the exclusion percentage s, which indicates how many instances that are far away
from the clustering center should be discarded in each iteration. This parameter, in
fact, determines the convergence speed. The larger value of s, the faster algorithm
converges. To analyze the computation complexity of our new algorithm, we take
an extremely bad situation into consideration. Assume there are n instances in
the training sample, we assign the values s = 1 and ε = 0. Then, the algorithm
will discard only one instances in each iteration. To the worst case, after n times
iterations, the algorithm converges to the clustering center. In the ith iteration, it
needs to calculate the (n− i) instances to get the clustering center, so we can roughly
infer that the computation complexity is about O(n2).

To investigate whether our new algorithm works, we use two synthetic datasets
and a well-known US bank’s real-life credit card dataset for testing. In our
experiments, the RMCLP is implemented by Visual Fortran 6.5.

The 6000 credit card records are randomly selected from 25,000 real-life credit
card records of a major US bank. Each record has 113 variables, with 38 original
variables and 65 derived variables. The 38 original variables are balance, purchase,
payment, cash advance, and related variables, with the former 5 items each have six
variables that represent raw data of six consecutive months and the last item includes
interest charges, data of last payment, times of cash advance, account open data
and so on. The 65 derived variables (CHAR01–CHAR65) are derived from original
38 variables using simple arithmetic methods to reinforce the comprehension of
cardholders’ behaviors. In this section, we use the derived 65 variables. We then
define five classes for this dataset using a label variable: The Number of Over-limits.
The five classes are defined as Bankrupt charge-off accounts (THE NUMBER
OF OVER-LIMITS≥13), Non-bankrupt charge-off accounts (7≤THE NUMBER
OF OVER-LIMITS≤12), Delinquent accounts (3≤THE NUMBER OF OVER-
LIMITS≤6), Current accounts (1≤THE NUMBER OF OVER-LIMITS≤2), and
Outstanding accounts (no over limit). Bankrupt charge-off accounts are accounts
that have been written off by credit card issuers due to reasons other than bankrupt
claims. The charge-off policy may vary among authorized institutions. Delinquent
accounts are accounts that haven’t paid the minimum balances for more than
90 days. Current accounts are accounts that have paid the minimum balances. The
outstanding accounts are accounts that have not balances. In our randomly selected
6000 records, there are 72 Bankrupt charge-off accounts, 205 Non-bankrupt charge-
off accounts, 454 Delinquent accounts, 575 Current accounts and 4694 outstanding
accounts.

Two groups credit card dataset To acquire a two groups training sample, we
combine the Bankrupt charge-off accounts, Non-bankrupt charge-off accounts and
Delinquent accounts together to form a “bad” group. And then we combine the
current accounts and the outstanding accounts into a “good” group. According to
the previous research work on this dataset, we first randomly select a benchmark
training size of 700 bad records and 700 good records, and the remained 4600
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Table 2.2 Comparison of different percentage of training instances

Percent. of training Training sample Testing sample (4600 instances)
Right instances Accuracy (%) Right instances Accuracy (%)

100 (1400) 1096 78.29 3394 72.78
90 (1260) 998 79.20 3295 71.63
80 (1120) 912 81.43 3292 71.57
70 (980) 789 80.51 3571 77.63
60 (840) 667 79.40 3761 81.76
50 (700) 559 79.86 3881 84.37
40 (560) 449 80.18 3964 86.17
30 (420) 331 78.81 4050 88.04
20 (280) 232 82.86 4073 88.54
10 (140) 116 82.86 1971 42.85

records are combined to test the performance. Now what we need to do is to
examine three assumptions: first, is the randomly selected 1400 points are suitable
to build model? second, are there any noisy instances in this randomly selected
dataset? third, can we reduce the 1400 points in a much smaller size and improve
the accuracy synchronously? Experimental results in Table 2.2 tell us the answers.
The first column of Table 2.2 is the current training sample’s size, from the 1400
instances to 140 instances, the second and the third columns list the performance
on different training samples and the fourth and the fifth columns exhibit the
performance on the same 4600 testing instances. The experiment is conducted
as follows: firstly, we build a RMCLP model on all the 1400 training instances,
and we get a benchmark accuracy as 72.78%. Then we call our sample selection
algorithm with parameter s = 1 and ε = 0.1. We do experiments on night special
datasets, 10%, 20%, . . . , 90% of the original 1400 training sample. We finally list
the performance of RMCLP in Table 2.2. Intuitionally, we though the larger the
training sample, the more information we could get, and thus the model would be
more accurate when do prediction. However, Table 2.2, we can see that the 1400
randomly selected instances is not the best training set for RMCLP model, there
exist noisy and useless instances which deteriorate its performance. Our new sample
selection method reduces the training samples continuously. When get 20% of the
original training sample (that is 280 instances), we can build a RMCLP with the
highest accuracy of 88.54% on the testing set.

Multiple Groups credit card dataset Besides two groups RMCLP model, in this
part, we also study the performance of our new algorithm on multiple groups
RMCLP model. For three groups classification, we choose the Bankrupt charge-
off accounts as the first group, the Non-bankrupt charge-off as the second group and
the Delinquent as the third group. Based upon the three groups dataset, we construct
the four groups dataset by adding the Current account as the fourth group. At last,
we construct a five groups dataset by adding the Outstanding accounts as the fifth
group.
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Table 2.3 Comparison on three groups credit card dataset

3 Groups
(22+ 155+ 404) Original RMCLP RMCLP After sample selection

Corrected Rec. Accuracy (%) Corrected Rec. Accuracy (%)

Group1 12 54.5 19 86.36
Group2 12 7.7 89 57.42
Group3 402 99.5 390 96.53
Average 426 72.32 481 85.71

Table 2.4 Comparison on four groups credit card dataset

4 Groups
(22 + 155 + 404 + 525) Original RMCLP RMCLP After sample selection

Corrected Rec. Accuracy (%) Corrected Rec. Accuracy (%)

Group1 16 72.7 19 86.36
Group2 52 32.5 122 78.71
Group3 38 9.4 267 66.09
Group4 525 100.0 510 97.14
Average 631 57.05 918 82.00

Table 2.5 Comparison on five groups credit card dataset

5 Groups
(22 + 155 + 404 +
525 + 4644) Original RMCLP RMCLP After sample selection

Corrected Rec. Accuracy (%) Corrected Rec. Accuracy (%)

Group1 13 59.1 16 72.73
Group2 130 82.9 130 82.87
Group3 273 67.6 365 90.35
Group4 161 30.7 438 82.43
Group5 4644 100.0 4520 97.33
Average 5221 90.80 5469 95.11

Tables 2.3, 2.4 and 2.5 list the results of comparisons. The second and the third
columns list the results of the original RMCLP method, the fourth and the fifth
columns list the results of RMCLP after selecting the supportive instances. We can
observe that in three groups classification, the original RMCLP’s average accuracy
is 72.32%, while that of the supportive instances is 85.71%. The improvement of
accuracy is as large as 12.39%. In four groups classification, the average accuracy
of the original RMCLP is 57.05%, on the contrast, after selecting the supportive
instances, the accuracy improves to 82.00%, as high as 25.95% improvement. To
the five groups classification, the improvement after selecting supportive instances is
4.31%. From these compressive results, we can validate our former conclusion that
selecting supportive instances for RMCLP can significantly improve its accuracy.
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2.1.4 Kernel Based Simple Regularized Multiple Criteria
Linear Programming for Binary Classification
and Regression

In this section, a novel kernel based regularized multiple criteria linear program are
proposed for both classification and regression scenarios.

Given an observed dataset T = {(x1, y1), (x2, y2), . . . , (xl, yl)} with l instances.
Each instance xi belongs to the category yi. xi ∈ χ ⊆ Rn and yi ∈ y are the n
attributes values and corresponding label for the instance i. The goal of classification
problem is to predict the corresponding label yi ∈ y when new instance xj ∈ χ

arrives. When Card(y) = 2, the issue is binary classification problem. In order to
facilitate description, here we let y = {−1, 1} for following introduction. Under this
binary classification problem, supposed we have positive instances number is l1,
negative instances number is l2, where l1 + l2 = l. ξA = 0, ξB = 0 which are not
marked in the picture.

In contrast to points A and B, points C and D are improperly predicted. Hence
their distance could be constructed as βC = 0, βD = 0 and ξC > 0, ξD > 0.
In summary, following the idea described above the basic MCLP model [29] for
classification could be written as this:

min
w,b,ξ,β

l∑
i=1

ξi

max
w,b,ξ,β

l∑
i=1

βi (2.71)

s.t.yi

(
xT
i w + b

)
= βi − ξi,

ξi ≥ 0, βi ≥ 0, i = 1, · · · , l;

Here w and b could be seem as the slope and intercept of the discriminant
hyperplane. One of the objectives

∑
ξ i could be considered as the measure of

misclassification, thus we minimized it to avoid the inappropriate model construc-
tion.

And the other goal
∑

β i is to maximize the generalization capability of the
chosen classification function. As we introduced before, there exist no single
solution that could make the both these two goals in conflict optimal at the
same time. In [30, 31], compromise solution is introduced and analyzed for
this multiple objective model Eq. (2.71). However, the algorithm that obtained
compromise solution were usually time consuming and not suitable for real world
application.
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As a result, many methods convert model Eq. (2.71) into single objective linear
program:

min
w,b,ξ,β

l∑
i=1

ξi − γ

l∑
i=1

βi

s.t.yi

(
xT
i w + b

)
= βi − ξi, (2.72)

ξi ≥ 0, βi ≥ 0, i = 1, · · · , l;

Unfortunately, naive model Eq. (2.72) confronts the unsolvable defect because
of the nature of linear programming. More sophisticated approaches need to be
investigated. Therefore, an improved model would be illustrated in next section.

Although model Eq. (2.72) avoided the computational cost of multiple objectives,
it had a fatal solvability problem. Therefore, we added new quadratic term to the
objective function and proposed a new simple regularized MCLP model showed as
below:

min
w,b,ξ,β

l∑
i=1

ξi − γ

l∑
i=1

βi + 1

2
τβT Hβ

s.t.yi

(
xT
i w + b

)
= βi − ξi, (2.73)

ξi ≥ 0, βi ≥ 0, i = 1, · · · , l;

b ∈ {−1, 1} .

Furthermore, users want to guarantee the slope of the hyperplane not too large.
Then, we made the regularization term wTKw as a part of the goal and obtained the
following model:

min
w,b,ξ,β

l∑
i=1

ξi − γ

l∑
i=1

βi + 1

2
τβT Hβ + 1

2
κwT Kw

s.t.yi

(
xT
i w + b

)
= βi − ξi, (2.74)

ξi ≥ 0, βi ≥ 0, i = 1, · · · , l;

b ∈ {−1, 1} ;
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In order to write the formulas in matrix form, we let

A =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
l

⎤
⎥⎥⎥⎦

l∗n

, Y =

⎡
⎢⎢⎣

y1 0 · · · 0
0 y2 · · · 0
· · · · · · · · · · · ·
0 · · · 0 yl

⎤
⎥⎥⎦

l∗l

(2.75)

So model Eq. (2.74) could be rewritten as this:

min
w,β,ξ

1

2
wT Hw + 1

2
λ1β

T Kβ − λ2e
T β + λ3e

T ξ

s.t.Y (Aw + be)− β + ξ = 0, (2.76)

b ∈ {−1, 1} , β ≥ 0, ξ ≥ 0

Where w ∈ Rn, β ∈ Rl, ξ ∈ Rl, e = [1, · · · , 1]Tl is the vector of all ones. K and H
are n × n and l × l positive matrix, respectively. We simply set positive matrix H,
K in model Eq. (2.76) as identity matrix. And to solve the problem with inequality
type constraints, we have to find the saddle point of the Lagrangian function for
model Eq. (2.76)

L
(
w,β, ξ, αequ, αβ, αξ

) =
(

1

2
wT w + 1

2
λ1β

T β − λ2e
T β + λ3e

T ξ

)

+αT
equ (Y (Aw + be)− β + ξ)− αT

β β − αT
ξ ξ (2.77)

where αequ is free, αβ ≥ 0, αξ ≥ 0 are Lagrangian multipliers. Minimization with
respect to w, β, ξ implies the following

∇wL
(
w,β, ξ, αequ, αβ, αξ

) = w + AT Yαequ = 0 (2.78)

∇βL
(
w,β, ξ, αequ, αβ, αξ

) = λ1β − λ2e − αequ − αβ = 0 (2.79)

∇ξL
(
w,β, ξ, αequ, αβ, αξ

) = λ3e + αequ − αξ = 0 (2.80)

Sustaining Eq. (2.78) into function Eq. (2.77), we get

L
(
w,β, ξ, αequ, αβ, αξ

) = −1

2
αT
equYAAT Yαequ − 1

2
λ1β

T β + beT Yαequ
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Therefore, the dual problem for model Eq. (2.76) is obtained as

max−1

2
αT
equYAAT Yαequ − 1

2
λ1β

T β + beT Yαequ

s.t.λ1β − λ2e − αequ ≥ 0,

λ3e + αequ ≥ 0, (2.81)

β ≥ 0,

b ∈ {−1, 1}

According to the Eq. (2.78), the decision function is

f (x) = sign (w · x + b) = sign
(
−YAT αequx + b

)
.

When introduce kernel functions

Rn → H

x → Φ(x) (2.82)

We have K(xi, xj) = �(xi) · �(xj). Therefore, the dual problem Eq. (2.81) could
be rewritten as

min
1

2
αT
equYK (A,A) Yαequ + 1

2
λ1β

T β − beT Yαequ

s.t.λ1β − λ2e − αequ ≥ 0,

λ3e + αequ ≥ 0, (2.83)

β ≥ 0,

b ∈ {−1, 1}

Furthermore, the decision boundary turns into

f (x) = sign (w ·Φ(x)+ b) = sign
(−YK (A, x) αequ + b

)
.

Theorem 2.2 Given the solution of the dual problem Eq. (2.83) as
(
α∗equ, β∗

)
,

the solution of its corresponding primal problem w.r.t. H space can be obtained as
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below:

w∗ = −YΦ(A)T α∗equ (2.84)

Proof From dual problem Eq. (2.83), we can get its Lagrangian function as:

L
(
αequ, β, α1, α2

) = 1

2
αT
equYK (A,A) Yαequ + 1

2
λ1β

T β − beT Yαequ

−αT
1

(
λ1β − λ2e − αequ

)− αT
2

(
λ3e + αequ

)− αT
3 β (2.85)

Where α1 ≥ 0, α2 ≥ 0, α3 ≥ 0. From the KTT condition, we have the equations
below:

λ1β − λ2e − αequ ≥ 0 (2.86)

λ3e + αequ ≥ 0 (2.87)

β ≥ 0 (2.88)

(
λ1β − λ2e − αequ

)T
α1 = 0 (2.89)

(
λ3e + αequ

)T
α2 = 0 (2.90)

βT α3 = 0 (2.91)

∇αequL
(
αequ, β, α1, α2

) = YK (A,A) Yαequ − bYe+ α1 − α2 = 0 (2.92)

∇βL
(
αequ, β, α1, α2

) = λ1β − λ1α1 − α3 = 0 (2.93)

Sustaining Eq. (2.84) into Eq. (2.92), so

∇αequL
(
αequ, β, α1, α2

) = YK (A,A) Yαequ − bYe+ α1 − α2

= −Y
(
w∗ ·Φ(A)+ be

)+ α∗1 − α∗2 = 0 (2.94)

This satisfies the constraint of problem Eq. (2.76) when β = α∗1 , ξ = α∗2 .
Therefore,

(
w∗, α∗1 , α∗2

)
is the feasible solution of primal problem Eq. (2.76) w.r.t.

H space. Furthermore, introducing Eqs. (2.89), (2.90) and (2.92), the objective
function of primal problem Eq. (2.76) turns into:

1

2
w∗T w∗ + 1

2
λ1β

∗T β∗ − λ2e
T β∗ + λ3e

T ξ∗

= −1

2
α∗TequYK (A,A) Yα∗equ −

1

2
λ1β

∗T β∗ + beT Yα∗equ (2.95)
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As a result, the object value of the primal problem at points (w∗ , β∗ , ξ ∗ ) is the
optimal value of its dual problem at points (αequ, β∗) w.r.t. H space.

Base on the Theorem 2.2, we introduced Algorithm 2.3 using kernel based simple
regular multiple constraint linear program (KSRMCLP) for binary classification
problem.

Given a training set {(x1, y1), · · · , (xl, yl)}, being different from classification
problem, regression is not to give a new arrival instance xi a category label
but a real number value, yi ∈ R. That is mean the possible set of yi has
been changed from finite labels set y to infinite R. Following the idea of
ε − tube, a model for regression problem could be constructed from a binary
classification model [32]. Given a real number ε, two different category points
could be generated when we add and minus ε on the regression output yi.
When we have l instances {(x1, y1), · · · , (xl, yl)} for regression, 2 × l instances
{(x1, y1 + ε)pos, · · · , (xl, yl + ε)pos, (x1, y1 − ε)neg, · · · , (x�, y� − ε)neg} could be
constructed. According to the binary classification model we propose in the last
section, a model for regression problem could be given as:

min 1
2w

T Hw + 1
2λ1β

T Kβ − λ2e
T β + λ3e

T ξ

s.t.Y
(
Aregw + be

) = β − ξ, (2.96)

β ≥ 0, ξ ≥ 0

Algorithm 2.3 KSRMCLP Algorithm for Binary Classification
Input:

Training dataset S = {(x1, y1), (x2, y2), · · · , (xl, yl)} with l instances, xi ∈ Rn

andyi ∈ {−1, 1}, kernel function Kθ (xi, xj) and its parameters θ , model parameters
λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0.

Output:
Binary classification discriminate function f (x).
1: Begin
2: Construct data matrix A, label matrix Y according to Eq. (2.75).

A =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
l

⎤
⎥⎥⎥⎦

l∗n

, Y =

⎡
⎢⎢⎣

y1 0 · · · 0
0 y2 · · · 0
· · · · · · · · · · · ·
0 · · · 0 yl

⎤
⎥⎥⎦

l∗l
3: Construct and solve the optimization problem according to model Eq. (2.83).
min 1

2α
T
equYKθ (A,A) Yαequ + 1

2λ1β
T β − beT Yαequ,

s. t. λ1β − λ2e − αequ ≥ 0,
λ3e + αequ ≥ 0,
β ≥ 0,

b ∈ {−1, 1}
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4: Obtain the decision function f (x) = sign (−YKθ (A, x)αequ + b).
5: End

where w ∈ Rn + 1, β, ξ ∈ R2l, and

Areg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
1 , y1 + ε

...

xT
l , yl + ε

xT
1 , y1 − ε

...

xT
l , yl − ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2l×(n+1)

, Y =
[
Il×l O

O −Il×l

]

2l×2l

(2.97)

The constraint of Eq. (2.96) could be divided into two parts, the positive and the
negative. For positive points, the corresponding target value is yi + ε, for negative
points is yi − ε. Thus matrix Y is useless and variables β, ξ , also change into Boos,
βpos, βneg, ξpos, ξneg. Then, model Eq. (2.96) could be written as,

min 1
2w

T Hw + 1
2λ1β

T
posKβpos + 1

2λ1β
T
negKβneg − λ2e

T
(
βpos + βneg

) +
λ3e

T
(
ξpos + ξneg

)

s.t.Aw + be+ η (y + εe) = βpos − ξpos (2.98)

Aw + be+ η (y − εe) = − (βneg − ξneg
)

βpos ≥ 0, βneg ≥ 0, ξpos ≥ 0, ξneg ≥ 0

where w ∈ Rn, βpos, βneg, ξpos, ξneg ∈ Rl, b ∈ R are variables.

A =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
l

⎤
⎥⎥⎥⎦

l×n

, y =

⎡
⎢⎢⎢⎣

y1

y2
...

yl

⎤
⎥⎥⎥⎦

l×1

(2.99)

We know η �= 0, w, b, βpos, βneg, ξpos, ξneg are all variables, so η could be
removed from the expression. Model Eq. (2.98) turns into:

min 1
2w

T Hw + 1
2λ1β

T
posKβpos + 1

2λ1β
T
negKβneg − λ2e

T
(
βpos + βneg

) +
λ3e

T
(
ξpos + ξneg

)

s.t.Aw + be + (y + εe) = βpos − ξpos (2.100)

Aw + be+ (y − εe) = − (βneg − ξneg
)
,

βpos ≥ 0, βneg ≥ 0, ξpos ≥ 0, ξneg ≥ 0
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where w ∈ Rn, βpos, βneg, ξpos, ξneg ∈ Rl, b ∈ R are variables. And ε, λ1, λ2, λ3 ∈ R,
positive matrices H, K are given in advance. Similar to the procedure last part, we
set K, H as identity matrix, the Lagrangian function of model Eq. (2.100) is derived
as

L
(
w, βpos, βneg, ξpos, ξneg

) = − 1
2

(
αpos + αneg

)T
AAT

(
αpos + αneg

)− 1
2λ1β

T
posβpos

− 1
2λ1β

T
negβneg + (be + y)T

(
αpos + αneg

)+ εeT
(
αpos − αneg

)
(2.101)

where αpos, αneg are free variables, αβpos ≥ 0, αβneg ≥ 0, αξpos ≥ 0, αξneg ≥ 0 are
corresponding Lagrangian multipliers. Also, from KKT condition, we have

∇wL
(
w,βpos, βneg, ξpos, ξneg

) = w + AT
(
αpos + αneg

) = 0 (2.102)

∇βposL
(
w,βpos, βneg, ξpos, ξneg

) = λ1βpos − λ2e − αpos − αβpos = 0
(2.103)

∇βnegL
(
w,βpos, βneg, ξpos, ξneg

) = λ1βneg − λ2e + αneg − αβneg = 0
(2.104)

∇ξpos L
(
w,βpos, βneg, ξpos, ξneg

) = λ3e + αpos − αξpos = 0 (2.105)

∇ξnegL
(
w,βpos, βneg, ξpos, ξneg

) = λ3e − αneg − αξneg = 0 (2.106)

Therefore, the dual problem for model Eq. (2.100) is obtained:

max−1

2

(
αpos + αneg

)T
AAT

(
αpos + αneg

)− 1

2
λ1

(
βT
posβpos + βT

negβneg

)
+

(be+ y)T
(
αpos + αneg

)+ εeT
(
αpos − αneg

)

s.t.λ1βpos − λ2e − αpos ≥ 0,

λ1βneg − λ2e + αneg ≥ 0, (2.107)

λ3e + αpos ≥ 0,

λ3e − αneg ≥ 0,

βpos ≥ 0,

βneg ≥ 0,

b ∈ {−1, 1}
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where αpos, αneg, βpos, βneg ∈ Rl, b ∈ R are variables. And ε ≥ 0, λ1 ≥ 0, λ2 ≥ 0,
λ3 ≥ 0 are given in advance.

When introducing kernel function Eq. (2.82), model Eq. (2.107) turns into

min 1
2

(
αpos + αneg

)T
K (A,A)

(
αpos + αneg

)+ 1
2λ1

(
βT
posβpos + βT

negβneg

)

−(be+ y)T
(
αpos + αneg

)− εeT
(
αpos − αneg

)

s.t.λ1βpos − λ2e − αpos ≥ 0,

λ3e + αpos ≥ 0, (2.108)

λ3e − αneg ≥ 0,

βpos ≥ 0,

βneg ≥ 0,

b ∈ {−1, 1}

From the decision hyperplane w · x + b + y = 0, the regression function could
be obtained as

f (x) = − (w · x + b) = AT
(
αpos + αneg

) · x − b

With kernel function, regression function could be derived from

f (x) = Φ(A)T
(
αpos + αneg

)
Φ(x)− b = K (A, x)

(
αpos + αneg

)− b

Theorem 2.3 Given the solution of Dual Problem Eq. (2.108)
(
α∗pos, α

∗
neg, β

∗
pos,

β∗neg
)
, the solution of its corresponding primal problem w.r.t. H space can be

obtained as below:

w∗ = −Φ
(
AT
) (

α∗pos + α∗neg
)

(2.109)

Proof From dual problem Eq. (2.108), we can get its Lagrangian function as:

L
(
αpos, αneg, βpos, βneg

) = 1

2

(
αpos + αneg

)T
K (A,A)

(
αpos + αneg

)

+1

2
λ1

(
βT
posβpos + βT

negβneg

)

−(be+ y)T
(
αpos + αneg

)− εeT
(
αpos − αneg

)

−αT
1

(
λ1βpos − λ2e − αpos

)
(2.110)
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−αT
2

(
λ1βneg − λ2e + αneg

)

−αT
3

(
λ3e+ αpos

)

−αT
4

(
λ3e − αneg

)

−αT
5 βpos

−αT
6 βneg

where α1 ≥ 0, α2 ≥ 0, α3 ≥ 0, α4 ≥ 0, α5 ≥ 0, α6 ≥ 0. from the KTT condition,
we have the equation below:

λ1βpos − λ2e − αpos ≥ 0 (2.111)

λ1βneg − λ2e + αneg ≥ 0 (2.112)

λ3e + αpos ≥ 0 (2.113)

λ3e − αneg ≥ 0 (2.114)

βpos ≥ 0 (2.115)

βneg ≥ 0 (2.116)

αT
1

(
λ1βpos − λ2e − αpos

) = 0 (2.117)

αT
2

(
λ1βneg − λ2e + αneg

) = 0 (2.118)

αT
3

(
λ3e + αpos

) = 0 (2.119)

αT
4

(
λ3e − αneg

) = 0 (2.120)

αT
5 βpos = 0 (2.121)

αT
6 βneg = 0 (2.122)

∇αposL = K (A,A)
(
αpos + αneg

)− (be+ y)− εe + α1 − α3 = 0 (2.123)

∇αnegL = K (A,A)
(
αpos + αneg

)− (be+ y)+ εe − α2 + α4 = 0 (2.124)

∇βposL = λ1βpos − λ1α1 − α5 = 0 (2.125)

∇βnegL = λ1βneg − λ1α2 − α6 = 0 (2.126)
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Sustaining Eq. (2.109) into Eqs. (2.123) and (2.124), we have

∇αposL
(
αpos, αneg, βpos, βneg

)

= K (A,A)
(
αpos + αneg

)− (be+ y)− εe + α1 − α3 (2.127)

= − (w∗ ·Φ(A)+ be+ (y + εe)− α1 + α3
) = 0

∇αposL
(
αpos, αneg, βpos, βneg

)

= K (A,A)
(
αpos + αneg

)− (be+ y)+ εe − α1 + α3 (2.128)

= − (w∗ ·Φ(A)+ be+ (y − εe)+ α1 − α3
) = 0

This satisfies the constraint of primal problem Eq. (2.100), so
(
w∗, α∗1 , α∗2 , α∗3 ,

α∗4
)

is the feasible solution of primal problem Eq. (2.100) w.r.t. H space. Further-
more, introducing Eqs. (2.117)–(2.122), the objective function of primal problem
Eq. (2.100) turns into:

1

2
wT w + 1

2
λ1

(
βT
posβpos + βT

negβneg

)
− λ2e

T
(
βpos + βneg

)+ λ3e
T
(
ξpos + ξneg

)

= −1

2

(
αpos + αneg

)T
K (A,A)

(
αpos + αneg

)− 1

2
λ1

(
βT
posβpos + βT

negβneg

)

+(be+ y)T
(
αpos + αneg

)+ εeT
(
αpos − αneg

)

As a result, the object value of the primal problem at points
(
w∗, β∗pos, β

∗
neg, ξ

∗
pos,

ξ∗neg
)

is the optimal value of its dual problem at points
(
α∗pos, α

∗
neg, β

∗
pos, β

∗
neq

)
.

Base on the Theorem 2.3, we introduced Algorithm 2.4 from kernel based
simple regular multiple constraint linear programming (KSRMCLP) for regression
problem.

Algorithm 2.4 KSRMCLP Algorithm for Regression
Input:

Training dataset S = {(x1, y1), (x2, y2), · · · , (xl, yl)}, xi ∈ Rn and yi ∈ R. Kernel
function Kθ (xi, xj) and its parameters θ , model parameters ε ≥ 0, λ1 ≥ 0, λ2 ≥ 0,
λ3 ≥ 0.

Output:
Regression estimated function f (x).
1: Begin
2: Construct data matrix A, target value vector y according to equation formula
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below:

A =

⎡
⎢⎢⎢⎣

xT
1

xT
2
...

xT
l

⎤
⎥⎥⎥⎦

l∗n

, y =

⎡
⎢⎢⎢⎣

y1

y2
...

yl

⎤
⎥⎥⎥⎦

l×1
3: Construct and solve the optimization problem according to Eq. (2.108).

min 1
2

(
αpos + αneg

)T
Kθ (A,A)

(
αpos + αneg

)+ 1
2λ1

(
βT
posβpos + βT

negβneg

)

−(be + y)T (αpos + αneg) − εeT (αpos − αneg),
s. t. λ1βpos − λ2e − αpos ≥ 0,
λ1βneg − λ2e + αneg ≥ 0,
λ3e + αpos ≥ 0,
λ3e − αneg ≥ 0,
βpos ≥ 0,
βneg ≥ 0,
b ∈ {−1, 1}
4: Obtain the decision function f (x) = Kθ (A, x)(αpos + αneg) − b.
5: End

2.2 Multiple Criteria Linear Programming with Expert
and Rule Based Knowledge

2.2.1 A Group of Knowledge-Incorporated Multiple Criteria
Linear Programming Classifier

Prior knowledge in some classifiers usually consists of a set of rules, such as, if A
then x ∈G (or x ∈ B), where condition A is relevant to the attributes of the input data.
One example of such form of knowledge can be seen in the breast cancer recurrence
or nonrecurrence prediction. Usually, doctors can judge if the cancer recur or not
in terms of some measured attributes of the patients. The prior knowledge used by
doctors in the breast cancer dataset includes two rules which depend on two features
of the total 32 attributes: tumor size (T) and lymph node status (L). The rules are
[33]:

If L ≥ 5 and T ≥ 4 Then RECUR and If L = 0 and T ≤ 1.9 Then NONRECUR

The conditions L ≥ 5 and T ≥ 4 (L = 0 and T ≤ 1.9) in the above rules can be
written into such inequality as Cx≤ c, whereC is a matrix driven from the condition,
x represents each individual sample, c is a vector. For example, if each sample x
is expressed by a vector [x1, . . . , xL, . . . , xT , . . . , xr]T , for the rule: if L ≥ 5 and
T ≥ 4 then RECUR, it also means: if xL ≥ 5 and xT ≥ 4, then x ∈ RECUR, where
xL and xT are the corresponding values of attributes L and T of a certain sample
data, r is the number of attributes. Then its corresponding inequality Cx ≤ c can be
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written as:

[
0 . . . −1 . . . 0 . . . 0
0 . . . 0 . . . −1 . . . 0

]
x ≤

[ −5
− 4

]
.

where x is the vector with r attributes include two features relevant to prior
knowledge.

Similarly, the condition L = 0 and T ≤ 1.9 can also be reformulated to be
inequalities. With regard to the condition L = 0, in order to express it into the
formulation of Cx ≤ c, we must replace it with the condition L ≥ 0 and L ≤ 0. Then
the condition L = 0 and T ≤ 1.9 can be represented by two inequalities: C1x ≤ c1

and C2x ≤ c2, as follows:

[
0 . . . −1 . . . 0 . . . 0
0 . . . 0 . . . 1 . . . 0

]
x ≤

[
0

1.9

]
and

[
0 . . . 1 . . . 0 . . . 0
0 . . . 0 . . . 1 . . . 0

]
x ≤

[
0

1.9

]

We notice the fact that the set {x|Cx ≤ c} can be regarded as polyhedral convex
set. In Fig. 2.7, the triangle and rectangle are such sets.

In two-class classification problem, the result RECUR or NONRECUR is equal
to the expression x ∈ B or x ∈ G. So according to the above rules, we have:

Cx ≤ c⇒ x ∈ G (or x ∈ B) (2.129)

In MCLP classifier, if the classes are linearly separable, then x ∈ G is equal to
xTw ≥ b, similarly, x ∈ B is equal to xTw ≤ b. That is, the following implication
must hold:

Cx ≤ c⇒ xT w ≥ b
(
or xT w ≤ b

)
(2.130)

Fig. 2.7 The classification result by MCLP (line a) and knowledge-incorporated MCLP (line b)
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For a given (w, b), the implication Cx ≤ c⇒ xTw ≥ b holds, this also means that
Cx ≤ c, xTw < b has no solution x. According to nonhomogeneous Farkas theorem,
we can conclude that CTu + w = 0, cTu + b ≤ 0, u ≥ 0, has a solution (u, w)
[33].

The above statement is able to be added to constraints of an optimization
problem. In this way, the prior knowledge in the form of some equalities and
inequalities in constraints is embedded to the original multiple linear programming
(MCLP) model. The knowledge-incorporated MCLP model is described in the
following.

Knowledge-incorporated MCLP model Now, we are to explain the knowledge-
incorporated MCLP model. This model is to deal with linear knowledge and linear
separable data. The combination of the two kinds of input can help to improve the
performances of both methods.

Suppose there are a series of knowledge sets as follows:

If Cix ≤ ci, i = 1, . . . , k Then x ∈ G

If Djx ≤ dj , j = 1, . . . , l Then x ∈ B

This knowledge also means the convex sets {x|Cix ≤ ci}, i = 1, . . . , k lie on the
G side of the bounding plane, the convex sets {x|Djx ≤ dj}, j = 1, . . . , l on the B
side.

Based on the above theory in the last section, we converted the knowledge to the
following constraints:

There exist ui, i = 1, . . . , k, vj, j = 1, . . . , l, such that:

CiT ui +w = 0, ciT ui + b ≤ 0, ui ≥ 0, i = 1, . . . , k
DjT vj −w = 0, djT vj − b ≤ 0, vj ≥ 0, j = 1, . . . , l

(2.131)

However, there is no guarantee that such bounding planes precisely separate all
the points. Therefore, some error variables need to be added to the above formulas.
The constraints are further revised to be:

There exist ui, ri, ρi, i = 1, . . . , k and vj, sj, σ j, j = 1, . . . , l, such that:

−ri ≤ CiT ui + w ≤ ri, ciT ui + b ≤ ρi, ui ≥ 0, i = 1, . . . , k
− sj ≤ DjT vj −w ≤ sj , djT vj − b ≤ σj , vj ≥ 0, j = 1, . . . , l

(2.132)
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After that, we embed the above constraints to the MCLP classifier, and obtained
the knowledge-incorporated MCLP classifier:

Minimize d+α + d−α + d+β + d−β + C
(∑ (

ri + ρi
)+∑(

sj + σ j
))

Subject to :
α∗ +

n∑
i=1

αi = d−α − d+α

β∗ −
n∑

i=1
βi = d−β − d+β

x11w1 + · · · + x1rwr = b+ α1 − β1, for A1 ∈ B,

.

.

.

xn1w1 + · · · + xnrwr = b− αn + βn, for An ∈ G,

− r i ≤ Ci’ui + w ≤ r i, i = 1, . . . , k

ci’ui + b ≤ ρi

− sj ≤ Dj’vj −w ≤ sj, j = 1, . . . , l

dj’vj − b ≤ σ j

α1, . . . , αn ≥ 0, β1, . . . , βn ≥ 0,
(
ui, vj, r i, ρi, sj, σ j

) ≥ 0
(2.133)

In this model, all the inequality constraints are derived from the prior knowledge.
The last objective C(

∑
(ri + ρi) + ∑

(sj + σ j)) is about the slack error variables
added to the original knowledge equality constraints. The last objective attempts to
drive the error variables to zero. We want to get the best bounding plane (w, b) by
solving this model to separate the two classes.

We notice the fact that if we set the value of parameter C to be zero, this means
to take no account of knowledge. Then this model will be equal to the original
MCLP model. Theoretically, the larger the value of C, the greater impact on the
classification result of the knowledge sets.

Knowledge-incorporated KMCLP Model If the data set is nonlinear separable,
the above model will be inapplicable. We need to figure out how to embed prior
knowledge into the KMCLP model, which can solve nonlinear separable problem.

As is shown in the above part, in generating KMCLP model, we suppose:

w =
n∑

i=1

λiyiXi (2.134)
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If expressed by matrix, the above formulation will be:

w = XT Yλ (2.135)

where Y is n*n diagonal matrix, the value of each diagonal element depends on the
class label of the corresponding sample data, which can be +1 or −1. X is the n*r
input matrix with n samples, r attributes. λ is a n-dimensional vector λ = (λ1, λ2,
. . . , λn)T.

Y =

⎡
⎢⎢⎢⎣

y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...

0 0 . . . yn

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1r

x21 x22 . . . x2r
...

...
. . .

...

xn1 xn2 . . . xnr

⎤
⎥⎥⎥⎦

Therefore, w in the original MCLP model is replaced by XTYλ, thus forming the
KMCLP model. And in this new model, the value of each λi is to be worked out by
the optimization model.

In order to incorporate prior knowledge into KMCLP model, the inequalities
about the knowledge must be transformed to be the form with λi instead of w.
Enlightened by the KMCLP model, we also introduce kernel to the expressions of
knowledge. Firstly, the equalities in (2.131) are multiplied by input matrix X [34].
Then replacing w with XTYλ, (2.131) will be:

XCiT ui +XXT Yλ = 0, ciT ui + b ≤ 0, ui ≥ 0, i = 1, . . . , k
XDjT vj −XXT Yλ = 0, djT vj − b ≤ 0, vj ≥ 0, j = 1, . . . , l

(2.136)

Kernel function is introduced here to replace XCiT and XXT . Also slack errors
are added to the expressions, then such kind of constraints are formulated:

−r i ≤ K
(
X,CiT

)
ui +K

(
X,XT

)
Yλ ≤ r i, i = 1, . . . , k

ciTui + b ≤ ρi

− sj ≤ K
(
X,DjT

)
vj −K

(
X,XT

)
Yλ ≤ sj, j = 1, . . . , l

djT vj − b ≤ σ j

(2.137)

These constraints can be easily embedded to KMCLP model as the constraints
acquired from prior knowledge.
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Knowledge-incorporated KMCLP classifier:

Min
(
d+α + d−α + d+β + d−β

)
+ C

(
k∑

i=1

(
ri + ρ i

)+
l∑

j=1

(
s j + σ j

)
)

s.t. λ1y1K (X1,X1)+ · · · + λnynK (Xn,X1) = b + α1 − β1, , for X1 ∈ B,

.

.

.

λ1y1K (X1,Xn)+ · · · + λnynK (Xn,Xn) = b − αn + βn, for Xn ∈ G,

α∗ +
n∑

i=1
αi = d−α − d+α ,

β∗ −
n∑

i=1
βi = d−β − d+β ,

− r i ≤ K
(
X,CiT

)
ui +K

(
X,XT

)
Yλ ≤ r i, i = 1, . . . , k

ciTui + b ≤ ρ i

− s j ≤ K
(
X,DjT

)
vj −K

(
X,XT

)
Yλ ≤ s j, j = 1, . . . , l

djT vj − b ≤ σ j

α1, . . . , αn ≥ 0, β1, . . . , βn ≥ 0, λ1, . . . , λn ≥ 0,(
ui, vj, r i, ρ i, s j, σ j

) ≥ 0
d−α , d+α , d−β , d+β ≥ 0

(2.138)

In this model, all the inequality constraints are derived from prior knowledge. ui,
vi ∈ Rp, where p is the number of conditions in one knowledge. For example, in the
knowledge if xL ≥ 5 and xT ≥ 4, then x ∈ RECUR, the value of p is 2. ri, ρi, sj and
σj are all real numbers. And the last objective Min

∑
(ri + ρi) + ∑

(sj + σ j) is
about the slack error variables added to the original knowledge equality constraints.
As we talked in last section, the larger the value of C, the greater impact on the
classification result of the knowledge sets.

In this model, several parameters need to be set before optimization process.
Apart from C we talked about above, the others are parameter of kernel function q
(if we choose RBF kernel) and the ideal compromise solution α* and β*. We want to
get the best bounding plane (λ, b) by solving this model to separate the two classes.
And the discrimination function of the two classes is:

λ1y1K (X1, z)+ · · · + λnynK (Xn, z) ≤ b, then z ∈ B

λ1y1K (X1, z)+ · · · + λnynK (Xn, z) ≥ b, then z ∈ G
(2.139)

where z is the input data which is the evaluated target with r attributes. Xi represents
each training sample. yi is the class label of ith sample.

In the above models, the prior knowledge we deal with is linear. That means the
conditions in the above rules can be written into such inequality as Cx ≤ c, where
C is a matrix driven from the condition, x represents each individual sample, c is a
vector. The set {x| Cx ≤ c} can be viewed as polyhedral convex set, which is a linear
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geometry in input space. But, if the shape of the region which consists of knowledge
is nonlinear, for example, {x| ||x||2 ≤ c}, how to deal with such kind of knowledge?

Suppose the region is nonlinear convex set, we describe the region by g(x) ≤ 0.
If the data is in this region, it must belong to class B. Then, such kind of nonlinear
knowledge may take the form of:

g(x) ≤ 0 ⇒ x ∈ B

h(x) ≤ 0 ⇒ x ∈ G
(2.140)

Here g(x): Rr → Rp (x ∈ Γ ) and h(x): Rr → Rq (x ∈�) are functions defined on
a subset Γ and � of Rr which determine the regions in the input space. All the data
satisfied g(x) ≤ 0 must belong to the class B and h(x) ≤ 0 to the class G.

With KMCLP classifier, this knowledge equals to:

g(x) ≤ 0 ⇒ λ1y1K (X1, x)+ · · · + λnynK (Xn, x) ≤ b, (x ∈ Γ )

h(x) ≤ 0 ⇒ λ1y1K (X1, x)+ · · · + λnynK (Xn, x) ≥ b, (x ∈ Δ)

(2.141)

This implication can be written in the following equivalent logical form [35]:

g(x) ≤ 0 , λ1y1K (X1, x)+ · · · + λnynK (Xn, x) − b > 0, has no solution x ∈ Γ.

h(x) ≤ 0 , λ1y1K (X1, x) + · · · + λnynK (Xn, x)− b < 0, has no solution x ∈ Δ.

(2.142)

The above expressions hold, then there exist v ∈ Rp, r ∈ Rq, v,r ≥ 0 such that:

−λ1y1K (X1, x)− · · · − λnynK (Xn, x)+ b + vT g(x) ≥ 0, (x ∈ Γ )

λ1y1K (X1, x)+ · · · + λnynK (Xn, x)− b + rT h(x) ≥ 0, (x ∈ Δ)

(2.143)

Add some slack variables on the above two inequalities, then they are converted
to:

−λ1y1K (X1, x)− · · · − λnynK (Xn, x)+ b + vT g(x)+ s ≥ 0, (x ∈ Γ )

λ1y1K (X1, x)+ · · · + λnynK (Xn, x)− b + rT h(x)+ t ≥ 0, (x ∈ Δ)

(2.144)

The above statement is able to be added to constraints of an optimization
problem.
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Suppose there are a series of knowledge sets as follows:

If gi(x) ≤ 0,Then x ∈ B
(
gi(x) : Rr → Rp

i (x ∈ Γi) , i = 1, . . . , k
)

If hj (x) ≤ 0,Then x ∈ G
(
hj (x) : Rr → Rq

j

(
x ∈ Δj

)
, j = 1, . . . , l

)

Based on the above theory in last section, we converted the knowledge to the
following constraints:

There exist vi ∈ Rp
i, i = 1, . . . , k, rj ∈ Rq

j, j = 1, . . . , l, vi,rj ≥ 0 such that:

−λ1y1K (X1, x)− · · · − λnynK (Xn, x)+ b + vi
T gi(x)+ si ≥ 0, (x ∈ Γ )

λ1y1K (X1, x)+ · · · + λnynK (Xn, x)− b + rj
T hj (x)+ tj ≥ 0, (x ∈ Δ)

(2.145)

These constraints can be easily imposed to KMCLP model as the constraints
acquired from prior knowledge.

Nonlinear knowledge in KMCLP classifier [36]:

Min
(
d+α + d−α + d+β + d−β

)
+ C

(
k∑

i=1
si +

l∑
j=1

tj

)

s.t. λ1y1K (X1, X1)+ · · · + λnynK (Xn,X1) = b + α1 − β1, , for X1 ∈ B,

.

.

.

λ1y1K (X1, Xn)+ · · · + λnynK (Xn,Xn) = b − αn + βn, for Xn ∈ G,

α∗ +
n∑

i=1
αi = d−α − d+α ,

β∗ −
n∑

i=1
βi = d−β − d+β ,

− λ1y1K (X1, x) − · · · − λnynK (Xn, x) + b + vi
T gi(x)+ si ≥ 0, i = 1, . . . , k

si ≥ 0, i = 1, . . . , k
λ1y1K (X1, x)+ · · · + λnynK (Xn, x)− b + rj

T hj (x) + tj ≥ 0, j = 1, . . . , l
tj ≥ 0, j = 1, . . . , l
α1, . . . , αn ≥ 0, β1, . . . , βn ≥ 0, λ1, . . . , λn ≥ 0,(
vi , rj

) ≥ 0
d−α , d+α , d−β , d+β ≥ 0

(2.146)

In this model, all the inequality constraints are derived from the prior knowledge.

The last objective C

(
k∑

i=1
si +

l∑
j=1

tj

)
is about the slack error. Theoretically, the

larger the value of C, the greater impact on the classification result of the knowledge
sets.
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The parameters need to be set before optimization process are C, q (if we choose
RBF kernel), α* and β*. The best bounding plane of this model decided by (λ, b) of
the two classes is the same with formula (2.139).

2.2.2 Decision Rule Extraction for Regularized Multiple
Criteria Linear Programming Model

In this section, we present a clustering-based rule extraction method to generate
decision rules from the black box RCMLP model. Our method can improve the
interpretability of the RMCLP model by using explicit and explainable decision
rules. To achieve this goal, a clustering algorithm will first be used to generate
prototypes (which are the clustering centers) for each group of examples identified
by the RMCLP model. Then, hyper cubes (whose edges are parallel to the axes)
will be extracted around each prototype. This procedure will be repeated until all
the training examples are covered by a hyper cube. Finally, the hyper cubes will be
translated to a set of if-then decision rules. Experiments on both synthetic and real-
world data sets have demonstrate the effectiveness of our rule extraction method.

For ease of description, we introduce some notations first. Assume a r-
dimensional space, the coordinate of the clustering center p is p = (p1, . . . , pr),
and the classification hyper plane is

∑r
i=1aixi = b (where xi is the direction of the

hyper plane). For each class, we prefer hyper cubes which cover as many examples
as possible. Intuitively, if we pick a point u on the classification boundary and then
draw cubes based on both clustering center p and u, then the generated hyper cube
will cover the largest area with respect to the current prototype p. The distance from
p to the hyper plane can be calculated by Eq. (2.147) as follows:

d = Distance (f, pi) =
∑r

i=1 pixi − b√
x2
i

(2.147)

After computing d, Step 2.3 draws hyper cubes H = DrawHC(d, Pi) by using
the prototype point Pi as the central point, and each edge has a length of

√
2d

meanwhile parallel with the axis. By so doing, we can get if-then rules which are
easily understood. For example, for a specific example a1 ∈ G1, a decision rule can
be described in the following form:

if (l1 ≤ a11 ≤ u1) and (l2 ≤ a12 ≤ u2) . . . . . . and (lr ≤ a1r ≤ ur)

then a1 belongs to class 1
(2.148)
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Fig. 2.8 An illustration of Algorithm 2.5 which generates hyper cubes from RMCLP models.
Based on the RMCLP model’s decision boundary (the red line), Algorithm 2.5 first calculates
several clustering centers for each class (e.g., the red circle in Group 1), then it calculates the
distance d from the classification boundary to the clustering center (the blue line). After that, it
generates a series of hyper cubes. Each hyper cube’s edge is parallel to the axes and the length
is
√

2d. Finally, the hyper cubes can be easily translated into rules that are explainable and
understandable

Figure 2.8 illustrates an example with two dimensions. Examples in G1 (ai ∈G1)
are covered by hyper cubes with a central point as its clustering center and a vertex
on the hyper plane

∑r
i=1aixi = b.

The main computational cost of Algorithm 2.5 is from Steps 2.1~2.3, where a
K-Means clustering model and two distance functions are calculated. Assume there
are l iterations of K-Means. In each iteration, there are k clusters. Therefore, the
total time complexity of K-Means will be O(lknr), where n is the number of training
examples, r is the number of dimensions.

On the other hand, calculating distance d for each clustering center by (2.147)
will take a linear time complexity, so the computational cost of Step 2.2 will be O(k)
for k clustering centers. Finally, the time cost of extracting hyper cubes in Step 2.3
will be O(kr) for k clustering centers in r dimensional space. To sum up, the total
computational complexity of Algorithm 2.5 can be denoted by (2.149),

O(lknr)+O(k)+O(kr) = O(lknr) (2.149)

The above analysis indicates that the hyper cube extracting method in Steps 2.2
and 2.3 is dominated by the K-Means clustering model in Step 2.1. It is in linear
time complexity with respect to training example size.
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Algorithm 2.5 Extract Rules from MCLP Models

Input: The data set A = {a1, a2, . . . , an}, RMCLP model f
Output: Rule Set {w}
Begin
Step 1. Classify all the examples in A using model f ;
Step 2. Define Covered set C = �, Uncovered set U = A;
Step 3. While (U is not empty) do
Step 3.1 For each group Gi,

Calculate the clustering center Pi = K-means(Gi ∩ U);
End for

Step 3.2 Calculate distances between each Pi and boundary d= Distance(f, Pi);
Step 3.3 Draw a new hypercube H = DrawHC(d, Pi);
Step 3.4 For all the examplesai ∈ U,

If ai is covered by H
U = U\ai, C = C ∪ ai;

End If
End For

End While
Step 4 Translate each hypercube H into rule;
Step 5 Return the rule set {w}
End

To demonstrate the effectiveness of the proposed rules extraction method, we
will test our method on both synthetic and real-world data sets. The whole testing
system is implemented in a Java environment by integrating WEKA data mining
tools [37]. The clustering method used in our experiments is the simple K-Means
package in WEKA.

As shown in Fig. 2.9a, we generate a 2-dimensional 2-class data set containing
60 examples, with 30 examples for each class. In each class, we use 50% of the
examples to train a RMCLP model. That is, 30 training examples in total are
used to train the RMCLP model. All examples comply with Gaussian distribution
x~N(μ,�), where μ is mean vector and � is covariate matrix. The first group is

generated by a mean vector μ1 = [1,1] with a covariance matrix Σ1 =
[

0.1 0
0 0.1

]
.

The second group is generated by a mean vector μ2 = [2,2] with a covariance matrix
�2 = �1.

Here we only discuss the two-group classification problem. It is not difficult
to extend to multiple-group classification applications. It is expected to extract
knowledge from the RMCLP model in the form of:

if (a ≤ x1 ≤ b, c ≤ x2 ≤ d) then Def inition 1 (2.150)
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Fig. 2.9 (a) The synthetic dataset; (b) Experimental results. The straight line is the RMCLP
model’s classification boundary, and the squares are hyper cubes generated by using Algorithm
2.5. All the examples are covered by the squares whose edges are parallel to the axes

The result is shown in Fig. 2.9b; we can observe that for the total of 60 examples,
three examples in group 1, and one example in group 2 are misclassified by the
RMCLP model. That is to say, the accuracy of RMCLP on this synthetic dataset
is 56/60 = 92.3%. By using our rule extraction algorithm, we can generate nine
squares, four squares for group 1, and five squares for group 2. All the squares can
be translated to explainable rules in the form of (6) as follows:

K1: if 0.6 ≤ x1 ≤ 0.8 and 2 ≤ x2 ≤ 2.8, then x ∈ G1;
K2: if 1.1 ≤ x1 ≤ 1.3 and 1.8 ≤ x2 ≤ 2.1, then x ∈ G1;
K3: if 0.4 ≤ x1 ≤ 1.5 and −1 ≤ x2 ≤ 1.6, then x ∈ G1;
K4: if 0.9 ≤ x1 ≤ 2.2 and −0.8 ≤ x2 ≤ 0, then x ∈ G1;
K5: if 1.2 ≤ x1 ≤ 1.6 and 2.2 ≤ x2 ≤ 3.2, then x ∈ G2;
K6: if 1.4 ≤ x1 ≤ 1.6 and 1.8 ≤ x2 ≤ 2.0, then x ∈ G2;
K7: if 1.7 ≤ x1 ≤ 2.8 and 1.0 ≤ x2 ≤ 4.0, then x ∈ G2;
K8: if 1.9 ≤ x1 ≤ 2.0 and 0.7 ≤ x2 ≤ 0.8, then x ∈ G2;
K9: if 2.1 ≤ x1 ≤ 2.4 and 0.1 ≤ x2 ≤ 0.5, then x ∈ G2;

where ki (i = 1, . . . , 9) denotes the ith rule. From the results on this synthetic data
set, we can observe that by using the proposed rule extraction method, we can not
only obtain prediction results from RMCLP, but also comprehensible rule.

As one of the basic services offered by the Internet, E-Mail usage is becoming
increasingly widely adopted. Along with constant global network expansion and
network technology improvement, people’s expectations of an E-Mail service are
increasingly demanding. E-Mail is no longer merely a communication tool for
people to share their ideas and information; its wide acceptance and technological
advancement has given it the characteristics of a business service [38], and it is
being commercialized as a technological product.

At the same time, many business and specialized personal users of E-Mail want
an E-Mail account that is safe, reliable, and equipped with a first-class customer



72 2 Multiple Criteria Optimization Classification

support service. Therefore, many websites have developed their own user-pays E-
mail service to satisfy this market demand. According to statistics, the Chinese
network has advanced so much in the past few years that, by 2005, the total
market size of Chinese VIP E-mail services reached 6.4 hundred million RMB. This
enormous market demand and market prospect also means increasing competition
between the suppliers. How to analyze the pattern of lost customer accounts and
decrease the customer loss rate have become a focal point of competition in today’s
market [39, 40].

Our partner company’s VIP E-Mail data are mainly stored in two kinds of
repository systems; one is customer databases, the other is log files. They are
mainly composed of automated machine recorded customer activity journals and
large amount of manually recorded tables; these data are distributed among servers
located in different departments of our partnering companies, coving more than 30
kinds of transaction data charts and journal documents, with over 600 attributes.

If we were to directly analysis these data, it would lead to a “course of
dimensionality”, that is to say, a drastic rise in computational complexity and
classification error with data of large dimensions. Hence, the dimensionality of the
feature space must be reduced before classification is undertaken. According to the
accumulated experience functions, we eventually selected 230 attributes from the
original 600 attributes.

Figure 2.10 displays the procedure of feature selection of the VIP E-Mail dataset.
We selected a part of the data charts and journal documents from the VIP E-Mail
System. The left upper part of Fig. 2.10 displays the three logging journal documents
and two email transaction journal documents; when the user logs into the pop3
server, the machine will record the user’s login into the log file pop3login; similarly
when the user logs into the smtp server, the machine will record this into the log
file smtplogin; when the user logs into the E-Mail system through http protocol, the
machine will record it into the log file weblogin; when the user successfully sends
an E-Mail by smtp protocol, the system will record it into the log file smtprcptlog;
when receiving a letter, it will be recorded into the log file mx_rcptlog.

We extracted 37 attributes from these five log files, that is, 184 attributes in total,
to describe user logins and transactions. From the databases, shown in the left lower
section of Fig. 2.8, we extracted six features about “customer complaint about the
VIP E-Mail Service”, 24 features about “customer payment” and 16 features about
“customer’s personal information” (for example, age, gender, occupation, income
etc.) to form the operational table. Thus, 185 features from log files and 65 features
from databases eventually formed the Large Table, and the 230 attributes depicted
the features of the customers. The accumulated experience functions used in the
feature selection are confidential, and further discussion of them exceeds the range
of this section.

Considering the integrality of the customer records, we eventually extracted
two groups from a huge number of data: the current and the lost. Ten thousand
nine hundred and ninety-six customers, 5498 for each class, were chosen from the
dataset. Combining the 10,996 SSN with the 230 features, we eventually acquired
the Large Table with 5498 current records and 5498 lost records, which became the
dataset for data mining.
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Fig. 2.10 The roadmap of the VIP Email Dataset

Table 2.6 Ten Folder Cross Validation on VIP Email Dataset

Cross
validation

Training set (500 Bad data + 500
Good data)

Testing set (4998 Bad data + 4998
Good data)

LOST
Accuracy
(%) CURRENT

Accuracy
(%) LOST

Accuracy
(%) CURRENT

Accuracy
(%)

DataSet 1 444 88.80 455 91.00 4048 80.99 4311 86.25
DataSet 2 447 89.40 459 91.80 4081 81.65 4355 87.13
DataSet 3 449 89.80 465 92.00 4079 81.61 4362 87.27
DataSet 4 440 88.00 467 92.40 4006 80.15 4286 85.75
DataSet 5 435 87.00 460 92.00 4010 80.23 4420 88.44
DataSet 6 436 87.20 460 92.00 3995 79.93 4340 86.83
DataSet 7 445 89.00 464 92.80 4008 80.19 4403 88.10
DataSet 8 443 88.60 455 91.00 4052 81.07 4292 85.87
DataSet 9 429 85.80 457 91.40 3955 79.13 4436 88.76
DataSet10 440 88.00 456 91.20 4087 81.77 4355 87.13

Table 2.6 lists the ten-folder cross validation results of the RMCLP model’s
performance on the VIP Email Dataset. The columns “LOST” and “CURRENT”
refer to the number of records that were correctly classified as “lost” and “current”
respectively. The column “Accuracy” was calculated using correctly classified
records divided by the total records in that class. From Table 2.6, we can observe
that the average prediction accuracy of the RMLCP on this data set is 80.67% on
the first class and 87.15% on the second class. That is, on the whole 10,996 test
examples, the average accuracy of RMCLP is 82.91%.
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Table 2.7 Comparisons between RMCLP’s Rule and Decision Tree’s Rule

RMCLP’s Rule Decision Tree’s Rule

RULE 1:
if 0 <= The number of emails <= 3
and 0 <= the number of POP3 login on
Tuesday <= 6
and 0 <= the number of HTTP login <= 1
and 0 <= Free Email Service <= 1
and 0 <= The percentage of Charge Type
7 <= 0.3
and 0 <= The total Charge Fee <= 45 . . .

then class LOST [0.816]
RULE 6:
if 0 <= The number of HTTP Login <= 5
and 0 <= Free Email Service Status <= 1
and 0.2 <= The percentage of Charge Type
11 <= 0.5
and 0 <= The total Charge Fee <= 4
and 0 <= The number of emails <= 3
and 0 <= CONTACT_NUMBER <= 1
and 0 <= IDNUM <= 1 . . .

then class CURRENT [0.802]

RULE 1′:
if The number of emails <= 1
and the number of POP3 login on
Tuesday <= 3
and number of HTTP login <= 1
and Free Email Service = 1
and The percentage of Charge Type
7 <= 0.25
and The total Charge Fee <= 50 . . .

then class LOST [0.746]
RULE 6′:
if The number of HTTP Login <= 3
and Free Email Service Status = 0
and The percentage of Charge Type
11 > 0.294
and The total Charge Fee <= 5
and The number of Emails <= 1
and CONTACT_NUMBER = 1
and IDNUM = 0 . . .

then class CURRENT [0.739]
Average Accuracy: 80.90% Average Accuracy: 74.25%

As discussed above, a decision tree is widely used to extract rules from training
examples. In the following experiments, we will compare our method with a
decision tree (which is implemented by the WEKA J48 package).

Table 2.7 shows the comparison results between our method and the decision
tree. By using our rule extraction method, we obtain more than 20 hyper cubes.
Due to space limitation, we only list the two most representative rules (i.e., Rule 1
for class “LOST” and Rule 6 for class “CURRENT”) in the left side of Table 2.7.
Then we find the corresponding rules from the decision tree (i.e., Rule 1′ for class
“LOST” and Rule 6′ for class “CURRENT”), and list them in the right side of Table
2.7.

From these results, we can observe that our rule extraction method acquires much
more accurate rules than the decision tree method. For example, when comparing
Rule 1 with Rule 1′, we can safely say that Rule 1 is supported by 81.6% examples
in the “LOST” class; by contrast, rules from decision tree only get 74.6% supportive
examples. Similarly, when comparing Rule 6 with Rule 6′, our method also achieves
better support than the decision tree.

At the bottom of Table 2.7, we list the average accuracy of the two methods.
It is obvious that the average accuracy of rules extracted from RMCLP is 80.90%.
This is better than the decision tree’s accuracy of 74.25%. Moreover, compared to
the RMCLP’s performance in Table 2.6 (which equals 82.91%), we can say that
the average accuracy of the extracted rules (i.e., 80.90%) suffers only a little loss
in performance. Therefore, our rule extraction method from the RMCLP model can
effectively extract comprehensible rules from the RMCLP model.
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2.3 Multiple-Criteria Decision Making Based Data Analysis

2.3.1 A Multicriteria Decision Making Approach for
Estimating the Number of Clusters

Estimating the number of clusters for a given data set is closely related to the
validity measures and the data set structures. Many validity measures have been
proposed and can be classified into three categories: external, internal, and relative
[41]. External measures use predefined class labels to examine the clustering results.
Because external validation uses the true class labels in the comparison, it is an
objective indicator of the true error rate of a clustering algorithm. Internal measures
evaluate clustering algorithms by measuring intra- and inter-cluster similarity.
An algorithm is regarded as good if the resulting clusters have high intra-class
similarities and low inter-class similarities. Relative measures try to find the best
clustering structure generated by a clustering algorithm using different parameter
values. Extensive reviews of cluster validation techniques can be found in [41] and
[42, 43].

Although external measures perform well in predicting the clustering error in
previous studies, they require a priori structure of a data set and can only be applied
to data sets with class labels. Since this study concentrates on data sets without class
labels, it utilizes relative validity measures. The proposed approach can be applied
to a wide variety of clustering algorithms. For simplicity, this study chooses the
well-known k-means clustering algorithm. Figure 2.11 describes the MCDM-based
approach for determining the number of clusters in a data set. For a given data set,
different numbers of clusters are considered as alternatives and the performances
of k-means clustering algorithm on the relative measures with different numbers of
clusters represent criteria by MCDM methods. The output is a ranking of numbers of
clusters, which evaluates the appropriateness of different numbers of clusters for a
given data set based on their overall performances for multiple criteria (i.e., selected
relative measures).

2.3.1.1 MCDM Methods

This study chooses three MCDM methods for estimating the number of clusters
for a data set. This section introduces the selected MCDM methods (i.e., WSM,
PROMETHEE, and TOPSIS) and explains how they are used to estimate the optimal
number of clusters for a given data set.

MCDM Method 1: Weighted Sum Method (WSM)

The weighted sum method (WSM) was introduced by Zadeh [44]. It is the most
straightforward and widely-used MCDM method for evaluating alternatives. When
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Fig. 2.11 A MCDM-based approach for determining the number of clusters in a dataset

an MCDM problem involves both benefit and cost criteria, two approaches can be
used to deal with conflicting criteria. One is the benefit to cost ratio and the other
is the benefit minus cost [45]. For the estimation of optimal number of clusters for
a data set, the relative indices Dunn, silhouette, and PBM are benefit criteria and
have to be maximized, while Hubert, normalized Hubert, Davies-Bouldin index,
SD, S_Dbw, CS, and C-index are cost criteria and have to be minimized. This study
chooses the benefit minus cost approach and applies the following formulations to
rank different numbers of clusters.

Suppose there are m alternatives, k benefit criteria, and n cost criteria. The total
benefit of alternative A

benef it
i is defined as follows:

A
benef it
i =

k∑
j=1

wjaij , f or i = 1, 2, 3, . . . ,m

where aij represents the performance measure of the jth criterion for alternative Ai.
Similarly, the total cost of alternative Acos t

i is defined as follows:

Acos t
i =

n∑
j=1

wjaij , f or i = 1, 2, 3, . . . ,m

where
k∑

j=1
wj +

n∑
j=1

wj = 1; 0 < wj ≤ 1. Then the importance of alternative

AWSM−score
i is defined as follows:

AWSM−score
i = A

benef it

i − Acos t
i , f or i = 1, 2, 3, . . . ,m

The best alternative is the one has the largest WSM score [45].
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MCDM Method 2: Preference Ranking Organization Method for Enrichment
of Evaluations (PROMETHEE)

Brans proposed the PROMETHEE I and PROMETHEE II, which use pairwise
comparisons and outranking relationships to choose the best alternative [46]. The
final selection is based on the positive and negative preference flows of each
alternative. The positive preference flow indicates how an alternative is outranking
all the other alternatives and the negative preference flow indicates how an
alternative is outranked by all the other alternatives [47]. While PROMETHEE
I obtains partial ranking because it does not compare conflicting actions [48],
PROMETHEE II ranks alternatives according to the net flow which equals to the
balance of the positive and the negative preference flows. An alternative with a
higher net flow is better [47]. Since the goal of this study is to provide a complete
ranking of different numbers of clusters, PROMETHEE II is utilized. The following
procedure presented by Brans and Mareschal [47] is used in the experimental
study:

Step 1. Define aggregated preference indices.
Let a,b ∈A, and let

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π (a, b) =
k∑

j=1
pj (a, b)wj ,

π (a, b) =
k∑

j=1
pj (b, a)wj .

where A is a finite set of possible alternatives {a1, a2, . . . , an}, k represents
the number of evaluation criteria, and wj is the weight of each criterion. For
estimating the number of clusters for a given data set, the alternatives are different
numbers of clusters and the criteria are relative indices. Arbitrary numbers
for the weights can be assigned by decision-makers. The weights are then
normalized to ensure that

∑k
j=1wj = 1. π(a, b) indicates how a is preferred

to b over all the criteria and π(b, a) indicates how b is preferred to a over all
the criteria. Pj(a,b) and Pj(b, a) are the preference functions for alternatives a
and b. The relative indices Dunn, silhouette, and PBM have to be maximized,
and Hubert, normalized Hubert, DB, SD, S_Dbw, CS, and C-index have to be
minimized.

Step 2. Calculate π(a, b) and π(b, a) for each pair of alternatives of A.
There are six types of preference functions and the decision-maker needs
to choose one type of the preference functions for each criterion and
the values of the corresponding parameters [49]. The usual preference
function, which requires no input parameter, is used for all criteria in the
experiment.
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Step 3. Define the positive and the negative outranking flow as follows:
The positive outranking flow:

φ+(a) = 1

n− 1

∑
x∈A

π (a, x) ,

The negative outranking flow:

φ−(a) = 1

n− 1

∑
x∈A

π (x, a) ,

Step 4. Compute the net outranking flow for each alternative as follows:

φ(a) = φ+(a)− φ−(a).

When φ(a) > 0, a is more outranking all the alternatives on all the evaluation
criteria. When φ(a)<0, a is more outranked.

MCDM Method 3: Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS)

The Technique for order preference by similarity to ideal solution (TOPSIS) method
was proposed by Hwang and Yoon [50] to rank alternatives over multiple criteria.
It finds the best alternatives by minimizing the distance to the ideal solution and
maximizing the distance to the nadir or negative-ideal solution [37]. This section
uses the following TOPSIS procedure, which was adopted from [51] and [37], in
the empirical study:

Step 1. Calculate the normalized decision matrix. The normalized value rij is
calculated as

rij = xij /

√√√√
J∑

i=1

x2
ij , j = 1, . . . , J ; i = 1, .., n.

Step 2. Develop a set of weights wi for each criterion and calculate the weighted
normalized decision matrix. The weighted normalized value vij is calculated as:

vij = wirij , j = 1, .., J ; i = 1, .., n.

Weight of the ith criterion, and
∑n

i=1wi = 1.
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Step 3. Find the ideal alternative solution S+, which is calculated as:

S+ = {v+1 , . . . , v+n
} =

{(
max

j
vij |i ∈ I ’

)
,
(

min
j

vij |i ∈ I ’’
)}

where I′ is associated with benefit criteria and I′′ is associated with cost criteria.
In this study, benefit and cost criteria of TOPSIS are defined the same as the
benefit and cost criteria in WSM.

Step 4. Find the negative-ideal alternative solution S2, which is calculated as:

S− = {v−1 , . . . , v−n
} =

{(
min
j

vij |i ∈ I ’
)
,
(

max
j

vij |i ∈ I ’’
)}

Step 5. Calculate the separation measures, using the n-dimensional Euclidean
distance. The separation of each alternative from the ideal solution is calculated
as:

D+j =
√√√√

n∑
i=1

(
vij − v+i

)2
, j = 1, . . . , J.

The separation of each alternative from the negative-ideal solution is calculated
as:

D−j =
√√√√

n∑
i=1

(
vij − v−i

)2
, j = 1, . . . , J.

Step 6. Calculate a ratio R+j that measures the relative closeness to the ideal solution
and is calculated as:

R+j = D−j /
(
D+j +D−j

)
, j = 1, . . . , J.

Step 7. Rank alternatives by maximizing the ratio R+j .

2.3.1.2 Clustering Algorithm

The k-means algorithm, the most well-known partitioning method, is an iterative
distance-based technique [32]. The input parameter k predefines the number of
clusters. First, k objects are randomly chosen to be the centers of these clusters.
All objects are then partitioned into k clusters based on the minimum squared-error
criterion, which measures the distance between an object and the cluster center.
The new mean of each cluster is calculated and the whole process iterates until
the cluster centers remain the same [11, 52]. Let X = {xi} be the n objects to be
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clustered, C = {C1, C2, . . . , Ck} is the set of clusters. Let mi be the mean of cluster
Ci. The squared-error between μi and the objects in cluster Ci is defined as.

WCSS (Ci) =
∑
xj∈Ci

∥∥xj − μi

∥∥2

Then the aim of k-means algorithm is to minimize the sum of the squared error
over all k clusters, that is

min
(
WCSS(C) = arg min

C

∑
xj∈Ci

∥∥xj − μi

∥∥2

where WCSS denotes the sum of the squared error in the inner-cluster.
Two critical steps of k-means algorithm have impact on the sum of squared error.

First, generate a new partition by assigning each observed point to its closest cluster
center, the formula is as follows:

Ci
(t) =

{
xj :

∥∥∥xj −mi
(t)
∥∥∥ ≤

∥∥∥xj −mi∗(t)
∥∥∥ f oralli∗ = 1, .., k

}

where mi
(t) denotes the mean of the ith cluster in tth times clustering, while Ci

(t)

represents all sets contained in the ith cluster in tth times clustering. Second, compute
new cluster mean centers using the following formula.

mi
(t+1) = 1

| Ci
(t+1) |

∑

xj∈C(t)
i

xj

where mi
(t + 1) denotes the mean of the ith cluster in (t + 1)th times clustering while

Ci
(t + 1) represents all sets contained in the ith cluster in (t + 1)th times clustering.

The algorithm is implemented using WEKA (Waikato Environment for Knowledge
Analysis), a free machine learning software [53].

2.3.1.3 Clustering Validity Measures

Ten relative measures are selected for the experiment, namely, the Hubert � statistic,
the normalized Hubert �, the Dunn’s index, the Davies-Bouldin index, the CS
measure, the SD index, the S_Dbw index, the silhouette index, PBM, and the
C-index. Relative measures can also be used to identify the optimal number of
clusters in a data set and some of them, such as the C-index and silhouette, have
exhibited good performance in previous studies. The following paragraphs define
these relative measures.
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• Hubert � statistic [54]:

Γ = (1/M)

n−1∑
i=1

n∑
j=i+1

P (i, j) ·Q(i, j)

where n is the number of objects in a data set, M = n(n − 1)/2, P is the
proximity matrix of the data set, and Q is an n*n matrix whose (i, j) element
is equal to the distance between the representative points (vci,vcj) of the clusters
where the objects xi and xj belong [42]. C indicates the agreement between P and
Q.

• Normalized Hubert �:

Γ̂ =

[
(1/M)

n−1∑
i=1

n∑
j=i+1

(P ( i, j )−μP ) · (Q( i, j
)−μQ

)]

σP σQ

where μP, μQ, σ p, and σQ represent the respective means and variances of P
and Q matrices [43].

Dunn’s index [55] evaluates the quality of clusters by measuring inter cluster
distance and intra cluster diameter.

D = min
i=1,...,K

⎧
⎨
⎩ min

j=i+1,...,K

⎡
⎣ d

(
Ci,Cj

)

max
l=1,...,K

diam (Cl)

⎤
⎦
⎫
⎬
⎭

where K is the number of clusters, Ci is the ith cluster, d(Ci,Cj) is the distance
between cluster Ci and Cj, and diam(Cl) is the diameter of the lth cluster. Larger
values of D suggest good clusters, and a D larger than 1 indicates compact
separated clusters.

• Davies-Bouldin index is defined as [56]:

DBK = 1

K

K∑
i=1

Ri,Ri max
i=1,...,K,i �=j

Rij , Rij = si + sj

dij
, i = 1, . . . ,K

where K is the number of clusters, si and sj represent the respective dispersion
of clusters i and j, dij measures the dissimilarity between two clusters, and Rij
measures the similarity between two clusters [42, 43]. It is the average similarity
between each cluster and its most similar one.
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• The CS measure is proposed to evaluate clusters with different densities
and/or sizes [57]. It is computed as:

CS =

K∑
i=1

{
1
Ni

∑
xj∈Ci

max
xk∈Ci

{
d
(
xj , xk

)}}

K∑
i=1

{
min

j∈{1,2,...,K},j �=i

{
d
(
vi, vj

)}} , vi = 1

Ni

∑
xj∈Ci

xj

where Ni is the number of objects in cluster i and d is a distance function. The
smallest CS measure indicates a valid optimal clustering.

• SD index combines the measurements of average scattering for clusters and
total separation between clusters [42]:

SD(K) = Dis (cmax)× Scat (K)+Dis(K)

where cmax is the maximum number of input clusters,

Scat (K) = 1

K

K∑
i=1

‖σ (vi)‖ / ‖σ(X)‖ and

Dis(K) = Dmax

Dmin

K∑
k=1

(
K∑
z=1

‖vk − vz‖
)−1

Dmax is the maximum distance between cluster centers and the Dmin is the
minimum distance between cluster centers.

S_Dbw index is similar to SD index and is defined as [42]:

SDbw(K) = Scat (K)+Densbw(K),

Densbw(K) = 1
K ·(K−1)

K∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

K∑
j = 1
j �= i

density(uij )
max{density(vi ),density(vj )}

⎞
⎟⎟⎟⎟⎟⎠

,

density(u) =
Nij∑
l=1

f (xl, u)
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where Nij is the number of objects that belong to the cluster Ci and Cj, and
function f(x,u) is defined as:

f (x, u) =
{

0, if d (x, u) > stdev

1, otherwise
, stdev = 1

K

√√√√
K∑
i=1

‖σ (vi)‖

Silhouette is an internal graphic display for clustering methods evaluation. It
represents each cluster by a silhouette, which shows how well objects lie within
their clusters. It is defined as [58]:

s(i) = b(i)− a(i)

max {a(i), b(i)}
where i represents any object in the data set, a(i) is the average dissimilarity

of i to all other objects in the same cluster A, and b(i) is the average dissimilarity
of i to all objects in the neighboring cluster B, which is defined as the cluster
that has the smallest average dissimilarity of i to all objects in it. Note that A �=B
and the dissimilarity is computed using distance measures. Since a(i) measures
how dissimilar i is to its own cluster and b(i) measures how dissimilar i is to its
neighboring cluster, an s(i) close to one indicates a good clustering method. The
average s(i) of the whole data set measures the quality of clusters.

• PBM is developed by [40] and it is based on the intra-cluster and inter-
cluster distances:

PBM =
(

1
K

E1
EK

DK

)2

where E1 =∑N
i=1 ‖xi − x‖ , EK =∑N

l=1
∑

xi∈Cl
‖xi − xl‖ ,

DK = max
l,m=1,...,K

‖xl − xm‖

The C-index [59] is based on intra-cluster distances and their maximum and
minimum possible values [60]:

CI = θ −min θ

max θ −min θ
, θ =

n−1∑
i=1

n∑
j=i+1

qi,j
∥∥xi − xj

∥∥

2.3.2 Parallel Regularized Multiple Criteria Linear
Programming Classification Algorithm

In this section, the focus is on the RMCLP, and the designed and proposed Parallel
version of RMCLP algorithm (PRMCLP). In order to overcome the compute and
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storage requirements that increase rapidly with the number of training sample, the
second strategy is adopted, inspire by some findings in [61].

Let us give a brief introduction of MCLP as follows. For classification of the
training data:

T = {(x1, y1) , . . . , (xl, yl)} ∈
(�n × y

)l (2.151)

where xi ∈ �n, yi ∈ y= {1, -1}, i= 1, . . . , l, data separation can be achieved by two
opposite objectives. The first objective separates the observations by minimizing
the sum of the deviations (MSD) among the observations. The second maximizes
the minimum distances (MMD) of observations from the critical value [62]. The
overlapping of data ξ (1) should be minimized while the distance ξ (2) has to be
maximized. However, it is difficult for traditional linear programming to optimize
MMD and MSD simultaneously. According to the concept of Pareto optimality, we
can seek the best trade-off between the two measurements [10, 63]. So MCLP model
can be described as follows:

min eTξ(1)& max eTξ(2) (2.152)

s.t. (w · xi)+
(
ξi

(1) − ξi
(2)
)
= b, f or {i|yi = 1} , (2.153)

(w · xi)−
(
ξi

(1) − ξi
(2)
)
= b, f or {i|yi = −1} , (2.154)

ξ(1), ξ (2) ≥ 0 (2.155)

where e ∈ Rl be vector whose all elements are 1, w and b are unrestricted, ξ(1)
i is

the overlapping and ξ
(2)
i the distance from the training sample xi to the discriminator

(w · xi)= b (classification separating hyperplane). By introducing penalty parameter
C,D > 0, MCLP has the following version

min
ξi

(1),ξi
(2)
CeTξ(1) −DeTξ(2),<?pag? > (2.156)

s.t. (w · xi)+
(
ξi

(1) − ξi
(2)
)
= b, f or {i|yi = 1} , (2.157)

(w · xi)−
(
ξi

(1) − ξi
(2)
)
= b, f or {i|yi = −1} , (2.158)

ξ(1), ξ (2) ≥ 0 (2.159)

A lot of empirical studies have shown that MCLP is a powerful tool for
classification. However, we cannot ensure that this model always has a solution
under different kinds of training samples. To ensure the existence of solution,
recently, Shi et al. proposed a RMCLP model by adding two regularized items
1
2ω

THω and 1
2ξ

(1)TQξ(1) in MCLP as follows (more theoretical explanation of this
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model can be found in [63]):

min
z

1

2
wTHw + 1

2
ξ(1)TQξ(1) + 1

2
b2 + CeTξ(1) −DeTξ(2), (2.160)

s.t. (w · xi)+
(
ξi

(1) − ξi
(2)
)
= b, f or {i|yi = 1} , (2.161)

(w · xi)−
(
ξi

(1) − ξi
(2)
)
= b, f or {i|yi = −1} , (2.162)

ξ(1), ξ (2) ≥ 0 (2.163)

where z= (wT, ξ (1)T , ξ (2)T , b)T ∈ Rn + l + l + 1, H ∈ Rn × n is symmetric positive defi-
nite matrices. Obviously, the regularized MCLP is a convex quadratic programming.
According to the dual theorem, (2.160)–(2.163) can be formulated as:

min
α,ξ (1)

1

2
αT
(
K
(
A,AT

)
+ eeT

)
α + 1

2
ξ(1)TQξ(1), (2.164)

s.t.−Qξ(1) − Ce ≤ Eα ≤ −De, (2.165)

where A = [xT
1 , . . . , x

T
l

]T ∈ Rl×n,E = diag {y1, . . . , yl}
and
K
(
A,AT

) = Φ(A)Φ(A)T = (Φ(A) ·Φ(A)T)
l×l

and � is a mapping from the input space Rn to some Hilbert space H [64].
In order to realize the parallelization of RMCLP, we firstly translate RMCLP into

a unconstrained optimization problem. To simplify, (2.164) can be rewritten as

min
π

1
2π

TΛπ,

s.t.Gπ − Ce ≤ 0,
Hπ +De ≤ 0,

(2.166)

where π = [αT, ξ (1)T]T, and G = [−Q,−E], H = [E,O], O ∈ Rl × l is a null matrix,
� is written as

(
K
(
A,AT

)+ eeT 0
0 Q

)
(2.167)

Next, we represent the objective (2.164) as the following unconstrained optimiza-
tion problem

min
π

f (π) = 1

2
πTΛπ + λT max {Gπ − Ce, 0}2 + μmax {Hπ +De, 0}2

(2.168)
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where C,D ∈R are the artificial parameters, and λ= {λ1, . . . ,λl}, μ= {μ1, . . . ,μl}.
Define d is the search direction of the optimization problem (2.168), here, we

choose the negative gradient direction as the feasible direction:

d = −∇f (π) / ‖∇f (π)‖ (2.169)

where

∇f (π) = Λπ + 2λTdiag
(
GT max {Gπ − Ce, 0}

)
+ 2μTdiag

(
HT max {Hπ +De, 0}

)

(2.170)

Now, we use PVD idea to split our model [61]. Suppose we can use p processors,
the variable of the unconstrained optimization problem (2.168) can be divided into
p chunks: {1, . . . , p}, where the dimension of the ith chunk is mi

π = {π1, . . . , πm} , πi ∈ Rmi , i = 1, . . . , p,
p∑

i=1

mi = 2l (2.171)

In the next step, we allocate the p-th variable to p-th processor, and decompose
the problem (2.168) into the subproblem with mi dimensions. Each processor solves
one corresponding subproblem, which update other variables on the basis of some
rules except for computing the mi variables itself. After each processor finishes
updating, a quick synchronous step is performed: searching the results obtained
by each processor and computing the current solution. Repeating then this, our
algorithm can be described as

Theorem 2.4 The sequence generated by {πk} of Algorithm 2.4 either terminates
at a stationary point {πk}, or is an infinite sequence, whose accumulation point is
stationary and lim

k→∞∇f
(
πk
) = 0.

Proof

For ∀π,π’ ∈ R2l ,we have

∇f (π) = Λπ + 2λTdiag
(
GT max {Gπ − Ce, 0}

)
+ 2μTdiag

(
HT max {Hπ +De, 0}

)

So

(2.172)

∥∥∥∇f (π)− ∇f
(
π ’
)∥∥∥ =

∥∥∥Λ
(
π − π ’

)
+ 2λTdiag

(
GT (max {Gπ − Ce, 0} −max {Gπ − Ce, 0})

)

+ 2μTdiag
(
HT max {Hπ +De, 0} −max {Hπ +De, 0}

)
)‖

≤ ‖Λ‖
∥∥∥π − π ’

∥∥∥ + 2
∥∥∥λT

∥∥∥
∥∥∥diag

(
GT (max {Gπ − Ce, 0} −max {Gπ − Ce, 0})

)∥∥∥
+ 2

∥∥∥μT
∥∥∥
∥∥∥diag

(
HT max {Hπ +De, 0} −max {Hπ +De, 0}

)) ∥∥∥
(2.173)
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i
)

For any Gπi,Gπ’i ≤ Ce,wherei = 1, . . . ,m,we have
∥∥diag

(
GT (max {Gπ − Ce, 0} −max {Gπ − Ce, 0}))∥∥=0 ≤

∥∥∥GTG
(
πi−πi

’
)∥∥∥

(2.174)

ii
)

For any Gπi,Gπ’i > Ce,wherei = 1, . . . ,m,we have
∥∥diag

(
GT (max {Gπ − Ce, 0} −max {Gπ − Ce, 0}))∥∥ =

∥∥∥GTG
(
πi − πi

’
)∥∥∥

(2.175)

Taken together,we can obtain∥∥∥diag
(
GT

(
max {Gπ − Ce, 0} −max

{
Gπ’ − Ce, 0

}))∥∥∥
≤
∥∥∥GTG

(
π − π’

)∥∥∥ ≤ ∥∥GT
∥∥ ‖G‖

(
π − π’

) ∥∥∥
(2.176)

Similarly,we have∥∥∥diag
(
HT

(
max {Hπ −De, 0} −max

{
Hπ’ −De, 0

}))∥∥∥
≤
∥∥∥HT

(
π − π’

)∥∥∥ ≤ ∥∥HT
∥∥ ‖H‖

(
π − π’

) ∥∥∥
(2.177)

As the result, let ‖Λ‖ + 2 ‖Λ‖ ∥∥GT
∥∥ ‖G‖+

2 ‖μ‖ ∥∥HT
∥∥ ‖H‖ = K,

we can obtain

∥∥∥∇f (π)−∇f
(
π’
)∥∥∥ ≤

∥∥∥π − π’
∥∥∥ (2.178)

According to the Theorem 2.2 in [19], {πk} either terminates at a stationary

point
{
πk
}

, or is an infinite sequence, whose accumulation point is stationary and

lim
k→∞∇f

(
πk
) = 0.

Theorem 2.5 If A of Algorithm 2.4 is positive definite, then the sequence of iterates
{πk} generated by the subproblem of (2.168) converges linearly to the unique
solution π , and the rate of convergence is

∥∥∥πk − π

∥∥∥ ≤
(

2

γ

(
f
(
πk
)
− f (π)

)) 1
2
(

1− 1

p

( γ

K

)2
) 1

2

, (2.179)

where γ ,K > 0 are constants.
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Proof For

∀π, π’ ∈ R2l(
∇f (π)−∇f

(
π’
)) (

π − π’
)
= (π − π’)TΛ

(
π − π’

)
+ (2λTdiag

(
GT
(

max {Gπ − Ce, 0}
−max {Gπ − Ce, 0} ))+ 2μTdiag

(
HT max {Hπ +De, 0}

−max {Hπ +De, 0} )) ))
(
π − π’

)

(2.180)

It is known that

diag
(
GT (max {Gπ − Ce, 0} −max {Gπ − Ce, 0}))

(
π − π’

)
≥ 0,

diag
(
GT (max {Gπ − Ce, 0} −max {Gπ − Ce, 0}))

(
π − π’

)
≥ 0

(2.181)

Since � is a positive definite matrix, we have

(
∇f (π)−∇f

(
π’
)) (

π − π’
)
≥ (π − π’)TΛ

(
π − π’

)
≥ γ

2 ‖π − π’‖2,

∀π ∈ R2l

(2.182)

where γ is a constant. As a result, subproblem of (2.168) converges linearly to the
unique solution π , and the rate of convergence is

∥∥∥πk − π

∥∥∥ ≤
(

2

γ

(
f
(
πk
)
− f (π)

)) 1
2
(

1− 1

p

( γ

K

)2
) 1

2

(2.183)

2.3.3 An Effective Intrusion Detection Framework Based
on Multiple Criteria Linear Programming and Support
Vector Machine

The main contributions of this section include the following:

(a) Modifications to the chaos particle swarm optimization have been proposed by
adopting the time-varying inertia weight factor (TVIW) and time-varying accel-
eration coefficients (TVAC), namely TVCPSO, to make it faster in searching for
the optimum and avoid the search being trapped into local optimum.

(b) A weighted objective function that simultaneously takes into account trade-
off between the maximizing the detection rate and minimizing the false alarm
rate, along with considering the number of features is proposed to eliminate the
redundant and irrelevant features, as long as increase the attacks’ detection rate.
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(c) An extended version of multiple criteria linear programming, namely PMCLP,
has been adopted to increase the performance of this classifier in dealing with
the unbalance intrusion detection dataset.

(d) The proposed TVCPSO has been adopted to provide an effective IDS frame-
work by determining parameters and selecting a subset of features for multiple
criteria linear programming and support vector machines.

In the recent years, biology inspired approaches has been used to solve complex
problems in a variety of domains such as computer science, medicine, finance
and engineering [65]. Swarm intelligence considered as an artificial intelligence
techniques which inspired from a flock of birds, a school of fish swims or a colony
of ants and their unique capability to solve complex problems [65]. Briefly, swarm
intelligence (SI) considered as some methodologies, techniques and algorithms
inspired by study of collective behaviors in decentralized systems [66]. Particle
swarm optimization is one of these techniques, which introduced by Eberhart and
Kennedy in 1995 [67]. Particle swarm optimization is a population based meta-
heuristic optimization technique that simulates the social behavior of individuals,
namely, particles. This technique, compare with the other algorithms in this group
has several advantages such as simple to implement, scalability, robustness, quick
in finding approximately optimal solutions and flexibility [39].

In particle swarm optimization, each individual of a population that considered
as a representative of the potential solution move through an n-dimensional search
space. After the initialization of the population, at each iteration particle seeks
the optimal solution by changing its direction which consists of its velocity and
position according to two factors, its own best previous experience (pbest) and the
best experience of all particles (gbest). Equations (2.184) and (2.185), respectively
represents updating the velocity and position of each percale at iteration [t + 1].
At the end of each iteration the performance of all particles will be evaluated by
predefined fitness functions.

vid [t + 1] = w.vid [t]+ c1 r1
(
pid,best [t]− xid [t]

)
+ c2 r2

(
pgd,best [t]− xid [t]

)
d = 1, 2, . . . ,D

(2.184)

xid [t + 1] = pid [t]+ vid [t + 1] d = 1, 2, . . . ,D (2.185)

Where, i = 1, 2, . . . , N, N is the number of swarm population. In D-
dimensional search space, xi[t] = {xi1[t], xi2[t], . . . , xiD[t]} represent the current
position of the ith particle at iteration [t]. Likewise, the velocity vector of
each particle at iteration [t] represented by vi[t] = {vi1[t], vi2[t], . . . , viD[t]}.
pi, best[t] = {pi1[t], pi2[t], . . . , piD[t]} represent the best position that particle i
has obtained until iteration t, and pg, best[t] = {pg1[t], pg2[t], . . . , pgD[t]} represent
the previous best position of whole particle until iteration t.

To control the pressure of local and global search, the concept of an inertia weight
w was introduced in the PSO algorithm by [68]. r1 and r2 are two D-dimensional
vectors with random number between 0 and 1. c1 and c2 are positive acceleration
coefficients which respectively called cognitive parameter and social parameter. In
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fact, these two parameters control the importance of particles’ self-learning versus
learning from all the swarm’s population.

In this research, in order to balance the global exploration and local exploitation,
time-varying acceleration coefficients (TVAC) [68, 69] and time-varying inertia
weight (TVIW) [69, 70] is adopted to justify the acceleration coefficients and inertia
weight, respectively. Both of these concepts help PSO algorithm to have better
performance to find the region of global optimum and do not trap in local minima
[68, 69, 71].

In TVAC, the acceleration coefficients adjusted by decreasing the value of c1
from initial value of c1i to c1f , while the value of c2 is increasing from its initial
value of c2i to c2f as shown in Eqs. (2.186) and (2.187). Moreover, in TVIW, the
inertia weight w is updated according to the Eq. (2.188), which means a large inertia
weight makes PSO has more global search ability at the beginning of the run and by
a linearly decreasing the inertia weight makes PSO has better local search.

c1 = c1i + t

tmax

(
c1f − c1i

)
(2.186)

c2 = c2i + t

tmax

(
c2f − c2i

)
(2.187)

w = wmax − t

tmax
(wmax −wmin) (2.188)

Here, t represents the current iteration and tmax means the maximum number of
iterations, c1i, c1f,c2i, c2f are the constant values and wmax, wmin are the predefined
maximum and minimum inertia weight.

2.3.3.1 Discrete Binary PSO

Although the original PSO was proposed to act in continuing space, Kennedy
and Eberhart [67] proposed the discrete binary version of PSO. In this model
particle moves in a state space restricted to zero and one on each dimension,
in terms of the changes in probabilities that a bit will be in one state or the
other. The formula proposed in Eq. (2.8) remains unchanged except that xid[t],
pgd, best[t] and pid, best[t] ∈ {0, 1} and vid restricted to the [0.0, 1.0] [15, 65]. By
introducing the sigmoid function, the velocity mapped from a continuous space to
probability space as following:

sig
(
vid
)
= 1

1+ e(−vid)
d = 1, 2, . . . ,D (2.189)

The new particle position calculated by using the following rule:

xid [t + 1] =
{

1, if rnd () < sig
(
vid
)

0 if rnd () ≥ sig
(
vid
) , d = 1, 2, . . . ,D (2.190)
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Where, sig(vid) is a sigmoid function and rnd( ) is a random number in range [0.0,
1.0].

Although traditional PSO gains considerable results in different fields, however,
the performance of the PSO depends on the preset parameters and it often suffers
the problem of being trapped in local optima. In order to further enhance the search
ability of swarm in PSO and avoids the search being trapped in local optimum,
chaotic concept has been introduced by [68, 69, 71]. Here, chaos is characterized as
ergodicity, randomicity and regularity.

In this section, Logistic equation which is a typical chaotic system adopted to
make the chaotic local search as represented in the following:

zj+1 = μzj
(
1− zj

)
j = 1, 2, . . .m (2.191)

Here, by considering n-dimensional vector zj = (zj1, zj2, . . . , zjn), each com-
ponent of this system is a random value in the range [0, 1], μ is the control
parameter and the system of Eq. (2.15) has been proved to be completely chaotic
when 0 ≤ z0 ≤ 1 and μ = 4. Chaos queues z1, z2, z3, . . . , zm are generated by
iteration of Logistic equation.

In fact, the basic ideas of chaotic are adopted in this section are described as
follows:

Chaos initialization: In spite of standard PSO, which particle’s position in the
search space initialized randomly, here chaos initialization is adopted to better
initialize the position of each particle and to increase the diversity of the
population.

Chaotic local search (CLS): By using the chaos queues, it helps PSO to does not
trapped in a local optimum besides it can cause to search the optimum quickly.
It will happen by generating the chaos queues based on the optimal position
(pg, best), and then replace the position of one particle of the population with the
best position of the chaos queues.

Although different performance metrics has been proposed to evaluate the
effectiveness of IDSs, the most two popular of these metrics are detection rate (DR)
and false alarm rate (FAR). By comparing the actual nature of a given record which
here “Positive” means an “attack classes” and “Negative” means a “normal record”
to the prediction ones, it’s possible to consider four outcomes for this situation as
shown in Table 2.8, which known as the confusion matrix.

Table 2.8 Confusion matrix

Test Result Positive
(Predicted as an attack)

Test Result Negative
(Predicted as a normal record)

Actual Positive Class
(Attack record)

True positive (TP) False negative (FN)

Actual Negative Class
(Normal record)

False positive (FP) True negative (TN)
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Here, true positive and true negative means correctly labeled the records as an
attack and normal, respectively, that is, IDSs predict the labels perfectly. False
positive (FP), refer to normal record is considered as an attack and False negative
(FN) means those attack records falsely considered as a normal one.

A well performed IDS should has a high detection rate (DR) as well as
low false positive rate. In intrusion detection domain false positive rate typically
named false alarm rate (FAR). Thus, the particles with higher detection rate, lower
false positive rate and the small number of selected features can produce a high
objective function value. Hence, in this research a weighted objective function that
simultaneously takes into account trade-off between the maximizing the detection
rate and minimizing the false alarm rate, along with considering the number of
features is proposed according to the following equation:

Objective function
(
Ff it

) =
wDR.

[
T P

(TP+FN)

]
+wFAR.

[
1− FP

(FP+TN)

]
+wF .

[
1−

∑nF
i=1 fi
nF

]
(2.192)

Since any of these three elements of objective function have different effect
on the performance of IDS, we convert this multiple criteria problem to a sin-
gle weighted fitness function that combines the three goals linearly into one.
Where wDR, wFAR and wF represents the importance of detection rate, false alarm
rate and number of selected features in the objective function. Detection rate or
sensitivity in biomedical informatics terms, known as a true positive rate (TPR),
which means the ratio of true positive recognition to the total actual positive
class; T P

(TP+FN)
. False alarm rate (FAR) or false positive rate (FPR) defined as:

FP
(FP+TP) . fi represents the value of feature mask (“1” represents that feature i is
selected and “0” represents that feature i is not selected), and nF indicates the
number of features.

The specific steps of TVCPSO–MCLP and TVCPSO–SVM are described as
follows:

Step 1: Chaotic initialization for n + 2 particle, for the MCLP algorithm, the first
two parameters are α∗ and β∗ and for SVM algorithm the first two parameters are
c and γ . The rest of n particle is binary features mask of feature sets which here
is 41 features of NSL-KDD cup 99 datasets. Here in binary features mask, 1 and
0 adopted to present as selected features and discarded features, respectively.

(a) Initialize a vector z0 = (z01, z02, . . . , z0n), each component of it is set as
a random value in the range [0, 1], and by iteration of Logistic equation a
chaos queue z1, z2, . . . , zn is obtained.

(b) In order to transfer the chaos queue zj into the parameter’s range the
following equation is used:

Ẑjk = ak + (bk − ak) .zjk (k = 1, 2, . . . , n) (2.193)
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Where the value range of each particle defined by [ak, bk].
Step 2: Compute the fitness value of the initial vector Ẑj (j = 1, 2, . . . ,m) and

then choose the best M solutions as the initial positions of M particles.
Step 3: Randomly initialize the velocity of M particles, here, vj = (vj1,

vj2, . . . ., vjn) j = (1, 2, . . . ,M.)
Step 4: Update the velocity and position of each classifier’s parameters (α∗ , β∗ in

MCLP and c, γ in SVM) according to Eqs. (2.184) and (2.185), and in order to
update the velocity and position of the features in each particle Eqs. (2.184) and
(2.190) have been used, respectively.

Step 5: Evaluate the fitness of each particle according to Eq. (2.192) and then
compare the evaluated fitness value of each particle (personal optimal fitness
(pfit)) to its personal best position (pi, best):

(a) If the pfit is better than pi, best then update the pi, best as the current position,
otherwise keep the previous ones in memory.

(b) If the pfit is better than pg, best then update the pg, best as the current position,
otherwise keep the previous pg, best.

Step 6: Optimize pg, best by chaos local search according to the following steps:

(a) Consider T = 0, scale the pgk, best into the range of [0,1] by zTk =
pgk,best−ak

bk−ak
(k = 1, 2, . . . , n) .

(b) Generate the chaos queues ZT
j (T = 1, 2, . . . ,m) by iteration of Logistic

equation.
(c) Obtain the solution set p = (p1, p2, . . . , pm) by scale the chaotic variables

ZT
j into the decision variable according to the pT

k = ak + (bk − ak) .z
T
k .

(d) Evaluate the fitness value of each feasible solution p = (p1, p2, . . . , pm), and
get the best solution p̂g,best .

Step 7: If the stopping criteria are satisfied, then stop the algorithms and get the
global optimum that are the optimal value of (α∗ , β∗ in MCLP and c, γ in SVM)
and the most appropriate subset of features. Otherwise, go to step 5.
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Chapter 3
Support Vector Machine Classification

Support vector machine (SVM) has been a popular technique in data analytics.
Shi et al. [1] has reported some SVM algorithms. They vary from leave-one-out
(LOO) bounds approaches, multi-class, unsupervised, semi-supervised and robust
SVMs. Following the direction of the research afterwards, this Chapter provides
five sections about advances of SVM in big data analytics. Section 3.1 has two
subsections. The first one outlines the recent findings of the author’s research team
on SVM [2] while the second one is about two new decomposition algorithms for
training bound-constrained SVM [3]. Section 3.2 describes different twin SVM
in classification with four subsections. The first one explores the improved twin
SVM [4]. The second one is extending twin SVM for multi-category classification
problems [5]. The third one provides robust twin SVM for pattern classification [6].
The fourth one elaborates structural twin SVM for classification [7]. Section 3.3
shows nonparallel SVM with four subsections. The first one is about a nonparallel
SVM for a classification problem with universum learning [8]. The second one is
about a divide-and-combine method for large scale nonparallel SVM [9]. The third
one explores nonparallel SVM for pattern classification [4]. The fourth one is a
multi-instance learning algorithm based on nonparallel classifier [10]. Section 3.4
shows Laplacian SVM classifiers with two subsections. One is about successive
overrelaxation for Laplacian SVM [11] while another one is about Laplacian
twin SVM for semi-supervised classification [12]. Finally, Sect. 3.5 discusses loss
functions of SVM classification with three subsections. The first one is about the
ramp loss least squares SVM [13]. The second is about the ramp loss nonparallel
SVM for pattern classification [14]. The third one is about a classification model
using privileged information and its application [10].
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3.1 Support Vector Machine in Data Analytics

3.1.1 Recent Advances on Support Vector Machines Research

3.1.1.1 The Nature of C-Support Vector Machines

In this section, standard C-SVM [15–18] for binary classification is briefly summa-
rized and understood from several points of view.

Definition 3.1 (Binary classification). For the given training set

T = {(x1, y1) , . . . , (xl, yl)} ∈
(
Rn × y

)l
(3.1)

where, the goal is to find a real function in and derive the value of y for any x by the
decision function:

f (x) = sgn (g(x)) (3.2)

C-SVM formulates the problem as a convex quadratic programming

min
1

2
‖w‖2 + C

∑l

i=1
ξj (3.3)

s.t.yj
((
w · xj

)+ b
) ≥ 1− ξj , i = 1, · · · , l, (3.4)

ξj ≥ 0, i = 1, · · · , l, (3.5)

where and C is a penalty parameter. For this primal problem, C-SVM solves its
Lagrangian dual problem

min
1

2

∑l

i=1

∑l

j=1
αiαj yjyjK

(
xj , xj

)−
∑l

j=1
αj (3.6)

s.t.
∑l

i=1
yiαi = 0, (3.7)

0 ≤ αj ≤ C, i = 1, · · · , l, (3.8)

where K(x, x
′
) is the kernel function, which is also a convex quadratic problem and

then construct the decision function.

As we all know, the principal of Structural Risk Minimization (SRM) is embod-
ied in SVM, the confidential interval and the empirical risk should be considered
at the same time. The two terms in the objective function (3.3) indicate that we not
only minimize ‖w‖2 (maximize the margin), but also minimize

∑l
i=1ξj , which is

a measurement of violation of the constraints yj((w · xi) + b) ≥ 1, i = 1, · · · , l.



3.1 Support Vector Machine in Data Analytics 99

Here the parameter C determines the weighting between the two terms, the larger
the value of C, the larger the punishment on empirical risk.

In fact, the parameter C has another meaningful interpretation [16, 17]. Consider
the binary classification problem, select a decision function candidate set F(t)
depending on a real parameter t:

F(t) = {f (x) = sgn ((w · x)+ b) ‖|w|| ≤ t, t ∈ [0,∞)} , (3.9)

and suppose that the loss function to be the soft margin loss function defined by

c (x, y, f (x)) = max {0, 1− yg(x)} , where g(x) = (w · x)+ b. (3.10)

Thus, structural risk minimization is implemented by solving the following convex
programming for an appropriate parameter t:

min
∑l

i=1
ξi (3.11)

s.t. yi
((
w · xj

)+ b
) ≥ 1− ξi , i = 1, · · · , l, (3.12)

ξi ≥ 0, i = 1, · · · , l, (3.13)

‖w‖ ≤ t . (3.14)

An interesting point is proved that when the parameters C and t are chosen
satisfying t = ψ(C), where ψ is nondecreasing in the interval, problem (3.3)–(3.5)
and problem (3.11)–(3.14) will get the same decision function [19]. Hence the very
interesting and important meaning of the parameter C is proposed: C corresponds
to the size of the decision function candidate set in the principle of SRM: the larger
the value of C, the larger the decision function candidate set.

Now we can summarize and understand C-SVM from following points of view:
(1) Construct a decision function by selecting a proper size of the decision function
candidate set via adjusting the parameter C; (2) Construct a decision function
by selecting the weighting between the margin of the decision function and the
deviation of the decision function measured by the soft-margin loss function via
adjusting the parameter C; (3) Another understanding about C-SVM can also be
seen in the literatures [17]: Construct a decision function by selecting the weighting
between flatness of the decision function and the deviation of the decision function
measured by the soft-margin loss function via adjusting the parameter C.

3.1.1.2 Optimization Models of Support Vector Machines

In this section, several representative and important SVM optimization models with
different variations are described and analyzed. These models can be divided into
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three categories: models for standard problems, models for nonstandard learning
problems, and models combining SVMs with other issues in machine learning.

Models for Standard Problems

For the standard classification or regression problems, a lot of methods are
developed based on standard SVM models to be the powerful new algorithms. Here
we briefly introduce several basic and efficient models, lots of developments of these
models are omitted here.

Least Squares Support Vector Machine

Just like the standard C-SVM the starting point of least squares SVM (LSSVM) [20]
is also to find a separating hyperplane, but with different primal problem. In fact,
introducing the transformation x=�(x) and the corresponding kernel K, the primal
problem becomes the convex quadratic programming

min
1

2
‖w‖2 + C

2

∑l

i=1
η2
i (3.15)

s.t. yi
((
w ·Φ (

xj
))+ b

) = 1− ηi, i = 1, . . . , l. (3.16)

The geometric interpretation of the above problem with x is shown in Fig. 3.1,
where minimizing w realizes the maximal margin between the straight lines

(w · x)+ b = 1 and (w · x)+ b = −1, (3.17)

while minimizing implies making the straight lines (3.17) be proximal to all inputs
of positive points and negative points respectively.

Fig. 3.1 Geometric
interpretation of LSSVM
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Its dual problem to be solved in LSSVM is also a convex quadratic programming

max− 1

2

∑l

i=1j

∑l

=1
αj αj yjyj

(
K
(
xj , xj

)+ 6ij

C

)
+
∑l

i=1
αi (3.18)

s.t.
∑l

i=1
αiyi = 0, (3.19)

where

δij =
{

1, i = j

0, i �= j
(3.20)

In C-SVM, the error is measured by the soft margin loss function, this leads
to the fact that the decision function is decided only by the support vectors.
While in LSSVM, almost all training points contribute to the decision function,
which makes it lose the sparseness. However, LSSVM needs to solve a quadratic
programming with only equality constraints, or equivalently a linear system of
equations. Therefore, it is simpler and faster than C-SVM.

Twin Support Vector Machine

Twin support vector machine (TWSVM) is a binary classifier that perform classi-
fication using two nonparallel hyperplanes instead of a single hyperplane as in the
case of conventional SVMs [21]. Suppose the two non-parallel hyperplanes are the
positive hyperplane

(w+· x)+ b+ = 0 (3.21)

and the negative hyperplane

(w−· x)+ b− = 0 (3.22)

The primal problems for finding these two hyperplanes are two convex quadratic
programming problems [21]

min
1

2
c1

(
‖w+‖2 + b2+

)
+ 1

2

∑p

i=1

((
w+· xj

)+ b+
)2 + c2

∑p+q

j=p+1
ξj (3.23)

s.t.
(
w+· xj

)+ b+ ≤ −1+ ξj , j = p + 1, . . . , p + q, (3.24)

ξj ≥ 0, j = p + 1, · · · , p + q (3.25)
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and

min
1

2
c3

(
‖w−‖2 + b2

)
+ 1

2

∑p+q

i=p+1
((w−· xi)+ b−)2 + c4

∑p

j=1
ξj (3.26)

s.t.
(
w−· xj

)+ b− ≥ 1− ξj , j = 1, . . . , p (3.27)

ξj ≥ 0, j = 1, · · · , p, (3.28)

where xi, i= 1, . . . , p are positive inputs, and xj, i = p + 1, . . . , p + q are negative
inputs, c1 > 0, c2 > 0, c3 > 0, c4 > 0 are parameters, ξ− = (ξp + 1, . . . , ξp + q)T,
ξ+ = (ξ1, . . . , ξp)T.

For both of the above primal problems an interpretation can be offered in
the same way. The geometric interpretation of the problem (3.23)–(3.25) with
shown in Fig. 3.2, where minimizing the second term

∑p
i=1

((
w+· xj

)+ b+
)2

makes the positive hyperplane (blue solid line in Fig. 3.2) to be proximal to all
positive inputs, minimizing the third term with the constraints (3.24) and (3.25)
requires the positive hyperplane to be at a distance from the negative inputs by
pushing the negative inputs to the other side of the bounding hyperplane (blue
dotted line in Fig. 3.2), where a set ξ of variables is used to measure the error
whenever the positive hyperplane is close to the negative inputs. Minimizing
the first term 1

2

(‖w+‖2 + b2+
)

realizes the maximal margin between the positive
hyperplane (w+ · x) + b+ = 0 and the bounding hyperplane (w+ · x) + b+ = − 1
in Rn + 1space.

Fig. 3.2 Geometric interpretation of TWSVM
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TWSVM is established based on solving two dual problems of the above
primal problems separately. The generalization of TWSVM has been shown to
be significantly better than standard SVM for both linear and nonlinear kernels.
It has become one of the popular methods in machine learning because of its low
computational complexity, since it solves above two smaller sized convex quadratic
programming problems. On average, it is about four times faster than the standard
SVMs.

AUC Maximizing Support Vector Machine

Nowadays the area under the receiver operating characteristics (ROC) curve, which
corresponds to the Wilcoxon-Mann-Whitney test statistic, is increasingly used as a
performance measure for classification systems, especially when one often has to
deal with imbalanced class priors or misclassification costs. The area of that curve
is the probability that a randomly drawn positive example has a higher decision
function value than a random negative example; it is called the AUC (area under
ROC curve). When the goal of a learning problem is to find a decision function with
high AUC value, then it is natural to use a learning algorithm that directly maximizes
this criterion. Over the last years, AUC maximizing SVMs (AUCSVM) have been
developed [22, 23], in which one kind of primary problem to be solved is a convex
problem.

min
1

2
‖w‖2 + C

∑l+

i=1

∑l−

i=1
ξij , (3.29)

s.t.
(
w ·
(
x+i − x−j

))
≥ 1− ξij , i = 1, · · · , l+, j = 1, · · · , l−, (3.30)

ζij ≥ 0, i = 1, · · · , l+, j = 1, · · · , l− (3.31)

where x+i , i = 1, . . . ,l+ and x−j , j = 1 are positive and negative inputs separately.
Its dual problem is also a convex quadratic programming problem.

However, the existing algorithms all have the serious drawback that the number
of constraints is quadratic in the number of training points, so they become very
large even for small training set. To cope with this, different strategies can be
constructed, in one of which a Fast and Exact k-Means (FEKM) [24] algorithm is

applied to approximate the problem by representing the l+l− many pairs
(
x+i − xj

)

by only l+ − l− cluster centers and thereby reduce the number of constraints and
parameters. The approximate k-Means AUCSVM is more effective at maximizing
the AUC than the SVM for linear kernels. Its execution time is quadratic in the
sample size.
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Fuzzy Support Vector Machine

In standard SVMs, each sample is treated equally; i.e., each input point is fully
assigned to one of the two classes. However, in many applications, some input
points, such as the outliers, may not be exactly assigned to one of these two classes,
and each point does not have the same meaning to the decision surface. To solve
this problem, each data point in the training dataset is assigned with a membership,
if one data point is detected as an outlier, it is assigned with a low membership, so
its contribution to total error term decreases. Unlike the equal treatment in standard
SVMs, this kind of SVM fuzzifiers the penalty term in order to reduce the sensitivity
of less important data points. Fuzzy SVM (FSVM) construct its primal problem as
[25]

min
1

2
|w|2 + C

∑l

i=1
sj ξi (3.32)

s.t.yj
((
w · xj

)+ b
) ≥ 1− ξj , i = 1, . . . , l, (3.33)

ξi ≥ 0, i = 1, · · · , l, (3.34)

where s is the membership generalized by some outlier-detecting methods. Its dual
problem is similarly deduced as C-SVM to be a convex quadratic programming

min
1

2

∑l

i=1

∑l

j=1
αiαj yjyjK

(
xj , xj

)−
∑l

j=1
αj (3.35)

s.t.
∑1

i=1
yi αj = 0 (3.36)

0 ≤ αj ≤ Csj , i = 1, · · · , l (3.37)

Model (3.32)–(3.34) is also the general formulation of the cost sensitive SVM [26]
solving the imbalanced problem, in which different error costs are used for the
positive (C+) and negative (C−) classes

min
1

2
‖w‖2 + C+

∑
yi=1

ξi + C−
∑

yi=−1
xi (3.38)

s.t.yi ((w · xi)+ b) ≥ 1− ξj , i = 1, . . . , l, (3.39)

ξj ≥ 0, i = 1, · · · , l. (3.40)
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Models for Nonstandard Problems

For the nonstandard problems appeared in different practical applications, a wide
range of programming methods are used to build novel optimization models. Here
we present several important and interesting models to show the interplay of SVMs
and optimization.

Support Vector Ordinal Regression

Support vector ordinal regression (SVOR) [27] is a method to solve a specialization
of the multi-class classification problem: ordinal regression problem. The problem
of ordinal regression arises in many fields, e.g., information retrieval, econometric
models, and classical statistics. It is complementary to the classification problem
and metric regression problem due to its discrete and ordered outcome space.

Definition 3.2 (Ordinal regression problem). Given a training set

T =
{
x
j
i

}j=1,.·.·.·,M
i=1,,lj

(3.41)

where x
j

i is an input of a training point, the subscript j = 1, . . . , M denotes the
corresponding class number, is the index within each class, and is the number of the
training points in class. Find M − 1 parallel hyperplanes in Rn

(w · x)− br = 0, r = 1,M − 1 (3.42)

where w ∈ Rn, b1 ≤ b2 ≤ · · · ≤ bM − 1, b0 = − ∞ , bM = + ∞, such that the
class number for any x can be predicted by

f (x) = arg min
r∈{1,...,M}

{r : (w · x)− br < 0} (3.43)

SVOR constructs the primal problem as

min
1

2
‖w‖2 + C

∑M

j=1

∑lj

i=1

(
ξ
j

i + ξ
!j

i

)
(3.44)

s.t.
(
w · xj

i

)
− bj ≤ −1+ ζ

j
i , j = 1, · · · ,M, i = 1, · · · , li (3.45)

(
w · xj

i

)
− bj−1 ≥ 1− ξ

j
i !, j = 1, · · · ,M, i = 1, · · · , li (3.46)

ξ
j
i ≥ 0, ξj

i ≥ 0 ∗, j = 1, · · · ,M, i = 1, · · · , lj (3.47)
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Where b= (b1, bM − 1)T, b0 = − ∞ , bM = +∞. Its dual problem is the following
convex quadratic programming

min
α(∗)

1

2

∑
j,i

∑
j ′,i′

(
α
∗j
i − α

j

i

) (
α
∗j ′
i′ − α

j ′
i′
) (

x
j

i · xj ′
i′
)
−
∑

j,i

(
α
j

i + α
∗j
i

)

(3.48)

s.t.
∑lj

i=1
α
j
i =

∑lj+1

i=1
α
∗j+1
i , j = 1, · · · ,M − 1 (3.49)

0 ≤ α
j
i , α

j
i ! ≤ C, j = 1, · · · ,M, i = 1, . . . , lj (3.50)

αi1 = 0, i = 1, · · · , l1 (3.51)

αM
i = 0, i = 1, · · · , lM (3.52)

Though SVOR is a method to solve a specialization of the multi-class classifi-
cation problem and has many applications itself [27], it is also used in the context
of solving general multi-class classification problem [16, 17, 28, 29] in which the
SVOR is used as a basic classifier and used several times instead of only once, just
as the binary classifiers for multi-class classification. There are many choices since
any p-class SVOR with different order can be candidate, where. When p = 2, this
approach reduces to the approach based on binary classifiers.

Semi-supervised Support Vector Machine

In practice, labeled instances are often difficult, expensive, or time consuming to
obtain, meanwhile unlabeled instance may be relatively easy to collect. Different
with standard SVMs using only labeled training points, lots of semi-supervised
SVMs (S3VM) use large amount of unlabeled data, together with the labeled data, to
build better classifiers. Transductive support vector machine (TSVM) [30] is such an
efficient method finding a labeling of the unlabeled data, so that a linear boundary
has the maximum margin on both the original labeled data and the (now labeled)
unlabeled data. The decision function has the smallest generalization error bound
on unlabeled data.

For a training set given by

T = {(x1, y1) , · · · , (xlyl)} ∪
{
xl+1, · · · , xl+q

}
, (3.53)

where xj ∈ Rn, yj ∈ {−1, 1}, i = 1, · · · , l, xi ∈ Rn, i = l + 1, . . . , l + q, and the set
{xl + 1, · · · , xl + q} is a collection of unlabeled inputs. The primal problem in TSVM



3.1 Support Vector Machine in Data Analytics 107

is constructed as the following (partly) combinational optimization problem

min
1

2
‖w‖2 + C

∑l

i=1
ξj + C∗

∑l

i=1
ξ!
i (3.54)

s.t. yi
((
w · xj

)+ b
) ≥ 1− ξj , i = 1, · · · , l, (3.55)

y∗i
(
w · x∗i

)+ b
)
≥ 1− ξ∗i , i = l + 1, · · · , l + q, (3.56)

ξj ≥ 0, i = 1, · · · , l (3.57)

ξ∗i ≥ 0, i = l + 1, · · · , l + q, (3.58)

where y∗=
(
yl+1∗, y!

l+q

)
, C > 0, C∗ > 0 are parameters. However, finding the

exact solution to this problem is NP-hard. Major effort has focused on efficient
approximation algorithms. The SVM-light is the first widely used software [30].
In the approximation algorithms, several relax the above TSVM training problem
to semi-definite programming (SDP) [31–33]. The basic idea is to work with the
binary label matrix of rank 1, and relax it by a positive semi-definite matrix without
the rank constraint. However, the computational cost of SDP is still expensive for
large scale problems.

3.1.1.3 Universum Support Vector Machine

Different with semi-supervised SVM leveraging unlabeled data from the same
distribution, Universum support vector machine (USVM) uses the additional data
not belonging to either class of interest. Universum contains data belonging to the
same domain as the problems of interest and is expected to represent meaningful
information related to the pattern recognition task at hand. Universum classification
problem can be formulated as follows:

Definition 3.3 (Universum classification problem). Given a training set

T = {(x1, y1) , · · · , (xlyl)} ∪
{
x!

1, · · · , x!
u

}
(3.59)

where xj ∈ Rn, yj ∈ {−1, 1}, i = 1, · · · , l, x!
j ∈ Rn, j = 1, . . . , u, and the set

U = {x!
1, · · · , x!

u

}
(3.60)
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is a collection of unlabeled inputs known not to belong to either class, find a real
function g(x) in R such that the value of y for any x can be predicted by the decision
function

f (x) = sgn (g(x)) (3.61)

Universum SVM constructs the following primal problem

min
1

2
‖w‖2

2 + Ct

∑l

i=1
ξj + Cu

∑u

s=1

(
ψs + ψ∗s

)
(3.62)

s.t.yj
((
w · xj

)+ b
) ≥ 1− ξi , ξi ≥ 0, i = 1, · · · , l, (3.63)

−ε − ψ!
s ≤

(
w · x!

s

)+ b ≤ ε + ψs, s = 1, · · · , u, (3.64)

ψs,ψ
!
s ≥ 0, s = 1, · · · , u, (3.65)

where ψ(∗) = (ψ1, ψ
∗
1 , · · · , ψu,ψ

!
u

)T
and Ct > 0, Cu > 0, ε > 0 are parameters. Its

goal is to find a separating hyperplane (w · x) + b = 0 such that, on the one hand,
it separates the inputs {x1, . . . , xl} with maximal margin, and on the other hand,
it approximates to the inputs

{
x!

1, . . . , x
!
u

}
. We can also get its dual problem and

introduce kernel function for dealing with nonlinear classification.
It is natural to consider the relationship between USVM and some 3-class

classification. In fact, it can be shown that, under some assumptions, USVM is
equivalent to K-SVCR [34] and is also equivalent to the SVOR with M = 3
with slight modification [35]. USVM’s performance depends on the quality of the
Universum, methodology of choosing the appropriate Universum is the subject of
future research.

3.1.1.4 Robust Support Vector Machine

In standard SVMs, the parameters in the optimization problems are implicitly
assumed to be known exactly. However, in practice, some uncertainty is often resent
in many real-world problems, these parameters have perturbations since they are
estimated from the training data which are usually corrupted by measurement noise.
The solutions to the optimization problems are sensitive to parameter perturbations.
So, it is useful to explore formulations that can yield discriminants robust to such
measurement errors. For example, when the inputs are subjected to measurement
errors, it would be better to describe the inputs by uncertainty sets Xi ∈ Rn,
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i = 1, . . . ,l, since all we know is that the input belongs to the set Xi. Therefore,
the standard problem turns to be the following robust classification problem.

Definition 3.4 (Robust classification problem). Given a training set

T = {(X1, Y1) , · · · , (Xl, Yl)} (3.66)

where Xi is a set in. Find a real function g(x) in R, such that the value of y for any
x can be predicted by the decision function

f (x) = sgn (g(x)) (3.67)

The geometric interpretation of the robust problem with circle perturbations is
shown in Fig. 3.3, where the circles with “+” and “o” are positive and negative input
sets respectively, the optimal separating hyperplane by the principle of maximal
margin is constructed by robust SVM (RSVM). Now, the primal problem of RSVM
for such case is a semi-infinite programming problem

min
1

2
‖w‖2 + C

∑l

i=1
ξj (3.68)

s.t.yi
((
w · (xi · riuj

))+ b
) ≥ 1− ξj ,∀

∣∣|uj |
∣∣ ≤ 1, i = 1, . . . , l (3.69)

ξi ≥ 0, i = 1, . . . , l, (3.70)

Fig. 3.3 Geometric interpretation of robust classification problem
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where the set Xi is a super sphere obtained from perturbation of a point i

Xi = {x |‖ x − xi ‖≤ ri} (3.71)

This semi-infinite programming problem can be proved to be equivalent to the
following second order cone programming [28, 36]

min
1

2
(u− ν)+ C

∑l

i=1
ξj (3.72)

s.t.yi
((
w · xj

)+ b
)− ri t ≥ 1− ξi , i = 1, · · · , l, (3.73)

ξi ≥ 0, i = 1, · · · , l, (3.74)

u+ v = 1 (3.75)

⎛
⎝

u

t

ν

⎞
⎠ ∈ L3 (3.76)

(
t

w

)
∈ Ln+1, (3.77)

its dual problem is also a second order cone programming

α, β, γ, zuzvmax, β +
∑l

i=1
αi, (3.78)

s.t.Y ≤
∑l

i=1
riαj −

√∑l

i−−1

∑l

j−−1
αiαj yiyjK

(
xi, xj

)
(3.79)

β + zu = 1

2
, (3.80)

β + zv = −1

2
, (3.81)

∑l

i=1
yjαj = 0, (3.82)
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0 ≤ αi ≤ C, i = 1, · · · , l, (3.83)
√
γ 2 + z2

v ≤ zu, (3.84)

which can be efficiently solved by Self-Dual-Minimization (SeDuMi). SeDuMi is a
tool for solving optimization problems. It can be used to solve linear programming,
second-order cone programming and semi-definite programming, and is available at
the web site http://sedumi.mcmaster.ca.

3.1.1.5 Knowledge Based Support Vector Machine

In many real-world problems, we are given not only the traditional training set,
but also prior knowledge such as some advised classification rules. If appropriately
used, prior knowledge can significantly improve the predictive accuracy of learning
algorithms or reduce the amount of training data needed. Now the problem can be
extended in the following way: the single input points in the training points are
extended to input sets, called knowledge sets. If we consider the input sets restricted
as polyhedrons, the problem is formulated mathematically as follows:

Definition 3.5 (Knowledge-based classification problem). Given a training set

T = {(X1, y1) , · · · ,
(
Xp, yp

)
,
(
Xp+1, yp+1

)
, · · · , (Xp+q, yp+q

)}
(3.85)

where Xi is a polyhedron in Rn defined by Xi = {x|Qjx ≤ di}, and Qi ∈ Rli×n,
di ∈ Rli , y1 = · · · = yp = 1, yp + 1 = · · · = yp + q = − 1. Find a real valued
function g(x) in Rn such that the value of y for any x can be predicted by the decision
function

f (x) = sgn (g(x)) (3.86)

Of course, we can construct the primal problem to be the following semi-infinite
programming problem

min
1

2
‖w‖2 + C

∑p+q

i=1
ξi , (3.87)

s.t. (w · x)+ b ≥ 1, f or x ∈ Xi.i = 1, · · · , p, (3.88)

(w · x)+ b ≤ −1, f or ∈ Xi.i = p + 1, · · · , p + q, (3.89)

ξi ≥ 0, i = 1, · · · , p + q (3.90)

http://sedumi.mcmaster.ca
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However, it was shown that the constraints (3.88)–(3.90) can be converted into a
set of limited constraints and then the problem becomes a quadratic programming
[37]

min
1

2
‖w‖2 + C

∑p+q

i=1

((∑n

j=1
ξij

)
+ ηi

)
(3.91)

s.t.− ξj ≤ QT
i ui +w ≤ ξj , i = 1, · · · , p, (3.92)

dT
i ui − b + 1 ≤ ηj , i = 1, · · · , p, (3.93)

−ξj ≤ QT
i ui − w ≤ ξj , i = p + 1, · · · , p + q, (3.94)

dT
i uj + b + 1 ≤ ηi, i = p + 1, · · · , p + q, (3.95)

ξ, η, u ≥ 0. (3.96)

This model considered the linear knowledge incorporated to linear SVM, while
linear knowledge based nonlinear SVM and nonlinear knowledge based SVM
were also proposed by Mangasarian and his co-workers [37, 38]. Handling prior
knowledge is worthy of further study, especially when the training data may not
be easily available whereas expert knowledge may be readily available in the form
of knowledge sets. Another prior information such as some additional descriptions
of the training points was also considered and a method called privileged SVM was
proposed [39], which allows one to introduce human elements of teaching: teacher’s
remarks, explanations, analogy, and so on in the machine learning process.

3.1.1.6 Multi-instance Support Vector Machine

Multi-instance problem was proposed in the application domain of drug activity
prediction, and similar to both the robust and knowledge-based classification
problems, it can be formulated as follows.

Definition 3.6 (Multi-instance classification problem). Suppose that there is a
training set

T = {(x1, u) , · · · , (xl, u)} (3.97)
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Fig. 3.4 Geometric interpretation of multi-instance classification problem

Where. Find a real function g(x) in R, such that the label y for any instance x can
be predicted by the decision function

f (x) = sgn (g(x)) (3.98)

The set Xi is called a bag containing a number of instances. Note that the
interesting point of this problem is that: the label of a bag is related with the labels
of the instances in the bag and decided by the following way: a bag is positive if
and only if there is at least one instance in the bag is positive; a bag is negative if
and only if all instances in the bag are negative. A geometric interpretation of multi-
instance classification problem is shown in Fig. 3.4, where every enclosure stands
for a bag; a bag with “+” is positive and a bag with “o” is negative, and both “+”
and “o” stand for instances.

For a linear classifier, a positive bag is classified correctly if and only if some
convex combination of points in the bag lies on the positive side of a separating
plane. Thus, the primal problem in the multi-instance SVM (MISVM) is constructed
as the following nonlinear programming problem [40]

min
1

2
‖w‖2 + C1

∑p

i=1
ξi + C2

∑r+s

i=r+1
ξj , (3.99)

s.t.
(
w ·
∑

j∈I (i)ν
i
j xj

)
+ b ≥ 1− ξj , i = 1, · · · , p, (3.100)

(w · xi)+ b ≤ −1+ ξi , j = r + 1, r + s, (3.101)

ξj ≥ 0, i = 1, · · · , p, r + 1, · · · , r + s, (3.102)
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νi
j ≥ 0, j ∈ I (i), i = 1, . . . , p, (3.103)

∑
j∈I (i)v

i
j = 1, i = 1, · · · , p. (3.104)

where r and s are respectively the number of the instances in all positive bags and
all negative bags, and p is the number of positive bags. Though the above problem is
nonlinear, it is easy to see that among its constraints, only the first one is nonlinear,
and in fact is bilinear. Then a local solution to this problem is obtained by solving
a succession of fast linear programs in a few iterations: Alternatively, hold one set
of variables which constitute the bilinear terms constant while varying the other
set. For a nonlinear classifier, a similar statement applies to the higher dimensional
space induced by the kernel.

3.1.2 Two New Decomposition Algorithms for Training
Bound-Constrained Support Vector Machines

In this section, we consider a simple modification model of the standard SVM as
follow

min
1

2

(
‖w‖2 + b2

)
+ C

∑l

i=1
ξi (3.105)

s.t. yi

(
wT ϕ (xi )+ b

)
≥ 1− ξi , ∀i = 1, . . . , l, (3.106)

ξi ≥ 0, ∀i = 1, · · · , l, (3.107)

The dual form of the above problem is the following QP, which contains bound
constraints only:

min f (α) = 1

2
αT QαT − 1T α (3.108)

s.t. 0 ≤ α ≤ C (3.109)

Where Qi, j ≡ yiyj(K(xi, xj)+ 1). Suppose the optimal solution of problem above is.
Then the classifier can be written as

H(x) = sign

{∑l

i=1
α∗̇
i
yi (K (x, xi )+ 1)

}
(3.110)
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Similar to the standard SVM, if α∗i �= 0, the corresponding sample i is called a
Support Vector (SV). Furthermore, if α∗i = C, it is called a Bounded Support
Vector (BSV). To show the difference with the standard SVM, (3.105)–(3.107) and
(3.108)–(3.109) are usually called the bound-constrained SVMs.

Bound-constrained SVMs are once proposed independently by Fireß, Cristianini
and Campbell in [41]. Mangasarian and Musicant [42] proves that for the linear
kernel case, there exist some kind of equivalence between bound-constrained SVMs
and the standard SVMs. The result can be concluded in the following proposition.

Proposition 3.1 [42] For the bound-constrained SVMs with linear kernel function
k(x, y), Suppose (w,b, ξ ) is an arbitrary solution of problem (3.105)–(3.107). If any
solution v̂ of the following system:

AT v = 0, 1T v = b, v ≥ 0 (3.111)

satisfies

1T v
(

1T ξ − 1
)
≤ b2 (3.112)

There must exists a sufficient large C, such that (w, b, ξ ) is also a solution of the
standard primal SVM model (1), where AT = (x1, · · · , xl) ∈ Rn×l , i.e., each row
of A is the feature vector of a sample.

Because of the simple formulation and good classification performance of bound-
constrained SVM, it draws a lot of attention in the recent years. For the linear kernel
case, Mangasarian and Musicant proposed to solve the model (3.108)–(3.109) by
the over-relaxation method in [42]. They proved the global convergence and the
linear convergent rate of the algorithm at the same time. Hsieh et al. gave a novel
dual coordinate descent method and proved the algorithm reaches an ε-accurate
solution in O( log (1/ε)) iterations in [43]. Several researchers also explore how
to train the primal form of (3.108)–(3.109) and the extended models fast. The
existing algorithms can be broadly categorized into two categories: the cutting-plane
methods [44–46], and subgradient methods [47]. For example, in [48], Shalev-
Shwartz et al. described and analyzed a simple and effective stochastic sub-gradient
descent algorithm and prove that the number of iterations required to obtain a
solution of accuracy ε is (1/ε). Generally speaking, without counting the loading
time, these recent advances on linear classification have shown that training one
million instances takes only a few seconds [49].

For the general nonlinear kernel case, the scale of the problems grows quadrat-
ically with the number of samples l due to the appearance of kernel matrix.
Therefore, for the middle and large-scale problem, decomposition techniques are
needed to handle the problems arising from the limitation of the memory. Hsu and
Lin analyzed in thorough how to design a decomposition algorithm for problem (4)
in [50], which mainly discussed how to design an effective working set selection
rule based on the existing successful working set selection rule for standard SVMs.
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They started from applying the working set selection strategy of SVMlight(Joachims)
to model (4) directly. Step by step, a series of heuristic techniques were added to
improve the performance of the selection rule. Different form the designation idea
in [50], we will discuss how to derive effective working set selection rule from the
optimization algorithm design point of view. Although the derivation is much more
concise than [50], the numerical experiments in subsection show that the computa-
tion efficiency of our new methods is at least as good as Hsu and Lin’s method.

3.1.2.1 The Decomposition Algorithm Framework

Because Qij is in general not zero, Q becomes a fully dense matrix. Due to the
density of Q, a prohibitive amount of memory is required to store the matrix. Thus,
traditional optimization algorithms, which needs the whole Hessian matrix of objec-
tive function, cannot be directly used. To conquer this difficulty, several researchers
[51–54] have proposed decomposition methods. The key idea of decomposition is
to update a small part of variables at each iteration, and to solve a sequence of
constant-size problems. Then, the solution of a large-scale dense problem can be
found by solving a number of small problems.

Now we denote the gradient of objective function (3.105) as:

F (α) =
(
∂f (α)

∂αi̇

)
= Qα − 1, (3.113)

for any i ∈ {1, · · · , l}, the i-th element of F(α) is:

Fi (α) = ∂f (α)

∂αi

=
∑l

j=1
Qijαj − 1. (3.114)

The index set of variables optimized at a current iteration is called the working
set and denoted as B. Let N ≡ {1, · · · l} , /B, and superscript record the iteration
number. Using the notation above, the general decomposition method for problem
(3.108)–(3.109) is described in Algorithm 3.1. Notice that Algorithm 3.1 is just a
framework, to make it be implemented in practice, the specific working set selection
rule and QP subproblem solver should be given. In the rest part of this section, we
will discuss how to select the working set effectively from the optimization design
point of view.

Denote Qsub
(
α(k),B

)
as the optimal objective function value of QP

min f
(
α(k) + d

)
− f (k) (3.115)

s.t. − α(k) ≤ di ≤ C − α
(k)
i ∀i ∈ B, (3.116)

di = 0,∀i /∈ B. (3.117)
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If only one iteration is considered, the best working set is argminB:|B|=nB
Qsub

(
α(k),B

)
. However, this choice requires solving

(
l

nB

)
QPs (7), which is too

expensive to manipulate in practice. To decrease the computational cost, we will
present two new working set selection methods in the next two subsections.

Algorithm 3.1 Decomposition Algorithm Framework for Bound-Constrained
SVMs
Step 0. Initialization. Given the upper bound for the size of the workings set nB ≥ 1,
the initial working set B(0) and the initial point α(0) = 0 ∈ Rl . Set k = 0.
Step 1. Subproblem Solution Construct and solve the quadratic subproblem

min
1

2

∑
i,j∈B(k)Qij αiαj +

∑
i∈B(k)

(
F

(k)
i −

∑
j∈B(k)Qij α

(k)
j

)
αi (3.118)

s.t. 0 ≤ αi ≤ C,∀i ∈ B
(k). (3.119)

Denote the optimal solution as {αi}i∈B(k). Update the iteration point as

α
(k+1)
i =

{
αi if i ∈ B

(k),

α
(k)
i if i /∈ B

(k).
(3.120)

Step 2. Gradient Update. Update gradient based on formula (5). Set k :=k + 1.
Step 3. Working Set Selection. Test whether the iterates should be terminated
according to some stopping criteria. If not stop, select at most nB indices to form
a new working set B(k), and go back to Step 1. Otherwise, output α(k) as the optimal
solution and stop.

3.1.2.2 Using First Order Information for Working Set Selection

A straightforward way of simplifying problem (3.115)–(3.117) is dropping the
second order information in the objective function, and confine the incremental
variables between 1 and −1, which results in the following Linear Programming
(LP):

min
∑

i∈BF
(k)
i di (3.121)

−α
(k)
i ≤ di ≤ C − α

(k)
i ,∀i ∈ B, (3.122)

−1 ≤ di ≤ 1,∀i ∈ B. (3.123)
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Denote the optimal objective function value of problem (3.133)–(3.135) as Lsub
(α(k), B). Then, argminB: |B| = nB Lsub (α(k), B) should be a good choice as the
working set B(k). Dividing the constraints (3.134) and (3.135) by samples, problem
(3.133)–(3.135) can be solved as |B| independent LPs. In details, for any i ∈ B,

min diF
(k)
i (3.124)

s.t. max
{
−1,−α(k)

}
≤ di ≤ min

{
1, C − α

(k)
i

}
. (3.125)

which solution can be represented as

d̂i =
⎧
⎨
⎩

max
{
−α

(k)
i ,−1

}
, if F (k)

i ≥ 0,

min
{
C − α

(k)
i , 1

}
, if F (k)

i < 0,
(3.126)

The above formula can be rewritten as a more compact form:

d̂i = − sign
(
F

(k)
i

)
min

{
1

2
C
(

1− sign
(
F

(k)
i

))
− α

(k)

i̇
, 1

}
. (3.127)

Furthermore, the corresponding optimal objective function value of LP (10) can
be represented as

− | F (k)
i | min

{
1

2
C
(

1− sign
(
F

(k)
i

))
− α

(k)
i , 1

}
. (3.128)

Based on these discussions, for ∀i = 1, · · · , l, define

�i (α) = −
∣∣∣F (k)

∣∣∣min

{
1

2
C
(

1− sign
(
F

(k)
i

))
− α

(k)
i , 1

}
, (3.129)

namely,

�i (α) =
⎧
⎨
⎩

max
{
−α

(k)
i ,−1

}
Fi (α) , if F (k)

i ≥ 0,

min
{
C − α

(k)
i , 1

}
Fi (α) , if F (k)

i̇
< 0,

(3.130)

Then,

Lsub
(
α(k),B

)
=
∑

i̇∈B
�
(k)

i̇
. (3.131)
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Therefore, instead of solving

(
l

nB

)
LPs (3.124)–(3.125), we can compute �(k),

and select the indices corresponding to the nB smallest elements of �
(k)
i directly to

get the value of

min Lsub
(
α(k),B

)
(3.132)

Especially, when �(k) = 0, no new working set can be selected, and the iterates
can be terminated naturally. To summarize, we describe this simple working set
selection rule in

Algorithm 3.2 The First-Order Working Set Selection Rule

Compute �(k) by formula (3.129).
if l(k) �= 0 then
Sort the indices set {1, . . . , l} by the values of �(k) in increasing order. Choose

the first nB indices to form the working set B(k)

else
Output α(k) as the optimal solution and terminate the iterates.
end if

In practice, we find that some indices enter and leave the working set lots of times
when applying working set selection rule Algorithm 3.2 directly to Algorithm 3.1.
This causes the decomposition algorithm converging very slow. In order to avoid
the zigzagging phenomenon, we keep part of indices from previous working sets at
each iteration. To be more precise, at most nN new indices are allowed to enter into
the working set, where 1 ≤ nN ≤ nB. Other indices are taken from the working set
of last iteration. One thing we want to stress is that different techniques of inheriting
indices has been used by several state-of-the-art solvers [55]. In this work, we use
the inheriting strategy used in [55] to revise our working set selection rules we
proposed before. Details are given in

Algorithm 3.3 The Practical First-Order Working Set Selection Rule

Compute �(k) by (11)
if �(k) �= 0 then
i) Set B̂ = B(k) and B

(k+1) = ∅.

ii) Sort the indices set {1\. \
′
l}b3’ the values of P(k) in increasing order; Add the

first nN indices to form the working set B(k+1) Set B̂ := B̂\B(k+1)

iii) Fill j ∈
{
i|i ∈ B̂, 0 < α

(k)
i < C

}
, which has the lowest number of consecu-

tive iterations in working set, to B(k + 1) and remove j from B̂ until | B(k+1) |= nB

or there is no such element.
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iv) Fill j ∈
{
i|i ∈ B̂, α

(k)
i = 0

}
, which has the lowest number of consecutive

iterations in working set, to B
(k+1) and remove it from B̂ until | B(k+1) |= nB or

there is no such element.
v) Fill j ∈

{
i|i ∈ B̂, α

(k)
i = C

}
, which has the lowest number of consecutive

iterations in working set to B
(k+1) and remove it from B̂ until | B(k+1) |= nB or

there is no such element.
else
Output α(k) as the optimal solution and terminate the iterations.
end if

3.1.2.3 Using Second Order Information for Working Set Selection

In the algorithm described in the last subsection, only first-order information of
the objective function is used for simplicity. However, this does not mean that
there is no simple and feasible method which uses second order information for
choosing working set. In this subsection, we will consider how to include second
order information into the process of working set selection.

Besides keeping both the first order information, we incorporate the diagonal
second order information, and get the following revised QP:

min
∑

i∈B

(
F

(k)
i di + 1

2
Qiid

2
i̇

)
(3.133)

−α
(k)
i ≤ di ≤ C − α

(k)
i ,∀i ∈ B, (3.134)

−1 ≤ di ≤ 1,∀i ∈ B. (3.135)

Denote the optimal objective function value of problem (3.133)–(3.135)
as DQsub

(
α(k),B

)
. Since more information of the objective model is used,

arg minB:|B|=nB
DQsub

(
α(k),B

)
should be a better choice of B

(k) than the
set selection rule given in the last subsection.

Similar to the discussion of Sect. 2.2, dividing the constraints (3.134) and (3.135)
by samples, problem (3.133)–(3.135) can be solved as | B | independent QPs. In
details, for any i ∈ B,

min diF
(k)
i + 1

2
Qiid

2
i̇

(3.136)

s.t. max
{
−1,−α(k)

}
≤ di ≤ min

{
1, C − α

(k)
i

}
. (3.137)

http://dx.doi.org/10.1007/978-981-16-3607-3_2#Sec6
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which solution can be represented as

d̂i =

⎧
⎪⎪⎨
⎪⎪⎩

max

{
−F

(k)
i

Qii
,max

{
−α

(k)
i ,−1

}}
, if F (k)

i ≥ 0

min

{
−F

(k)
i

Qii
,min

{
C − α

(k)
i , 1

}}
, if F (k)

i < 0
(3.138)

The above formula can be rewritten as a more compact form:

d̂i = mid

{
−F

(k)
i

Qii
, max

{
−α

(k)
i ,−1

}
, min

{
C − α

(k)

i̇
, 1
}}

. (3.139)

Furthermore, the corresponding optimal objective function value of problem
(3.136)–(3.137) can be represented as F

(k)
i d̂i+ 1

2Qii d̂
2
i . Based on these discussions,

for ∀i = 1, . . . ,l, define

ḋi (α) = mid

{
−Fi (α)

Qii̇

, max {−αi,−1} , min {C − αi, 1}
}
, (3.140)

and

.  (3.141)

Then, DQsub
(
α(k),B

) = ∑
i∈Bq

(k)
i . Therefore, instead of solving

(
l

nB

)
QPs

(3.141), we can compute q(k), and select the indices corresponding to the nB smallest
elements of q(k)

i to form arg minB:|B|=nB DQsub
(
α(k),B

)
directly. Especially, when

q(k) = 0, no new working set can be selected, and the iterates terminate naturally.
Similar practical working set selection strategy can also be used here to avoid the
zigzagging phenomenon. To summarize, we describe the new working set selection
rule in Algorithm 3.4.

3.1.2.4 Global Convergence Analysis

In this section, we will prove that the decomposition algorithms based on our
new working set selection rules (Algorithm 3.3 or Algorithm 3.4) are globally
convergent.
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Algorithm 3.4 The Practical Second-Order Working Set Selection Rule

Compute q(k) by (14).
if q(k) �= 0 then
i) Set B = B

(k) and B
(k+1) = ∅.

ii) Sort the indices set {1,· · · , l} by the values of q(k) in increasing order; Add the
first nN indices to form the working set B(k+1); Set B̂ := B̂\B(k+1).

iii) Fill j ∈
{
i|i ∈ B̂, 0 < α

(k)

i̇
< C

}
, which has the lowest number of consecu-

tive iterations in working set, to B
(k+1) and remove j from B̂ until | B(k+1) |= nB or

there is no such element.
iv) Fill j ∈

{
i|i ∈ B̂, α

(k)
i = 0

}
, which has the lowest number of consecutive

iterations in working set, to B
(k+1) and remove it from B̂ until | B(k+1) |= nB or

there is no such element.
v) Fill j ∈

{
i|i ∈ B̂, α

(k)
i = C

}
, which has the lowest number of consecutive

iterations in working set to B
(k+1) and remove it from B̂ until | B(k+1) |= nB or

there is no such element.
else
Output α(k) as the optimal solution and terminate the iterations.
end if

Lemma 3.1 Suppose α is a feasible point of problem (3.108)–(3.109). α is the KKT
point of problem (4) if and only if �(α) = 0.

Proof Because α is the KKT point of problem (3.108)–(3.109), from Kuhn-Tucker
theorem [56], we know that there exists Lagrange multipliers u and v which satisfies
KKT condition:

Fi (α)− vi + ui = 0,∀i = 1, . . . , l, (3.142)

viαi = 0,∀i = 1, · · · , l, (3.143)

ui (C − αi) = 0,∀i = 1, . . . , l, (3.144)

vi, ui ≥ 0,∀i = 1, · · · , l. (3.145)

Because α is a feasible point of problem (3.108)–(3.109), there are only the
following three kinds of possible value for αi:

1. If αi ∈ (0,C), according to the complementary condition (3.157) and (3.158), we
have vi = ui = 0. Furthermore, from (3.156), we know Fi(α) = 0. Therefore,
�i(α) = di0 = 0.

2. If αi = 0, based on the complementary condition (3.158), we have ui = 0.
Furthermore, according to (3.156) and (3.159), we have Fi(α) = vi ≥ 0. Since
the feasible set of problem (3.124)–(3.125) becomes {di| 0 ≤ di ≤ min {C, 1}}
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when αi = 0, the corresponding optimal solution is di = 0. Therefore,
�i(α) = 0Fi(α) = 0.

3. If αi = C, based on the complementary condition (3.158), we have vi = 0.
Furthermore, according to (3.156)–(3.159), we have Fi(α) = − ui ≤ 0. Since
the feasible set of problem (3.124)–(3.125) becomes {di| − min {C, 1} ≤ di ≤ 0}
when αi = 0, the corresponding optimal solution is di = 0. Therefore,
�i(α) = 0Fi(α) = 0.

Now we prove that if the feasible point of problem (3.108)–(3.109) α satisfies
�(α) = 0, α must be the KKT point.

For any i ∈ {1, · · · , l}, let d∗i denote the optimal solution of problem (3.124)–
(3.125). Since �i (α) = Fi (α) d

∗
i = 0, we know Fi(α) = 0 or d∗i = 0.

1. If Fi(α) = 0, we can choose ui = vi = 0;
2. If Fi(α) > 0, we have d∗i = −αi = 0, namely, αi = 0. Choose vi = Fi(α) and

ui = 0;
3. If Fi(α) < 0, we have d∗i = C − αi = 0, namely, αi = C. Choose ui = − Fi(α)

and vi = 0.

It is not difficult to verify that the above chosen value of u, v and α satisfy the
KKT condition (3.156)–(3.159).

Lemma 3.2 Suppose the kernel unction K(·, ·) satisfies Mercer condition [57], α is
a feasible point of problem (4), then for any p ∈ {1, · · · , l}, we have

Qsub (α, p) ≤ �p (α)

2
min

{
1,− �p (α)

2MC2

}
, (3.146)

where M = maxli=1

{
Ki,i + 1

}
.

Proof For any index p ∈ {1, · · · , l}, let dp denote the solution of problem (3.124)–
(3.125) when i = p. For any t ∈ [0, 1], tdp stay in the feasible region and | dp |≤
C. Furthermore, since kernel function K(·, ·) satisfies Mercer condition, we have
Kp, p ≥ 0, and M = maxli=1

{
Ki,i + 1

} ≥ 1. In all,

Qsub
(
α(k), p

) ≤ min
t∈[0,1]

{
dpFp (α) t + 1

2Kp,pd
2
pt

2
}

≤ min
t∈[0,1]

{
�p (α) t + 1

2Kp,pd
2
pt

2
}

≤ min
t∈[0,1]

{
�p (α) t + 1

2

(
Kp,p + 1

)
d

2
pt

2
}

≤ min
t∈[0,1]

{
�p (α) t + 1

2MC2t2
}

≤ �p(α)

2 t∗

(3.147)

where t∗ = min

{
1,− �p (α)

2MC2

}
.
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Theorem 3.1 Suppose the kernel function K(·, ·) satisfies Mercer condition [57],
nB ≥ nN ≥ 1. Let {α(k)} denote the iterates generated by Algorithm 3.1 with the
working selection rule in Algorithm 3.3. If {α(k)} contains only finite elements, the
last iteration point must be the global optima of problem (3.108)–(3.109). If {α(k)}
contains infinite elements, any accumulation point is a global optima of problem
(3.108)–(3.109).

Proof If {α(k)} contains finite elements, based on the working selection rule in
Algorithm 3.2, we know the last iteration point must satisfy �(α(k)) = 0. From
Lemma 3.1, it must be a KKT point. Hence, we know that α is a KKT point. Hence,
we only discuss the situation of infinite iteration points.

Let α be any accumulation of the sequence {α(k)}. Without loss of generalization,
we can assume {α(k)} converge to α (this requirement always can be obtained by
the proper relabeled of the order of iteration points). Because the feasible region
of problem (4) is a bounded closed set in Rl and the iterates generated by the
decomposition algorithm are always feasible, we know that α is also a feasible point.
Furthermore, the value of f (α) is a finite number.

Let the index p satisfy

�(k)p = min �
(k)
i = −

∥∥∥�(k)
∥∥∥∞. (3.148)

Since nN ≥ 1, index p must be contained in the selected working set B(k). Hence,

f (k+1) − f (k) ≤ Qsub
(
α(k), p

)
. (3.149)

From Lemma 3.2, we have

f (k+1) − f (k) ≤ 1

2
�(k)p min

{
1,− �

(k)
p

2MC2

}

= −1

2

∥∥∥�(k)
∥∥∥∞ min

{
1,

∥∥�(k)∥∥∞
2MC2

}
. (3.150)

Sum the above formulae from 0 to s, we get

∑s

k=0

∥∥∥�(k)
∥∥∥∞ min

{
1,

∥∥�(k)∥∥∞
2MC2

}
≤ f (0) − f (s+1). (3.151)

Let s→∞, we have

∑∞
k=0

∥∥∥�(k)
∥∥∥∞ min

{
1,

∥∥�(k)∥∥∞
2MC2

}
≤ f (0) − f (α) < +∞. (3.152)
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Therefore,

‖� (α)‖∞ = lim
k→+∞

∥∥∥�
(
α(k)

)∥∥∥∞ = 0. (3.153)

From Lemma 3.1, we know α is the KKT point of problem (3.108)–(3.109).
Since the kernel function K(·, ·) satisfies Mercer condition, problem (3.108)–

(3.109) is a convex problem. Therefore, α is a global optima of problem (3.108)–
(3.109).

Lemma 3.3 Suppose kernel function K(·, ·) satisfies Mercer condition [57], a
feasible point of problem (3.108)–(3.109) α is a KKT point if and only if q(α) = 0.

Proof Because kernel function K(·, ·) satisfies Mercer condition, for all
i ∈ {1, · · · , l}, Qii > 0. From the definition of (α), we know that ∀i ∈ {1, · · · , l},
qi(α) is the optimal objective function value of QP

min Fi (α) di + 1

2
Qi,id

2
i (3.154)

s.t. max {−1,−αi} ≤ di ≤ min {1, C − αi} . (3.155)

Let d∗i denote the optimal solution of (3.154)–(3.155), we have qi (α) = d∗i Fi (α)+
1
2Qii

(
d ∗̇
i

)2
.

Firstly, let us prove that any KKT point α of problem (4) satisfies q(α) = 0.
Because α is the KKT point of problem (3.108)–(3.109), from Kuhn-Tucker
theorem [56], we know that there exists Lagrange multipliers u and v which satisfies
KKT condition:

Fi (α)− vi + ui = 0,∀i = 1, · · · , l, (3.156)

viαi = 0,∀i = 1, · · · , l, (3.157)

ui (C − αi) = 0,∀i = 1, · · · , l, (3.158)

vi, ui ≥ 0,∀i = 1, · · · , l. (3.159)

Because α is a feasible point of problem (3.108)–(3.109), there are only the
following three kinds of possible value for αi:

1. If αi ∈ (0,C), according to the complementary condition (3.157) and (3.158),
we have vi = ui = 0. Furthermore, from (3.156), we know Fi(α) = 0. Through
simple computation, we get that the optimal objective function value of problem
(3.154)–(3.155) is 0. Therefore, qi(α) = 0.

2. If αi = 0, based on the complementary condition (3.158), we have ui = 0.
Furthermore, according to (3.156) and (3.159), we have Fi(α) = vi ≥ 0. Then,
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the feasible set of problem (3.154)–(3.155) becomes {di| 0 ≤ di ≤ min {C, 1}}.
Since the symmetric axis of quadratic function (3.154) is −Fi(α)

2Qii
≤ 0, we know

the optimal solution is obtained at zero, namely qi(α) = 0.
3. Similar to the discussion in (2), we can prove that d∗i = 0 and qi(α) = 0.

Now we prove that if a feasible point of problem (3.108)–(3.109) α satisfies
q(α) = 0, α is the KKT point of problem (3.108)–(3.109).

For any i ∈ {1, · · · , l}, if qi(α) = 0, we know d∗i = 0 or d ∗̇
i
= − 2Fi(α)

Qii
. In fact,

if d ∗̇
i
= − 2Fi(α)

Qẋi
�= 0, because of the convexity of the feasible region, it is easy to

prove that qi(α) < 0, which is contradict to the known fact of qi(α) = 0. Therefore,
d∗i = 0.

1. If the symmetric axis of (3.154) is −Fi(α)
2Qii

< 0, because d∗i = 0, there is αi = 0.
Set vi = Fi(α) > 0 and ui = 0.

2. If the symmetric axis of (3.154) is −Fλ̇(α)

2Qii
> 0, because d∗i = 0, there is αi = C.

Set ui = − Fi(α) > 0 and vi = 0.
3. If the symmetric axis of (3.154) is −Fi(α)

2Qii
= 0. We have Fi(α) =0. Set

ui = vi = 0. It can be checked easily that the above chosen u and v, together
with α satisfy the KKT condition (3.156)–(3.159).

Theorem 3.2 Suppose the kernel function K(·, ·) satisfies Mercer condition,
nB ≥ nN ≥ 1. Let {α(k)} denote the iterates generated by Algorithm 3.1 with
working selection rule in Algorithm 3.4. If {α(k)} contains only finite elements, the
last iteration point must be the global optima of problem (4). If {α(k)} contains
infinite elements, any accumulation point is a global optima of problem (3.108)–
(3.109).

Proof If {α(k)} contains finite elements, the last iteration point must satisfy
q(α(k)) = 0. From Lemma 3.3, it knows that α is a KKT point. Hence, we only
discuss the situation of infinite iteration points.

Let α be any accumulation point of {α(k)}. Without loss of generalization, we
can assume {α(k)} converge to α (this requirement always can be obtained by the
proper relabeled of the order of iteration points). Because the feasible region of
problem (3.108)–(3.109) is a bounded closed set in Rl and the iterates generated by
the decomposition algorithm are always feasible, we know that α is also a feasible
point. Furthermore, the value of f (α) is a finite number.

Let the index p satisfy q
(k)
p = min1≤i≤lq

(k)
i = −∥∥q(k)

∥∥∞, where the last equality
is based on the definition of �∞ and the fact of vector q ≤ 0. Since nN ≥ 1, index p
must be contained in the selected working set B(k). On the other hand, according to
the definition of (α), we know Qsub (α, p) = qp(α). Hence,

f (k+1) − f (k) ≤ Qsub
(
α(k), p

)
= −

∥∥∥q(k)
∥∥∥∞. (3.160)

Sum the above formulae from 0 to s,

∑s

k=0

∥∥∥q(k)
∥∥∥∞ ≤ f (0) − f (s+1). (3.161)
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Let s→∞, we have

∑∞
k=0

∥∥∥q(k)
∥∥∥∞ ≤ f (0) − f (α) < +∞. (3.162)

Therefore,

‖q (α)‖∞ = lim
k→+∞.

q(α)k = 0 (3.163)

From Lemma 3.3, we know α is the KKT point of problem (3.108)–(3.109).
Since the kernel function K(,.,) satisfies Mercer condition, problem (3.108)–

(3.109) is a convex problem. Therefore, α is a global optimum.

3.2 Twin Support Vector Machine in Classification

3.2.1 Improved Twin Support Vector Machine

3.2.1.1 TBSVM (Twin Bounded Support Vector Machine)

In this section, we introduce the so-called improved TWSVM, TBSVM [21], and
also point out its drawbacks.

Linear TBSVM

For the linear case, two primal problems solved in TBSVM are

min
1

2
c3

(∥∥∥w2+
∥∥∥+ b2+

)
+ 1

2
(Aw+ + e+b+)T (Aw+ + e+b+)+ c1e

T−ξ−
(3.164)

s.t. − (Bw+ + e−b+)+ ξ− ≥ e−, ξ− ≥ 0. (3.165)

and

min
1

2
c4

(
‖w−‖2 + b2−

)
+ 1

2
(Bw− + e−b−)T (Bw− + e−b−)+ c2e

T+ξ+
(3.166)

s.t. (Aw− + e+b−)+ ξ+ ≥ e+, ξ+ ≥ 0. (3.167)

where ci, i = 1, 2, 3, 4 are the penalty parameters and e+ and e− are vectors of ones
of appropriate dimensions (Fig. 3.5).
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Fig. 3.5 Nonlinear TWSVM with the linear kernel is not equivalent to the linear TWSVM.
The “+” and “∗” points are generated following two normal distributions respectively. (a) Two
nonparallel lines obtained from linear TWSVM; (b) Two nonparallel lines obtained from nonlinear
TWSVM with linear kernel

Comparing the problems (3.164)–(3.165) and (3.166)–(3.167) with (3.168)–
(3.169) and (3.170)–(3.171) in linear TWSVM, we can see that the difference is
only the introduction of the regularization terms ‖w+‖2 + b2+ and ‖w−‖2 + b2−,
which leads to the following dual problems

max eT−α −
1

2
αTG

(
HTH + c3I

)−1
GTα (3.168)

s.t. 0 ≤ α ≤ c1e−. (3.169)

and

max eT+γ −
1

2
γ TH

(
GTG+ c4I

)−1
HTγ (3.170)

s.t. 0 ≤ γ ≤ c2e+. (3.171)

The matrices (HTH + c3I) and (GTG + c4I) are nonsingular naturally, therefore
their inverse matrices can be calculated without any extra assumption and need not
be modified any more.
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Nonlinear TBSVM

For the nonlinear case, two other regularization terms
(‖u+‖2 + b2+

)
and(‖u−‖2 + b2−

)
are introduced into the problems respectively, and the primal

problems turn to be

min
1

2
c3

(
‖u+‖2 + b2+

)
+ 1

2

∥∥∥K
(
A,CT

)
u+ + e+b+

∥∥∥
2 + c1e

T−ξ− (3.172)

s.t. −
(
K
(
B,CT

)
u+ + e−b+

)
+ ξ− ≥ e−, ξ− ≥ 0. (3.173)

and

min
1

2
c4

(
‖u−‖2 + b2−

)
+ 1

2

∥∥∥K
(
B,CT

)
u− + e−b−

∥∥∥
2 + c2e

T+ξ+ (3.174)

s.t.
(
K
(
A,CT

)
u− + e+b−

)
+ ξ+ ≥ e+, ξ+ ≥ 0. (3.175)

The corresponding dual problems are

max eT−α −
1

2
αTR

(
STS + c3I

)−1
RTα (3.176)

s.t. 0 ≤ α ≤ c1. (3.177)

and

max eT+γ γ − 1

2
γ TS

(
RTR + c4I

)−1
STγ (3.178)

s.t. 0 ≤ γ ≤ c2. (3.179)

Similar to the linear TBSVM, the matrices (STS + c3I) and (RTR + c4I) are
nonsingular, therefore their inverse matrices can be calculated without any extra
assumption and need not be modified any more. Though TBSVM is claimed more
rigorous and complete than TWSVM, it still suffers from the two drawbacks
discussed earlier. First, it cannot avoid computing the inverse matrices; second, the
nonlinear

TBSVM with the linear kernel is not equivalent to the linear TBSVM. A toy
example in Fig. 3.6 illustrates this. We can further verify the second drawback of
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Fig. 3.6 Nonlinear TBSVM with the linear kernel is not equivalent to the linear TBSVM. The+”
and ∗” points are generated following two normal distributions respectively. (a) Two nonparallel
lines obtained from linear TBSVM; (b) Two nonparallel lines obtained from nonlinear TBSVM
with linear kernel

TBSVM and TWSVM from the experiments reported in [58] and [21]. For example,
for the dataset “Australian”, the reported best results of TWSVM and TBSVM are
85.80% and 85.94% for linear case respectively, while not reported in [58] and
75.8% in [21] for the radial basis function (RBF) kernel. However, as we all know,
RBF kernel

K
(
x, x ′

) = exp

(
−
∥∥x − x ′

∥∥2

σ

)
(3.180)

performs approximately like linear kernel when the parameter σ is chosen large
enough, they should get the similar best results with linear case after parameters
tuning. Unfortunately, nonlinear TBSVM or TWSVM with optimal kernel parame-
ters performs worse than linear TBSVM or TWSVM.

3.2.1.2 Improved TWSVM

In this section, we propose a different TWSVM based on TBSVM, termed as
ITSVM, which inherits the essence of the SVMs and has the unexpected merits
compared with TWSVM and TBSVM.
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Linear ITSVM

For the linear case, the primal problems are the same as (3.164)–(3.165) and
(3.166)–(3.167) of TBSVM

min
1

2
c3

(
‖w+‖2 + b2+

)
+ 1

2
ηT+η ++c1e

T−ξ− (3.181)

s.t. Aw ++e+b+ = η+, (3.182)

− (Bw+ + e−b+)+ ξ− ≥ e−, ξ− ≥ 0. (3.183)

and

min
1

2
c4

(
‖w−‖2 + b2−

)
+ 1

2
ηT−η− + c2e

T+ξ+ (3.184)

s.t. Bw −+e−b− = η−, (3.185)

(Aw −+e+b−)+ ξ+ ≥ e+, ξ+ ≥ 0. (3.186)

where ci, i = 1, 2, 3, 4 are the penalty parameters, e+ and e− are vectors of ones of
appropriate dimensions, ξ+ and ξ− are slack vectors of appropriate dimension, η+
and η− are vectors of appropriate dimension. It is worth noting that here we only
add two variables η+ and η− to (3.1) and (3.2) respectively. Therefore, we introduce
a different Lagrangian corresponding to the problem (3.1) as

L (w+, b+, η+, ξ−, α, β, λ) = 1

2
c3

(
‖w+‖2 + b2+

)
+ 1

2
ηT+η ++c1e

T−ξ−

+λT (Aw ++e+b +−η+)+ αT (Bw ++e−b +−ξ− + e−)− βTξ−,
(3.187)

where α= (α1, . . . ,αq)T, β = (β1, . . . ,βq)T and λ = (λ1, . . . ,λp)T are vectors
of Lagrange multipliers. That is, the Lagrangian (3.3) has extra variables η+ and
λ compared with the TBSVM. The KarushKuhn-Tucker (KKT) necessary and
sufficient optimality conditions of the problem (3.1) are given by

c3w+ + ATλ+ BTα = 0, (3.188)

c3b+ + eT+λ+ eT−α = 0, (3.189)
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λ− η+ = 0, (3.190)

c1e− − α − β = 0, (3.191)

Aw+ + e + b+ = η+, (3.192)

− (Bw+ + e−b+)+ ξ− ≥ e−, ξ− ≥ 0, (3.193)

αT (Bw ++e−b +−ξ− + e−) = 0, βTξ− = 0, (3.194)

α ≥ 0, β ≥ 0. (3.195)

Since β ≥ 0, from (3.191) we have

0 ≤ α ≤ c1e−. (3.196)

(3.188) and (3.189) imply that

w+ = − 1

c3

(
ATλ+ BTα

)
, (3.197)

b+ = − 1

c3

(
eT+λ+ eT−α

)
. (3.198)

Using (3.197), (3.198) and (3.190), we obtain the Wolfe dual of the problem
(3.181)–(3.183) as follows:

max λ, α − 1

2

(
λTαT

)
Q̂
(
λTαT

)T + c3e
T−α (3.199)

s.t. 0 ≤ α ≤ c1e−. (3.200)

where

Q̂ =
(
AAT + c3I ABT

ABT BBT

)
+ E (3.201)
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and I is the p × p identity matrix, E is the l × l matrix with all entries equal to 1.
Similarly, the dual of the problem (3.2) is obtained as

max θ, γ − 1

2

(
θTγ T

)
Q̃
(
θTγ T

)T + c4e
T+γ (3.202)

s.t. 0 ≤ γ ≤ c2e+ (3.203)

where

Q̃ =
(
BBT + c4I BAT

BAT AAT

)
+ E (3.204)

and I is the q × q identity matrix, E is the l × l matrix with all entries equal to 1.
The pair of nonparallel hyperplanes is obtained from the solutions (λ∗ , α∗ ) and

(θ ∗ , γ ∗) of (3.199)–(3.200) and (3.202)–(3.203) by

(
w∗+· x

)+ b∗+ = 0, (3.205)

where

w∗+ = −
(
ATλ∗ + BTα∗

)
, b∗+ = −

(
eT+λ∗ + eT−α∗

)
, (3.206)

and

(
w∗−· x

)+ b∗− = 0, (3.207)

where

w∗− = −
(
BTθ∗ + ATγ ∗

)
, b∗− = −

(
eT−θ∗ + eT+γ ∗

)
. (3.208)

The linear ITSVM is equivalent to the linear TBSVM because of the same
primal problems. However, it is just the difference between their Lagrangians leads
to the final difference between their dual problems. Problems (3.199)–(3.200) and
(3.202)–(3.203) are obvious QPPs and have nothing to do with the computation of
inverse matrices compared with the problems (3.176)–(3.177) and (3.178)–(3.179).
More importantly, they can be easily extended to the nonlinear case.

Nonlinear ITSVM

Totally different with the nonlinear TBSVM, we do not need to consider the
kernel-generated surfaces and construct two other problems (3.172)–(3.173) and
(3.174)–(3.175), since we can introduce the kernel function directly into the
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problems (3.199)–(3.200) and (3.202)–(3.203) just as the standard SVMs usually
do.

Introducing the kernel function K(x, x
′
) = (Φ(x) · Φ(x

′
)) and the corresponding

transformation

x = Φ(x) (3.209)

where x ∈H, H is the Hilbert space. So, the training set (2.1) becomes

T̃ = {(x1, y1) , . . .
(
xp, yp

)
,
(
xp+1, yp+1

)
, . . .

(
xp+q, yp+q

)}
(3.210)

and the corresponding two primal problems in the Hilbert space H are

min
1

2
c3

(
‖w+‖2 + b2+

)
+ 1

2
ηT+η ++c1e

T−ξ− (3.211)

s.t. Φ(A)w++e+b+ = η+, (3.212)

− (Φ(B)w+ + e−b+)+ ξ− ≥ e−, ξ− ≥ 0. (3.213)

and

min
1

2
c4

(
‖w−‖2 + b2−

)
+ 1

2
ηT−η− + c2e

T+ξ+ (3.214)

s.t. Φ(B)w− + e−b− = η−, (3.215)

(Φ(A)w− + e+b−)+ ξ+ ≥ e+, ξ+ ≥ 0. (3.216)

Their dual problems can be obtained as

max λ, α − 1

2

(
λTαT

)
Q
(
λTαT

)T + c3e
T−α (3.217)

s.t. 0 ≤ α ≤ c1e−. (3.218)

where

Q =
(
K
(
AT|AT

)+ c3I K
(
AT|BT

)
K
(
AT|BT

)
K
(
BT|BT

)
)
+ E (3.219)
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and

max θ, γ − 1

2

(
θTγ T

)
Q=

(
θTγ T

)T + c4e
T+γ (3.220)

s.t. 0 ≤ γ ≤ c2e+. (3.221)

where

(3.222)

respectively.
The pair of nonparallel hyperplanes in the Hilbert space H is obtained from the

solutions (λ∗ ,α∗ ) and (θ ∗ , γ ∗) of (3.217)–(3.218) and (3.220)–(3.221) by

K
(
xT, AT

)
λ∗ +K

(
xT, BT

)
α∗ + b∗+ = 0 (3.223)

where

b∗+ = eT+λ∗ + eT−α∗ (3.224)

and

K
(
xT, BT

)
θ∗ +K

(
xT, AT

)
γ ∗ + b∗− = 0 (3.225)

where

b∗− = eT−θ∗ + eT+γ ∗ (3.226)

Obviously the problems (3.217)–(3.218) and (3.220)–(3.221) are QPPs and have
nothing to do with the computation of inverse matrices any more, and can degenerate
to the problems (3.199)–(3.200) and (3.202)–(3.203) of linear ITSVM when the
linear kernel is applied.

Algorithm 3.5 (ITSVM)

(1) Input the training set (2.1);
(2) Choose appropriate kernels (x, x

′
), and penalty parameters ci > 0, i = 1, 2, 3, 4;

(3) Construct and solve the two convex QPPs (3.217)–(3.218) and (3.220)–(3.221)
separately, get the solutions (λ∗ ,α∗ ) and (θ ∗ , γ ∗);
(4) Construct two decision functions

f+(x) = K
(
xT, AT

)
λ∗ +K

(
xT, BT

)
α∗ + b∗+, (3.227)
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and

f−(x) = K
(
xT, BT

)
θ∗ +K

(
xT, AT

)
γ ∗ + b∗−, (3.228)

(5) For any unknown input x, assign it to the class k(k = −,+) by

arg min | fk(x) | (3.229)

where | · | is the perpendicular distance of point x from the hyperspheres f (x) = 0.

3.2.1.3 Fast Solvers for ITSVM

SOR for ITSVM

The two convex QPPs (3.217)–(3.218) and (3.220)–(3.221) can be solved efficiently
by the following successive overrelaxation (SOR) technique, see [21, 42]. Taking the
problem (3.217)–(3.218) as the example, we rewrite it as

min
1

2
μTQμ− κTμ (3.230)

s.t. 0 ≤ μi ≤ c1, i = p + 1, . . . , p + q, (3.231)

where μ = (λT, αT)T, Q ∈ R
l × l is defined by (3.28) and positive semi-definite,

κ =
⎛
⎝0, . . . , 0︸ ︷︷ ︸

p

, c3, . . . , c3︸ ︷︷ ︸
q

⎞
⎠

T

(3.232)

Algorithm 3.6 (SOR for ITSVM)

Choose ∈(0, 2). Start with any μ0 ∈ R
m. Having μi, compute μi + 1 as follows

μi+1 =
(
μi − ωD−1

(
Qμi + κ + L

(
μi+1 − μi

)))
#

(3.233)

until ‖μi + 1 − μi‖ is less than some prescribed tolerance, where (·)# denotes the
2-norm projection on the feasible region of (5.1), that is,

((μ)#)i =
⎧⎨
⎩

0 if μi ≤ 0,
μi if 0 < μi < c1,

c1 if μi ≥ c1,

for i = p + 1, . . . , p + q , (3.234)

http://dx.doi.org/10.1007/978-981-16-3607-3_5#Equ1


3.2 Twin Support Vector Machine in Classification 137

the nonzero elements of L ∈ R
m × m constitute the strictly lower triangular part of

the symmetric matrix Q, and the nonzero elements of D ∈ R
m × m constitute the

diagonal of Q.
Without residing in memory, SOR can process huge quantities of datasets, which

has been proved to converge to a solution linearly, and therefore it is regarded as an
excellent solver.

SMO for ITSVM

If we make a little change in the two primal problems (3.181)–(3.183) and (3.184)–
(3.186), ITSVM can be solved efficiently by the SMO-type decomposition methods.

For the linear case, we take the terms ‖w+‖2 and ‖w−‖2 instead of(‖w+‖2 + b2+
)

and
(‖w−‖2 + b2−

)
respectively, then change the two primal

problems (3.181)–(3.183) and (3.184)–(3.186) to be

min
1

2
c3

∥∥∥w2+
∥∥∥+ 1

2
ηT+η ++c1e

T−ξ− (3.235)

s.t. Aw ++e + b+ = η+, (3.236)

− (Bw+ + e−b+)+ ξ− ≥ e−, ξ− ≥ 0. (3.237)

and

min
1

2
c4‖w−‖2 + 1

2
ηT−η− + c2e

T+ξ+ (3.238)

s.t. Bw −+e−b− = η−, (3.239)

(Aw −+e+b−)+ ξ+ ≥ e+, ξ+ ≥ 0. (3.240)

It is easy to obtain the Wolfe dual of the problem (5.4) as

max λ, α − 1

2

(
λTαT

)
Q̂
(
λTαT

)T + c3e
T−α (3.241)

s.t. eT+λ+ eT−α = 0, (3.242)

0 ≤ α ≤ c1e−. (3.243)

http://dx.doi.org/10.1007/978-981-16-3607-3_5#Equ4
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where

Q̂ =
(
AAT + c3I ABT

ABT BBT

)
(3.244)

and the Wolfe dual of the problem (3.241)–(3.243) as

max θ, γ − 1

2

(
θTγ T

)
Q̃
(
θTγ T

)T + c4e
T+γ (3.245)

s.t. eT−θ + eT+γ = 0, (3.246)

0 ≤ γ ≤ c2e + . (3.247)

where

Q̃ =
(
BATBBT + c4I AATBAT (3.248)

For the nonlinear case, we only need to introduce the kernel functions to the
problems (3.241)–(3.243) and (3.245)–(3.247). We can see that problems (3.241)–
(3.243) and (3.245)–(3.247) have the same formulation

min
1

2
μTQμ+ κTμ (3.249)

s.t. Li ≤ μ ≤ Ui, i = 1, . . . , p + q, (3.250)

yTμ = 0. (3.251)

which has been proved to be efficiently solved by the SMO-type technique [59].

3.2.2 Extending Twin Support Vector Machine Classifier for
Multi-category Classification Problems

3.2.2.1 One-Versus-All Twin Support Vector Machines

In this section, we propose a new k-category classifier, one-versus-all twin support
vector machine classifier, which we will term as OVA-TWSVM. As mentioned
earlier, TWSVM obtains two nonparallel hyperplanes by solving two comparatives
smaller QPPs, one for each class. Based on this idea, we extend TWSVM to solve
multicategory data classification problems.
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Given a dataset containing m datapoints represented by A ∈ Rm × n, each element
is labeled by one of k(k ≥ 2) labels. Let matrix Ai ∈ Rmi×n represent the datapoints
of class (i = 1, 2, . . . , k). We define

A =
⎡
⎢⎣

A1
...

Ak

⎤
⎥⎦ (3.252)

Ãi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
...

Ai−1

Ai+1
...

Ak

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.253)

i ∈ {1, 2, . . . , k} and m = m1 + m2+. . . +mk. For class (i = 1, 2, . . . , k), we solve
the following QPP Eqs. (3.254)–(3.256).

min
1

2

∥∥∥Aiw
(i) + eib

(i)
∥∥∥

2 + Ci ẽi
′q (3.254)

s.t. −
(
Ãiw

(i) + ẽib
(i)
)
+ q ≥ ẽi , (3.255)

q ≥ 0. (3.256)

where Ci(>0) is a penalty parameter, and q is a vector of error or slack variables
associated with samples, and ei and ı̃ are vectors of ones of appropriate dimensions.
In the above QPP Eqs. (3.254)–(3.256), the first term in the objective function
is the sum of squared distance from the points of class i to the hyperplane.
Therefore, minimizing it means to keep the data points of class i clustered around
the hyperplane. The second term of the objective function minimizes the sum of
error variables, thus trying to minimize misclassification due to points belonging to
the other k − 1 classes. The constraints require the hyperplane to be at a distance of
at least 1 from points of the other k − 1 classes.

Linear One-Versus-All Twin Support Vector Machines

The linear OVA-TWSVM classifier obtains k nonparallel hyperplanes by solving k
QPPs, one for each class, around which the corresponding data points get clustered.
We can classify points according to which hyperplane a given point is closest to.
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The Lagrangian corresponding to the QPP Eqs. (3.254)–(3.256) is given by

L
(
w(i), b(i), q, α, β

)
= 1

2

∥∥∥Aiw
(i) + eib

(i)
∥∥∥

2 + Ciẽi
′q

−α′
(
−
(
Ãiw

(i) + ẽib
(i)
)
+ q − ẽi

)
− β ′q (3.257)

where α= (α1, α2, . . . ,αs)
′
, β = (β1, β2, . . . , βs)

′
, and s = m − mi. Here α, β are

vectors of Lagrange multipliers. The Karush-Kuhn-Tucker (K.K.T) necessary and
sufficient optimality conditions [60] for Eq. (3.257) are given by

A′̇
i

(
Aiw

(i) + eib
(i)
)
+ Ã′iα = 0 (3.258)

e′i
(
Aiw

(i) + eib
(i)
)
+ ẽi

′α = 0 (3.259)

Ci ẽi − α − β = 0 (3.260)

−
(
Ãiw

(i) + ẽi b(i)
)
+ q ≥ ẽi

′, q ≥ 0 (3.261)

α′
(
−
(
Ãiw

(i) + ẽib
(i)
)
+ q − ẽi

)
= 0, β ′q = 0 (3.262)

α ≥ 0, β ≥ 0 (3.263)

Since β ≥ 0, from Eq. (3.260) we get Eq. (3.264)

0 ≤ α ≤ Ci (3.264)

Next, combining Eqs. (3.258) and (3.259) leads to Eq. (3.265).

[
A′ie′i

]
[Aiei]

[
w(i) b(i)

]′ + [Ã′i ẽi ′
]
α = 0 (3.265)

Then we define Eq. (3.266),

E = [Aiei ] , F =
[
Ãi ẽi

]
, ui =

[
w(i) b(i)

]′
(3.266)
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with these notations, Eq. (3.265) can be rewritten as Eq. (3.267).

E′Eui + F ′α = 0, i.e., ui = −
(
E′E

)−1
F ′α (3.267)

Because E
′
E is always positive semidefinite, we can introduce a regularization

term εI, ε > 0, to take care of problems due to possible ill-conditioning of E
′
E.

Here, I is an identity matrix of appropriate dimensions. Therefore, Eq. (3.267) can
be modified to Eq. (3.268).

ui = −
(
E′E + εI

)−1
F ′α (3.268)

However, in the following, we shall continue to use Eq. (3.267) with the
understanding that, if needed, Eq. (3.268) is to be used for the determination of
ui.

Using Eq. (3.257) and K.K.T. conditions, we can obtain the Wolfe dual of QPP
Eqs. (3.254)–(3.256) as follows:

max ẽi
′α − 1

2
α′F

(
E′E

)−1
F ′α (3.269)

s.t. 0 ≤ α ≤ Ci. (3.270)

Once vector ui is known from Eqs. (3.267) and (3.269)–(3.270), the separating
plane Eq. (3.271) of class i(i = 1, 2, . . . , k)

x ′w(i) + b(i) = 0 (3.271)

is obtained. A new data sample x is assigned to class i (i = 1, 2, . . . , k), depending
on which of the k planes given by Eq. (3.271) it lies closest to, i.e.,

x ′w(i) + b(i) = min | x ′w(l) + b(l) | (3.272)

where � · � is the perpendicular distance from point x to the hyperplane
x
′
w(l) + b(l) = 0, l = 1, 2, . . . , k. According to TWSVM, we can define such

patterns of the other k − 1 classes for which 0 ≤ αj ≤ Ci(j = 1, 2, . . . ,m − mi)
as support vectors with respect to class i(i = 1, 2, . . . , k) because they play an
important role in determining the required hyperplane.

For clarity, our linear OVA-TWSVM is described in the following Algorithm 3.7.

Algorithm 3.7 Linear OVA-TWSVM

Given a dataset containing m data points represented by A ∈ Rm × n, each element of
which is labeled by one of k(k ≥ 2) labels. Let matrix Ai ∈ Rmi×n represent the mi

data points of class (i = 1, 2, . . . , k), with m =∑k
i=1mi . The linear OVA-TWSVM

is described as following:
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(i) Start with i = 1.
(ii) Iterate (iii), (iv)∼ and (v) until i = k.
(iii) Define A and Ai in Eqs. (3.15) and (3.16), respectively.
(iv) Select the penalty parameter Ci. This parameter in our study is determined

via 10-fold cross validation experiments.
(v) Define E = [Ai, ei], and F=[Ãi ẽi] in Eq. (3.27). Solve QPPs Eqs. (3.269)–

(3.270) and calculate ui in Eq. (3.29) to get the augmented vector ui = [w(i), b(i)]
′
in

Eq. (3.267).
(vi) Calculate the perpendicular distances �x

′
w(i) + b(i)

� (i = 1, 2, . . . , k) for a
new data point x.

(vii) Assign the new data point x to class l based on which of the distance
�x
′
w(l) + b(l)

� is the minimum one.

Nonlinear One-Versus-All Twin Support Vector Machines

In this section, we extend our linear OVA-TWSVM to nonlinear OVA-TWSVM by
considering the following k kernel generated surfaces Eq. (3.273).

K
(
x ′, A′

)
w(i) + b(i) = 0 (i = 1, 2, . . . , k) (3.273)

where K is an appropriately chosen kernel. The primal two QPPs of nonlinear OVA-
TWSVM can be modified to the QPPs as showed in Eqs. (3.274)–(3.276).

min
1

2

∥∥∥K (
Ai,A

′)w(i) + eib
(i)
∥∥∥

2 + Cĩ i′q (3.274)

s.t.–
(
K
(
Ãi, A

′)w(i) + ẽi
′ b(i)

)
+ q ≥ ĩ, (3.275)

q ≥ 0, i = 1, 2, . . . , k. (3.276)

where Ci ≥ 0 is a penalty parameter, q is a vector of error variables associated with
samples, and ı̃ and ẽ′i are vectors of ones of appropriate dimensions.

The Lagrangian corresponding to the problem Eqs. (3.274)–(3.276) is given by
the following Eq. (3.277),

L
(
w(i), b(i), q, α, β

)
= 1

2

∥∥∥K (
Ai,A

′)w(i) + eib
(i)
∥∥∥

2

+Ci ẽi
′q − α′

(
−
(
K
(
Ãi, A

′)w(i) + ẽib
(i)
)
+ q − ẽi

)
− β ′q (3.277)
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We can obtain the K.K. T conditions for Eq. (3.277) as the following Eqs.
(3.278)–(3.283).

K
(
A′̇

i
, A′

)′ (
K
(
Ai,A

′)w(i) + eib
(i)
)
+K

(
Ãi, A

′)′α = 0 (3.278)

e′i
(
K
(
Ai,A

′)w(i) + eib
(i)
)
+ e′iα = 0 (3.279)

Ciẽi − α − β = 0 (3.280)

−
(
K
(
Ãi, A

′)w(i) + ẽib
(i)
)
+ q ≥ ẽi , q ≥ 0 (3.281)

α′
(
−
(
K
(
Ãi, A

′)w(i) + ẽib
(i)
)
+ q − ẽi

)
= 0, β ′q = 0 (3.282)

α ≥ 0, β ≥ 0 (3.283)

Since β ≥ 0, from Eq. (3.280) we have the Eq. (3.284).

0 ≤ α ≤ Ci (3.284)

Combining Eqs. (3.278) and (3.279), we get the Eq. (3.285).

[
K
(
Ai,A

′)′e′i
] [

K
(
Ai,A

′) ei
] [

w(i)b(i)
]′ +

[
K
(
Ãi, A

′)′e′i
]
α = 0 (3.285)

Define

E = [K (
Ai,A

′) ei
]
, F = [K (

Ãi, A
′) ẽi

]
, ui =

[
w(i)b(i)

]′
(3.286)

Then, Eq. (3.285) can be modified as Eq. (3.287),

E′Eui + F ′α = 0, i.e., ui = −
(
E′E

)−1
F ′α (3.287)

The Wolfe dual QPPs of Eqs. (3.274)–(3.276) is given as follows Eqs. (3.288)–
(3.289),

max ẽi
′α − 1

2
α′F

(
E′E

)−1
F ′α (3.288)

s.t. 0 ≤ α ≤ Ci (3.289)
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Once the k QPPs Eqs. (3.288)–(3.289) are solved to obtain the k hyperplanes of
Eq. (3.273), a new pattern x is assigned to class i (i = 1, 2, . . . , k) in a similar way
to the linear case.

Here, we will give an explicit statement of our nonlinear OVA-TWSVM algo-
rithm.

Given a dataset containingm data points represented by A ∈ Rm × n, each element
is labeled by one of k(k ≥ 2) labels. Let matrix Ai ∈ Rmi×n represent the mi

data points of class i(i = 1, 2, . . . , k) with m = ∑k
i=1mi , then our nonlinear OVA-

TWSVM is described in the following Algorithm 3.8.

Algorithm 3.8 Nonlinear OVA-TWSVM

(i) Choose a kernel function K and start with i = 1.
(ii) Iterate (iii), (iv)∼ and (v) until i = k.
(iii) Define A and Ãi in Eqs. (3.15) and (3.16), respectively.
(iv) Select the penalty parameter Ci. This parameter is selected using 10-fold cross
validation experiments in our study.

(v) Define E = [K(Ai,A
′
) ei], F =

[
K
(
Ãi, A

′) eı̃], and ui = [w(i), b(i)]
′

in Eq.

(3.44). Solve QPPs Eq. (3.46) and calculate ui in Eq. (3.45) to get the augmented
vector ui = [w(i), b(i)]

′
in Eq. (3.44).

(vi) Calculate the perpendicular distances �K(x
′
,A

′
)w(i) + b(i)

� (i = 1, 2, . . . , k) for
a new data point x.
(vii) Assign the new data point x to class l based on the distance �x

′
w(l) + b(l)

� is the
minimum distance among �x

′
w(i) + b(i)

� , i = 1, 2, . . . , k.

Complexity Analysis of One-Versus-All Twin Support Vector Machines

In the OVA-SVMs classifier for k-category data classification, it requires solving
k Wolfe dual QPPs, one of which contains m parameters, so the complexity of
the conventional one-from-rest classifier is no more than k × m3. However, OVA-
TWSVM only solves k Wolfe duals of QPP Eqs. (3.269)–(3.270) for linear or Eqs.
(3.288)–(3.289) for non-linear separable classification problems. Suppose that the
size of each class is roughly m/k. Thus, each Wolfe dual QPP of Eqs. (3.269)–
(3.270) or (3.288)–(3.289) contains of m

k
× (k − 1) parameters. The ratio of runtime

of OVA-SVMs to OVA-TWSVM is approximately as:

k ×m3

k × (m
k
× (k − 1)

)3 =
(

k

k − 1

)3

(k ≥ 3) (3.290)

m3

2
(
m
2

)3 = 4 (k = 2) (3.291)
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That is, our OVA-TWSVM classifier is approximately
(

k
k−1

)3
times faster than

traditional OVA-SVMs classifier. It should be noted that this holds when k here is
greater or equal to three. When k equals two, the OVA-SVMs will degenerate to
classical SVMs and has the complexity of m3, whilst OVA-TWSVM to TWSVM
and has 2× (

m
2

)3 complexity, so the proportion of runtime between them is
m3

2×(m
2 )

3 = 3.

The experimental study can be found in [5].

3.2.3 Robust Twin Support Vector Machine for Pattern
Classification

3.2.3.1 Robust Twin Support Vector Machine (R-TWSVM)

Linear R-TWSVM

We firstly give the formal representation of robust classification learning problem.
Given a training set

T = {(X1, y1) , . . . (Xl , yl)} , (3.292)

where yi ∈ Y = {1,−1} , i = 1, . . . l, and input set Xi is a sphere within ri radius
of the xi center:

Xi = {xi |xi = xi + riui} , i = 1, . . . , l, ‖ui‖ ≤ 1, (3.293)

xi is the true value of the training data, ui ∈ Rn, ri is a given constant. The goal is
to induce a real-valued function

y = sgn (g(x)) (3.294)

to infer the label y corresponding to any example x in Rn space. Generally,
such problem is caused by measurement errors, where ri reflects the measurement
accuracy.

In order to obtain the optimization decision function of (3.294), by introducing
1
2‖w+‖2, can be written as the following robust optimization problem:

min
w+,b+,ξ

1
2‖ w+ ‖2 + 1

2 ‖ [w+· x1)+ b+, . . . ,
(
w+· xl1

) +b+] ‖2 + c1
∑1

i=l1+1 ξi

(3.295)
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s.t.– ((w+· (xi + riui))+ b+)+ ≥ 1− ξi,∀ ‖ui‖ ≤ 1i = l1 + 1, . . . l. (3.296)

ξi ≥ 0, i = l1 + 1, . . . l (3.297)

Since

min {yiri (w · ui) , ‖ui‖ ≤ 1} = −ri ‖w+‖ (3.298)

problem (3.295)–(3.297) can be converted to

min
w+,b+,ξ

1

2
‖ w+ ‖2 + 1

2
‖ [w+· x1)+ b+, . . . ,

(
w+· xl1

)+ b+
]
‖2 + c1

∑1

i=11+1
ξi

(3.299)

s.t. − ((w+· xi)+ b+)− ri ‖ w+ ‖≥ 1− ξi, (3.300)

i = l1 + 1, . . . , lξi ≥ 0, i = l1 + 1, . . . , l. (3.301)

By introducing new variables t1, t2 and setting ‖ w+ ‖≤ t1,
∥∥[ (w+· x1) + b+, . . .(

w+· xl1
)+ b+

]∥∥ ≤ t2, The above problem becomes

min
1

2
t2
1 +

1

2
t2
2 + c1i=lX

l
1+1ξi (3.302)

s.t. − ((w+· xi)+ b+)− ri t1 ≥ 1− ξi , i = l1 + 1, . . . l, (3.303)

ξi ≥ 0, i = l1 + 1, . . . , l, (3.304)

‖ w+ ‖≤ t1, (3.305)

∥∥[(w+· x1)+ b+, . . .
(
w+· xl1

)+ b+
]∥∥ ≤ t2. (3.306)

For replacing t2
1 , t

2
2 in the objective function (3.302)–(3.306), we introduce new

variables u1, u2, v1, v2 and satisfy the linear constraints ui + vi = 1, i = 1; 2 and

second order cone constraints
√
t2
i + v2

i ≤ ui . Therefore, problem (3.302)–(3.306)
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can be reformulated as the following second order cone program (SOCP):

min
1

2
(u1 − v1)+ 1

2
(u2 − v2)+ c1

∑l

i=l1+1
ξi (3.307)

s.t. − ((w+· xi))+ b+
)
− ri t1 ≥ 1− ξi , i = l1 + 1, . . . , l, (3.308)

ξi ≥ 0, i = l1 + 1, . . . , l, (3.309)

u1 + v1 = 1, (3.310)

u2 + v2 = 1, (3.311)

‖ w+ ‖≤ t1, (3.312)

√
t2
1 + v2

1 ≤ u1, (3.313)

√
t2
2 + v2

2 ≤ u2, (3.314)

∥∥[(w+· x1)+ b+, . . .
(
w+· xl1

)+ b+
]∥∥ ≤ t2. (3.315)

where

Θ1 =
[
wT+, b+, ξT, t1, t2, u1, v1, u2, v2

]T
. (3.316)

By the optimization theory [44], the dual problem of (19) can be expressed as

max β1 + β2 +
∑l

i=l1+1
αi (3.317)

s.t. β1 + zu1 =
1

2
, β1 + zv1 = −

1

2
, (3.318)

β2 + zu2 =
1

2
, β2 + zv2 = −

1

2
, (3.319)
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∑l

i=l1+1
αi −

∑l1

i=1
λi = 0, (3.320)

∥∥∥∥
∑l1

i=1
λixi −

∑l

j=l1+1
αj xj

∥∥∥∥ ≤
∑l

i=l1+1
riαi − γ1, (3.321)

‖λ‖ ≤ −γ2, (3.322)

√
γ 2

1 + z2
v1
≤ zu1, (3.323)

√
γ 2

2 + z2
v2
≤ zu2, (3.324)

0 ≤ αi ≤ c1, i = l1 + 1, . . . , l. (3.325)

where

Θ2 =
[
αT, β1, β2, γ1, γ2, zu1 , zv1, zu2, zv2 , λ

T
]T

. (3.326)

Theorem 3.3 Suppose that Θ∗
2 is a solution of the dual problem (20), where Θ∗

2 =[
α∗T, β∗1 , β∗2 , γ ∗1 , γ ∗2 , z∗u1

, z∗ν1
z∗u2

, z∗ν2
, λ∗T

]T
. If there exists 0 < α∗j < c1 we will

obtain the solution (w∗, b∗) of the primal problem (3.295)–(3.297):

w∗+ =
γ ∗1(

Σl
i=l1+1riα

∗
i − γ ∗1

)
(∑l

l1+1
α∗i x1· −

∑l1

i=1
λ∗i x1

)
′ (3.327)

b∗+ = −1+ γ ∗1 rj −
γ ∗1(

Σl
i=l1+1ri ·α∗j − γ ∗1

)
(∑l

l1+1
α∗̇

1

(
x1· xj

)−
∑l1

i=1
λ∗i
(
xi· xj

))

(3.328)

Similarly, the dual of problem can be written as

max
Θ3

β1 + β2 + .
∑l

i=l1+1
αi (3.329)

s.t.β1 + zu1 =
1

2
, β1 + zν1) = −

1

2
, (3.330)

β2 + zu2 =
1

2
, β2 + zν2 = −

1

2
, (3.331)
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−
∑l1

=1
αi −

∑1

1̇=l1+1
λi = 0, (3.332)

∥∥∥∥
∑1

1̇=l1+1
λ1̇x1̇ +

∑l1

j=1
αj xj

∥∥∥∥ ≤
∑l1

i=1
r1̇αi − γ1, (3.333)

‖λ‖ ≤ −γ2, (3.334)
√
ρ1 + z2

ν1
≤ zu1, (3.335)

√
P2 + z2

ν2
≤ zu2, (3.336)

0 ≤ α1̇ ≤ c2, i = 1t | . /1. (3.337)

where

Θ3 =
⎡
⎣αT, β1, β2, γ1, γ2zu1, zU⌉ , zu2zν2, λ

T

⎤
⎦

T

(3.338)

The corresponding solution is

w∗− =
γ ∗1(

Σ
l1
i=1r1̇α

∗̇
1
− γ ∗1

)
(
−
∑l1

1=1
α∗i xi −

∑l

i=l1+1
λ∗i xi

)
(3.339)

b∗− = −1+ γ ∗1 rj
γ ∗1(

Σ l1
i=1ri̇α

∗
i − γ ∗1

)
(
−
∑l1

1=1
α∗i
(
xi · xj

)−
∑l

i=l1+1
λ∗i xixj

)

(3.340)

Once vectorsw+, b+ andw−, b− are obtained from (3.317)–(3.325) and (3.329)–
(3.337), the separating planes

wT+x + b+ = 0, wT−x + b− = 0 (3.341)

are known. A new data point x ∈ Rn is then assigned to the positive or negative
class, depending on which of the two hyperplanes given by (26) it lies closest to, i.e.

f (x) = argmin {d+(x), d−(x)} , (3.342)
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where

d+(x) =
∣∣∣wT+x + b+

∣∣∣ , d−(x) =
∣∣∣wT−x + b−

∣∣∣ (3.343)

where | · | is the perpendicular distance of point x from the planes wT+x + b+ and
wT−x + b−.

Nonlinear R-TWSVM

The above discussion is restricted to the linear case. Here, we will analyze nonlinear
R-TWSVM by introducing kernel function

K(x, x
′
) = (Φ(x) · Φ(x

′
)), and the corresponding transformation:

x = Φ(x) (3.344)

where x ∈H, H is the Hilbert space. So, the training set (12) becomes

T =
{
(Xi, yi) , . . . , (Xl, yl) (3.345)

where
Xi = {Φ (̃x)| x̃ is in the sphere of the radius r and the center xi}. So, when

| ∣∣x1̇ − xi
∣∣ |≤ ri and choosing, we have

‖Φ (x̃i)−Φ (xi)‖2 = (Φ (x̃i)− Φ (xi)) · (Φ (x̃i)−Φ (xi))

= K (x̃i, x̃i)− 2K (x̃i, xi)+K
(
xl̇, xl̇

)

= 2− 2 exp
(
−‖x̃i − xi‖2/2σ 2

)

≤ r2
i , (3.346)

where

ri =
√

2− 2 exp
(
−‖x̃i − xi‖2/2σ 2

)
(3.347)
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Thus χ i becomes a sphere of the center Φ(xi) and the radius ri

X1 =
{
x̃

∥∥∥ |̃x − Φ (xi)| | ≤ ri

}
. (3.348)

For nonlinear case of R-TWSVM,
∥∥∥∑l1

i=1λiΦ
(
x1̇

)−∑l
j=l1+1αjΦ

(
xj
)∥∥∥

2
can be

expressed as

l1∑
1=1

l1∑
j=1

λiλjK
(
xi · xj

)− 2
l1∑

i=1

l∑
j=l1+1

λ1·αjK
(
xi · xj

)

+∑l
i=l1+1

∑l
j=l1+1αiαjK

(
xixj

) . (3.349)

Similarly,
∥∥∥∑l

i=l1+1λix1 +∑l1
j=1αj xj

∥∥∥
2

can be expressed as

l1∑
1=1

l1∑
j=1

λiλjK
(
xi · xj

)+ 2
l∑

i=l1+1

l1∑
j=1

λi ·αjK
(
xi · xj

)

+∑l1
i=1

∑l1
j=1αiαjK

(
xi · xj

) (3.350)

So we can easily obtain the nonlinear R-TWSVM only by taking K(x, x’) instead
of (xx

′
) of the optimization problem (3.317)–(3.325) and (3.329)–(3.337).

3.2.4 Structural Twin Support Vector Machine for
Classification

3.2.4.1 Structural Twin Support Vector Machine (S-TWSVM)

Extracting Structural Information Within Classes

Following the strategy of the SLMM and SRSVM, S-TWSVM also has two
steps. The first step is to extract the structural information within classes by some
clustering method; the second step is the model learning. In order to compare the
main difference of the second step between S-TWSVM and the other two methods,
here we also adopt the same clustering method: Ward’s linkage clustering (WIL)
[61–64], which is one of the hierarchical clustering analysis. A main advantage of
WIL is that clusters derived from this method are compact and spherical, which
provides a meaningful basis for the computation of covariance matrices [64].
Concretely, if S and T are two clusters with means μS and μT, the Ward’s linkage
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W(S,T) between clusters S and T is computed as [64]

W (S, T ) = | S |· | T |· ‖μs − μT‖
| S | + | T | (3.351)

Initially, each sample is considered as a cluster. The Wards linkage of two samples
xi and xj is W(xi, xj) = ‖xi − xj‖2/2. When two clusters are being merged to a new
cluster A

′
, the linkage W(A

′
,C) can be conveniently derived from W(A, C), W(B, C)

and W(A,B) by [64]

W
(
A′, C

) = (|A| + |C|)W (A,C)+ (|B| + |C|)W (B,C)− | C | W (A,B)

| A | + | B | + | C |
(3.352)

During the hierarchical clustering, the Ward’s lineage between clusters to be merged
increases as the number of clusters decreases [64]. A relation curve between the
merge distance and the number of clusters are able to be drawn to represent this
process. The optimal number of clusters is determined by finding the knee point
[65]. Furthermore, the WIL can also be extended to the kernel space. More details
of WIL are able to be found in [64].

We obtain two groups of P and N clusters in class P and N by the first step,
i. e. , P = P1 ∪ · · ·P1 ∪ · · ·Pcρ , N = N1 ∪ · · ·N/ ∪ · · ·NcN . Suppose that data
points belong to positive class are denoted by A ∈ Rm1×n, where each row Ai ∈ Rn

represents a data point. Similarly, B ∈ Rm2×n represents all of the data points belong
to negative class, where m1+m2 = l. For the linear case, the S-TWSVM determines
two nonparallel hyperplanes:

f+(x) = wT+x + b+ = 0 and f−(x) = wTx + b = 0, (3.353)

where w+, w− ∈ Rn, b+, b− ∈ R. Here, each hyperplane is closer to one of the two
classes and is at least one distance from the other, at the same time, minimizes the
compactness within the class by the structural information obtained by clustering
technology. A new data point is assigned to positive class or negative class
depending upon its proximity to the two nonparallel hyperplanes. By introducing
the data distributions of the clusters in different classes into the object functions of
TBSVM, (Notice we only consider one class’ structural information for each model.
In other words, each model only considers these structural information of which the
hyperplane is closer to the class.) the S-TWSVM model can be formulated as

min
1

2
‖Aw+ + e+b+‖2

2 + c1e
T−ξ +

1

2
c2

(
‖w+‖2

2 + b2+
)
+ 1

2
C3w

T+Σ+w+

s.t. − (Bw+ + eb+)+ ξ ≥ e, ξ ≥ 0. (3.354)
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and

min
1

2
‖Bw + e−b−‖2

2 +
1

2
c4e

T+η +
1

2
c5

(
‖w−‖2

2 + b−2
)
+ 1

2
c6w

TΣ−w−

st. (Aw− + e+b−)+ η ≥ e+, η ≥ 0. (3.355)

where c1, . . . ,c6 ≥ 0 are the pre-specified penalty factors, e+, e− are vectors of ones
of appropriate dimensions, ξ1 is the slack variables, Σ+ = ΣP1 + · · · + ΣPcP

,
Σ = ΣN1 + · · · + ΣNcN

, ΣPi and ΣNJ are respectively the covariance matrices
corresponding to the ith andjth clusters in the two classes, i= 1, . . . , Cp, j= 1, . . . ,
CN .

The Wolfe dual of the problem is as follow:

max eT−α − 1
2α

TG
(
HTH+ c2I+ c3J

)−1
GTα

s.t.0 ≤ α ≤ c1e−
(3.356)

where

H = [A e+] , J =
[
Σ+ 0
0 0

]
, G = [Be− ] , (3.357)

and the augmented vector θ+ =
[
WT+bT+

]T
is given by

θ+ = −
(
HT H + c2I + c3J

)−1 (
GT α

)
. (3.358)

I is an identity matrix of appropriate dimensions. According to matrix theory [66],
it is very easy to prove that HTH + c2I + c3J is a positive definite matrix.

Similarly, the dual of (3.355) is

max eT+β −
1

2
βTP

(
QTQ+ c5I+ c6F

)−1
P Tβ

s.t. 0 ≤ β ≤ c4e+, (3.359)

where

P = [A e−] , F =
[
Σ 0
0 0

]
Q = [B e+] , (3.360)
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and the augmented vector θ− = [w−b−]T given by

Θ− = −
((

QTQ+ c5I+ c6F
)−1

P Tβ, (3.361)

where QTQ + c5I + c6F is a positive definite matric. Once vectors ϑ+ and ϑ− are
obtained from (3.358) and (3.361), the separating planes

wT+x + b+ = 0, wTx + b− = 0 (3.362)

are known. A new data point x ∈ Rn is then assigned to the positive or negative class,
depending on which of the two hyperplanes given by (3.362) it lies closest to, i.e.

f (x) = arg min {d+ (x) , d− (x)} (3.363)

where

d+(x) =
∣∣∣wT+x + b+

∣∣∣ , d− (x) =
∣∣∣wTx + b−

∣∣∣ , (3.364)

where | · | is the perpendicular distance of point x from the planes wT+x + b+ or
wTx + b−.

Nonlinear S-TWSVM

Now we extend the linear S-TWSVM to the nonlinear case.
Similar to linear case, the decision function is written as f+(x)= (w+ Φ(x))+ b+

and f−(x) = (w− · Φ(x)) + b−, where Φ(·) is a nonlinear mapping from a low
dimensional space to a higher dimensional Hilbert space H. According to Hilbert
space theory [67], w+ and w− can be expressed as w+ = ∑m1+m2

i=1 (λ+)iΦ (xi) =
Φ(M)λ+ and w− = ∑m1+m2

i=1 (λ−)iΦ (xi) = Φ(M)λ−, respectively. So the
following kernel-generated hyperplane:

K
(
xT,MT

)
λ+ + b+ = 0, (3.365)

K
(
xT,MT

)
λ− + b− = 0. (3.366)
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where K is a chosen kernel function: K(xj · xj) = (Φ(xi·) Φ(xj)), M = [ATBT]. The
nonlinear optimization problem can be expressed as

min
1

2

∥∥K (
A,MT

)
λ+ + e+b+

∥∥2 + c1e
T−ξ +

1

2
c2
(‖λ+‖2 + b2+

)

+ 1

2
c3λ

T+Φ(M)TΣΦ+Φ(M)λ+,

s.t. −
(
K
(
B,MT

)
λ+ + e−b+

)
+ ξ ≥ e, ξ ≥ 0, (3.367)

and

min
1

2

∥∥∥K,BMT
)
λ− + e−b−

∥∥∥
2 + c4e

T+η +
1

2
c5‖λ−‖2 + b2−

)

+1

2
c6λ

TΦ(M)TΣ∅Φ (M) λ−st.
(
K
(
A,MT

)
λ− + e+b−

)+ η ≥ e+, η ≥ 0,

(3.368)

where ΣΦ+ = ΣΦ
P1
+ · · · + ΣΦ

Pcρ
, ΣΦ = ΣΦ

N1
+ · · · + ΣΦ

NCN
, Σpi and ΣNj are

respectively the covariance matrices corresponding to the i-th and j th clusters in the
two classes by the kernel Ward’s linkage clustering [63, 64], i= 1, . . . ,Cp, j= 1, . . . ,
CN .

The Wolfe dual of the problem (3.367) is formulated as follow:

max eT−α −
1

2

(
αTGΦ

) (
HT

ΦHΦ + c2I+ c3JΦ
)−1 (

CT
Φα
)

s.t. 0 ≤ α ≤ c1e− (3.369)

where
HΦ = [K(A,MT)e+], CΦ = [K(B,MT)e−]

JΦ =
[
Φ(M)T∑Φ

+Φ(M) 0
0 0

]
(3.370)

and the augmented vector ρ+ = [λ+b+]T

ρ+ = −
(

HT
ΦHΦ + c2I + c3JΦ

)−1 (
CT

Φα
)
. (3.371)
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In a similar manner, the dual of (3.368) is

max eT+β −
⌉

2

(
βTPΦ

) (
QT

ΦQΦ + c5I + c6FΦ

)−1 (
P T
Φβ
)

s.t.0 ≤ β ≤ c4e+, (3.372)

where

PΦ =
[
K
(
A,MT

)
e−
]
,QΦ =

[
K
(
B,MT

)
e+
]

FΦ =
[
Φ(M)TΣΦΦ(M) 0
0 0

]
, (3.373)

and the augmented vector ρ− = [λ−b−]T, which is given by

ρ−=−
(

QT
ΦQΦ+c5I+c6F−1

Φ

)(
PT
Φα
) (3.374)

Once vectors ρ+ and ρ− are obtained from (3.371) and (3.374), a new data point
x ∈ Rn is then assigned to the positive or negative class, depending on a manner
similar to the linear case (Fig. 3.7).

Now we consider how to compute the kernel matrix JΦ . Suppose TP is a matrix
corresponding to the cluster Pi, TP ∈ RP1×n, in which the kth row is xT

k OPi is a
mean matrix of cluster P1, OP ∈ RP × ∩ Each row of OP is the same, i.e.

μpi =
1

Pi

∑
xk∈Pi

.xk. (3.375)

The related covariance matrix for cluster Pj can be expressed as

ΣΦ
pi
= 1

Pi

(
Φ
(
TPi

)− Φ
(
0Pi

))T (
Φ
(
Tp1

)−Φ
(
Opi

))
. (3.376)

So, we obtain

Φ(M)T ΣΦ+Φ(M) =
(

1√
Pi

(
Φ
(
TPi

)−Φ
(
OPi

))
Φ(M)

)T

(
1√
Pi

(
Φ
(
TPi

)− Φ
(
OPi

))
Φ(M)

)
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Fig. 3.7 The geometric interpretation of existing the structural information confliction between
positive class and negative class. The red and blue solid line denotes the classifier of S-TWSVM.
The red and blue dotted line denotes the classifier of Snuctural TWSVM of each model consider
two class s structural information (for simplify we called it SS-TWSVM). Obviously, S-TWSVM
is able to better predict the data distribution tendency than SS-TWSVM. The cyan line denotes the
classifier based on one hyperplane such as SLMM or SRSVM and the red and blue arrows denotes
the tendency of the two-class structural information hoping the classifier to rotate. In the case the
classifier is almost the same as the that traditional SVM and these structural information does not
play a role and make the classifier change. S-TWSVM is obviously superior to SLMM SRSVM
and SS-TWSVM

=
( 1√

Pi

(
K
(
TPi ,M

)−K
(
OPi ,M

))T

1√
Pi

(
K
(
TPi ,M

)−K
(
OPi ,M

))
(3.377)

Similarly, Φ(M)TΣM+ΦΦ(M) of FΦ are computed as

Φ(M)TΣΦ−Φ(M) =
( 1√

Pj

(
K
(
TNi ,M

)−K
(
ONi .M

))T

( 1√
P1

(
K
(
TNi ,M

)−K
(
ONi,M

))
(3.378)

where TNi is a matrix of cluster Ni,ONi is a mean matrix of cluster Ni.
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3.3 Nonparallel Support Vector Machine Classifiers

Mangasarian and Wild [38] proposed a nonparallel plane classifier that attempts
to generate two nonparallel planes such that each plane is closer to one of two
classes and is at least one distance from the other. Motivated by GEPSVM, Jayadeva
et al. proposed a twin support vector machine (TWSVM) classifier for binary
classification. Experimental results showed that the nonparallel plane classifier can
improve the performance of traditional SVMs. Other extensions to TWSVM have
also been described. Inspired by this previous success, we propose a nonparallel
SVM algorithm with universum learning that we call U-NSVM. It has the following
innovative points:

• U-NSVM is a very useful extension of the nonparallel hyperplanes classifier. To
obtain two nonparallel hyperplanes, GEPSVM and TWSVM have to construct
two quadratic programming problems (QPPs) separately. Although it is claimed
that this approach can efficiently improve the algorithm training speed, the
calculation time for the inverse matrix of samples is not considered. In fact,
solving the inverse matrix itself is a difficult task. By contrast, U-NSVM uses
universum samples, so the extra step of inverse matrix computation is not
required and the method has the property of sparseness.

• As the U-NSVM classifier combines two nonparallel hyperplanes, compared
to U-SVM it has better algorithm flexibility and can yield a more reasonable
classifier in most cases. In addition, U-NSVM includes fewer parameters and
is therefore easier to implement. In practice, the U-SVM algorithm uses an ε-
insensitive loss function to divide the universum data, while our algorithm does
not include a corresponding parameter. Experiments confirm that our method is
superior to a traditional SVM and U-SVM.

3.3.1 A Nonparallel Support Vector Machine for
a Classification Problem with Universum Learning

3.3.1.1 Nonparallel SVM for Classification with a Universum: U-NSVM

Linear U-NSVM

U-SVM requires that the hyperplane satisfies the maximum margin principle for
labeled data and that all the universum data are as close as possible to it. Following
previous success, we achieve U-SVM using two nonparallel planes. We first
construct two nonparallel hyperplanes to divide the training set into three parts, with
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the universum data sandwiched between the two hyperplanes. This can be achieved
by maximizing the two margins associated with the two closest neighboring classes
(labeled data and universum data). Then a new data point x can be predicted as
belonging to the positive or negative class, depending on the distances between x
and the two hyperplanes. It is not hard to imagine that the perpendicular bisector
(decision function) of the two hyperplanes is as close as possible to the central area
of the universum data distribution and far away from the labeled data. According to
this idea, the primal optimization of U-NSVM can be expressed as

min
1

2

(
‖w1‖2

2 + ‖w2‖2
2

)
+ C

⎛
⎝

l1∑
1=1

ξ1
1 +

l2∑
i=1

(
ξ2
i + ξ∗2

i

)
+

l3∑
ι̇=1

ξ∗3
j

⎞
⎠

s.t.
(
w1 · x1

i

)
− b1 ≤ −1+ ξ1

i , i = 1, . . . , l1

(
w2 · x2

i

)
− b2 ≤ −1+ ξ2

i , i = 1, . . . , l2

(
w1 · x3

1

)
− b1 ≥ 1− ξ∗2

i , i = 1, . . . , l2 (3.379)

(
w2 · x3

i

)
− b2 ≥ 1− ξ∗3

i , i = 1, . . . , l3

ξ1
i ≥ 0, i = 1, . . . , l1

ξ2
i ≥ 0, ξ∗2

i ≥ 0, i = 1, . . . , l2

ξ∗3
j ≥ 0, i = 1, . . . , 13,

where w= (w1,w2), b = (b1, b2), and ξ(∗) = (
ξ1

1 , . . . , ξ
1
l1
, ξ2

1 , . . . , ξ
2
l2
, ξ∗2

1 , . . . ,

ξ∗2
l2

, ξ∗3
1 , . . . , ξ∗3

l3

)
.

By introducing the Lagrange function

L (Θ) = 1

2

(
‖w1‖2

2 + ‖w2‖2
2

)
+ C

⎛
⎝

l1∑
1=1

ξ1
i +

l2∑
1=1

(
ξ2
i + ξ∗2

i

)

+
l3∑

i=1

ξ∗3
1

⎞
⎠+

2∑
k=1

lk∑
i=1

αk
i

((
wk · xk

i

)
− bk + 1− ξki

)

−
∑3

k=2

∑lk

1=1
α∗k1

((
wk−1 xk

i

)
− bk−1 − 1+ ξ∗ki

)
−
∑2

k=1

∑lk

i=1
ηk
i ξ

k
i −

∑3

k=2

∑lk

i=1
η∗ki ξ∗ki ,

(3.380)
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where

Θ =
(
w, b, ξ(∗), α(∗), η(∗)) , (3.381)

α(∗) =
(
α1

1, . . . , α
1
l1
, α∗2

1 , . . . , α∗2
l2

, α2
1, . . . , α

2
l2
, α∗3

1 , . . . , α∗3
l3

)
, (3.382)

η(∗) =
(
η1

1, . . . , η
1
l1
, η∗2

1 , . . . , η∗2
l2 , η2

1, . . . , η
2
l2
, η∗3

1 , . . . , η∗3
l3

)
. (3.383)

are the Lagrange multipliers, the dual problem can be formulated as

max L (Θ)

s.t.

𝛥

w,b.ξ (∗)L (Θ) = 0, (3.384)

α(∗), η(∗) ≥ 0.

From Eq. (3.384) we obtain

𝛥

wkL = wk +
∑lk

i=1
αk
i x

k
i −

∑lk̇+1

ι=1
α∗̇k+1

1 xk+1
i = 0, k = 1, 2, (3.385)

𝛥

bkL = −
∑lk

i=1
αk̇

1 +
∑lk+1

j=1
α∗k+1
j = 0, k = 1, 2, (3.386)

𝛥

ξk
i
.L = C − αk

i − ηk
i = 0, k = 1, 2, i = 1, . . . , lk, (3.387)

𝛥

ξiL = C− α∗ki − ηi∗k = 0, k = 2; 3, i = 1, . . . , lk . (3.388)

Substituting the above equations into, the dual problem can be expressed as

max −1

2

∑2

k=1

⎛
⎝

lk∑
j=1

lk∑
j=1

αk
i α

k
j

(
xk
i Xk

j

)
− 2

lk∑
1=1

lk+1∑
j=1

αk
i α
∗k+1
j

(
xk
i x

k̇+1
j

)

+
1k+1∑
j=1

1k+1∑
j=1

α∗k+1
1 α∗k+1

j

(
xk+1
i xk̇+1

j

)⎞
⎠+

2∑
k=1

lk∑
i=1

αk
i +

3∑
k=2

lk∑
i=1

α∗ki

s.t
∑lk

i=1
αk

i =
∑lk+1

i=1
α∗k+1
i , k = 1, 2,

0 ≤ αk
i ≤ C, k = 1, 2; = 1, . . . , lk,

0 ≤ α∗̇ki < C, k = 2, 3; i = 1, . . . , 1k. (3.389)
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Theorem 3.4 Optimization problem is a convex quadratic program.

Proof Concisely, it can be reformulated as

max−1

2
λ̂TΛ̂λ̂+ κ̂Tλ̂

s.t. Ω̂λ̂ = 0, (3.390)

0 ≤ λ̂ ≤ Ĉ,

where

λ̂ =
(
α1

1 , . . . , α
1
l1, α

∗2
1 , . . . , α∗2

12
, α2

1 , . . . , α
2
12
, α∗3

1 , . . . , α∗3
l3

)
, (3.391)

κ̂ = e, e ∈ RΣ2
k=1(lk+lk+1), (3.392)

Ĉ = (C,C,C) e, e ∈ RΣ2
k=1(lk+lk+1), (3.393)

Ω̂ =
(
eT

1 −eT
2
eT

2 −eT
3

)
, ek ∈ Rlk , k = 1, 2, Ω̂1 ∈ R2×Σ2

k=1(lk+lk+1), (3.394)

Λ̂ =
(
Q1

Q2

)
, Λ̂ ∈ R

(
Σ2

k=1(lk+lk+1)
)×(Σ2

k=1(lk+lk+1)
)
, (3.395)

and

Qk =
(

Q
′〈
1 −Q

′〈
2

−Qk
3 Qk

4

)
, Qk ∈ R(lk+lk+1)×(lk+lk+1), (3.396)

Qk
1 =

⎛
⎜⎜⎜⎝

(
xk

1 · xk
1

) · · ·
(
xk

1 · xk
lk

)

...
. . .

...(
xk
lk
· xk

1

)
· · ·

(
xk
lk
· xk

lk

)

⎞
⎟⎟⎟⎠ , Qk

1 ∈ Rlk×lk , k = 1, 2 (3.397)
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Qk
2 = Qk

3 =

⎛
⎜⎜⎜⎝

(
xk

1 · xk+1
1

)
· · ·

(
xk

1 · xk+1
lk+1

)

...
. . .

...(
xk
lk
· xk+1

1

)
· · ·

(
xk
lk
· xk+1

lk+1

)

⎞
⎟⎟⎟⎠ , Qk

2 ∈ Rlk×lk+1, k = 1, 2

(3.398)

Qk
4 =

⎛
⎜⎜⎜⎝

(
xk+1

1 · xk+1
1

)
· · ·

(
xk+1

1 · xk+1
lk+1

)

...
. . .

...(
xk+1
lk+1
· xk+1

1

)
· · ·

(
xk+1
lk+1
· xk+1

lk+1

)

⎞
⎟⎟⎟⎠ , Qk

4 ∈ R
lk+1×lk+1
k+1 , k = 1, 2

(3.399)

It is easy to see that Λ̂ is a positive semi-definite matrix. According to convex
programming theory, we can obtain that is a convex quadratic program.

Theorem 3.5 Suppose that λ̂ = (
α1

1, . . . , α
1
l1
, α∗2

1 , . . . , α∗2
l2

, α2
1, . . . , α

2
l2
, α∗3

1 , . . . ,

α∗3
l3

)T
is a solution of the dual problem

If there exist components of λ̂with values in the interval
(

0, Ĉ
)

, then the solution

(w1, b1), (w2, b2) of (12) can be obtained in the following way.
Let

wk =
∑lk+1

i=1
α∗k+1
i xk+1

i −
∑lk

i=1
αk
i x

k
i , k = 1, 2. (3.400)

Choose a component of αk, αk
j ∈ (0, C) , k = 1, 2 and compute

bk = 1+
∑lk+1

i=1
α∗k+1
i

(
xk+1
i · xk

j

)
−
∑lk

i=1
αk
i

(
xk
i · xk

j

)
, (3.401)

or choose a component of α∗k + 1, α∗k + 1 ∈ (0,C), k = 1, 2 and compute

bk = −1+
∑lk+1

i=1
α∗k+1
i

(
xk+1
i · xk+1

j

)
−
∑lk

i=1
αk
i

(
xk
i · xk+1

j

)
. (3.402)

Proof First, we show that for w∗ given by (3.400), there exists b =
(
b

1
, b

2
)

such

that
(−w, b

)
is the solution to (3.415). In fact, Theorem 3.5 shows that (3.415) can

be rewritten as (3.390). It is easy to see that (3.390) satisfies the Slater condition.
Accordingly, if α(*) is a solution to (3.390), there exists a multiplier b, s, and ξ
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such that

0 ≤ λ̂− ≤ Ĉ, Ω̂λ̂ = 0−, (3.403)

−Λ̂λ̂+ κ̂ + b1Ω̂
T
1 .+ b2Ω̂

T
2 .− s + ξ = 0−, (3.404)

s ≥ 0, ξ ≥ 0, ξ
T
(
λ̂−−Ĉ

)
= 0, sTλ̂− = 0. (3.405)

According to (3.404), we have

−Λ̂λ̂−+κ̂ + b1Ω̂
T
1 .+ b2Ω̂

T
2 .+ ξ ≥ 0. (3.406)

From (30), this is equivalent to

(
w1 · x1

i

)
− b1 ≤ −1+ ξ

1
i , i = 1, . . . , l1, (3.407)

(
w2 · x2

i

)
− b2 ≤ −1+ ξ

2
i , i = 1, . . . , l2, (3.408)

(
w1 · x2

i

)
− b1 ≥ 1− ξ

∗2
i , i = 1, . . . , l2, (3.409)

(
w2 · x3

i

)
− b2 ≥ 1− ξ

∗3
i , i = 1, . . . , l3, (3.410)

which implies that
(
w, b

)
is a feasible solution to the primal problem

Furthermore, we have

1

2

(
‖w1‖2

2 + ‖w2−‖2
2

)
+ C

l1∑
i=1

ξ
1
i + C

l2∑
i=1

(
ξ

2
i + ξ∗2

i

)
+ C

l3∑
i=1

ξ
∗3
i

= 1

2
λ̂TΛ̂λ̂+ C

l1∑
i=1

ξ
1
i + C

l2∑
i=1

(
ξ

2
i + ξ∗2

i

)
+ C

l3∑
i=1

ξ
∗3
i +−−λ̂T

×
(
−Λ̂λ̂+ κ̂ + b1Ω̂

T
1 .+ b2Ω̂

T
2 .− s + ξ

)
−−,,

= −1

2
λ̂TΛ̂λ̂−−+ κ̂Tλ̂− . (3.411)

This shows that the value of the objective function for the primal problem at(
w, b

)
is equal to the optimum value of its dual problem. Thus,

(
w, b

)
is the optimal

solution to the primal problem.
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If there exists a feasible solution
(
w, b

)
of the primal problem, we know that

λ̂− is nonzero by (30). According to convex duality theory,
(
w, b

)
obtained from

(3.415) is the unique solution to the primal problem (12). In fact, note that λ̂ �= 0
implies s∗j = 0 from (35). This implies that the j-th entry of −Λ̂λ̂ − +κ̂ + b1Ω̂

T
1 .

+b2Ω̂
T
2 . +ξ is zero. Solving the equation w.r. t.b leads to the expressions (3.401)

and (3.402).

Nonlinear U-NSVM

Now we extend the linear U-NSVM to the nonlinear case by introducing Gaussian
kernel function

K
(
x, x ′

) = Φ(x)Φ
(
x ′
)

(3.412)

and the corresponding transformation

x = Φ(x), (3.413)

where x ∈ H, H represents Hilbert space. Thus, the training set becomes

T̃
⋃

Ũ =
{(

�
(
x1

1

)
, 1
)
, . . . ,

(
�
(
x1
l1

)
, 1
)
,
(
�
(
x3

1

)
,−1

)
,
(
�
(
x3
l3

)
,−1

)}

⋃{
�
(
x2

1

)
, . . . ,�

(
x2
l2

)}

(3.414)

The nonlinear optimization problem to be solved is

max−1

2

2∑
k=1

( lk∑
i=1

lk∑
j=1

αk
i α

k
j K

(
xki · xkj

)
− 2

lk∑
i=1

lk+1∑
j=1

αk
i α
∗k+1
j

K
(
xki · xk+1

j

)

+
∑lk+1

i=1

∑lk+1

j=1
α∗k+1
i

α∗k+1
j

K
(
xk+1
i

· xk+1
j

) )
+
∑2

k=1

∑lk

i=1
αk
i +

∑3

k=2

∑lk

i=1
α∗ki

s.t.
∑lk

i=1
αk
i =

∑lk+1

i=1
α∗k+1
i , k = 1, 2,

0 ≤ αk
i ≤ C, k = 1, 2; i = 1, . . . , lk,

0 ≤ α∗ki ≤ C, k = 2, 3; i = 1, . . . , lk . (3.415)
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The corresponding theorems in the nonlinear case are similar to Theorems 3.4
and 3.5. In fact, we only need to take K(x, x

′
) instead of (x, x

′
). Now we establish

U-NSVM as follows.

(U-NSVM)
(1) Input the training set (3.414);
(2) Choose appropriate kernels K(x, x

′
), appropriate parameters and C > 0;

(3) Construct and solve optimization problem (3.415) to obtain the solutions

λ̂ =
(
α1

1 , . . . , α
1
l1
, α∗2

1 , . . . , α∗2
l2

, α2
1 , . . . , α

2
l2
, α∗3

1 , . . . , α∗3
l3

)
(3.416)

(4) Construct the decision functions

f1(x) =
∑l2

i=1
α∗2
i K

(
x2
i · x

)
−
∑l1

i=1
α1
i K

(
x1
i · x

)
− b1, (3.417)

f2(x) =
∑l3

i=1
α∗3
i K

(
x3
i · x

)
−
∑l2

i=1
α2
i K

(
x2
i · x

)
− b2, (3.418)

where b. , b+ are computed according to Theorem 3.1 and Theorem 3.2 for
the kernel cases;
(5) For any new input x, assign it to class k(k = 1, 2) according to

arg min
| fk(x) |
‖Δk‖ , (3.419)

where

Δ1 = λ̂T
1Q

1λ̂1,Δ2 = λ̂T
2Q

2λ̂2, (3.420)

and

λ̂1 =
(
α1

1 , . . . , α
1
l1
, α∗2

1 , . . . , α∗2
l2

)
, (3.421)

λ̂2 =
(
α2

1 , . . . , α
2
l2
, α∗3

1 , . . . , α∗3
l3

)
. (3.422)



166 3 Support Vector Machine Classification

3.3.2 A Divide-and-Combine Method for Large Scale
Nonparallel Support Vector Machines

3.3.2.1 NPSVM

Consider the binary classification problem with the training set

T =
{
(x1,+1) , . . . ,

(
xp,+1

)
,
(
xp+1,−

⌉)
, . . . ,

(
xρ+q,−1

)}
, (3.423)

where xi ∈ Rn, i = 1, . . . , p + q, LetA = (x1, . . . , xp)T ∈ Rp × n, B =
(xp + 1, . . . , xρ + q)T ∈ Rq × n, and n = p + q. NPSVM seeks two nonparallel
hyperplanes

(w+· x)+ b+ = 0 and (w−· x)+ b− = 0 (3.424)

by solving two convex quadratic programming problems (QPPs):

min
1

2
‖w+‖2 + C1

∑p

1=1

(
ηi + η∗i

)+ C2

∑ρ+q

j=p+1
ξj ,

s.t. (w+· xi)+ b+ ≤ ε + ηi, i = 1, . . . , p,

− (w+· xi)− b+ ≤ ε + η∗j , i = 1, . . . , p,

(
w+· xj

)̇
+ b+ ≤ −1+ ξj ,

j = p + 1, . . . , p + q,

ηi, η
∗
i ≥ 0, i = 1, . . . , p,

ξJ̇ ≥ 0, j = p + 1, . . . , p+ q, (3.425)

and

min
1

2
‖w−‖2 + C3

∑p+q

i=p+1

(
ηi + η∗i

)+ C4

∑p

j=1
ξj ,

s.t. (w−· xi)+ b− ≤ ε + ηi,

i = p + 1, . . . , p+ q,
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− (w−· xi)− b− ≤ ε + η∗j ,

i = p + 1, . . . , p+ q,

(
w−· xj

)̇
+ b− ≥ 1− ξj̇ , j = 1, . . . , p,

ηi, η
∗
i ≥ 0, i = p + 1, . . . , p + q,

ξi ≥ 0, j = 1, . . . , p, (3.426)

where xi, i = 1, . . . , p are positive inputs, and xi, i = p + 1, . . . , p + q are negative
inputs, Ci ≥ 0, i = 1, . . . ,4 are penalty parameters, ξ+= (ξ1, . . . , ξp)T, ξ− =
(
ξp+1, . . . , ξp+q

)T
, η

(∗)
+ = (

ηT+, η∗T+
)T =

(
η1, . . . , ηρ, η

∗
1 , . . . , η

∗
p

)T
, η

(∗)
− =

(
ηT−, η∗T−

)T =
(
ηp+1, . . . , ηp+q, η

∗
ρ+1, . . . , η

∗
p+q

)T
, are slack variables.

In order to get the solutions of problems (3.425) and (3.426), we need to solve
their dual problems:

min
1

2
θTΛθ + κTθ,

st.eTθ = 0, (3.427)

0 ≤ θ ≤ C,

where

θ =
(
α∗T+ , αT+, βT−

)T
, κ =

(
εeT+, εeT+,−eT−

)T
,

e =
(
−eT+, eT+,−eT−

)T
, C =

(
C1e

T+,C1e
T+,C2e

T−
)T

,

Λ =
(

H1 H2

HT
2 H3

)
,H1 =

(
K(A,A)T −K(A,A)T

−K(A,A)T K(A,A)T

)
,

H2 =
(

K(A,B)T

−K(A,B)T

)
,H3 = K(B,B)T, (3.428)
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and

min
1

2
γ TΛy+ κTy,

s.t. eTγ = 0, (3.429)

0 ≤ γ ≤ C,

where

y =
(
α∗T− , αT−, βT+

)T
, κ =

(
εeT−, εeT−,−eT+

)T
,

e =
(
−eT−, eT−,−eT+

)T
, C =

(
C3e

T−,C3e
T−,C4e

T+
)T

,

Λ =
(

Q1 Q2

QT
2 Q3

)
,Q1 =

(
BK(B, )T B −K(B, )T

−K(B,B)T K(B,B)T

)
,

Q2 =
(

K(B,A)T

−K(B,A)T

)
,Q3 = K(A,A)T, (3.430)

then construct the decision functions

f+(x) =
∑p

1=1

(
α∗i − αi

)
K (x1, x)−

∑p+q

j=p+1
βjK

(
xj , x

)+ b+, (3.431)

and

f−(x) = .
∑p+q

i=p+1
(αi∗ − α1)K (xi, x)+

∑p

j=1
βjK

(
xj · , x

)+ b−, (3.432)

separately, a new point x ∈ Rn is therefore predicted to the class k(k = −,+) by

arg min
| fk(x) |
‖�k‖ , (3.433)

where

�+ = θTΛθ,�− = γTΛγ. (3.434)
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3.3.2.2 A Divide-and-Combine NPSVM Solver with a Single Level

In this section we present DCNPSVM with a single level. As a first step, we divide
the full samples into smaller subsets {v1, . . . , vk}, and then solve the respective
subproblems of (3.355) and (3.358) independently.

min
1

2
θT
(c)Λ(c)θ(c) + κTθ(c),

st.eTθ(c) = 0, (3.435)

0 ≤ θ(c) ≤ C,

and

min
1

2
yT
(c)Λ(c)y(c) + κTy(c),

s.t. eTγ(c) = 0, (3.436)

0 ≤ γ(c) ≤ C,

where=1, . . . , k, θ (c) and γ(c) denotes sub-vector obtained by the c-th subsets. Λ(c)
is the sub-matrix of A with row and column indexed by subsets.

The training time complexity for the two convex QPPs (5) and (8), an SMO-type
decomposition method [68] implemented in LIBSVM has the complexity

#iterations×O(1.5n). (3.437)

Chang and Chih-Jen [69] also pointed out that there is no theoretical result
yet on LIBSVM’s number of iterations, however, empirically, it is known that
the number of iterations may be higher than linear to the number of training
data. Supposed that the number of iterations is the number of training data and
removing all coefficients, the time complexity for solving two QPPs is O(n2).
By dividing the whole samples into k subproblems with almost equal sizes and
solved by (15) and (16), the time complexity for solving the subproblems can be

reduced to O
(

n2

k

)
. Besides, DCNPSVM enhances flexibility and generalization

of DCSVM, so it can build models more accurately than existing scale-up SVM
models. Therefore, DCNPSVM can reduce time complexity and enhance accuracy
for classification.

With the solutions obtained from all the subproblems, we combine them to form
initial solvers θ = [θ (1), . . . , θ (k)] and γ = [γ(1), . . . , γ(k)], where θ (c) and γ(c) are
the optimal solutions for the cth subproblem for the whole problem. Subsequently, θ
and γ are used initial solvers for the whole problem. Here we give a toy experiment
which applies NPSVM and DCNPSVM using RBF kernel on iris with two main
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Fig. 3.8 Hyperplanes comparison between (a) NPSVM and (b) DCNPSVM on iris data set

features in R2. Figure 3.8 shows the hyperplanes obtained from the two methods.
The hyperplanes are almost the same and their solutions are only different in
thousandth.

The results above are expected due to the following reasons: (1) θ and γ are
close to the optimal solutions for the whole problem θ ∗ and γ∗ ; (2) the objective
function is close to the optimal objective function; (3) the set of support vectors
of the subproblems are close to the set of support vectors of the whole problem.
Now we establish theoretical bounds on the difference between solutions, objective
functions glued by subproblems and the whole problems. Without loss of generality,
we take the second QPP as an example.

Lemma 3.4 γ is the optimal solution of (8) with kernel matrix Λ(xi, xj) replaced
by

Λij = I
(
π (xi) , π

(
xj
))

Λij , (3.438)

where π(xi) is the cluster that xi belongs to; I(a, b) = 1 iff a = b and I (a,b) =0
otherwise.

Proof By clustering, the matrix Λ in (3.429) becomes Λ as follows.

Λij =
{
Λij , if π (xi) = π

(
xj
)

0, if π (xi) �= π
(
xj
)
.

(3.439)

The quadratic term in becomes

γ TΛγ = −
∑k

c=1
γ T
(c)Λ(c)γ(c). (3.440)
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Meanwhile, other terms in (3.429) are changed. The subproblems are independent
and the composite of their optimal solutions is the optimal solution of the whole
problem in when Λ is replaced by Λ.

Theorem 3.6 Given data points x1, . . . , xn and a partition indicator {π(x1), . . . ,
π(xn)},

0 ≤ f (γ)− f
(
γ∗
) ≤ (1/2)C2D (π) (3.441)

Where f (γ ) is the objective function in (3.429), γ is as in Lemma 3.4, γ ∗ is the global

optimal of (3.429) and D (π) = ∑
i,j :π(xi) �=π(xj) | Λ

(
xi, xj)�, C = max {C3,C4}.

Furthermore, ‖γ ∗ − γ ‖2
2 ≤ C2D (π) / | σn |, where σ n is the smallest eigenvalue

of the kernel matrix.

Proof We use f (γ ) to denote the objective function of (3.429) with kernel Λ.
By Lemma 3.4, γ is the minimizer of (3.429) with kernel Λ replaced by Λ, thus
f (γ) ≤ f (γ ∗) .

f
(
γ ∗
) = f

(
y∗
)− 1

2

∑
i,j :π(xi) �=π(xj)

γ ∗i γ ∗j Λij . (3.442)

Similarly, we have

f (γ ) = f (γ )− 1

2

∑
i,j :π(xi) �=π(xj )

γ iγ jΛij . (3.443)

Combining with f (γ ) ≤ f (γ∗) we have

f (γ ) ≤ f
(
γ∗
)+ 1

2

∑

i,j :π(xi) �=π(xj)

γ iγ jΛij

= f
(
γ ∗
)+ 1

2

∑
i,j :π(xi)�=π(xj)

(
γ iγ j̇ − γ ∗i y∗j

)
Λij

≤ f
(
γ ∗
)+ 1

2
C2D (π), (3.444)

where C ∈ max {C3, C4}. Also, since γ ∗ is the optimal solution of (8) and γ is a
feasible solution, (γ ∗) < f (γ ), thus proving the first part ofthe theorem.

Let σ n be the smallest singular value of the positive definite kernel matrix Λ.
Suppose we write γ = γ +Δγ,

f (γ ) = f
(
γ ∗
)+ (γ ∗)T Λ�γ + 1

2
(�γ )TΛ�γ + κTΛγ. (3.445)
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If i ∈ {1, . . . , 2q}, the optimality condition for is

𝛥

if
(
γ ∗
)
⎧
⎪⎨
⎪⎩

= 0 if 0 < γ ∗j < c3,

≥ 0 if γ ∗i = 0,
≤ 0 if γ ∗j = C3,

(3.446)

where

𝛥

i f (γ∗) = Λγ ∗ + κ . Since γ is a feasible solution, it is easy to see that
(�γ )i > 0 if γ ∗i = 0, and (�γ ∗)i < 0 if γ ∗i = C3.

If i ∈ {2q + 1, . . . , 2q + p}, the optimality condition for (3.429) is

𝛥

if
(
y∗
)
⎧⎨
⎩
= 0 if 0 < γ ∗1 < C4,

≥ 0 if γ ∗i = 0,
≤ 0 if γ∗i = C4,

(3.447)

where

𝛥

i f (γ∗) = Λγ ∗ + κ . Since γ is a feasible solution, it is easy to see that
(�γ )i > 0 if γ ∗i = 0, and (�γ)i ≤ 0 if γ ∗i = C4.

Thus,

(�γ)T
(
Λγ ∗ + κ

) =
∑2q

1=1
(Δγ )i

((
Λγ∗

)
i + ε

)

+
∑2q+ρ

i=2q+1
(�γ )i·

((
Λγ∗

)
i − 1

)
. (3.448)

Combining with (3.445), we have f (γ ) > f (γ ∗) + 1
2Δγ T Λ�γ > f (γ ∗) +

1
2σn‖�γ ‖2

2. Since we already know that (γ ) ≤ f (γ ∗) + 1
2 C2D (π), this implies

‖γ ∗ − γ ‖2
2 ≤ C2D (π) / | σn | .

In Theorem 3.6, in order to make f (γ ) close to f (γ ∗), and γ close to γ∗ , we
want to find a partition with small D(π) and faster training speed. Kernel kmeans
algorithm can minimize the off-diagonal values of the kernel matrix. In addition,
each partition should include “positive” samples and “negative” samples aiming
at solving by NPSVM. Therefore, after partitioning with kernel k-means algorithm,
we combine partitions including no “positive” samples with including no “negative”
samples. This can further make the upper bound tight. In order to show the efficiency
of the upper bound, we show an experiment result on a subset of the Covtype data
set. The number of clusters is k = 4,16,64,128 and for each cluster, we compute the
upper bound C2D(π)/2 and (γ ) − f (γ ∗). The results present that the upper bound
is quite close to the difference in objectives and therefore our this strategy can lead
to good approximates to global NPSVM problem.

Another important conclusion is that the support vectors from subproblems are
very close to the support vectors of the whole problems. We define the set of support
vectors from subproblems as S and the set of support vectors of the whole problems
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as S. Theorem 3.7 shows that if xi is not a support vector of the subproblem, and
then xi will not be a support vector of the whole problem.

Theorem 3.7 For any i ∈ {1, . . . , q}, if γ i = 0, γ−i+q = 0 and

𝛥

if (γ ) > CD (π)

(
−ε +√nΛmax/

√
σnD (π)

)
, (3.449)

𝛥

i+qf (γ ) > CD (π)

(
−ε +√nΛmax/

√
σnD (π)

)
, (3.450)

Or for any i ∈ {2q + 1, . . . , 2q + p}, if γ 1 = 0 and

𝛥

if (γ ) > CD (π)

(
1+√nΛmax/

√
σnD (π)

)
, (3.451)

where Λmax = maxjΛ(xi, xj), then xi will not be a support vector of the whole
problem.

Proof Let ΔΛ = Λ − Λ and �γ = γ ∗ − γ. From the optimality condition
for (8) (see (3.446) and (3.447)), we know that γ∗i =0 if (Λγ∗)i > − ε which
i ∈ {i, . . . , 2q}, and γ ∗i = 0 if (Λγ∗)i > i which i ∈ {2q + i, . . . , 2q + p}. Since
γ∗ = (Λ+Δ

)
(γ+�γ), we see that

(
Λγ∗

)
i =

(
Λγ

)
i + (ΔΛγ)i + (Λ�γ )i

= (Λγ
)

i· +
∑

i,j :π(xi) �=π(xj)

K
(
xi, xj

)
γj

+
∑
j

K
(
xi, xj

)
(�γ)j

≥ (Λγ
)

i − CD (π)−Kmax‖�γ ‖1

≥ (Λγ
)
i
− CD (π)−√nKmaxC

√
D (π)/

√
σn

= (Λγ
)

i − CD (π)

(
i+

√
nKmax√
σnD (π)

)
(3.452)

The condition stated in the theorem implies for any i ∈{1, . . . , q}, (Λγ
)

i > −ε+
CD (π)

(
1+

√
nKmax√
σnD(π)

)
, and

𝛥

i+qf (γ) > CD (π)
(−ε +√nΛmax/

√
σnD (π)

)
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which implied (Λ)i
∗)

i̇ + ε > 0, and (Λγ ∗)i + q + ε > 0, so from the optimality

condition (3.446)
γ∗̇

i
= 0 and γ∗i+q = 0. And for any ∈{2q + i, . . . , 2q + p}, (Λγ

)
i >

1+ CD (π)

(
i+

√
nKma×√
σnD(π)

)
, which implied (Λγ ∗)i − 1 > 0, so from the optimality

condition (3.447) γ ∗i = 0.

In order to illustrate the efficiency of Theorem 3.7, we also show an experiment
result on a subset of the Covtype data set. Figure 3.8 demonstrate DCNPSVM can
find support vectors effectively and efficiently.

After getting solutions from subproblems, we carry on the combination step.
With the solutions obtained from all the subproblems, we combine them to form
an initial solver =[γ(i), . . . , γ (k)], where γ(c) is the optimal solution for the cth
subproblem for the whole problem. Subsequently, γ is used as initial solver to
solve the whole problem by global coordinate descent which can avoid unnecessary
computing if γi never changes from zero to nonzeros so this algorithm can converge
quickly.

3.3.2.3 Divide and Combine NPSVM with Multiple Levels

In divide-and-combine NPSVM with a single level, there is a trade-off in selecting
the number of clusters k. On the one hand, when k is small, the solutions
and objective function obtained by the subproblems are close to the optimal
solutions and objective function according to Theorem 3.6, however the training
time is very long. On the other hand, if we increase k, although the train-
ing time reduces, the difference between solutions and objective function is
large. Therefore, we adopt a multiple structure used in [70] to avoid this situa-
tion.

Now we introduce the main idea of divide-and-combine NPSVM with mul-
tiple levels. At the lth level, we divide the whole samples into ki sub-samples{
v
(l)
i , . . . , v

(l)
kl

}
, and solve each sub-sample with NPSVM to get γ (l) independently.

In a higher level, we choose a bigger ki aiming to get rough solutions in a
short time. Subsequently, we use the solutions from the higher level γ (l+1) to
initial the solver at the lth level and therefore each level requires few itera-
tions.

In this section, we also adopt an “adaptive clustering” method used in [70] to
achieve fast kernel k-means algorithm. The time complexity of kernel k-means
algorithm is O(n2d), where d is the feature of the samples. This algorithm takes
too much time for large scale problems so a two-step kernel k-means approach is
considered. First of all, the two-step kernel k-means approach run kernel k-means
on m (m � n) random samples to construct cluster centers. Then, other samples
are partitioned based on the distance each sample to cluster centers and decide
which cluster they belong to. The time complexity of this approach is 0(mnd) and
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therefore m cannot be too large. However, when we solve problems with large
scale data sets, smaller m cannot represent the whole data sets efficiently and the
performance of two-step kernel k-means may not be good. Therefore, we adopt
an “adaptive clustering” method for clustering. The main idea is to utilize the
sparsity of γ in NPSVM efficiently and perform two-step kernel k-means algorithm
on the set of the support vectors. At the lth level, we suppose the current set of
support vectors defined by S and the set of support vector of the final solution
defined by S∗ . Then we can define the sum of off-diagonal elements on S∗ ∪ S

as
DS∗∪S (π) = ∑

i,j∈S∗∪S and π(xi)�=π(xj) | K
(
xi, xj

) |. Therefore, we can refine
the bound in as the following theorem.

Theorem 3.8 Given data points x1, . . . , xn and a partition {v1, . . . , vk} with
indicators π ,

0 < f (γ )− f
(
γ ∗
) ≤ (1/2)C2DS∗∪S (π) . (3.453)

Furthermore,
∥∥γ ∗ − γ

∥∥2
2 ≤ C2DS∗∪S (π) / | σn | .

Proof Similar to the proof in Theorem 3.6, we use f (γ ) to denote the objective
function of (3.429) with kernel K. Combine (24) with the fact that γ∗i = 0, ∀i �∈ S∗

and γi, ∀i �∈ S, we have

f
(
γ∗
) ≤ f

(
γ∗
)− 1

2

∑
i,j∈S∗and π(xi) �=π(xj)

(
γ i· γ J̇ − γ ∗i γ ∗j

)
Λij

≤ f
(
γ∗
)+ 1

2
C2D

({xi· }i∈S∗∪S, π
)
, (3.454)

where C ∈ max {C3, C4}. The second part ofthe proofis exactly the same as the
second part of Theorem 3.6.

In practice, at the l − 1-th level, we do not know S and S∗ before solving the
problems. However, we give a good guess of support vectors at lth level based on
both Theorem 3.7 and experiments as shown, so we can use the support vectors at
lth level to run two-step kernel k-means for finding the clusters at the l−l-th level.
We first run LIBSVM for NPSVM to obtain the final set of support vectors S∗ and
then run DCNPSVM with this multiple structure.

We use an “early prediction” framework used in [70] to predict a new sample
too. From Lemma 3.4, γ is the optional to the second NPSVM dual problem (8) on
the whole data sets with the approximated kernel Λ defined in so the same kernel
function in the testing phase is used, which leads to the prediction for the second
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QPP in NPSVM

k∑
c=1

∑
i∈vc

(∑
1

(
α∗i − αi

)
Λ(xi, x)+

∑
i
βiΛ(xi, x)+ b−

)

=
∑

i∈vπ(x)

(∑
i

(
α∗i − αi

) (
Λ(xi, x)+

∑
i
βi·Λ(xi, x)+ b−

)
(3.455)

The testing phase for “early prediction” is that (1) find the cluster x belongs to;
(2) use the model obtained by data within that cluster to compute the two decision
values. and (3) x belongs to the label which the smaller decision absolute value
belongs to. This approach can reduce the testing time from O(| S|d) to O(| S| d/k)
where S is the set of support vectors.

Algorithm 3.9 DCNPSVM

Input: Training data sets {xi, yi}, i = 1· · · n, parameters C1, C2, C3, C4, and kernel
function parameter.

Output: The NPSVM dual solutions θ and.
for l = lmax, · · · , 1 do

Set number of clusters in the current level kl = ll;
if l = lmax then
Sample m points

{
xi1, · · · , xim

}
from the whole training set;

else
Sample m points

{
xi1, · · · , xim

}
from S;

end
Run kernel k-means on

{
xi1, · · · , xim

}
to get cluster centers and obtain

partition
{
v1, · · · , vkl

}
for all samples;

for c = 1, . . . , kl do
Calculate the number of positive points nl

c+ and the number of negative

points nl
c−, and then set parameters εlc+ and εlc−.
Obtain θ

(l)

vc
and γ

(l)
vc by solving NPSVM for the data in the c-th cluster vc

with θ
(l+1)
vc

and y(l+1)
vc

as the initial points.
end

end
Solve NPSVM on the whole data using θ (1) and γ (1) as the initial points.

3.3.3 Nonparallel Support Vector Machines for Pattern
Classification

In this section, we propose a novel nonparallel SVM, termed NPSVM for binary
classification. NPSVM has the following incomparable advantages.
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1. The semi-sparseness is promoted to the whole sparseness.
2. The regularization term is added naturally due to the introduction of ε-insensitive

loss function, and two primal problems are constructed implementing the SRM
principle.

3. The dual problems of these two primal problems have the same advantages as
that of the standard SVMs, i.e., only the inner products appear so that the kernel
trick can be applied directly.

4. The dual problems have the same formulation with that of standard SVMs and
can certainly be solved efficiently by SMO, we do not need to compute the
inverses of the large matrices as TWSVMs usually do.

5. The initial TWSVM or improved TBSVM are the special cases of our models.
Our NPSVM degenerates to the initial TWSVM or TBSVM when the parameters
of which are appropriately chosen, therefore, our models are certainly superior
to them theoretically.

3.3.3.1 NPSVM

Now we propose our nonparallel SVM, termed as NPSVM, which has several
unexpected and incomparable advantages compared with the existing TWSVMs.

Linear NPSVM

We seek the two nonparallel hyperplanes by solving two convex QPPs

min 1
2‖w+‖2 + C1

∑p

j=1

(
ηi + η∗i

)+ C2.
∑p+q

j=ρ+1ξj

s.t.
(
w+xj

)+ b+ ≤ ε + ηj , i = 1, · · ·p
− (w+· xj

)− b+ ≤ ε + η∗j , i = 1, · · ·(
w+· xj

)+ b+ ≤ −1+ ξj

j = p + 1, · · ·p + q

ηi, η
∗
i ≥ 0, i = 1, · · ·p

ξj ≥ 0, j = p + 1, · · ·p + q

(3.456)

and

min
1

2
‖w−‖2 + C3

∑ρ+q

i=ρ+1

(
ηi + η∗j

)
+ C4

∑p

j=1
ξj

s.t.
(
w−· xj

)+ b− ≤ ε + ηj

i = p + 1, · · ·p + q

− (w−· xj
)− b− ≤ ε + η∗j



178 3 Support Vector Machine Classification

i = p + 1, · · ·p + q

(
w−· xj

)+ b− ≥ 1− ξj, j = 1, · · ·p

ηi, η
∗
i ≥ 0, i = p + 1, · · ·p + q

ξj ≥ 0, j = 1, · · ·p (3.457)

where xj, i = 1, . . . , p are positive inputs, and xi, i = p + 1, . . . , p + q are
negative inputs, Ci ≥ 0, i = 1, . . . , 4 are penalty parameters, ξ+ = (ξ1, . . . , ξp)T,

ξ− =
(
ξp+1, · · · , ξp+q

)T
, η

(∗)
+ = (

ηT+, η∗T+
)T = (η1, · · · , ηp, η

∗
1, · · · , η∗l

)T
, η

(∗)
− =

(
ηT−, η∗T−

)T =
(
ηp+1, · · · ηρ+q , η

∗
p+1, . . . , η

∗
p+q

)T
, are slack variables.

Now, we discuss the primal problem (3.456) geometrically in R
2. First, we

hope that the positive class locate as much as possible in the ε-band between the
hyperplanes (w+. x) + b+ = ε and (w+ · x) + b+ = − ε (red thin solid lines), the
errors ηi+η∗i , i= 1, . . . , p are measured by the ε-insensitive loss function. Second,
we hope to maximize the margin between the hyperplanes (w+ · x) + b+ = ε

and (w+ · x) + b+ = − ε, which can be expressed by 2ε
‖w‖ . Third, similar

with the TWSVM, we also need to push the negative class from the hyperplane
(w+ · x)+ b+ = − 1 (red thin dotted line) as far as possible, the errors ξ i, i= p+ 1,
. . . , p + q are measured by the soft margin loss function.

Based on the above three considerations, problem (3.456) is established and the
structural risk minimization principle is implemented naturally. Problem (3.457)
is established similarly. When the parameter s is set to be zero, and the penalty
parameters are chosen to be Ci = cl

2 , i = 1,3 and Ci = ci, i = 2, 4, problems
(3.456) and (3.457) of NPSVM degenerate to problems except that the L1-loss |
ηi+η∗i | is taken instead of the L2-loss (w± · xi)+ b±)2, and an additional term 1

2b
2.

Furthermore, if the parameter ε is set to be zero, and Ci, i = 1, . . . , 4 are chosen
large enough and satisfying C2

C1
= 2d1, C4

C3
= 2d2, problems (3.456) and (3.457)

degenerate to problems except that the L1-loss is taken instead of the L2-loss.
In order to get the solutions of problems (3.456) and (3.457), we need to derive

their dual problems. The Lagrangian of the problem (3.456) is given by

L
(
w+, b+, η(∗)

+ , ξ−, α(∗)
+ , γ

(∗)
+ , β−, λ−

)

= 1

2
‖w+‖2 + C1

P∑
j=1

(
ηj + η∗j

)
+ C2

ρ+q∑
/j=,+1

ξj

+
p∑

j=1

αi

((
w+· xj

)+ b+ − ηi − ε
)
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+
ρ∑

j=1

α∗i
(− (w+· xi)− b+ − η∗i − ε

)

+
p+q∑

j=p+1

βj

((
w+· xj

)+ b+ + 1− ξj
)

−
∑p

j=1
γiηi −

∑p

i=1
γ ∗i η∗i −

∑p+q

j=p+1
λj ξj (3.458)

where α
(∗)
+ = (

αT+, α∗T+
)T =

(
α1, · · · , αp, α

∗
1 , · · · , α∗p

)T
, γ

(∗)
+ = (

γ T+, γ ∗T+
)T =

(
γ1, · · · , γρ, γ∗1, · · · , γ∗p

)T
, β− = (βp + 1, · · · , βp+ q)T, λ− = (λp + 1, · · · , βp + q)T

are the Lagrange multiplier vectors. The Karush−Kuhn−Tucker (KKT) conditions
[71] for w+, b+, η(∗)

+ , ξ− and α
(∗)
+ , γ (∗)

+ , β−, λ− are given by

𝛥

w+L = w+ +
∑p

i=1
αixl· −

∑p

j=1
α∗i xi + .

∑p+q

j=p+1
βjxj = 0 (3.459)

𝛥

b+L =
∑p

i=1
αi −

∑P

i=1
α∗i +

∑p+q

j=p+1
βj = 0 (3.460)
𝛥

η+L = C1e+ − α+ − γ+ = 0 (3.461)

𝛥

η∗+L = C1e+ − α∗+ − γ ∗+ = 0 (3.462)

𝛥

ξL = C2e− − β− − λ− = 0 (3.463)

(w+· xi)+ b+ ≤ ε + ηj , i = 1, · · · , p (3.464)

− (w+· xj
)− b+ ≤ ε + η!

i , i = 1, · · · , p (3.465)

(
w+· xj

)+ b+ ≤ −1+ ξj , j = p + 1, · · · , p + q (3.466)

ηi, η
∗
i ≥ 0, i = 1, · · · , p (3.467)

ξj ≥ 0, j = p + 1, · · · , p + q (3.468)
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where e+ = (1, · · · , 1)T ∈ R
ρ, e− = (1, · · · , 1)T ∈ R

q . Since γ+, γ∗+ ≥ 0,
λ− ≥ 0, from (3.461), (3.462) and (3.463) we have

0 ≤ α+, α∗+ ≤ C1e+, (3.469)

0 ≤ β− ≤ C2e−. (3.470)

And from (3.459), we have

w+ =
∑p

i=1

(
α∗i − αi

)
xi −

∑p+q

j=p+1
βjxj . (3.471)

Then putting (3.471) into the Lagrangian (3.458) and using (3.459)–(3.468), we
obtain the dual problem of the problem (3.456)

min
1

2

ρ∑
i=1

p∑
j=1

(
α∗i − αi

) (
α∗j − αj

) (
xi · xj

)−
p∑

i=1

p+q∑
j=ρ+1

(
α∗i − αi

)
βj
(
xi · xj

)

+1

2

p+q∑
i=p+1

p+q∑
J=p+1

βiβj

(
xi · xj

)+ ε

p∑
i=1

(
α∗i + αi

)−
p+q∑

i=p+1

βi,

s.t.
p∑

i=1

(
αi − α∗i

)+
p+q∑

j=p+1

βj = 0,

0 ≤ α+, α∗+ ≤ C1e+

0 ≤ β− ≤ C2e−. (3.472)

Concisely, this problem can be further formulated as

min
1

2

(
α∗+ − α+

)T
AAT (α∗+ − α+

)− (α∗+ − α+
)T

ABTβ− + 1

2
βT−BBTβ−

+εeT+
(
α∗ + α

) − eT−β−

s.t. eT+
(
α+ − α∗+

)+ eT−β− = 0,

0 ≤ α+, α∗+ ≤ C1e+,

0 ≤ β− ≤ C2e−. (3.473)
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where A = (
x1, · · · , xp

)T ∈ R
p×n, B = (

xp+1, · · · , xp+q

) ∈ R
q×n. Furthermore,

let

π̃ =
(
α∗T+ , αT+, βT−

)T
(3.474)

k̃ =
(
εeT+, εeT+,−eT−

)T
(3.475)

ẽ =
(
−eT+, eT+, eT−

)T
(3.476)

C̃ =
(
C1e

T+, C1e
T+, C2e

T−
)T

(3.477)

and

Λ =
(

H1 −H2

−HT
2 H3

)
, (3.478)

H1 =
(

AAT −AAT

− AAT AAT

)
, (3.479)

H2 =
(

ABT

− ABT

)
H3 = BBT (3.480)

then problem (3.473) is reformulated as

min
1

2
π̃TΛπ̃ + k̃Tπ̃−

s.t. ẽTπ̃ = 0 (3.481)

0 ≤ π̃ ≤ C̃.

1. Obviously, problem (3.481) is a convex QPP and exactly the same elegant
formulation as problem, the well-known SMO can be applied directly with a
minor modification. For (3.481), by applying the KKT conditions, we can get
the following conclusions without proof, which is similar with the conclusions
in [67] and [18].

Theorem 1 Suppose that π̃ = (α∗T+ , αT+, βT−
)T

is a solution of the problem (3.481),
then for=1, . . . , p, each pair of αi and α!

i can not be both simultaneously nonzero,
i.e.,αiα

∗
i = 0, i = 1, . . . , p.
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Theorem 2 Suppose that π̃ = (α∗T+ , αT+, βT−
)T

is a solution of the problem (3.481),
if there exist components of π̃ of which value is in the interval

(
0, C

)
, then the

solution (w+, b+) of the problem (3.456) can be obtained in the following way. Let

w+ =
∑p

i=1

(
α∗i − αi

)
xi −

∑p+q

j=p+1
βjxj , (3.482)

and choose a component of α+, α+j ∈ (0,C1), compute

b+ = −
(
w+· xj

)+ ε (3.483)

or choose a component of α∗+, α∗+k ∈ (0, C1), compute

b+ = − (w+· xk)− ε (3.484)

or choose a component of β−, β−m ∈ (0,C2), compute

b+ = − (w+· xm)− 1. (3.485)

In the same way, the dual of the problem (11) is obtained

min
1

2

p+q∑
i=p+1

p+q∑
j=p+1

(
α∗i − αi

) (
α∗j − αj

) (
xj · xj

)

+
p+q∑

Reject=p+1

ρ∑
j=1

(
α∗j − αj

)
βj

(
xixj

)

+1

2

p∑
j=1

p∑
j=1

βiβj

(
xi · xj

)+ ε

p+q∑
i=p+1

(
α∗i + αi

)−
ρ∑

i=1

βi

s.t.
p+q∑

i=p+1

(
αi − α∗i

)−
p∑

i=1

βi = 0

0 ≤ αi, α
∗
i ≤ C3, i = p + 1, · · · , p + q

0 ≤ βi ≤ C4, i = 1, · · · , p (3.486)

where α
(∗)
− , β+ are the Lagrange multiplier vectors. It can also be rewritten as

min
1

2

(
α∗− − α−

)T
BBT (α∗− − α−

)

+(α∗− − α−
)T

BATβ+ + 1

2
βT+AATβ+
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+εeT−
(
α∗ + α

) − eT+β+ (3.487)

s.t. eT−
(
α− − α∗−

)− eT+β+ = 0,

0 ≤ α−, α∗− ≤ C3e−,

0 ≤ β+ ≤ C4e+.

Concisely, it is reformulated as

min
1

2
π̂TΛ̂π̂ + κ̂Tπ̂

s.t. êTπ̂ = 0, (3.488)

0 ≤ π̂ ≤ Ĉ.

where

π̂ =
(
α∗T− , αT−, βT+

)T
(3.489)

κ =
(
εeT−εeT−,−eT+

)T
(3.490)

ê =
(
−eT−, eT−,−eT+

)T
(3.491)

Ĉ =
(
C3e

T−, C3e
T−, C4e

T+
)T

(3.492)

and

Λ̂ =
(

Q1 Q2

QT
2 Q3

)
(3.493)

Q1 =
(

BBT −BBT

− BBT BBT

)
(3.494)
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Q2 =
(

BAT

− BAT

)
(3.495)

Q3 = AAT (3.496)

For (3.476), we have the following conclusions corresponding to problem
(3.481).

Theorem 3 Suppose that π̂ = (α∗T− , αT−, βT+
)T

is a solution of the problem (3.488),
then for =p + 1, · · · , p + q, each pair of αi and α∗i cannot be both simultaneously
nonzero, i.e., αiα

∗
i = 0, i = p + 1, · · · , p + q.

Theorem 4 Suppose that π̂ = (α∗T− , αT−, βT+
)T

is a solution of the problem (3.488),

if there exist components of π̂ of which value is in the interval
(

0, Ĉ
)

, then the

solution (w−, b−) of the problem (11) can be obtained in the following way. Let

w− =
∑p+q

j=p+1

(
α∗i − αi

)
xi +

∑p

j=1
βjxj (3.497)

and choose a component of α+, α+j ∈ (0,C3), compute

b− = −
(
w−· xj

)+ ε, (3.498)

or choose a component of α∗+, α∗+k ∈ (0, C3), compute

b− = − (w−· xk)− ε, (3.499)

or choose a component of β−, β−m ∈ (0,C4), compute

b− = − (w−· xm)+ 1. (3.500)

From Theorems 2 and 4, we can see that the inherent semi sparseness in the
existing TWSVMs is improved to the whole sparseness in our linear NPSVM,
because of the introduction of ε-insensitive loss function instead of the quadratic
loss function for each class itself.

Once the solutions (w+, b+) and (w−, b−) of the problems (10) and (11) are
obtained, a new point x ∈ R

n is predicted to the class by

Class = arg min | (wk· x)+ bk | (3.501)

where | · | is the perpendicular distance of point x from the planes (wk · x)+ bk = 0,
k = − , +.
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Nonlinear NPSVM

Now, we extend the linear NPSVM to the nonlinear case. Totally different with
all the existing TWSVMs, we do not need to consider the extra kernel-generated
surfaces since only inner products appear in the dual problems, so the kernel
functions are applied directly in the problems and the linear NPSVM is easily
extended to the nonlinear classifiers.

In detail introducing the kernel function K(x, x
′
) = (Φ(x)Φ(x

′
)) and the corre-

sponding transformation

x = Φ(x) (3.502)

where x ∈H, H is the Hilbert space, we can construct the corresponding problems
(10) and (11) in H, the only difference is that the weight vectors w+ and w− in R

n

change to be w+ and w−, respectively. Two dual problems to be solved are

min 1
2

(
α∗+ − α+

)T
K,AAT

) (
α∗+ − α+

)

−(α∗+ − α+
)T

K,ABT
)
β− + 1

2β
T−K

(
B,BT

)
β− + εeT+ (α∗ + α)− eT−β−

s.t. eT+
(
α+ − α∗+

)+ eT−β− = 0
0 ≤ α+, α∗+ ≤ C1e+

0 ≤ β− ≤ C2e−
(3.503)

and

min
1

2

(
α∗− − α−

)T
K
(
B,BT

)T (
α∗− − α−

)

+(α∗− − α−
)T

K
(
B,AT

)
β+ + 1

2
βT+K

(
A,AT

)
β+ + εeT−

(
α∗ + α

) − eT+β+

s.t. eT−
(
α− − α∗−

)− eT+β+ = 0

0 ≤ α−, α∗− ≤ C3e−

0 ≤ β+ ≤ C4e+ (3.504)

respectively.
Corresponding Theorems are similar to Theorems 1–4 and we only need to take

K(x, x
′
) instead of (x · x′).

Now we establish the NPSVM as follows.
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Algorithm 3.10 (NPSVM)

(1) Input the training set (8).
(2) Choose appropriate kernels (x, x

′
), appropriate parameters ε > 0, C1, C2 for

problem (3.476), and C3, C4 > 0 for problem (3.487).
(3) Construct and solve the two convex QPPs separately, get the solutions α(*)
(
α1, · · · , αp+q , α

∗
1 , · · · , α∗p+q

)T
and β = (β1, · · · ,βp + q)T

(4) Construct the decision functions

f+(x) =
∑p

i=1

(
α∗i − αi

)
K (xi, x)−

∑p+q

j=p+1
βjK

(
xj , x

)+ b+ (3.505)

and

f−(x) =
∑p+q

j=p+1

(
α!

i − αi

)
K (xi, x)+

∑p

j=1
βjK

(
xj , x

)+ b− (3.506)

separately, where b−, b+ are computed by Theorems 2 and 4 for the kernel cases;
(5) For any new input x, assign it to the class k(k = −,+) by

argmin
| fk(x) |
‖�k‖ (3.507)

where

�+ = π̃TΛπ̃−,�− = π̂TΛ̂π̂ . (3.508)

Advantages of NPSVM

As NPSVM degenerates to TBSVM and TWSVM when parameters are chosen
appropriately, it is theoretically superior to them. Furthermore, it is more flexible and
has better generalization ability than typical SVMs since it pursues two nonparallel
surfaces for discrimination. Although NPSVM has an additional parameter s, which
leads to two larger optimal problems than TBSVM (about three times), it still has
the following advantages.

1. Although TWSVM and TBSVM solve smaller QPPs in which successive
overrelaxation (SOR) technique or coordinate descent method can be applied
[21, 72]; they have to compute the inverse matrices before training which is in
practice intractable or even impossible for a large dataset. More detailed, suppose
the size of the training set is one, and the size of negative training set is roughly
equal to the size of positive set, i. e. p ≈ q ≈ 0.5l, the computational complexity
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of TWSVM or TBSVM solved by SOR is estimated as

O
(
l3
)
+ #iteration×O(0.5l) (3.509)

where O(l3) is the complexity of computing l × l inverse matrix, and
#iteration ×O(0.5l) is of SOR for 0.5l sized problem (#iteration is the number
of the iterations, experiments in [42] has shown that #iteration is almost linear
scaling with the size one). While NPSVM does not require the inverse matrices
and can be solved efficiently by the SMO-type technique, [69] has proved that for
the two convex QPPs, an SMO-type decomposition method [68] implemented in
LIBSVM has the complexity

#iterations ×O(1.51) (3.510)

if most columns of the kernel matrix are cached throughout iterations ([69]
also pointed out that there is no theoretical result yet on LIBSVM’s number of
iterations. Empirically, it is known that the number of iterations may be higher
than linear to the number of training data). Comparing (3.509) and (3.510),
obviously NPSVM is faster than TWSVMs.

2. Although TBSVM improved TWSVM by introducing the regularization terms(‖w+‖2 + b2+
)

(for example, in problem (8), another regularization term, ‖w+‖2,
can be found in [72] and [73] to make the SRM principle implemented, it
can only be explained for the linear case that 1√

‖w+‖2+b2+
is the margin of

two parallel hyperplanes (w+ · x) + b+ = 0 (the proximal hyperplane) and
(w+ · x) + b+ = − 1 (the bounding hyperplane) in R

n+1 space. However, for
the nonlinear case, it is not a real kernel method like the standard SVMs usually
do, it considers the kernel-generated surfaces, and apply the regularization terms,
for example,

(‖u+‖2 + b2+
)

[21]. This term cannot be explained clearly, since it
is only an approximation of the term

(‖w+‖2 + b2+
)

in Hilbert space. NPSVM
introduces the regularization terms ‖w+‖2 [for example, in (10)] for linear case
and ‖w±‖2 for nonlinear case naturally and reasonably, since 2

‖w‖ is the margin
of two parallel hyperplanes (w · x) + b = s and (w · x) + b = − ε in R

n

space, while 2
‖w‖ is the margin of two parallel hyperplanes (w · x) + b = ε and

(w · x) + b = − ε in Hilbert space.
3. For the nonlinear case, TWSVMs have to consider the kernel-generated surfaces

instead of the hyperplanes in the Hilbert space, they are still parametric methods.
NPSVM constructs two primal problems for both cases via using different
kernels, which is the marrow of the standard SVMs.
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3.3.4 A Multi-instance Learning Algorithm Based
on Nonparallel Classifier

3.3.4.1 MI-NSVM

Multi-instance Learning Problem

One of the drawbacks of applying the supervised learning model is that it is not
always possible for a teacher to provide labeled examples for training. MIL provides
a new way of modeling the teacher’s weakness [74]. MIL considers a particular
form of weak supervision in which training class labels are associated with sets
of patterns, or bags, instead of individual patterns. A negative bag only consists
of negative instances, whereas a positive bag comprises both positive and negative
instances. The goal of MIL is to find a separating hyperplane which can decide the
label of any new instance or bag.

In the following, we give the formal description of MIL problem. Given a training
set

{
B+1 , . . . ,B+

m+ ,B
−
1 , . . . ,B−

m−
}

(3.511)

where a bag B+i =
{
xi1, . . . , xim+i

}
; xij ∈ Rn; j = 1, . . . ,m+i ; i =

1, . . . ,m+;B−i =
{
xi1, . . . , xim−i

}
; xij ∈ Rn; j = 1, . . . ,m−; i = 1, . . . ,m−;B+

means that the positive bag B+ contains at least one positive instance xij; B−
means that all instance xij of the negative bag are negative. The goal is to induce a
real-valued function

f (x) = sgn (bfg(x)) (3.512)

such that the label of any instance x in Rn space can be predicted. Obviously, for a
new bag l3 = {̃x1, . . . , x̃m}, its label Y can be decided by

Y = sgn ( max f (x̃i)) (3.513)

Now we rewrite the training set (1) as

T rain =
{

B+1 , . . . ,B+
m+;B−m+1+, . . . ,B−

m++m−;
}

(3.514)

=
{

B+1; . . . ;B+
m; + xz+1; . . . ; xz+f

}
(3.515)
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where z is the number of the instances in all positive bags and f the number of the
instances in negative bags. The set consisting of subscripts of Bi is expressed as:

s ← (i) = {i|xi ∈ Bi} (3.516)

Linear MI-NSVM

For the usual MIL methods based on SVMs, the “witness” instance of each positive
bag is always obtained by selecting the farthest from the hyperplane constructed by
SVMs. For a separable multi-instance classification problem, if a positive bag can
be correctly classified, it should satisfy the following constraint:

j∈∼, (i) max
(
w · xj

)+ b > 1 (3.517)

Mangasarian and Wild [40, 75] show that it is equivalent to the fact that there

exist convex combination coefficients set
{
λi
j j ∈ s ← (i); i = 1, . . . ,m+

}
, such

that
(
w ·∑j∈S(i) λ

i
j xj

)
+ b � 1 (3.518)

λi
j � 0,

∑
j∈F(i)

λi
j = 1 (3.519)

In the first step of MI-NSVM, our goal is to construct a hyperplane, which
is closer to the negative instances and is at least one distance from the positive
instances. According to the conclusion of [40, 75] above. The first model can be
expressed as

min
w−,b−,η

1
2‖ Bw− + e−b− ‖2 + c1e

 +η

s.t.
(
w−·∑j∈3(i) λ

i
j xj

)
+ b− � 1− ηi, i = 1, . . . ,m+

λi
j � 0, i = 1, . . . ,m+∑

j∈I(i) λ
i
j = 1, i = 1, . . . ,m+

(3.520)

where c1 ≥ 0 is the pre-specified penalty factors, e+ is the vector of ones of
appropriate dimensions, B= (xz + 1; . . . ; xz + f )T; η = (η1; . . . ; ηm+). By solving
the optimization problem, we can obtain the first hyperplane about MI-NSVM, and
then, we may estimate a score for each instance of positive bags according to the
distance between them and the optimal hyperplane

(
w∗−· x

) + b∗− = 0 (bigger the
distance is, bigger the score of the corresponding instance is).
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In the second step, we first pick up the “most positive” instance of each positive
bag:

si = argmax
{
score

(
xj
)} ; j ∈ s ← (i); i ∈ 1, . . . ,m+ (3.521)

where score (x) denotes the score of x computed by the first step, and si denotes the
index of the “most positive” instance of the i-th bag. Then, we construct the second
hyperplane which is closer to the “the most positive” instances and is at least one
distance from the negative instances. The corresponding model is as follows

min
1

2
‖Aw+ + e+b+‖2 + c2e

T−ξ

s.t. − (Bw+ + e−b+)+ ξ ≥ e−;

ξ ≥ 0. (3.522)

where c2 ≥ 0 is the pre-specified penalty factors, e− is the vector of ones of

appropriate dimensions, A =
(
x1s1; . . . ; xm+sm+

)T;B = (
xz+1; . . . ; xz+f

)T. By

solving the two optimization problems (10) and (12), we can obtain the following
two nonparallel hyperplanes:

f+(x) = (w+· x)+ b+ = 0 (3.523)

f−(x) = (w+· x)+ b+
‖w+‖ + (w−· x)+ b−

‖w−‖ = 0 (3.524)

A new point x ∈ Rn is then assigned to the positive or negative class, depending
on which of the two hyperplanes given by it lies closest to, i.e.

f (x) = arg min {d+(x); d−(x)} (3.525)

where

d+(x) =
∣∣∣wT+x + b+

∣∣∣ ; d−(x) = (w+· x)+ b+
‖w+‖ + (w−· x)+ b−

‖w−‖ = 0 (3.526)

where | · | is the perpendicular distance of point x from the planes wT+x + b+ and
(w+·x)+b+
‖w+‖ + (w−·x)+b−

‖w−‖ .
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Nonlinear MI-NSVM

The above discussion is restricted in the linear case. Here, we will analyze nonlinear
MI-NSVM by introducing the Radial Basis Function (RBF)

K
(
x;xT

)
= exp

(
−
∥∥∥x − xT

∥∥∥
2 = 2σ 2

)
; (3.527)

where σ is a real parameter, and the corresponding transformation:

x = Φ(x) (3.528)

where x ∈H;H is a Hilbert space.
Consider the following kernel-generated hyperplanes:

K
(
xT
; C

T
)
k+ + b+ = 0; (3.529)

K
(
xT
; C

T
)
k− + b− = 0; (3.530)

where

C = [AB
] 

, A =
(

1

m+1

∑
j∈3(1)

xj , . . . ,
1

m+
m+

∑
j∈Z(m+) xj

)
+ (3.531)

and K is the chosen kernel function. The first nonlinear optimization problem can
be expressed as

min
k−,b−,η

1
2‖ K

(
B,C 

)
k− + e−b− ‖2 + c1e

 η

s.t.K
(∑

V∈I(i) λ
i
j xj , C

 
)
k− + b− � 1− ηi, i = 1, . . . ,m+

λi
j � 0, i = 1, . . . ,m+∑

j∈I(i) λ
i
j = 1, i = 1, . . . ,m+

(3.532)

Correspondingly, the second optimization problem can be written as

min
k+,b+,ξ

1
2‖ K

(
A,C 

)
k+ + e+b+ ‖2 + c2e

 −ξ

s.t.− (K (
B,C 

)
k+ + e−b+

)+ ξ � e−, ξ � 0
(3.533)
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How to Solve MI-NSVM

We firstly discuss to how to solve the linear MI-NSVM.
Consider the optimization problem. This a typical non-convex optimization

problem. Mangasarian et al. solve a similar optimization problem via successive
linear programming [40, 75]. Therefore, we can also apply the same technique.
However, this section mainly focuses on the construction of the model. In order
to simplify, we give an approximate iterative solution via solving successive QPP
and LPP. Firstly, we fix λ, and solve a quadratic programming with respect to w−;
b−; η and then fix w−; b−, and solve a quadratic programming with respect to λ;η.

1. For fixed λ̂i
j ;i = 1, . . . ,m+; j ∈ s∞(i), we can obtain

x̂i =
∑

j∈I(i)
λ̂i
j xj , i = 1, . . . ,m+ (3.534)

so the problem can be written as

min
1

2
‖Bw− + e−b−‖2 + c1e

T+η

s.t.
(
Âw− + e+b−

)
+ η ≥ e+; η ≥ 0 (3.535)

where Â =
(
x̂1; . . . ; X̂m+

)T
. The problem (3.535) is a standard quadratic

programming problem and its dual problem can be formulated as

max eT+β −
1

2
βTP

(
QTQ

)−1
P Tβ

s.t. 0 ≤ β ≤ c1e+; (3.536)

where P =
[
Âe+

]
and Q = [Be−] ; β ∈ Rm+ are Lagrangian multipliers.

We can compute: β̂ =
(
β̂1; . . . ; β̂m+

)T
by solving the problem of (3.536),

and
(
ŵ−; b̂−

)
can be obtained by computing

v̂1 =
[
ŵT−b̂−

]T = −
(
QTQ

)−1
P Tβ̂; (3.537)

(
ŵ−; b̂−

)
is the updating ∧value of (w−; b−).
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2. For fixed ŵ− and b−, the optimization problem can be substituted by the LPP as
follows

min
λ,η

e +η

s.t.
(
ŵ−·∑j∈S(i) λ

i
j xj

)
+ b̂− � 1− ηi, i = 1, . . . ,m+∑

j∈I(i) λ
i
j = 1, i = 1, . . . ,m+

λi
j � 0, i = 1, . . . ,m+

(3.538)

Now consider the optimization problem (3.522). The dual of (3.522) can be
written as

max
α

e −α − 1
2α
 G

(
H H

)−1
G α

s.t.0 � α � c2e−
(3.539)

The second hyperplane can be obtained by

v2 =
[
wT+b+

]T = −
(
HTH

)−1
GTα; (3.540)

where G = [Be−]; H = [Ae+].

Thus, we are able to establish the following Algorithm 3.11 based on the
discussion above.

Algorithm 3.11 Linear MI-NSVM

Initialize: Given a training set;
Choose appropriate penalty parameters c1,c2 > 0;

Setting initial values for (k = 1), where
{
λi
j (1)j ∈ s ← (i);i = 1; . . . ;m+

}
;

Process 1: 1. For fixed λ(k) =
{
λi
j (k)

}
, the goal is to compute w(k):

1.1. Compute
{
x̂1; . . . ; x̂m+

}
by

1.2. Solve the QPP (3.536), obtaining the solution β̂ =
(
β̂1; . . . ; β̂m+

)T
;

1.3. Compute ŵ−; b̂− from
1.4. Set w(k) = ŵ; b(k) = b̂.

2. For fixed w−(k);b−(k), the goal is to compute λ(k + 1):
2.1. Solve quadratic programming (3.520) with the variables λ;η; obtain-

ing the solution λ̂.

2.2. Set λ (k + 1) = λ̂;
3. If �λ(k + 1) − λ(k) � < ε, goto 4; Otherwise, goto the step 1, setting

k = k + 1.
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4. Obtain the first optimal hyperplane
(
w∗−· x

) + b∗− = 0 and construct the
“most positive” training set according to

Process 2: Construct and solve the optimization problem (3.539), get the second
hyperplane:

(
w∗+· x

)+ b∗+ = 0.
Output: For any new input x, assign it to the class k(k = −;+) by (3.526)

Next, we explain to how to solve the nonlinear MI-NSVM. This process is similar
to that of linear MI-NSVM. In order to simplify, we only discuss the different part
with linear MI-NSVM. For fixed λ̂i

j ;i = 1, . . . ,m+; j ∈ s ← (i), the optimization
problem (3.535) and its dual problem are replaced by

min
k−,b−,η

1
2‖ K

(
B,C 

)
k− + e−b− ‖2 + c1e

 +η

s.t.−
(
K
(
Â, C 

)
k− + e+b−

)
+ η � e+, η � 0

(3.541)

and

max eT+ββ −
1

2
βTS

(
RTR

)−1
STβ

s.t. = 0 ≤ β ≤ c1e+; (3.542)

where S =
[
K
(
Â;CT

)
e+
]
; R = [K(B;CT)e−]. For fixed k̂− and b̂−, the

optimization (26) can be substituted by

min
λ,η

c1e
 +η

s.t.K
(∑

V∈3(i) λ
i
j xj , C

 
)
k̂− + b̂− � 1− ηi, i = 1, . . . ,m+

λi
j � 0, i = 1, . . . ,m+∑

j∈Y(i) λ
i
j = 1, i = 1, . . . ,m+

(3.543)

Correspondingly, the optimization problem (3.535) and its dual problem are
replaced by

max eT−α −
1

2
αTL

(
MTM

)−1
LTα

s.t. 0 ≤ α ≤ c2e−; (3.544)
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Where L = [K (
B,C 

)
e−
]
,M =

[
K
(
Â, C 

)
e+
]
. The formula (3.523)–(3.524)

is replaced by

f+(x) = K
(
x , C 

)
k+ + b+ = 0 (3.545)

f−(x) = K
(
x , C 

)
k+ + b+√

k +K
(
C,C 

)
k +

+ K
(
x , C 

)
k− + b−√

k −K
(
C,C 

)
k −

= 0 (3.546)

The detailed algorithm’s procedure is similar to Algorithm 3.1. In the fol-
lowing, we compare the computational complexity of MI-NSVM and MI-SVM1.
See optimization problems (3.520) or (3.532) the number of variables is only
approximative half of MI-SVM. We know that MI-NSVM and MI-SVM can be
solved by successive QPPs and LPPs. Here we rough estimates the computational
complexity of QPP and LPP is O(n)3 (n denotes the number of variables). So, the
computational complexity of MI-SVM can be expressed as 2kO(n)3 (Suppose MI-
SVM exists n variables, k is iterations of the successive QPP and LPP method),
and the computational complexity of MI-NSVM as(2k + 1)O

(
n
2

)3. So, these sizes
of the optimization problem of MI-SVM are about four times than that of MI-
NSVM.

3.4 Laplacian Support Vector Machine Classifiers

3.4.1 Successive Overrelaxation for Laplacian Support Vector
Machine

In this section, we propose a novel fast Laplacian SVM classification (FLapSVM),
which is deduced by the traditional SVM progress, and can overcome two draw-
backs mentioned above effectively. Finally, FLapSVM can be solved efficiently
by the successive overrelaxation (SOR) technique, which converges linearly to a
solution and can process very large data sets that need not reside in memory, which
make it more suitable for large scale problems.

3.4.1.1 Background

In this section, we give a brief outline of LapSVM.
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SSL Framework

Regularization [76] is a key technology for obtaining smooth decision functions and
avoiding overfitting of the training data, which is widely used in machine learning
[77, 78]. Recently, the regularization framework has been recently extended in the
SSL field by [77] as follows.

Given a set of labeled data

T = {(x1, y1) , . . . , (xl, yl)} ∈
(
Rn ×Y

)l (3.547)

where xi ∈ Rn, yi ∈ Y = {1,−1} , i = 1, . . . , l, and a set of unlabeled data

(xl + 1, . . . , xl + u) (3.548)

where xi ∈ Rn. For a kernel function (·, ·), which associates a reproducing kernel
Hilbert space Hk , the decision function can be obtained by minimizing

f ∗ = arg min
∑l

i=1
V (xi, yi, f )+ γH‖f ‖2

H
+ γM‖f ‖2

M
(3.549)

where f is an unknown decision function, V represents some loss function on the
labeled data, γH is the weight of ‖f ‖2

H
and controls the complexity of f in the

reproducing kernel Hilbert space. γM is the weight of ‖f ‖2
M

and controls the

complexity of the function in the intrinsic geometry of marginal distribution, ‖f ‖2
M

is able to penalize f along the Riemann manifold M.

LapSVM

The same as traditional SVM, LapSVM also uses the hinge function

V (xi, yi, f ) = max {0, 1− yif (xi)} (3.550)

as its loss function.
To solve nonlinear classification problem, according to reproducing theorem

[67], weights w can be expressed as

w =
∑l+u

i=1
αiΦ (xi) = Φα (3.551)

where Φ = {ϕ1, . . . , ϕl + u}T, α = {α1, . . . ,αl + u}T, ϕ is the feature map from the
data space into the feature space.

Next, Belkin et al. [77] assume that the probability distribution of data has the
geometric structure of a Riemannian manifold M. The labels of two points that are
close in the intrinsic geometry of PX should be the same or similar, and use the
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intrinsic regularizer ‖f ‖2
M

to describe the constraint above

‖f ‖2
M
=
∑l+u

i=1

∑l+u

i=1
wij

(
f (xi)− f

(
xj
))2 = f TLf (3.552)

where L is the graph Laplacian defined as L = D − W, where D is a diagonal
matrix with its i th diagonal Dii = ∑l+u

d=1Wij , and the edge weight matrix W can
be determined by k nearest neighbor or graph kernels [77]. In practice, choosing
exponential weights for the adjacency matrix leads to convergence of the graph
Laplacian to the Laplace-Beltrami operator on the manifold [79].

Let

‖f ‖2
H
= ‖w‖2 = (Φα)T (Φα) = αTK−α (3.553)

and

f (x) =
∑l+u

i=1
αiK (xi, x) (3.554)

and then introducing the slack variables ξ = {ξ i, . . . , ξ l}, the primal optimization
problem can be written as

min
a,ξ

∑l
i=1 ξi + γHα Kα + γMα KLKα

s.t.yi
(∑l+u

j=1 αiK
(
xi, xj

)+ B
)
≥ 1− ξi, i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l

(3.555)

Correspondingly, the dual problem of (3.555) can be expressed as

min
1

2
βTQβ −

∑l

i=1
βi

s.t.
∑l

i=1
βiyi = 0

0 ≤ βi ≤ 1, i = 1, . . . , l (3.556)

where

Q = YJLK
(

2γH+ 2γMKL

)−1

J T
L
Y (3.557)
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Y= diag (y1, . . . , yl), JL = [I, 0] is a matrix of l× (l+ u), where I is a l× l identity
matrix. To obtain the decision function, α is computed as

α =
(

2γHI + 2γMKL

)−1

J T
L
Yβ (3.558)

As we can see that, LapSVM needs to solve the inverse matrix of
(

2γHI +

2γMKL

)−1

and burdens the computations related to the variable switching
(3.558), which is in practice intractable or even impossible for large-scale data.

3.4.1.2 FLAPSVM

In this section, we describe our new algorithm: FLapSVM.

Linear Case

Unlike LapSVM, we first propose our algorithm from linear case. Suppose ‖f ‖2
H
=

‖w‖2, ‖f ‖2
M
= f TLf , where

f (x) = (w · x)+ b. (3.559)

Introducing b2 into the object function to ensure the solution uniqueness, the primal
problem is expressed as

min
1

2

(
‖w‖2 + b2

)
+ CeT

1 ξ +
γ

2
ηTLη (3.560)

s.t. Mw + e2b = η (3.561)

Y (Aw + eb) ≥ e1− ξ (3.562)

ξ ≥ 0 (3.563)

where ξ = {ξ1, . . . , ξ l}, η = {η1, . . . , ηl}, Y= diag(y1, . . . , yl) is a diagonal matrix,
C and γ are the penalty parameters, e1, e2 are the vectors of one of appropriate
dimensions, M = [AT UT]T, where A ∈ Rl × n denotes the training data with labels,
U ∈ Ru × n denotes the unlabeled data.

Note, we do not put Mw +e2b = η into the object function (3.560). Our key
idea is to make a very simple, but very fundamental change in the formulation,
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namely take (3.561) as an equality constraint to infer its dual problem. Therefore,
the Lagrangian corresponding to the problem (3.560)–(3.563) is given by

L (+) = 1

2

(
‖w‖2 + b2

)
+ CeT

1 ξ +
γ

2
ηTLη − βTξ

+δT (Mw + e2b − η)− αT (Y (Aw + e1b)− e1 + ξ) (3.564)

where α= (α1, . . . ,αl)T, β = (β1, . . . ,β l)T, and δ = (δ1, . . . , δl + u)T are
vectors of Lagrange multipliers, ξ =(ξ1, . . . , ξ l)T, η = (η1, . . . , ηl + u)T,
+ = {w, ξ , b, η,α, β, δ}. Therefore, the dual problem can be formulated as

max
+

L (+)

s.t.

𝛥

w,b,ξ,ηL (+) = 0
α, β ≥ 0

(3.565)

From (3.565), we get

𝛥

wL = w +MTδ − ATY Tα = 0 (3.566)

𝛥
bL = b + eT

2 δ − eT
1Y

Tα = 0 (3.567)

𝛥

ξL = Ce1− α − β = 0 (3.568)

𝛥

ηL = γLη − δ = 0. (3.569)

Equations (3.566), (3.567), and (3.569) imply

w = ATY Tα − γMTLη (3.570)

b = eT
1Y

Tα − γ eT
2Lη. (3.571)

Using (3.566)–(3.571), the Wolfe dual of the problem (3.565) can be expressed
as

min
1

2

(
αTηT

)
Q
(
αTηT

)T − eT
1α

s.t. 0 ≤ αi ≤ C, i = 1, . . . , l (3.572)
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where Q is expressed as

(
Y
(
AAT + e1e

T
1

)T
Y T − γ Y

(
AMT + e2e

T
2

)
LT

− γ
(
Y
(
AMT + e1e

T
2

)
LTγ 2L

(
MMT + e2e

T
2

)
LT + γLT

)
(3.573)

which is a positive definite matrix of (2l + u) × (2l + u).
The optimization problem (3.572) does not need to both solve a corresponding

inverse matrix.

Nonlinear Case

Different with LapSVM, only inner products appear in the dual problems (26), so
the kernel functions can be applied directly into the problem (26) and the linear
FLapSVM is easily extended to the nonlinear classifiers. In detail, the dual problem
of FLapSVM in nonlinear case can be easily written as

min
1

2

(
αTηT

)
Q−

(
αTηT

)T − eT
1α

s.t. 0 ≤ αi ≤ C, i = 1, . . . , l (3.574)

where Q is

(
YK

(
A,A 

) 
Y −γ YK

(
A,M )L 

− γ YK
(
A,M )L γ 2LK

(
M,M )L + γL 

)

+
(

Ye1eT
1Y

T −γ Ye1eT
2L

T

− γ Ye1eT
2L

T γ 2Le2eT
2 L

T

)
(3.575)

K is the kernel matrix formed by kernel functions

K
(
xi, xj

) = (ϕ (xi) , ϕ
(
xj
))

(3.576)

where β is a feature map from the data space into the feature space. The decision
function is

f (x) = K
(
x,AT

)
Y Tα − γK

(
x,MTL

)
η + b (3.577)

x denotes a new input and b is expressed in (3.571).
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3.4.1.3 Implementation Issues

SOR Technique

The optimization problem (3.572) and (3.574) are the standard QPPs. Compared
with the traditional SVM, (3.572) or (3.574) has more concise constraint conditions.
In fact, our algorithm can be solved efficiently by SOR technique [42]. Take the QPP
(3.574) as an example, it can be rewritten as

min
1

2
λTQ−λ− κTλ

s.t. 0 ≤ λi ≤ C, i = 1, . . . , l (3.578)

where λ = (αTηT
)T

,Q is defined by (29) and κ =
⎛
⎝1, . . . , 1︸ ︷︷ ︸

l

, 0, . . . , 0︸ ︷︷ ︸
l+u

⎞
⎠
 

In practice, λi+1
j is computed by

(
λi+1

1 , . . . , λi+1
j−1, λ

i+1
j , . . . , λi+1

l

)
, and the

latest computed components of λ are used in the computation of λi+1
j . The strictly

lower triangular matrix G in (3.579) can be seen as a substitution operator,

Algorithm 3.12 (SOR for FLapSVM)

(1) Input the training set (1) and the unlabeled data (2);
(2) Choose appropriate kernels K(x, x

′
), and appropriate parameters C, γ > 0;

(3) Choose ω ∈ (0, 2) . Start with any λ0 ∈ R2l + u. Having λi, compute λi + 1 as
follows:

λi+1 =
(
λi − ωE−1

(
Q−λi + κ+ G

(
λi+1 − λi

)))
#

(3.579)

until ‖λi + 1 − λi‖ is than some prescribed tolerance, where (·)# is the two-norm
projection on the feasible region of (32), that is

((λ)#)i =
⎧⎨
⎩

0 if λi ≤ 0
λi if 0 < λi < C

C if λi ≥ C

⎫⎬
⎭ , i = 1, . . . , l (3.580)

and

((λ)1)i = λi, i = l+ 1, . . . , 2l+ u (3.581)

where the nonzero elements of G ∈ R(2l + u) × (2l + u) constitute the strictly
lower triangular part of the symmetric matrix Q, and the nonzero elements of
E ∈ R(2l + u) × (2l + u) constitute the diagonal of Q.
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i.e., using
(
λi+1

1 , . . . , λi+1
j−1

)
in the place of

(
λi

1, . . . , λ
i
j−1

)
.. The iterative

formula can be written as

λi+1
j =

(
λi
j − ωE−1

jj

(∑j−1

k=1
Q−jkλ

i+1
k +

∑2l+u

k=j
Q−jkλ

i
k − 1

))

#
(3.582)

From (3.582), we can find that only one variable needs to be updated in each
iteration of Algorithm 3.1.

Mangasarian and Musicant [42] pointed out that SOR can process very large data
sets, and does not need to reside in memory. The algorithm converges linearly to
a solution, and has shown that on smaller problems, SOR is faster than SVMlight

and comparable or faster than Sequential Minimal Optimization (SMO) [53].
Remarkably Hsieh et al. [43]. applied the SOR method to the famous dual coordinate
descent method for large-scale linear SVM. To our knowledge, we did not find any
SOR version that can deal with semi-supervised classification problem. Thus, it is
an important contribution in this section that FLapSVM can be effectively solved
by SOR technology.

Random Scheduling of Subproblem Technology

In Algorithm 3.12, we have known that FLapSVM only handles the one-point sub-
problems in each iteration. Chang et al. [43, 80] showed that solving subproblems
in an arbitrary order may give the faster convergence. This motivates us to resort
the subproblems randomly after all elements of μi are updated. Concretely, at the
kth outer iteration,1 we sort randomly {i= 1, . . . , l} to {�(1), . . . , �(l)}, and handle
sub-problems in the order of λ�(1), . . . , λ�(l). Each outer iteration generates vectors
λi, j ∈ Rl, j = 1, . . . , l + 1, such that λi, 1 = λi, λi, l + 1 = λi + 1, and

λi,j =
(
λi+1
-(1), . . . , λ

i+1
-(j−1), λ

i
-(j), . . . , λ

i
-(l)

)T
(3.583)

where j = 2, . . . , l.
Finally, update λi, j to λi, j + 1 by

λi+1
ω(j) =

(
λi
ω(j) − ωE−1

ω(j,j)

( ω(j−1)∑
ω(k)=ω(1)

Qω(j,k)λ
i+1
ω(k)

+
∑ω(2l+u)

ω(k)=ω(j)
Qω(j,k)λ

i
ω(k) − 1 )) # (3.584)

where ω( j, j) and ω( j, k) mean ω( j)ω( j) and ω( j)ω( k), respectively.
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In addition, due to the existing high amount of unlabeled data in the SSL
framework, we also use the stability of the decision y(x) = sign (f (x)), x ∈u as
the early stopping criteria (SC). The detail progress can be found in [81].

3.4.1.4 Complexity Analysis

For the QPP problem (3.578), despite eliminating the computation of the corre-
sponding inverse matrix, the model has more l + u variables than the traditional
LapSVM. Is the computational complexity of FLapSVM really smaller than that
of the LapSVM? We know, at present, solving the inverse matrix effectively
is still a difficult problem. First, we suppose that the computational cost of

K
(
2γHI + 2γMKL

)−1
of (l+ u)× (l+ u) in the problem of (3.556) is O(l + u)3,

so the computational cost of LapSVM is at least O(l + u)3. Next, let us analysis the
computational complexity of FLapSVM. Each SOR iteration requires to compute
the 2l + u product, leading to a complexity of O (2l + u) to update the current
λ. So, the computational cost of FLapSVM is approximately (the number of
iterations).O (2l + u). All experiments indicate that the average value of the number
of iterations is about two third of 2l + u (the average computational complexity of
FLapSVM is roughly (m1.8 ∼ m2.2), where m = l + u in all experiments), which is
quicker than LapSVM and outperforms PlapSVM in the most cases.

3.4.2 Laplacian Twin Support Vector Machine for
Semi-supervised Classification

3.4.2.1 Laplacian Twin Support Vector Machine for Semi-supervised
Classification (Called Lap-TSVM)

Semi-supervised Learning Framework

Regularization [76] is a key technology for obtaining smooth decision functions
and thus avoiding overfitting to the training data, which is widely used in machine
learning [77, 78, 82, 83]. Recently, the regularization framework has been recently
extended in the SSL field as follows [77, 84].

Given a set of labeled data and a set of unlabeled data

(xl+1, . . . xl+u) (3.585)

where xl + i ∈ Rn, i =1, . . . , u. Suppose the labeled data are generated according
to the distribution P on X × R, whereas unlabeled examples are drawn according
to the marginal distribution PX of P. Labels of samples can be obtained from the
conditional probability distribution (y| x). The manifold regularization approach
exploits the geometry information of the marginal distribution PX. An important
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premise of this kind of approach is to assume that the probability distribution of
data has the geometric structure of a Riemannian manifold M. The labels of two
points that are close in the intrinsic geometry of PX should be the same or similar.
Belkin et al. [77] applied the intrinsic regularizer ‖f ‖2

M to describe the constraint
above,

‖f ‖2
M =

∑l+u

i=1

∑l+u

i=1

(
f (xi)− f

(
xj
))2 = f TLf (3.586)

where L is the graph Laplacian. In practice, choosing exponential weights for the
adjacency matrix leads to convergence of the graph Laplacian to the Laplace-
Beltrami operator on the manifold [84]. For a kernel function (·, ·), which is
associated with a reproducing kernel Hilbert space Hk, the decision function can
be obtained by minimizing

f ∗ = arg min
∑l

i=1
V (xi, yi, f )+ γH

∥∥∥f ‖2
H + γM

∥∥∥ f
∥∥∥∥

2

M

(3.587)

where f is an unknown decision function, V represents some loss function on the
labeled data, and γH is the weight of ‖f ‖2

H and controls the complexity of f in
the Reproducing Kernel Hilbert Space. γM is the weight of ‖f ‖2

M and controls the
complexity of the function in the intrinsic geometry of marginal distribution, and
‖f ‖2

M is able to penalize f along the Riemann manifold M. More detailed discussion
can be found in [77].

Linear Lap-TSVM

Similar to the TSVM, we use the square loss function and hinge loss function for
Lap-TSVM. V± (xi, yi, f±) can be expressed as

V+ (xi, yi, f+) = ((Ai, · ·w+)+ b+)2 +max (0, 1− f+ (Bi, · )) , (3.588)

V− (xi, yi, f−) = ((Bi, · ·w−)+ b−)2 +max (0, 1− f− (Ai, · )) . (3.589)

Ai, or Bi, denotes the i-th row of A or B.
Correspondingly, the decision functions are written as

f+(x) = (w+· x)+ b+, (3.590)

f−(x) = (w−· x)+ b−. (3.591)
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The regularization terms ‖f+‖2
H and ‖f−‖2

H can be expressed by

‖f+‖2
H =

1

2

(
‖w+‖2

2 + b2+
)
, (3.592)

‖f−‖2
H =

1

2

(
‖w−‖2

2 + b2−
)
. (3.593)

For manifold regularization, a data adjacency graph W(l + u) × (l + u) is defined
by nodes Wi, j, which represents the similarity of every pair of input samples. The
weight matrix W may be defined by k nearest neighbor or graph kernels as follows
[77]:

Wij =
{

exp
(
−∥∥xi − xj

∥∥2
2/2σ 2

)
, if xi, xj are neighbor;

0, Otherwise,
(3.594)

where
∥∥xi − xj

∥∥2
2 denotes the Euclidean norm in Rn. So, the manifold regularization

is defined by

‖f+‖2
M = 1

(l + u)2

∑l+u

i,j=1
Wi,j

(
f+ (xi)− f+

(
xj
))2 = f T+Lf+, (3.595)

‖f−‖2
M = 1

(l + u)2

∑l+u

i,j=1
Wi,j φ− (xi)− f−

(
xj
) )2 = f T−Lf−, (3.596)

where L = D − W is the graph Laplacian, D is a diagonal matrix with its
i-th diagonal Dii = ∑l+u

j=1Wij , f+ = [f+(x1), . . . , f+(xl + u)]T = Mw + eb+,

f− = [f−(x1), . . . , f−(xl+ u)]T = Mw− +eb − , M ∈ R(l + u) × n includes all of
labeled data and unlabeled data, and e is an appropriate ones vector. When (3.595)
or (3.596) is used as a penalty item of Eq. (3.586), we can understand them by
these means: if the neighbor of xi, xj has the higher similarity (Wij is larger), the
difference of f±(xi), f±(xj) will obtain a big punishment. More intuitively, the smaller
�f±(xi) − f±(xj)� is, the smoother f±(x) in the data adjacency graph is.

Substituting (3.589)–(3.597) into (3.588), the primal problems of Linear Lap-
TSVM can be written as

min
w+,b+,ξ

1
2‖ Aw+ + e+b+ ‖2

2 + c1e
 −ξ + c2

(‖ w+ ‖2
2 + b+

)

+ c3
(
w +M + e b+

)
L (Mw+ + eb+)

s.t.− (Bw+ + eb+)+ ξ ≥ e−, ξ ≥ 0

(3.597)
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and

min
w−,b−π

1
2‖ Bw− + e−b− ‖2

2 + c1e
 +η + c2

(‖ w− ‖2
2 + b−

)

+ c3
(
w −M + e b−

)
L (Mw− + eb−)

s.t. (Aw− + e+b−)+ η ≥ e+, η ≥ 0

(3.598)

The Lagrangian corresponding to the problem (26) is given by

L (Θ) = 1

2
(Aw+ + e+b+)T (Aw+ + e+b+)+ c1e

T−ξ

+1

2
c2

(
‖w+‖2

2 + b2+
)
+ 1

2
c3

(
wT+MT + eTb+

)

×L (Mw ++eb+)− αT
(
− (Bw ++e−b+)

+ξ − e−
)
− βTξ (3.599)

where Θ = {w+, b+, ξ , α, β}, α = (
α1, . . . , αm1

)T
, β = (

β1, . . . , βm1

)T are the
Lagrange multipliers. The dual problem can be formulated as

max L (Θ)

s.t.

𝛥

w+,b+, ξL (Θ) = 0, (3.600)

α, β ≥ 0.

From Eq. (3.600), we get

𝛥

w+L = AT (Aw ++e+b+)+ c2w + c3M
TL (Mw ++eb+)+ BTα = 0,

(3.601)

𝛥

b+L = eT+ (Aw ++e+b+)+ c2b+ + c3e
TL (Mw ++eb+)+ eT−α = 0,

(3.602)

𝛥

ξL = c1e− − α − β = 0. (3.603)

Since β ≥ 0, (3.603) turns out to be

0 ≤ α ≤ c1e−. (3.604)
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Next, combining (3.601) and (3.602) leads to

[
A 
e +

]
[Ae+]

[
w+
b+

]
+ c2

[
w+
b+

]

+c3

[
M 
e 

]
L
[
M e+

] [w+
b+

]
+
[
B 
e −

]
α = 0 (3.605)

Let

H = [Ae+] , J = [Me] ,G = [Be−] (3.606)

and the augmented vector ϑ+ = [wT+bT+
]T

. Equation (3.34) can be rewritten as:

(
HTH + c2I + c3J

TLJ
)
ϑ ++GTα = 0,

i.e., + = −
(
HTH + c2I + c3J

TLJ
)−1 (

GTα
)
, (3.607)

where I is an identity matrix of appropriate dimensions. According to matrix theory
[66], it can be easily proved that HTH + c2I + c3JTLJ is a positive definite matrix.

Substituting the above equations into problem, we obtain the Wolfe dual of the
problem as follows:

max eT−α −
1

2
αTG

(
HTH + c2I + c3J

TLJ
)−1

GTα

s.t. 0 ≤ α ≤ c1e−. (3.608)

Similarly, the dual of (27) is

max βeT+β −
1

2
βTP

(
QTQ+ c2I + c3F

TLF
)−1

P Tβ

s.t.0 ≤ β ≤ c2e+, (3.609)

where

Q = [Ae−] , F = [Me] P = [Be+] (3.610)
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and the augmented vector ϑ− = [w−b−]T is given by

ϑ− = −
(
QTQ+ c2I + c3F

TLF
)−1

P Tβ, (3.611)

where QTQ + c2I + c3FTLF is a positive definite matrix. Once vectors ϑ+ and ϑ−
are obtained from (3.607) and (3.611), the separating planes

wT+x + b+ = 0, wT−x + b− = 0 (3.612)

are known. A new data point x ∈ Rn is then assigned to the positive or negative class,
depending on which of the two hyperplanes it lies closest to, i.e.

f (x) = argmin
+.−

d±(x), (3.613)

where

d±(x) =
∣∣∣wT±x + b±

∣∣∣ , (3.614)

where | · | is the perpendicular distance of point x from the planes wT±x + b±.

Nonlinear Lap-TSVM

Now we extend the linear Lap-TSVM to the nonlinear case.
The same as in the linear case, the cost function of the errors V+ (xi, yi, f+) and

V−(xi, yi, f−) can be expressed as (3.588) and (3.589). The decision function can be
written as f±(x)= (w± ·Φ(x))+ b±, where Φ(·) is a nonlinear mapping from a low
dimensional space to a higher dimensional Hilbert space H. According to Hilbert
space theory [67], w± can be expressed as w± =∑l+u

i=1λ±iΦ (xi) = Φ(M)λ±. So
the following kernel-generated hyperplanes are:

K
(
xT,MT

)
λ+ + b+ = 0, (3.615)

K
(
xT,MT

)
λ− + b− = 0, (3.616)

where K is a chosen kernel function: K(xi · xj) = (Φ(xi) · Φ(xj)). By means of the
kernel matrix K and relevant coefficients λ±, the regularization term ‖f+‖2

H and
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‖f−‖2
H can be expressed as

‖f+‖2
H =

1

2

(
λT+Kλ+ + b2+

)
, (3.617)

‖f−‖2
H =

1

2

(
λT−Kλ− + b2−

)
. (3.618)

For manifold regularization, on the basis of f± = [f±(x1), . . . , f±(xl + u)]T =
Kλ ± + eb±, ‖f+‖2

M and ‖f−‖2
M can be written as

‖f+‖2
M = f T+Lf+ =

(
λT+K + eTb+

)
L (Kλ++eb+) , (3.619)

‖f−‖2
M = f T−Lf− =

(
λT−K + eTb−

)
L (Kλ− + eb−) . (3.620)

So, the nonlinear optimization problems can be expressed as

min
λ+.b+

1
2‖ K

(
A,M ) λ+ + e+b+ ‖2 + c1e

 −ξ

+ 1
2c2

(
λ +Kλ+ + b2+

)+ c3
1
2

(
λ +K + e b+

)
L (Kλ+ + eb+)

s.t.− (K (
B,M )λ+ + e−b+

)+ ξ ≥ e−, ξ ≥ 0

(3.621)

and

min
λ−,b−,η

1
2‖ K

(
B,M ) λ− + e−b− ‖2 + c1e

 +η

+ 1
2c2

(
λ −Kλ− + b2−

)+ c3
1
2

(
λ −K + e b−

)
L (Kλ− + eb−)

s.t.
(
K
(
A,M ) λ− + e+b−

)+ η ≥ e+, η ≥ 0

(3.622)

Define the Lagrangian corresponding to the problem (3.621) as follows

L (Θ) = 1

2

∥∥∥K
(
A,MT

)
λ+ + e+b+

∥∥∥
2

+c1e
T−ξ +

1

2
c2

(
λT+Kλ+ + b2+

)

+c3
1

2

(
λT+K + eTb+

)
L (Kλ+ + eb+)

−αT
(
−
(
K
(
B,MT

)
λ++e−b+

)
+ ξ − e−

)
− βTξ, (3.623)

where Θ = {λ+, b+, ξ , α, β}.
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The dual problem can be formulated as

max L (Θ)

s.t.

𝛥

λ+,b+, ξL (Θ) = 0,

α, β ≥ 0. (3.624)

From Eq. (3.624), we get

𝛥

λ+L = K
(
A,MT

)T (
K
(
A,MT

)
λ++e+b+

)
+ c2Kλ

+c3KL(Kλ++eb+)+K
(
B,MT

)T
α=0, (3.625)

𝛥

b+L = eT+
(
K
(
A,MT

)
λ++e+b+

)
+ c2b+ + c3e

TL (Kλ++eb+)+eT−α= 0,

(3.626)

𝛥
ξL = c1e− − α − β = 0. (3.627)

Combining (3.625) and (3.626) leads to

[
K
(
A,M ) 
e +

]
[
K
(
A,M ) e+

] [λ+
b+

]

+ c2

[
K 0
0 1

] [
λ+
b+

]

+ c3

[
K

e 
]
L [Ke]

[
λ+
b+

]
+
⎡
⎣K

(
B,M )

⌈

e −

⎤
⎦ α = 0

(3.628)

Let

H� =
[
K
(
A,M ) e+

]
,Oφ =

[
K 0
0 1

]

Jφ = [Ke] ,Gφ =
[
K
(
B,M ) e−

] (3.629)
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and the augmented vector ρ+ = [λ + b+]T, Eq. (3.628) can be rewritten as:

H 
φ Hφρ+ + c2Oφρ+ + c3J

 
φ Lφρ+ +G φ α+ = 0

i.e., ρ+ = −
(
H 

φ Hφ + c2Oφ + c3J
 
φ Lφ

)−1 (
G φ α

) (3.630)

So, the Wolfe dual of the problem (3.621) is formulated as follows:

max eT−α −
1

2

(
αTGΦ

) (
HT

ΦHΦ + c20Φ + c3J
T
ΦLJΦ

)−1 (
GT

Φα
)

s.t. 0 ≤ α ≤ c1e−. (3.631)

In a similar manner, the dual of (3.622) is

max βeT+β −
1

2

(
βTPΦ

) (
QT

ΦQΦ + c2UΦ + c3F
T
ΦLFΦ

)−1 (
P T
Φβ
)

s.t.0 ≤ β ≤ c2e+, (3.632)

where

Qφ =
[
K
(
A,M ) e−

]
, Uφ =

[
K 0
0 1

]

Fφ = [Ke] , Pφ =
[
K
(
B,M ) e+

] (3.633)

and the augmented vector ρ− = [λ−b−]T, which is given by

ρ− = −
(
QT

ΦQΦ + c2UΦ + c3F
T
ΦLFΦ

)−1 (
P T
Φα
)
. (3.634)

Once vectors ρ+ and ρ− are obtained from (3.630) and (3.634), a new data point
x ∈ T

n is then assigned to the positive or negative class, depending on a manner
similar to the linear case.

3.5 Loss Function of Support Vector Machine Classification

3.5.1 Ramp Loss Least Squares Support Vector Machine

In this section, by introducing a non-convex and non-differentiable loss function
instead of the quadratic loss function to LSSVM, a robust and sparse LSSVM is
constructed and named RLSSVM. Compared with the original LSSVM, RLSSVM
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can explicitly incorporate noise and outlier suppression in the training process, has
less support vectors and the increased sparsity leads to its better scaling properties.
Similar to RSVM, RLSSVM is non-convex and the CCCP procedure is applied
to solve a sequence of convex QPPs. Experimental results on benchmark datasets
confirm the effectiveness of the proposed algorithm.

3.5.1.1 Background

In this section, we briefly introduce the Hinge loss SVM, Ramp Loss SVM and
LSSVM.

Hinge Loss SVM

Consider the binary classification problem with the training set

T = {(x1, y1) , . . . , (xl, yl)} (3.635)

where xi ∈ R
n, yi ∈ Y = {1,−1} , i = 1, . . . , l, the standard SVM relies on the

classical Hinge loss function (see Fig. 3.9b)

Hs(z) = max (0, s − z) (3.636)

where the subscript s indicates the position of the Hinge point, to penalize examples
classified with an insufficient margin and results (6) in the following primal problem

min
1

2
‖w‖2 + C

∑l

i=1
H1 (yf (xi)) , (3.637)

where f (x) is the decision function with the form of f (x) = (w · Φ(x)) + b,
and Φ(·) is the chosen feature map, often implicitly defined by a Mercer kernel
K(x, x

′
) = (Φ(x) · Φ(x

′
)) [18]. For the choice of the kernel function (x, x

′
), one has

several possibilities: K(x, x
′
) = (x · x′) (linear kernel); K(x, x

′
) = ((x · x′ ) + 1)d

(polynomial kernel of degree d); KK(x, x
′
) = exp (−‖x − x

′‖2/σ 2) (RBF kernel);
K(x, x

′
) = tanh (κ(x · x′) + θ ) (Sigmoid kernel), etc.

Due to the application of the Hinge loss, standard SVM has the sensitivity to
outlier observations since they will normally have the largest hinge loss, thus the
decision hyperplane is inappropriately drawn toward outlier samples so that its
generalization performance is degraded [85]. Another property of the Hinge Loss
function is that the number of Support Vectors (SVs) scales linearly with the number
of examples [86], and since the SVM training and recognition times grow quickly
with the number of SVs, it is obviously that SVMs cannot deal with very large
datasets.
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Fig. 3.9 The Ramp Loss function (a) can be decomposed into the sum of the convex Hinge Loss
(b) and a concave loss (c)

Ramp Loss SVM

In order to increase the robustness of SVM and avoid converting the outliers into
SVs, the Ramp Loss function [87] (see Fig. 3.9a), also known as the Robust Hinge
Loss

Rs(z) =
⎧⎨
⎩

0, z > 1
1− z, s � z � 1
1− s, z < s

(3.638)

was introduced to replace the Hinge loss function, by making the loss function flat
for scores z smaller than a predefined value s < 1. Rs(z) can be decomposed into the
sum of the convex Hinge Loss and a concave loss (see Fig. 3.9c),

Rs(z) = H1(z)−Hs(z), (3.639)

therefore, the primal problem of the Ramp Loss SVM (RSVM) can be formulated
as

min
w,b

1

2
| w‖2 + C

∑l

i=1
Rs (yif (xi))

= 1

2
‖ w‖2 + C

∑l

i=1
H1 (yif (xi))

︸ ︷︷ ︸
convex

−C
∑l

i=1
Hs (yif (xi))︸ ︷︷ ︸

concave

(3.640)

which can be solved by the CCCP Procedure [88].
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LSSVM

For the given training set (1), the primal problem of standard LSSVM to be solved
is

min
w,b,

1

2
‖ w‖2 + C

2

∑l

i=1
Q (yif (xi)− 1) , (3.641)

where f (x) is the decision function with the form of f (x) = (w · Φ(x))+ b, and Φ(·)
is the chosen feature map, and Q(z) is the quadratic loss function

Q(z) = z2 (3.642)

The geometric interpretation of the above problem with x ∈ R2 is shown in
Fig. 3.10, where minimizing (1/2) ‖w‖2 realizes the maximum margin between the
positive proximal straight line and negative proximal straight line

(w·Φ(x))+ b = 1 and (w·Φ(x))+ b = −1 (3.643)

while minimizing
∑l

i=1Q (y1f (x1)− 1) implies making the straight lines (9) to be
proximal to all positive inputs and negative inputs respectively.

Fig. 3.10 Geometric
interpretation of LSSVM:
positive points represented by
+s, negative points
represented by ∗’s, positive
proximal line (wx) + b = 1
(down left line), negative
proximal line
(wx) + b = − 1 (top right
line), separating line
(wx) + b = 0 (middle line)
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Its dual problem is also a convex QPP

&min
α

1

2

∑1

i=1

∑1

j=1
αiαj yiyj

(
K
(
xi, xj

)+ δij

C

)
−
∑1

i=1
αi

s.t. &
∑l

i=1
αiyi = 0 (3.644)

where

δij =
{

1, i = j ;
0, i �= j.

(3.645)

The solution of the above problem is given by the following set of linear
equations

[
0 −Y 
Y �+ C−1I

] [
b

α

]
=
[

0
e

]
, (3.646)

where Y = (y1, . . . , yl)T, Ω = (
Ωij

)
l×l =

(
yiyjK

(
xi, xj

))
l×l, I is the identity

matrix and e = (1, 1)T ∈ R1, therefore the decision function is

f (x) = sgn (g(x)) = sgn

(∑1

i=1
αiyiK (xi, x)+ b

)
(3.647)

The support values α1 are proportional to the errors at the data points since

α1 = Cηj , i = 1, . . . , l. (3.648)

Clearly, points located close to the two hyperplanes (w · Φ(x)) + b = ± 1 have
the smallest support values, one could rather speak of the support value spectrum in
the least squares case than the support vector in standard hinge loss SVM.

3.5.1.2 Ramp Loss ISSVM

In this section, we propose the Ramp Loss LSSVM, termed as RLSSVM, into which
the Ramp Loss function is applied and is sparser and more robust than LSSVM.
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Primal problem

As the points located close to the two hyperplanes (w · Φ(x)) + b �=1 have the
smallest support values, they contribute less to the decision function (3.647) at the
same time, for the points located far away from the two hyperplanes, especially for
the outliers, they tend to have large support values, and we want to eliminate the
effects of such points. Therefore, following the idea of ε-insensitive loss function
incorporated in ε-support vector regression (SVR), the following optimization
problem is constructed

min
1

2
‖w‖2 + C

2

∑1(
=1

Rε.f (yif (xi)− 1) , (3.649)

where RεI(z) is our proposed ε-insensitive Ramp Loss function (see Fig. 3.11a),

Rε,f(z) =
⎧
⎨
⎩

(t − ε)2, | Z |> t

(|z| − ε)2, 8ξ | z |≤ t

0, | z |< s

(3.650)

which makes the ε-insensitive quadratic loss function (see Fig. 3.11b)

lε(z) = (max { 0, | z | −εI
)

2 (3.651)

is flat for scores �z� larger than a predefined value t > ε. Obviously, that Rε, t(z) can be
decomposed into the sum of the convex ε-insensitive quadratic loss and a concave
loss (see Fig. 3.11c),

Rε,t = Iε(z)− If (z), (3.652)

therefore, the problem can be reformulated as

min
w,b

1

2
‖ w‖2 + C

2

∑l

i=1
Iε (yif (xi)− 1)

︸ ︷︷ ︸
convex

−C

2

∑l

i=1
It (yif (xi)− 1)

︸ ︷︷ ︸
concave

(3.653)

Now we discuss the primal problem (3.653) geometrically in R
2 (see Fig. 3.12).

On the one hand, we hope that the positive points locate as much as possible
in the ε-band, between the bounded hyperplanes (wΦ(x)) + b = 1 + ε and
(wΦ(x)) + b = 1 − ε, the negative class locates as much as possible in the ε-band
between the hyperplanes (w · Φ(x)) + b �= − 1 + ε and (wΦ(x)) + b = − 1 − ε,
while the errors of the points clipped in the ε-band and the t-band are measured
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Fig. 3.11 The Ramp ε-insensitive loss function (a) can be decomposed into the sum of the convex
ε-insensitive quadratic loss (b) and a concave loss (c)

Fig. 3.12 Geometric interpretation of RLSSVM: positive proximal line (w · Φ(x))+ b= 1 (down
left thick line), negative proximal line (w · Φ(x)) + b = − 1 (top right thick line), positive
ε-bounded lines (w · Φ(x)) + b = 1 ± ε (down left dotted lines), positive t-bounded lines
(w · Φ(x)) + b = 1 ± t (down left thin lines), negative ε-bounded lines (w · Φ(x)) + b = − 1 ± ε

(top right dotted lines), negative t-bounded lines (w · Φ(x)) + b = − 1 ± t (top right thin lines),
separating line (w · Φ(x)) + b = 0 (middle line)

as (| yj((wΦ(x)) + b) − 1|−ε)2, and the points out of the r-band are measured as
(f − ε)2, on the other hand, we still hope to maximize the margin between the
two proximal hyperplanes (wΦ(x)) + b = 1 and (wΦ(x)) + b = − 1. Based on
the above two considerations, problem (3.653) is formulated and the structural risk
minimization principle is implemented.

Obviously, the problem (3.653) can be solved by the CCCP Procedure, which
is closely related to the “Difference of Convex” (DC) methods, which were
successfully applied to a lot of different and various non-differentiable non-convex
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optimization problems especially in the large-scale setting [89]. For such a problem
as (3.653) with an objective function written as a sum of a convex part u(x) and a
concave part ν(x), i.e., u(x) + ν(x), the CCCP algorithm is an iterative procedure
that solves a sequence of convex programs

xt+1 = arg min
{
u(x)+ xT 𝛥

ν
(
xt
)}

. (3.654)

Collobert et al. [87] proposed the CCCP procedure for the RSVM. We now
present the CCCP framework for (19). Let the convex part of the problem be

Pvex (w, b) = 1

2
‖w‖2 + C

2

∑l

i=1
Iε (yif (xi)− 1) , (3.655)

and the concave part be

Pcav (w, b) = −C

2

∑l

i=1
It (yif (xi)− 1) . (3.656)

The CCCP framework for the problem is constructed as follows:
CCCP for the problem

1. Initialize (w0, b0), set k = 0;
2. Construct and solve the problem

min Pvex (w, b)+ P ′cav
(

wk, bk
)
· (w, b) , (3.657)

get the solution (wk + 1, bk + 1); w, b
3. If (wk, bk) dose not convergence, set k = k + 1, go to step 2.

Dual Problem

The convex optimization problem (3.657) that constitutes the core of the CCCP
algorithm is easily reformulated into a dual one using the standard LSSVM
technique. Rewrite the problem (3.657) as

min
1

2
‖w‖2 + C

2

∑l

i=1

(
ξ2
i + ξ∗2

i

)
+ P ′cav

(
wk, bk

)
· (w, b)

s.t. (w·Φ (xi))+ b − yi ≤ ε + ξi , i = 1, . . . , l, (3.658)

yi − (w·Φ (xi))− b ≤ ε + ξi∗ , i = 1, · · · , l.

where ε ≥ 0 is a prior parameter. Note that Pcav(w, b) is nondifferentiable at some
points, it can be shown that the CCCP remains valid when using any super-derivative
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of the concave function. For simplification purposes, we introduce the notations

θi = −C

2
yi

∂It (yif (xi)− 1)

∂ (yf (xi)− 1)

=
⎧⎨
⎩
−C (|f (xi)− yi | − t) , ifyif (xi)− 1 > t

C (|f (xi)− yi | − t) , ifyif (xi)− 1 < −t

0, otherwise
(3.659)

for i = 1, . . . , l. Therefore, the problem (3.658) can be rewritten as

min
1

2
‖w‖2 + C

2

∑l

i=1

(
ξ2
i + ξ∗2

i

)
+
∑l

i=1
θi ((w·Φ (xi))+ b)

s.t. (w·Φ (xi))+ b − yi ≤ ε + ξi , i = 1, · · · , l, (3.660)

yi − (w·Φ (xi))− b ≤ ε + ξ∗i , i = 1, · · · , l.

In order to find the solution of problem (3.660) in H, we need to derive its dual
problem. By introducing the Lagrangian

L
(
w, b, ξ, ξ∗, α, α∗

)

= 1

2
‖w‖2 + C

2

l∑
i=1

(
ξ2
i + ξ∗2

i

)
+

l∑
i=1

θi ((w·Φ (xi))+ b)

+
l∑

i=1

αi ((w·Φ (xi))+ b − yi − ε − ξi)

+
∑l

i=1
α∗i
(
yi − (w·Φ (xi))− b − ε − ξ∗i

)
, (3.661)

where α, α∗ are the Lagrange multiplier vectors, the dual problem is obtained as

1
2

∑l
i=1

∑l
j=1

(
α∗i − αi − θi

) (
α∗j − αj − θj

)
K
(
xi, xj

)

+ 1
2C

∑l
i=1

(
α2
i + α∗2

i

)+ ε
∑l

i=1

(
α∗i + αi

)−∑l
i=1yi

(
α∗i − αi

)
,

s.t.
∑l

i=1

(
αi − α∗i − θi

) = 0, αi, α
∗
i ≥ 0, i = 1, . . . , l.

(3.662)
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For the problem (3.662), it is easy to prove the following theorem.

Theorem 3.9 If (α, α∗ ) is the solution of the problem (3.662), then α∗i αi = 0 for
i = 1, . . . , l.

If we let

θi = θ i + θ̃i , (3.663)

where

θ i =
{
C (|f (xi)− yi | − t) , if yif (xi)− 1 < −t

0, otherwise
(3.664)

and

θ̃i =
{−C (|f (xi)− yi | − t) , if yif (xi)− 1 > t

0, otherwise
(3.665)

for i = 1, . . . , l, furthermore, let

αi = α∗i − θ i, i = 1, · · · , l, (3.666)

then

α∗2
i + α2

i =
(
αi + θ i

)2 + (̃αi − θ̃i
)2

= α2
i + α̃2

i + 2αiθ i − 2α̃i θ̃i + θ
2
i + θ̃2

i

= (αi − α̃i )
2 + 2αiα̃i + 2αiθ i − 2α̃i θ̃i + θ

2
i + θ̃2

i

= (αi − α̃i )
2 + 2θi (αi − α̃i )+�

(
θ i, θ̃i

)
(3.667)

where � (θ i, θ̃i
)

is the constant decided by θi , θ̃i . Therefore, the dual problem
(3.662) equals to the following problem

min
α,̃α

1
2

∑l
i=1

∑l
j=1 (αi − α̃i )

(
αj − α̃j

)
K̂
(
xi, xj

)

+ ε
∑l

i=1 (αi + α̃i )+∑l
i=1

(
θi
C
− yi

)
(αi − α̃i )

s.t.
∑l

i=1

(
αi − α̃∗i

) = 0, αi � −θ i, α̃i � θ̃i , i = 1, · · · , l

(3.668)

where K̂
(
xi, xj

) = (K (
xi, xj

)+ ıij
C

)
, i, j = 1, . . . , l.
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Now, we can construct the RLSSVM based on the CCCP procedure.

RLSSVM
(1) Input the training set (3.635)

(2) Choose the appropriate t, ε > 0 for the ramp loss (3.649); Choose
appropriate penalty parameter C > 0 and kernel function (x, x

′
); Initialize

θ
0
, θ̃0, set k − 1,
(3) Construct and solve the QPP (34) in the kth iterative step

min
α,̃α

1
2

∑1
i=1

∑1
j=1 (αi − α̃i )

(
αj − α̃j

)
K̂
(
xi, xj

)+ ε
∑1

i=1 (αi + α̃i )

+∑1
i=1

(
θk
i

C
− yi

)
(αi − α̃i )

s.t.
∑1

i=1

(
αi − α̃∗i

) = 0, αi � −θ
k

i , α̃i � θ̃ k
i , i = 1, . . . , l

(3.669)

get the solutions
(
αk, α̃k

)
, compute bk based on the KKT conditions; Con-

struct the decision functions

fk(x) =
∑l

i=1

(
αi

k − α̃i
k
)
K (xi, x)+ bk. (3.670)

(4) Compute θ
k
, θ̃ k based on the equations

(5) If
(
θ
k
, θ̃ k

)
=
(
θ
k−1

, θ̃ k−1
)

, then we get the final decision function,

go to step (6); else set k = k + 1, go to step (3);
(6) A new point x ∈ R

n is predicted to the Class by

Class = sgn

(∑l

i=1

(
αi

k − α̃i
k
)
K (xi, x)+ bk

)
. (3.671)

3.5.2 Ramp Loss Nonparallel Support Vector Machine for
Pattern Classification

3.5.2.1 Ramp Loss NPSVM

In this section, we propose the Ramp loss NPSVM, termed as RNPSVM, into which
the Ramp loss function is applied and is sparser and more robust than NPSVM.
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Linear RNPSVM

Primal Problems

We seek the two nonparallel hyperplanes f+(x) = (w+ · x) + b+ = 0 and
f−(x) = (w− · x) + b− = 0 by solving two problems

min
w+b+

1

2
‖ w+ ‖2 + C1

∑p

i=1
Rε,t

(
f+ (xi)

)+ C2

∑p+q

j=p+1
Rs

(−f+
(
xj
))

(3.672)

and

min
w−,b−

1

2
‖ w− ‖2 + C3

∑p+q

i=p+1
Rε,t

(
f− (xi)

)+ C4

∑p

j=1
Rs

(
f−

(
xj
))

(3.673)

where Ci ≥ 0; i = 1, . . . , 4 are penalty parameters, and Rε;t (z) is our proposed
ε-insensitive Ramp loss function,

Rε;t (z) =
⎧⎨
⎩

t − ε; | z |> t

| z | −ε; ε ≤| z |≤ t

0; | z |< ε

(3.674)

which makes the ε-insensitive loss function flat for scores z larger than a predefined
value t > ε. It is obviously that Rε;t (z) can be decomposed into the sum of the convex
ε-insensitive loss and a concave loss,

Rε;t = Iε(z)− It (z) (3.675)

Therefore, the problems (3.672) and (3.673) of the Ramp loss NPSVM can be
reformulated as

min
w+,b+

1

2
‖ w+ ‖2 + C1

∑p

i=1
Rc,t

(
f+ (xi)

)+ C2

∑p+q

j=p+1
Rs

(−f+
(
xj
))

= 1

2
‖w+‖2 + C1

p∑
i=1

Iε
(
f+ (xi)

)+ C2

p+q∑
j=p+1

H1
(−f+

(
xj
))

︸ ︷︷ ︸
convex

−C1

∑p

i=1
It
(
f+ (xi)

)− C2

∑p+q

j=p+1
Hs

(−f+
(
xj
))

︸ ︷︷ ︸
concave

(3.676)
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Fig. 3.13 Geometrical
illustration of the primal
problem (3.676) in R2

and

min
w−,b−

1

2
‖ w− ‖2 + C3

p+q∑
i=p+1

Rε,t

(
f− (xi)

)+ C4

p∑
j=1

Rs

(
f−

(
xj
))

= 1

2
‖w−‖2 + C3

p+q∑
i=p+1

Iε

(
f † (xi)

)
+ C4

p∑
j=1

H1
(
f−

(
xj
))

︸ ︷︷ ︸
convex

−C3

∑p+q

i=p+1
It
(
f− (xi)

)− C4

∑p

j=1
Hs

(
f−

(
xj
))

︸ ︷︷ ︸
concave

(3.677)

Now we discuss the primal problem (21) geometrically in R
2 (see Fig. 3.13).

First, the positive points (marked by ∗,) are separated into three parts by the ε-band
and the t-band, where the ε-band is between the hyperplanes (w+ · x)+ b+ = ε and
(w+ · x)+ b+ = − ε (red thin solid lines), and the t-band is between the hyperplanes
(w+ · x)+ b+ = t and (w+ · x)+ b+ = − t (red thin dotted lines). We hope that the
positive points locate as much as possible in the ε-band, while the errors of the points
clipped in the ε-band and the t-band are measured as �(w+ · xi) + b+ � − ε, and the
points out of the t-band are measured as t − ε; Second, we hope to maximize the
margin between the hyperplanes (w+ · x)+ b+ = ε and (w+ · x)+ b+ = − ε, which
can be expressed by 2ε

‖w‖ ; Third, the negative points (marked by +′
) are separated

into three parts by the hyperplane (w+ · x) + b+ = − 1 (blue thin solid line) and
(w+ · x) + b+ = − s (blue thin dotted line), we need to push the negative class
from the hyperplane (w+ · x) + b+ = − 1 (blue thin solid line) as far as possible,
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while the errors of the points between the hyperplanes (w+ · x) + b+ = − 1 and
(w+ · x) + b+ = − s are measured as 1 + (w+ · x) + b+, and the points left to the
hyperplane (w+ · x) + b+ = − s are measured by 1 − s.

Based on the above three considerations, problem (3.676) is established and the
structural risk minimization principle is implemented naturally. Problem (3.677) is
established similarly. Obviously the above two problems can be solved by the CCCP
procedure separately. Let the convex parts of the two problems be

Pvex
(
w+;b+

) = 1

2
‖w+‖2 + C1

∑p

i=1
Iε
(
f+ (xi)

)+ C2

∑p+q

j=p+1
H1
(−f+

(
xj
))

(3.678)

and

Nvex
(
w−;b−

) = 1

2
‖w−‖2 + C3

∑p+q

i=p+1
Iε
(
f− (xi)

)+ C4

∑p

j=1
H1
(
f−

(
xj
))

(3.679)

and the concave parts be

Pcav
(
w+;b+

) = −C1

∑p

i=1
It
(
f+ (xi)

)− C2

∑p+q

j=p+1
Hs

(−f+
(
xj
))

(3.680)

and

Ncav
(
w−;b−

) = −C3

∑p+q

i=p+1
It
(
f− (xi)

)− C4

∑p

j=1
Hs

(
f−

(
xj
))

(3.681)

separately. The CCCP framework for the two problems is constructed as follows:

Algorithm 3.13 (CCCP for the Problem (3.676)

(1) Initialize
(
w0
+;b

0+
)

, set k = 0;

(2) Construct and solve the problem

min Pvex
(
w+;b+

)+ P ′cav

(
wk+; bk+

)
· (w+;b+

)
; (3.682)

get the solution
(
wk+1+ ; bk+1+

)
;

(3) If
(
wk
+;b

k+
)

not convergence, set k = k + 1, go to step (2).
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Algorithm 3.14 (CCCP for the problem (3.677)

(1) Initialize
(
w0
−;b

0−
)

, set k = 0;

(2) Construct and solve the problem

min Nvex
(
w−;b−

)+N ′cav

(
wk−; bk−

)
· (w−;b−

)
; (3.683)

get the solution
(
wk+1− ; bk+1−

)
;

(3) If
(
wk
−;b

k−
)

not convergence, set k = k + 1, go to step (2).

Dual Problems

The convex optimization problem (3.682) that constitutes the core of the CCCP
algorithm is easily reformulated into dual variables using the standard NPSVM
technique. Rewrite the problem (3.682) as

min
1

2
‖w+‖2 + C1

∑p

i=1

(
ηi + η∗i

)+ C2

∑p+q

j=p+1
ξj + P ′cav

(
wt+; bt+

) · (w+;b+
)

s.t. (w+· xi)+ b+ ≤ ε + ηi; i = 1, . . . , p,

− (w+· xi)− b+ ≤ ε + η∗i ; i = 1, . . . , p,

(
w+· xj

)+ b+ ≤ −1+ ξj ; j = p + 1, . . . , p + q,

ηi, η
∗
i ≥ 0; i = 1, . . . , p,

ξj ≥ 0; j = p + 1, . . . , p + q. (3.684)

note that Pcav(w+;b+) is non-differentiable at some points, it can be shown that the
CCCP remains valid when using any super-derivative of the concave function. For
simplification purposes, we introduce the notations

δj = −C2yj
∂Hs

(
yf+

(
xj
))

∂f+
(
xj
) =

{
C2, if yj f+

(
xj
)
< s

0, otherwise
(3.685)
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for j = p + 1, . . . , p + q, and

θi = −C1
∂It

(
f+ (xi)

)

∂f+ (xi)
=
⎧
⎨
⎩
−C1, if f+ (xi) > t

C1, if f+ (xi) < −t

0, otherwise
(3.686)

for i = 1, . . . , p. Therefore, the problem (29) turns to be

min
1

2
‖w+‖2 + C1

∑p

i=1

(
ηi + η∗i

)+ C2

∑p+q

j=p+1
ξj

+
p∑

i=1

θi
((
w+· xj

)+ b+
)+

p+q∑
j=p+1

δjyj
((
w+· xj

)+ b+
)

s.t. (w+· xi)+ b+ ≤ ε + ηi; i = 1, . . . , p

− (w+· xi)− b+ ≤ ε + η∗i ; i = 1, . . . , p

(
w+· xj

)+ b+ ≤ −1+ ξj ; j = p + 1, . . . , p + q

ηi, η
∗
i ≥ 0; i = 1, . . . , p

ξj ≥ 0; j = p + 1, . . . , p + q (3.687)

In order to get the solutions of problem (3.687), we need to derive its dual
problem. Its Lagrangian is given by

L
(
w+;b+;η(∗)

+; ξ−;α
(∗)
+; γ

(∗)
+; β−;λ−

)
= 1

2
‖w+‖2 + C1

∑p

i=1

(
ηi + η∗i

)

+C2

p+q∑
j=p+1

ξi +
p∑

i=1

θi ((w+· xi)+ b+)+
p+q∑

j=p+1

δjyj
((
w+· xj

)+ b+
)

+
p∑

i=1

αi ((w+· xi)+ b+ − ηi − ε)+
p∑

i=1

α∗i
(− (w+· xi)− b+ − η∗i − ε

)

+
∑p+q

j=p+1
βj

((
w+· xj

)+ b+ + 1− ξj
)−

∑p

i=1
γiηi −

∑p

i=1
γ ∗i η∗i −

∑p+q

j=p+1
λj ξj;
(3.688)
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where α
(∗)
+ = (

αT+; α∗T+
)T =

(
α1, . . . , αp; α∗1 , . . . , α∗p

)T
, γ

(∗)
+ = (

γ T+; γ ∗T+
)T =

(
γ1, · · · , γp; γ ∗1 , . . . , γ ∗p

)T
, β− = (βp+ 1; . . . ;βp + q)T, λ− = (λp + 1; . . . ;βp + q)T

are the Lagrange multiplier vectors. The Karush−Kuhn−Tucker (KKT) conditions
[71] for w+, b+, η(∗)

+ , ξ− and α
(∗)
+ , γ

(∗)
+ , β−, λ− are given by

𝛥

w+L = w+ +
∑p

i=1
αixi −

∑p

i=1
α∗i xi −

∑p+q

j=p+1
βjxj +

∑p

i=1
θixi

+
∑p+q

i=p+1
δjxj = 0;

(3.689)

𝛥

b+L =
∑p

i=1
αi −

∑p

i=1
α∗i +

∑p+q

j=p+1
βj +

∑p

i=1
θi −

∑p+q

i=p+1
δj = 0

(3.690)

𝛥

η+L = C1e+ − α+ − γ+ = 0 (3.691)

𝛥

η
Reject
+

L = C1e+ − α∗+ − γ ∗+ = 0 (3.692)

𝛥

ξ−L = C2e− − β− − λ− = 0 (3.693)

where e+= (1, . . . , 1)T ∈ R
p, e− = (1, . . . , 1)T ∈ R

q . Since γ+, γ ∗+ ≥ 0, λ− ≥ 0,
from (3.691)–(3.693) we have

0 ≤ α+, α∗+ ≤ C1e+; (3.694)

0 ≤ β− ≤ C2e− (3.695)

and from (3.695), we have

w+ =
∑p

i=1

(
α∗i − αi − θi

)
xi −

∑p+q

j=p+1

(
βj − δj

)
xj (3.696)
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Then putting (3.696) into the Lagrangian (3.692) and using, we obtain the dual
problem

min
1

2

∑p

i=1

∑p

j=1

(
α∗i − αi − θi

) (
α∗j − αj − θj

) (
xi· xj

)

−
p∑

i=1j

p+q∑
=p+1

(
α∗i − αi − θi

) (
βj − δj

) (
xi · xj

)

+1

2

p+q∑
i=p+1j

p+q∑
=p+1

(βi − δi)
(
βj − δj

) (
xi · xj

)

+ε

p∑
i=1

(
α∗i + αi

)−
p+q∑

i=p+1

βi

s.t.
∑p

i=1

(
α∗i − αi − θi

)−
∑p+q

j=p+1

(
βj − δj

) = 0,

0 ≤ α+; α∗+ ≤ C1e+,

0 ≤ β− ≤ C2e− (3.697)

If we let

θi = θ i + θ̃i (3.698)

where

θ i =
{
C1, if f+ (xi) < −t

0, otherwise
(3.699)

and

θ̃i =
{−C1; if f+ (xi) > t

0; otherwise
(3.700)

for i = 1, . . . , p, furthermore, let

αi = α∗i − θ i; α̃i = αi + θi;Reject i = 1, . . . , p (3.701)
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and

βj = βj − δj ; j = p + 1, . . . , p + q (3.702)

the dual problem (3.697) equals to the following problem

min
α+,x+,β̂−

1

2

∑p

i=1

∑p

j=1
(αi − α̃i )

(
αj − α̃j

) (
xi · xj

)−
∑p

i=1

∑p+q

j=p+1
(αi − α̃i ) βj

(
xi · xj

)

+1

2

∑p+q

i=p+1j=p+1

∑p+q

i=p+1
βiβj

(
xi · xj

)+ ε
∑p

i=1
(αi + α̃i )−

∑p+q

i=p+1
βi

s.t.
∑p

i=1
(αi − α̃i )−

∑p+4

j=p+1
βj = 0

−θ+ � α+ � C1e+ − θ+

θ̃+ � α̃+ � C1e+ + θ̃+

−δ− � β− � C2e− − δ− (3.703)

where α+ =
(
α1; . . . ; αp

)T
, α̃+ =

(̃
α1; . . . ; α̃p

)T
, β− =

(
βp+1; . . . ; βp+q

)T
, and

θ+ =
(
θ1; . . . ; θp

)T
, θ̃+ =

(
θ̃1; . . . ; θ̃p

)T
, δ− =

(
δp+1; . . . ; δp+q

)T
.

Concisely, this problem can be further formulated as

min
π

1

2
π̃ Λ̃π̃ + κ̃ π̃

s.t. ẽ π̃ = 0, Ṽ � π̃ � Ũ (3.704)

where

π̃ =
(
αT+; α̃T+; βT

−
)T

, (3.705)

κ̃ =
(
εeT+; εeT+;−eT−

)T
, (3.706)

ẽ =
(
−eT+; eT+; eT−

)T
, (3.707)
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Ũ =
((

C1e+ − θ+
)T
;
(
C1e+ + θ̃+

)T
; (C2e− − δ−)T

)T
, (3.708)

Ṽ =
(
−θ

T
+; θ̃T+;−δT−

)T
, (3.709)

and

Λ̃ =
(

H1 −H2

−HT
2 H3

)
;H1 =

(
AAT −AAT

− AAT AAT

)
;H2 =

(
ABT

− ABT

)
;H3 = BBT

(3.710)

where A= (x1; . . . ; xp
)T ∈ R

p×n, B = (xp+1; . . . ; xp+q

) ∈ R
q×n.

Obviously, the dual problem (3.708) is a convex QPP. In the same way, the dual
of the problem (3.687) is obtained

min
1

2
π̂TΛ̂π̂ + κ̂Tπ̂

s.t. êπ̂ = 0,

V̂ ≤ π̂ ≤ Û . (3.711)

where

π̂ =
(
αT
−;α̃

T
−;β

T
+
)T

(3.712)

κ̂ =
(
εeT
−;εe

T
−; − eT+

)T
(3.713)

ê =
(
−eT

−;e
T
−; − eT+

)T
(3.714)

Û =
((

C3e− − θ−
)T
;
(
C3e− + θ̃−

)T
; (C4e+ − δ+)T

)T
(3.715)

V̂ =
(
−θ

T
−;θ̃T

−; − δ
T
+
)T

(3.716)

α− =
(
αp+1; . . . ; αp+q

)T (3.717)
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α̃− =
(
αp+1;Reject . . . ; α̃p+q

)T (3.718)

β+ =
(
β1; . . . ; βp

)T
(3.719)

δ+ =
(
δ1; . . . ; δp

)T
(3.720)

θ− =
(
θp+1; . . . ; θp+q

)T
(3.721)

θ̃− =
(
θ̃p+1; . . . ; θ̃p+q

)T
(3.722)

δj = −C4yj
∂Hs(yj f−(xj))

∂f−(xj) =
{
C4, if yjf−

(
xj
)
< s

0, otherwise
, j = 1, . . . , p

(3.723)

θ i =
{
C3, if f− (xi) < −t

0, otherwise
, i = p + 1, . . . , p + q (3.724)

and

θ̃i =
{−C3, if f− (xi) < −t

0, otherwise
, i = p + 1, . . . , p + q (3.725)

and

Λ̂ =
(

Q1 Q2

QT
2 Q3

)
;Q1 =

(
BBT −BBT

− BBT BBT

)

Q2 =
(

BAT

− BAT

)
;Q3 = AAT (3.726)

Now, we can construct the linear RNPSVM based on the CCCP procedure as
follows:
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Algorithm 3.15 (Linear RNPSVM)

(1) Input the training set
(2) Choose the appropriate s < 1 for the ramp loss and t > ε for the ramp loss; Choose

appropriate parameters ε > 0;Ci > 0;i = 1; 2; 3; 4; Initialize δ0−; θ
0
+; θ̃0+, and δ0+;

θ
0
−; θ̃0−, set k = 1;

(3) Construct and solve the QPPs and in the k-th iterative step

min
1

2
TΛ̃π̃ + κ̃Tπ̃ (3.727)

s.t. ẽTπ̃ = 0,

Ṽ k ≤ π̃ ≤ Ũ k.

where

Ũ k =
((

C1e+ − θ
k

+
)T

,
(
C1e+ + θ̃ k+

)T
,
(
C2e− − δk−

)T
)T

(3.728)

Ṽ k =
(
−θ

kT
+;θ̃

′〈T
+; − δkT−

)T
(3.729)

and

min
1

2
π̂TΛ̂π̂ + κ̂Tπ̂ (3.730)

s.t. êT π̂ = 0,

V̂ k ≤ π̂ ≤ Û k.

where

Ûk =
((

C3e− − θ
k

−
)T

;

(
C3e− + θ̃ k−

)T

;

(
C4e+ − δk+

)T
)T

(3.731)

V̂ k =
(
−θ

kT
−;θ̃

1〈T
−; − δ

kT
+
)T

(3.732)



3.5 Loss Function of Support Vector Machine Classification 233

get the solutions

(
αk+; α̃k

+;β
k
)

and

(
α
k; α̃k; βk

+
)

, compute

wk+ =
∑p

i=1

(
αk
i − α̃k

i

)
xi −

∑p+q

j=p+1
βjxj (3.733)

and

wk− =
∑p+q

i=p+1

(
αk
i − α̃k

i

)
xi +

∑p

j=1
βjxj , (3.734)

compute bk+, bk− based on the KKT conditions; Construct the decision functions

f+k (x) =
(
wk+· x

)
+ bk+ (3.735)

f−k (x) =
(
wk−· x

)
+ bk− (3.736)

(4) Compute δk−, θ
k

+, θ̃ k+, and δk+, θ
k

−, θ̃ k−, based on the Equations.

(5) If
(
δk−, θ

k

+, θ̃ k+
)
=
(
δk−1− , θ

k−1
+ , θ̃

′〈−1
+

)
and

(
δle+ , θ

1
−〈, θ̃ k−

)
=
(
δk−1+ , θ

k−1
− , θ̃ k−1−

)
,

then we get the solution the solutions (w+, b+) =
(
wk+, bk+

)
and (w−, b−) =(

wk−, bk−
)
, go to step (6); else set k = k + 1, go to step (2);

(6) A new point x ∈ R
n is predicted to the Class by

Class = arg min |(wm· x)+ bm| , (3.737)

where | · | is the perpendicular distance of point x from the planes (wm· x)+bm = 0,
m = − , +.

Nonlinear RNPSVM

Now we extend the linear RNPSVM to the nonlinear case. Introduce the kernel
function K(x, x

′
) = (Φ(x) · Φ(x

′
)) and the corresponding transformation

x = Φ(x) (3.738)

where x ∈H, H is the Hilbert space, we can construct the corresponding problems
(3.676) and (3.677) inH and apply the CCCP procedure to solve them. The resulting
algorithm is different with Algorithm 3.4 only that

1. The inner products AT, ABT, BAT, BBT in the dual problems are instead of the
appropriate kernel function K(A,AT), K(A,BT), K(B,AT) and K(B,BT).
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2. The decision functions constructed in step (3) turn to be

f+k (x) =
∑p

i=1

(
αk
i − α̃k

i

)
K (xi, x)−

∑p+q

j=p+1
βk
j K

(
xj , x

)+ bk+, (3.739)

f−k (x) =
∑p+q

i=p+1

(
αk
i − α̃k

i

)
K (xi, x)+

∑p

j=1
β
′〈
j K

(
xj , x

)+ bk− (3.740)

3. For the new point x ∈ R
n in step (6), it is predicted to the Class by

Class = arg min
⌊
rm(x) | . (3.741)

Discussion

Complexity

Obviously, problems (3.732) and (3.736) solved in each iteration are convex QPPs
and have the same formulation as the dual problem solved in the standard SVM,
therefore the well-known SMO-type decomposition method [68] implemented in
LIBSVM can be applied directly with minor modifications, of which the computa-
tional complexity of SMO for such problem (3.732) and (3.736) is about

#iteration×O(1.5l) (3.742)

(#iteration is the number of the iterations in SMO, empirically it may be higher
than linear to the number of training data, l = p + q is the size of the training set) if
most columns of the kernel matrix are cached throughout iterations. Therefore, the
complexity of Algorithm 3.14 is

2 ∗ k ∗ #iteration×O(1.5l) (3.743)

where k is the number of the iterations in CCCP.

Initialize

Setting the initial δ0−, θ
0
+, θ̃0+, and δ0+, θ

0
−, θ̃0−, to zero makes the first convex

optimization identical to the standard NPSVM optimization. Useless support vectors
are eliminated during the following iterations. However, we can also initialize them
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according to the outputs f+0 (x) and f−0 (x) of standard NPSVM on a subset of
examples

δ0
j =

{
C2, if yf+0 (xi) < s

0, otherwise
, j = p + 1, . . . , p + q (3.744)

θ
0
i =

{
C1, if f+0 (xi) < −r

0, otherwise
, i = 1, . . . , p, (3.745)

θ̃0
i =

{−C1, if f+0 (xi) > f

0, otherwise
, i = 1, . . . , p, (3.746)

δ0
j =

{
C4, if yf−0

(
xj
)
< s

0, otherwise
, j = 1, . . . , p, (3.747)

θ
0
i =

{
C3, if f−0 (xi) < −f
0, otherwise

, i = p + 1, . . . , p + q, (3.748)

and

θ̃0
i =

{−C3, if f−0 (xi) > r

0, otherwise
, i = p + 1, . . . , p + q (3.749)

In practice, this procedure is robust, and its overall training time can be
significantly smaller than the standard NPSVM training time [87].

Sparsity

Due to the application of the ramp loss, RNPSVM becomes sparser than the standard
NPSVM. We know that

w+ =
∑p

i=1
(αi − α̃i ) xi −

∑p+q

j=p+1
βjxj , (3.750)

so the support vectors are the corresponding positive points with αi − α̃i �= 0 and
negative points with βi �= 0. It is easy to show that

1. Each pair of α∗i and αi cannot be both simultaneously nonzero, i.e. α∗i αi = 0,
i = 1, . . . ,p.

2. If α∗i = C1, then αi = 0, if αi = C1, α̃i = 0, for i = 1, . . . ,p.
3. If α∗i = 0, then αi = 0, if αi = 0, then αi = 0, for i = 1, . . . ,p.
4. If β j = 0, then βj = 0, for j = p + 1, . . . ,p + q.
5. If β j = C2, then βj = 0, for j = p + 1, . . . ,p + q.
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Therefore, the bounded support vectors (with α∗i = C1 or αi = C1 or β j = C2) of
the standard NPSVM are not support vectors any more in RNPSVM, similar results
can be derived for the problem (3.711). So RNPSVM is sparser than NPSVM.

Selection of s and t

If s→ −∞ and t→∞, then Rs→H1 and Rεf→ Iε, in other words, if s takes large
negative values and r takes large positive values, the Ramp loss used in RNPSVM
cannot help to remove outliers, and the RNPSVM will degenerate to the standard
NPSVM. For t, it will be better chosen in (ε;1). Take Fig. 3.12 as the example, on one
hand, we need to put the negative class from the hyperplane (w+ · x) + b+ = − 1
(blue thin solid line) as far as possible, on the other hand, if we take t = 1, the
positive points outside (w+ · x) + b+= −t = − 1 will be taken as outliers, so t = 1
is the largest value we suggest to choose. For s, s = − 2 is the largest value we
suggest, since almost all the points are right-up to (w+ · x) + b+ = − s = 2, the
negative points left to the hyperplane (w+ · x) + b+= 2 treated as outliers are few.

3.5.3 A New Classification Model Using Privileged
Information and Its Application

3.5.3.1 Fast Twin Support Vector Machine Using Privileged Information
(FTSVMPI)

Learning Model Using Privileged Information (LUPI)

Different with standard binary classification problem, LUPI is given a training set
as follows:

T = (x1, x
∗
1 , y1

)
, . . . ,

(
xl, x

∗
l , yl

)
(3.751)

where xi ∈ Rn, x∗l ∈ Rm, yi ∈ {−1, 1} , i = 1, . . . , l, and the privileged
information x∗i is only included in the training input

(
xi, x

∗
i

)
, while not in any testing

input x. In order to find a real valued function g(x) in Rn, such that the value of y for
any x can be predicted by the decision function

f (x) = sgn (g(x)) (3.752)

In order to explain the basic idea of LUPI, we first introduce the definition of
oracle function [90].

Definition 3.7 (Oracle function). Given a traditional classification problem with
the training set

T = {(x1, y1) , . . . , (xl, yl)} (3.753)
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Suppose there exists the best but unknown linear hyperplane:

(w0 · x)+ b0 = 0 (3.754)

The oracle function ξ (x) of the input x is defined as follows:

ξ0 = ξ(x) = [1− y ((w0 · x)+ b0)]+ (3.755)

where

[η]+ =
{
η, if η ≥ 0;
0, otherwise

(3.756)

If we could know the value of the oracle function on each training input xi such as
we know the triplets

(
xi, ξ

0
i , yi

)
with ξ0

i = ξ(x), i = 1, . . . , l, we can accelerate its
learning rate. However, in fact, a teacher does not know either the values of slacks
or the oracle function. Instead, Vapnik et al. use a so-called correcting function to
approximate the oracle function. In the linear case,

φ
(
x∗
) = (w∗ · x∗)+ b∗ (3.757)

Replacing ξ i(i = 1, . . . , l) by φ(xi∗) in the primal problem of SVM, we can get
the following primal problem:

min
w,w∗,b,b∗

1
2‖w‖2 + C

l∑
i=1

[
(w∗ · xi∗)+ b∗

]
,

s.t. yi [(w · xi)+ b] ≥ 1− [(w∗ · xi∗)+ b∗
]
,

(w∗ · xi∗)+ b∗ ≥ 0, i = 1, . . . , l.

(3.758)

The corresponding dual problem is as follows:

max
α,β

l∑
j=1

αj − 1
2

l∑
i=1

l∑
j=1

yiyj αiαj
(
xi · xj

)
,

s.t.
l∑

i=1
αiyi = 0,

l∑
i=1

(αi + βi − C) = 0,

l∑
i=1

(αi + βi − C) · xi = 0,

αi ≥ 0, βi ≥ 0, i = 1, . . . , l

(3.759)
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For the nonlinear case, introducing two transformations: x = �(x) : Rn → H and
x∗ = �∗(x∗) : Rm → H∗ , the primal problem is constructed as follows:

min
w,w∗,b,b∗

1
2‖w‖2 + C

l∑
i=1

[
(w∗ · xi∗)+ b∗

]
,

s.t. yi [(w ·�(xi))+ b] ≥ 1− [(w∗ ·�∗ (xi∗))+ b∗
]
,

(w∗ ·�∗ (xi∗))+ b∗ ≥ 0, i = 1, . . . , l.

(3.760)

Similarly, we can give its dual programming:

min
α,β

1
2

l∑
i=1

l∑
j=1

yiyjαiαjK
(
xi · xj

)−
l∑

j=1
αj ,

s.t.
l∑

i=1
αiyi = 0,

l∑
i=1

(αi + βi − C) = 0,

l∑
i=1

(αi + βi − C)K∗ (x∗i · x∗j
) = 0,

αi ≥ 0, βi ≥ 0, i = 1, . . . , l

(3.761)

FTSVMPI

Let us reconsider the above classification problem with l1 positive points and
l2 negative points. Suppose that the positive training points and their additional
information (privileged information) are denoted by A ∈ Rl1×n and A∗ ∈ Rl1×m,
where each row of A ∈ Rn and A∗ ∈ Rm represents a training point and an additional
information. Similarly, B ∈ Rl2×n and B∗ ∈ Rl2×m represent all the data points,
and its additional information that belongs to the negative class.

Linear Case

Similar to [12, 21, 58, 91, 92] in order to improve the training speed of LUPI,
we first use two small models to contrast the classifier. Replacing slack variables
by φ

(
A∗i
)

and φ
(
B∗i
)

in the primal problem of TWSVM (Twin support vector
machine) [58] and using two linear correcting functions to approximate the related
oracle functions:

φ
(
A∗i
) = (w ∗ ·A∗i

)+ b∗ (3.762)

and

φ
(
B∗i
) = (w∗+ · B∗i

)+ b∗+ (3.763)
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where w∗+ ∈ Rm1 , w∗− ∈ Rm2 , b∗+, b∗ ∈ R and is a dot product operation. The
corresponding model can be formulated as

min
w+,w∗+,b+,b∗+

1
2‖Aw+ + e+b+‖2

2 + c1e
(
B∗w∗+ + eb∗+

)
,

s.t. − (Bw+ + e−b+) ≥ e − (B∗w∗+ + eb∗+
)

B∗w∗+ + eb∗+ ≥ 0

(3.764)

and

min
w−,w∗−b∗−,b−

1

2
‖Bw− + e−b−‖2

2 + c2e
T+
(
A∗w∗− + e+b∗−

)

s.t. (Aw− + e+b−) ≥ e+ −
(
A∗w∗− + e+b∗−

)
, (3.765)

A∗w∗− + e+b∗− ≥ 0,

where c1, c2 ≥ 0 are the pre-specified penalty factors, e+, e− are vectors of ones of
appropriate dimensions.

Next, we use 1-norm distance to replace the square of the 2-norm of model [92]
and [67]. Specifically, ‖Aw+ + e+b+‖2

2 is replaced by ‖Aw+ + e+b+‖1, which
can be easily converted to a linear term eT+ a with the corresponding constraint

−α ≤ Aw+ + e+b+ ≤ α, where α = {α1, . . . ,αl1

}
. So the optimization problem is

replaced by

min
w+,w∗+b∗+,b+

1

2
eT+α + c1e

T−
(
B∗w∗+ + e−b∗+

)
,

s.t. − (Bw+ + e−b+) ≥ e− −
(
B∗w∗+ + e−b∗+

)
, (3.766)

−α ≤ Aw+ + e+b+ ≤ α,

B∗w∗1 + e−b∗1 ≥ 0

Similarly, the optimization problem can be converted to

min
w−,w∗−b∗−,b−,β

1

2
eT−β + c2e

T+
(
A∗w∗̇− + e+b∗−

)

s.t. (Aw− + e+b−) ≥ e+ −
(
A∗w∗− + e+b∗−

)
,
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−β ≤ Bw− + e−b− ≤ β, (3.767)

A∗w∗− + e+b∗− ≥ 0

Finally, we get two nonparallel hyperplanes

f+(x) = wT+x + b1 = 0 and f (x) = wT−x + b = 0, (3.768)

where w+, w− ∈ Rn, b+b− ∈ R. A new data point x ∈ Rn is then assigned to the
positive or negative class, depending on which of the two hyperplanes it lies closer
to, i.e.

f (x) = arg min {d+ (x) , d−(x)} (3.769)

where

d+(x) =
∣∣∣wT+x + b+

∣∣∣ , d−(x) =
∣∣∣wT−x + b−

∣∣∣ , (3.770)

and | · | is the perpendicular distance of point x from the planes wT+x + b+ = 0 or
wT−x + b− = 0.

Non-linear Case

Now we extend the linear FTSVMPI to the non-linear case. Similar to
the linear case, two hyperplanes f+(x) = (w+ · Φ(x)) + b+ = 0 and
f−(x〉 = (w− · Φ(x)) + b− =0 are considered, where Φ(·) is a non-linear
mapping from a low dimensional space to a higher dimensional Hilbeit space
H. According to Hilbert space theory [67], w+ and w− can be expressed as
w+ = ∑l1+l2

i=1 + (λ+)i.Φ
(
x1̇

) = Φ(M)λ+ and w− = ∑l1+l2
i=1 (λ−)1̇Φ

(
x1̇

) =
Φ(M)λ− respectively. Similarly w∗+ =

∑l1+l2
i=1

(
λ∗+
)

1·Φ
(
x∗1
) = Φ (M∗) λ∗+ and

w∗− =
∑l1+l2

i=1 + l2
(
λ∗−
)
l
Φ
(
x∗1
) = Φ (M∗) λ∗−. So the two hyperplanes turn to be

the following kernel-generated formulations:

K
(

xTMT
)
λ+ + b+ = 0, (3.771)

K
(
xTMT

)
λ− + b− = 0, (3.772)

where K is a kernel function: K(xi, xj) = (Φ(x1) · Φ(xj)), (·) denotes dot product
operation, MT = [ATBT]n × l, λ+, λ− ∈ Rl, and b+, b− ∈ R.
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Correspondingly, the correcting function can be written as

K∗ (x∗TM∗T
)
λ∗+ + b∗+ = 0, (3.773)

K∗ (x∗TM∗T
)
λ∗− + b∗− = 0, (3.774)

whereK∗ is a kernel function:K∗
(
x∗j x∗j

)
=
(
Φ
(
x∗i
) ·Φ

(
x∗/
))

, M∗ = [A∗TB∗T ]n × l,

λ∗+, λ∗− ∈ Rl , and b∗+, b∗− ∈ R. Therefore, the optimization problems for the
nonlinear case are constructed as

min
λ∗+,b∗+,λ+,b+,w∗+,ϕ

1

2
eT+Φ + c1e

T−
(
K∗ (B∗,M∗T

)
λ∗+ + e−b∗+,

s.t. −
((

B,MT
)
λ+ + e−b+

)
≥

e− −
(
K
(
B∗M∗T ) λ∗+ + e−b∗+

)
, (3.775)

−Φ ≤ K
(
A,MT

)
λ+ + e+b+ ≤ Φ,

K∗
(
B∗M∗T

)
λr+ + e−b∗+ > 0,

and

min
λ∗−,b∗−,λ−,b−,w∗−,ϕ

1

2
eT−Φ + c2e

T+
(
K∗ (BA∗,M∗T

)
λ∗− + e+b∗−,

s.t. −
(
K
(
AMT

)
λ+ + e−b+

)
≥

e+ −
(
K
(
A∗M∗T ) λ∗− + e+b∗−

)
, (3.776)

−Φ ≤ K
(
BMT

)
λ− + e−b− ≤ Φ,

K∗
(
A∗M∗T

)
λ∗+ + e+b∗− ≥ 0,

Notice that problems (3.775) and (3.776) are two standard Linear Programming
(LP).
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Discussion

Since LUPI-SVM model is more than two times slower than the standard SVM
and usually needs to solve a more difficult optimization problem than the standard
SVM, we improve the LUPI model by the following two ways: reducing the
model size and using L-l norm 1 regularization term method. For the first way,
not only does FTSVMPI accelerate the training speed but also inherits the virtue
of TWSVM [58] which uses two nonparallel hyperplanes to construct a decision
function, and has a better generalized capability than traditional LUCPI (Jayadeva
et al. used a famous XOR datasets to fully confirm this viewpoint [58]. Furthermore,
unlike TWSVM, our model avoids solving the inverse matrix whose computational
complexity is more than o(l3) and further reduce the model’s training time. For the
second way, FTSVMPI can obtain advantages as follows: (1) our model can help
to perform feature ranking and selection in the learning process. In the result, the
final classification rule found by our FTSVMPI might be more interpretable. (2)
Since the computational cost of solving LP is much cheaper than solving (lpp with
the same scale, our model is usually much faster and cheaper thani the training of
LUPI. In fact, some recent works have adapted different strategies and methods to
improve the speed and quality of SVM [93–95]. For example, Luo et al. proposed
a manifold regularized multitask SVM learning algorithm to improve the quality of
classification [96], Zhou and Tao et al. proposed a fast gradient method for SVM
[95]. We are very interested in how to adding privileged information into these
improved algorithms for SVM in the future work.
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Part II
Functional Analysis



Chapter 4
Feature Selection

In big data analytics, irrelevant and redundant features may not only deteriorate the
performances of classifiers, but also slow down the prediction process. Although
there is the availability of many classification models for prediction, it is a challenge
to choose a set of important features that can lead to a satisfactory classifier. This
chapter outlines some achievements of feature selection research in the last decade.
Section 4.1 has three subsections. The first is an integrated scheme for feature
selection and classifier evaluation in the context of prediction [1]. The second is
about two-stage hybrid feature selection algorithms [2]. The third one is the feature
selection with attributes clustering by maximal information coefficient [3]. Section
4.2 presents two regularizations for feature selections. They are feature selection
with MCP2 regularization [4] and feature selection with �2, 1 − 2 regularization
[5]. Finally, Sect. 4.3 describes two distance-based feature selections. They are
the spatial distance join based feature selection [1] and a domain driven two-
phase feature selection method based on bhattacharyya distance and kernel distance
measurements [6].

4.1 Systematic Methods for Feature Selection

4.1.1 An Integrated Feature Selection and Classification
Scheme

This section presents the research scheme and the major components of the
scheme, including feature selection methods, MCDM methods, and classification
algorithms. Based on the findings of [7], this study designs the research scheme with
careful consideration of these three factors. First, multiple datasets, representing
different sizes and domains, are selected for the experimental study. Second, five
accuracy indicators are used to evaluate classifiers. Third, tenfold cross-validation
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Fig. 4.1 Research scheme

technique is applied to the sample datasets to select features. The research scheme
is summarized in Fig. 4.1.

The datasets are handled by two different approaches. The first approach applies
traditional feature selection and classification algorithms to the datasets to get
prediction results. In the second approach, feature selection and classification are
conducted in four steps. First, feature selection is conducted using traditional
techniques. Features are then ranked using the proposed feature selection method.
The third step employs MCDM methods to evaluate feature selection techniques
and choose the better performed techniques. In the last step, the selected features
are used in the classification. The classification results of the first and second
approaches are compared to examine whether the proposed feature selection
and MCDM methods can improve the prediction accuracy. The performances of
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classifiers are also evaluated using MCDM methods and a recommendation of
classifiers for prediction is made based on their accuracy and reliability.

4.1.1.1 Proposed Feature Selection Methods

The proposed feature selection approach makes use of both types of techniques.
Weka is used throughout this study to implement feature selection and classification
tasks [8]. Four types of feature selection evaluators are provided by Weka: Cfs-
SubsetEval, ConsistencySubsetEval, ClassifierSubsetEval, and WrapperSubsetEval.
CfsSubsetEval selects attributes that are highly correlated with the class label and
have low inter-correlation. The second method projects training data onto attribute
set to measure the level of consistency in the class values. The goal is to find
the smallest subset with the highest consistency. The third and fourth methods
belong to wrapper approach and they both use a classifier to evaluate attributes.
The difference is that ClassifierSubsetEval measures attribute sets on the training
data and WrapperSubsetEval uses cross-validation.

The proposed feature selection approach is based on the results of traditional
feature selection methods. The importance of feature ai is measured by a weight
Wa, which is calculated as:

Wai =
countnj=1

(
bij
)

n
×
∑n

j=1

(
bij
)2

∑n
j=1 bij

, i = 1, 2, · · · , n (4.1)

Where n is the number of feature selection techniques, m is the number of features,
and bj is the numeric value generated by each feature selection technique. A feature
with a high weight indicates that it is chosen by many feature selection methods and
the variations of values generated by different feature selection techniques for this
feature are low. Therefore, features can be sorted according to their weights.

This study chooses WrapperSubsetEval, CfsSubsetEval, and ConsistencySub-
setEval, as feature subset evaluators. Wrapper-SubsetEval uses nine classifiers as
base learners for estimating the accuracy of subsets. The classifiers are described in
a later section. Each classifier represents one feature selection method. Thus, there
are total eleven feature selection methods. Some of them are reviewed as below.

4.1.1.2 MCDM Methods

Multiple criteria decision making (MCDM) aims at solving decision problems with
multiple objectives and often conflictive constraints [9–11]. Algorithm evaluation
or selection normally needs to examine more than one criterion and can be modeled
as MCDM problems. Two types of algorithm evaluation tasks are considered: the
evaluation of feature selection techniques and classification algorithms. In order to
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do so, the following provides an overview of five MCDM methods, and explains
how they are used in the experimental study to evaluate algorithms.

Data Envelopment Analysis (DEA)

The original DEA model presented by [12] is called “CCR ratio model”, which uses
the ratio of outputs to inputs to measure the efficiency of DMUs. Assume that there
are n DMUs with m inputs to produce s outputs. xij and yrj represent the amount
of input i and output r for DMU, respectively. Then the ratio-form of DEA can be
represented as:

max h0 (u, v) =∑r uryro/
∑

i vixio

subject to
∑

r uryrj/
∑

i vixij ≤ 1, for j = 1, 2 · · · , n, ur , vi ≥ 0, for all i
(4.2)

where the ur
′

and the vi
′

are the variables and the yro
′

and xio
′

are the observed
output and input values of the DMU to be evaluated (i.e., DMUo), respectively [13].

The equivalent linear programming problem using the Charnes-Cooper Transfor-
mation is

max z =∑s
r=1 μryro

subject to
∑m

i=1 vixi0 = 1, μr, vi ≥ 0∑m
i=1 vixi0 = 1, μr, vi ≥ 0

(4.3)

Comparing with the CCR model, a constraint
∑n

j=1 λj = 1is added in the BCC
model. These models can be solved using the simplex method for each DMUs.
DMUs with value of 1 are efficient and others are inefficient.

Nakhaeizadeh and Schnabl [14] proposed to use DEA approach in data mining
algorithms selection. They argued that in order to make an objective evaluation
of data mining algorithms that all the available positive and negative properties of
algorithms are important and DEA models can take both aspects into consideration.
Positive and negative properties of data mining algorithms can be considered as out-
put and input components in DEA, respectively. For example, the overall accuracy
rate of a classification algorithm is an output component and the computation time
of an algorithm is an input component. Using existing DEA models, it is possible to
give a comprehensive evaluation of feature selection and classification algorithms.

ELimination and Choice Expressing REality (ELECTRE)

ELECTRE stands for ELimination Et Choix Traduisant la REalite (ELimination
and Choice Expressing the REality) and was first proposed by Roy [15] to choose
the best alternative from a collection of alternatives. ELECTRE III is chosen in
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this section because it is appropriate for the sorting problem. The procedure can be
summarized as follows:

Step 1: define a concordance and discordance index set for each pair of alternatives
Aj and Ak, and j, k = 1, 2· · ·m; i �= k.

Step 2: add all the indices of an alternative to get its global concordance index Cki

Step 3: define an outranking credibility degree σ s(Ai,Ak) by combining the
discordance indices and the global concordance index.

Step 4: define two outranking relations using descending and ascending distillation.
Descending distillation selects the best alternative first and the worst alternative
last. Ascending distillation selects the worst alternative first and the best alterna-
tive last.

Step 5: alternatives are ranked based on ascending and descending distillation
processes.

Preference Ranking Organisation Method for Enrichment of Evaluations
(PROMETHEE)

The Promethee methods use pairwise comparisons and outranking relationships to
choose the best alternatives. Since the purpose of this section is to build a ranking
of classification algorithms, PROMETHEE II is selected. The PROMETHEE II
procedure as:

Step 1: define aggregated preference indices. Let a, b ∈ A, and let:

{
π (a, b) =∑k

j=1 Pj (a, b)wj ,

π (b, a) =∑k
j=1 Pj (b, a)wj

(4.4)

where A is a finite set of possible alternatives k represents the number of
evaluation criteria and wj is the weight of each criterion. Arbitrary numbers for
the weights can be assigned by the DM. The weights are then normalized to
ensure that

∑k
j=1 wj = 1. π(a, b) indicates how a is preferred to b and π(b,a)

indicates how b is preferred to a. Pj(a, b) and Pj(b,a) are the preference functions
for alternatives a and b.

Step 2: calculate π(a,b) and π(b, a) for each pair of alternatives of A
Step 3: define the positive and the negative outranking flow as follows

The positive outranking flow:

φ+(a) = 1

n− 1

∑
x∈A

π (a, x) , (4.5)

The negative outranking flow

φ−(a) = 1

n− 1

∑
x∈A

π (x, a) , (4.6)
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Step 4: compute the net outranking flow for each alternative as follows:

φ−(a) = φ+(a)− φ−(a), (4.7)

When φ(a) > 0, a is more outranking all the alternatives on all the evaluation
criteria. When φ(a) < 0, a is more outranked.

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

The Technique for order preference by similarity to ideal solution (TOPSIS) method
is proposed to rank alternatives over multiple criteria. It finds the best alternatives
by minimizing the distance to the ideal solution and maximizing the distance to
the nadir or negative-ideal solution. The following TOPSIS procedure adopted from
Opricovic and Tzeng [11] is used:

Step 1: calculate the normalized decision matrix. The normalized value rij is
calculated as

rij = xij /

√√√√√
J∑

j=1

x2
ij , i = 1, 2, · · · , J ; i = 1, 2, · · · , n. (4.8)

where J and n denote the number of alternatives and the number of criteria,
respectively. For alternative Aj, the performance measure of the i-th criterion Ci

is represented by xij.
Step 2: develop a set of weights wi for each criterion and calculate the weighted

normalized decision matrix. The weighted normalized value vij is calculated as:

vij = wirij , j = 1, 2, · · · , J ; i = 1, 2, · · · , n.

where wi is the weight of the ith criterion, and
∑n

i=1 wi = 1.
Step 3: find the ideal alternative solution S+, which is calculated as:

S+ = {v+1 , · · · , v+n
} = {(maxj |i ∈ I ′

)
,
(

minj vij |i ∈ I ′′
)}

where I
′

is associated with benefit criteria and I′′ is associated with cost criteria.
Step 4: find the negative-ideal alternative solution S−, which is calculated as:

S− = {v−1 , · · · , v−n
} = {(minj |i ∈ I ′

)
,
(

maxj vij |i ∈ I ′′
)}
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Step 5: Calculate the separation measures, using the n-dimensional Euclidean
distance. The separation of each alternative from the ideal solution is calculated
as:

D+
j =

√√√√
n∑

i=1

(
vij − v+i

)2
, j = 1, · · · ,J .

The separation of each alternative from the negative-ideal solution is calculated
as:

D−j =
√√√√

n∑
i=1

(
vij − v−i

)2
, j = 1, · · · , J.

Step 6: Calculate a ratio R+j that measures the relative closeness to the ideal solution
and is calculated as:

R+j = D−/
(
D+j +D−j

)

Step 7: Rank alternatives by maximizing the ratio R+

VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)

VIKOR was proposed by Opricovic [10] for multicriteria optimization of complex
systems. This section uses the following VIKOR algorithm provided by Opricovic
and Tzeng [11] in the experiment:

Step 1: Determine the best f ∗i and the worst f−i values of all criterion functions,
i =1, 2· · · n and j = 1, 2· · · J.

f ∗i =
⎧⎨
⎩

max
j

fij , for benefit criteria

min
j

fij , for cost criteria
(4.9)

f−i =
⎧
⎨
⎩

min
j

fij , for benefit criteria

max
j

fij , for cost criteria
(4.10)

where J is the number of alternatives, n is the number of criteria, and fij is the
rating of i-th criterion function for alternative ai.
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Step 2: Compute the values Sj and Rj, j = 1, 2· · · J, by the relations

Sj =
n∑

i=1

wi

(
f ∗i − fij

)
/
(
f ∗i − f−i

)
(4.11)

Rj = max
[
wi

(
f ∗i − fij

)
/
(
f ∗i − f−i

)]
(4.12)

where wi is the weight of ith criteria, Sj and Rj are used to formulate ranking
measure.

Step 3: Compute the values Qj, j = 1, 2· · · J by the relations

Qj = v
(
Sj − S∗

)
/
(
S− − S∗

)+ (1− v)

( (
Rj − R∗

)
/
(
R− − R∗

) )

(4.13)

S∗ = minj Sj , S− = maxj Sj (4.14)

R∗ = minjRj , R− = maxjRj (4.15)

where the solution obtained by S∗ is with a maximum group utility, the solution
obtained by R∗ is with a minimum individual regret of the opponent, and v is the
weight of the strategy of the most of criteria. The value of v is set to 0.5 in the
experiment.

Step 4: Rank the alternatives in decreasing order. There are three ranking lists: S, R
and Q.

Step 5: Propose the alternative a
′
, which is ranked the best by Q, as a compromise

solution if the following two conditions are satisfied:

(
a
)
Q
(
a′′
)−Q

(
a′
) ≥ 1/

(
J − 1

)

Alternative a
′

is ranked the best by S or/and R. If only the condition (b) is not
satisfied, alternatives a

′
and a′′ are proposed as compromise solutions, where a′′

is ranked the second by Q. If the condition (a) is not satisfied, alternatives a
′
, a′′,

· · · , aM are proposed as compromise solutions, where aM is ranked the Mth by Q
and is determined by the relation Q(aM) − Q(a

′
) < 1/(J − 1) for maximum M.

4.1.1.3 Classification Algorithms

The experimental study selects nine classifiers. The same set of classifiers is
also used as base learners by feature subset evaluator WrapperSubsetEval. These
classifiers belong to six categories of classification methods: trees, functions,
Bayesian classifiers, lazy classifiers, rules, and miscellaneous classifiers. All of them
are implemented in WEKA [8, 16, 17]. C4.5 decision tree is selected to represent
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the trees category. It constructs decision trees in a top-down recursive divide-and-
conquer manner. The functions category includes linear logistic regression, radial
basis function (RBF) network, and sequential minimal optimization (SMO).

Bayesian classifiers category includes naive Bayes. IB1, a basic nearest-neighbor
instance-based learner provided by WEKA, represents lazy classifiers. An unknown
instance is assigned to the same class as the training instance that is the closest
to it measured by Euclidean distance. For the rules category, decision table and
Repeated Incremental Pruning to Produce Error Reduction (RIPPER) rule induction
were selected. Decision table builds a decision table majority classifier by selecting
the right feature subsets. Instances not covered by a decision table can be determined
by the nearest-neighbor method. RIPPER is an optimized version of incremental
reduced error pruning (IREP). In addition, fuzzy lattice reasoning (FLR), which
induces rules using fuzzy lattices, is chosen to represent the miscellaneous category.

4.1.1.4 Performance Measures

Five commonly used performance measures in classification are precision, true
positive rate, false positive rate, F-measure, and the area under receiver operating
characteristic (AUC) [18]. The following paragraphs briefly describe these mea-
sures.

• True Positive (TP): TP is the number of correctly classified fault-prone modules.
TP rate measures how well a classifier can recognize fault-prone modules. It is
also called sensitivity measure.

True Positive rate/Sensitivity = T P

FP + T N

• False Positive (FP): FP is the number of non-fault-prone modules that is
misclassified as fault-prone class. FP rate measures the percentage of non-fault-
prone modules that were incorrectly classified.

False Positive rate = FP

FP + T N

• True Negative (TN): TN is the number of correctly classified non-fault-prone
modules. TN rate measures how well a classifier can recognize non-fault-prone
modules. It is also called specificity measure.

True Negative rate = T N

T N + FP
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• False Negative (FN): FN is the number of fault-prone modules that is misclas-
sified as non-fault-prone class. FN rate measures the percentage of fault-prone
modules that were incorrectly classified.

False Negative rate = FN

FN + T P

• Precision: This is the number of classified fault-prone modules that actually are
fault-prone modules.

Precision = T P

T P + FP

• Recall: This is the percentage of fault-prone modules that are correctly classified.

Recall = T P

T P + FN

• F-measure: It is the harmonic mean of precision and recall. F-measure has been
widely used in information retrieval.

F−measure = 2× Precision×Recall

Precision+Recall

• AUC: ROC stands for Receiver Operating Characteristic, which shows the
tradeoff between TP rate and FP rate. AUC represents the accuracy of a classifier.
The larger the area, the better the classifier.

4.1.1.5 Experimental Design

The experiment was carried out according to the following process:

Input: datasets
Output: Ranking of classifiers

Step 1: Feature selection: apply 11 feature selection techniques to each dataset using
WEKA 3.7 and calculate feature weights.

Step 2: Evaluate feature selection techniques using DEA, ELECTRE,
PROMETHEE, TOPSIS, and VIKOR.

Step 3: Select the highly ranked feature selection techniques and use these
techniques to re-calculate feature weights.

Step 4: Train and test the classification models on a randomly sampled partitions
(i.e., tenfold cross-validation) of each dataset with features selected by traditional
feature selected technique. All methods are implemented using WEKA 3.7.
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Step 5: Train and test the classification models on a randomly sampled partitions
(i.e., tenfold cross-validation) of each dataset with the features selected by Step
3. Compare these results with the results of Step 4.

Step 6: Evaluate classification algorithms using DEA, ELECTRE, PROMETHEE,
TOPSIS, and VIKOR. All the MCDM methods are implemented using MAT-
LAB.

Step 7: Generate four separate tables of the final ranking of classifiers provided by
each MCDM method. END

The data analysis of the above experimental study can be found in Peng et al. [1].

4.1.2 Two-Stage Hybrid Feature Selection Algorithms

Feature selection plays an important role in building a classification system [19–21].
It can not only reduce the dimensionality of data, but also reduce the computational
cost and gain a good classification performance.

The general feature selection algorithms comprise two categories: the filter
and wrapper methods [22, 23] The filter methods identify a feature subset from
original feature set via a given evaluation criterion that is independent of learning
algorithms. While the wrappers choose those features with high prediction perfor-
mance estimated by a specific learning algorithm. The filters are efficient because
of its independence of learning algorithms, while wrappers can obtain higher
classification accuracy with the deficiency in generalization and computational cost.
So there are more and more experts focus on studying the hybrid feature selection
methods in recent decades for the hybrid feature selection methods can combine
the advantages of filters and wrappers to uncover the classifiers with excellent
performance.

This subsection presents several two-stage hybrid feature selection algorithms.
These algorithms take two steps to construct the stable and efficient classifiers. In
the first step, the generalized F-score is adopted to rank features, and our extending
SFS and SFFS and SBFS are used to select the necessary features to comprise the
selected feature subset whist the performance of the temporary SVM evaluated with
our modified accuracy is used to guide the feature selection procedure.

Figure 4.2 illustrates the main idea of our hybrid feature selection algorithms.
Where, the Generalized F-score is used to guide the application of filters, while the
extended SFS/SFFS/SBFS with SVM combined our modified accuracy criterion are
employed as wrappers. We rank features in descending order. The extended SFS
and SFFS and SBFS is adopted to select the important or necessary features one
by one by constructing many temporary SVM classifiers, whilst SVM with our new
accuracy criterion is as a classification tool to direct the feature selection procedure.

Here we respectively introduce the generalized F-score and the definition of our
new accuracy and our proposed three hybrid feature selection algorithms in the
following subsections.
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Fig. 4.2 New hybrid feature selection algorithms
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4.1.2.1 Generalized F-Score

The original F-score is to measure the discrimination of one feature between two
sets of real numbers [24]. We generalized it in [6] to measure the discrimination
of one feature between more than two sets of real numbers, so that it can value
the importance of a feature to the classification in a multi-category classification
problem. Here is the definition of the generalized F-score. Given training vectors
xk, k = 1, 2, · · · , and the number of subsets l(l ≥ 2), if the size of the jth subset is
nj, j = 1, 2, · · · , l, then the F-score of the ith feature is Fi.

Fi =
∑l

j=1

(
x
(j)

i − xi

)2

∑l
j=1

1
nj−1

∑nj

k=1

(
x
(j)
k,i − x

(j)
i

)2 (4.16)

where xi and x
(j)

i are the average of the ith feature on the whole dataset and on the

jth subset respectively, and x
(j)
k,i is the ith feature of the kth instance in the jth subset.

The numerator of the right-hand side of Eq. (4.16) indicates the discrimination of
the ith feature between each subset, and the denominator is the one within each
subset. Thus, the larger the Fi is, the more discriminative the ith feature is.

4.1.2.2 The New Classification Accuracy Measure

The accuracy of a classifier is often measured in the following Eq. (4.17).

accuracy = Nr

N
(4.17)

where Nr is the number of samples which are classified correctly, and N is the total
number of samples which are to be classified.

This accuracy does not consider the performance of a classifier on each class,
which may lead the skew of a classifier on some classes. For example, there is a
cancer diagnostic problem with 90 normal people and 10 cancer patients. Now we
have got a classifier that can recognize all normal people and zero cancer patients.
Although the accuracy of the classifier is 90%, it is not a good one. Thus we define
a new accuracy in the Eq. (4.18).

newaccuracy = 1

l

l∑
c=1

Nc
r

Nc
(4.18)

where l is the number of classes which are to be considered in a classification
problem, and the Nc

r is the number of samples which are correctly classified in
the cth class, and Nc is the total number of samples which are to be classified in the
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cth class. This new accuracy does consider the performance of a classifier on each
class that is considering in the classification problem, so that the new accuracy can
overcome the skew of a classifier when it is used to evaluate the performance of a
classifier to guild the feature selection procedure.

4.1.2.3 Several Hybrid Feature Selection Algorithms

Here are the related issues and our proposed hybrid feature selection algorithms
which will comprise our two-stage hybrid feature selection algorithms for diagnos-
ing erythemato-squamous diseases.

The traditional and still popular feature search strategies include sequential for-
ward search (SFS) [25] and sequential backward search (SBS) [26] and sequential
forward floating search (SFFS) and sequential backward floating search (SBFS)
[27].

Here the aforementioned traditional SFS, SFFS, and SBFS strategies are
extended as the followings. Firstly, the features are ranked according to their F-
score values, here the generalized F-score is used, then the features are dealt with
one by one. In the extended SFS, features are selected according to their rank order,
not as the traditional SFS which selects the feature that must be the best one when
combined with the selected ones. And in the extended SFFS, we first trying to
add a feature according to its rank order, then in the floating procedure we test the
feature to be indeed added or not according to the new accuracy of the temporary
classifier goes up or not, if the new accuracy of the temporary classifier goes up,
then the related feature will be added to the selected feature subset, otherwise it
will not be added. Similarly, in the extended SBFS, the procedure starts with all
feature included, then at the following steps, the current lowest rank feature is
tested deleting or not, if the accuracy of the temporary classifier without the feature
becomes worse evaluated in our new accuracy, then the feature will not be deleted,
otherwise it will be deleted. These procedures continue until all features are tested.
The extended SFS and SFFS and SBFS are respectively faster than the traditional
SFS and SFFS and SBFS in determining one feature to be selected or not in feature
selection procedures.

Here are the three hybrid feature selection algorithms, named new GFSFS, new
GFSFFS and new GFSBFS, respectively. The generalized F-score plays the role of
filters, and our extending SFS and SFFS and SBFS, respectively, with SVM and
our new accuracy act as wrappers. Using the three new hybrid feature selection
algorithms, new GFSFS, new GFSFFS and new GFSBFS, the necessary features
are selected and the redundant ones are eliminated, so that a sound predictor to
diagnose erythemato-squamous diseases is constructed. The detail procedures of
our new GFSFS, new GFSFFS and new GFSBFS are, respectively, described as
followings.

The new GFSFS uses extending SFS strategy to uncover the important features
in building a classifier according to their F-score values, and uses SVM as a
classification tool. The new accuracy is adopted to judge the performance of the
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temporary SVM classifiers to guide the feature selection procedure. The feature
subset is composed of features with which the classifier on training subset has got
the best diagnosing result. The pseudo code of our new GFSFS is here.

Step 1: Determine the training and testing subsets of exemplars; Initialize the
selected-feature-subset empty, and selecting-feature-subset with all features;

Step 2: Computing the F-score value for each feature by using the Eq. (4.16) on the
training subset, and sort features in descending order according to their F-score
values;

Step 3: Add the top feature in the selecting-feature subset to the selected-feature-
subset, and deleted it from the selecting-feature-subset as well;

Step 4: Train the training subset with features in selected-feature-subset to construct
the temporary optimal SVM classifier, the optimal parameters of SVM are
determined via the aforementioned grid search technique and tenfold cross
validation experiments on the training subset;

Step 5: Classify exemplars in the test subset and record the accuracy;
Step 6: go to step 3, until the selecting-feature-subset becomes empty;

Although the new GFSFS can get a comparable good performance in diagnosing
erythemato-squamous diseases, it may suffer the weakness of feature subset “nest-
ing” that is the nature of SFS. That is, one feature will not be discarded once it has
been selected and added to the selected-feature-subset.

The coming hybrid feature selection algorithm, new GFSFFS, will overcome this
disadvantage of the new GFSFS by considering the correlation between features, so
once the new accuracy of a temporary classifier on training subset doesn’t go up,
then the selected feature will only be deleted from the selecting-feature-subset but
will not be added to the selected-feature-subset. The details of the new GFSFFS are
as the followings.

Step 1: Calculate the F-score value for each feature via the generalized F-score
defined in Eq. (4.16) on the training subset of this fold, and rank features
in descending order according to their F-score values; Initialize the selected-
feature-subset empty and the selecting-feature-subset with all features;

Step 2: Delete the top feature from the selecting-feature-subset and add it to the
selected-feature-subset;

Step 3: Train the training subset to build the optimal predictor model where
the optimal parameter for the kernel function of SVM is determined in the
aforementioned grid search technique and tenfold cross-validation experiments
on the training subset;

Step 4: If the new accuracy defined in Eq. (4.18) of the training subset is not
improved, then the feature that has just been added will be eliminated from the
selected-feature-subset;

Step 5: Go to Step 2 till all features in the selecting-feature-subset have been
processed.

The features in the selected-feature-subset comprise the best feature subset of
this fold, and the last SVM classifier is the optimal diagnostic model we are looking
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for on this fold. To get a further self-contained demonstration of our new accuracy,
we propose new GFSBFS hybrid feature selection algorithm and its procedure is
here.

Step 1: Compute the F-score for each feature via the generalized F-score in
Eq. (4.16) on this fold training subset, and rank features in descending order
according to their F-score values; Initialize the selected-feature-subset with all
features, and the visited tag for each feature unvisited;

Step 2: Train the training subset with features in the selected-feature-subset to build
the optimal predictor model where the optimal parameter for the kernel function
of SVM is determined by the aforementioned grid search technique and tenfold
cross validation experiments on the training subset; Record the accuracy of the
model on training subset in the new accuracy defined in Eq. (4.18);

Step 3: Trying to delete the last unvisited feature in selected-feature-subset, and let
the visited tag of it be visited;

Step 4: Train the training subset with features in the selected-feature-subset to build
the optimal predictor model as step 2, and record the new accuracy of the model
on training subset;

Step 5: If the new accuracy of training subset does not go up, keep the feature that
it is trying to delete back to the selected-feature-subset, otherwise deleted it;

Step 6: Go to Step 3, until all features in the selected-feature-subset have been
visited.

At last those features left in the selected-feature-subset are the necessary ones to
build the optimal diagnostic model for this fold.

Because of the variation in the results of tenfold cross validation experiments,
we propose the two-stage hybrid feature selection algorithms. We do tenfold cross
validation experiments of our new GFSFS, new GFSFFS, and new GFSBFS in
the first stage. Then we merge the 10 selected feature subsets of the tenfold cross
validation experiments as a new full feature set on which to carry out the following
feature selection procedure of the second stage of our two-stage hybrid feature
selection algorithms. In the second stage we repeat our new hybrid feature selection
algorithms which are described in above subsection on the one partition which
has got the best performance during the first stage, that is, the partition of the
corresponding fold that has got the optimal accuracy in the tenfold cross validation
experiments in the pre-stage. In our experiment we choose the tenth fold, i.e., the last
partition in the tenfold cross validation experiments, to finish our two-stage hybrid
feature selection algorithms.

The experimental study of this two-stage hybrid feature selection algorithms can
be found in [2].
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4.1.3 Feature Selection with Attributes Clustering by Maximal
Information Coefficient

Attribute clustering methods make features cluster together rather than instances. In
this case, instances distance metric is replaced by feature similarity measure. Since
clustering belongs to unsupervised learning, to obtain discriminating features it is
better to put some supervision during the process of clustering [20]. Pereira et al.
provided the idea of distributional clustering for feature selection in [28] which is
based on the information bottleneck theory [29]. This kind of method try to find a
suitable T and minimize the objective function I(X;T) − βI(T;Y), where I(X;T)
and I(T; Y) are mutual information between X; Y and T; Y. Baker and McCallum
used this idea to generate a feature clustering method for document classification
[30]. Similar with information bottleneck theory, information-theoretic framework
was introduced by Dhillon for identifying feature clusters [31]. In [32], Wai-Ho Au
et al. presented an attribute clustering method which had capability of group genes
expression base on their interdependence. Recently, a self-constructing algorithm
based on fuzzy similarity for feature clustering was introduced [33].

However, obstacles are still on the way of these methods. First of all, finding the
optimal subset feature space with best classification or regression performance have
been proved to be NP-hard problem [34]. Furthermore, feature selection procedure
is usually a separate process which cannot benefit from result of the data exploration
in advance. There are various kinds of data exploration strategies.

4.1.3.1 Maximal Information Coefficient

Relationship coefficient between features are usually used for measuring attribute
similarity. For instance, Combarro et al. propose a way of choosing relevant features
by linear measures for text categorization application in [35]. In [35], Combarro
et al. propose a way of choosing relevant features by linear measures for text
categorization application. Person coefficient is one of the most famous relationship
metrics, because it is easy to calculate and has a naive explanation. However, only
linear relationship can be captured well using this metric when other kinds of
dependence work badly such as functional sin or cubic. Pearson coefficient could
only capture the association limited to linear function well. That’s mean a various
of important relationships such as a superposition of functions cannot be scored
properly.

Recently, Reshef et al. propose a new relationship measure called maximal
information coefficient (MIC). With innovative idea, they show that MIC could
capture a wide range of associations both functional and not. Furthermore, the value
of MIC is roughly equal to the coefficient of determination R2 in statistics [36].
Next, we briefly introduce some concepts related with MIC in [36].

Given a finite set D whose elements are two dimensions data points, we consider
one of the dimensions as x-values and the other as y-values. Suppose x-values is
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divided into x bins and y-values into y bins, this type of partition is called x-by-y
grid G. Let D|G represent the distribution of D divided by one of x-by-y grids as G.
I∗(D, x, y) = max I(D|G), where I(D|G) is the mutual information of D|G. There
are infinite number of x-by-y grids, as a result, there are infinite number of I(D|G)
either. Choose the maximum one of them and present it as I∗(D, x, y), thus a matrix

named characteristic matrix is constructed as M(D)x,y =
I ∗
(
D,x,y

)

logmin

{
x,y

} . Furthermore,

MIC can be obtained MIC(D) = maxxy < B(n){M(D)x, y}, where B(n) is the upper
bound of the grid size need to be considered. The elements of characteristic matrix
I∗(D, x, y) is chosen from a infinite amount of I(D|G), thus authors of MIC develop
an approximation algorithm and program for generating characteristic matrix and
the estimators such as MIC.1 With these sophisticated utilities, data exploration by
MIC can be easily done before other complex data mining task.

4.1.3.2 Affinity Propagation Clustering

Clustering data points through a measure similarity is a crucial step in many
scientific analysis and application systems [37]. Brendan et al. develop a modern
clustering method named “affinity propagation” (AP) which constructs clusters
by messages exchanged between data points. Given the similarities of each two
distinct data points as input, AP algorithm considers all the instance as potential
centroids at the beginning. And then, algorithm merges small cluster into bigger
ones step by step. Being different with some of the typical clustering algorithms
as k-means, each instances are regarded as one node in a network. Messages was
Transactionsmitted between nodes, so each data point reconsidered their situation
through new information and properly modified the cluster they belong to. This
procedure went on until a good set of clusters and centroids produced.

In this process, there are mainly two categories of message exchanged between
data points. One of them is sent from point i to point j which formulated as
r(i, j). It illustrates the strength point i choosing point j as its centroid. The
other sort information is from point j to point i as a(i, j). It shows the con-
fidence that one point j recommends itself as the centroid of another point i.
And the author of AP take r (i, j) ← s (i, j) − maxj ′,j ′ �=j

{
a
(
i, j ′

)+ s
(
i, j ′

)}

and a (i, j) ← min
{

0, r (k, k)+∑i′s.t.i′ �=i,j max
{
0, r

(
i ′, k

)}}
to update current

situation. Update is needed only for the pairs of points whose similarities are already
known. This trait makes the algorithm much faster than other methods. To identify
the centroid of point i, point j that maximizes r(i, j) + a(i, j) should be considered
during each iteration. AP clustering method requires a similarity matrix s as input,
and the element of the matrix s(i, j) provides the distance from point i to point j.

1http://www.sciencemag.org/cgi/content/full/334/6062/1518/DC1.http://exploredata.net

http://www.sciencemag.org/cgi/content/full/334/6062/1518/DC1
http://exploredata.net
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In addition, the diagonal values of the matrix is not assign 1 as usual. These values
are called “preference” which show how point i is likely to be chosen as a centroid.
That’s to say, the larger s(i, j) is, the more probability that point i play a role of
a centroid. Obviously, s(i, j) are key parameters which control the number of final
clusters by AP method. After all, the algorithm can be terminated when the values
exchanged are under some threshold or the clusters keep stable for some iterations.

4.1.3.3 Attributes Clustering by Maximal Information Coefficient

At present data exploration is an indispensable step for discovering valuable
knowledge in large amount of data. MINE tool [36] has been recognized as one
of the usual data exploration procedures. This exploration tool could detect novel
association between a pair of variables and has been widely used in practice.
Relationship information is contained in the results generated by MINE tool.
However, this kind of information hasn’t been made the best of. Methods that take
the full advantage of MINE exploration result should be initiated.

For this purpose, we propose a new unsupervised learning method called MICAP
for feature selection task. It needs no supervised information and directly selects
the key attributes of a dataset. The proposed algorithm makes features with high
dependence cluster together and only keep the center feature of each cluster left.
The algorithm follows a simple idea that takes the MICs as the relationship metric
for each pair of features, and cluster them through affinity propagation clustering
method. It’s combines the MIC and affinity propagation clustering method. That’s
why our algorithm is called MICAP.

First step, a MINE data exploration procedure is executed. As a result, each
pair of features except label attribute has been explored by MINE tool. For
most scientific research this kind of data exploration it’s necessary because it
provides general relationships among features. Next, based on the data exploration
result, a maximal information coefficient matrix has be constructed. According to
descending order list of the elements of the matrix, a preference value could be
obtained by setting the quantile for the list. And then affinity propagation clustering
method is applied with MIC matrix as the similarity matrix. After all, the centroid
of each cluster is chosen as the selected subset for original feature space.

According to the general steps of affinity propagation clustering algorithm [37],
a key parameter is preference which controls the number of the features left in the
final result. Due to the property of the affinity propagation, the number of features
selected need not be given in advance. When preference is large, more features will
be reserved. When preference is small, fewer attributes will be kept. The detail of
our algorithm is illustrated in Algorithm 4.1. The discussion of data analysis of
Algorithm 4.1 can be found in [3].
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Algorithm 4.1 MICAP Feature Selection Algorithm

Input: Training dataset D = {�, C}, � = (f1, f2, · · · , fn); The quantile q for MIC
values listed in descending order.

Output: Selected features S, S ⊆ ⊗.
1: Begin Set S = Ø
2: for all fi, fi ∈ D, i �= j do
3: Calculate their MIC values and Set M(i, j) =MIC(fi, fj);
4: end for
5: Sort distinct values of M(i, j) elements in descending order as MICList;
6: Choose the q quantile value of MICList as preference;
7: Set All M(i, i) = preference
8: γ = {F1, F2, · · · , Fl} = APClustering(�, M)
9: for all Fk ∈ γ do
10: Set S = S ∪ centroid(Fk)
11: end for
12: End

4.2 Regularizations for Feature Selections

4.2.1 Supervised Feature Selection with �2, 1− 2
Regularization

4.2.1.1 Feature Selection with Sparse Learning

In the supervised learning scenario, let X = [x1, · · · , xn] be a data matrix with n
samples of d features. Suppose there are c classes, by one-hot encoding, the class
labels can be represented as a n × c matrix Y, where Yij = 1, if xi belongs to
the j-th class and Yij = 0 otherwise. Feature selection with sparse learning is to
find a Transformed matrix W ∈ Rd×c to evaluate the correlation between labels
and features, and select the discriminative features based on the weight of W.
Mathematically, this task can be described as the following structured model:

min
W

LX,Y (W)+ αR (W) , (4.19)

where LX, Y(·) is the loss which measures the model fidelity, R (· ) is the regularizer
which is the preference of selecting features across all the classes with jointly
sparsity, and α > 0 is a hyper-parameter that controls the trade-off between these
two terms.

The joint minimization of the fidelity term and the sparsity regularization enable
Transformed matrix W to evaluate the correlation between labels and features,
which is particularly suitable for feature selection. More specifically, the norm of
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the i-th row in W shrinks to zero or a number close to zero if the i-th feature is less
discriminative to the labels.

As mentioned above, regularization term R (W) in (4.19) is for feature selection.
A variety of sparsity regularizations and the corresponding models have been
proposed. From the sparsity perspective, �2, 0 norm might be the most desirable.
However, it will result in the NP-hard combinatory model and is very difficult to
solve. Therefore, several proxies of �2, 0 norm have been studied. The most common
one is the �2, 1 norm, which has been used as the sparse regularization in many works
[38–41]. The �2, p norm is the only existing nonconvex regularizer in matrix-based
feature selection. Although experiments have empirically demonstrated that �2, p
outperforms �2, 1 [42]. The �2, p regularizer is more difficult to compute. Firstly,
there is a-priori unknown hyper-parameter p, which controls the effect of feature
selection. As stated in [42], the smaller p is, the better performance can be obtained.
Secondly, �2, p is non-Lipschitz continuous in mathematics. Although [42] provides
a proximal gradient algorithm together with rank-one update to solve it, when
p→ 0, �2, p is still difficult to solve. Considering the good performance of �2, p rising
from the nonconvexity and the difficulty of �2, p lying the non-Lipschitz continuity,
we propose a hyper-parameter free regularizer on matrix, which is nonconvex and
Lipschitz continuous.

4.2.1.2 ConCave-Convex Procedure

Consider the following structured optimization problem, whose objective function
can be decomposed into two convex functions:

min
x

h (x) := f (x)− g (x) , (4.20)

where f (· ) : Rn→Rand g (· ) : Rn→R are two convex functions. Problem (4.20)
is nonconvex unless the function g(·) is affine, and it is difficult to solve in general.

ConCave-Convex Procedure (CCCP) tackles the nonconvex problem (4.20) by
solving a series of convex subproblems. The idea of CCCP involves linearizing
of the second term g(x) in the objective function at the current solution xk, and
advancing to a new one xk + 1 by solving a subproblem. In detail, CCCP solves
problem (4.20) with the following iterations:

⎧
⎨
⎩

yk ∈ ∂g
(

xk
)

xk+1 = arg min
x

f (x)− (g (xk
)+ 〈yk, x− xk

〉)
.

(4.21)

Recalling the definition of sub-gradient, for any x ∈ Rn,

g (x) ≥ g
(

xk
)
+
〈
yk, x − xk

〉
. (4.22)
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In particular g(xk + 1) ≥ g(xk) + 〈yk, xk + 1 − xk〉. Note that xk + 1 mini-
mizes f (x) − (g(xk) + 〈yk, x − xk〉), on can have,

h
(
xk
) = f

(
xk
)− g

(
xk
) ≥ f

(
xk+1

)−
(
g
(
xk
)+〈

yk, xk+1 − xk 〉) ≥ f
(
xk+1

)− g
(
xk+1

) ≥ h
(
xk+1

)
.

(4.23)

Hence, the CCCP algorithm produces a monotonically decreasing sequence{
h
(
xk
)}∞

k=0 of objective function values. Moreover, when h(·) is bounded from

below, the sequence
{
h
(
xk
)}∞

k=0 is convergent. One reasonable stopping criterion
is that the improvement in the objective value is less than a given threshold ε, i.e.,
h(xk) − h(xk + 1) ≤ ε

Although the sequence of the objective function values
{
h
(
xk
)}∞

k=0 is conver-

gent, the sequence of iterative points
{
xk
}∞
k=0 generated by CCCP is not always

convergent. Therefore, researchers investigated the convergence of iteration points,
which is usually called strong global convergence in optimization theory. Existing
standard strong convergence analysis of CCCP is conducted on the assumption that
the component functions are differentiable, strong convex or the non-smooth part is
convex piecewise-linear [43–45]. None of them is suitable for the �2, 1 − 2 function.

In addition, the convergent proof of �1 − 2 in [46] strongly relies on the specific
formulation of the model and could not be extended to �2, 1 − 2. Therefore, how to
analyze the strong global convergence of our CCCP algorithm for �2, 1 − 2 would be
an interesting and challenging work.

4.2.1.3 Supervised Feature Selection with the �2, 1 − 2 Regularization

�2, 1 − 2 Function for Matrix

Here, the bold uppercase characters are used to denote matrices, and bold
lowercase characters to denote vectors. The �p and �0 norms of vector w =
[w1, w2, · · · , wn] ∈ Rn are defined as

‖w‖p =
(

n∑
i=1

|wi |p
)1/p

and ‖w‖0 =
∑
wi �=0

|wi |0 (4.24)
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respectively. Correspondingly, the �2, p and �2, 0 norms of matrix W =[
wT

1 ,wT
2 , · · · ,wT

m

]T ∈ Rm×nare defined as:

‖W‖2,p =
(

m∑
i=1

‖wi‖p
)1/p

=
⎛
⎜⎝

m∑
i=1

⎛
⎝

n∑
j=1

W2
ij

⎞
⎠

p/2
⎞
⎟⎠

1/p

(4.25)

where Wij is the entry of W at the i-th row and the j-th column, and

‖W‖2,0 =
∑
wi �=0

‖wi‖0
2 (4.26)

respectively. Specifically, when p = 1, �2, p reduces into the �2, 1 norm and when
p = 2, �2, p is the Frobenius norm denoted by ‖·‖F .

The Euclidean inner product between two matrices with the same scale is defined

as, where Tr(·) is the trace operator. Obviously, ‖W‖2
F = 〈W,W〉 = Tr

(
WT W

)
.

Given W ∈ Rm×n, the sub-gradient of ‖W‖F is:

∂‖W‖F =
{ {

W
‖W‖F

}
, if W �= 0;{

M ∈ Rm×n : ‖M‖F ≤ 1
}
, otherwise.

(4.27)

and the sub-gradient of ‖W‖2, 1 is:

∂‖W‖2,1 =
{[

ψ(w1)
T, ψ(w2)

T, · · · , ψ(wm)T
]T
}
,

where ψ(wi) is defined as:

ψ (wi ) =
{

wi‖wi‖2
, if wi �= 0;

ŵi ∈ {w ∈ Rn : ‖w‖2 ≤ 1} , otherwise.
(4.28)

Inspired by the good performance of �1 − 2 function for vectors in [46–49], we
propose a sparse metric �2, 1 − 2 for matrices as follows

‖W‖2,1−2 = ‖W‖2,1 − ‖W‖2,2 = ‖W‖2,1 − ‖W‖F . (4.29)

The following proposition shows that for a given matrix, �2, 1 − 2 is less than or
equal to 1, if and only if, the matrix has one nonzero row at most.

Proposition 4.1 For any matrix W ∈ Rm×n,

‖W‖2,1−2 = 0 if and only if ‖W‖2,0 ≤ 1 (4.30)
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Proof To prove the proposition, for any W = [
wT

1 ,wT
2 , · · · ,wT

m

]T ∈ Rm×n, we
first show that

(
s −√s

)
mini∈�‖wi‖2 ≤ ‖W‖2,1−2 (4.31)

where s = ‖W‖2, 0 and Δ = {i : wi �= 0, i = 1, 2, · · · ,m}. Without loss of generality,
suppose ‖w1‖2 ≥ ‖w2‖2 ≥ · · · ≥ ‖wm‖2 and q = ⌊√s

⌋
, we have

‖W‖2
F =

∑q
i=1‖wi‖2

2 +
∑s

i=q+1‖wi‖2
2

≤∑q

i=1‖wi‖2
2 + (s − q)

∥∥wq+1
∥∥2

2
≤∑q

i=1‖wi‖2
2 +

∑q
i=1

∑q
j=1,j �=i‖wi‖2

∥∥wj

∥∥
2

+ 2
(√

s − q
) ∥∥wq+1

∥∥
2

∑q
i=1‖wi‖2 +

(√
s − q

)2∥∥wq+1
∥∥2

2

≤ (∑q

i=1‖wi‖2 +
(√

s − q
) ∥∥wq+1

∥∥
2

)2

(4.32)

where the second inequality follows

∑q
i=1

∑q
j=1,j �=i ‖wi‖2

∥∥wj

∥∥
2 + 2

(√
s − q

) ∥∥wq+1
∥∥

2

∑q
i=1 ‖wi‖2

+ (√s − q
)2∥∥wq+1

∥∥2
2

≥∑q

i=1

∑q

j=1,j �=i

∥∥wq+1
∥∥2

2 + 2q
(√

s − q
) ∥∥wq+1

∥∥2
2

+ (√s − q
)2∥∥wq+1

∥∥2
2 = (s − q)

∥∥wq+1
∥∥2

2

(4.33)

Therefore, it can be seen

‖W‖2,1−2 = ‖W‖2,1 − ‖W‖F
≥ ‖W‖2,1 −

(∑q

i=1‖wi‖2 +
(√

s − q
) ∥∥wq+1

∥∥
2

)

=∑s
i=q+1‖wi‖2 +

(
q −√s

) ∥∥wq+1
∥∥

2
≥ (s − q) ‖ws‖2 +

(
q −√s

) ‖ws‖2

= (s −√s
) ‖ws‖2 =

(
s −√s

)
mini∈�‖wi‖2

(4.34)

If ‖W‖2, 0 ≤ 1, we can easily see that ‖W‖2, 1 − 2 = 0 holds. Conversely,

if ‖W‖2, 1 − 2 = 0, from (4.30), we have
(
s −√s

)
mini∈�‖wi‖2 ≤ 0 , then(

s −√s
)
≤ 0 , consequently s ≤ 1, i.e., ‖W‖2, 0 ≤ 1.

Adopting the �2, 1 − 2 function in (4.29) as regularizer term R (W), the feature
selection model in (4.19) can be written as:

min
W

LX,Y (W)+ α‖W‖2,1−2. (4.35)

Denote by W∗ the optimal solution to the model (4.35), we select the top-ranking

features according to the value of
∥∥w∗i

∥∥
2

(
i = 1, 2 · · · , d

)
. Several popular loss
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functions can be used in (4.35), such as the Frobenius norm loss

LX,Y (W) =
∥∥∥Y− XTW

∥∥∥
2

F
, (4.36)

the Logistic loss

LX,Y (W) = −1

n

n∑
i=1

c∑
j=1

δ (yi, j) log
expxT

i wj

∑c
l=1 expxT

i wl
, (4.37)

the �2, 1 norm loss

LX,Y (W) =
∥∥∥Y− XTW

∥∥∥
2,1

(4.38)

and the multi-class hinge loss

LX,Y (W) =
n∑

i=1

(
1− xT

i wyi +maxj �=yi x
T
i wj

)
+, (4.39)

where yi is the label of xi, δ(yi, j) is the delta function that equals 1 if yi = j and
equals 0 otherwise, wj is the j-th column in W and the function z+ = max (z, 0).

To make �2, 1 − 2 more applicable, instead of concentrating on some specific
formulation of LX, Y(·), we consider a general assumption for loss function, which
is stated as follow:

Assumption 4.1
1. The loss function LX, Y(·) is convex.
2. Suppose there is a linear transformation W with Y = XTW, then LX, Y(W) = 0.
3. For any matrix W 0 ∈ Rd×c, the set {W : LX, Y(W) < LX, Y(W0)} ∩ {W :
‖W‖2, 1 − 2 = 0} is bounded.

The following Lemma demonstrates that the loss functions in (4.36), (4.37),
(4.38) and (4.39) satisfy Assumption 4.1.

Lemma 4.1 Suppose that each row in X is nonzero. Then the Frobenius norm loss
(4.36), the Logistic loss (4.37), the �2, 1 norm loss (4.38) and the multi-class hinge
loss (4.39) all satisfy Assumption 4.1.

Proof The verification of the first and second items in Assumption 4.1 for these loss
functions is intuitive due to their convexity and special formulations. Therefore, we
only check the third item in Assumption 4.1.

1. Because the Frobenius norm loss and the Logistic loss are strong convex, (3) in
Assumption 4.1 is obviously satisfied.

2. To show that the �2, 1 norm loss satisfies (3) in Assumption 4.1, it suffices
to prove that for any fixed nonzero matrix W satisfying ‖W‖2, 1 − 2 = 0,
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‖Y − rXTW‖2, 1 → ∞ as r → ∞. For any W �= 0, if ‖W‖2, 1 − 2 = 0, from
Proposition 4.1, we know that ‖W‖2, 0 = 1. Let the j-th row be nonzero. Suppose
for all xi(i = 1, 2, · · · , n), xT

i W = 0 then the j-th row of X is zero, which is a
contradiction to the fact that each row in X is nonzero. Therefore there exists at
least an xi such that xT

i W �= 0. Assume xT
k W �= 0. Then when r→∞, we have

LX,Y (rW) = ∥∥Y− rXTW
∥∥

2,1 =
∑n

i=1

∥∥yi − rxT
i W

∥∥
2 ≥

∥∥yk − rxT
k W

∥∥
2

≥| ‖yk‖2 − r
∥∥xT

k W
∥∥

2 |→ ∞,

(4.40)

which implies that the �2, 1 norm loss satisfies (3).
3. Similarly, to show that the multi-class hinge loss satisfies (3) in Assump-

tion 4.1, it suffices to prove that, for any fixed nonzero matrix W satisfy-
ing ‖W‖2, 1 − 2 = 0,

∑n
i=1

(
1− rxT

i wyi +maxj �=yi rxT
i wj

)
+ → ∞as r → ∞.

Given W �= 0, which satisfies ‖W‖2, 1 − 2 = 0, there exists at least an xk with the
corresponding label yk such that maxj �=ykxT

j wyj > xT
k wyk . Then, as r→∞, we

have

LX,Y (rW) =∑n
i=1

(
1− rxT

i wyi + rmaxj �=yi x
T
i wj

)
+

≥ r
(

maxj �=ykxT
j wyj − xT

k wyk

)
+ 1 →∞ (4.41)

From (4.41), we know the multi-class hinge loss satisfies (3). Combing (1),
(2) and (3), we know that the four loss functions satisfy Assumption 4.1.

Lets’ discuss how to solve the nonconvex model in (4.34). Denote the objective
function in (4.34) as F(W) for short. Note that F(W) can be naturally split into two
convex functions

F (W) = (LX,Y (W)+ α‖W‖2,1
)− α‖W‖F , (4.42)

An iterative algorithm in the framework of ConCave-Convex Procedure (CCCP)
is proposed [45]. In detail, according to (4.27), the linearized convex subproblem of
(4.42) is:

min
W

(
LX,Y (W)+ α‖W‖2,1

)− α
〈
W,Ak

〉
(4.43)

where

Ak =
{∥∥Wk

∥∥−1
F

Wk, Wk �= 0;
0, Wk = 0.

(4.44)

and the superscript k is the iteration index.
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The summary of the proposed CCCP framework is shown in Algorithm 4.2.
Noticing that at the first iteration of Algorithm 4.2, since W0 = 0, the linearized
convex subproblem in (4.43) becomes the classic feature selection model with
the �2, 1 norm regularization. From this point of view, the proposed method could be
considered as an improvement from the convex feature selection model with the �2, 1
norm.

Algorithm 4.2 Supervised Feature Selection with �2,1–2

Input: data matrix X, label matrix Y and regularization parameter α

1: Initialize k = 0 and W0 = 0
2: repeat
3: Wk+1 := arg min

W
LX,Y (W)+ α‖W‖2,1 − α

〈
W,Ak〉

4: k := k + 1
5: until CCCP stopping criterion is satisfied

Output: The optimal solution W*

As mentioned in related work, existing convergence results of CCCP cannot be
applied to Algorithm 4.2 directly. In [46], the least square loss is used and the
convergent proof of CCCP for �1 − 2 strongly depends on its specific formulation.
However, in this section, the loss function in the model is in a general form. We
could not prove the strong convergence of �2, 1 − 2 following the way of �1 − 2 in
[46]. To prove the convergence of Algorithm 4.2, we use Zangwill’s theory [50],
which is a powerful and general framework to deal with the convergence issues of
the iterative algorithm. To this end, we first construct a majorization function as
follow:

G(W,Z) = LX,Y (W)+ α‖W‖2,1 − α (‖Z‖F+〈A (Z) ,W− Z
〉)

(4.45)

where A(Z) ∈ ∂‖Z‖F . Let S (· ) : Rd×c → X be a point-to-set mapping, where X
is the power set of Rd×c. Denote

S (Z) := arg minWG(W,Z) . (4.46)

Denote the set of the stationary points of F(·) by S. Then the following lemma is
given.

Lemma 4.2 Let Z �= 0. Z ∈ S(Z) if and only if Z is a stationary point of F(·).
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Proof If 0 �= Z ∈ S(Z), substituting A (Z) = ‖Z‖−1
F Z in Eq. (4.45), we have

G(W,Z) = LX,Y (W)+ α‖W‖2,1 − α
〈
‖Z‖−1

F Z,W
〉

(4.47)

Since G(W, Z) is convex in W, from Proposition 4.4.6 of [51] (pp. 194), we have

∂GW (W,Z)
∣∣W=Z = ∂

(
LX,Y (W)+ α‖W‖2,1

)∣∣
W=Z − ‖Z‖−1

F Z (4.48)

Then the optimality of G(·, Z) at Z gives

0 ∈ ∂
(
LX,Y (W)+ α‖W‖2,1

)∣∣
W=Z − ‖Z‖−1

F Z (4.49)

which implies that Z is just a stationary point of F(·). Conversely, if Z �= 0 is a
stationary point of F(·), then 0 ∈ ∂F(Z). Noticing that ‖·‖F is smooth near Z �= 0,
from [52] (pp. 304), we have

∂F (Z) = ∂
(
LX,Y (W)+ α‖W‖2,1

)∣∣
W=Z − ‖Z‖−1

F Z (4.50)

Therefore

0 ∈ ∂
(
LX,Y (W)+ α‖W‖2,1

)∣∣
W=Z − ‖Z‖−1

F Z (4.51)

which together with the fact that G(·, Z) is convex, implies that Z ∈ S(Z).

Based on Lemma 4.2, the following theorem is given for the global convergence
of Algorithm 4.2.

Theorem 4.1 Assume that
{
Wk

}∞
k=0 is the sequence of iterations generated by

Algorithm 4.2, the following properties hold.

1. ‖Wk + 1 − Wk‖F → 0 as k→∞.
2. Any nonzero limit point of the sequence

{
Wk

}∞
k=0 is the stationary point of

problem (4.35).

Proof If W1 = W0 = 0, we stop the algorithm and produce the optimal solu-
tion W∗ = 0. Otherwise we assume that Wk �= 0, for k = 1, 2, · · · . For convenience,
denote L1 = {W : F(W) ≤ F(W1)}. We first show L1 is compact.

1. If ‖W‖2, 0 = 1, according to Proposition 4.1, ‖W‖2, 1 − 2 = 0. From Assumption
4.1, the set {W : LX, Y(W) ≤ LX, Y(W1)} is bounded.

2. If ‖W‖2, 0 > 1, according to Proposition 6.1, ‖W‖2, 1 − 2 > 0. When r→∞, we
have

F (rW) = LX,Y (rW)+ αr‖W‖2,1−2 →∞ (4.52)
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Combing (1) and (2), we know that the level set L1 is bounded. Due to the
continuity of F(·), we also know that the level set is closed. In all, the level set is
compact.

1. For any Z ∈ L1 and Z �∈ S, assume W ∈ S(Z). Then

F (W) = G(W,W) ≤ G(W,Z) ≤ G(Z,Z) = F (Z) . (4.53)

If F(W) = F(Z), according to (4.53), we have G(W, Z) = G(Z, Z), which
means Z ∈ S(Z). The assumption F(W1) < F(0) follows Z �= 0, and from Lemma
4.2, Z is a stationary point of F, which is contradiction to Z �∈ S. Namely, S(·) is
strictly monotonic on L.

2. For any Z ∈ L1, since G(W, Z) is continuous in Z, p(Z) = minWG(W, Z) is
also continuous. Based on Theorem 1.17 of [52] (pp. 16), S(·) is upper semi-
continuous on L1.

3. For any Z ∈ L1 and any W ∈ S(Z), it follows that

F (W) ≤ G(W,Z) ≤ G(Z,Z) = F (Z) ≤ F
(

W1
)
. (4.54)

We know W ∈ L1, and therefore S(Z) ⊂ L1. Moreover, L1 is compact. This
means that S(·) is uniformly compact on L1.

In summary, the point-to-set mapping S(·) on compact set L1 is strictly mono-
tonic, upper semi-continuous and uniformly compact. We can check that the
point-to-set mapping satisfies the condition in Theorem 3.1 [53]. Therefore, the
desired result in theorem follows.

The following discusses how to solve the linearized subproblem (4.43). Gener-
ally speaking, problem (4.43) can be efficiently solved by the Alternating Direction
Methods of Multipliers (ADMM), which is a versatile algorithm [54]. As discussed
in last subsection, several loss functions can be used in our model (4.43) with
proven convergence. Since the algorithm strongly relies on the specific formulation
of the loss function, we choose the �2, 1 norm loss, which is very popular and can
efficiently tackle outliers and noise in data points [40], to present the algorithm. To
be more specific, when the �2, 1 norm is used as the loss function, the linearized
subproblem (4.43) becomes

min
W

∥∥∥Y− XTW
∥∥∥

2,1
+ α‖W‖2,1 − α

〈
W,Ak

〉
. (4.55)
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To solve problem (4.55), we introduce two auxiliary variables U = W and
V = Y − XTW, and transforming (4.55) into the following equivalent form

min
W,U,V

‖V‖2,1 + α‖U‖2,1 − α
〈
W,Ak

〉

V = Y− XTW,U = W,

(4.56)

which can be solved by the following ADMM problem

min
W,U,V

‖V‖2,1 + α‖U‖2,1 − α
〈
W,Ak

〉+
〈
Σ,W − U 〉+〈Λ,Y− XTW− V

〉

+ ρ
2

(
‖W− U‖2

F +
∥∥Y− XTW− V

∥∥2
F

)

(4.57)

where � and � are two Lagrangian multipliers corresponding to two equality
constraints, respectively, and ρ > 0 is a penalty parameter that determines the penalty
for infeasibility of the equality constraints. In the following part, we give the details
of solving each ADMM subproblem.

Updating W: Fixing variables U and V, problem (4.57) is reduced to

min
W
− α

〈
W,Ak

〉+ 〈Σ ,W− U〉 + 〈Λ,Y− XTW− V
〉+ ρ

2 ‖W− U‖2F + ρ
2

∥∥Y−XTW−V
∥∥2

F

Since the above problem is a differentiable unconstrained convex problem, for
any optimal solution, the gradient of objective function must be zero. By setting the
gradient of objective function to zero, we get

ρ
(

XXT + Id
)

W = Bk (4.58)

where Id is a d × d identity matrix and

Bk = αAk −Σ + ρU+ X (Λ+ ρY− ρV) (4.59)

The following proposition is used to update U and V.

Proposition 4.2 Given a positive scalar λ and vectors a, b ∈ �n, the optimal
solution of

min
w∈Rn

f (w) = 1

2
‖w− a‖2

2 + λ‖w‖2 − wT b (4.60)

is

w∗ =
{(

1− λ
‖a+b‖2

)
(a+ b) , if ‖a+ b‖2 > λ;

0, otherwise.
(4.61)



4.2 Regularizations for Feature Selections 279

Proof Since problem (4.60) is an unconstrained convex problem, we know that its
optimal solution w∗ will satisfy the optimal condition that is 0 ∈ ∂ f (w∗). Note that
when w �= 0,

∂f (w) = ∇f (w) = w− a+ λ
w

‖w‖2
− b, (4.62)

we know that if w∗ �= 0,

λ
w∗
‖w∗‖2

+ w∗ − a− b = 0, i.e., a+ b− w∗ = λ
w∗
‖w∗‖2

, (4.63)

from which we obtain the proposition.

Updating U: Problem (4.57) with respect to U becomes

min
U

α‖U‖2,1 + 〈Σ,W − U〉 + ρ

2
‖W− U‖2

F . (4.64)

Expanding the objective function in problem (4.64) and removing the terms that
are irrelevant of U, we arrive at

min
U

1

2

∥∥∥∥U−
(

W+ Σ

ρ

)∥∥∥∥
2

F

+ α

ρ
‖U‖2,1. (4.65)

Let M =W + �/ρ, we have

min
U

1

2
‖U−M‖2

F +
α

ρ
‖U‖2,1. (4.66)

Furthermore, problem (4.64) can be rewritten as:

min
ui

d∑
i=1

(
1

2
‖ui −mi‖2

2 +
α

ρ
‖ui‖2

)
, (4.67)

where ui and mi are the i-th row of U and M, respectively. Obviously, problem
(4.67) is equivalent to solving d independent subproblems simultaneously. Based
on Proposition 4.2, the optimal solution is, for i = 1, 2, · · · , d,

ui =
{(

1− α
ρ‖mi‖2

)
mi , if α < ρ‖mi‖2

0, otherwise.
(4.68)
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Updating V: Similar to updating U, the subproblem with respect to V is
equivalent to

min
V

1

2
‖V− N‖2

F +
1

ρ
‖V‖2,1 (4.69)

where N = Y − XTW + �/ρ. Then, the solution of problem (4.69) is V =[
vT

1 , vT
2 , · · · , vT

n

]T
, where for i = 1, 2, · · · , n,

vi =
{(

1− 1
ρ‖ni‖2

)
ni , if 1 < ρ‖ni‖2;

0, otherwise.
(4.70)

Updating � and �: After updating the variables, we also need to adjust the
Lagrangian multipliers. The specific rule is

Σ := Σ + ρ
(

W− U
)

Λ := Λ+ ρ
(

Y− XT W− V
) (4.71)

With the above updating rules, we summarize the process of solving problem
(4.55) in Algorithm 4.3.

Algorithm 4.3 ADMM for CCCP Subproblem (4.54)

Input: data matrix X, label matrix Y, regularization parameter α and penalty
parameter ρ

1: Initialize k = 0 and �0, �0 = 0 and U0, V0 = 0
2: repeat
3: Calculate Bk by Eq. (4.58)
4: Update Wk+1 by Eq. (4.57)
5: Calculate Mk =Wk+1 + ρ−1 �k

6: for i = 1, 2, . . . , d do
7: if α < ρ

∥∥mk
i

∥∥
2 then

8: uk+1
i =

(
1− α

ρ
∥∥mk

i

∥∥
2

)
mk

i

9: else
10: uk+1

i = 0
11: end if
12: end for
13: Calculate Nk = Y − XTWk+1 + ρ−1 �k

14: for i = 1, 2, . . . , n do
15: if 1 < ρ

∥∥nk
i

∥∥
2 then

16: vk+1
i =

(
1− 1

ρ
∥∥nk

i

∥∥
2

)
nk

i
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17: else
18: vk+1

i = 0
19: end if
20: end for
21: Update �k+1 and �k+1 by Eq. (4.70)
22: k := k + 1
23: until ADMM stopping criterion is satisfied

Output: The optimal solution W*

The data analysis of implementing the above method can be found in [4].

4.2.2 Feature Selection with �2, 1 − 2 Regularization

In unsupervised learning, we don’t have label information that can guide to select
the most discriminative and relevant features. One commonly used strategy is to
seek cluster indicators and simultaneously perform the supervised feature selection
within the unified framework [55, 56].

Here we use spectral clustering to obtain the cluster indicators of data
points. Suppose that n data points are grouped into c clusters. Denote
F= [f1, f2, · · · , fn]T ∈ {0, 1}n × c, where fi ∈ {0, 1}c × 1 is the cluster indicator vector
for xi. That is, Fij = 1 if xi is assigned to the j-th cluster, and Fij = 0 otherwise. The

scaled cluster indicator matrix Y is defined as Y = [y1, y2, · · · , yn

]T = F
(
FTF

)− 1
2 .

Then YTY = (
FTF

)− 1
2
(
FTF

) (
FTF

)− 1
2 = Ic where Ic is the c × c identity matrix.

Following the work in [55], we can get the scaled cluster indictors by exploiting the
local geometrical structure of original data as follows

min
Y

Tr
(

YTLY
)
, s.t. YTY = Ic,Y ≥ 0 (4.72)

where L is the normalized Laplace matrix and defined as L= D−1/2(D− S)D−1/2 is
the affinity matrix of data points and D is a diagonal matrix with Dii = ∑n

j=1 Sij .
Problem (4.72) can be called nonnegative spectral clustering [55]. Combing (4.35)
and (4.72), we propose unsupervised feature selection model in a general form as
follows:

min
W,Y

LX,Y (W)+ α‖W‖2,1−2 + βTr
(

YTLY

)

s.t. YTY = Ic,Y ≥ 0
(4.73)

where α > 0 and β > 0 are two balance hyper-parameters. By solving model (4.73),
the optimal solution W∗ can be obtained. Then the top-ranking features can be

selected according to the values of
∥∥w∗i

∥∥
2

(
i = 1, 2, · · · , d

)
.
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4.2.2.1 Algorithm

The problem (4.73) is a non-convex optimization with orthogonal and nonnegative
constraints. In general, it is difficult to solve directly. Based on the work in [54], we
use the Alternating Direction Method of Multiplier (ADMM) to effectively solve
our unsupervised model (4.73). Similar to the supervised case, to give the detailed
algorithm of (4.73), we choose the �2, 1 norm as the loss function. Then (4.73)
becomes

min
W,Y

∥∥Y− XTW
∥∥

2,1 + α‖W‖2,1−2 + βTr
(

YTLY

)

s.t.YTY = Ic,Y ≥ 0
(4.74)

By introducing auxiliary variables U = W, V = Y − XTW and H = Y, the
optimization problem (4.74) can be rewritten as the following equivalent form

min
W,Y,U,V,H

‖V‖2,1 + α
(‖U‖2,1 − ‖W‖F

)+ βTr
(

YTLH
)

s.t.YTY = Ic,U = W,V = Y− XTW,H = Y,H ≥ 0,
(4.75)

which can be Transactionsformed into the following form

min
W,Y,U,V,H

‖V‖2,1 + α
(‖U‖2,1 − ‖W‖F

)+ βTr
(
YTLH

)+
〈
Σ,W − U

〉

+ 〈Γ,Y− H〉 + 〈Λ,Y− XTW− V
〉+ ρ

2 ‖W− U‖2
F

+ρ
2

(
‖Y− H‖2

F +
∥∥Y− XTW− V

∥∥2
F

)

s.t. YTY = Ic,H ≥ 0
(4.76)

where �, � and � are the Lagrangian multipliers corresponding to the three equality
constraints, respectively, and ρ > 0 is a penalty parameter that determines the penalty
for infeasibility of the three equality constraints. According to ADMM, we solve
a manageable subproblem with respect to a given variable while fixing the other
variables. In our algorithm, except the subproblem with respect to W, we can get the
closed form solutions for all subproblems. Noticing that the subproblem of U and V
are the same as the supervised case, we here only present the details of solving W,
Y, and H.

Updating W: To update W, we fix all the variables except W and remove
irrelevant terms that are irrelevant of W. Problem (4.76) becomes:

minW − α‖W‖F + 〈Σ,W− U〉 + 〈Λ,Y−XTW− V
〉+ ρ

2

(
‖W− U‖2

F +
∥∥Y− XTW− V

∥∥2
F

)
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Similar to the proposed supervised model, we solve the above problem with
CCCP, in which the linearized subproblem is

min
W
− α

〈
W,Ak

〉+
〈
Σ,W − U 〉+〈Λ,Y− XTW− V

〉

+ ρ
2

(
‖W− U‖2

F +
∥∥Y− XTW− V

∥∥2
F

) (4.77)

where Ak is defined as (4.27).
Updating Y: Problem (4.76) with respect to Y turns to be,

min
Y

βTr
(
YTLH

)+ 〈Γ,Y− H〉 +
〈
Λ,Y− XTW− V

〉

+ρ
2

(
‖Y− H‖2

F +
∥∥Y− XTW− V

∥∥2
F

)

s.t. YTY = Ic,

(4.78)

which is equivalent to

min
Y
‖Y− J‖2

F s.t. YTY = Ic (4.79)

where J = (ρXTW + ρV − � − βLH − � + ρH)/2ρ. Using the
constraint YTY = Ic, we rewrite problem (4.79) as

max
Y

Tr
(

YTJ
)

s.t. YTY = Ic. (4.80)

According to Lemma 3.2 in [57], we present the optimal solution of problem
(4.80) as follow:

Y = J1JT
2 , (4.81)

where J1 is the first c columns of the left singular values of singular value
decomposition (SVD) of J, and J2 is the right singular values.

Updating H: Problem (4.76) yields the following problem

min
H≥0

Tr
(

YTLH
)
+ 〈Γ,Y− H〉 + ρ

2
‖Y− H‖2

F . (4.82)

We can rewrite the equivalent form of (4.82) as follow

min
H
‖H− Q‖2

F s.t. H ≥ 0, (4.83)



284 4 Feature Selection

where Q = Y + �/ρ − LTY/ρ. Furthermore, problem (4.83) can be decomposed
into element-wise

min
Hij

∑
i,j

(
Hij − Qij

)2
s.t. Hij ≥ 0. (4.84)

It is straightforward to see that the solution is

Hij = max
(
Qij , 0

)
, i = 1, · · · , n and j = 1, · · · , c (4.85)

Updating �: The Lagrangian multiplier � is updated as

Γ := Γ + ρ
(

Y− H
)

(4.86)

Finally, we present the algorithm for unsupervised feature selection model with
�2, 1 − 2 regularization in Algorithm 4.4.

Algorithm 4.4 Unsupervised Feature Selection with �2,1–2

Input: data matrix X, hyper-parameters α and β, penalty parameter ρ

1: Initialize Y0 by K-means, construct the normalized graph Laplacian
matrix L and set k = 0

2: repeat
3: repeat
4: Update Wk by Eq. (4.57)
5: until CCCP stopping criterion is satisfied
6: Update Uk by Eq. (4.67)
7: Update Vk by Eq. (4.69)
8: Update Hk by Eq. (4.84)
9: Update Yk by Eq. (4.80)
10: Update �k, �k and �k by Eqs. (4.70) and (4.85)
11: k := k + 1
12: until ADMM stopping criterion is satisfied
Output: The optimal solution W*

4.2.3 Feature Selection with MCP2 Regularization

4.2.3.1 Sparse Regularization for Vectors

This section gives a brief review on sparse regularizer for vectors. The sparsest
solution can be obtained by �0, which is defined as the number of non-zero entries,
i.e., ‖w‖0 = # {i : wi �= 0}. Because the resulting optimization is NP hard, several
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relaxation of �0 have been proposed and studied, including the �1 norm, �p, the
capped �1 norm [58], �1 − 2 [47], the SCAD [59] and the MCP [60].

The �1 norm and �p(0 < p < 1) of vector w = [w1, w2, · · · , wn] ∈ Rn is defined
as

‖w‖1 =
n∑

i=1

| wi | and ‖w‖p =
(

n∑
i=1

|wi |p
)1/p

, (4.87)

respectively. The �1 − 2 of w is defined as

‖w‖1−2 = ‖w‖1 − ‖w‖2, (4.88)

which approaches the x-axis and y-axis closer as the values get smaller. The capped

�1 norm of w ∈ Rn is defined as
∑n

i=1 Pλ

(
wi

)
, where Pλ(wi) is defined as

Pλ (wi) = λmin {|wi |, a} =
{
λ | wi |, if | wi |< a

λa, if | wi |≥ a
(4.89)

where a > 0. The SCAD regularization for w ∈ Rn can be written as
∑n

i=1 Pλ

(
wi

)
,

where the SCAD function is defined as

Pλ (wi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ | wi | if 0 ≤| wi |≤ λ
−|wi |2+2aλ|wi |−λ2

2

(
a−1

) if λ <| wi |≤ aλ

(
a+1

)
λ2

2 if | wi |> aλ

(4.90)

where a > 0.
The MCP regularization for w ∈ Rn can be written as

∑d
i=1 Pλ

(
wi

)
, where the

MCP function is defined as,

Pλ (wi) = λ

∫ |wi |

0

(
1− x

aλ

)
+
dx, (4.91)

where a > 0 and (·)+ := max {0, ·}. Then, we have

Pλ (wi) =
{
λ | wi | − |wi |2

2a , if 0 ≤| wi |≤ aλ
1
2λ

2a, if | wi |> aλ
(4.92)
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4.2.3.2 Sparse Regularization for Matrices

Due to the complexity of the matrix formulation, there are relatively fewer investi-
gations dedicated to sparse regularization on matrices. Several commonly used ones
include �2, 0, �2, 1, �2, p(0 < p < 1) and �2, 1 − 2.

The �2, 0 of matrix W = [wT
1 ,wT

2 , · · · ,wT
m

]T ∈ Rm×n is defined as

‖W‖2,0 =
∑
wi �=0

‖wi‖0
2 (4.93)

The �2, 1 is defined as the �1-norm of the vector containing of the �2-norm of the
matrix rows,

‖W‖2,1 =
m∑

i=1

‖wi‖2 =
m∑

i=1

√√√√
n∑

j=1

W2
ij (4.94)

Similarly, the �2, p(0 < p < 1) is defined as,

W‖2,p =
(

m∑
i=1

‖wi‖p2
)1/p

=
⎛
⎜⎝

m∑
i=1

⎛
⎝

n∑
j=1

W2
ij

⎞
⎠

p/2
⎞
⎟⎠

1/p

(4.95)

The �2, 1 − 2 is defined as ‖W‖2, 1 − 2 = ‖W‖2, 1 − ‖W‖F .

4.2.3.3 The Proposed Model

Here, a novel sparse regularization on matrices first is proposed and then apply it to
feature selection. For W ∈ Rm×n, we define MCP2 as follow,

MCP2 =
m∑

i=1

Pλ (‖wi‖2) (4.96)

where wi is the i-th row of W and Pλ(·) is defined as in Eq. (4.92). According to the
properties of MCP, MCP2 is non-convex and Lipschitz continuous.

Let X = [x1, · · · , xn] ∈ Rd×n be a data matrix with n samples of d features.
Suppose that n samples are sampled from c classes, by one-hot encoding, the class
labels can be represented as matrix Y ∈ Rn×c, where Yij = 1, if xi belongs to the
j-th class and Yij = 0 otherwise. Using the new proposed MCP2 in Eq. (4.96) as the
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sparsity regularization term, the following supervised feature selection model can
be obtained:

min
W

1

2

∥∥∥Y− XTW
∥∥∥

2

F
+

d∑
i=1

Pλ (‖wi‖2) , (4.97)

where the first term is the loss function which measures the model fidelity, the
second term is the regularizer which is the preference of selecting features across all
the classes with joint sparsity.

The joint minimization of the fidelity term and the sparsity regularization enable
the transformed matrix W ∈ Rd×c to evaluate the correlation between labels and
features, which is particularly suitable for feature selection. More specifically, the
i-th row in W shrinks to zero or a number close to zero if the i-th feature is less
discriminative to the labels. In the rest part of this section, we denote the objective
function in (4.97) as F(W) for short.

In practice, we can perform feature selection with the optimal solution W∗ to
model (4.97). In detail, we rank all features in descending order according to

∥∥w∗i
∥∥

2,
for i = 1, 2, · · · , d, and select those features with the highest rankings.

The following theorem shows that the new proposed sparse regularization can
indeed give a sparse solution.

Theorem 4.2 (Sparsity): Let W∗ �= 0 be a solution of model (4.97). Assume

F(W∗) ≤ F(W0). If λ ≥ maxi‖xi‖2

√
2F
(

W0
)
, then

∥∥W∗∥∥
2,0 ≤

F
(

W0
)

Pλ

(
aλ− a

√
2F
(

W0
)

max
1≤i≤d

‖xi‖2

) (4.98)

Proof Since W∗ �= 0 is a solution of (4.97), for any i = 1, 2, · · · , d, there exists
ŵ∗i ∈ ∂

∥∥w∗i
∥∥

2 such that

xi

(
XTW∗ − Y

)
+ P ′λ

(∥∥w∗i
∥∥

2

)
ŵ∗i = 0, (4.99)

where xi is the i-th row of X, that is the i-th feature and

∂
∥∥w∗i

∥∥
2 =

{ {
w∗i‖w∗i ‖2

}
if w∗i �= 0

{e : ‖e‖2 ≤ 1} if w∗i = 0
(4.100)
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Based on the property of norm, we have

∥∥xi

(
XTW∗ − Y

)∥∥2
2 ≤ ‖xi‖2

2

∥∥XTW∗ − Y
∥∥2
F

≤ ‖xi‖2
2

(∥∥XTW∗ − Y
∥∥2
F
+ 2

∑d
i=1 Pλ

(∥∥w∗i
∥∥

2

))

= 2‖xi‖2
2F
(

W∗
)

≤ 2‖xi‖2
2F
(

W0
)

(4.101)

When w∗i �= 0, combing (4.100) and (4.101), we get

‖xi‖2

√
2F
(

W0
)
≥ P ′λ

(∥∥w∗i
∥∥

2

) = λ−
∥∥w∗i

∥∥
2

a
, (4.102)

which is equivalent to

∥∥w∗i
∥∥

2 ≥ a

(
λ− ‖xi‖2

√
2F

(
W0
))

> 0. (4.103)

Moreover,

F
(
W0
) ≥ F (W∗) ≥∑d

i=1 Pλ

(∥∥w∗i
∥∥

2

)

=∑wi �=0 Pλ

(∥∥w∗i
∥∥

2

)

≥∑w∗i �=0 Pλ

(
aλ− a‖xi‖2

√
2F
(

W0
))

≥∑w∗i �=0 Pλ

(
aλ− a

√
2F
(

W0
)

max1≤j≤d‖xi‖2

)

= ‖W∗‖2,0Pλ

(
aλ− a

√
2F
(

W0
)

max1≤j≤d‖xi‖2

)

(4.104)

which completes the proof.

4.2.3.4 The Optimization Algorithm

This section presents the optimization algorithm for the proposed feature selection
model in (4.97). As previously stated, the new proposed sparse regularization is
non-convex, which leads to the proposed model be also non-convex. Because non-
convex problems are generally more challenging to be minimized, we need to design
a specific algorithm to solve model (4.97) efficiently.

The ConCave-Convex Procedure (CCCP) is one of the ways to deal with a variety
of non-convex problems, which has been widely and successfully applied to sparse
optimization problems [61, 62]. The CCCP is an iterative approach, whose idea
is that it approximates the convex part by its tangent and minimizes the resulting
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convex function at each iteration. We notice that the objective of 4.97 has a naturally
decomposition, which can be written into the difference of two convex function

F (W) = 1

2

∥∥∥Y− XTW
∥∥∥

2

F
−
(

d∑
i=1

−Pλ (‖wi‖2)

)
(4.105)

This decomposition allows us to apply the ConCave-Convex Procedure (CCCP).
In details, each iteration of our algorithm needs to solve a convex program defined
by linearizing the convex part

∑d
i=1−Pλ (‖wi‖2). More concretely, the linearized

convex subproblem is

1

2

∥∥∥Y− XTW
∥∥∥

2

F
−
(

d∑
i=1

−
〈
wi , P

′
λ

(∥∥∥wk
i

∥∥∥
2

)
ŵk

i

〉)
(4.106)

where wk
i is the i-th row of Wk, 〈·〉 is the inner product between two vectors of the

same scale, Pλ′
(∥∥wk

i

∥∥
2

)
is the derivative of Pλ(·) at

∥∥wk
i

∥∥
2and given by

P ′λ
(∥∥∥wk

i

∥∥∥
2

)
=
{
λ−

∥∥wk
i

∥∥
2

a
, if 0 ≤ ∥∥wk

i

∥∥
2 ≤ aλ

0, if
∥∥wk

i

∥∥
2 > aλ

(4.107)

and ŵk
i ∈ ∂

∥∥wk
i

∥∥
2, where

∂

∥∥∥wk
i

∥∥∥
2
=
⎧
⎨
⎩

{
wk

i∥∥wk
i

∥∥
2

}
if wk

i �= 0

{e : ‖e‖2 ≤ 1} if wk
i = 0

(4.108)

For simplicity of our algorithm, we specify ŵk
i as

ŵk
i =

⎧
⎨
⎩

wk
i∥∥wk
i

∥∥
2
, ifwk

i �= 0

0, ifwk
i = 0

(4.109)

In the following part of this subsection, we focus on how to minimize the
following CCCP subproblem,

min
W

1

2

∥∥∥Y− XTW
∥∥∥

2

F
−

d∑
i=1

−
〈
wi , P

′ (∥∥∥wk
i

∥∥∥
2

)
ŵk

i

〉
(4.110)

As we can see, CCCP subproblem in (4.110) is a convex quadratic function.
The solution must satisfy the first order necessary condition, i.e., the derivative of
objective function with respect to W must be zero. The derivative of the first part
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of objective function is X(XTW − Y). And we can easily derive the second part

with respect to wi as P ′
(∥∥wk

i

∥∥
2

)
ŵk

i . Then we can get the derivative of the whole
objective function as X(XTW − Y) + Mk, where Mk ∈ Rd×c and the entry of i-

th row in Mk is P ′
(∥∥wk

i

∥∥
2

)
ŵk

i . By setting the derivative of objective function in
(4.110) with respect to W to be zero, we have

X
(

XTW− Y
)
+Mk = 0 (4.111)

Furthermore, we can easily solve the above linear system of equations

W =
(

XXT + εId
)−1 (

XY−Mk
)

(4.112)

where Id ∈ Rd×d is the identity matrix and ε > 0 is a sufficiently small constant.
We summarize our algorithm in Algorithm 4.4.

Algorithm 4.5 CCCP for Solving Model (4.92)

Input: data matrix X and label matrix Y
1: Initialize k = 0
2: repeat
3: for i = 1, 2, . . . , d do
4: if wk

i �= 0 then

5: ŵk
i = wk

i∥∥wk
i

∥∥
2

6: else
7: ŵk

i = 0
8: end if
9: end for
10: Update Wk by (4.107)
11: k := k + 1
12: until Convergence criteria is satisfied
Output: W*

The related experimental study of the above CCCP can be found in [5].

4.2.3.5 Computational Complexity

The computational complexity of the proposed method described in Algorithm
4.4 can be analyzed. Recall that d is the number of features, n is the number of
instances and c is the number of classes. At each step, we need to update Mk,

which requires O
(
dc
)

operations. However, since the computation of the inverse

matrix of XXT + εId and the matrix multiplication of X and Y are only related
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to input data, we can calculate them before we go to the loop. And the cost for

them are O
(
d3 + d2n2

2

)
operations and O

(
dcn2

)
operations, respectively. Suppose

that CCCP terminates after N steps. Then, the overall cost for Algorithm 4.5 is

O
(
d3 + d2n2

2 + dcn2 + N
(
d3c + 2dc

))
.

4.3 Distance-Based Feature Selections

4.3.1 Spatial Distance Join Based Feature Selection

4.3.1.1 Fundamental Concepts

The Correlation Fractal Dimension (CFD) that underlies various remarkable unsu-
pervised feature selection methods [63, 64] can be considered as a special case
of Spatial Distance Join (SDJ) [65]. The SDJ extends the concept of CFD and
provides a general description of both feature relevance and feature redundancy in
the same framework. In order to investigate feature selection problems in the SDJ
framework, some fundamental concepts of SDJ are introduced below along with the
establishments of SDJ based feature relevance and redundancy measures.

Spatial Distance Join

In multi-dimensional and spatial databases, Spatial Distance Join (SDJ) is an
important query, which, for example, calculates ‘the number of ATM machines that
locates within 2 miles from restaurants. Formally, given a distance metric L, a radius
r, and two datasets A and B, SDJ search for {(a,b)| a ∈ A and b ∈ B, L(a, b) ≤ r}.
In other words, a SDJ query enumerates all pairs of points (respectively from A
and B) that are within distance r. Clearly, the total number of such point pairs is
a function of r, namely pair count function PC(r) (for simplicity datasets A and B
are not explicitly referred). It has been shown that the pair-count usually follows
the power law PC(r) = Krφ [65], in which K is a constant and ϕ is the Pair-Count
Exponent (PCE). Based on the power law, the PCE can be derived by

φ =
∂ln

(
PC(r)

)

∂ln
(
r
) (4.113)

In the above definition CFD arises as a special case of PCE when datasets A and
B are identical. For such a case (A = B) the SDJ is called self-spatial join and is
otherwise called cross-spatial join between different datasets (A �= B).

In the context of feature selection, CFD has been proven a good feature
redundancy measure [63, 64, 66–68], while, as elaborated later in the present work,
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the PCE between two classes of a dataset is capable in quantification of feature
relevance. In parallel to the term CFD, the PCE defined between two classes of
a dataset is hereinafter referred to as Relevance Fractal Dimension (RFD). From
the SDJ view of point, both CFD and RFD are PCE of either self-spatial join or
cross-spatial join, which therefore allows investigation of both feature relevance
and feature redundancy in a general framework. Moreover, PCE is shown invariant
to affine transformations (i.e., translation, rotation, and uniform scaling), sampling,
and the distance norm (L) used [65]. Such invariance properties are desirable by
feature selection methods.

CFD and Feature Redundancy

As introduced above, CFD is the PCE of a special SDJ for two identical datasets
(i.e., self-spatial join), which essentially measures self-similarity of a dataset. A
dataset that presents self-similarity for a meaningful range of distances is called
a fractal dataset [69], which usually represents a spatial object of dimensionality
lower than its address space (in which the dataset resides) [63]. In other words, the
intrinsic dimension of a fractal dataset (i.e., the dimensionality of the spatial object
represented by it) could be much smaller than its embedding dimension (i.e., the
number of features). As a measure of self-similarity, CFD provides an estimate for
the intrinsic dimension of a dataset [70]. Moreover, CFD has an important property
that has been adopted to identify redundant features. In a dataset A, a feature x of
no contribution to the CFD of the dataset (i.e., CFD(A/{x}) = CFD(A)) implies the
full restriction of the feature x by others. In other words, x is a redundant feature
that can be reproduced by others. Using CFD as a feature redundancy measure,
various feature selection methods were developed to identify the smallest subset S
of A (S ⊂ A) such that CFD(S)= CFD(A) [63, 64]. A particular advantage of CFD
based feature selection method over other feature redundancy removal methods lies
in that, it can handle complex feature correlations (not limited to a specific family
of mapping functions) and can easily deal with feature group correlations [63].

RFD and Feature Relevance

In order to investigate feature relevance within the SDJ framework, a cross-spatial
join composed by two classes of a dataset is considered. In the following analysis,
P+ and P− denote the positive and negative point sets of a binary-class dataset
(normalized into [0, 1]), respectively. In addition, the infinity norm L1 is used (i.e.,
‖ · ‖ = ‖ · ‖∞) without loss of generality. According to the power law, the pair
counts for a radius r(r ≤ 1) is given by PC(r) = Krφ . It can be shown that the
constant K = s+s− (by letting r = 1), in which s+ and s− are the respective sizes
of P+ and P−. Therefore, a larger PCE (i.e., φ) indicates that there are less pairs
of positive and negative points that are within distance r to each other. In other
words, positive and negative data points are less mixed (i.e., low class impurity),
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which in turn suggests that the binary-class dataset is more separable. Similarly, a
feature subset of larger PCE is more relevant to class label and the data points are
more separable on the feature subset. For this reason, Relevance Fractal Dimension
(RFD) is used in the present work to refer to the PCE between two different classes.

As shown further by the following property (Property 1), a relationship can be
established for different PCEs defined on a binary-class dataset. In the property,PC∗

denotes the pair counts of all data points (irrespective of class), PC+/+ denotes
pair counts of positive class, PC−/− denotes the pair counts of negative class, and
PC+/− denotes the pair counts across positive and negative class, along with their
corresponding PCEs denoted by φ∗ , φ+/+, φ−/−, and φ+/−, respectively.

Theorem 4.3 For a given radius r≤ 1, PC*(r)= PC+/+(r)+ PC−/−(r)+ 2PC+/−(r)
and min{φ+/+, φ−/−, φ+/−} ≤ φ∗ ≤ max {φ+/+,φ−/−, φ+/−}.
Proof For a binary-class dataset, the point pairs within distance r (i.e., PC∗(r))
are comprised by (1) self-point pairs of positive class L

(
p+i , p+i

) = 0; (2) cross-

point pair of positive class L
(
p+i , p+j

)
≤ r, i �= j ; (3) self-point pairs of negative

class L
(
p−i , p−i

) = 0; (4) cross-point pairs of negative class L
(
p−i , p−j

)
≤

r; (5) cross-point pairs of positive class to negative class L
(
p+i , p−j

)
≤ r

and (6) cross-point pairs of negative class to positive class L
(
p−i , p+j

)
≤

r . Among the above six types of point pairs, PC+/+(r)= pair count of type
1 + pair count of type 2, PC−/−(r)= pair count of type 3 + pair count of
type 4, and PC+/−(r)= pair count of type 5 PC−/+(r)= pair count of type
6. Accordingly, as the sum of all point pairs of different types, PC∗ (r) can
be collectively expressed by PC∗ (r) = PC+/+(r) + PC−/−(r) + 2PC+/−(r).
Based on the power law (PC(r) = Krφ ), the above expression can be rewritten
as K∗rφ∗ = K+/+rφ + /+ + K−/−rφ − /− + 2K+/−. It can be further shown that
K∗ = K+/+ + K−/− + 2K+/− by letting r = 1. Finally, with the denota-
tions of φmin = min {φ+/+, φ−/−, φ+/−} and φmax = max {φ+/+,φ−/−, φ+/−},
K∗rφ∗ ≤ K+/+rφmin + K−/−rφmin + 2K+/−rφmin = K∗rφmin, can be derived from
theequation about K’s. In a similar way, it can be also shown that φ∗ ≤ φmax.

In the property, it should be noted that, φ∗ is essentially the CFD of the entire
dataset, φ+/+ is the CFD of the positive data point set (P+), φ−/− is the CFD of the
negative data point set (P−), while φ+/− is actually the RFD of the entire dataset
(i.e., the PCE between the two different classes). The pair-count relationship shows
that the increase of φ+/− leads to decreased φ+/+ and/or φ−/−. In other words, as
RFD increases the positive data points and/or the negative data points become less
spread, which is consistent with that a dataset of larger RFD is more separable (i.e.,
of lower class impurity). It is noted that the above analysis involves only binary-class
datasets. In order to address multi-class problems with RFD, one-versus-one and
one-versus-the-rest styles can be adopted. For one-versus-one style, RFDs between
any two classes are calculated and the averaged RFD is used to measure feature
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relevance, while one-versus-the-rest style quantifies feature relevance by the average
of RFDs between one class and all the rest classes.

Box Occupancy Counter for PCE Calculation

The Box Occupancy Counter (BOC) is a widely used approach [63, 64, 69] for
the calculation of PCE. The BOC approach is based on the derivative definition of
PCE given by Eq. (4.1) with PC(r) replaced by an estimate. In order to estimate
PC(r), the address space of datasets A and B is divided into a hyper-cubic grid of
cell-size r. As a result, all the points in the same grid cell are within distance r
(measured by L∞ distance) to each other. Given the points from dataset A and B
counted respectively by CA, i and CB, i for the i-th grid cell (i.e., the box occupancies
of the i-th grid cell for datasets A and B, respectively), the number of r-distant point
pairs can be expressed as CA, iCB, i. Adding up the contribution of each grid, the
total number of the r-distant point pairs is given by the Box-Occupancy-Product-
Sum BOPS(r) =∑i CA,iCB,i , which provides an estimate for PC(r). With PC(r)
in Eq. (4.1) replaced by BOPS(r), PCE is calculated by

φ ≈
∂ln

[
BOP(r)

]

∂ln
(
r
) =

∂ln
(∑

i CA,i ·CB,i

)

∂ln
(
r
) (4.114)

In real world applications, datasets are usually normalized into a unitary hyper-
cube (∈[0, 1]) followed by a series calculations for the BOPSs corresponding
to r = 2−1, · · · , 2−5. The PCE can then be obtained through a curve fitting
step, which, as described by Eq. (4.114), is given by the slope of the linear curve
determined by the points (ln(r), (ln(BOPS(r))).

4.3.1.2 Feature Selection in the SDJ Framework

The above elaboration shows that, both feature redundancy and relevance can be
assessed together within the SDJ framework. In order to select relevant features a
large RFD should be specified, while a large CFD is required for identifying non-
redundant features. However, these two objectives may not always be consistent
with each other and a feature subset of large RFD does not necessarily have large
CFD. In the present work, following an approach that is widely used in multiple
criteria mathematical programming-based data mining [43, 71], the two objectives
are combined into a single one by assigning a weight factor (λ≥ 0) to CFD. In other
words, a weighted sum of RFD and CFD (i.e., RFD + λCFD) is used as a quality
measure for a feature subset. Accordingly, for a given dataset A the feature selection
problem is formulated in the SDJ framework as

arg maxS⊂ARFD(S) + λCFD(S), (4.115)



4.3 Distance-Based Feature Selections 295

where S is a feature subset of A (of a given size) and λ reflects the preference
assigned to feature redundancy.

In order to select nonredundant features, a large λ should be specified, while a
small λ indicates that feature subsets of large RFD (i.e., relevant feature subsets)
are preferred. When λ = ∞ the above formulation (Eq. 4.115) collapses into a
CFD based unsupervised feature selection (which is equivalent to FDR without
consideration of feature relevance).

To calculate the required RFD and CFD, a Divide-Count algorithm is designed
providing an efficient implementation of the BOC approach for feature selection. In
the algorithm the BOPSs for boxes of increasing size (from r = 2−b to r = 2−1,
in which b is a positive integer identifying the depth/level of the box refinement)
are calculated with an integer array based indexing scheme. In such a scheme,
for the bottom level grid (r = 2−b), a point p( = [x1, · · · , xn]) is indexed by an

integer array keyb =
[
kb1 , · · · , kbn

] =
[
%x1/r& , · · · , %xn/r&

]
(where %a& identifies

the largest previous integer of a, i.e., the largest integer less than a; for example,
%2.1& = %2.9& = 2). With the above indexing scheme, data points in the same
grid cell will have the same index, which enables a simple counting for the box
occupancies of a grid cell (i.e., the number of points in the cell) by points from
different classes. One can then simply use Cj, keyb to identify/store box occupancy
of class j for the cell indexed by keyb. Once the box occupancies of the bottom
level grid (i.e., the b-th level) are obtained, those of the upper levels can be
calculated without having to re-count the entire data points again. For example,
the index of the (b − 1)-th level grid (keyb − 1) can be readily obtained by

keyb−1 = keyb\2 =
[
kb1\2, · · · , kbn\2

]
(in which “\” identifies integer division; for

example, 3\2 = 2\2 = 1). Therefore, the box occupancies of the (b − 1)-th level
grid (i.e., Cj, keyb − 1) are essentially the sum of the occupancies of the same index.
A detailed description of the Divide-Count algorithm is presented in Algorithm 4.6.

Algorithm 4.6 Divide-Count( ) // Calculate the Box Occupancies of Each Grid
Level

Input: A ∈ Rm × n // A dataset of m points and n features
Output: C//Cj,keyi contains the box occupancy of class j for the grid cell indexed

by keyi
1: Divide-Count algorithm:
2: for each p(= [x1, · · · , xn]) ∈ A//Calculate the box occupancy of the

bottom level(r= 2−b) do
3: keyb =

[
kb

1, · · · , kb
n

] = [⌊
x1\2−b

⌋
, · · · , ⌊xn\2−b

⌋]
//identifies the

largest integer less than a
4: if keyb does not exist before then
5: Cj,keyb = 0 for each j//Create an entry for keyb and set it as 0 for each

class
6: end if
7: Cj,keyb + +//Here j is the class of point p
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8: end for
9: for i = b, · · · , 2//Calculate the box occupancies of upper grid levels do
10: for each keyi, i.e., for each key of the i-th grid level do
11: keyi−1 = keyi\2 = [

keyi
1\2, keyi

n\2
]

//“\” identifies integer
division

12: if keyi−1 does not exist before then
13: Cj,keyi−1 = 0 for each j//Create an entry for keyi−1 and sot it as 0

for each class
14: end if
15: Cj,keyi−1+ = Cj,keyi for each j (i.e., for each class)
16: end for
17: end for

The algorithm designed above has certain advantages over the existing Linear
Box Occupancy Counter algorithm (LiBOC) for the calculation of BOPSs. The
LiBOC algorithm adopts a topdown style facilitated by an E-dim tree data structure
to calculate the BOPSs for boxes of decreasing size (from r = 2−1 to r = 2−b).
Compared with the proposed integer array based indexing scheme, the E-dim tree
is a complex data structure, which makes the LiBOC algorithm not amenable to
implementation. Moreover, the LiBOC algorithm requires re-count of the entire
data points at each grid level, while the Divide-Count algorithm involves only
one complete count for the bottom level (box occupancies of an upper level are
obtained by merging the box occupancies of the same updated indices instead of re-
counting each data point). As a result, although both algorithms have the same time
complexity order of O(mn) (m and n identify the number of data points and features
in a dataset, respectively), the Divide-Count algorithm is more efficient. It is noted
that the Divide-Count algorithm only keeps non-empty boxes, which therefore has a
maximum space complexity (i.e., memory usage) of O(m) since there are m points
in the dataset.

In addition, the Divide-Count algorithm offers good scalability to “big data” [72],
which does not require storing the entire dataset in memory but maintains only
a small set of indexed box occupancy obtained in only one complete data count.
Particularly, for a large distributed dataset (pieces of data are stored at different
local databases), its box occupancies can be obtained by assembling all the local
box occupancies that are calculated by conducting the Divide-Count algorithm
locally for each piece of data. The assembly of local box occupancies can be easily
done by merging/adding box occupancies of the same index together (similar to the
calculation of the box occupancies of (b − 1)-th grid level from b-th level). In this
way, the Divide-Count algorithm is ready for extension to parallel and distributed
feature selection with the advantage of disseminating only indexed box occupancies
(of significantly reduced size) instead of raw data over network.

Another appealing property of the integer array based indexing scheme lies in
that, once the box occupancies of a complete feature set are calculated, the box
occupancies for any feature subset can be obtained without having to re-count
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the entire data again. For example, if the s-th feature is removed from a set of n
features, the new box occupancies of the remainder n − 1 features can be obtained
by discarding the s-the entry from all the indexing arrays and then merging the

occupancies of the same updated index key ′b =
[
kb1 , · · · , kbs−1, k

b
s , · · · , kbn

]
. In

other words, the data points of the same index after the s-th entry removed will
be projected into the same box in the lower dimensional space (without the s-th
feature). The detailed process for this backward calculation of the box occupancies
with a feature removed is described in Algorithm 4.7.

Algorithm 4.7 Rem-Count ( ) // Calculate the Box Occupancies After Exclusion
of a Single Feature

Input: C // Cj, keyb contains the box occupancy of class j for the grid cell indexed
by keyb, s // the index of the feature to be removed

Output: D // Dj,key′b = 0 contains the box occupancy of class j for the cell
indexed by key′b (with the s-th feature removed)

1: Rem-Count algorithm:
2: for i = 1, . . . , b // For each grid level do
3: for each keyi (i.e., for each key of the i-th grid level) do
4: key′i =

[
ki

1, · · · , ki
s−1, ki

s+1, · · · , ki
n

]
// Delete the s-th entry from

the indexing array keyi
5: if if key′i does not exist in D then
6: Dj,key′i = 0 for each j // Create an entry for key′i and set it as 0 for

each class
7: end if
8: Dj,key′i+ = Cj,keyi for each j (i.e., for each class)
9: end for
10: end for

Once the box occupancies of a feature subset are obtained, its RFD and CFD
can be computed using the ln(r)-versus-ln(BOPS(r)) plot approach described in
Algorithm 4.8.

Algorithm 4.8 Cal-PCEs( ) // Calculate the RFD and CFD of a Feature Subset

Input: C // The box occupancies of a feature subset (Cj,keyb contains the box
occupancy of class j for the grid cell indexed by keyb)

Output: RFD // The relevance fractal dimension of the feature subset; CFD //
The correlation fractal dimension of the feature subset

1: Cal-PCEs algorithm:
2: for j = 1, · · · , b // For each grid level do
3: //Box-Occupancy-Product-Sum using one-versus-the-rest style for

multiple classes

4: R_BOPSij =∑keyi

(
Cj,keyi

)×
(∑

k �=jCk,keyi

))
for each j (i.e., for each

class)
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5: // Box-Occupancy-Product-Sum for all the data points irrespective of
class labels

6: C_BOPSi =∑keyi

(∑
kCk,keyi

)2
7: end for
8: //Calculate RFD and CFD using ln(r)-versus-ln(BOPS(r)) plot
9: for each j (i.e., for each class) do
19: RFDj = the slope of the linear curve fitted to the point
11: set {ln(2−i), ln(R_BOPSij)|i = 1, · · · , b}
12: end for
13: RFD = the average of all the RFDj’s
14: CFD = the slope of the linear curve fitted to the points set {ln(2−i),

ln(C_BOPSi)|i = 1, . . . , b}

It should be noted in the above algorithm that, the RFD is calculated using one-
versus-the-rest style for a multi-class dataset (each time one class is considered
as a dataset with all the other classes held together as a separate dataset). One
can also use one-versus-one style, which however requires more calculations for
the RFDs between any class pairs. Given the efficient calculations of RFD and
CFD, the next step is the identification of the feature subset of the largest weighted
sum RFD+ λCFD (i.e., the solution of the optimization problem described by Eq.
(4.115)). In order to keep feature selection processes computationally tractable,
heuristic instead of exhaustive search (e.g., forward/backward selection) are adopted
by a wide range of feature selection methods (including those based on CFD), albeit
suboptimal feature subsets may be selected as a result of the partial exploration of
feature space. In the present work, a SDJ based backward feature selection method is
designed, which takes advantage of the efficient calculation for the box occupancies
(required by the calculations of RFD and CFD) of a feature subset from those of
its parent set (see Algorithm 4.7). In such a SDJ based feature selection method
(SDJ-FS), at each step, the feature which exclusion leads to the smallest decrease in
RFD+ λCFD is removed until a desired number of features are selected. Details of
the SDJ-FS method are given in Algorithm 4.9.

Algorithm 4.9 SDJ-FS ( ) // Feature Selection Using SDJ

Input: A ∈ Rm×n // A dataset of m points and n features, i.e., a feature set of (A1,
. . . , An})

1: c // Number of features to be selected
2: λ // The weight factor for CFD (λ ≥ 0)

Output: S ∈ Rm×c // The selected feature subset
3: SDJ-FS algorithm:
4: F = [1, · · · , n] // Initialize the indices of selected features
5: Divide-Count (A) // Calculate the box occupancies for each class and each

grid level
6: while n > c // n is the number of selected features (initially all the features

are selected) do
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7: // Calculate RFD and CFD for all the subsets of n − 1 features
8: [RFDi, CFDi] = Cal − PCEs(Rem − Count(C, i)) for i = 1, · · · , n
9: j = the index of the largest RFDi + λCFDi (among all the i’s)
10: C = Rem-Count(C, j) // Exclude the j-th feature and update the box

occupancies
11: F[j]= [ ] // Remove the j-th entry from the indices of selected features
12: n = n − 1 Count down the number of selected features
13: end while
14: S = {AF[1], . . . , AF[c]} // Return the selected features

One can finds the numerical analysis of the proposed method in [73].

4.3.2 Domain Driven Two-Phase Feature Selection Method
Based on Bhattacharyya Distance and Kernel Distance
Measurements

4.3.2.1 Preliminary Feature Selection Based on Bhattacharyya Distance
Measurement

In gene expression profile, some genes’ expression levels almost have the same
distribution in both “abnormal” and “normal” samples. Those genes provide no
useful information for identifying certain diseases with not significant difference
of means or variance between the two classes. The first phase of our method is to
filter those irrelevant genes so that a generated smaller candidate feature subsets
would shrink the searching space later. The measurement “signal to noise ratio”
[74] proposed by Golub evaluates the classification information of a certain gene.
The larger the measurement “signal to noise ration”, the more useful gene is for
classification. The measurement is shown as Eq. (4.116).

d = μ1 − μ2

σ1 + σ2
(4.116)

where μ1, μ2 is the mean of the certain gene expression level in “abnormal” and
“normal” samples respectively and accordingly, σ 1 and σ 2 are the variances.

Evidently, the measurement “signal to noise ratio” has its limitation. A gene
with the same mean of expression level but distinct variances in “abnormal” and
“normal” samples may be closely relevant to the disease. However, its zero “signal
to noise ratio” fails to figure it out as informative gene. Bhattacharyya distance
overcomes the shortcoming of “signal to noise ratio”, by taking both mean and
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variance differences between two classes into consideration, shown as Eq. (4.117)
with the same parameter definitions.

B = 1

4

(μ1 − μ2)
2

σ 2
1 + σ 2

2

+ 1

2
ln

(
σ 2

1 + σ 2
2

)

2σ1σ2
(4.117)

In the above equation, variance difference of “abnormal” and “normal” samples
also makes up a part of classification information. Therefore, Bhattacharyya
distance is more reliable to select potential informative genes. And gene with larger
Bhattacharyya distance is better to separate the two class samples. In our approach,
all the genes whose Bhattacharyya distances surpass the specified threshold are
considered as potential informative genes and then form the candidate feature set
from where the “informative genes” can be further selected.

4.3.2.2 Second-Phase Feature Selection Based on Kernel Distance
Measurement

As discussed in related work review part, distance measurements are the most
popular and acceptable metrics of class separability. Generally, feature subset X
is considered to be better than Y if sum of Euclidean distances between the
samples from two classes is larger when using X for classification. However, in real
classification tasks, small samples and non-linear separation are often the cases.
Thus, this section extends the distance measurement to kernel space, i.e. using
kernel distance to evaluate feature subset’s ability of classification. The feature
subset is the optimal if sum of kernel distances between the samples from two
classes is the largest when using it to classify the overall samples.

In kernel-based learning algorithm, original feature space Rd turns to higher
dimensional kernel space K by non-linear mapping ψ(·). The inner product
of two points in kernel space can be represented in the form of kernel func-
tion: k(xi, xj) = 〈ψ(xi),ψ(xj))〉, where xi and xj are the original points.

Using a selected feature subset F for classification, the sum of distance between
every two points respectively from two classes in kernel space, i.e., kernel distance
measurement can be indicated by Eq. (4.118).

D(F) =
n1∑
i=1

n2∑
j=1

∥∥ψ (xi)− ψ
(
xj
)∥∥ (4.118)

Based on kernel function, kernel distance of random two points can be expressed
by the following equation:

∥∥ψ (xi)− ψ
(
xj
)∥∥ =

√∥∥ψ (xi)− ψ
(
xj
)∥∥2 =

√
2− 2k

(
xi, xj

)
(4.119)
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where kernel function is Gaussian radius basis function: k
(
xi , xj

) = exp
(
−
∥∥xi−xj

∥∥2

2σ2

)
,

with 2σ 2 as parameter to be determined.
We can easily learn from Eq. (4.118) that kernel distance measurement D(F)

increases with 2σ 2 descending. Thus, the optimal parameter 2σ 2 varies with respect
to different datasets. To eliminate the influence of kernel parameter 2σ 2, adaptive
method is applied in our method to select the optimal parameter 2σ 2. Given a
certain dataset, in each round, we first randomly select a pair of two feature subsets,
denoted as Fa, Fb. The parameter 2σ 2 that makes biggest disparity of kernel distance
measurements of the two distinct subsets Fa and Fb is selected as the optimal
solution by searching a given parameter space by a specified step length. After
several rounds, the final kernel parameter 2σ 2 is determined as the mean value of
the previous series of parameters. And then, the kernel distance measurement with
the definitive parameter 2σ 2 can be used for selecting informative genes.

Floating sequential search method is applied in our approach to further select
informative genes using kernel distance measurement to evaluate feature sub-
set’s ability for classification. Suppose the candidate informative gene set after
preliminary feature selection is S.Fi _ max is the feature subset with maximum
kernel distance among all the feature subsets containing i genes. User can specify
parameter n to select the optimal feature subset containing n genes.

The algorithm is described as follows:

Step 1: Initialize F2 _ max = {g1, g2}, where g1 and g2 are the genes with the largest
kernel distance measurement

Step 2: If i = n, then break; else S = S − F2 _ max, search for g ∈ S to maximize the
kernel distance of Fi + 1 _ max, satisfying Fi + 1 _ max = {Fi _ max, g}

Step 3: Search all the feature subsets of Fi + 1 _ max containing igenes, and find out
the one with the maximum kernel distance F ′i_max .

Step 4: If kernel distance measurement D
(
Fi_max

) ≥ F ′i_max , then i + +, go to
Step 2.

Step 5: If D
(
Fi_max

)
< F ′i_max , then Fi_max = F ′i_max ,. If i = 2, go to (2);

else i − −, go to Step 3.

Based on the floating sequential search method, optima feature subsets of
different dimensions can be selected when different n is specified. Afterwards, the
global optimal feature subset is then picked with the best classification performance
verified by SVMs. For every candidate feature subset, tenfold validation on dataset
for classification performance evaluation is applied to avoid overfitting, and best C is
determined when the average classification accuracy reaches maximum. Therefore,
the ideal feature subset is then decided after verification of SVMs.

The related data analysis of the above algorithm can be found on [6].
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27. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern
Recogn. Lett. 15(11), 1119–1125 (1994)

28. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. In: Proceedings of
the 31st Annual Meeting on Association for Computational Linguistics, pp. 183–190 (1993)

29. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint
physics/0004057 (2000)

30. Baker, L.D., McCallum, A.K.: Distributional clustering of words for text classification. In:
Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 96–103 (1998)

31. Dhillon, I.S., Mallela, S., Kumar, R.: A divisive information theoretic feature clustering
algorithm for text classification. J. Mach. Learn. Res. 3, 1265–1287 (2003)

32. Au, W.H., Chan, K.C., Wong, A.K., Wang, Y.: Attribute clustering for grouping, selection,
and classification of gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(2),
83–101 (2005)

33. Jiang, J.Y., Liou, R.J., Lee, S.J.: A fuzzy self-constructing feature clustering algorithm for text
classification. IEEE Trans. Knowl. Data Eng. 23(3), 335–349 (2010)

34. Amaldi, E., Kann, V.: On the approximability of minimizing nonzero variables or unsatisfied
relations in linear systems. Theor. Comput. Sci. 209(1–2), 237–260 (1998)

35. Combarro, E.F., Montanes, E., Diaz, I., Ranilla, J., Mones, R.: Introducing a family of linear
measures for feature selection in text categorization. IEEE Trans. Knowl. Data Eng. 17(9),
1223–1232 (2005)

36. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J.,
Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel associations in large data sets.
Science. 334(6062), 1518–1524 (2011)

37. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science. 315(5814),
972–976 (2007)

38. Cai, X., Nie, F., Huang, H., Ding, C.: Multi-class l2, 1-norm support vector machine. In: 2011
IEEE 11th International Conference on Data Mining, pp. 91–100. IEEE, New York (2011)

39. Ma, Z., Nie, F., Yang, Y., Uijlings, J.R., Sebe, N.: Web image annotation via subspace-sparsity
collaborated feature selection. IEEE Trans. Multimedia. 14(4), 1021–1030 (2012)

40. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint 2, 1-norms
minimization. Adv. Neural Inf. Proces. Syst. 23, 1813–1821 (2010)

41. Xiang, S., Nie, F., Meng, G., Pan, C., Zhang, C.: Discriminative least squares regression for
multiclass classification and feature selection. IEEE Trans. Neural Netw. Learn. Syst. 23(11),
1738–1754 (2012)

42. Zhang, M., Ding, C., Zhang, Y., Nie, F.: Feature selection at the discrete limit. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 28, (2014)

43. Sriperumbudur, B.K., Lanckriet, G.R.: On the convergence of the concave-convex procedure.
In: Nips, vol. 9, pp. 1759–1767. Citeseer (2009)

44. Yen, I.E., Peng, N., Wang, P.W., Lin, S.D.: On convergence rate of concave-convex procedure.
In: Proceedings of the NIPS 2012 Optimization Work-shop, pp. 31–35 (2012)

45. Yuille, A.L., Rangarajan, A., Yuille, A.: The concave-convex procedure (cccp). Adv. Neural
Inf. Proces. Syst. 2, 1033–1040 (2002)

46. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of 1-2 for compressed sensing. SIAM J. Sci.
Comput. 37(1), A536–A563 (2015)

47. Esser, E., Lou, Y., Xin, J.: A method for finding structured sparse solutions to nonnegative least
squares problems with applications. SIAM J. Imag. Sci. 6(4), 2010–2046 (2013)

48. Lou, Y., Osher, S., Xin, J.: Computational aspects of constrained l 1-l 2 minimization for
compressive sensing. In: Modelling, Computation and Optimization in Information Systems
and Management Sciences, pp. 169–180. Springer, New York (2015)



304 4 Feature Selection

49. Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse representation in a highly coherent
dictionary based on difference of l 1 and l 2. J. Sci. Comput. 64(1), 178–196 (2015)

50. Zangwill, W.I.: Nonlinear Programming: A Unified Approach, vol. 52. Prentice-Hall, Engle-
wood Cliffs, NJ (1969)

51. Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)
52. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer Science & Business

Media, New York (2009)
53. Meyer, R.R.: Sufficient conditions for the convergence of monotonic mathematical program-

ming algorithms. J. Comput. Syst. Sci. 12(1), 108–121 (1976)
54. Boyd, S., Parikh, N., Chu, E.: Distributed Optimization and Statistical Learning via the

Alternating Direction Method of Multipliers. Now Publishers Inc, Delft, Netherlands (2011)
55. Li, Z., Liu, J., Yang, Y., Zhou, X., Lu, H.: Clustering-guided sparse structural learning for

unsupervised feature selection. IEEE Trans. Knowl. Data Eng. 26(9), 2138–2150 (2013)
56. Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: 2, 1-norm regularized discriminative feature

selection for unsupervised learning. In: IJCAI International Joint Conference on Artificial
Intelligence (2011)

57. Huang, J., Nie, F., Huang, H., Ding, C.: Robust manifold nonnegative matrix factorization.
ACM Trans. Knowl. Discov. Data. 8(3), 1–21 (2014)

58. Jiang, W., Nie, F., Huang, H.: Robust dictionary learning with capped l1-norm. In: Twenty-
Fourth International Joint Conference on Artificial Intelligence (2015)

59. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties.
J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

60. Zhang, C.H., et al.: Nearly unbiased variable selection under minimax concave penalty. Ann.
Stat. 38(2), 894–942 (2010)

61. Collobert, R., Sinz, F., Weston, J., Bottou, L., Joachims, T.: Large scale transductive svms. J.
Mach. Learn. Res. 7(8) (2006)

62. Zhen, Y., Yeung, D.Y.: Co-regularized hashing for multimodal data. Adv. Neural Inf. Proces.
Syst. 2, 1376 (2012)

63. de Sousa, E.P., Traina, C., Traina, A.J., Wu, L., Faloutsos, C.: A fast and effective method to
find correlations among attributes in databases. Data Min. Knowl. Disc. 14(3), 367–407 (2007)

64. Traina Jr., C., Traina, A., Wu, L., Faloutsos, C.: Fast feature selection using fractal dimension.
J. Inf. Data Manag. 1(1), 3–3 (2010)

65. Faloutsos, C., Seeger, B., Traina, A., Traina Jr., C.: Spatial join selectivity using power laws.
In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,
pp. 177–188 (2000)

66. Lee, H.D., Monard, M.C., Wu, F.C.: A fractal dimension based filter algorithm to select features
for supervised learning. In: Advances in Artificial Intelligence-IBERAMIA-SBIA 2006, pp.
278–288. Springer, New York (2006)

67. Ni, L.P., Ni, Z.W., Gao, Y.Z.: Stock trend prediction based on fractal feature selection and
support vector machine. Expert Syst. Appl. 38(5), 5569–5576 (2011)

68. Pham, D., Packianather, M., Garcia, M., Castellani, M.: Novel feature selection method using
mutual information and fractal dimension. In: 2009 35th Annual Conference of IEEE Industrial
Electronics, pp. 3393–3398. IEEE, New York (2009)

69. Schroeder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Courier
Corporation, Chelmsford, MA (2009)

70. Belussi, A., Faloutsos, C.: Estimating the selectivity of spatial queries using the ‘correlation’
fractal dimension. Tech. rep. (1998)

71. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
72. Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), 4–6 (2012)
73. Liu, R., Shi, Y.: Spatial distance join based feature selection. Eng. Appl. Artif. Intell. 26(10),

2597–2607 (2013)
74. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H.,

Loh, M.L., Downing, J.R., Caligiuri, M.A., et al.: Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Science. 286(5439), 531–537
(1999)



Chapter 5
Data Stream Analysis

Data stream is a typical big data. Data stream can be founded in many real-life
applications, such as wireless sensor networks, power consumption, information
security and financial market. Data stream classification has drawn increasing
attention from the data mining community in recent years. Data stream classification
in such real-world applications is typically subject to three major challenges:
concept drifting, large volumes, and partial labeling. As a result, training examples
in data streams can be very diverse and it is very hard to learn accurate models with
efficiency. This chapter provides two related research findings in the field. Section
5.1 describes a novel framework for application-driven classification of data streams
[1]. The section first reviews the concepts of data stream, then categorizes diverse
training examples into four types and assign learning priorities to them. Following
the discussion, it derives four learning cases based on the proportion and priority
of the different types of training examples. Finally, the respective support vector
machine models are presented. Section 5.2 studies the problem of learning from
concept drifting data streams with noise, where samples in a data stream may be
mislabeled or contain erroneous values [2]. It has three subsections. The first one is
about noisy description for data stream, the second one is the ensemble frameworks
for mining data stream and the third one is the theoretical studies of the Aggregate
Ensemble.

5.1 Application-Driven Classification of Data Streams

5.1.1 Data Streams in Big Data

Recent advances in computing technology and networking architectures have
enabled generation and collection of the unprecedented amount of data streams
of various kinds, such as network traffic data, wireless sensor readings, Web page

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Shi, Advances in Big Data Analytics,
https://doi.org/10.1007/978-981-16-3607-3_5

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3607-3_5&domain=pdf
https://doi.org/10.1007/978-981-16-3607-3_5


306 5 Data Stream Analysis

visits, online financial transactions and phone call record [3]. Consequently, data
stream mining has emerged to be one of the most important research frontiers in
data mining. Common stream mining tasks include classification [4, 5], clustering
[6] and frequent pattern mining [7]. Among them, data stream classification has
drawn particular attention due to its vast real-world applications.

Example 5.1 In wireless sensor networks, data stream classification has been used
to monitor environment changes. For example, in the sensor data collected by the
Intel Berkeley Research Lab [8], each sensor reading contains information (temper-
ature, humidity, light and sensor voltage) collected from 54 sensors deployed in the
lab. The whole stream contains consecutive information recorded over a 2-month
period (1 reading per 1–3 min). By using the sensor ID as class label, the learning
task is to correctly identify the sensor ID (1 out of 54 sensors) purely based on the
sensor data and the corresponding recording time.

Example 5.2 In power consumption analysis, data stream classification has been
used to measure power consumptions. For example, the power supply stream
collected by an Italian electricity company [8] contains hourly power supply of the
company recording the power from two sources: power supplied from main grid
and power transformed from other grids. The stream contains 3-year power supply
records from 1995 to 1998, and the learning task is to predict which hour (1 out of
24 h) the current power supply belongs to.

Example 5.3 In information security, data stream classification has been widely
used to monitor Web traffic streams. For example, the KDDCUP‘99 intrusion
detection dataset [9] was provided by the MIT Lincoln Labs collecting 9 weeks
of raw TCP dump data for a local area network. The learning task is to build
a predictive model capable of distinguishing between normal connections and
intrusive connections such as DOS (denial-of-service), R2L (unauthorized access
from a remote machine), U2R (unauthorized access to local super user privileges),
and Probing (surveillance and other probing) attacks.

In these applications, the essential goal is to efficiently build classification models
from data streams for accurate prediction. Comparing to traditional stationary data,
building prediction models from stream data faces three additional challenges:

• Concept drifting. In data streams, hidden patterns continuously change with time
[29]. For example, in the wireless sensor stream, lighting during working hours
is generally stronger than off-hours. Figure 5.1 illustrates the concept drifting
problem, where the classification boundary (concept) continuously drifts from
b1 to b2, and finally to b3 down the streams.

• Large volumes. Stream data come rapidly and continuously in large volumes.
For example, the wireless sensor stream contains 2,219,803 examples recorded
over a 2-month period (1 reading per 1–3 min). It is impossible to maintain all
historical stream records for in-depth analysis.

• Partial labeling. Due to large volumes of stream data, it is infeasible to label
all stream examples for building classification models. Thus, data streams are
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Fig. 5.1 An illustration of concept drifting in data streams. In the three consecutive time stamps
T1, T2 and T3, the classification boundary gradually drifts from b1 to b2 and finally to b3

typically partially labeled and training data contain both labeled and unlabeled
examples.

As a result, training examples in data streams are very diverse. To see why,
let us assume data streams are buffered chunk by chunk. Examples in the most
recent up-to-date chunk are training data, and examples in the yet-to-come chunk are
testing data [8]. Due to concept drifting, training examples in the up-to-date chunk
often exhibit two distributions: target domain and similar domain, where the former
represents the distribution of the testing data, and the latter represents a distribution
similar to the target domain [10]. Then, training examples can be categorized into
four types: labeled and from the target domain (Type I), labeled and from a similar
domain (Type II), unlabeled and from the target domain (Type III) and unlabeled
and from a similar domain (Type IV).

In order to build accurate prediction models from such diverse training examples
with efficiency, it is necessary to closely examine the characteristics, in particular,
the proportion and learning priority, of the different types of examples in the training
chunk.

• Proportion. The proportion of training examples from different types is deter-
mined by the concept drifting probability and labeling percentage (percentage
of labeled examples). For example, when concept drifting is low and labeling
percentage is high (low), the raining chunk will have a large portion of Type I
(III) examples. When concept drifting is high and labeling percentage is high
(low), the training chunk will have a large portion of Type II (IV) examples.

• Learning priority. Generally, examples from the target domains (Types I and III)
are capable of capturing the genuine concept of the testing data and have a higher
priority than examples from similar domains (Type II and IV). Besides, since
Type I examples are labeled, they have a higher priority than Type III examples.
Similarly, Type II examples have a higher priority than Type IV examples.
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5.1.2 Categorization of Training Examples and Learning
Cases

Consider a data stream S consisting of an infinite sequence of examples {xi, yi},
where xi ∈ R

d , d is the dimensionality and yi ∈ { − 1,+1} indicates the class label
of xi. Note that yi may not be always observed. Assume that the stream S arrives at a
speed of n examples per second. The decision boundary (concept) underneath drifts
with a probability of c, where 0 ≤ c ≤ 1. Besides, assume that at each time stamp,
a training chunk D = {x1, · · · , xn} is buffered and labeled by experts with a labeling
rate of 1 per chunk where 0 < l < 1.

5.1.2.1 Categorization of Training Examples

As discussed previously, due to concept drifting, not all examples in the up-to-date
chunk share the same distribution with the testing data in the yet-to-come chunk.
In other words, examples in the up-to-date chunk could be generated from some
similar domain instead of the target domain. Besides, since it is impractical to label
all examples in the up-to-date training chunk, the training chunk will contain both
labeled and unlabeled examples. By combining these two factors, we categorize
training examples in data streams into four types.

Definition 5.1 (Four types of training examples): In an up-to-date training chunk,
there are four types of examples: labeled and from the target domain (Type I),
labeled and from a similar domain (Type II), unlabeled and from the target domain
(Type III) and unlabeled and from a similar domain (Type IV).

Figure 5.2 illustrates the four types of training examples, where blue solid circles
denote the Type I examples, red solid circles denote the Type II examples, blue
hollow circles denote the Type III examples, and red hollow circles denote the Type
IV examples. Due to the temporal correlation of concepts [11], Type I and Type III
examples are usually located at the tail of a training chunk and close to the yet-
to-come chunk. Type II and Type IV examples are usually located at the head of a
training chunk and relatively far away from the yet-to-come chunk.

Estimation of number of examples By estimating the number of examples of each
type, we can gain insights into the training chunk and apply an appropriate learning
model. Intuitively, the percentage of labeled examples depends on how fast labeling
can be done by the experts, and the number of target domain examples depends
on the concept drifting probability. By considering the two factors, the number of
examples of each type can be estimated as follows.
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Historical stream data Up-to-datechunk

Yet-to-comechunk

……

Training chunk

Type I

Test chunk

Type IIIType IIType IV

Fig. 5.2 An illustration of the four types of training examples in an up-to-date training chunk

Theorem 5.1 Let L1, L2, L3 and L4 be the number of examples of Type I, Type II,
Type III and Type IV respectively in the up-to-date chunk. Then,

L1 ∝ γ · c−1· l· n
L2 ∝

(
1− γ · c−1

) · l· n
L3 ∝ γ · c−1· (1− l) · n

L4 ∝
(
1− γ · c−1

) · (1− l) · n
(5.1)

where γ > 0 is a constant coefficient.

Proof Recall that stream S flows at a speed of n examples per second, the concept
drifting probability is c, and the labeling rate is l. The number of target domain
examples is inversely proportional to the concept drifting rate c with a coefficient
of γ , so it can be easily estimated that γ · c−1 · n examples in the up-to-date chunk
have the same distribution as the testing data. The remaining (1 − γ · c−1) · n
examples have a similar distribution to the testing examples. From the estimates the
theorem follows immediately.

Learning priority Not all the four types of training examples have to be used in
model construction. For example, consider a data stream where concept drifting is
low and labeling rate is high, the training chunk will have a large portion of Type I
examples. In this case, we are able to build a satisfactory model by training only on
the Type I examples. We observe that the four types of training examples have the
following learning priorities.

Remark 5.1 The learning priority of the four types of training examples are:

Type I > Type III > Type II > Type IV (5.2)
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What is the intuition behind Remark 5.1. Generally, examples from the target
domain (Type I and Type III) are capable of capturing the genuine concept of the
testing data, and thus have a high priority than examples from similar domains (Type
II and Type IV). Besides, since Type I examples are labeled, they have a higher
priority than Type III examples. Similarly, Type II examples have a higher priority
than Type IV examples.

Based on Remark 5.1, when a particular type dominates the training examples,
examples with lower priorities will not be used for training. For example, if Type
III dominates the training examples, only Type I and Type III examples will be used
for training. This is because Type I examples have a higher priority than Type III
examples, and the remaining two types have lower priorities. By doing so, we gain
in efficiency by building a simple model, comparing to a very complex model if we
have to learn from all four types of training examples. On the other hand, the most
informative examples are utilized in model construction and the learning accuracy
is not sacrificed.

Learning cases Aiming at both accuracy and efficiency in learning prediction
models, we categorize learning from data streams into the following four cases.

• Case 1: Type I dominates. When labeling rate is high and concept drifting
probability is low, Type I dominates the training examples. In this case, we can
train a satisfactory model by using only Type I examples.

• Case 2: Type III dominates. When both labeling rate and concept drifting
probability are low, Type III dominates the training examples. According to the
learning priority, it is necessary to combine both Type I and Type III examples
for training.

• Case 3: Type II dominates. When both labeling rate and concept drifting
probability are high, Type II dominates the training examples, and we will use
Type I, Type II and Type III examples for training.

• Case 4: Type IV dominates. When labeling rate is low and concept drifting
probability is high, Type IV dominates the training examples. This is the most
difficult case because most examples are unlabeled and not from the target
domain. According to the learning priority, we need to use all the four types
of training examples for training.

These learning cases are further illustrated in Fig. 5.3.

5.1.3 Learning Models of Data Stream

We have introduced the four learning cases. In this section, we present their
corresponding learning models.

Throughout the section, T1 = (x1, y1) , . . . ,
(
xL1, yL1

)
denotes the set of Type I

examples. T2 =
{ (

xL1+1, yL1+1
)
, . . . ,

(
xL, yL

)}
denotes the set of Type II exam-
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Fig. 5.3 The proportion of the four types of training examples with respect to different labeling
rate l and concept drifting probability c. (a) l is high and c is low. Case 1, (b) both l and c are low.
Case 2, (c) Both l and l are high. Case 3 and (d) l is low and c is high. Case 4

ples, where L= L1 + L2. T3 = {xL + 1, . . . , xL + U} denotes the set of Type III exam-
ples, where U is the set of unlabeled examples. T4 = {xL + U + 1, . . . , xL + U + N}
denotes the set of Type IV examples, where N is the set of unlabeled examples.

Case 5.1 Type I Dominates In this case, Type I examples T1 dominate the training
chunk and has the highest learning priority. Thus, only T1 will be used for training.

Formally, to learn from T1 =
{
(x1, y1) , . . . ,

(
xL1, yL1

)}
, a generic SVM model

can be trained by maximizing the margin distance between classes while minimizing
the error rates as,

min 1
2‖w‖2 + C

∑L1
i=1 ξi

s.t.yi (wxi + b) ≥ 1− ξi

ξi ≥ 0, 1 ≤ i ≤ L1

(5.3)

where w is the projection direction, b is the classification boundary, ξ i is the error
distance from xi to b, and parameter C is the penalty for the examples inside the
margin.

The SVM model given in Eq. (5.3) is a constrained convex optimization problem.
To simplify the expression, the Hinge loss function [12] in Fig. 5.4 can be used to
transform Eq. (5.3) into an unconstrained convex optimization problem as,

min
θ

1

2
‖w‖2 + C

L1∑
i=1

H
(
yifθ (xi)

)
(5.4)

where θ = (w, b) and fθ (x) = (wx + b).
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Fig. 5.4 An illustration of the Hinge loss function (a) H(t) = max (0, 1 − t), and the Symmetric
Hinge loss function (b) H(t) = max (0, 1−| t| ). The Hinge loss function is equivalent to the
following optimization problem: min ξ s. t. ξ ≥ 0, ξ ≥ 1 − t

Case 5.2 Type III Dominates In this case, Type III examples T3 dominate the
training chunk and Type I examples T1 have a higher learning priority than Type
III examples. Thus, both T1 and T3 will be used for training.

Learning from T1 and T3 is a semi-supervised learning problem [13]. Generally
speaking, adding unlabeled T3 examples into learning will further improve the
performance for the following reasons: (1) Labeled examples in T are too few to
build a satisfactory model. (2) T3 contains a relatively large number of examples that
come from the target domain, which can greatly help in differentiating the genuine
classification boundaries.

Formally, in order to learn from both T1 and T3, semi-supervised SVM (TS3VM)
[14] can be used as the learning model. The logic behind TS3VM is to find
a classification boundary that achieves a maximum margin not only between
labeled examples, but also unlabeled examples. That is, adding an extra term

C∗
∑L+U

i=L+1 H
(
| fθ (xi) |) to penalize the misclassification of unlabeled examples

located inside the margin as,

min
θ

1

2
‖w‖2 + C

L1∑
i=1

H (yifθ (xi))+ C∗
L+U∑
i=L+1

H (|fθ (xi)|) (5.5)

Balance constraint A possible limitation of the TS3VM model is that all unlabeled
examples in T3 may be classified into one class with a very large margin, leading to
deteriorated performance. To address this issue, an additional balance constraint
should be added to ensure that unlabeled examples in T3 be assigned into both
classes. In the case that we do not have any prior knowledge about the class ratio in
T3, a reasonable approach [12] is to estimate its class ratio from T1 and T2 as,

1

U

L+U∑
i=L+1

fθ (xi) = 1

L1

L1∑
i=1

yi (5.6)
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where L denotes the number of labeled examples and U denotes the number of
unlabeled examples.

By taking account of the balance constraint, we can derive a modified semi-
supervised SVM model as,

min
θ

1
2‖w‖2 + C

∑L1
i=1 H (yifθ (xi))+ C∗

∑L+U
i=L+1 H (|fθ (xi)|)

s.t. 1
U

∑L+U
i=L+1 fθ (xi) = 1

L1

∑L1
i=1 yi

(5.7)

where θ = (w, b). Obviously, Eq. (5.7) is a standard TS3VM model and can be easily
solved by using off-the-shelf tools [15].

Case 5.3 Type II Dominates In this case, Type II examples T2 dominate the training
chunk, and Type I and Type III examples T1 and T3 have higher learning priorities
than Type II examples. Thus, T1, T2 and T3 will be used for training.

Accurately learning from these three types of examples is non-trivial. For this
purpose, we design a novel transfer semi-supervised SVM model (TS3VM for
short). Intuitively, the TS3VM model can be formulated by incorporating examples
in T1, T2 and T3 sequentially. Specifically, we can first formulate a generic SVM
model by taking T1 into consideration. Then, a transfer SVM model can be
formulated by taking T2 into consideration.

Finally, we can include T2 and formulate the TS3VM model.
Learning from T1 has been discussed in Eq. (5.4), based on which T2 can be

incorporated by applying the transfer learning strategy. Practically, transfer learning
can use labeled examples in T2 to refine the classification boundary by transferring
the knowledge from T2 to T1. An effective way of doing so is to consider the problem
as a multi-task learning procedure [16]. A common two-task learning SVM model
on T1and T2 can be formulated as,

min 1
2‖w‖2 + C1‖v1‖2 + C2‖v2‖2 + C

∑L
i=1 ξi

s.t. yi ((w + v1) xi + b) ≥ 1− ξi , 1 ≤ i ≤ L1

yi ((w + v2) xi + b) ≥ 1− ξi, L1 + 1 ≤ i ≤ L

ξi ≥ 0, 1 ≤ i ≤ L

(5.8)

where parameters C1 and C2 are the penalties on the two tasks, and v1 and v2 are the
discrepancies between the global optimal decision boundaryw and the local optimal
decision boundary (i.e., w + v1 for the task of learning from T1 and w + v2 for the
task of learning from T2).

In Eq. (5.8), parameters C1 and C2 control the preference between the two tasks.
If C1 > C2, task 1 is preferred over task 2; otherwise, task 2 is preferred over task 1.
By using the Hinge loss function, Eq. (5.8) can be transformed into an unconstrained
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form,

min
θ

1

2
‖w‖2 + C1‖V1‖2 + C2‖V2‖2 + C

L∑
i=1

H (yifθ (xi)) (5.9)

where θ = (w, v1, v2, b), fθ (x)= (w + v1)x + b for task 1 and fθ (x)= (w + v2)x+ b
for task 2.

In addition to T1 and T2, an additional semi-supervised learning method can be
used to learn from the remaining T3. As we discussed in Eq. (5.5), by adding an
extra term C∗

∑L+U
i=L+1 H (|fθ (xi)|) to penalize the misclassification of unlabeled

examples in T3 located inside the margin decided by Eq. (5.9), as well as the balance
constraint in Eq. (5.6), we can finally get the TS3VM model as,

min
θ

1
2‖w‖2 + C1‖v1‖2 + C2‖v2‖2

+ C
∑L

i=1 H (yifθ (xi))+ C∗
∑L+U

i=L+1 H (|fθ (xi)|)
s.t. 1

U

∑L+U
i=L+1 fθ (xi) = 1

L

∑L
i=1 yi

(5.10)

where θ = (w, v1, v2, b), fθ (xi)= (w+ v1)xi+ b for 1≤ i≤ L1, fθ (xi)= (w+ v2)xi+ b
for L1 + 1 ≤ i ≤ L, and fθ (xi) = wxi + b for L + 1 ≤ i ≤ L + U.

5.1.3.1 Solution to the TS3VM Objective Function

As shown in Eq. (5.10), optimizing the objective function of TS3VM is a non-
convex optimization problem, which is difficult to find global minima especially
for large scale problems. We propose to solve this non-convex problem by using
Concave-Convex Procedure (CCCP), which has been developed by the optimization
community [6, 10, 26]. CCCP decomposes a non-convex function into the sum of
a convex function and a concave function, and then approximates the concave part
by using a linear function (a tangential approximation). By doing so, the whole
optimization procedure can be carried out iteratively by solving a sequence of
convex problems. Algorithm 5.1 describes the CCCP algorithm in detail.

Algorithm 5.1 CCCP Algorithm

Input: the objective function J(θ)
1: Get the initial point θ0 with a best guess
2: J(θ) = Jvex(θ) + Jcav(θ)
3: repeat
4: θt+1 = arg minθJvex (θ)+ J′cav (θt) · θ
5: until convergence of θ

6: return a local minima solution θ*
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From the CCCP perspective, we can observe that the first four terms of
TS3VM are convex functions, whereas the last Symmetric Hinge loss part
C∗
∑L+U

i=L+1 H (|fθ (xi)|) makes it a non-convex model. Thus, we will decompose
and analyze the last part by using the CCCP method. To simplify the notation,

we denote zi = fθ (xi), so the last part can be rewritten as C∗
∑L+U

i=L+1 H
(
| zi |).

Considering a specific zi (without loss of generality, we denote it as z here), the
Symmetric Hinge loss on z can be denoted by J(z) as,

J (z) = C∗H
(
|z|
)

(5.11)

Equation (5.11) is a non-convex function, which can be split into a convex part and
a concave part as,

J (z) = C∗H (|z|) = C∗max (0, 1− |z|)+ C∗ | z |︸ ︷︷ ︸
Jvex(t)

−C∗ | z |︸ ︷︷ ︸
Jcav(t)

(5.12)

According to Algorithm 5.1, the next iterative point can be calculated by the
approximation of the concave part Jcav as,

∂Jcav

(
z
)

∂z
· z =

{
C∗z, z < 0
− C∗z, z ≥ 0

(5.13)

and then minimizing,

J (z) = C∗·max (0, 1− |z|)+ C∗ | z | +
∂Jcav

(
z
)

∂z
z (5.14)

If z < 0 in the current iteration, then in the next iteration, the current effective loss
can be denoted as

L (z,−1) = C∗max (0, 1− |z|)+ C∗ | z | +C∗z =
⎧
⎨
⎩

2C∗z, z ≥ 1
C∗ (1+ z) , | z |< 1

0, z ≤ −1
(5.15)

On the other hand, if z > 0, then in the next iteration, the current effective loss
can be denoted as

L (z,+1) = C∗max (0, 1− |z|)+ C∗ | z | −C∗z =
⎧
⎨
⎩

0, z ≥ 1
C∗ (1− z) , | z |< 1
− 2C∗z, z ≤ −1

(5.16)
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By doing so, within each iteration, when taking all zi = fθ (xi) into consideration,
solving the TS3VM model is equivalent to solving Eq. (5.17) under the balance
constraint Eq. (5.6),

min
θ

1
2‖w‖2 ++C1‖v1‖2 + C2‖v2‖2

+ C
∑L

i=1 H (yifθ (xi))+∑L+U
i=L+1 L (fθ (xi) , yi)

(5.17)

where yi(L + 1 ≤ i ≤ L + U) is the class label of xi that has been assigned in the
previous iteration. If yi < 0, Eq. (5.15) will be used to calculate the loss function;
otherwise, Eq. (5.16) will be used to calculate the loss function.

The detailed description of solving TS3VM is given in Algorithm 5.2.

Algorithm 5.2 TS3VM Learning Model

Input: T1, T2 and T3
Use T1 and T2 to build a transfer SVM model as shown in Eq. (6.8), and get

the initial point θ0 = (w0, v10, v20, b0)
repeat

yi ← sgn(wxi + b), ∀L + 1 ≤ i ≤ L + U
θ← Calculate Eq. (5.17) under the balance constraint Eq. (5.6)

until yi remains unchanged, ∀L + 1 ≤ i ≤ L + U
return f(x)= sgn(wx + b)

Theorem 5.2 (Convergence of TS3VM) The TS3VM learning model in Algorithm
5.2 converges after a limited number of iterations.

Proof In Algorithm 5.2, in each iteration t, the objective function J(θ t) is split into
a convex part Jvex(θ t) and a concave part Jcav(θ t). Then, in the next iteration t + 1,
the point θ t + 1 is the minimal solution of the current objective function, and we
have

Jvex (θt+1)+ J ′cav (θt ) θt+1 ≤ Jvex (θt )+ J ′cav (θt ) θt (5.18)

Meanwhile, because the concavity of Jcav(θ ), we have,

Jcav (θt+1) ≤ Jcav (θt )+ J ′cav (θt )
(
θt+1 − θt

)
(5.19)

By adding both sides of Eq. (5.18) and Eq. (5.19), we have

Jvex (θt+1)+ Jcav (θt+1)+ J ′cav (θt ) θt+1

≤ Jvex (θt )+ J ′cav (θt ) θt + Jcav (θt )+ J ′cav (θt )
(
θt+1 − θt

) (5.20)

http://dx.doi.org/10.1007/978-981-16-3607-3_6#Equ8
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Move the third item on the left-hand side of Eq. (5.20) to the right-hand side, we
have

Jvex (θt+1)+ Jcav (θt+1) ≤ Jvex (θt )+ J ′cav (θt ) θt
+ Jcav (θt )+ J ′cav (θt ) (θt+1 − θt )− J ′cav (θt+1) θt+1

(5.21)

The right-hand side of the above inequation equals to Jvex((θ t))+ Jcav(θ t). There-
fore, the objective function will decrease after each iteration Jvex(θ t + 1) ≤ J(θ t).

Consequently, Algorithm 5.2 will converge after a limited number of iterations.
In fact, as long as the initial point is carefully selected (i.e., using a multi-task SVM
model built on T1, and T2 as the initial point), Algorithm 5.2 will converge very fast.

Case 5.4 Type IV Dominates This is the most complex learning case. In this case,
Type IV examples T4 dominate the training chunk and has the lowest learning
priority. Thus, it is necessary to use all T1, T2, T3 and T4 for training.

To solve this learning problem, we design a novel Relational K-means-based
Transfer Semi-Supervised learning model (RK-TS3VM for short). The TS3VM
model, as discussed previously, is used to learn from T1, T2 and T3. Now we discuss
how to learn from T4 using a Relational K-means model [17] (RK for short).

Learning from T4 is more challenging than from other three types of training
examples, mainly because examples in T4 are unlabeled and have different distri-
butions from the target domain. The aim of the RK model is to transfer knowledge
from T4 to T1, T2 and T3 by constructing some new features for the three types of
examples using the relational information between T1, T2, T3 and T4.

An example of RK learning is shown in Fig. 5.5, where T4 examples are first
clustered into k clusters, G1, · · · , Gk based on a relational matrix built between T1
and T4. After that, k new features f (xi,Gτ ) (τ = 1· · · , k) are added to each example
xi in T1 to construct a new data set T ′1 by calculating the relationship between xi
and each cluster center. By doing so, the new data set T ′1 will contain information
transferred from T4, which can help build a more accurate prediction model.

Given L1 examples in T1 and N examples in T4, the purpose of the relational
k-means clustering is to cluster instances in T4 into k groups, by taking the
relationships between instances in T1 and T4 into consideration. Let W ∈ R

L1×N

denote the similarity matrix between T1 and T4 with each wi, j indicating the

Fig. 5.5 An illustration of the RK learning model
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similarity (which can be calculated according to the Euclidian distance) between
instance xi in T1 and instance xj in T4. For each cluster Gτ on W the average pairwise
similarity for all examples in Gτ can be defined as

SGτ =
1

|Gτ |2
∑
x∈Gτ

∑
x ′∈Gτ

S
(
x, x ′

)
(5.22)

where S(x, x
′
) denotes the similarity between two examples of x and x

′
. On the other

hand, the variance of the relationship values of all examples in Gτ can be calculated
as

δGτ =
1

|Gτ |
∑

yi∈Gτ

(
βj − βGτ

)T (
βj − βGτ

)
(5.23)

where βGτ denotes the average relationship vector of all instances in Gτ , and βi ∈
R

1×L1 denotes the relationships of instance xj with respect to all examples in T1.
The objective of the relational k-means is to find k groups, Gτ , τ = 1, · · · , k,

such that the sum of the similarities is maximized while the sum of variances is
minimized as

J ′e = max
k∑

τ=1

JGτ = max
k∑

τ=1

SGτ

δGτ

(5.24)

Explicitly solving Eq. (5.24) is very difficult. Alternatively, we can use a
recursive hill-climbing search process as an approximation solution. Assume that
examples in T4 are clustered into k clusters, G1, · · · , Gk. Moving an instance x
from cluster Gi to cluster Gj changes only the cluster objective values JGi andJGj .
Therefore, in order to maximize Eq. (5.24), at each step t, we randomly select an
example x from a cluster Gi, and move it to cluster Gj. Such a move is accepted only
if the Inequity (5.25) achieves a higher value at step t + 1.

JGi (t)+ JGj (t) < JGi (t + 1)+ JGj

(
t + 1

)
(5.25)

Based on the search process in Inequity (5.25), major steps of the relational k-
means are listed in Algorithm 5.3.

Algorithm 5.3 has three tiers of loops. Within each tier, it needs to frequently

recalculate JGc

(
t
)

when the current examples are removed from its current

group to another. Nevertheless, because JGc

(
t
)

, as shown in Eq. (5.24), contains

information from both the similarity SGi and variance δGi in the relationship

matrix, frequently recalculating JGc

(
t
)

will be time-consuming. To alleviate this



5.1 Application-Driven Classification of Data Streams 319

problem, we introduce an addictive update method and a subtractive update method

to recalculate JGc

(
t
)

.

Algorithm 5.3 Relational k-Means Clustering

Input: T1, T4, number of clusters k, and number of iterations T
1: W← calculate similarity matrix between T1 and T4
2: G1, . . . , Gk ← apply k-means to W
3: for t← 1 to T do
4: x← randomly select an example from T4
5: Gi ← current cluster of example x
6: JGi (t)← calculate Gi’s objective value in Eq. (5.24)
7: JGi (t+ 1)← Gi’s new value after excluding x
8: for j← 1 to k, j �= i do
9: JGj (t)← calculate Gj’s objective value
10: JGj (t+ 1)← Gj’s new value after including x
11: if inequity (6.25) is true then
12: Gj ← Gj ∪ x; Gi ← Gi \ x
13: break
14: end if
15: end for
16: end for
17: μ1, . . . , μk ← calculate cluster centers for G1, . . . , Gk
18: return μ1, . . . , μk

Consider an example x in T4 that moves from group Gi to Gj. Before the move,
βGi and βGj are the mean vectors, δGi and δGj are the variance vectors. After the
move, the new groups are G′i and G′j . Then the addictive update is given in the
following theorem:

Theorem 5.3 (Additive Update) When adding an example x into Gj, the mean
vector of Gj, βGi , can be updated to β ′Gi

as follows,

β′Gj
= 1

| G′j |
∑
xi∈

βl = 1

nj + 1

(
nj· βGj + βk

) = βGi +
βk − βGj

nj + 1
, (5.26)

Meanwhile, the variance δGj can be updated to δ′Gj
as follows,

δ′Gj
= 1∣∣∣G′j

∣∣∣
∑

yl∈G′j
(
βl − β ′Gj

)T (
βl − β ′Gj

)

= nj

nj+1δGj + nj

(nj+1)
2

(
βk − βGj

)T (
βk − βGj

) (5.27)

where nj is the number of examples in Gj.

http://dx.doi.org/10.1007/978-981-16-3607-3_6#Equ25
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Therefore, the updated mean and variance vectors of group Gj can be incremen-
tally calculated, without recalculating Eq. (5.24). Similarly, for a group Gi, where
an example x is removed, its mean and variance vectors can be updated using the
following theorem.

Theorem 5.4 (Subtractive Update) When an example x is removed from group Gi,
the mean vector βGi can be updated to β ′Gi

as follows,

β ′Gi
= 1

| G′i |
∑

yl∈G′i
βl = 1

ni − 1

(
ni ·βGi − βk

) = βGi −
βk − βGi

ni − 1
, (5.28)

Meanwhile, the variance δGi can be updated to δ′Gi
as follows, where ni is the

number of examples in Gi.

δ′Gj
= 1|G′i |

∑
yl∈G′i

(
βl − β ′Gi

)T (
βl − β ′Gi

)

= ni

ni−1δGi − ni

(ni−1)2

(
βk − βGi

)T (
βk − βGi

) (5.29)

where ni is the number of examples in Gi.

Time complexity Now we analyze the time complexity of Algorithm 5.3. In
Algorithm 5.3, when searching for a new group for each example in the relationship
matrix, the updating operation, by using Theorems 5.3 and 5.4, can be executed
within constant time O(1). Besides, Algorithm 5.3 is a greedy algorithm. In each
iteration, it uses a local optimization technique to cluster examples into groups that
maximizes Eq. (5.24). There are three tiers of loops in the algorithm. The first tier
aims to find the best group for each example x with the worst-case complexity
of O(k) (i.e., traversing all the k groups). The second tier aims to find the best
groups for all examples in T4, which has the worst-case complexity of O(N) (i.e.,
searching over all the N examples). The last tier aims to make the algorithm
converge to a stable solution. Obviously, the first two tiers dominate the time
consumption of the whole algorithm, and thus the time complexity of Algorithm
5.3 is O(k) × O(N) = O(kN).

RK- TS3VM learning model Algorithm 5.4 lists the detailed procedures of the
RK- TS3VM learning model, which is the combination of the TS3VM and RK
learning models. Given a training chunk D, Step 1 identifies the four types of
examples T1, T2, T3 and T4. Step 2 constructs a group of k feature vectors, denoted
by μ = {μ1, · · · ,μk}, by applying RK to T1 and T4. In Step 3 and Step 4, the k
new features are appended to each example in T1, T2 and T3 to form three new
sets denoted by T ′1, T ′2and T ′3, respectively. Step 5 builds a TS3VM model F from
T ′1, T ′2, and T ′3. In Step 6, the feature vectors μ and F are combined to form the
final prediction model. For any example x in the testing chunk, RK- TS3VM first
calculates k new features for x, then uses the TS3VM model to predict a label for x.
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Algorithm 5.4 RK-TS3VM Learning Framework

Input: training chunk D, chunk size n, labeled rate l, concept drifting rate c, number
of clusters k

Step 1: Identify the four types of data T1, T2, T3, T4 in D according to the
labeled rate l and concept drifting probability c using Eq. (5.1)

Step 2: Using RK model on T1 and T4 to get k cluster centers denoted by
μ = {μ1, . . . , μk}

Step 3: for each instance x in T1, T2, and T3, add k attributes using the inner
produce between x and μ

Step 4: Get the new samples T′1, T′2, and T′3 from Step 3
Step 5: Construct a TS3 VM model using T′1, T′2, and T′3, and get the model F
return μ and F together as the prediction model

The data analysis of implementing the above algorithms can be found in Zhang
et al. [13].

5.2 Robust Ensemble Learning for Mining Noisy Data
Streams

5.2.1 Noisy Description for Data Stream

Based on the characteristics of the stream data, existing work roughly describes
data streams into the following two styles: stationary data streams [11, 18–20] and
dynamic data streams [5, 21–23].

According to the stationary description, if data streams are divided into data
chunks as shown in Fig. 5.6, then training data chunks (which include both historical
data chunks and the up-to-date chunk) will have a similar or identical distribution
to the yet-to-come data chunk. Thus, classifiers built from the training data chunks
will have reasonably good performance in classifying data from the yet-to-come
data chunk. The advantage of the stationary description is that we may directly
apply traditional classification techniques to the data streams. For example, since
the up-to-date data chunks have the same distribution as the yet-to-come data chunk,
we can collect all historical classifiers to build a classifier ensemble. However, this
stationary description takes no consideration of the concept drifting in stream data,
so it can hardly, if not impossible, be used to describe most real-world data streams.

Noticing the limitations of the stationary description, a recent work [21]
describes the data streams in a dynamic scenario where training chunks have
different distributions p(x,y) (where x denotes the feature vector and y denotes
the class label) from that of the yet-to-come data chunk, and classifiers built on
the training set may perform only slightly better than random guessing or simply
predicting all examples to belong to one single class. Comparing to the stationary
description, the dynamic description emphasizes on the situation that training data



322 5 Data Stream Analysis
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Fig. 5.6 An illustration of the “historical”, “up-to-date” and “yet-to-come” data chunks. A data
stream can be split into two parts: the observed data stream (which is denoted by the solid lines)
and the unobserved data stream (which is denoted by the dotted lines). Assume the data stream is
processed chunk-by-chunk. The observed data stream can be further categorized into two types:
the latest data chunk is called the “up-to-date” chunk, while the remaining data chunks are called
the “historical” data chunks. Besides, the “yet-to-come” data chunk is the first data chunk of the
unobserved data streams

chunks do not necessarily have the same distribution as the yet-to-come data chunk.
Under this description, building classifiers from the up-to-date data chunk to predict
the yet-to-come data chunk is better than building classifiers from the aggregation of
all historical chunks because the buffered chunks (probably outdated with respect
to the newly arrived data chunk) will deteriorate the ensemble performance. In
a narrow sense, this dynamic description is much looser than the stationary
description, which makes it more applicable for mining concept drifting data
streams. However, the disadvantage of the dynamic description is also obvious, in
the sense that it doesn’t discriminate concept drifting from data errors. If the up-to-
date data chunk contains noisy samples, building classifiers on this noisy data chunk
to predict the yet-to-come data chunk may cause more errors than using a classifier
ensemble built on previously buffered data chunks. Consequently, although the
dynamic description is more reasonable than the stationary description for data
streams, in practice, it is still not capable of describing all the realistic data streams.

Consider a data stream management system whose buffer contains five consec-
utive data chunks as shown in Fig. 5.7. The stationary description can only cover
the process from D1 to D2, where the distribution p1(x,y) remains unchanged. The
dynamic description covers the process fromD2 toD3, where the concept drifts from
p1(x,y) to p2(x,y) without being interrupted by noisy data chunks. A more general
situation, as depicted in the process from D3 to D5, is that the concept drifting
(p2(x,y) evolves to p3(x,y)) is mixed with noise (a noisy data chunk D4 is observed).
To explicitly describe this type of data streams, we define a noisy description of data
streams as follows:

Noisy Description for Data streams Mining from real-world data streams may
confront the challenges of concept drifting and data errors simultaneously.
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Fig. 5.7 A conceptual view of noisy data in data stream management system. The data stream
management system can be separated into five parts: a stream buffer subsystem, a stream loading
subsystem, a stream query subsystem, a stream mining subsystem, and a stream scheduler
subsystem. In the stream buffer subsystem, there are five buffered data chunks, D1, D2, . . . , D5, of
which D4 is a noise data chunk. D1 and D2 share the same distribution P1(x,y). From D2 to D3, the
underlying concept changes from P1(x,y) to P2(x,y). From D3 to D4 and finally to D5, the concept
changes from P2(x,y) to P3(x,y), meanwhile, a noisy chunk D4 is observed between D3 and D5.
The stationary description of data streams can only cover the process from D1 to D2, while the
dynamic description of data streams only covers the process from D2 to D3. Our noisy description
covers a much more common process from D3 to D5

The noisy description addresses both concept drifting and data errors in a
data stream management system. It is much more general than the stationary and
dynamic descriptions. It then can be adapted for generic data streams.

5.2.2 Ensemble Frameworks for Mining Data Stream

The nature of continuous volumes of the stream data raises the needs of designing
effective classifiers with high accuracy in predicting future testing instances as well
as good efficiency in handling massive volumes of training instances. In the past
few years, many solutions have been proposed to build prediction models from data
streams. An early solution is to build model by using online incremental methods
[18, 19] which update a single model by incorporating newly arrived data. During
the learning process, incremental methods continuously revise the model to discover
new patterns in the most recent data chunk. For example, Domingos and Hulten
[10] introduced an ultra fast decision tree learner VFDT which incrementally builds
Hoeffding trees from the high-volume data streams. Similar approach was extended
to CVFDT [19] which handles time changing and concept drifting streams. By doing
so, most of the incremental methods violate the efficiency rule because updating a
classifier according to the newly arrived data can be a time-consuming process.
An alternative solution is to build a single and simple classifier on the up-to-date
chunk without considering historical data chunks, i.e., discarding old classifiers and
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rebuilding a new classifier on the new data chunk. This build-then-discard method,
unfortunately, may not work well because of the important loss incurred by the
discarded classifiers. To overcome this challenge, a number of ensemble methods
have been proposed.

Different from the incremental learning where the goal is to deliver a single
model, ensemble learning intends to produce a number of models and relies on
their voting for final predictions. Such design brings two advantages for ensemble
learning to handle data streams: (1) because models are trained from a small portion
of stream data, it can efficiently handle streams with fast growing data volumes;
and (2) because the final predictions are the voting of a number of base models,
the concept drifting in the stream can be adaptively and rapidly addressed by
changing the weight value of each voting member. For example, Street and Kim [24]
proposed a SEA algorithm, which combines decision tree models using majority-
voting. Kolter and Maloof [25] proposed an ensemble method by using weighted
online learners to handle drifting concepts. Wang et al. [11] proposed a weighted
ensemble, in which they assign each classifier a weight reversely proportional to
the classifier’s accuracy on the most recent data chunk. Yang et al. [26] proposed
proactive learning where concepts (models) learnt from previous chunks are used to
foresee the best model to predict data in the current chunk. Zhu et al. [27] proposed
an active learning framework to selectively label instances for concept drifting data
streams. Gao et al. [21] proposed to build different base classifiers on a most recent
data chunk to construct the classifier ensemble.

In summary, the above ensemble frameworks for stream data mining can be
roughly categorized into the following two categories, according to their ways of
forming the base classifiers: horizontal ensemble (including weighted ensemble)
frameworks which build base classifiers using several buffered data chunks (as illus-
trated in Fig. 5.8a), and vertical ensemble framework which build base classifiers on
the up-to-date data chunk using different algorithms (as illustrated in Fig. 5.8b).

5.2.2.1 Horizontal Ensemble and Weighted Ensemble Frameworks

Consider a data stream containing an infinite number of data chunks {Di}+∞i=1 . Due
to the limitation of the storage space, the system buffer can only accommodate at
most n consecutive chunks each of which contains a certain number of instances.
Assume at the current time stamp we are observing the nth chunk Dn, and the
buffered data chunks are denoted by D1, D2, . . . , Dn. In order to predict data in
a newly arrived chunk Dn+1, one can choose a learning algorithm L to build a base
classifier fi from each of the buffered data chunks Di, say fi = L (Di), and then
predict each instance x in Dn+1 by combining the predictions of the base classifiers
fi (i = 1, 2, . . . , N) to form a classifier ensemble through the model averaging
mechanism shown in Eq. (5.30) [11, 25, 27, 28]:

fHE(x) = 1

N

∑N

i=1
fi(x) (5.30)
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Fig. 5.8 A conceptual flowchart of the classifier ensemble framework for stream data mining
where (a) shows the horizontal ensemble framework, which builds different classifiers on different
data chunks; (b) shows the vertical ensemble framework, which builds different classifiers on the
up-to-date data chunk with different learning algorithms; and (c) shows the aggregate ensemble
framework, which builds classifiers on different data chunks using different learning algorithms
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An alternative version of the horizontal ensemble is to add weight values to the
base classifiers [11, 27]. Different from the model averaging, a weighted ensemble
minimizes the variance error ev of each base classifier on the up-to-date data
chunk, then assigns each classifier a weight that is reversely proportional to the
error rate ev. The advantage of the horizontal ensemble and weighted ensemble is
twofold: (1) they can reuse information of the buffered data chunks, which may
be beneficial for the testing data chunk; and (2) they are robust to noisy streams
because the final decisions are based on the classifiers trained from different chunks.
Even if noisy data chunks may deteriorate some base classifiers, the ensemble can
still maintain relatively stable prediction accuracy. The disadvantage of such an
ensemble framework, however, lies in the fact that if the concepts of the stream
continuously change, information contained in previously buffered classifiers may
be invalid to the current data chunk. As a result, combining old-fashioned classifiers
may not improve the overall prediction accuracy. In summary, both horizontal and
weighted ensembles, in fact, are based on the stationary description of the data
streams that buffered data chunks share similar or identical distributions to the yet-
to-come data chunk, such that information in the buffered data chunks can be used
to predict the yet-to-come data chunk.

5.2.2.2 Vertical Ensemble Framework

Assume we have m learning algorithms Lj (j= 1,2, . . . ,m), a vertical ensemble [17]
builds base classifiers using each algorithm on the up-to-date data chunk Dn as fj =
L| (Dn), and then combines all base classifiers through model averaging as given in
Eq. (5.31),

f n
VE(x) = 1

m

m∑
i=1

fin(x) (5.31)

In the case that prior knowledge of the yet-to-come data chunk is unknown,
model averaging on the most recent chunk can achieve minimum expectation error
on the test set. In other words, building classifiers using different learning algorithms
can decrease the expected bias error compared to any single classifiers. For example,
assuming a data stream whose joint probability p(x,y) evolves continuously, if we
only use a stable learner such as SVM, then SVM may perform better than an
unstable classifier when p(x) changes while p(y|x) remains unchanged. On the other
hand, if we only use an unstable learner such as decision trees, then decision trees
may perform better than SVM when p(x) does not evolve much but p(y|x) changes
dramatically. When we have no prior knowledge on whether the evolving of p(x,y)
is triggered by p(x) or p(y|x), it is difficult to determine whether a stable classifier or
an unstable classifier is better, so combining these two types of classifiers is likely
to be a better solution than simply choosing either of them. Although the vertical
ensemble has a much looser condition (distribution p(x,y)may continuously change)
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than the stationary description (distribution p(x,y) remains unchanged), it also has
a severe pitfall for realistic data streams. The vertical ensemble builds classifiers
only on a single up-to-date data chunk, but as we have discussed before, a realistic
data stream system may contain data errors. If the up-to-date data chunk is a noisy
data chunk, the results may suffer from severe performance deterioration. Without
realizing the noise problems, the vertical ensemble limits itself merely to the concept
drifting scenarios, but not to the realistic data streams.

5.2.2.3 Aggregate Ensemble Framework

The disadvantages of the above two ensemble frameworks motivate the proposed
Aggregate Ensemble framework (which is illustrated in Fig. 5.8c). We first use m
learning algorithms Li (i = 1, 2, . . . , m) to build classifiers on n buffered data
chunks j (j = 1, . . . , n), and then train m-by-n base classifiers fij = Li

(
Dj

)
, where

i denotes the ith algorithm, and j denotes the jth data chunk. Then we combine
these base classifiers to form an aggregate ensemble through model averaging
defined in Eq. (5.32), which indicates that the aggregate ensemble is a mixture of
the horizontal ensemble and vertical ensemble, and its base classifiers constitute a
Classifier Matrix (CM) in Eq. (5.33).

fAE = 1

mn

n∑
i=1

m∑
j=1

fij (x) (5.32)

CM =

⎡
⎢⎢⎣

f11 f12 . . . . . . f1n

f21 f22 . . . . . . f2n

. . . . . . . . . . . . . . . . . . . . . .

fm1 fm2 . . . . . . fmn

⎤
⎥⎥⎦

m∗n

(5.33)

In Eq. (5.33), each element fij in CM represents a base classifier built by using
algorithm i on data chunk j. As we have mentioned in the vertical ensemble,
classifiers on each column of CM (i.e., classifiers built on the same data chunk using
different learning algorithms) are used to reduce the expected classifier bias error on
unknown test data. Classifiers on each row of CM (i.e., classifiers built on different
data chunks using the same learning algorithm) are used to reduce the impact of
noisy data chunks. For example, when the up-to-date training chunk is a noisy
chunk, combining classifiers built from the historical data chunks may alleviate the
noisy impact. By building a classifier matrix CM, the aggregate ensemble is capable
of solving a realistic data stream containing both concept drifting and data errors.
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5.2.3 Theoretical Studies of the Aggregate Ensemble

5.2.3.1 Performance Study of AE Framework

In this section, we explore why and when AE performs better than HE and VE
methods. As we have described in the above section, on each data chunk, the
aggregate ensemble builds m classifiers by using m different learning algorithms.
For a specific test instance x in the yet-to-come data chunk, the horizontal ensemble
uses classifiers on a row in matrix CM to predict x, i.e., if we choose learning
algorithm i (1 ≤ i ≤ m), then the horizontal ensemble can be denoted by Eq. (5.34)

f i
HE(x) = 1

n

n∑
j=1

fij (x) (5.34)

The vertical ensemble can be denoted by model averaging on the last column
(column n) of the Matrix CM, which is given in Eq. (5.35)

f n
VE(x) = 1

m

m∑
i=1

fin(x) (5.35)

An aggregate ensemble combines all classifiers in CM as base classifiers, through
the averaging rule defined by Eq. (5.35). Accordingly, the horizontal ensemble and
vertical ensemble are, in fact, two special cases of the aggregate ensemble. Gao et al.
[21] proved that in data stream scenario, the performance of a single classifier within
a classifier ensemble is expected to be inferior to the performance of the entire
classifier ensemble. The horizontal ensemble and vertical ensemble, as special cases
of the aggregate ensemble, are not expected as good as the aggregate ensemble. For
example, when combining each column in CM, one can have a variant of CM as
CMc = [g1, g2, . . . , gn], where each gi = [f1i, f2i, . . . , fmi]T is independent of each
other and shares the same distribution, say p(g). Then the mean squared error of the
horizontal ensemble (with the ith learning algorithm) on a test instance x (with class
label y) can be denoted by

MSEi
HE(x) = Ep(g)(y − gi(x))

2 = y2 − 2y ·Ep(g)gi(x)+ Ep(g)g
2
i (x)

(5.36)

For the aggregate ensemble, the mean squared error on x can be calculated as

MSEAE(x) = Ep(g)

(
y − Ep(g)gi(x)

)2 = y2 − 2y · Ep(g)gi(x)+ E2
p(g)gi(x)

(5.37)



5.2 Robust Ensemble Learning for Mining Noisy Data Streams 329

Thus, the difference between Eqs. (5.35) and (5.36) is denoted by Eq. (5.38),

MSEAE(x)−MSEi
HE(x) = E2

p(g)gi (x)− Ep(g)g
2
i (x) ≤ 0.

(
since E2(x) ≤ E

(
x2
))

(5.38)

Accordingly, we assert that the error rate of the aggregate ensemble is expected
to be less or equal to the error rate of the horizontal ensemble. Similarly, if we regard
CM as a column vector where each element is a combination of different rows in
CM, we can show that the mean squared error of the aggregate ensemble is also
expected to be less or equal to that of the vertical ensemble.

In the following we provide some intuitive explanations on why and when AE
performs better than HE and VE by using two toy examples in Figs. 5.9 and 5.10.
Note that our comparisons here are rather intuitive and qualitative, and rigorous
numeric comparisons will be reported in the experimental results in the next section.
As shown in Fig. 5.8, assume that AE is trained using three learning algorithms M1,
M2, and M3, where HE(Mi) denotes an HE model trained using learning algorithm
Mi. For each model, we list three results: (1) training accuracy at time A, (2) test
accuracy at time A, and (3) test accuracy at time B which immediately follows A.
We can observe that for concept drifting data streams, it is difficult to find a single
“optimal” learning algorithm with the best performance across the whole stream.
For example, model HE(M2) has the best prediction accuracy at time stamp A,
but unfortunately, it has the worst performance at the next time stamp B. Model
HE(M3) has the worst performance at time A, but it performs the best at time
stamp B. On the other hand, AE can guarantee the most reliable performance by
combining different learning algorithms. This is because in dynamic data stream

Fig. 5.9 A toy example for comparisons between AE and three HE ensemble methods trained
with different learning algorithms (i.e., algorithms M1, M2, and M3). For each ensemble method,
three results (bars) are listed for comparisons. The left bar denotes the training accuracy at time A,
the bar in the middle denotes the test accuracy at time A, and the bar on the right denotes the test
accuracy at time B which follows time stamp A. It is obvious that at time A, the higher the training
accuracy, the better the prediction result. However, this result doesn’t hold when the concept drifts
at the next time stamp B
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D1 D2 D4D3

VEAE

Fig. 5.10 A toy example for comparison between AE and VE. The concept (i.e., the classification
boundary) drifts marginally from chunk D1 to D2, and finally to D4. Notice that the up-to-date
chunk D3 is a noisy chunk that carries useless or erroneous. Information when predicting the yet-
to-come data chunk D4

environments it is essentially difficult to know which learning algorithm performs
the best at a particular time point. By integrating different learning algorithms as a
unified model, we can expect AE to have the smallest variance error and thus have
the best prediction accuracy.

AE performs better than VE when the concept drifts marginally and the up-to-
date training chunk contains a significant amount of noisy samples. As illustrated
in Fig. 5.10, assume that the concept drifts slightly along data chunks, and the
up-to-date chunk D3 is a noisy chunk. VE built on the up-to-date chunk D3 will
show deteriorated performance in predicting D4. On the other hand, AE can largely
avoid such a limitation by incorporating information from classifiers trained from
the historical data chunks D1 and D2.

Although we have demonstrated that AE, on average, outperforms HE and VE,
we are not claiming that AE always performs the best in data stream scenarios. For
example, HE may outperform AE if the concept drifts marginally in data streams.
In this case, the joint probability distribution p(x,y) will stay stable across the data
streams, and thus we can select a strong learning algorithm (i.e., SVM) to construct
HE and expect HE to outperform AE. On the other hand, VE may outperform AE
if the concept drifts significantly and the up-to-date chunk contains very few noisy
samples. In such a case, old-fashioned historical information in AE will deteriorate
the learner performance even worse.

5.2.3.2 Time Complexity Analysis

In this section, we study the time complex of the AE framework and discuss whether
it is a suitable model, from computational cost perspective, for mining noisy data
streams. As discussed above, compared to its peers, AE combines much more base
classifiers to build an ensemble predictor. This raises the concern on the efficiency
of AE due to its additional cost for training extra base classifiers.
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To study AE’s time complexity, let’s consider the following example. Assume
the buffer of the system contains d data chunks, each of which contains N instances.
Assume further that m learning algorithms are used to build models. Each time
when a new data chunk arrives, we need to follow two steps to update an ensemble:
(1) build new base classifier(s) on the new data chunk; and (2) update classifier
ensemble by incorporating new base classifier(s). Without loss of generality, we
assume that training a new base classifier needs O(N lg N) time on average, while
updating the classifier ensemble to include one base classifier requires O(�) time,
where � is related to the dimensionality of attributes. Then the updating of the HE
ensemble for each new data chunk needs to (1) build a new base classifier (which
costs O(N lg N)time), and then (2) combine the most recent d base classifiers (which
costs O(d�) time) together for prediction. The total time cost can be calculated by
Eq. (5.39),

O(HE) = O (N lg N)+O (dΓ ) . (5.39)

Since training a base classifier dominates the total cost (i.e.,O(�) < < O(N lgN)),
and the number of data chunks d in the buffer is rather small. The time complexity
of the HE ensemble can be simplified as in Eq. (5.40),

O(HE) = O (N lg N)+O (dΓ ) = O (N lg N) . (5.40)

In comparison, VE builds m base classifiers for each new data chunk. Accord-
ingly, its time complexity O(VE) can be calculated by Eq. (5.41),

O(VE) = O(m) ∗ (O (N lgN)+O (Γ )) = O (mN lg N) (5.41)

For AE, it first builds m classifiers when a new data chunk arrives and combines
all the d*m base classifiers to build an ensemble. Therefore, its time complexity can
be calculated by Eq. (5.42),

O(AE) = O (mN lgN)+O (dmΓ ) = O (mN lgN) . (5.42)

Combining Eqs. (5.40), (5.41), and (5.42), we have the following two conclu-
sions: (1) AE is, asymptotically, as efficient as VE. Both of them have the same time
complexityO(mN lg N); (2) AE requires more time complexity than HE because AE
needs to train m base classifiers for each new data chunk. This limitation, in practice,
can be alleviated by using a multi-core or multi-processor computing system, where
base classifiers can be dispatched and trained on different computation units in
parallel. The detailed data analysis of this section can be found in [4].
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Chapter 6
Learning Analysis

It is event that most big data represented as non-structured or semi-structured forms,
such as images, text and others. It is important to study how to use an abstract
form to show data, either structured, non-structured or semi-structured or use label
proportions to categorize the nature of data so that a data mining or data analytic
algorithm can be performed smoothly. Leaning methods are very useful tools
for understanding the data. Learning algorithms can be considered from different
aspects, such as cognitive computing, mathematics, and machine learning.

This chapter deals with different learning techniques in the contexts of data
science. Section 6.1 discusses the view of learning through the concept (the abstract
of big data), which includes four subsections. Section 6.1.1 is about concept-
cognitive learning model for Incremental concept learning [58]. Section 6.1.2 is
a concurrent concept-cognitive learning model for classification [60]. Section 6.1.3
is a semi-supervised concept learning by concept-cognitive learning and conceptual
clustering [42]. Section 6.1.4 is a fuzzybased concept learning method-exploiting
data with fuzzy conceptual clustering [43]. Section 6.2 presents how to use the label
proportion for learning that consists of another four subsections. Section 6.2.1 is a
fast algorithm for learning from label proportions [84]. Section 6.2.2 is a learning
from label proportions with generative adversarial networks [39]. Section 6.2.3 is
a learning from label proportions on high-dimensional data [57]. Section 6.2.4 is a
learning from label proportions with pinball loss [59]. Section 6.3 explores other
enlarged learning models with two subsections. Section 6.3.1 is about classifying
with adaptive hyper-spheres: an incremental classifier based on competitive learning
[38]. Section 6.3.2 is a construction of robust representations for small data sets
using broad learning system [66].
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6.1 Concept of the View of Learning

6.1.1 Concept-Cognitive Learning Model for Incremental
Concept Learning

Cognitive computing is viewed as an emerging computing paradigm of intelligent
science that implements computational intelligence by trying to solve the problems
of imprecision, uncertainty and partial truth in biological system [44, 68, 72]. As far
as we know, it has been investigated by simulating human cognitive processes such
as memory [33, 62] learning [14, 30, 36], thinking [69] and problem solving [70].

In this subsection, a novel CCLM is proposed based on a formal decision context.
Moreover, to reduce its computational complexity, granular computing is included
in our model. The main contributions are as follows:

(1) We describe a new model for incremental learning from the perspective of
cognitive learning by the fusion of concept learning, granular computing, and
formal decision context theory. More precisely, it is an attempt to construct a
novel incremental algorithm by imitating human cognitive processes, and a new
theory has been proposed for concept classification under a formal decision
context.

(2) Beyond traditional CCL systems such as approximate CCL system [35, 36],
three-way CCL system [37] and theoretical CCL system [68–70], CCLM has
obtained incremental concept learning and generalization ability.

(3) Different from other classifiers, similar to the human learning processes, the
previously acquired knowledge can be directly stored into concept lattice space
in CCLM and it performs a good interpretation by concept hierarchies (e.g.,
Hasse diagram [16]).

6.1.1.1 Preliminaries

Now, we briefly review some basic notions related to (1) formal context, (2) formal
decision context and (3) concept-cognitive learning.

A. Formal Context and Formal Decision Context

Definition 6.1 ([75]) A formal context is a triplet (G,M, I), where G is a set of
objects, M is a set of attributes, and I ⊆ G×M is a binary relation between G and
M . Here, gIm means that the object g has the attribute m.
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Furthermore, the derivation operator (·)′ is defined for A ⊆ G and B ⊆ M as
follows:

A′ = {m ∈ M|gIm for all g ∈ A},
B ′ = {g ∈ G|gIm for all m ∈ B}. (6.1)

A′ is the maximal set of the attributes that all the objects in A have in common and
B ′ is the maximal set of the objects shared by all the attributes in B. A concept in
the context (G,M, I) is defined to be an ordered pair (A,B) if A′ = B and B ′ = A,
where the elements A and B of the concept (A,B) are called the extent and intent,
respectively. The set of all concepts forms a complete lattice, called the concept
lattice and denoted by L(G,M, I).

Definition 6.2 ([74, 82]) A formal decision context is a quintuple (G,M, I,D, J ),
where (G,M, I) and (G,D, J ) are two formal contexts. M and D are respectively
called the conditional attribute set and the decision attribute set with M ∩D = ∅.

Definition 6.3 ([34]) Let (G,M, I,D, J ) be a formal decision context and E ⊆
M . For any (A,B) ∈ L(G,E, IE) and (Y,Z) ∈ L(G,D, J ), if A ⊆ Y , and A,B, Y

and Z are nonempty, then we say that (Y,Z) can be implied by (A,B), which is
denoted by (A,B)→ (Y,Z).

By Definitions 6.2 and 6.3, we obtain the relationship between the conditional
attribute set and the decision attribute set.

B. Concept-Cognitive Learning

Let G be an object set and M be an attribute set. We denote the power sets of G

and M by 2G and 2M , respectively. In addition, F : 2G → 2M and H : 2M → 2G

are supposed to be two set-valued mappings, and they are rewritten as F and H for
short.

Definition 6.4 ([36]) Set-valued mappingsF and H are called cognitive operators
if for any A1, A2 ⊆ G and B ⊆ M , the following properties hold:

(i) A1 ⊆ A2 ⇒ F (A2) ⊆ F (A1),

(ii) F (A1 ∪ A2) ⊇ F (A1) ∩ F (A2),

(iii) H(B) = {g ∈ G|B ⊆ F ({g})}.

For convenience, hereinafter F ({g}) is rewritten as F (g) for short when there is no
confusion.

Definition 6.5 ([36]) Let F and H be cognitive operators. For g ∈ G and m ∈ M ,
we say that (HF (g),F (g)) and (H(m),FH(m)) are granular concepts.
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Definition 6.6 ([36]) Let Gi−1,Gi be object sets of {Gt } ↑ and Mi−1,Mi be
attribute sets of {Mt } ↑, where {Gt } ↑ is a non-decreasing sequence of object
sets G1,G2, . . . ,Gn and {Mt } ↑ is a non-decreasing sequence of attribute sets
M1,M2, . . . ,Mm. Denote �Gi−1 = Gi−Gi−1 and �Mi−1 = Mi−Mi−1. Suppose

1) Fi−1 : 2Gi−1→ 2Mi−1, Hi−1 : 2Mi−1→ 2Gi−1,

2) F�Gi−1 : 2�Gi−1→ 2Mi−1, H�Gi−1 : 2Mi−1→ 2�Gi−1,

3) F�Mi−1 : 2Gi→ 2�Mi−1, H�Mi−1 : 2�Mi−1→ 2Gi ,

4) Fi : 2Gi→ 2Mi , Hi : 2Mi→ 2Gi

are four pairs of cognitive operators satisfying the following properties:

Fi (g) =
{
Fi−1(g) ∪ F�Mi−1(g), if g ∈ Gi−1,

F�Gi−1(g) ∪ F�Mi−1(g), otherwise,
(6.2)

Hi (m) =
{
Hi−1(m) ∪H�Gi−1(m), if m ∈ Mi−1,

H�Mi−1(m), otherwise,
(6.3)

where F�Gi−1(g) and H�Gi−1(m) are set to be empty when �Gi−1 = ∅, and
F�Mi−1(g) and H�Mi−1(m) are set to be empty when �Mi−1 = ∅. Then we say
that Fi and Hi are extended cognitive operators of Fi−1 and Hi−1 with the newly
input information �Gi−1 and �Mi−1.

In other words, based on Definitions 6.4 and 6.5, the basic mechanism of concept-
cognitive process is shown in Definition 6.6.

6.1.1.2 Theoretical Foundation

In this section, for adapting to dynamic learning and classification task, we show
some new notions and properties for the proposed CCLM.

A. Initial Concept Generation

Definition 6.7 A regular formal decision context is a quintuple (G,M, I,D, J ),
where for any z1, z2 ∈ D, H(z1) ∩H(z2) = ∅. (G,M, I) and (G,D, J ) are called
the conditional formal context and the decision formal context, respectively.

Note that it means that each real-world object is associated with a single label.

Definition 6.8 Let (G,M, I,D, J ) be a regular formal decision context, and F
and H be cognitive operators. For g ∈ G and m ∈ M , we say that (HF (g),F (g))
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and (H(m),FH(m)) are conditional granular concepts. Similarly, for y ∈ G and
z ∈ D, (HF (y),F (y)) and (H(z),FH(z)) are decision granular concepts. For
simplicity, we denote

GC = {(HF (g),F (g))|g ∈ G} ∪ {(H(m),FH(m))|m ∈ M},
GD = {(HF (y),F (y))|y ∈ G} ∪ {(H(z),FH(z))|z ∈ D},

where GC and GD are respectively called as condition-concept space and decision-
concept space (or class-concept space) under cognitive operators F and H .

Property 6.1 Let (G,M, I,D, J ) be a regular formal decision context, and F and
H be cognitive operators. Then for any A,Y ⊆ G,B ⊆ M and Z ⊆ D, we have

F (A) =
⋂
g∈A

F (g),F (Y ) =
⋂
y∈Y

F (y),

H(B) =
⋂
m∈B

H(m),H(Z) =
⋂
z∈Z

H(z). (6.4)

Proof It is immediate from Definitions 6.4 and 6.7. ,-
Property 6.2 Let (G,M, I,D, J ) be a regular formal decision context. For any
(AG,BG) ∈ GC and (YG,ZG) ∈ GD , if AG ⊆ YG, and AG,BG, YG and ZG

are nonempty, then we say that AG is associated with the class of ZG under the
attribute set BG. It means that the object g can be represented by a single label z

when AG = HF (g) and ZG = FH(z).

Proof It is immediate from Definitions 6.3 and 6.8. ,-
Definition 6.9 Let (G,M, I,D, J ) be a regular formal decision context and
D1,D2, . . ., Dl be nonempty and finite class sets of D, where D = D1∪D2∪. . .∪Dl

and Dr ∩Dj = ∅(1 ≤ r, j ≤ l, r �= j). We call GD
i = G

D1
i ∪G

D2
i ∪ . . . ∪G

Dl

i is
class-object set under the i-th cognitive state.

For brevity, we write GD
i as Gi and the corresponding set of Gi is denoted by

{Gi} =
l⋃

j=1

{
G

Dj

i

}
. Considering that the information will be updated by different

classes, we initiate and learn concepts by different labels. For convenience, for any

Dj ⊆ D, the subclass-object sets G
Dj

1 ,G
Dj

2 , . . . ,G
Dj
n with G

Dj

1 ⊆ G
Dj

2 ⊆ . . . ⊆
G

Dj
n are denoted by

{
G

Dj

t

}↑.

Property 6.3 Let (G,M, I,D, J ) be a regular formal decision context, we have

{
GD

t

}
↑= {GD1

t

}↑ ∪{GD2
t

}↑ ∪ . . . ∪ {GDl
t

}↑ . (6.5)

Proof It is immediate from Definitions 6.6 and 6.9. ,-
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From Definitions 6.7 and 6.8, and Property 6.1, the initial concepts can be
constructed by condition-concept space and class-concept space in a regular formal
decision context. Then, an object can be associated with a single label by the inter-
action between condition-concept space and class-concept space from Property 6.2.
Property 6.3 means that a cognitive state can be decomposed into some cognitive
sub-states by different categories in a regular formal decision context. Therefore,
hereinafter we only discuss the situation under a cognitive sub-state Dj .

B. Concept-Cognitive Process

Considering the information on the object set G and the attribute set M will be
updated as time goes by in the real world, we discuss that how the concept spaces
are timely updated in a regular formal decision context.

Definition 6.10 Let (G,M, I,D, J ) be a regular formal decision context,

G
Dj

i−1,G
Dj

i be two subclass-objects of
{
G

Dj

t

} ↑ and Mi−1,Mi be attribute sets

of
{
Mt

}↑. Denote �G
Dj

i−1 = G
Dj

i −G
Dj

i−1,�Mi−1 =Mi−Mi−1. Suppose

1) FM
Dj ,i−1:2G

Dj
i−1→2Mi−1 , HM

Dj ,i−1:2Mi−1→2G
Dj
i−1 ,

2) F D
Dj ,i−1:2G

Dj
i−1→2D, HD

Dj ,i−1:2D→2G
Dj
i−1 ,

3) FM

Dj ,�G
Dj
i−1

:2�G
Dj

i−1→2Mi−1, HM

Dj ,�G
Dj
i−1

:2Mi−1→2�G
Dj

i−1,

4) F D

Dj ,�G
Dj
i−1

:2�G
Dj
i−1→2D, HD

Dj ,�G
Dj
i−1

:2D→2�G
Dj
i−1,

5) FM
Dj ,�Mi−1

:2G
Dj
i →2�Mi−1 , HM

Dj ,�Mi−1
:2�Mi−1→2G

Dj
i ,

6) FM
Dj ,i
:2G

Dj
i →2Mi , HM

Dj ,i
:2Mi→2G

Dj
i ,

7) F D
Dj ,i
:2G

Dj
i →2D, HD

Dj ,i
:2D→2G

Dj
i

are seven pairs of cognitive operators in a regular formal decision context satisfying
the following properties:

FM
Dj ,i

(g) =
⎧
⎨
⎩
FM

Dj ,i−1(g) ∪ FM
Dj ,�Mi−1

(g), if g ∈ G
Dj

i−1,

FM

Dj ,�G
Dj
i−1

(g) ∪ FM
Dj ,�Mi−1

(g), otherwise,
(6.6)

HM
Dj ,i

(m) =
⎧
⎨
⎩
HM

Dj ,i−1(m) ∪HM

Dj ,�G
Dj
i−1

(m), if m ∈ Mi−1,

HM
Dj ,�Mi−1

(m), otherwise,
(6.7)
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FD
Dj ,i

(y) =
⎧
⎨
⎩
F D

Dj ,i−1(y), if y ∈ G
Dj

i−1,

F D

Dj ,�G
Dj

i−1

(y), otherwise,
(6.8)

HD
Dj ,i

(z) = HD
Dj ,i−1(z) ∪HD

Dj ,�G
Dj
i−1

(z), if z ∈ D, (6.9)

where FM

Dj ,�G
Dj

i−1

(g),HM

Dj ,�G
Dj

i−1

(m) and HD

Dj ,�G
Dj

i−1

(z) are set to be empty when

�G
Dj

i−1 = ∅, and FM
Dj ,�Mi−1

(g) and HM
Dj ,�Mi−1

(m) are set to be empty when
�Mi−1 = ∅.

Then we say that FM
Dj ,i

,F D
Dj ,i

and HM
Dj ,i

,HD
Dj ,i

are respectively extended

cognitive operators of FM
Dj ,i−1,F D

Dj ,i−1 and HM
Dj ,i−1,HD

Dj ,i−1 with the newly input

data �G
Dj

i−1 and �Mi−1. For convenience, cognitive operators FM
D,i and HM

D,i

denote the combination of FM
D1,i

,FM
D2,i

, . . . ,FM
Dl,i

and HM
D1,i

,HM
D2,i

, . . . ,HM
Dl,i

,

respectively. Similarly, we can define F D
D,i and HD

D,i .

Meanwhile, for any Dj ⊆ D, GC

FM
Dj ,i−1,HM

Dj ,i−1
means subcondition-concept

space under cognitive operators FM
Dj ,i−1 and HM

Dj ,i−1, and GC

FM
D,i−1,HM

D,i−1
is

called as condition-concept space under cognitive operators FM
D,i−1 and HM

D,i−1.

In a similar manner, we can define GD

FD
D,i−1,HD

D,i−1
and GD

FD
Dj ,i−1,HD

Dj ,i−1
. In

GC

FM
D,i−1,HM

D,i−1
, we can obtain the k-th granular concept

(
A

Dj

G,k, B
Dj

G,k

)
from

GC

FM
D,i−1,HM

D,i−1
with a class set Dj . Moreover, for dynamic information �G

Dj

i−1,

we write GC

FM

Dj ,�G
Dj
i−1

,HM

Dj ,�G
Dj
i−1

and GD

F D

Dj ,�G
Dj
i−1

,HD

Dj ,�G
Dj
i−1

as GC

�G
Dj
i−1

and GD

�G
Dj
i−1(

Similarly,GC
�Mi−1

and GD
�Mi−1

for �Mi−1

)
under operatorsFM

Dj ,�G
Dj
i−1

,HM

Dj ,�G
Dj
i−1

and F D

Dj ,�G
Dj
i−1

,HD

Dj ,�G
Dj
i−1

(
FM

Dj ,�Mi−1
,HM

Dj ,�Mi−1
and F D

Dj ,�Mi−1
,HD

Dj ,�Mi−1

)
.

In theory, although we can update concepts by objects and attributes simulta-
neously, we are extremely interested in the new object information because the
attributes can be regarded as relatively stable under certain conditions.

Theorem 6.1 Let G
Dj

i be a subclass-object set under a set Dj and(GFDj ,i−1,HDj ,i−1 , FM

Dj ,�G
Dj

i−1

,F D

Dj ,�G
Dj

i−1

,HM

Dj ,�G
Dj

i−1

,HD

Dj ,�G
Dj

i−1

)
be an object-

oriented cognitive computing state, where GFDj ,i−1,HDj ,i−1 is the concept space

under cognitive operators FDj ,i−1 and HDj ,i−1. Then the following statements
hold:
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1) For any g ∈ G
Dj

i , if g ∈ G
Dj

i−1, then(HM
Dj ,i

FM
Dj ,i

(g),FM
Dj ,i

(g)
) = (HM

Dj ,i−1FM
Dj ,i−1(g) ∪HM

Dj ,�G
Dj
i−1

FM
Dj ,i−1(g),

FM
Dj ,i−1(g)

);
otherwise,
(HM

Dj ,i
FM

Dj ,i
(g),FM

Dj ,i
(g)
) = (HM

Dj ,i−1FM

Dj ,�G
Dj

i−1

(g) ∪HM

Dj ,�G
Dj

i−1

FM

Dj ,�G
Dj

i−1

(g),

FM

Dj ,�G
Dj
i−1

(g)
)
.

2) For any m ∈Mi−1,we have
(HM

Dj ,i
(m),FM

Dj ,i
HM

Dj ,i
(m)

) = (HM
Dj ,i−1(m) ∪HM

Dj ,�G
Dj
i−1

(m),FM
Dj ,i−1HM

Dj ,i−1(m)∩

FM

Dj ,�G
Dj
i−1

HM

Dj ,�G
Dj
i−1

(m)
)
.

3) For any y ∈ G
Dj

i , if y ∈ G
Dj

i−1, then
(HD

Dj ,i
FD
Dj ,i

(y),FD
Dj ,i

(y)
) = (HD

Dj ,i−1FD
Dj ,i−1(y) ∪HD

Dj ,�G
Dj

i−1

FD
Dj ,i−1(y),

FD
Dj ,i−1(y)

);

otherwise,
(HD

Dj ,i
FD
Dj ,i

(y),FD
Dj ,i

(y)
) = (HD

Dj ,i−1FD

Dj ,�G
Dj

i−1

(y) ∪HD

Dj ,�G
Dj

i−1

FD

Dj ,�G
Dj

i−1

(y),

FD

Dj ,�G
Dj

i−1

(y)
)
.

4) For any z ∈ D,we obtain
(HD

Dj ,i
(z),FD

Dj ,i
HD

Dj ,i
(z)
) = (HD

Dj ,i−1(z) ∪HD

Dj ,�G
Dj

i−1

(z),FD
Dj ,i−1HD

Dj ,i−1(z)∩

FD

Dj ,�G
Dj

i−1

HD

Dj ,�G
Dj

i−1

(z)
)
.

Proof The proof of Theorem 6.1 can be found in the original paper [58]. ,-
From Theorem 6.1, we observe that the i-th concept space can be constructed

under cognitive operators FDj ,i−1 and HDj ,i−1, and the concept space GFDj ,i
,HDj ,i
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can be obtained by GFDj ,i−1,HDj ,i−1 with the newly input data �G
Dj

i−1. This means
that we can obtain concepts based on the past concepts rather than reconstructing
them from the beginning.

However, in the previous discussions, we still do not know which class-object

set GD∗
i−1 should be theoretically updated with �G

Dj

i−1. In other words, although we

obtain class-object set G
Dj

i−1 which will be actually updated by �G
Dj

i−1, we are not

sure if the updated class-object set in the model is in accordance with G
Dj

i−1. Thus,

we will further discuss the relationship between G
Dj

i−1 and G
D∗
i−1.

Definition 6.11 Let (HF (g),F (g)) be a granular concept, for any (AG,e, BG,e) ∈
GC , where e ∈ {1, 2, . . . , |GC |}. Then we can define concept-similarity degree (CS)
as follows:

θCS = CS(F (g), BG,e) = Wp ·MT

|F (g) ∪ BG,e| , (6.10)

where MT is the transpose of the vector M , and Wp = (w1, w2, . . . , wm)

is a cognitive weight vector that is associated with an attribute vector M =
(m1,m2, . . . ,mm) consisting of (1) the elements from F (g) ∩ BG,e which are all
set to be 1, and (2) the elements from M − (F (g) ∩ BG,e) which are all set to be 0.

Let E be training times. For any t ∈ E, the cognitive weight vector of the t-th
training is denoted by Wt

i,p = (wt
i,1, w

t
i,2, . . . , w

t
i,m). Then we denote

⎡
⎢⎣

Wt
1,p
...

Wt
n,p

⎤
⎥⎦ =

⎡
⎢⎣

wt
1,1 · · · wt

1,m
... · · · ...

wt
n,1 · · · wt

n,m

⎤
⎥⎦ , (6.11)

where n = ∣∣ n⋃
i=1
{Gi}

∣∣. Our purpose is to obtain an optimal cognitive weight vector

Wt
n,p by computing concept-similarity degree vectors.

Definition 6.12 Let {Gi−1} be a class-object set under GD
i−1, �G

D∗
i−1 be a

new object set under D∗, and G
Dj

i−1 and G
Dr

i−1 be class-object sets under
class sets Dj and Dr (Dj ∩ Dr = ∅), respectively. For any granu-

lar concept
(
A

Dj

G,e, B
Dj

G,e

) ∈ GC

FM
Dj ,i−1,HM

Dj ,i−1
and a new granular concept

(HM

D∗,�G
D∗
i−1

FM

D∗,�G
D∗
i−1

(g),FM

D∗,�G
D∗
i−1

(g)
)
, the degree of similarity between the

concepts is defined as CS
Dj

i−1 = CS
(
B

Dj

G,e,FM

D∗,�G
D∗
i−1

(g)
)
. Then, we denote

MCSDj = n
max
e=1

(
CS

Dj

i−1

) = n
max
e=1

(
CS
(
B

Dj

G,e,FM

D∗,�G
D∗
i−1

(g)
))

,



344 6 Learning Analysis

where n =
∣∣∣GC

FM
Dj ,i−1,HM

Dj ,i−1

∣∣∣. Then, we further denote

MMCSDj = l
max
j=1

(
MCSDj

)
. (6.12)

From (6.12), we know that the subclass-object set G
Dj

i−1 should be updated in the
class-object set GD

i−1. Therefore, if D∗ = Dj , it means that the theoretically updated

subclass-object set GD∗
i−1 is in accordance with the actually updated subclass-object

set G
Dj

i−1. Otherwise, we should adjust cognitive weight vectors as follows.

wt
i ← wt

i ±�wt
i ,

�wt
i = activationFunction(ηwt

i),
(6.13)

where the operator + is adopted when the attributes are from B
Dj

G,e

⋂FM

D∗�G
D∗
i−1

(g)

and the another operator− is used for the elements from B
Dr

G,e

⋂FM

D∗�G
D∗
i−1

(g), and

activationFunction(ηwt
i) = exp(ηwt

i )−exp(−ηwt
i )

exp(ηwt
i )+exp(−ηwt

i )
with the learning rate η ∈ (0, 1).

6.1.1.3 Proposed Model

In this section, based on the above discussion, we put forward a CCLM with
dynamic learning, which can perform a good performance in incremental learning
and classification task.

A. Initial Concept Learning

We split raw data into training data G and testing data G. For the training data, let
{G} be the set of the objects sets G1,G2, . . . ,Gn with Gi ∩ Gj = ∅(i �= j), we
denote

{G} =
n⋃

i=1

{Gi}. (6.14)

Here, G1 is an initial training data, and the rest of training data
n⋃

i=2
{Gi} is used for

concept cognition.
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From Definitions 6.7 and 6.8, the initial concept learning consists of two parts:
constructing condition-concept space and decision-concept space. The details are

shown in Algorithm 6.1, and its time complexity is O
(|{G1}|(|M|+ |D| + |GDj

1 |)).

Algorithm 6.1 Initial concept learning

1: Input: the initial training data set G1.

2: Output: the initial concept space.

3: for each G
Dj

1 ∈ {G1} do
4: for each m ∈ M do
5: GC

FM
D,1,HM

D,1
← (HM

Dj ,1
(m),FM

Dj ,1
HM

Dj ,1
(m)

)

6: end for
7: for each g ∈ G

Dj

1 do
8: GC

FM
D,1,HM

D,1
← (HM

Dj ,1
FM

Dj ,1
(g),FM

Dj ,1
(g)
)

9: end for
10: for each z ∈ D do
11: GD

FD
D,1,HD

D,1
← (HD

Dj ,1
(z),FD

Dj ,1
HD

Dj ,1
(z)
)

12: end for
13: for each y ∈ G

Dj

1 do
14: GD

FD
D,1,HD

D,1
← (HD

Dj ,1
FD

Dj ,1
(y),F D

Dj ,1
(y)
)

15: end for
16: end for
17: Return GC

FM
D,1,HM

D,1
and GD

FD
D,1,HD

D,1

B. Concept-Cognitive Process

Let E, err0,W,AW, IW be the training epochs, learning error rate, cognitive
weight vector, active weight vector and inhibited weight vector, respectively. It
should be pointed out that AW and IW are to enhance and weaken the corre-
sponding attributes, respectively. Based on the theory in Sect. 6.1.1 Theoretical
Foundation, the concept-cognitive process can be briefly represented as follows:

Firstly, construct a conditional granular concept
(
A

D∗
G,k, B

D∗
G,k

)
and a decision

granular concept
(
Y

D∗
G,k, Z

D∗
G,k

)
.

Secondly, for a new concept
(
A

D∗
G,k, B

D∗
G,k

)
, we compute its concept-similarity

degree with each granular concept
(
A

Dj

G,e, B
Dj

G,e

)
from GC

FM
D,i−1,HM

D,i−1
.

Thirdly, if the predicted label is not in accordance with the actual label, the weight
vectors W , AW and IW will be updated.

Finally, for the first training, we will update the condition-concept space
and decision-concept space by dynamic concepts

(
A

D∗
G,k, B

D∗
G,k

)
and

(
Y

D∗
G,k, Z

D∗
G,k

)
,

respectively. Using recursive approach, we can obtain a final cognitive weight vector
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WE
n,p and a final concept space (i.e., the condition-concept space GC

FM
D,n,HM

D,n

and

decision-concept space GD

FD
D,n,HD

D,n

).

The details of concept-cognitive process are shown in Algorithm 6.2. Note

that params[1], params[2] and params[3] are
((

A
D∗
G,k, B

D∗
G,k

)
,GC

FM
D,i−1,HM

D,i−1
,

GD

FD
D,i−1,HD

D,i−1
, Wt−1

i−1,p

)
,
(
η, j, type, B

Dtype

G,k , θLmax[|D|],Wt−1
i−1,p, AWt−1

i−1,p,

IWt−1
i−1,p

)
and

(
GC

FM
D,i−1,HM

D,i−1
, GD

F D
D,i−1,HD

D,i−1
,
(
A

Dtype

G,k , B
Dtype

G,k

)
,
(
Y

Dtype

G,k , Z
Dtype

G,k

))
,

respectively.
Now, we analyze the time complexity of Algorithm 6.2. Running Step 18 takes

O(1) because of updating objects one by one in CCLM. In Step 20, it will revoke
Algorithm 6.3, and the running time is decided by two for loops. Thus, running

Steps 18–26 takes O
(∣∣GC

FM
D,i−1,HM

D,i−1

∣∣∣∣GD

F D
D,i−1,HD

D,i−1

∣∣), where
∣∣GD

FD
D,i−1,HD

D,i−1

∣∣ is the

number of |D| and often very small. For Steps 27–32, it will call Algorithms 6.4

and 6.5. Therefore, the time complexity of Steps 27–32 is O
(
|D|((|activeSet| +

|inhibitSet|) + (|M| + |D|))
)

. To sum up, the time complexity of Algorithm 6.2

is O
(
P
∣∣ n⋃
i=2
{Gi}

∣∣ (∣∣GD∗
i

∣∣+ ∣∣GC

FM
D,i−1,HM

D,i−1

∣∣|D| +Q
)) (

P = max{E,Eerr0},Q =
(|M| + |D|)(|D| + 1)+ |D|(|activeSet| + |inhibitSet|)), where E is the number
of training epochs and Eerr0 is the running times about err0.

C. Overall Procedure and Concept Prediction

Figure 6.1 shows the overall procedure of CCLM which includes three stages: initial
concept generation, concept-cognitive process and concept prediction. Suppose
there are still three classes to predict. The stage of initial concept generation is to
generate concept space by mapping objects into concepts, and then the second stage
will update the concept space by the concept-similarity degree with labeled data.

In the stage of concept prediction, for any test instance, concept-similarity degree
is further used to compute similarity degree, and then the final prediction will be
completed by the sum of the maximum class vector as shown in the right of Fig. 6.1.
Note that, compared with the second stage, the concept space will not be updated in
the third stage.

Based on the final concept space GC

FM
D,n,HM

D,n

,GD

FD
D,n,HD

D,n

, and the final weight vec-

tor WE
n,p , we can make predictions in G. The details are described in Algorithm 6.6.

Considering that running Step 6 will revoke the function of Algorithm 6.3, it is easy

to verify that the time complexity of Algorithm 6.6 is O
(∣∣G∣∣∣∣GC

FM
D,i−1,HM

D,i−1

∣∣∣∣D∣∣).
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Algorithm 6.2 Concept-cognitive process

1: Input: initial concept spaces GC

FM
D,1,HM

D,1
and GD

FD
D,1,HD

D,1
.

2: Output: a final concept space and a final weight vector.
3: Initialize W 1

1,p, AW 1
1,p, IW

1
1,p, η, err0, and E.

4: while t ≤ E||errmin ≤ err0 do . Initialize t=2.

5: for each G
D∗
i ∈

n⋃
i=2
{Gi} do

6: for each m ∈ M do
7: GC

G
D∗
i

← (HM
D∗,i(m),FM

D∗ ,iHM
D∗,i (m)

)

8: end for
9: for each g ∈ G

D∗
i do

10: GC

G
D∗
i

← (HM
D∗,iFM

D∗,i (g),FM
D∗,i (g)

)

11: end for
12: for each z ∈ D do
13: GD

G
D∗
i

← (HD
D∗,i (z),FD

D∗,iHD
D∗,i(z)

)

14: end for
15: for each y ∈ G

D∗
i do

16: GD

G
D∗
i

← (HD
D∗,iFD

D∗,i (y),F D
D∗,i (y)

)

17: end for
18: for each

(
A

D∗
G,k, B

D∗
G,k

)∈GC

G
D∗
i

do

19: Get a concept
(
Y

D∗
G,k, Z

D∗
G,k

) ∈ GD

G
D∗
i

.

20: Get concept-similarity degrees by Algorithm 6.3.
21: θmax [index] ← max

(
θmax [|D|]

)

22: type← indexType
(
Y

D∗
G,k

) . Get a label.
23: if index �= type then
24: errFunctioni

(
A

D∗
G,k

)=1 .Misclassification.
25: end if
26: end for
27: for j=0 to |D| do
28: if θmax [j ] ≥ θmax [type] then
29: Update weight vector by Algorithm 6.4.
30: end if
31: Update concept space by Algorithm 6.5.
32: end for
33: end for

34: errmin ← minimize

( n∑
i=2

errFunctioni

(
A

D∗
G,k

)
∣∣ n⋃
i=2

Gi

∣∣
)

35: ++ t

36: end while
37: Return GC

FM
D,n,HM

D,n

, GD

FD
D,n,HD

D,n

and WE
n,p.
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Algorithm 6.3 Concept-similarity degree
1: function GETCONCEPTSIMILARITY(params[1])
2: Initialize θmax [|D|], θLmax [|D|]
3: for

(
A

Dj

G,e, B
Dj

G,e

) ∈ GC

FM
D,i−1,HM

D,i−1
do

4: for
(
Y

Dr

G,q , Z
Dr

G,q

) ∈ GD

FD
D,i−1,HD

D,i−1
do

5: if ADj

G,e ⊆ Y
Dr

G,q then

6: θ t−1
CSi−1

= CSi−1
(
B

D∗
G,k, B

Dj

G,e

)

7: type ← indexType(YDr

G,q )

8: if θ t−1
CSi−1

≥ θmax [type] then
9: θmax [type] = θ t−1

CSi−1

10: θLmax [type] = B
Dj

G,e

11: end if
12: end if
13: end for
14: end for
15: return θmax [|D|], θLmax [|D|]
16: end function

Algorithm 6.4 Adjust weight
1: function ADJUSTWEIGHT(params[2])
2: typeSet=θL∗[type]⋂B

type

G,k

3: jSet=θL∗[j ]⋂B
type

G,k

4: activeSet=typeSet -jSet
5: inhibitSet=jSet - typeSet
6: while m1 ∈ activeSet do
7: indexA=indexAttribtue(m1)

8: Update AWt−1
i−1,p by awt−1

i−1,indexA ++.

9: Update Wt−1
i−1,p by (6.13). . Input ηawt−1

i−1,indexA.
10: end while
11: while m2 ∈ inhibitSet do
12: indexB=indexAttribtue(m2)

13: Update IW t−1
i−1,p by iwt−1

i−1,indexB ++.

14: Update Wt−1
i−1,p by (6.13). . Input ηiwt−1

i−1,indexB .
15: end while
16: return Wt−1

i−1,p, AWt−1
i−1,p, IW

t−1
i−1,p

17: end function
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Algorithm 6.5 Update concept space
1: function UPDATECONCEPTS(params[3])
2: for each m ∈ M do
3: Update GC

FM
D,i−1,HM

D,i−1
by Theorem 6.1.

4: end for
5: for each z ∈ D do
6: Update GD

FD
D,i−1,HD

D,i−1
by Theorem 6.1.

7: end for
8: return GC

FM
D,i−1,HM

D,i−1
,GD

FD
D,i−1,HD

D,i−1

9: end function

Fig. 6.1 Illustration of overall procedure for CCLM. Suppose there are three classes to predict,
and the maximum class vector is obtained by concept-similarity degree

Algorithm 6.6 Concept prediction

1: Input: the testing data G,WE
n,p,GC

FM
D,n

,HM
D,n

,GD

FD
D,n

,HD
D,n

.

2: Output: the class labels of test data.

3: for each gi ∈ G do
4:

(
A

D∗
G,k, B

D∗
G,k

)← (HM
D∗,iFM

D∗,i (gi ),FM
D∗,i (gi )

)

5:
(
Y

D∗
G,k, Z

D∗
G,k

)← (HD
D∗,iFD

D∗,i (yi ),F D
D∗,i(yi )

)
6: θmax [|D|] ← getConceptSimilarity(params[1])
7: θmax [index] ← max(θmax [|D|])
8: type ← indexType

(
Y

D∗
G,k

)
9: if index=type then

10: correctNum+ = 1
11: else
12: incorrectNum+ = 1
13: end if
14: end for
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6.1.2 Concurrent Concept-Cognitive Learning Model for
Classification

In this subsection, we discuss the design of a new theoretical framework for
concurrent computing, which comprises three aspects: initial concurrent concept
learning, the concurrent concept-cognitive process, and the concept generalization
process.

6.1.2.1 Initial Concurrent Concept Learning in C3LM

In the real world, not all methods can be concurrent, as this often depends on their
separability. In order to guarantee concurrency for the C3LM in theory, we need to
consider the following definitions and propositions.

Definition 6.13 Let (G,M, I,D, J ) be a regular formal decision context. Suppose
that D1,D2, . . . ,DK is a partition of D by class labels, and let G = GD1 ∪GD2 ∪
. . . ∪GDK . Then, we say that GDk (k ∈ {1, 2, . . . ,K}) is a subclass-object set. For
the sake of brevity, hereinafter we write GDk as Gk .

Definition 6.13 indicates that an object set G can be decomposed into several
subclass-object sets in a regular formal decision context. Moreover, we only
consider objects that are updated by newly input objects, as attributes can be taken
as relatively stable in real life. Therefore, in the following, we discuss the scenario
of a subclass-object Gk .

Let Gk be a subclass-object set, and M and D be attribute sets. The set-valued
mappingsF k : 2Gk → 2M,Hk : 2M → 2Gk

and F̃ k : 2Gk → 2D, H̃k : 2D → 2Gk

are respectively referred to as the conditional and decision cognitive operators with
a subclass-object set Gk when no confusion exists.

Definition 6.14 Let Gk
1,G

k
2, . . . ,G

k
n be a partition of an object set Gk. If the

following cognitive operators:

F k
j : 2Gk

j → 2M, Hk
j : 2M → 2Gk

j , j = 1, 2, . . . , n,

F k : 2Gk → 2M, Hk : 2M → 2Gk

satisfy F k(g) = F k
j (g), where g ∈ Gk

j , we say that HSF kHk =
(F k

1 , . . . ,F k
n ;Hk

1 , . . ., Hk
n ) is a conditional horizontal partition state.

Proposition 6.1 Let HSF kHk = (F k
1 , . . . ,F k

n ;Hk
1 , . . . ,Hk

n ) be a conditional
horizontal partition state. For any g ∈ Gk

j1
(j1 ∈ {1, 2, . . . , n}), if there exist

objects g1, g2, . . . , gn ∈ Gk
j2

(j2 ∈ {1, 2, . . . , n}) such that F k
j1
(g) ⊆ F k

j2
(gi) (i =
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1, 2, . . . , n), we have

(HkF k(g),F k(g)) =
({

g ∪ (
n∪

i=1
gi)
}
,F k

j1
(g)
)
; (6.15)

otherwise,

(HkF k(g),F k(g)) = ({g},F k
j1
(g)). (6.16)

Proof The proof of Proposition 6.1 can be found in the original paper [60]. ,-
In fact, from the perspective of objects, Definition 6.14 and Proposition 6.1

demonstrate that the separability holds for C3LM in the conditional formal context
(G,M, I). Analogously, we can determine that the separability also holds for C3LM
in the decision formal context (G,D, J ) under the decision cognitive operators F̃ k

and H̃k .

Definition 6.15 Let M1,M2, . . . ,Md be a partition of M . For any Gk ⊆ G, if the
following cognitive operators:

F k
j : 2Gk → 2Mj , Hk

j : 2Mj → 2Gk

, j = 1, 2, . . . , d,

F k : 2Gk → 2M, Hk : 2M → 2Gk

satisfy F kHk(m) =
d⋃

j=1
F k

j Hk(m) where m ∈ M , we say that VSF kHk =
(Hk

1 , . . . ,Hk
d ;F k

1 , . . . ,F k
d ) is a conditional vertical partition state.

Proposition 6.2 Let VSF kHk = (Hk
1 , . . . ,Hk

d ;F k
1 , . . . ,F k

d ) be a conditional
vertical partition state. For any m ∈ Mj1 (j1 ∈ {1, 2, . . . , d}), if there exist
attributes m1,m2, . . . ,mr ∈ Mj2 (j2 ∈ {1, 2, . . . , d}) such that Hk

j1
(m) ⊆

Hk
j2
(mi) (i = 1, 2, . . . , r), we have

(Hk(m),F kHk(m)) =
(
Hk(m),

{
m ∪ (

r∪
i=1

mi)
}); (6.17)

otherwise,

(Hk(m),F kHk(m)) = (Hk(m), {m}). (6.18)

Proof The proof of Proposition 6.2 can also be found in the original paper [60]. ,-
From Definition 6.15 and Proposition 6.2, we know that the separability holds for

C3LM in the conditional formal context (G,M, I) from the attribute perspective.
Similarly, under decision cognitive operators F̃ k and H̃k , there exists the same
property for C3LM in the decision formal context (G,D, J ).

Based on the above theory, we present an initial concurrent computing frame-
work (see Fig. 6.2 for details) and its corresponding algorithm (see Algorithm 6.7)
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Fig. 6.2 Framework of constructing initial concepts in C3LM

Algorithm 6.7 Concurrent computation of initial concept space

1: Input: Initial training dataset Gk and chunk size.
2: Output: The initial concept spaces GC

F k,Hk and GD

F̃ k,H̃k
.

3: n = /|Gk |/chunk-size0, d = /|M |/chunk-size0, and l = /|D|/chunk-size0 are the numbers
of threads for the objects, conditional attributes, and decision attributes, respectively.

4: for Gk
j = Gk

1 to Gk
n do in parallel

5: for each g ∈ Gk
j (j ∈ {1, 2, . . . , n}) do

6: GC
F k,Hk ←

(Hk
jF k

j (g),F k
j (g)

)
7: end for
8: end for
9: for Mj = M1 to Md do in parallel

10: for each m ∈ Mj(j ∈ {1, 2, . . . , d}) do
11: GC

F k ,Hk ←
(Hk

j (m),F k
j Hk

j (m)
)

12: end for
13: end for
14: for Gk

j = Gk
1 to Gk

n do in parallel

15: for each y ∈ Gk
j (j ∈ {1, 2, . . . , n}) do

16: GD

F̃ k ,H̃k
← (H̃k

j F̃ k
j (y), F̃ k

j (y)
)

17: end for
18: end for
19: for Dj = D1 to Dl do in parallel
20: for each z ∈ Dj (j ∈ {1, 2, . . . , l}) do
21: GD

F̃ k ,H̃k
← (H̃k

j (z), F̃ k
j H̃k

j (z)
)

22: end for
23: end for
24: Return GC

F k,Hk and GD

F̃ k ,H̃k
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for constructing the initial concepts. The overall process in Fig. 6.2 can be described
as follows: first, a task can be divided into many subtasks by the recursion method,
based on Definitions 6.14 and 6.15, and Propositions 6.1 and 6.2. Second, according
to Propositions 6.1 and 6.2, threads can concurrently calculate the concepts of each
task. Finally, the results of different threads will be collected by Propositions 6.1
and 6.2. Moreover, the right of Fig. 6.2 illustrates that four threads calculate granular
concepts based on the object and attribute sets. It should be pointed out that the
proposed C3LM is based on the fork/join framework.1

Furthermore, it is easy to determine that the time complexity of Algorithm 6.7 is
O( 1

n
|Gk| + 1

d
|M| + 1

l
|D|). For an object set G, by means of Algorithm 6.7, we can

obtain the conditional concept space GC
FH and decision concept space GD

F̃ H̃ .

6.1.2.2 Concurrent Concept-Cognitive Process in C3LM

In the real world, objects will be updated as time passes, which means that the
obtained concept spaces need to be updated accordingly. For a person, learning
is not simply a matter of acquiring a description, but involves taking something
new and integrating it sufficiently with the existing thought processes [41]. The
learning ability in humans is known as a gradual cognitive process. Therefore,
in this subsection, we explore the concept-cognitive process under a concurrent
environment.

As with the classical cognitive process [36], combining Definitions 6.6 and 6.13,
we obtain the cognitive operators for C3LM with the newly input objects �Gk

i−1 =
Gk

i −Gk
i−1, as follows:

(i) F k
i−1 : 2Gk

i−1 → 2M, Hk
i−1 : 2M → 2Gk

i−1,

(ii) F k

�Gk
i−1
: 2�Gk

i−1 → 2M, Hk

�Gk
i−1
: 2M → 2�Gk

i−1,

(iii) F k
i : 2Gk

i → 2M, Hk
i : 2M → 2Gk

i ,

(6.19)

and

(iv) F̃ k
i−1 : 2Gk

i−1 → 2D, H̃k
i−1 : 2D → 2Gk

i−1,

(v) F̃ k

�Gk
i−1
: 2�Gk

i−1 → 2D, H̃k

�Gk
i−1
: 2D → 2�Gk

i−1,

(vi) F̃ k
i : 2Gk

i → 2D, H̃k
i : 2D → 2Gk

i .

(6.20)

1https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html.

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
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Definition 6.16 Let �Gk
i−1 = Gk

i − Gk
i−1 be a singleton set with a new

object, and F k

�Gk
i−1

,Hk

�Gk
i−1

and F̃ k

�Gk
i−1

,H̃k

�Gk
i−1

be cognitive operators. For

any g ∈ �Gk
i−1, if

(Hk

�Gk
i−1

F k

�Gk
i−1

(g),F k

�Gk
i−1

(g)
) = ({g},F k

�Gk
i−1

(g)
)

and
(H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g), F̃ k

�Gk
i−1

(g)
) = ({g}, F̃ k

�Gk
i−1

(g)
)
,
(Hk

�Gk
i−1

F k

�Gk
i−1

(g),

F k

�Gk
i−1

(g)
)

and
(H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g), F̃ k

�Gk
i−1

(g)
)

are referred to as the newly

formed conditional atomic concept and decision atomic concept, respectively,
with a single object g.

In fact, we consider that the obtained concept spaces GC
F kHk and GD

F̃ kH̃k
are

updated by a newly input object, rather than adding multiple objects simultaneously.
For the sake of convenience, we denote the initial concept spaces obtained by
Algorithm 6.7, namely GC

F kHk ,GD

F̃ kH̃k
and GC

FH ,GD

F̃ H̃ , as GC

F k
0 Hk

0
,GD

F̃ k
0 H̃k

0
and

GC
F0H0

,GD

F̃0H̃0
, respectively. According to Eqs. (6.19) and (6.20), the cognitive

operators F k
i ,Hk

i and F̃ k
i ,H̃k

i in the i-th period can be obtained by the cognitive
operators F k

i−1,Hk
i−1 and F̃ k

i−1,H̃k
i−1 in the (i − 1)-th period with incremental

objects, respectively. Moreover, we denote their corresponding concept spaces by
GC

F k
i Hk

i

and GD

F̃ k
i H̃k

i

. Furthermore, the entire concept spaces in the i-th period are

further denoted by GC
FiHi

and GD

F̃iH̃i
.

Proposition 6.3 Let
(Hk

�Gk
i−1

F k

�Gk
i−1

(g),F k

�Gk
i−1

(g)
)

and
(H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g), F̃ k

�Gk
i−1

(g)
)
be the newly formed conditional and decision atomic

concepts, respectively. Then, the following statements hold:

(i) For any granular concept (Ak,j , Bk,j ) ∈ GC

F k
i−1Hk

i−1
(j ∈ {1, 2, . . . , |GC

F k
i−1Hk

i−1
|}), if

Bk,j ∩ F k

�Gk
i−1

(g) �= ∅, (Ak,j , Bk,j ) =
(
Ak,j∪Hk

�Gk
i−1

F k

�Gk
i−1

(g),Bk,j ∩ F k

�Gk
i−1

(g)
);

otherwise,

GC

F k
i Hk

i

= GC

F k
i−1Hk

i−1
∪ (Hk

�Gk
i−1

F k

�Gk
i−1

(g),F k

�Gk
i−1

(g)
)
.

(ii) For any granular concept (Yk,j , Zk,j ) ∈ GD

F̃ k
i−1H̃k

i−1
(j ∈ {1, 2, . . . , |GD

F̃ k
i−1H̃k

i−1
|}), if

Zk,j ∩ F̃ k

�Gk
i−1

(g) �= ∅, (Yk,j , Zk,j ) =
(
Yk,j ∪ H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g),Zk,j ∩ F̃ k

�Gk
i−1

(g)
);

otherwise,

GD

F̃ k
i H̃k

i

= GD

F̃ k
i−1H̃k

i−1
∪ (H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(g), F̃ k

�Gk
i−1

(g)
)
.

Proof The proof of Proposition 6.3 can be found in the original paper [60]. ,-
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For any object g, according to Definitions 6.5 and 6.6, we can obtain a concept({g},F�Gi−1(g)
)
, as the concept spaces are updated by adding objects sequentially.

The concept similarity (CS) degree [58] is used in this study to explore the
interaction of attributes in the concept-cognitive process.

Definition 6.17 ([58]) Suppose that
({g},F�Gi−1(g)

)
is a new concept. For any

(Ak,j , Bk,j ) ∈ GC

F k
i−1,Hk

i−1
(j ∈ {1, 2, . . . , |GC

F k
i−1,Hk

i−1
|}), the CS degree can be

defined as follows:

θk,j = W ·MT

∣∣F�Gi−1(g)
⋃

Bk,j

∣∣ , (6.21)

where W = (w1, w2, . . . , wm) is a cognitive weight vector regarding a conditional
attribute set M , and M = (m1,m2, . . . ,mm) is an attribute vector that contains
(1) the value of attributes from F�Gi−1(g) ∩ Bk,j , which are set to 1, and (2) the
elements from M − (F�Gi−1(g) ∩ Bk,j ), which are all set to 0.

For any object, there always exists a unique class that is most similar to it by the
sample separation axiom [79]. Thus, based on Definition 6.17, we can determine
the maximum CS degree θ∗k,j∗ = max

j∈{1,2,...,|GC

F k
i−1 ,Hk

i−1
|}
{θk,j } and its corresponding

concept (Ak,j∗, Bk,j∗) in the concept space GC

F k
i−1,Hk

i−1
. Moreover, for the entire

concept space GC
Fi−1,Hi−1

, we can further determine the global maximum CS degree
θ∗k∗,j∗ = max

k∈{1,2,...,K}{θ
∗
k,j∗} and its corresponding concept (Ak∗,j∗, Bk∗,j∗).

Definition 6.18 If θ∗k∗,j∗ is the global maximum CS degree in the entire concept

space GC
Fi−1,Hi−1

, we say that a new concept
({g},F�Gi−1(g)

)
can be classified into

the concept space GC

F k∗
i−1,Hk∗

i−1
by the optimal concept (Ak∗,j∗, Bk∗,j∗). Moreover, for

any (Yk, Zk) ∈ GD

F̃i−1,H̃i−1
(k ∈ {1, 2, . . . , |GD

F̃i−1,H̃i−1
|}), if Ak∗,j∗ ⊆ Yk , we say that

the object g is associated with a single label z, where Zk = {z} in a regular formal
decision context.

From Definition 6.18, we can determine that an object g is associated with a class
label z if and only if the real class label F̃�Gi−1(g) is consistent with the predicted
class label z. However, when the ground truth label is not the same as the predicted
value, we adjust the cognitive weight as follows:

wi ← wi ±�wi,

�wi = activationFunction(ηwi),
(6.22)

where the operator + is adopted when the attributes are from F�Gi−1(g) ∩ Bk∗,j∗ ,
and the other operator− is used for the elements from F�Gi−1(g)∩Bk,j∗ . Moreover,
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activationFunction(ηwi) = eηwi−e−ηwi

eηwi+e−ηwi
, where η ∈ (0, 1) is known as the learning

rate.
In the following, a computational procedure for a concurrent concept-cognitive

process (see Algorithm 6.8) is proposed based on the above discussion. The inputs
of Algorithm 6.8 are the concept spaces obtained from the output results of Algo-
rithm 6.7. In Algorithm 6.8, running steps 9 and 12 requires O

(|GC

F k
i−1Hk

i−1
|) and

O
(|GD

F̃ k
i−1H̃k

i−1
|), respectively. In line 15, the runtime is O

(|GC

F k
i−1Hk

i−1
|). Hence, it is

easy to determine that the time complexity of Algorithm 6.8 is O
(
n( 1

m
|GC

F k
i−1Hk

i−1
|+

1
p
|GD

F̃ k
i−1H̃k

i−1
|+|GD

F̃i−1,H̃i−1
|)). Then, we can obtain the collections of all conditional

and decision concepts in the final period, which are denoted by GC
Fn,Hn

and GD

F̃n,H̃n
,

respectively.

6.1.2.3 Concept Generalization Process in C3LM

Based on the final concept spaces obtained, we can achieve classification ability.
This can be understood in terms of two aspects: (1) it can complete the static
classification task when the final concept spaces are directly obtained from the initial
concept learning, and (2) by combining the initial concept construction process with
the CCL process, it is suitable for the dynamic classification task. However, both
methods predict label information by means of the CS degree.

For a test instance g, let �Gi−1 = {g}, and we obtain a new concept(H�Gi−1F�Gi−1 (g),F�Gi−1(g)
) = ({g},F�Gi−1(g)

)
by Definitions 6.5 and 6.16.

Furthermore, according to Definitions 6.17 and 6.18, a procedure is proposed for
the concept generalization task (see Algorithm 6.9). It is easy to determine that the
time complexity of Algorithm 6.9 is O

(|G|(|GC
Fn,Hn

| + |GD

F̃n,H̃n
|)).

6.1.3 Semi-Supervised Concept Learning by Concept-Cognitive
Learning and Conceptual Clustering

In this subsection, we will first introduce the initial concept spaces with labeled
data, and then the concept-cognitive process with unlabeled data, followed by the
concept recognition and theoretical analysis of S2CL. Finally, we present the whole
procedure and computational cost of our methods.

6.1.3.1 Concept Space with Structural Information

Definition 6.19 Suppose Gk is a sub-object set which is associated with a label k,
and a quintuple (Gk,M, I,D, J ) is known as a regular sub-object formal decision
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Algorithm 6.8 Concurrent concept-cognitive process

1: Input: Initial concept spaces GC

F k
0 ,Hk

0
, GD

F̃ k
0 ,H̃k

0
and GC

F0,H0
, GD

F̃0,H̃0
, chunk size, and adding

new object set �Gk .
2: Output: The final concept spaces GC

F k
n ,Hk

n
and GD

F̃ k
n ,H̃k

n

.

3: Initialize �Gk = {�Gk
0,�Gk

1, . . . ,�Gk
n−1} = {{g0}, {g1}, . . . , {gn−1}} and W =

(w1, w2, . . . , wm)

4: for i=1 to n do
5: m = ⌈|GC

F k
i−1Hk

i−1
|/chunk-size

⌉
and p = ⌈|GD

F̃ k
i−1H̃k

i−1
|/chunk-size

⌉
are the numbers of

threads
for GC

F k
i−1Hk

i−1
and GD

F̃ k
i−1H̃k

i−1

6: get gi−1 from �Gk
i−1

7: construct new concepts
(Hk

�Gk
i−1

F k

�Gk
i−1

(gi−1),F k

�Gk
i−1

(gi−1)
)

and
(H̃k

�Gk
i−1

F̃ k

�Gk
i−1

(gi−1), F̃ k

�Gk
i−1

(gi−1)
)

by Definition 6.16

8: for GC

F k
i−1Hk

i−1,j
= GC

F k
i−1Hk

i−1,1
to GC

F k
i−1Hk

i−1,m
do in parallel

9: get GC

F k
i Hk

i

by updating GC

F k
i−1Hk

i−1
based on Proposition 6.3

10: end for
11: for GD

F̃ k
i−1H̃k

i−1,j
= GD

F̃ k
i−1H̃k

i−1,1
to GD

F̃ k
i−1H̃k

i−1,p
do in parallel

12: get GD

F̃ k
i H̃k

i

by updating GD

F̃ k
i−1H̃k

i−1
based on Proposition 6.3

13: end for
14: for GC

F k
i−1Hk

i−1,j
= GC

F k
i−1Hk

i−1,1
to GC

F k
i−1Hk

i−1,m
do in parallel

15: compute the maximum CS degree θ∗k,j∗ and the corresponding concept (Ak,j∗ , Bk,j∗ )
by Eq. (6.21)

16: end for
17: compute the global maximum CS degree θ∗k∗,j∗ and corresponding concept

(Ak∗,j∗ , Bk∗,j∗ )
in GC

Fi−1,Hi−1

18: for each (Yk, Zk) ∈ GD

F̃i−1,H̃i−1
(k ∈ {1, 2, . . . , |GD

F̃i−1,H̃i−1
|}) do

19: if Ak∗,j∗ ⊆ Yk then
20: get the predicted label z by Definition 6.18
21: end if
22: if z �= F̃ k

�Gk
i−1

(gi−1) then

23: update the cognitive weight vector W by Eq. (6.22)
24: end if
25: end for
26: end for
27: Return GC

F k
n ,Hk

n
and GD

F̃ k
n ,H̃k

n
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Algorithm 6.9 Generalization process

1: Input: The final concept spaces GC
Fn,Hn

and GD

F̃n,H̃n
, and test data G.

2: Output: The class labels of test data.
3: for each g ∈ G do
4: construct a new concept

(H�Gi−1F�Gi−1 (g),F�Gi−1 (g)
)

5: for each (Ak,j , Bk,j ) ∈ GC
Fn,Hn

do
6: get θ∗k∗,j∗ by Eq. (6.21)
7: end for
8: for each (Yk, Zk) ∈ GD

F̃n,H̃n
(k ∈ {1, 2, . . . , |GD

F̃n,H̃n
|}) do

9: get the class label z by Definition 6.18
10: end for
11: end for
12: Return class labels

context. Then (Gk,M, I) and (Gk,D, J ) are respectively called the conditional
sub-object formal context and decision sub-object formal context.

Moreover, the set-valued mappings F k : 2Gk → 2M,Hk : 2M → 2Gk
, and

F̃ k : 2Gk → 2D, H̃k : 2D → 2Gk
are respectively called the conditional sub-object

cognitive operators and decision sub-object cognitive operators with a sub-object
set Gk .

Definition 6.20 Let (Gk,M, I) be a conditional sub-object formal context, and
F k , Hk be the conditional sub-object cognitive operators. For any x ′, x ′′ ∈ Gk ,
if HkF k(x ′) = {x ′} and HkF k(x ′′) ⊃ {x ′′}, then the pairs (HkF k(x ′),F k(x ′))
and (HkF k(x ′′),F k(x ′′)) are referred to as object-oriented conditional granular
concepts (or simply object-oriented conditional concepts). For convenience, we
denote

OGF kHk ={(HkF k(x ′),F k(x ′))|x ′ ∈ Gk}∪
{(HkF k(x ′′),F k(x ′′))|x ′′ ∈ Gk}.

Simultaneously, for any a′, a′′ ∈ M , if F kHk(a′) = {a′} and F kHk(a′′) ⊃ {a′′},
then the pairs (Hk(a′),F kHk(a′)) and (Hk(a′′),F kHk(a′′)) are called attribute-
oriented conditional granular concepts (or simply attribute-oriented conditional
concepts). For brevity, we further denote

AGF kHk ={(Hk(a′),F kHk(a′))|a′ ∈ M}∪
{(Hk(a′′),F kHk(a′′))|a′′ ∈ M}.

Definition 6.21 Let (Gk,D, J ) be a decision sub-object formal context and F̃ k ,
H̃k be the decision sub-object cognitive operators. For any x ′, x ′′ ∈ Gk , if
H̃kF̃ k(x ′) = {x ′} and H̃kF̃ k(x ′′) ⊃ {x ′′}, then the pairs (H̃kF̃ k(x ′), F̃ k(x ′)) and
(H̃kF̃ k(x ′′), F̃ k(x ′′)) are known as object-oriented decision granular concepts (or
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simply object-oriented decision concepts). For convenience, we denote

OGF̃ kH̃k ={(H̃kF̃ k(x ′), F̃ k(x ′))|x ′ ∈ Gk}∪
{(H̃kF̃ k(x ′′), F̃ k(x ′′))|x ′′ ∈ Gk}.

Meanwhile, for any k′, k′′ ∈ D, if F̃ kH̃k(k′) = {k′} and F̃ kH̃k(k′′) ⊃ {k′′},
then the pairs (H̃k(k′), F̃ kH̃k(k′)) and (H̃k(k′′), F̃ kH̃k(k′′)) are called attribute-
oriented decision granular concepts (or simply attribute-oriented decision concepts).
For brevity, we further denote

AGF̃ kH̃k ={(H̃k(k′), F̃ kH̃k(k′))|k′ ∈ D}∪
{(H̃k(k′′), F̃ kH̃k(k′′))|k′′ ∈ D}.

To facilitate the subsequent discussion, in a regular sub-object formal decision
context, the conditional concept space and decision concept space are respectively
denoted by

GF kHk = OGF kHk ∪AGF kHk

= {(HkF k(x),F k(x))|x ∈ Gk}∪
{(Hk(a),F kHk(a))|a ∈ M}, and

GF̃ kH̃k = OGF̃ kH̃k ∪AGF̃ kH̃k

= {(H̃kF̃ k(x), F̃ k(x))|x ∈ Gk}∪
{(H̃k(k′), F̃ kH̃k(k′))|k′ ∈ D}.

It means that the concept spaces of sub-object set Gk can be constructed by
means of the object-oriented concepts and attribute-oriented concepts.

Theorem 6.2 LetGF kHk andGF̃ kH̃k be the conditional concept space and decision
concept space, respectively. Then the following statements hold:

(1) For any conditional concepts (HkF k(x),F k(x)) and (Hk(a),F kHk(a)),
if there exists a conditional concept (HkF k(xi),F k(xi)) ∈ GF kHk such
that F k(x) ⊆ F k(xi) (i ∈ {1, 2, . . . , |Gk|}) and a conditional concept
(Hk(aj ),F kHk(aj ))

∈ GF kHk such thatHk(a) ⊆ Hk(aj ) (j ∈ {1, 2, . . . , |M|}), then we have

(HkF k(x),F k(x)) = ({x ∪
⋃

i∈{1,2,...,|Gk |}
xi},F k(x)),

(Hk(a),F kHk(a)) = (Hk(a), {a ∪
⋃

j∈{1,2,...,|M|}
aj });

(6.23)
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otherwise,

(HkF k(x),F k(x)) = ({x},F k(x)),

(Hk(a),F kHk(a)) = (Hk(a), {a}).
(6.24)

(2) For any decision concepts (H̃kF̃ k(x), F̃ k(x)) and (H̃k(k′), F̃ kH̃k(k′)),
if there exists a decision concept (H̃kF̃ k(xi), F̃ k(xi)) ∈ GF̃ kH̃k such

that F̃ k(x) ⊆ F̃ k(xi) (i ∈ {1, 2, . . . , |Gk|}) and a decision concept
(H̃k(kj ), F̃ kH̃k(kj )) ∈ GF̃ kH̃k such that H̃k(k′) ⊆ H̃k(kj ) (j ∈
{1, 2, . . . , |D|}), then following statements hold:

(H̃kF̃ k(x), F̃ k(x)) = ({x ∪
⋃

i∈{1,2,...,|Gk |}
xi}, F̃ k(x)),

(H̃k(k′), F̃ kH̃k(k′)) = (H̃k(k′), {k′∪
⋃

j∈{1,2,...,|D|}
kj });

(6.25)

otherwise,

(H̃kF̃ k(x), F̃ k(x)) = ({x}, F̃ k(x)),

(H̃k(k′), F̃ kH̃k(k′)) = (H̃k(k′), {k′}).
(6.26)

Proof The proof of Theorem 6.2 can be found in the original paper [43]. ,-
Property 6.4 LetG2F kHk andG2F̃ kH̃k

be two concept spaces, AGF kHk andAGF̃ kH̃k

be the attribute-oriented conditional concept space and attribute-oriented deci-
sion concept space, respectively; meanwhile, initialize G2F kHk = AGF kHk and
G2F̃ kH̃k

= AGF̃ kH̃k . Then we have

(1) For each x ∈ Gk , if there exists (Hk(a),F kHk(a)) ∈ AGF kHk such
that F k(x) = F kHk(a), then (HkF k(x),F k(x)) = (Hk(a),F kHk(a));

otherwise,
G2F kHk = G2F kHk ∪ (HkF k(x),F k(x)).

(2) For each x ∈ Gk , if there exists (H̃k(k′), F̃ kH̃k(k′)) ∈ AGF̃ kH̃k such that

F̃ k(x) = F̃ kH̃k(k′), then (H̃kF̃ k(x), F̃ k(x)) = (H̃k(k′), F̃ kH̃k(k′));
otherwise,
G2F̃ kH̃k

= G2F̃ kH̃k
∪ (H̃kF̃ k(x), F̃ k(x)).

Proof The proof of Property 6.4 can be found in the original paper [43]. ,-
Property 6.4 means that we do not need to construct concepts (HkF k(x),F k(x))

and (H̃kF̃ k(x), F̃ k(x)) like [58] when F k(x) = F kHk(a) and F̃ k(x) =



6.1 Concept of the View of Learning 361

F̃ kH̃k(k′). Then, using this approach, we can finally obtain GF kHk = G2F kHk and
GF̃ kH̃k = G2F̃ kH̃k

.
For convenience, we denote the labeled dataset SL by G0, and the initial concept

spaces by GF0H0 and GF̃0H̃0
. Note that, in the initial concept space period, if

the object set Gk is replaced with Gk
0, then the corresponding cognitive operators

F k,Hk and F̃ k, H̃k can be expressed as F k
0 ,Hk

0 and F̃ k
0 , H̃k

0 , respectively.

6.1.3.2 Cognitive Process with Unlabeled Data in Concept Learning

In the concept-cognitive process, suppose the obtained concept spaces will
be updated by a newly added object instead of inputting multi-objects
simultaneously. Then, for the unlabeled set SU , we can denote SU as �G =
{�G0,�G1, . . . ,�Gn−1} in which each learning step only consists of one object
x (i.e., �Gi = {xi}). For brevity, in what follows, we write {xi} as xi and then we
have �G = {x0, x1, . . . , xn−1}.

Different from [58], we assume that an object x is connected with a virtual label
k∗ due to no label information. Then we have the conditional sub-object cognitive
operators and decision sub-object cognitive operators with the newly input data
�Gk∗

i−1 = Gk∗
i −Gk∗

i−1 as follows:

(i) F k∗
i−1 : 2Gk∗

i−1 → 2M, Hk∗
i−1 : 2M → 2Gk∗

i−1,

(ii) F k∗
�Gk∗

i−1
: 2�Gk∗

i−1 → 2M, Hk∗
�Gk∗

i−1
: 2M → 2�Gk∗

i−1,

(iii)F k∗
i : 2Gk∗

i → 2M, Hk∗
i : 2M → 2Gk∗

i ,

(6.27)

and

(i) F̃ k∗
i−1 : 2Gk∗

i−1 → 2D, H̃k∗
i−1 : 2D → 2Gk∗

i−1,

(ii) F̃ k∗
�Gk∗

i−1
: 2�Gk∗

i−1 → 2D, H̃k∗
�Gk∗

i−1
: 2D → 2�Gk∗

i−1,

(iii)F̃ k∗
i : 2Gk∗

i → 2D, H̃k∗
i : 2D → 2Gk∗

i .

(6.28)

Theorem 6.3 Let AGF k∗
i−1Hk∗

i−1
, AGF̃ k∗

i−1H̃k∗
i−1

and OGF k∗
i−1Hk∗

i−1
, OGF̃ k∗

i−1H̃k∗
i−1

be the

attribute-oriented concept spaces and object-oriented concept spaces, respectively.
Then we have

(1) For any a′ ∈ M and (Hk∗
i−1(a

′′),F k∗
i−1Hk∗

i−1(a
′′)) ∈ AGF k∗

i−1Hk∗
i−1

, if

F k∗
i−1Hk∗

i−1(a
′′) ∩

F k∗
�Gk∗

i−1
Hk∗

�Gk∗
i−1

(a′) �= ∅, then
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(Hk∗
i (a′′),F k∗

i Hk∗
i (a′′)) = (Hk∗

i−1(a
′′) ∪Hk∗

�Gk∗
i−1

(a′),F k∗
i−1Hk∗

i−1(a
′′) ∩

F k∗
�Gk∗

i−1
Hk∗

�Gk∗
i−1

(a′));
otherwise,
(Hk∗

i (a′),F k∗
i Hk∗

i (a′)) = (Hk∗
�Gk∗

i−1
(a′),F k∗

�Gk∗
i−1

Hk∗
�Gk∗

i−1
(a′)).

(2) For any x ′ ∈ �Gk∗ and (Hk∗
i−1F k∗

i−1(x
′′),F k∗

i−1(x
′′)) ∈ OGF k∗

i−1Hk∗
i−1

, if

F k∗
i−1(x

′′) ⊆
F k∗

�Gk∗
i−1

(x ′), then (Hk∗
i F k∗

i (x ′′),F k∗
i (x ′′)) = (Hk∗

i−1F k∗
i−1(x

′′) ∪Hk∗
�Gk∗

i−1

F k∗
�Gk∗

i−1
(x ′),F k∗

i−1(x
′′));

if F k∗
�Gk∗

i−1
(x ′) ⊆ F k∗

i−1(x
′′), then

(Hk∗
i F k∗

i (x ′′),F k∗
i (x ′′)) = (Hk∗

i−1F k∗
i−1(x

′′) ∪Hk∗
�Gk∗

i−1
F k∗

�Gk∗
i−1

(x ′),

F k∗
�Gk∗

i−1
(x ′));

otherwise,
(Hk∗

i F k∗
i (x ′),F k∗

i (x ′)) = (Hk∗
�Gk∗

i−1
F k∗

�Gk∗
i−1

(x ′),F k∗
�Gk∗

i−1
(x ′)).

(3) For any k′ ∈ D and (H̃k∗
i−1(k

′′), F̃ k∗
i−1H̃k∗

i−1(k
′′)) ∈ AGF̃ k∗

i−1H̃k∗
i−1

, if

F̃ k∗
i−1H̃k∗

i−1(k
′′) ∩ F̃ k∗

�Gk∗
i−1

H̃k∗
�Gk∗

i−1
(k′) �= ∅, then

(H̃k∗
i (k′′), F̃ k∗

i H̃k∗
i (k′′)) = (H̃k∗

i−1(k
′′) ∪ H̃k∗

�Gk∗
i−1

(k′), F̃ k∗
i−1H̃k∗

i−1(k
′′) ∩

F̃ k∗
�Gk∗

i−1
H̃k∗

�Gk∗
i−1

(k′));
otherwise,
(H̃k∗

i (k′), F̃ k∗
i H̃k∗

i (k′)) = (H̃k∗
�Gk∗

i−1
(k′), F̃ k∗

�Gk∗
i−1

H̃k∗
�Gk∗

i−1
(k′)).

(4) For any x ′ ∈ �Gk∗ and (H̃k∗
i−1F̃ k∗

i−1(x
′′), F̃ k∗

i−1(x
′′)) ∈ OGF̃ k∗

i−1H̃k∗
i−1

, if

F̃ k∗
i−1(x

′′) ⊆
F̃ k∗

�Gk∗
i−1

(x ′), then (H̃k∗
i F̃ k∗

i (x ′′), F̃ k∗
i (x ′′)) = (H̃k∗

i−1F̃ k∗
i−1(x

′′) ∪ H̃k∗
�Gk∗

i−1

F̃ k∗
�Gk∗

i−1
(x ′), F̃ k∗

i−1(x
′′));

if F̃ k∗
�Gk∗

i−1
(x ′) ⊆ F̃ k∗

i−1(x
′′), then

(H̃k∗
i F̃ k∗

i (x ′′), F̃ k∗
i (x ′′)) = (H̃k∗

i−1F̃ k∗
i−1(x

′′) ∪ H̃k∗
�Gk∗

i−1
F̃ k∗

�Gk∗
i−1

(x ′),

F̃ k∗
�Gk∗

i−1
(x ′));

otherwise,
(H̃k∗

i F̃ k∗
i (x ′), F̃ k∗

i (x ′)) = (H̃k∗
�Gk∗

i−1
F̃ k∗

�Gk∗
i−1

(x ′), F̃ k∗
�Gk∗

i−1
(x ′)).

Proof The proof of Theorem 6.3 can be found in the original paper [42]. ,-
Although Theorem 6.3 shows how to update the concept spaces when adding

an instance, concept recognition is exceedingly difficult since we cannot directly
recognize the real class label of each instance x. Namely, unlike the initial concept
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spaces generation, there is still a mystery that which sub-concept space will be
updated when inputting a new object without label information.

6.1.3.3 Concept Recognition

For any newly input object x, the concept (Hk∗
�Gk∗

i

F k∗
�Gk∗

i

(x),F k∗
�Gk∗

i

(x)) can be

rewritten as ({x},F k∗
�Gk∗

i

(x)) due to |�Gk∗
i | = 1. Meanwhile, to meet the demand

of lots of unlabeled data, a new similarity metric for concept learning is proposed in
this subsection. As a matter of fact, a good assessing similarity for concepts is a key
success of S2CL.

Definition 6.22 Let GFi−1,Hi−1 be the concept space and GF k∗
i−1,Hk∗

i−1
be a sub-

concept space with a virtual label k∗ in the (i − 1)-th state. For any concept
(Xj , Bj ) ∈ GF k∗

i−1,Hk∗
i−1

, where j ∈ {1, 2, . . . , |GF k∗
i−1,Hk∗

i−1
|}, the global information

wi−1,k∗ and the local information zk
∗

i−1,j in the (i − 1)-th state are, respectively,
defined as

wi−1,k∗ =
|GF k∗

i−1,Hk∗
i−1
|

|GFi−1,Hi−1 |
, (6.29)

zk
∗

i−1,j =
|Xj |

|GF k∗
i−1,Hk∗

i−1
| . (6.30)

More generally, considering the entire concept space GFi−1,Hi−1 in the (i − 1)-th
state, we denote

wi−1 = (wi−1,1, wi−1,2, . . . , wi−1,l), (6.31)

zi−1 =
⎡
⎢⎣

z1
i−1
...

zli−1

⎤
⎥⎦ =

⎡
⎢⎢⎣

z1
i−1,1 · · · z1

i−1,m1
...

. . .
...

zli−1,1 · · · zli−1,ml

⎤
⎥⎥⎦ , (6.32)

where mk∗ =
∣∣GF k∗

i−1,Hk∗
i−1

∣∣ and k∗ ∈ {1, 2, . . . ,K}.
Definition 6.23 Let C = ({x},F

�Gk∗
i
(x)) be a newly input concept. For any

concept (Xj , Bj ) ∈ GF k∗
i−1,Hk∗

i−1
, where j ∈ {1, 2, . . . , |GF k∗

i−1,Hk∗
i−1
|}, the concept

similarity (CS) can be defined as:

θI
j = I

|A∗ ∩ Bj |
|A∗ ∩ Bj | + 2(α|A∗ − Bj | + (1− α)|Bj − A∗|) , (6.33)

where I = 1/(1+wi−1,k∗ × e
−zk

∗
i−1,j ), A∗ = F

�Gk∗
i
(x) and α ∈ [0, 1].
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For Eq. (6.33), I is set to be 1 when without considering the global and local
information. In this case, Eq. (6.33) can further be formulated as

θj = |A∗ ∩ Bj |
|A∗ ∩ Bj | + 2(α|A∗ − Bj | + (1− α)|Bj − A∗|) . (6.34)

In Eq. (6.34), A∗ − Bj represents the characteristics appearing in A∗ but not
in Bj , and it has the same meaning for Bj − A∗. Moreover, the parameters α and
(1−α) can be, respectively, considered as the weight information added to |A∗−Bj |
and |Bj − A∗|, which express the importance of different features of A∗ − Bj and
Bj − A∗ relative to the overall similarity degree. In fact, when α = 0.5, Eq. (6.34)
is degenerated into Jaccard similarity [27, 65].

According to sample separation axiom [79], for any instance, there always exists
a unique class that is most similar to it. Hence, given an instance x, the class
vector can be generated as follows: each sub-concept space will first produce
a set of CS degrees by computing the CS degree between the given concept
and any concept from a sub-concept space. Then, the maximum CS degree (θ̂ I

j )

of each sub-concept space will be obtained, namely, θ̂ I
j = max

j∈J {θ
I
j }, where

J = {1, 2, . . . , |GF k∗
i−1,Hk∗

i−1
|}. Finally, the estimated class distribution will form a

maximum class vector (θ̂ I
1 , θ̂

I
2 , . . . , θ̂

I
l )

T. In the same manner, we can obtain an

average class vector (θ
I

1, θ
I

2, . . . , θ
I

l )
T.

Note that a SSL method, which is designed by combining the concept-cognitive
process with the structural concept similarity θj , is referred to as a semi-supervised
concept learning method, and it is abbreviated as S2CL for convenience. In
the meanwhile, an extended version of S2CL is further proposed by taking full
advantage of the global and local conceptual information (i.e., the structural concept
similarity θI

j ) within a concept space. For conciseness, we also write it as S2CLα

when no confusion exists.

6.1.3.4 Theoretical Analysis

Essentially, α mainly reflects the influences of different characteristics in sets
A∗ − Bj and Bj − A∗ for the overall concept similarity measure. Hence, it is very
important to discuss how to select an appropriate α on each dataset.

Let Y = {1, 2, . . . , l} be the label space. The concept spaces with different αr

(αr ∈ [0, 1]) in the (i − 1)-th period can be formulated as
⎡
⎢⎢⎣
Gα1
Fi−1,Hi−1

...

Gαn

Fi−1,Hi−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Gα1,1
Fi−1,Hi−1

· · · Gα1,l

Fi−1,Hi−1
...

. . .
...

Gαn,1
Fi−1,Hi−1

· · · Gαn,l

Fi−1,Hi−1

⎤
⎥⎥⎦ , (6.35)

where
n∑

r=1
αr = 1.
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For an object xi , we can obtain its corresponding concept Ci = ({xi}, Bi). Then,
based on Definition 6.23, we denote

Sim(Ci,Gαr ,k
Fi−1,Hi−1

) = {Sim(Ci, C
αr

j )}mk

j=1 = {θI
j }mk

j=1, (6.36)

where C
αr

j ∈ Gαr ,k
Fi−1,Hi−1

(k ∈ Y) and mk = |Gαr ,k
Fi−1,Hi−1

|.
Combining Eqs. (6.35) with (6.36), the corresponding concept similarity in the

(i − 1)-th state can be described as

⎡
⎢⎣

S(Ci,Gα1
i−1)

...

S(Ci,Gαn

i−1)

⎤
⎥⎦ =

⎡
⎢⎣

S(Ci,Gα1,1
i−1 ) · · · S(Ci ,Gα1,l

i−1)
...

. . .
...

S(Ci,Gαn,1
i−1 ) · · · S(Ci,Gαn,l

i−1 )

⎤
⎥⎦ , (6.37)

where S(Ci,Gαr

i−1) = Sim(Ci,Gαr

Fi−1,Hi−1
) (r ∈ {1, 2, . . . , n}) and S(Ci,Gαr ,k

i−1 ) =
Sim(Ci,Gαr ,k

Fi−1,Hi−1
).

Furthermore, inspired by [79], the category similarity function between the given
concept Ci and a class space Gαr ,k

Fi−1,Hi−1
can be defined as

φSim(Ci,Gαr ,k
Fi−1,Hi−1

) = |Nαr

k (Ci)|
K

, (6.38)

where N
αr

k (Ci) = {Cj |Cj ∈ Gαr ,k

Fi−1,Hi−1
∧ Cj ∈ N

αr

K (Ci)}, and N
αr

K (Ci) is a set of
near neighbor instances related to xi under the parameter αr .

According to top-K set similarity [77], if k̂ = arg maxk∈Y
|Nαr

k (Ci)|
K

, then the
instance xi is classified into the k̂-th class. Therefore, given the parameter K , the
objective function can be formulated as

α̂r = arg min
αr∈[0,1]

m∑
i=1

( |Nαr

k (Ci)|
K

− yi
)2

s.t.
n∑

r=1

αr = 1.

(6.39)

In Eq. (6.39), our aim is to capture an optimal concept space with the concept
structural information.

6.1.3.5 Framework and Computational Complexity Analysis

For brevity, we can consider that there are three classes to predict. Figure 6.3
illustrates the whole procedure of S2CL. From a dataset (that contains a small set of
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labeled data and a large amount of unlabeled data), we first obtain a corresponding
regular formal decision context. Then, the initial concept spaces (that include
a conditional concept space and its corresponding decision concept space) with
concept structural information will be constructed based on the cognitive operators.
Specifically speaking, the conditional concept space contains three sub-concept
spaces, where each sub-concept space is composed of different concepts. As shown
in the stage of initial concept spaces of Fig. 6.3 (see the left of Fig. 6.3 for details),
there exist three sub-concept spaces corresponding to three classes in a conditional
concept space, and each sub-concept space contains two different types of concepts,
namely object-oriented conditional concepts (indicated by red shapes in Fig. 6.3)
and attribute-oriented conditional concepts (denoted by black shapes in Fig. 6.3).
Meanwhile, each sub-concept space is also associated with a decision concept in the
corresponding decision concept space as shown in the first stage of Fig. 6.3. Thirdly,
for any newly input unlabeled data, they are first used to form concepts, and then
the concept-cognitive process is completed by concept recognition. Finally, given
the parameter K , S2CL (or S2CLα) trys to learn an optimal concept space based on
the concept recognition and concept-cognitive process under different parameters
αr(r = 1, 2, . . . , n). In other words, the objective of S2CL (or S2CLα) is to seek
an appropriate concept space to represent the underlying data distributions by the
concept-cognitive process.

In the prediction stage, given an instance, the final concept space can produce two
estimates of class distribution (including a maximum class vector and an average
class vector) by employing the CS degree θj (or θI

j ). Then the final CS degree
vector will be obtained by the sum of the two 3-dimensional class vectors, and the
class with maximum value will be output as shown in Fig. 6.3.

Based on the above discussion, we are ready to propose the corresponding
algorithm of S2CL (see Algorithm 6.10 for details). In Algorithm 6.10, Step 3 is
to generate the initial concept spaces; then the concept recognition and concept-
cognitive process are conducted by running Steps 4–8; at last, the final prediction
will be completed by Steps 9–12. In Steps 9–12, if the prediction value k̂ is
consistent with the ground truth label, then it means that the predicted value of S2CL
is correct. Formally, the accuracy on a test dataset T can be descried as acc = N

|T | ,
where N denotes the number of correct predicted values. Simultaneously, it will be
easy to obtain the algorithm of S2CLα by means of replacing the structural concept
similarity θj with θI

j in Step 6 of Algorithm 6.10.
The time complexity of S2CL is mainly composed of two parts, i.e. constructing

the initial concept spaces and the concept-cognitive process with concept structural
information. Let the time complexity of constructing a concept, computing the CS
degree and updating the concept space be O(t1),O(t2) and O(t3), respectively.
Then, it is easy to verify that the time complexity of Step 3 is O(t1|SL|(|M|+ |D|)),
and the complexity of accomplishing the concept-cognitive process by concept
recognition is O(|SU |(t1 + t2 + t3)). Note that, CCL is an incremental learning
process, as the proposed method is updated by inputting objects one by one.
Therefore, S2CL can also be regarded as an incremental method for SSL in dynamic
environments. For convenience, let E and C (that randomly selects instances from
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SU ) be the incremental learning step and the sample size of each incremental
learning step, respectively. Thus, the time complexity of incremental learning (see
Algorithm 6.11 for details) is O(E(|SU |(t1 + t2 + t3))+ |T |).

Algorithm 6.10 S2CL algorithm
1: Input: Labeled dataset SL, unlabeled dataset SU , test dataset T , and hyperparameters K and

αr .
2: Output: The class labels of the test dataset T .
3: Based on labeled dataset SL, S2CL can construct two initial concept spaces GF0H0 and GF̃0H̃0

by Theorem 6.2.
4: for each xi ∈ SU do
5: Get two concepts ({xi},F�Gk∗

i
(xi )) and ({xi }, F̃�Gk∗

i
(xi )).

6: Compute the CS degree by Eq. (6.33) (or Eq. (6.34)).
7: Update concept spaces Gαr

Fi−1Hi−1
and Gαr

F̃i−1H̃i−1
by Theorem 6.3.

8: end for
9: for each xj ∈ T do

10: Construct a concept Cj = ({xj }, Bj ).

11: k̂ = arg maxk∈Y
|Nαr

k
(Cj )|
K

.
12: end for
13: return class labels.

Algorithm 6.11 Incremental learning
1: function INCREMENTALLEARNINGMETHOD

2: for e=1 to E do
3: Conduct the same operation as Steps 4–8 of Algorithm 6.10.
4: Conduct the same operation as Steps 9–12 of Algorithm 6.10.
5: end for
6: return class labels.
7: end function

6.1.4 Fuzzy-Based Concept Learning Method: Exploiting Data
with Fuzzy Conceptual Clustering

6.1.4.1 Preliminaries

In this subsection, we review some notions related to the fuzzy formal decision
context.

In a classical formal decision context, the conditional attributes are discrete.
However, in the real world, many tasks (e.g., classification, image segmentation,
etc.) are described with numerical (or fuzzy) data, which means that classical formal
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decision contexts cannot cope with them directly. Therefore, a fuzzy formal decision
context is proposed based on fuzzy sets [81].

Let G be a universe of discourse. A fuzzy set X̃ on G can be defined as follows:

X̃ = {< x,μX̃(x) > |x ∈ G},

where μX̃ : G→ [0, 1], and μX̃(x) is referred to as the membership degree to X̃ of
the object x ∈ G. And we denote by LG the set of all fuzzy sets on G.

Definition 6.24 ([83]) A fuzzy formal context (G,M, Ĩ ) is a triple, where G is a
set of objects, M is a set of attributes, and Ĩ is a fuzzy relation between G and M .
Each relation (x, a) ∈ Ĩ has a membership degree μĨ (x, a) in [0, 1], and we denote
by Ĩ (x, a) = μĨ (x, a) for the sake of convenience.

Definition 6.25 ([4, 78, 83]) Let (G,M, Ĩ ) be a fuzzy formal context. For X ⊆ G

and B̃ ∈ LM , the operator (·)∗ is defined as follows:

X∗(a) =
∧
x∈X

Ĩ (x, a), a ∈ M,

B̃∗ = {x ∈ G|∀a ∈ M, B̃(a) ≤ Ĩ (x, a)}.
(6.40)

Then, we say that a pair (X, B̃) is a fuzzy concept of a fuzzy formal context
(G,M, Ĩ ) if X∗ = B̃, B̃∗ = X, and X and B̃ are respectively known as the
extent and intent of the fuzzy concept (X, B̃). For convenience, the set of all fuzzy
concepts is denoted by L(G,M, Ĩ ). In [83], L(G,M, Ĩ ) is called a special crisp-
fuzzy variable threshold concept lattice under the circumstance of the threshold
being set to be 1. For (X1, B̃1), (X2, B̃2) ∈ L(G,M, Ĩ ), we define the order relation
(X1, B̃1) ≤ (X2, B̃2) if and only if X1 ⊆ X2 (or B̃2 ⊆ B̃1). Then we say that
(X1, B̃1) is a sub-concept of (X2, B̃2) and (X2, B̃2) is a super-concept of (X1, B̃1).

Definition 6.26 ([55]) Let (G,M, Ĩ ) and (G,D, J̃ ) be two fuzzy formal contexts,
where Ĩ : G × M → [0, 1] and J̃ : G × D → [0, 1]. Then (G,M, Ĩ ,D, J̃ ) is
referred to as a fuzzy formal decision context, where M ∩D = ∅, and M and D are
the conditional and decision attribute sets, respectively.

Note that a quintuple (G,M, I,D, J̃ ) is called a crisp-fuzzy formal decision
context in [48], where (G,M, I) and (G,D, J̃ ) are respectively a classical formal
context and fuzzy formal context.

6.1.4.2 Fuzzy Concept Learning Method

In this subsection, we first show some new notions and properties for the proposed
FCLM, which includes a regular fuzzy formal decision context, an object-oriented
fuzzy conceptual clustering, and the related theoretical analysis. Based on them, we
further present the detailed procedure of FCLM.
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Fig. 6.4 Illustration of three different forms of fuzzy formal decision contexts

A. Regular Fuzzy Formal Decision Context

According to Definition 6.26, Fig. 6.4a and b represents two different fuzzy
formal decision contexts (G,M, Ĩ ,D, J̃ ) and (G,M, I,D, J̃ ), respectively. More
precisely, Fig. 6.4a expresses a fuzzy formal decision context in which M and D

are both numerical; Fig. 6.4b denotes a fuzzy formal decision context, where M is
discrete and D is numerical. However, in the real application, most original data are
often presented in the form of Fig. 6.4c. It means that the decision attribute set D

is described with discrete label information and the conditional attribute set M is
constitutive of fuzzy data.

Definition 6.27 Let (G,M, Ĩ ) be a fuzzy formal context and (G,D, J ) be a
classical formal context. Then the quintuple (G,M, Ĩ ,D, J ) is known as a fuzzy-
crisp formal decision context, where Ĩ : G×M → [0, 1] and J : G×D → {0, 1}.
Definition 6.28 Let (G,M, Ĩ ,D, J ) be a fuzzy-crisp formal decision context. For
any k1, k2 ∈ D, if Hd(k1) ∩ Hd(k2) = ∅, then we say that (G,M, Ĩ ,D, J ) is a
regular fuzzy-crisp formal decision context.

Generally speaking, constructing a fuzzy concept lattice in a standard fuzzy
context is sometimes quite complicated, as it is completed in exponential time
complexity in the worst case. Hence, GrC should be introduced into the process
of generating fuzzy concept lattices for greatly reducing the amount of calculation.

Let (G,M, Ĩ ) be a fuzzy formal context. F̃ c : 2G → LM and H̃c : LM →
2G are supposed to be two mappings. Hence, X∗(a) and B̃∗ in Definition 4 can
be rewritten as F̃ c(X)(a) and H̃c(B̃), respectively. Especially, for an object set
{x}(x ∈ G), F̃ c({x})(a) is abbreviated as F̃ c(x) for brevity.
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Definition 6.29 Let (G,M, Ĩ ,D, J ) be a fuzzy-crisp formal decision context, and
F̃ c : 2G → LM ,H̃c : LM → 2G and F d : 2G → 2D ,Hd : 2D → 2G be
four mappings. For any x ∈ G, (H̃cF̃ c(x), F̃ c(x)) and (HdF d (x),F d(x)) are
called a fuzzy conditional granular concept and classical decision granular concept,
respectively. The sets of all fuzzy conditional granular concepts and classical
decision granular concepts are respectively represented as follows:

GF̃ cH̃c = {(H̃cF̃ c(x), F̃ c(x))|x ∈ G},
GF dHd = {(HdF d(x),F d(x))|x ∈ G},

where GF̃ cH̃c and GF dHd are respectively referred to as the fuzzy conditional
concept space and classical decision concept space.

It should be pointed out that fuzzy concept lattice has a good performance
on classification but is very time-consuming. To the best of our knowledge, the
reason is that fuzzy concept lattice may consist of many redundant elements. So,
similar to classical concept lattice, it is better to replace fuzzy concept lattice with
fuzzy concept space (only containing part of elements of fuzzy concept lattice) in
achieving classification tasks with the purpose of improving learning efficiency.

Property 6.5 Let (G,M, Ĩ ,D, J ) be a fuzzy-crisp formal decision context. For any
(X1, B̃) ∈ GF̃ cH̃c and (X2,K) ∈ GF dHd , if X1 ⊆ X2, and X1, B̃,X2 and K are
nonempty, then the object set X1 is connected with the decision attribute set K under
the conditional attribute set B̃.

Proof The proof is immediate from Definition 6.3 and Property 6.2. ,-
From Definition 6.29 and Property 6.5, we know that an object can also be

connected with a label in a fuzzy-crisp formal decision context.
Based on the above discussion, the complete algorithm of constructing two

concept spaces (including a fuzzy conditional concept space and classical decision
concept space) is presented in Algorithm 6.12.

Algorithm 6.12 Constructing two concept spaces
1: Input: A dataset G.
2: Output: The fuzzy conditional concept space GF̃ cH̃c and classical decision concept space

GF dHd .
3: for each x ∈ G do
4: % Construct a conditional concept space.
5: Construct a fuzzy concept

(H̃cF̃ c(x), F̃ c(x)
)
.

6: GF̃ cH̃c ← (H̃cF̃ c(x), F̃ c(x)
)
.

7: % Construct a decision concept space.
8: Construct a classical concept

(HdF d (x),F d (x)
)
.

9: GF dHd ← (HdF d (x),F d (x)
)
.

10: end for
11: Return GF̃ cH̃c and GF dHd .
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B. Object-Oriented Fuzzy Conceptual Clustering

In order to generate fuzzy ontologies, a fuzzy conceptual clustering [50] was
adopted in [67]. In fact, it was based on a crisp-crisp variable threshold concept
lattice and implemented conceptual clustering via fuzzy sets intersection and union.
However, to adapt to granular concepts based on a crisp-fuzzy variable threshold
concept lattice, we need to consider the following notions.

Let (G,M, Ĩ ) be a fuzzy formal context. For any (X, B̃) ∈ GF̃ cH̃c , |X| is called
the object-oriented cardinality with reference to (X, B̃).

Definition 6.30 Let (Xj , B̃j ) be a fuzzy granular concept and (Xi, B̃i ) be its sub-
concept, then the object-oriented fuzzy concept similarity (object-oriented FCS) is
defined as follows:

θo = CO(Xi,Xj ) = |Xi

⋂
Xj |

|Xi

⋃
Xj | . (6.41)

Definition 6.31 Let (Xj , B̃j ) and (Xl, B̃l) be two fuzzy granular concepts, then
the attribute-oriented fuzzy concept similarity (attribute-oriented FCS) is defined as
follows:

θa = CA(B̃j , B̃l ) = ||B̃j − B̃l ||22. (6.42)

Definition 6.32 Let GSλ

F̃ cH̃c
be a sub-concept space of GF̃ cH̃c . For any (Xi, B̃i ) ∈

GSλ

F̃ cH̃c
, we say that GSλ

F̃ cH̃c
is an object-oriented conceptual cluster of the concept

space with an object-oriented FCS threshold λ if the following properties hold:

1. There exists a supremum concept (Xp, B̃p) ∈ GSλ

F̃ cH̃c
that is not similar to any

of its super-concepts.
2. There exists at least one super-concept (Xj , B̃j ) ∈ GSλ

F̃ cH̃c
such that

CO(Xi,Xj ) > λ when Xi �= Xp.
3. Any fuzzy concept (Xi, B̃i ) only belongs to one object-oriented conceptual

cluster GSλ

F̃ cH̃c
.

Definition 6.33 Let GSλ

F̃ cH̃c
be an object-oriented conceptual cluster. For (X1, B̃1),

(X2, B̃2), . . . , (Xp, B̃p) ∈ GSλ

F̃ cH̃c
(p = |GSλ

F̃ cH̃c
|), let XSλ =

p⋃
i=1

Xi and B̃Sλ =

(B̃Sλ(a1), B̃Sλ(a2), . . . , B̃Sλ (a|M|)), where B̃Sλ(aj ) = 1
p

p∑
i=1

B̃i (aj ) (j ∈ {1, 2, . . . ,

|M|}). Then we say that the crisp-fuzzy pair (XSλ, B̃Sλ ) is a pseudo concept induced
by the object-oriented conceptual cluster GSλ

F̃ cH̃c
.

In what follows, the pseudo concept (XSλ, B̃Sλ) is called the representation of the
object-oriented conceptual cluster GSλ

F̃ cH̃c
. Note that the process of generating a new
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pseudo concept is known as concept generation. Hereinafter, we do not distinguish
pseudo concepts from fuzzy concepts since pseudo concepts are only intermediate
variables in the subsequent fuzzy conceptual clustering. In other words, sometimes
we also call pseudo concepts as fuzzy concepts when no confusion exists.

Statistically speaking, Definition 6.33 can completely characterize a new fuzzy
concept. However, in cognitive science, concept cognition was often considered to
be incremental due to individual cognitive limitations and incomplete cognitive
environments. Inspired by this issue, the process of constructing a new fuzzy
concept can be rephrased as follows.

Definition 6.34 Let (Xp, B̃p) be the supremum concept of GSλ

F̃ cH̃c
. For (X1, B̃1),

(X2, B̃2), . . . , (Xp, B̃p) ∈ GSλ

F̃ cH̃c
, each dimension of the intent of a new fuzzy

concept (XSλ, B̃Sλ) can be rewritten as follows:

B̃Sλ(aj ) =
1

2p−1 (B̃1(aj )+ B̃2(aj )+ 2B̃3(aj )+

4B̃4(aj )+, . . . ,+2p−2B̃p(aj )),

(6.43)

where j ∈ {1, 2, . . . , |M|}.
Theorem 6.4 Let B̃Sλ(aj ) be any dimension of the intent of a new fuzzy concept
(XSλ, B̃Sλ). Then we have

B̃p(aj )

2
≤ B̃Sλ(aj ) ≤ 1. (6.44)

Proof It is immediate from Definitions 6.24 and 6.34. ,-
For any (Xi, B̃i ), (Xj , B̃j ) ∈ GSλ

F̃ cH̃c
, if (Xj , B̃j ) is a super-concept of (Xi, B̃i ),

we say that (Xj , B̃j ) presents more strongly conceptual representation ability than
(Xi, B̃i ). Equation (6.43) represents that the process of incremental cognition for
concept formation by means of the hierarchical relations between sub-concepts and
super-concepts, and the coefficient of each dimension will be heighten along with
the increase of conceptual representation ability. Equation (6.44) denotes that the
upremum concept has a great influence on the process of constructing new fuzzy
concepts.

Definition 6.35 Let GSλ,1

F̃ cH̃c
,GSλ,2

F̃ cH̃c
, . . . ,GSλ,m

F̃ cH̃c
be a partition of GF̃ cH̃c with an

object-oriented FCS threshold λ. Then a new concept space can be defined as
follows:

GSλ,∗
F̃ cH̃c

=
m⋃
i=1

GSλ,i

F̃ cH̃c
=

m⋃
i=1

(XSλ,i , B̃Sλ,i ). (6.45)
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Theorem 6.5 Let GSλ,∗
F̃ cH̃c

be a concept space with an object-oriented FCS threshold
λ. We have

1 ≤ |GSλ,∗
F̃ cH̃c

| ≤ |GF̃ cH̃c |. (6.46)

Proof The proof of Theorem 6.5 can be found in the original paper [43]. ,-
Based on the above theory, the procedure of object-oriented fuzzy conceptual

clustering is summarized in Algorithm 6.13.

Algorithm 6.13 Object-oriented fuzzy conceptual clustering method
1: Input: A fuzzy concept space GF̃ cH̃c and an object-oriented FCS threshold λ.

2: Output: A new fuzzy conceptual cluster space GSλ,∗
F̃ cH̃c

.

3: GSλ,∗
F̃ cH̃c

= ∅ and GSλ,i

F̃ cH̃c
= ∅.

4: GSλ,i

F̃ cH̃c
← (Xp, B̃p).

5: for each sub-concept (Xj , B̃j ) ∈ GF̃ cH̃c of (Xp, B̃p) do
6: Get θO by Definition 6.30.
7: if θO > λ then
8: GSλ,i

F̃ cH̃c
← (Xj , B̃j ).

9: end if
10: end for
11: Construct a new fuzzy concept (XSλ,i , B̃Sλ,i ) by Definition 6.34.

12: GSλ,∗
F̃ cH̃c

= GSλ,∗
F̃ cH̃c

⋃
(XSλ,i

, B̃Sλ,i
).

13: Return GSλ,∗
F̃ cH̃c

.

6.1.4.3 Theoretical Analysis

From Definition 6.35 and Theorem 6.5, we know that the object-oriented FCS
threshold has a significant impact on the construction of a new concept space.
Hence, it is very necessary to select an optimal (or approximate optimal) λ for each
dataset.

Let λ = λ(i) (i ∈ {1, 2, . . . , n}), and λ(i) ∝ i. For all the newly constructed
concept spaces with different λ(i), we denote

⎡
⎢⎢⎢⎢⎢⎣

GSλ(1),∗
F̃ cH̃c

GSλ(2),∗
F̃ cH̃c

...

GSλ(n),∗
F̃ cH̃c

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

GSλ(1),1

F̃ cH̃c
GSλ(1),2

F̃ cH̃c
· · · GSλ(1),m1

F̃ cH̃c

GSλ(2),1

F̃ cH̃c
GSλ(2),2

F̃ cH̃c
· · · GSλ(2),m2

F̃ cH̃c

...
...

. . .
...

GSλ(n),1

F̃ cH̃c
GSλ(n),2

F̃ cH̃c
· · · GSλ(n),mn

F̃ cH̃c

⎤
⎥⎥⎥⎥⎥⎦

, (6.47)

where mi = |GSλ(i),∗
F̃ cH̃c

|, and GSλ(i),∗
F̃ cH̃c

is computed with λ(i).
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In Eq. (6.47), we say that GSλ(i),j

F̃ cH̃c
(j ∈ {1, 2, . . . ,mi}) is a conceptual subcluster

of GSλ(i),∗
F̃ cH̃c

. Meanwhile, according to Definition 6.33, each object-oriented concep-
tual cluster can be represented as a new fuzzy concept. Hence, Eq. (6.47) can be
rewritten as Eq. (6.48).

Note that there is only the fuzzy conditional concept space GF̃ cH̃c which will

be influenced by the object-oriented FCS threshold λ(i). The concept space GSλ(i),∗
F̃ cH̃c

can be simplified by omitting the suffix F̃ cH̃c when no confusion exists, namely
GSλ(i),∗ .

Property 6.6 Let GSλ(i),∗ be a set of object-oriented conceptual clusters with the
object-oriented FCS threshold λ(i). Then we have

⎡
⎢⎢⎢⎢⎢⎣

GSλ(1),∗
F̃ cH̃c

GSλ(2),∗
F̃ cH̃c

...

GSλ(n),∗
F̃ cH̃c

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

(
XSλ(1),1, B̃Sλ(1),1

) (
XSλ(1),2, B̃Sλ(1),2

) · · · (XSλ(1),m1
, B̃Sλ(1),m1

)
(
XSλ(2),1, B̃Sλ(2),1

) (
XSλ(2),2, B̃Sλ(2),2

) · · · (XSλ(2),m2
, B̃Sλ(2),m2

)
...

...
. . .

...(
XSλ(n),1, B̃Sλ(n),1

) (
XSλ(n),2 , B̃Sλ(n),2

) · · · (XSλ(n),mn
, B̃Sλ(n),mn

)

⎤
⎥⎥⎥⎥⎦

.

(6.48)

|GSλ(i),∗ | ∝ λ(i). (6.49)

Proof The proof can be derived by means of λ(i) = λ, and Definition 6.35. ,-
In the above discussion, we only consider the situation that there exists one

concept cluster in FCLM. However, in the real-life world, studying the situation
of multiple concept clusters with the label information is also highly desirable, as
there are at least two concept clusters for classification tasks.

We denote by G = {x1, x2, . . . , xm} a set of instances and K = {1, 2, . . . , l}
the label space. There does exist a partition of the instances into l clusters
C1,C2, . . . ,Cl by means of the label information such that they can cover all
the instances, and formally, C1 ∪ C2 ∪ · · · ∪ Cl = G, where Ci ∩ Cj =
∅ (∀i �= j). Meanwhile, we denote the corresponding fuzzy conceptual

clusters by GSλ(i),∗
1 ,GSλ(i),∗

2 , . . . ,GSλ(i),∗
l with λ(i). Moreover, the set of all

fuzzy conceptual clusters with λ(i) is denoted by CSλ(i) , namely CSλ(i) =
{GSλ(1),∗

1 ,GSλ(1),∗
2 , · · · ,GSλ(1),∗

l }. For different object-oriented FCS thresholds, we
further denote

⎡
⎢⎢⎢⎣

CSλ(1)

CSλ(2)

...

CSλ(n)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

GSλ(1),∗
1 GSλ(1),∗

2 · · · GSλ(1),∗
l

GSλ(2),∗
1 GSλ(2),∗

2 · · · GSλ(2),∗
l

...
...

. . .
...

GSλ(n),∗
1 GSλ(n),∗

2 · · · GSλ(n),∗
l

⎤
⎥⎥⎥⎥⎦

. (6.50)
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Our aim is to select an optimal λ(i) in the interval [0,1] for each dataset. Let
(Xr, B̃r ) (r ∈ {1, 2, . . . ,m}) be a fuzzy granular concept. Then, the objective
function can be formulated as

E(λ(i), j) = min
i∈I,j∈J,k

′

m∑
r=1

||(Xr, B̃r )− GSλ(i),j

k
′ ||22−

max
i∈I

min
j∈J

∑

k
′′ ∈K

m∑
r=1

||(Xr, B̃r )− GSλ(i),j

k
′′ ||22

s.t. mi ∝ λ(i), 0 ≤ λ(i) ≤ 1,

(6.51)

where I = {1, 2, . . . , n}, J = {1, 2, . . . ,mi}, K = K \ {k′ }, and k
′

represents the
real class label of the fuzzy granular concept (Xr, B̃r ). Hence, in Eq. (6.51), the first
item denotes that samples are classified into the ground truth conceptual subcluster,
while the second item indicates the opposite situation.

Let (Xk
Sλ(i),j

, B̃k
Sλ(i),j

) (k ∈ K) be the representation of the conceptual subcluster

GSλ(i),j

k . For any fuzzy granular concept (Xr, B̃r ), it can be considered as an instance
xr with M-dimensional features. Therefore, according to Definition 6.31 and Eq.
(6.48), the objective function can be reformulated as

E(λ(i), j) = min
i∈I,j∈J,k

′

m∑
r=1

||B̃r − B̃k
′

Sλ(i),j
||22−

max
i∈I

min
j∈J

∑

k
′′ ∈K

m∑
r=1

||B̃r − B̃k
′′

Sλ(i),j
||22

s.t. mi ∝ λ(i), 0 ≤ λ(i) ≤ 1.

(6.52)

Based on Eq. (6.48) and Property 6.6, we know that the variable j is dependent on
another variable λ(i). Hence, we can optimize the objective function of our FCLM
by means of updating λ(i):

λ̂(i) = arg min
i∈I,j∈J

E(λ(i), j)

s.t. mi ∝ λ(i), 0 ≤ λ(i) ≤ 1.
(6.53)

In theory, we can obtain an optimal λ̂(i) by solving Eq. (6.53) directly.
Unfortunately, it is quite difficult to obtain analytical solutions due to lacking
of a concrete functional expression between mi and λ(i). Hence, we select an
approximate optimal λ̂(i) by a method similar to grid search. The complete
procedure for selecting an approximate optimal solution (see Algorithm 6.14 for
details) is proposed based on the above discussion.
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Algorithm 6.14 Select λ̂(i) for FCLM

1: Input: Training set G, validation set V , and step size ε.
2: Output: An approximate optimal λ̂(i).
3: Construct a fuzzy conditional concept space GF̃ cH̃c and classical decision concept space

GF dHd by Algorithm 6.12.
4: for λ(i) = 0 to 1 do
5: Get CSλ(i) by Algorithm 6.13.
6: for xr ∈ V do
7: Compute E(λ(i), j) by Eq. (6.52).
8: end for
9: λ(i)=λ(i)+ε.

10: end for
11: Get λ̂(i) by Eq. (6.53).
12: Return λ̂(i).

6.2 Label Proportion for Learning

6.2.1 A Fast Algorithm for Multi-Class Learning from Label
Proportions

Learning from label proportions (LLP) is a new kind of learning problem which
has attracted wide interest in machine learning. Different from the well-known
supervised learning, the training data of LLP is in form of bags and only the
proportion of each class in each bag is available. In this subsection, we propose a
fast algorithm called multi-class learning from label proportions by extreme learning
machine (LLP-ELM), which takes advantage of extreme learning machine with fast
learning speed to solve multi-class learning from label proportions.

6.2.1.1 Background

In this section, we give a brief introduction of the traditional extreme learning
machine [21, 22]. Figure 6.5 shows the architecture of ELM. In detail, it is a
single-hidden layer feed-forward networks with three parts: input neurons, hidden
neurons and output neurons. In particular, h(x) = [h1(x), . . . , hL(x)] is nonlinear
feature mapping of ELM with the form of hj (x) = g(wj.x + bj ) and βj =
[βj1, . . . , βjc]T , j = 1, . . . , L is the output weights between the j th hidden layer
and the output nodes.

Given N samples (xi, ti ), i = 1, . . . , N , where xi = [xi1, . . . , xid ]T denotes the
input feature vectors and ti = [ti1, . . . , tic]T is the corresponding label in a one-
hot fashion. In particular, c and d respectively represent the total classes and feature
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Fig. 6.5 The architecture of ELM. In detail, it is a single-hidden layer feed-forward network
with three parts: input neurons, hidden neurons and output neurons. In particular, h(x) =
[h1(x), . . . , hL(x)] is nonlinear feature mapping of ELM with the form of hj (x) = g(wj.x + bj )

and βj = [βj1, . . . , βjc]T , j = 1, . . . , L is the output weights between the j th hidden layer and
the output nodes

number. Consequently, a standard feed-forward neural network with L hidden nodes
can be expressed as:

L∑
j=1

βjg(wj.xi + bj ) = oi, i = 1, . . . , N, (6.54)

where wj = [wj1, wj2, . . . , wjL]T is the weight vector between the j th hidden
neuron and the input neurons, and βj = [βj1, βj2, . . . , βjc]T , j = 1, . . . , L is the
weight vector connecting the output neuron and the j th hidden neurons. According
to [21], the ELM can approximate those N samples to zero error with the equation∑N

i=1 ‖oi − ti‖ = 0. Thus, the above equations can be expressed as:

L∑
j=1

βjg(wj.xi + bj ) = ti, i = 1, . . . , N. (6.55)

In particular, we can use matrix to express the above N equations with form of:

Hβ = T, (6.56)
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where H is the hidden layer output matrix of the single-hidden layer feed-forward
network and T is output matrix. More specifically, H and T have the form of:

H =
⎡
⎢⎣
h(x1)

...

h(xN)

⎤
⎥⎦ =

⎡
⎢⎢⎣

h1(x1) · · · hL(x1)
...

...
...

h1(xN)
... hL(xN)

⎤
⎥⎥⎦ (6.57)

and

T =
⎡
⎢⎣
tT1
...

tTN

⎤
⎥⎦ =

⎡
⎢⎢⎣

t11 · · · t1c
...

...
...

tN1
... tNc

⎤
⎥⎥⎦ (6.58)

In practice, the hidden node parameters (w,b) of ELM are randomly generated
and then fixed without iteratively tuning, which is different to the traditional BP
neural networks [21]. As a result, training an ELM is equivalent to find the optimal
solution to β, which is in defined as:

β =
⎡
⎢⎣

βT
1
...

βT
L

⎤
⎥⎦ =

⎡
⎢⎢⎣

β11 · · · β1c
...

...
...

βL1
... βLc

⎤
⎥⎥⎦ (6.59)

Furthermore, β can computed by the following expression:

β∗ = H†T (6.60)

where H† is the Moore-Penrose generalized inverse of matrix H.

6.2.1.2 The LLP-ELM Algorithm

In this section, we propose a fast method for multi-class learning from label
proportions algorithm called LLP-ELM, which employs extreme learning machine
to solve multi-class LLP problem. In order to leverage extreme learning machine
to LLP, we reshape the hidden layer output matrix H and the training data target
matrix T to new forms, such that H is in bag level and T contains the proportion
information instead of a label one.
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A. Learning Setting

The LLP problem is described by a set of training data, which is divided into several
bags. Furthermore, compared to the traditional supervised learning, we only know
the proportions of different categories in each bag instead of the ground-truth labels.
In this paper, we consider the situation that different bags are disjoint, and the nth
bag of the training data can be denoted as Bn, n = 1, . . . , h. Consequently, the total
training data is in form of:

D = B1 ∪ B2 ∪ . . . . ∪ Bh (6.61)

Bi ∩ Bj = ∅,∀i �= j.

where there are n bags and N is the number of total instances. Each bag consists of
mn instances with the constraint

∑h
n=1 mn = N , and can be expressed as:

Bn = {x1
n, ..., x

mn
n }, n ∈ {1, 2, . . . , h}. (6.62)

Meanwhile, pn is the corresponding class proportion vector of Bn and c represents
the total classes number. More specifically, pn can be written as a vector form:

pn =
⎡
⎢⎣
pn1
...

pnc

⎤
⎥⎦ , (6.63)

where the mth element pm
n is the proportion of the mth class in the nth bag with

the constraint
∑c

m=1 pm
n = 1. Furthermore, the total proportion information can be

defined in form of matrix:

P =
⎡
⎢⎣
pT1
...

pTh

⎤
⎥⎦ =

⎡
⎢⎢⎣

p11 · · · p1c
...

...
...

ph1
... phc

⎤
⎥⎥⎦ . (6.64)

B. The LLP-ELM Framework

From the above learning setting of LLP, a classifier in instance level is the
final objective. To this end, we modify the original equations in ELM to the
new equations in bag level. Specifically, we add all the equations in each bag
straightforward, and the final equations in nth bag can be expressed as follows:

L∑
j=1

mn∑
k=1

βjg(wj.xnk + bj ) =
mn∑
k=1

tnk, n = 1, . . . , h (6.65)
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where tnk is the real label for the kth instances in nth bag. Obviously, the real label
information in the right part is inaccessible to us, with only label proportions in
each bag available. To this end, we derive the right part of the above equation as the
following form:

mn∑
k=1

tnk = mn ∗ pn, n = 1, . . . , h (6.66)

where pn is the label proportion of nth bag. Substituting the formula (6.66) to (6.65),
we can naturally obtain the following equations:

L∑
j=1

βj

mn∑
k=1

g(wj.xnk + bj ) = mn ∗ pj, n = 1, . . . , h, (6.67)

In particular, similar to the method from ELM [21], we can write the above
equations in the form of matrix computing as follows:

Hpβ = P (6.68)

where Hp is the hidden layer output matrix in the bag level, and P is the training
data target proportion matrix. More specifically, Hp and P are given in form of:

Hp =

⎡
⎢⎢⎢⎢⎢⎣

m1∑
k=1

h(x1k)

...
mh∑
k=1

h(xhk)

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

m1∑
k=1

h1(x1k) · · ·
m1∑
k=1

hL(x1k)

...
...

...
mh∑
k=1

h1(xhk)
...

mh∑
k=1

hL(xhk)

⎤
⎥⎥⎥⎥⎥⎦

and

P =
⎡
⎢⎣
m1 ∗ pT1

...

mh ∗ pTh

⎤
⎥⎦ =

⎡
⎢⎢⎣

m1 ∗ p11 · · · m1 ∗ p1c
...

...
...

mh ∗ ph1
... mh ∗ phc

⎤
⎥⎥⎦

Meanwhile, the final solution β is the same with the original form in ELM with
dimension L× c. Again, the optimal solution to (6.68) is given by

β∗ = H†
pP (6.69)

where H†
p is the Moore-Penrose generalized inverse of matrix Hp.
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In order to obtain a better generalization performance of ELM, we also follow
the method from [22] to study the regularized ELM. In detail, the final objective
function of ELM is formulated as follows:

min
β∈RL×c

1

2
‖β‖2 + C

2

N∑
i=1

‖ei‖2

s.t. h(xi)β = tTi − eTi ,i = 1, . . . , N, (6.70)

in which the first term of the objective function is a regularization term and C is a
parameter to make a trade-off between the first and second term.

We equivalently reformulate the problem (6.70) as follows by substituting the
constraints to its objective function:

min
β∈RL×c

LELM = 1

2
‖β‖2 + C

2
‖T−Hβ‖2 (6.71)

Note that the second term of (6.71) can be replaced by C
2 ‖P−Hpβ‖2, which is

the matrix form in bag level. In other words, the final unconstrained optimization
problem can be written as:

min
β∈RL×c

LELM = 1

2
‖β‖2 + C

2
‖P−Hpβ‖2 (6.72)

In practice, the final objection is widely known as the ridge regression or regularized
least squares.

C. How to Solve the LLP-ELM

We follow the strategy from [22] to solve (6.72), and the final purpose is to minimize
the training error as well as the norm of the output weights. Obviously, the final
objective function is a convex problem, which is always solved by way of gradient.
More specifically, by setting the gradient of (6.72) to zero with respect to β, we can
obtain the following expression:

β − CHT
p (P−Hpβ) = 0. (6.73)

This yields

(
I
C
+HT

pHp)β = HT
pP, (6.74)

where I is an identity matrix with dimension L.
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The above equation is very intuitive, and we can obtain the final optimization
result by inverting a L×L matrix directly. However, it is less efficient to directly
invert a L×L matrix when the number of bag is less than the number of hidden
neurons(h < L). Therefore, there are two methods which are shown in Remark 1
and Remark 2. In summary, in the case where the number of bags are plentiful than
hidden neurons, we use Remark 1 to compute the output weights, otherwise we use
Remark 2.

Remark 1 The solution for formula (6.73) when h > L.

• Hp has more rows than columns, which means the number of bag is larger than
the number of hidden neurons.

• By inverting a L×L matrix directly and multiplying both sides by (HT
pHp + I

C )−1
, we can obtain the following expression

β = (HT
pHp + I

C
)−1HT

pP, (6.75)

which is the optimal solution of (6.73).

Remark 2 The solution for formula (6.73) when h < L.

• Notice that Hp is full row rank and HpHT
p is invertible when h < L.

• Restrict β to be a linear combination of the row in Hp : β = HT
pα

• Substitute β = HT
pα into (6.73), and multiply by (HpHT

p )
−1Hp.

• By the above step, we can obtain the following equation:

α − C(P−HpHT
pα) = 0. (6.76)

• As a result, the final optimal solution of (6.73) is in form of

β = HT
pα = HT

p (HpHT
p +

I
C
)−1P = 0. (6.77)

The solution process of LLP-ELM model can be concluded to the following two
steps:

• Compute training data target proportion matrix P and the hidden layer output
matrix Hp.

• Obtain the final optional solution of β according to Remark 1 or Remark 2. The
details of the process are shown in Algorithm 6.15.

D. Computational Complexity

From the Remark 1 and Remark 2, we can observe that the main time cost of our
method is to calculate the matrix inversion. Furthermore, the dimension of matrix is
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Algorithm 6.15 LLP-ELM
1: Input: Training datasets in bags{Bn}; The corresponding proportion pn of Bn; Activation

function g(x) and the number of hidden nodes N.
2: Output: Classification model f(x,β)
3: Begin
4: • Randomly initialize the value wj and bj for the j th node, j = 1, . . . , L.

5: • Compute the training data target proportion matrix P by the proportion information of each
bag.

6: • Compute the hidden layer output matrix in the bag level Hp.
7: • Obtain the weight vector according to Remark 1 or Remark 2.
8: End

minimum of the number of bags h and the hidden neurons L, which is determined
by us. As we all know, the complexity of matrix inversion is proportional to the O3,
where O is the dimension of matrix, and is equal to Min(L,h) in this paper.

6.2.2 Learning from Label Proportions with Generative
Adversarial Networks

6.2.2.1 Preliminaries

A. The Multi-Class LLP

Before further discussion, we formally describe multi-class LLP. For simplicity, we
assume that all the bags are disjoint and let Bi = {x1

i , x
2
i , · · · , xNi

i }, i = 1, 2, · · · , n
denote bags in training set. Then, training data is D = B1∪B2∪· · ·∪Bn,Bi∩Bj =
∅,∀i �= j , where the total number of bags is n.

In addition, pi is a K-element vector where the kth element pk
i is instance

proportion in Bi belonging to the kth class with the constraint
∑K

k=1 pk
i = 1 and K

represents the total number of classes, i.e.,

pk
i :=

|{j ∈ [1 : Ni]|xji ∈ Bi , y
j∗
i = k}|

|Bi| . (6.78)

Here, [1 : Ni ] = {1, 2, · · · , Ni} and y
j∗
i is the unaccessible ground-truth instance-

level label of xji . In this way, we can denote the available training data as L =
{(Bi,pi )}ni=1. The goal of LLP is to learn an instance-level classifier based on this
kind of dataset.
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B. Deep Discriminant Approach for LLP

In terms of deep learning, DLLP firstly leveraged CNNs to solve multi-class LLP
problem [1]. Since CNNs can give a probabilistic interpretation for classification, it
is straightforward to adapt cross-entropy loss into a bag-level version by averaging
the probability outputs in every bag as the proportion estimation. To this end,
inspired by [71], DLLP reshaped standard cross-entropy loss by substituting
instance-level label with label proportion, in order to meet the proportion consis-
tency.

In detail, suppose that p̃j
i = pθ(y|xji ) is the vector-valued CNNs output for xji ,

where θ is the network parameter. Let ⊕ be element summation operator, then the
bag-level label proportion in the ith bag is obtain by incorporating the element-wise
posterior probability:

pi =
1

Ni

Ni⊕
j=1

p̃j

i =
1

Ni

Ni⊕
j=1

pθ (y|xji ), (6.79)

In order to smooth max function [5], p̃j
i is in a vector-type softmax manner

to produce the distribution for class probabilities. Taking log as element-wise
logarithmic operator, objective of DLLP can be intuitively formulated using cross-
entropy loss Lprop = −∑n

i=1 p
ᵀ
i log(pi ). It penalizes the difference between prior

and posterior probabilities in bag-level, and commonly exists in GAN-based SSL
[61].

C. Entropy Regularization for DLLP

Following the entropy regularization strategy [18], we can introduce an extra loss
Ein with a trade-off hyperparameter λ to constrain instance-level output distribution
in a low entropy accordingly:

L = Lprop + λEin = −
n∑

i=1

pᵀi log(pi )− λ

n∑
i=1

Ni∑
j=1

(p̃j
i )

ᵀlog(p̃j
i ). (6.80)

This extension is similar to a KL divergence between two distributions. It takes
advantage of DNN’s output distribution to cater to the label proportions require-
ment, as well as minimizing output entropy as a regularization term to guarantee
strong true-fake belief. This is believed to be linked with an inherent MAP
estimation with certain prior distribution in network parameters.
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6.2.2.2 Adversarial Learning for LLP

In this section, we propose LLP-GAN, which devotes GANs to harnessing LLP
problem.

A. The Objective Function of Discriminator

We illustrate the LLP-GAN framework in Fig. 6.6. The generator is employed to
generate images with input noise, which is labeled as fake. On the other hand, the
discriminator yields class confidence maps for each class (including the fake one)
by taking both fake and real data as the inputs. In particular, our discriminator is
not only to identify whether it is a sample from the real data or not, but also to
elaborately distinguish each real input’s label assignment as a K classes classifier.
This idea is fairly intuitive, and we conclude its loss as the Lunsup term.

Next, the main issue becomes how to exploit the proportional information to
guide this unsupervised learning correctly. To this end, we replace the supervised
information in semi-supervised GANs with label proportions, resulting in Lsup,
same as Lprop in (6.80).

Definition 6.36 Suppose that P is a partition to divide the data space into n

disjoint sections. Let pi
d(x), i = 1, 2, · · · , n be marginal distributions with respect

to elements in P respectively. Accordingly, n bags in LLP training data spring from
sampling upon pi

d(x), i=1, 2, · · · , n. In the meantime, let p(x, y) be the unknown
holistic joint distribution.

We normalize the first K classes in PD(·|x) into the instance-level posterior
probability p̃D(·|x) and compute p based on (6.79). Then, the ideal optimization
problem for the discriminator of LLP-GAN is:

Fig. 6.6 An illustration of our LLP-GAN framework
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max
D

V (G,D) = Lunsup + Lsup = Lreal + Lfake− λCEL(p,p)

=
n∑

i=1

Ex∼pi
d

[
logPD(y ≤ K|x)

]
+ Ex∼pg

[
logPD(K + 1|x)

]
+ λ

n∑
i=1

pᵀi log(pi ).

(6.81)

Here, pg(x) represents the distribution of the synthesized data.
The normalized instance-level posterior probability p̃D(·|x) is:

p̃D(k|x) = PD(k|x)
1− PD(K + 1|x), k = 1, 2, · · · ,K. (6.82)

Note that weight λ in (6.81) is added to balance between supervised and unsuper-
vised terms, which is a slight revision of SSL with GANs [13, 54]. Intuitively, we
reckon the proportional information is too weak to fulfill supervised learning pur-
suit. As a result, a relatively small weight should be preferable in the experiments.
However, we fix λ=1 in the following theoretical analysis on discriminator.

Aside from identifying the first two terms in (6.81) as that in semi-supervised
GANs, the cross-entropy term harnesses the label proportions consistency. In order
to justify the non-triviality of this loss, we first look at its lower bound. More
important, it is easier to perform the gradient method on the lower bound, because
it swaps the order of log and the summation operation. For brevity, the analysis will
be done in a non-parametric setting, i.e. we assume that both D and G have infinite
capacity.

Remark (The Lower Bound Approximation) Let pi(k)=pk
i =

∫
pi(y=k|x)pi

d(x)dx
be the class k proportion in the ith bag. By applying Monte-Carlo sampling, we
have:

−CEL(p,p) =
n∑

i=1

K∑
k=1

pi(k)log
[ 1

Ni

Ni∑
j=1

p̃D(k|xj
i
)
]

�
n∑

i=1

K∑
k=1

pi(k)log
[∫

pi
d (x)p̃D(k|x)dx

]
�

n∑
i=1

K∑
k=1

pi(k)Ex∼pi
d

[
logp̃D(k|x)

]
.

(6.83)

Similar to EM mechanism for mixture models, by approximating−CEL(p,p) with
its lower bound, we can perform gradient ascend independently on every sample.
Hence, SGD can be applied.

Property 6.7 The maximization on the lower bound in (6.83) induces an optimal
discriminator D∗ with a posterior distribution p̃D∗(y|x), which is consistent with
the prior distribution pi(y) in each bag.
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Proof Taking the aggregation with respect to one bag, for example, the ith bag, we
have:

Ex∼pi
d
[logp(x)]=Ex∼pi

d
log
[ p(x, y)
p̃D(y|x)

p̃D(y|x)
p(y|x)

]

=Ex∼pi
d

∫
pi(y)log

[pi(y)p(x|y)
p̃D(y|x)

p̃D(y|x)
p(y|x)

]
dy

=Ex∼pi
d

∫ [
p(yi)logp̃D(y|x)+log

p(x|y)
p(y|x)

]
dy

+Ex∼pi
d
KL(pi(y)‖p̃D(y|x))

�
K∑

k=1

pi(k)Ex∼pi
d

[
logp̃D(k|x)

]
+

K∑
k=1

pi(k)Ex∼pi
d

[
log

p(x|k)
p(k|x)

]

(6.84)

Note that the last term in (6.84) is free of the discriminator, and the aggregation can
be independently performed within every bag due to the disjoint assumption. Then,
maximizing the lower bound in (6.83) is equivalent to minimizing the expectation
of KL-divergence between pi(y) and p̃D(y|x). Because of the infinite capacity
assumption on discriminator and the non-negativity of KL-divergence, we have:

D∗ = arg min
D

Ex∼pi
d
KL(pi(y)‖p̃D(y|x))⇔ p̃D∗(y|x) a.e.= pi(y), x ∼ pi

d(x).

(6.85)

That concludes the proof. ,-
Property 6.7 tells us that if there is only one bag, then p̃D∗(y|x) a.e.= p(y).

However, there is normally more than one bag in LLP, the final classifier will
somehow be a trade-off among all the prior proportions pi(y), i = 1, 2,· · ·, n. Next,
we will show how the adversarial learning on the discriminator helps to determine
the formulation of this trade-off into a weighted aggregation.

B. Global Optimality

As shown in (6.83), in order to facilitate the gradient computation, we substitute
cross entropy in (6.81) by its lower bound and denote this approximate objective
function for discriminator by Ṽ (G,D).

Theorem 6.6 For fixed G, the optimal discriminatorD∗ for Ṽ (G,D) satisfies:

PD∗(y = k|x) =
∑n

i=1 pi(k)p
i
d(x)∑n

i=1 pi
d(x)+ pg(x)

, k = 1, 2, · · · ,K. (6.86)
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Proof According to (6.81) and (6.83) and given any generator G, we have:

Ṽ (G,D) =
n∑

i=1

Ex∼pi
d

[
log(1− PD(K + 1|x))

]
+ Ex∼pg

[
logPD(K + 1|x)

]
+

n∑
i=1

K∑
k=1

pi(k)Ex∼pi
d

[
logp̃D(k|x)

]
=
∫ { n∑

i=1

pi
d(x)

[
log

[ K∑
k=1

PD(k|x)]+

K∑
k=1

pi(k)log
PD(k|x)

1− PD(K + 1|x)
]
+ pg(x)log

[
1−

K∑
k=1

PD(k|x)
]}

dx

(6.87)

By taking the derivative of the integrand, we find the maximum in [0, 1] as that in
(6.86). ,-
Remark (Beyond the Incontinuity of pg) According to [2], the problematic scenario
is that the generator is a mapping from a low dimensional space to a high
dimensional one, which results in the density of pg(x) infeasible. However, based
on the definition of p̃D(y|x) in (6.82), we have:

p̃D∗(y|x)=
∑n

i=1 pi(y)p
i
d(x)∑n

i=1 pi
d(x)

=
n∑

i=1

wi(x)pi(y). (6.88)

Hence, our final classifier does not depend on pg(x), and (6.88) explicitly expresses
the weights of the aggregation.

Remark (Relationship to One-Side Label Smoothing) Notice that the optimal
discriminator D∗ is also related to the one-sided label smoothing mentioned in
[54], which was inspirited by [64] and shown to reduce the vulnerability of neural
networks to adversarial examples [73].

In our model, we only smooth labels of real data (multi-class classifier) in the
discriminator by setting the targets as the holistic proportions (the prior) pi(y) in
corresponding bags.

C. The Objective Function of Generator

Normally, for the generator, we should solve the following optimization problem
with respect to pg .

min
G

Ṽ (G,D∗) = min
G

Ex∼pg logPD∗(K + 1|x). (6.89)

If denoting C(G) = maxD Ṽ (G,D) = Ṽ (G,D∗), because Ṽ (G,D) is convex
in pg and the supremum of a set of convex function is still convex, we have the
following conclusion.
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Theorem 6.7 The global minimum of C(G) is achieved if and only if pg =
1
n

∑n
i=1 pi

d .

Proof Denote pd = ∑n
i=1 pi

d . Hence, according to Theorem 6.6, we can reformu-
late C(G) as:

C(G) =
n∑

i=1

Ex∼pi
d

[
log

pd(x)
pd(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)
pd(x) + pg(x)

]
+

n∑
i=1

K∑
k=1

pi(k)Ex∼pi
d

[
logp̃D(k|x)

]
= 2 · JSD(pd‖pg)− 2log(2)−

n∑
i=1

Ex∼pi
d

[
CE(pi(y), p̃D∗ (y|x))

]
,

(6.90)

where JSD(·‖·) and CE(·, ·) are the Jensen-Shannon divergence and cross entropy
between two distributions, respectively. However, note that pd is a summation of n
independent distributions, so 1

n
pd is a well-defined probabilistic density. Then, we

have:

C(G∗) = min
G

C(G) = nlog(n)− (n + 1)log(n+ 1)−
n∑

i=1

Ex∼pi
d

[
CE(pi(y), p̃D∗ (y|x))

]

⇐⇒ pg∗
a.e.= 1

n
pd .

(6.91)

That concludes the proof. ,-
Remark When there is only one bag, the first two terms in (6.91) will degenerate as
nlog(n)− (n+1)log(n+1) = −2log2, which adheres to results in original GANs.
On the other hand, the third term manifests the uncertainty on instance label, due to
the concealment in the form of proportion.

Remark According to the analysis above, ideally, we can obtain the Nash equilib-
rium between the discriminator and the generator, i.e. the solution pair (G∗,D∗)
satisfies:

Ṽ (G∗,D∗) � Ṽ (G∗,D),∀D; Ṽ (G∗,D∗) � Ṽ (G,D∗),∀G. (6.92)

However, as shown in [13], a well-trained generator would lead to the ineffi-
ciency of supervised information. In other words, the discriminator would possess
the same generalization ability as merely training it on Lprop. Hence, we apply
feature matching (FM) to the generator, and obtain its alternative objective by
matching the expected value of the features (statistics) on an intermediate layer
of the discriminator [54]: L(G) = ‖Ex∼ 1

npd
f (x) − Ex∼pgf (x)‖2

2. In fact, FM is

similar to the perceptual loss for style transfer in a concurrent work [26] and the
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goal of this improvement is to impede the “perfect” generator resulting in unstable
training and discriminator with low generalization.

D. LLP-GAN Algorithm

So far, we have clarified the objective functions of both discriminator and generator
in LLP-GAN. In particular, note that we execute Monte-Carlo sampling for the
expectations. When accomplishing the training stage in GAN manner, the discrimi-
nator can be put into effect as the final classifier.

The strict proof for algorithm convergence is similar to that in [17]. Because
maxD Ṽ (G,D) is convex in G and the subdifferential of maxD Ṽ (G,D) contains
that of Ṽ (G,D∗) in every step, the exact line search method gradient descent
converges [7]. We present the LLP-GAN algorithm as follows.

Algorithm 6.16 LLP-GAN training algorithm
1: Input: The training set L = {(Bi ,pi )}ni=1; L: number of total iterations; λ: weight parameter.
2: Input: The parameters of the final discriminator D.
3: Set m to the total number of training data points.
4: for i=1:L do
5: Draw m samples {z(1), z(2),· · ·, z(m)} from a simple-to-sample noise prior p(z) (e.g.,

N(0, I)).
6: Compute {G(z(1)),G(z(2)), · · · ,G(z(m))} as sampling from pg(x).
7: Fix the generator G and perform gradient ascent on parameters of D in Ṽ (G,D) for one

step.
8: Fix the discriminator D and perform gradient descent on parameters of G in L(G) for one

step.
9: end for

10: Return The parameters of the discriminator D in the last step.

6.2.3 Learning from Label Proportions on High-Dimensional
Data

6.2.3.1 Background

In this subsection, the random forests which is used for our classification is
presented.

Random forests are an ensemble learning method together with a bagging
procedure for classification and other tasks, where each basic classifier is a decision
tree and each tree depends on a collection of random variables. More specifically,
during splitting of a randomized tree, each decision node randomly selects a set of
features and then picks the best among them according to some quality measurement
(e.g., information gain or Gini index) [53]. Furthermore, as each tree in the forest
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is built and tested independently from other trees, the overall training and testing
procedures can be performed in parallel [31].

We denote the mth tree of random forests as f (x, θm), where θm is a random
vector representing the various stochastic elements of the tree. Meanwhile, let
pm(k|x) represent the estimated density of class labels for the mth tree and M be
total number of the trees in the forests. In practice, the final prediction results of
random forests are given by probability towards different classes. As a result, the
estimated probability for predicting class k in random forests can be defined as:

Fk(x) = 1

M

M∑
m=1

pm(k|x), k ∈ γ = {1, 2, . . . ,K}, (6.93)

where K is the total number of classes. In particular, a decision can be made by
simply taking the maximum over all individual probabilities of the trees for a class
k with

C(x) = arg max
k∈γ Fk(x), γ = {1, 2, . . . ,K} (6.94)

where the final result of C(x) is the index of the corresponding class.
The classification margin measures the extent to which the average number of

votes for the right class exceeds the average for any other class, which is introduced
by Breiman [8], and is expressed as:

mg(x, y) = Fy(x)−max
k �=y

Fk(x). (6.95)

Obviously, if the classification is correct, there should be mg(x, y) > 0. In other
words, the larger the margin is, the more confidence in the classification. The
generalization error of random forests is in form of:

GE = E(X,Y )(mg(x, y) < 0), (6.96)

where the expectation is measured over the entire distribution of (X,Y).
Random forests have shown its advantages in both classification [8] and cluster-

ing [45]. In particular, experiments have shown that high accuracy can be achieved
by random forests when classifying high dimensional data [3]. Meanwhile, Caruana
[9] presented an empirical evaluation on high dimensional data of different methods,
and found that random forests perform consistently well across all dimensions
compared with other methods. Additionally, it is easy for random forests to be
parallelized, which makes them very easy for multi-core and GPU implementations.
Sharp [56] have show that GPU can accelerate the random forests and have great
advantage compared to CPU in processing speed, which is very useful for practical
applications. Recently, random forests have been applied in video segmentation
[49], object detection [15], image classification [6] and remote sensing [46] due
to its advantages.
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6.2.3.2 The LLP-RF Algorithm

In this subsection, we present a novel learning from label proportions algorithm
called LLP-RF, which use random forests to solve high-dimensional LLP problem.
In order to leverage random forests to LLP, the hidden class labels insides bags
are defined as the optimization variables. Meanwhile, we formulate a robust loss
function based on random forests and take the corresponding proportion information
into LLP-RF by penalizing the difference between the ground-truth and estimated
label proportion. A binary learning setting is considered in the following.

A. Learning Setting

Similar to the standard supervised learning, the problem is also described by a set
of training data. But the training data of LLP is only provided in form of bags and
the ground-truth labels of training data are not available. In this paper, we assume
the bags are disjoint. Let Bi, i = 1, . . . , n denote the ith bag in the training set. As
a result, the total training data can be expressed as:

D = B1 ∪ B2 ∪ . . . . ∪ Bn (6.97)

Bi ∩ Bj = ∅,∀i �= j,

where the total number of training data is N . The ith bag consists of mi instances
and is in form of:

Bi = {x1
i , ..., x

mi

i }{pi}, i ∈ {1, 2, . . . , n}, (6.98)

where the associated pi indicates the label proportion of the ith bag. As a result, the
j th instance in the ith bag can be expressed as x

j

i .
The ground-truth labels of instances are modeled as y = (y1, . . . , yN)T , where

yi is the unknown label of xi . Furthermore, we can define the proportion of ith bag
as:

pi = |{k|k ∈ Bi, y
∗
k = 1}|

|Bi | ,∀k ∈ {1, 2, . . . , N}, (6.99)

in which y∗k ∈ {1,−1} is the unknown ground-truth label of xk and |Bi | denotes the
bag size of ith bag. In practice, the above formulation is equivalent to the following:

pi =
∑

k∈Bi
y∗k

2|Bi | + 1

2
,∀k ∈ {1, 2, . . . , N}. (6.100)
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B. The LLP-RF Framework

The above LLP learning setting is very intuitive and the final objective is to train
a classifier in the instance level. To this end, inspired by [32], we formulate a
robust loss function based on random forests and take the corresponding proportion
information into LLP-RF by penalizing the difference between the ground-truth
and estimated label proportion. Therefore, the final objective function of LLP-RF
is formulated as follows:

arg min
F(·),yj

i

C

n∑
i=1

mi∑
j=1

L[F
y
j
i

(x
j
i )] + Cp

n∑
i=1

Lp[pi(y), pi]

s.t. ∀ni=1,∀mi

j=1 y
j

i ∈ {1,−1}, (6.101)

where the hidden class labels y are defined as the optimization variables and the task
is to simultaneously optimize the labels y and the model F().

Specifically, L() is a loss function which is defined over the entire set of instances
and Lp() is a loss function used to penalize the difference between the ground-truth
label proportion and the estimated label proportion based on y. Different weights
can be added for the loss of bag proportions by changing the value of Cp.

Note that Fk(x) is the confidence of classifier for the kth class, which is got from
random forests.

Furthermore, our proposed framework permits choosing different loss functions
for L(). In our paper, different loss function including hinge loss, logistic loss and
entropy are tuned to obtain better classification results. In this paper, we consider
Lp() as the absolute loss:

Lp[pi(y), pi] = |pi(y)− pi |, (6.102)

where pi is the true label proportion of ith bag and pi(y) is the estimated label
proportion of ith bag.

The above LLP-RF framework is fairly straightforward and intuitive. However,
it leads to a non-convex integer programming problem because it needs to simulta-
neously optimize the labels y

j
i and trains a random forest. In practice, the problem

is often NP-hard. Therefore, one key issue is how to solve the optimization problem
efficiently. In this paper, a simple but efficient alternating optimization strategy
based on annealing is employed to minimize the overall learning objective.

C. How to Solve the LLP-RF

The strategy to solve (6.101) is similar to the rule from [80]. There are two variables
F and y in the optimization formula, where the unknown instance labels y can
be seen as a bridge between supervised learning loss and label proportion loss.
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Therefore, we solve the problem by alternating optimizing the two variables F

and y.

• We fix the y. The optimization problem becomes a native random forests
problem, which can be expressed as below:

arg min
F(·)

C

n∑
i=1

mi∑
j=1

L[F(x
j
i )]. (6.103)

• Then, F is fixed. The problem can be transformed to the following:

arg min
y
j
i

C

n∑
i=1

mi∑
j=1

L[F
y
j
i

(x
j
i )] + Cp

n∑
i=1

Lp[pi(y), pi]

s.t. ∀ni=1,∀mi

j=1 y
j

i ∈ {1,−1}. (6.104)

The first term of the objective is defined over the entire instances. However, the
proportion information pi of the second term is provided in the bag level. In order
to use the proportion information efficiently, the above formula can be written to the
following:

arg min
y
j
i

n∑
i=1

{
C

mi∑
j=1

L[F
y
j
i

(x
j
i )] + CpLp[pi(y), pi ]

}

s.t. ∀ni=1,∀mi

j=1 y
j

i ∈ {1,−1}. (6.105)

As the bags are disjoint to each other, the contribution of each bag to the objective
is independent. As a result, the objective can be optimized on each bag separately
and the final result is equivalent to the summation of every bag. In particular, solving
{yj

i |j ∈ Bi} yields the following optimization problem:

arg min
{yj

i |j∈Bi }
C
∑
j∈Bi

�[F
y
j
i

(x
j
i )] + CpLp[pi(y), pi]

s.t. ∀j ∈ Bi, y
j
i ∈ {1,−1}. (6.106)

Obviously, the original optimization problem has changed to solve the formula
(6.106), whose solution can be found by the following optimization strategy.
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Remark The steps for solving formula (6.106).

• Compute all the possible values of the second term in formula (6.106), where
there are total |Bi | + 1 values. In practice, the kth value can be expressed as:

F2(k) = |k − 1

|Bi | − pi |, k ∈ {1, 2, . . . , |Bi |, |Bi | + 1}. (6.107)

• Obtain all the values of first term F1(k) corresponding to the second term F2(k).
• Pick the smallest objective value from

C ∗ F1(k)+ Cp ∗ F2(k), k ∈ {1, 2, . . . , |Bi |, |Bi | + 1}, (6.108)

yielding the optimal solution of (6.106).

The above strategy is fairly intuitive and straightforward. The main focus is how
to obtain the value of first term corresponding to the second term. In practice, there
are total |Bi | + 1 values about the second term. For a fixed value of second term,
steps can be taken as Proposition 6.4.

Proposition 6.4 For a fixed pi(y) = θ , we can find the solution of (6.106) by the
iterative steps as below.

• Initialize y
j
i = −1,∀j ∈ {1, 2, . . . , |Bi |}, where |Bi | is the number of instances

in ith bag.
• Compute the value of �[F−1(x

j
i )]), j ∈ {1, 2, . . . , |Bi |}.

• Flip the sign of yj
i = 1,∀j ∈ {1, 2, . . . , |Bi |}.

• Compute the value of �[F1(x
j

i )]), j ∈ {1, 2, . . . , |Bi |}.
• Let δji = C(�[F1(x

j
i )] − �[F−1(x

j
i )]), j ∈ {1, 2, . . . , |Bi |} denote the reduction

of the first term in (6.106) through flipping the sign of yj
i .

• Sort δji ,∀j ∈ {1, 2, . . . , |Bi |} in descending way. Then flip the signs of yj
i of the

top-R (R = θ |Bk|) which have the highest reduction. For each bag, we only need
to sort the δ

j
i ,∀j ∈ {1, 2, . . . , |Bi |} once.

Obviously, the minimum value of each bag and the corresponding y can be
obtained using the above steps. In detail, the solution process of the LLP-RF
model can be concluded to the following two alternative steps: solve random forests
optimization problems and renovate the labels of y until the objective function value
is no longer changing or the reduction of objective is smaller than a threshold. The
details of the process are shown in Algorithm 6.17.

Furthermore, in order to avoid the local solutions, similar to T-SVM [10]
and SVM [80], the novelly proposed LLP-RF algorithm also takes an additional
annealing loop to gradually increase C. The annealing can be seen as a step to avoid
the local optimal solution. In detail, the annealing loop is achieved by the following
equation C∗ = min{(1+�)C∗, C}, where � is a step to control the increase of C.
Throughout this work, we set � = 0.5.
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In practice, the different values of initializing y can lead to different results. In
order to reduce the randomness, we should repeat the process several times and pick
the smallest objective value as the final result.

Algorithm 6.17 LLP-RF
1: Require: Bags{Bi };
2: The corresponding proportion pi of Bi ;
3: Randomly initialize y

j
i ∈ {1,−1},∀ni=1,∀mi

j=1;

4: C∗ = 10−5C.

5: while C∗ < C do
6: C∗ = min{(1+�)C∗, C}.
7: repeat
8: Fix y to solve F(Train the Random Forests: trainRF (y

j

i )).
9: Fix F to solve y(using the strategy discussed in the above Remark).

10: Update y
j

i ,∀ni=1,∀mi

j=1.
11: until the decrease of the objective is smaller than a threshold or reach the setting iteration.
12: end while

6.2.4 Learning from Label Proportions with Pinball Loss

6.2.4.1 Preliminary

In this subsection, we introduce the basic formulation of learning from label
proportions and give corresponding symbol description.

In learning from label proportions, although the proportion of each bag is
given, the label of each instance is unknown. Suppose we are given a sample set
{xi, y∗i }Ni=1, where x ∈ Rn and y∗i ∈ {1, 1} denotes the unknown ground truth label
of xi . The sample set is grouped into K bags. In this subsection, we assume that the
bags are disjoint.

The ground truth label proportion of the k-th bag Sk can be defined as

Pk := |{i|i ∈ Sk, y
∗
i = 1}|

|Sk | .

The goal is to find a decision function f (x) = sign(wT φ(x) + b) such that the
label y for any instance x can be predicted, where φ(·) is a map of the input data.

Assume the instance labels are explicitly modeled as {yi}Ni=1, where yi ∈ {1, 1}.
The modeled label proportion of the k-th bag can be defined as

Pk = |{i|i ∈ Sk, yi = 1}|
|Sk| .
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The Learning from label proportions model can be formulated as below:

min
y,w,b

1

2
‖w‖2 + C

N∑
i=1

Lτ + C2

K∑
k=1

|pk(y)− Pk|,

s.t. yi ∈ {−1, 1},
(6.109)

in which Lτ (·) is the supervised loss function. Notice the instance labels y is also a
variable, which can be seen as a bridge between empirical loss and label proportion
loss.

Here, we first discuss the noise generated in the framework of learning from
label proportions, and introduce pinball loss to address this issue. Next, we give the
learning from label proportions model with pinball loss. Also, the dual problem is
given. Then, an alternating optimization method is applied to solve the proposed
model. Finally, the complexity of our method is discussed.

6.2.4.2 Noise and Pinball Loss

Unlike traditional hinge loss, pinball loss pushes the surfaces that define the margin
to quantile positions by penalizing also the correctly classified sampling points [24].
The distance between these two classes is easily affected by the noise on feature x.
Also, improper initialization of label y causes noise as well. As a result, the classifier
with hinge loss is sensitive to feature noise. The pinball loss is related to quantiles
and has been well studied in regression (parametric methods [52] and nonparametric
methods [12, 63]. And it is also used for binary classification recently [23].

The pinball loss is defined as follows:

Lτ (u) =
{
u, u ≥ 0,

−τu, u < 0.
(6.110)

Particularly, when τ = 0, the pinball loss Lτ (u) reduces to the hinge loss. When a
positive τ is used, minimizing the pinball loss results in the quantile value.

To intuitively show the properties of pinball loss, we are going to compare
the classifiers based on the hinge loss and the pinball loss, respectively. Here,
let’s consider a two dimensional example: points are generated from two Gaussian
distribution N(μ1, σ ) and N(μ2, σ ), where μ1 = [0.5,−3]T , μ2 = [0.5, 3]T and
σ = [0.1, 0; 0, 2]. As shown in Fig. 6.7, the solid lines indicate the classification
hyperplane achieved by classifier based on the hinge loss and the dashed lines rep-
resent the hyperplane obtained by pinball loss. The data points are generated from
the same distribution. However, the hinge loss classifier obtains the significantly
different results while the pinball loss hyperplane achieve more stable results. It
is mainly because that the hinge loss classifier measures the distance between two
sets by the nearest points. But pinball loss takes the nearest τ (e.g. 35%) points
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Fig. 6.7 Comparison between the classifiers based on hinge loss and pinball loss. As it is shown,
the results of pinball loss classifier are more stable

to measure this distance, which makes its result less sensitive to noise around the
boundary.

6.2.4.3 Learning from Label Proportions Model with Pinball Loss

With pinball loss, we can formulate the learning from label proportions model as
below:

min
y,w,b

1

2
‖w‖2 + C

N∑
i=1

Lτ (1− yi(w
T φ(xi)+ b))+ C2

K∑
k=1

|pk(y)− Pk|,

s.t. yi ∈ {−1, 1}.
(6.111)

As the instance labels y is also a variable, one natural way for solving Eq. (6.111)
is via alternating optimization.

Step 1 For a fixed y, the optimization of Eq. (6.109) w.r.t w and b becomes a classic
SVM with pinball loss:

min
w,b

1

2
‖w‖2 + C

N∑
i=1

Lτ (1− yi(w
T φ(xi)+ b)). (6.112)
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Step 2 When w and b are fixed, the problem becomes:

min
y

N∑
i=1

Lτ (1− yi(w
T φ(xi)+ b))+ C2

C

K∑
k=1

|pk(y)− Pk |,

s.t. yi ∈ {−1, 1}.
(6.113)

By taking the strategy presented in [80], we show that the second step above can
be solved efficiently. Since the influence of each bag on the objective is independent,
we can optimize Eq. (6.113) on each bag separately. For a fixed pk(y) = θ , Eq.
(6.113) can be optimally solved by the steps below.

• Initialize yi , i ∈ Bk .
• Suppose the reduction of the first term in (6.113) is δi . Sort δi , i ∈ Bk .
• Flip the signs of the top-R yi which have the highest reduction δi , where R =

θ |Bk|.
By conducting Step 1 and Step 2 alternately until the decrease of objective is

smaller than a threshold (e.g. 10−4), we can obtain the optimal solution.

6.2.4.4 Dual Problem

The problem in Eq. (6.112) can be transformed into:

min
w,b

1

2
‖w‖2 + C

N∑
i=1

ξi ,

s.t. yi(w
T φ(xi)+ b) ≥ 1− ξi, i = 1, 2, · · · , N,

yi(w
T φ(xi)+ b) ≤ 1+ 1

τ
ξi , i = 1, 2, · · · , N.

(6.114)

According to the Karush-Kuhn-Tucker (KKT) sufficient and necessary optimal-
ity conditions, the dual problem of Eq. (6.114) is obtained as follows,

max
α,β

−1

2

N∑
i=1

N∑
j=1

(αi − βi)yiφ(xi)
T φ(xj )yj (αj − βj )+

N∑
i=1

(αi − βi),

s.t.
N∑
i=1

(αi − βi)yi = 0,

αi + 1

τ
βi = C, i = 1, 2, · · · , N,

αi ≥ 0, i = 1, 2, · · · , N,

βi ≥ 0, i = 1, 2, · · · , N.

(6.115)
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Introduce the variables γi , αi and βi . Let γi = αi − βi . The dual problem Eq.
(6.115) has the same solution set w.r.t. α as that to the following convex quadratic
programming problem:

min
γ,β

1

2

N∑
i=1

N∑
j=1

γiyiφ(xi)
T φ(xj )yjγj −

N∑
i=1

γi,

s.t.
N∑
i=1

γiyi = 0,

− τC ≤ γi ≤ C, i = 1, 2, · · · , N.

(6.116)

Suppose γ ∗ = (γ ∗1 , γ ∗2 , . . . , γ ∗l ) is the solution to problem Eq. (6.116). We can
have

w∗ =
N∑
i=1

γ ∗i yiφ(xi), and

b∗ = yj −
N∑
i=1

yiγ
∗
i φ(xi)

T φ(xj ),

where ∀j : −τC < γ ∗j < C.
Then the obtained function can be represented as

f (x) =
N∑
i=1

yiγ
∗
i φ(xi)

T φ(xj )+ b∗,

where ∀j : −τC < γ ∗j < C.

6.2.4.5 Overall Optimization Procedure

Based on the detailed explanation above, the overall optimization procedure is
summarized in Algorithm 6.18.

By alternating between solving w∗, b∗ and y, the objective is guaranteed to
converge, for the reason that the objective function is lower bounded, and non-
increasing. Empirically, the alternating optimization typically terminates fast within
ten iterations.

In practice, the stopping criterion of the overall optimization procedure is that
the objective function does not decrease any more (or if its decrease is smaller than
a threshold).
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Algorithm 6.18 Optimization procedure of learning from label proportions

1: Input: {xi}Ni=1, {Pk}Kk=1, C,C2 and C∗ = 10−5C.
2: Output: w∗, b∗ and y.
3: Randomly initialize yi ∈ {−1, 1}.
4: while C∗ < C do
5: C∗ = min{(1+�)C∗, C}.
6: while not converged do
7: % Fix y.
8: w∗ =∑N

i=1 γiyiφ(xi ).
9: b∗ = yi −∑N

i=1 yiγ
∗
i (xi · xj ).

10: % Fix w∗ and b∗.
11: Solve y (Eq.(6.113) with C ← C).
12: end while
13: end while

6.2.4.6 Complexity

Step 1 takes the complexity of SVM with pinball loss. As described in the paper,
the bags are disjoint, the influences of the bags are independent. In Step 2, for
each bag Sk , sorting takes O(|Sk|log(|Sk|)), which is same with [80]. Overall, the
complexity is O(

∑K
k=1 |Sk|log(|Sk |)). We know that

∑K
k=1 |Sk| = N and denote

J = maxk=1,2,...,K |Sk|. The complexity is O(Nlog(J )) time.

6.3 Other Enlarged Learning Models

6.3.1 Classifying with Adaptive Hyper-Spheres: An
Incremental Classifier Based on Competitive Learning

6.3.1.1 Basic Theory

A. Basic Theory of Supervised Competitive Learning

We partially borrow the topological structure of CPN to introduce our model. CPNs
are a combination of competitive networks and Grossberg’s outstar networks [19].
The topological structure of CPN has three layers: input layer, hidden layer, and
output layer (Fig. 6.8).

Suppose there are N elements in the input layer, M neurons in the hidden layer,
and L neurons in the output layer. Let vector Vi = (vi1, . . . , viN )T denote the
weights of neuron i in the hidden layer connecting to each of the elements of the
input layer. Then V = (V1, . . . , VM) denotes weight matrix of the instars. If the
training in stage 1 can be viewed as a clustering process, then neuron i is cluster ci
and Vi is the centroid of cluster ci .
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Fig. 6.8 Topological structure of CPN.

When an instance is coming, it will compute the proximity between the instance
and each Vi in the weight matrix, i.e., the centroid of cluster ci . Here, proximity can
be measured by computing inner product netj = V T

j x, (j = 1, 2, . . . ,m). It adopts
a winner-takes-all strategy to determine which neuron’s weights are to be adjusted.
The winner is netj∗ = max{netj }. In other words, the winner is cj∗ whose centroid
is the closest to the incoming instance. The winning neuron’s weights would be
adjusted as follows:

Vj∗(t + 1) = Vj∗(t)+ α[x − Vj∗(t)],

where α is the learning rate, indicating that the centroid of the winning cluster will
move in the direction of x. As instances keep coming, the weights vector—i.e.,
the centroid of the hyper-spheres—tend to move toward the densest region of the
space. This first stage of the CPN’s training algorithm is a process of self-organizing
clustering, although it is structured using a network.

The second part of the structure is a Grossberg learning [19]. We will redesign a
different hidden layer and different connection from the hidden layer to the output
layer.

B. Advantages and Disadvantages of the Original Model

To illustrate the advantage and disadvantage of original model, a set of two-
dimensional artificial data were created and visualized in Fig. 6.9.

In Fig. 6.9a, instances can be grouped into six clusters. Setting the number of
neurons in the hidden layer to six, the first training stage of the model in Fig. 6.8
can automatically find the centroids of the six clusters, which are represented by
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Fig. 6.9 Artificial datasets and the proposed clustering solutions

the weights of the six neurons. The second training stage can learn each cluster’s
connection to the right class. The distance from each instance in Fig. 6.9a to its
cluster centroid is smaller than the distances to the centroids of other clusters. The
dataset shown in Fig. 6.9 is ideal for CPN to classify.

Data distribution in Fig. 6.9a is simplified and idealistic. Data with distribution
similar to Fig. 6.9b will cause two kinds of problems to the original model.

(1) First, the self-organized clustering process depends on the similarity measures
between data points and hyper-sphere’s centroid. Points closer to one cluster’s
centroid may belong to another cluster. Therefore, every cluster should have a
definite scope or radius, and the scope should be as far away from others as
possible.

(2) Second, the number of clusters in the hidden layer is fixed in the original
model. However, it is difficult to estimate the number of clusters in advance.
Given different numbers of neurons in the hidden layer, the accuracy varies
dramatically. The training of the instar layer-i.e., the clustering process-is
contingent on this fixed number.
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C. Building of the DMZ

To solve the first aforementioned problem, we should have a general knowledge
of the scope of the clusters. For example, points of cluster A (in Fig. 6.9b) near
the border may be closer to the centroid of cluster B, so these points will be
considered belong to cluster B in the original model. We must identify the decision
border that separates clusters according to their labels. When two instances with
conflicting labels fall into the same cluster, it gives us an opportunity to identify the
border point that is somewhere between the two conflicting instances (as long as
the instance is not an outlier). To maintain the maximum margin and for the sake of
simplicity, the median point of two instances could be selected as a point in a zone
called a Demilitarized Zone (DMZ), and clusters should be as far away from the
DMZ as possible. As the number of conflicting instances increases, a general zone
gradually forms as the DMZ. This mechanism can find borders of any shapes that
are surrounded by many hyper-spheres.

To solve the second problem, the number of clusters should not be predetermined.
The clusters should be formed dynamically and merged or split if necessary. The
scope of the hyper-spheres, represented by the corresponding radii, should be
adjusted on demand. As an example, consider the situation presented in Fig. 6.9b:
with instances of conflicting labels found in the top cluster, the original cluster
should tune its radius. After training, a new cluster would be formed beneath the top
cluster containing instances of different labels from the ones in the top cluster. The
radii of the two clusters should be tuned according to their distance to the borders.

One single hyper-sphere may not enclose an area whose shape is not hyper-
spherical [51]. However, any shape could be enclosed as long as the number of the
formed hyper-spheres is unlimited. Consider the clusters represented by the two-
dimensional circles in Fig. 6.9c. All of the instances can be clustered no matter what
the data distribution is and what the shape of the border is, as long as there are
enough hyper-spheres of varying radii and are properly arranged.

D. Proposed Topological Structure

Given the solutions above, the structure of our improved model is as follows
(Fig. 6.10):

The first difference is that our model has an adaptive dynamic hidden layer and
the number of neurons in hidden layer is adaptive. The second difference is that
each neuron Hi connects to only one particular neuron in the output layer, and wij

is used to record the radius of neuron Hi .

E. Kernelization

It is challenging for competitive learning models to apply kernel methods because
they cannot be denoted in inner-product forms. Some previous studies use approx-
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Fig. 6.10 Topological structure of the proposed model

imation methods for the kernelization of competitive learning [29, 76]. This paper
uses Nyström method to kernelize the proposed model [28, 40].

Let the kernel matrix written in blocks form:

A =
[
A11 A12

A21 A22

]
,

Let C = [A11 A12]T , Nyström method uses A11 and C to approximate large
matrix A. Suppose C is a uniform sampling of the columns, Nyström method
generates a rank-k approximation of A(k ≤ n) and is defined by:

A
nys

k = CA+11C
T =

[
A11 A21

A21 A21A
+
11A

T
21

]
≈ A,

where A+11 denotes the generalized pseudo inverse of A11.
There exists an Eigen decomposition A+11 = VΛ−1V T such that each element

A
nys
k ij

in A
nys
k can be decomposed as:

A
nys

k ij
= (CT

i VΛ−1V T Cj )

= (Λ−1/2V T Ci)
T (Λ−1/2V T Ci)

= (Λ−1/2V T (κ(xi, x1), . . . , κ(xi , xm)))T • (Λ−1/2V T (κ(xj , x1), . . . , κ(xj , xm))),

where κ(xi, xj ) is the base kernel function, x1, x2, . . . , xm are representative data
points and can be obtained by uniform sampling or clustering methods such as K-
means and SOFM.
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Fig. 6.11 Artificial dataset 3 after Nyström and SVD transformation

Let φm(x) = Λ−1/2V T (κ(x, x1), . . . , κ(x, xm))T , such that A
nys
k ij

=
φm(xi)

T φm(xj ) = κ(xi, xj ).
With Nyström method, we can get an explicit approximation of the nonlinear

projection φm(x), which is:

x → φm(x). (6.117)

To justify why we use kernel methods for our model, we first used Nyström
method to raise the dimension of dataset 3 to 403, then used Singular Value
Decomposition (SVD) to reduce the dimension to 2 for the purpose of visualization.
Figure 6.11 illustrates the transformed dataset 3 from Fig. 6.9c.

Compared with Fig. 6.9c, the data in Fig. 6.11 can be covered with less hyper-
spheres, or each hyper-sphere can enclose more data points. Because the sampling
points in Nyström methods can be obtained dynamically, the projection of Eq.
(6.117) can be used for every single instance in competitive learning and can be
applied directly to our incremental model.

Without loss of generality, we use φm(x) to denote a potential projection of x in
the reminder of this paper. If it works in the original space, the projection of x is to
itself.
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6.3.1.2 Proposed Classifier: ADA-HS

The main characteristic of the proposed model is to adaptively build hyper-spheres.
Therefore, we call the model Adaptive Hyper-Spheres (AdaHS), and the version
after Nyström projection is called Nys-AdaHS.

A. Training Stages

Our algorithms are trained in three stages, which are described below.

Stage 1. Forming Hyper-Spheres and Adjusting Centroids and Radii
(1) Forming hyper-spheres and adjusting centroids

Given that instances are read dynamically, there is no hyper-sphere at the
beginning. The first instance inputted forms a hyper-sphere whose centroid is
itself and initial radius is set to a large value. When a new instance is inputted
and does not fall into any existing hyper-spheres, a new hyper-sphere will be
formed in the same way. If a new instance falls into one or more existing hyper-
spheres, the winner is the one whose centroid is the closest to the new instance.
The winning cluster’s centroid is recalculated as:

ci(t + 1) = ci(t)+ α[φ(x)− ci(t)],

where x is the new inputted instance, c(t) is the original centroid of the hyper-
sphere, c(t + 1) is the new centroid, and α is the learning rate.

When the number of instances that fall within a particular hyper-sphere
grows, its centroid tends to move toward the densest zone.

In order to speed up the search of the winner, we build simple k-dimension
trees for all hyper-spheres. With the knowledge of the radius, it is easy to figure
out the upper and lower bounds of the selected k dimensions. In this way, it
avoids extensive computation of all Euclidean distance of instance and hyper-
sphere pairs.

(2) Building decision border zone: DMZ

The goal of this step is to find the DMZ’s median points that approximate
the shape of the DMZ.

We find the points using the following technique. The first time a labeled
instance falls into a hyper-sphere, the hyper-sphere will be labeled using the
label of this instance. If another instance with a conflicting label falls into the
same hyper-sphere, it indicates that the hyper-sphere has entered the DMZ.
We identify the nearest data point in the hyper-sphere to the newly inputted
conflicting instance, and let pi represent the median point as follows:

pi = 1

2
(φ(xconf lict ing)+ ci),

where φ(xconf lict ing), pi ∈ ci and pi is recorded and used in the posterior
clustering process.
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(3) Adjusting the radii of hyper-spheres
Once a DMZ point is found in a hyper-sphere, the radius of the hyper-sphere

should be updated such that it does not enter the DMZ. The new radius of
hyper-sphere ci should therefore be set as:

ri = d(pi, ci)− dsaf e,

where dsaf e represents a safe distance at which a hyper-sphere should be
from the closest DMZ point. And the logics of this stage are outlined in
Algorithm 6.19 below.

Algorithm 6.19 The forming of hyper-spheres and the adjusting of the centroids
and radii
1: Input: x, the newly read instance.
2: Output: C: A set of hyper-spheres whose centroids and radii are tuned properly;

DMZ: A set of points who shape the decision border approximately.
3: Method:
4: ct = Null, len = −1.
5: for each ct in C do
6: if φ(x) falls into C then
7: % Find the winner of the hyper-spheres.
8: if label(x) = label(ci ) and (len = −1 or dE(φ(x), ci ) < len) then
9: ct = ci .% Store the present temporary nearest hyper-sphere

10: len = dE(φ(x), ci ).%Store the present temp nearest distance
11: else if label(x) �= label(ci ) then %//Split the hyper-sphere
12: pi = 1

2 (φ(xconf licting)+ ci ), φ(xconf licting), pi ∈ ci .
13: Add pi to DMZ.
14: ri = d(pi , ci )− dsaf e.% Adjusting radii rj of hyper-sphere cj
15: Mark ci as “support hyper-sphere”.
16: end if
17: end if
18: end for
19: if ct �= Null then
20: % Adjust the winning hyper-sphere’s centroid
21: ci(t + 1) = ci(t)+ α[φ(x) − ci (t)].
22: else
23: Form a new hyper-sphere, and make φ(x) be the centroid.
24: Let the label of the new hyper-sphere be label(x).
25: end if

Stage 2. Merging Hyper-Spheres
Hyper-spheres may overlap with one another or even be contained in others.
Therefore, after certain period of training, a merging operation should be performed.
Suppose that we have two hyper-spheres, cA and cB , and the radii of them are
not the same. Let cbig = maxradius(cA, cB), csmall = minradius(cA, cB), dt =
d(cbig, csmall), and θ be the merging coefficient. If dt + rsmall ≤ rbig + θ × rsmall ,
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the prerequisite to merge is met. Then let rtemp = dt + rsmall , and the new radius of
the cbig will be rnew = max(rtemp, rbig).

The details of this stage are outlined in Algorithm 6.20.

Algorithm 6.20 Merging of hyper-spheres
1: Input: C: A set of hyper-spheres which are formed in stage 1.
2: Output: C: The remaining hyper-spheres after merging.
3: Method:
4: for each ci in C do
5: for each cj in C except ci do
6: cbig = maxradius(ci , cj ), csmall = minradius(ci , cj ), dt = d(cbig, csmall ).
7: if dt + rsmall ≤ rbig + θ × rsmall then % θ is the merging coefficient
8: Merge ci and cj .
9: end if

10: end for
11: end for

Stage 3. Selecting Hyper-Spheres
Since the training process is entirely autonomous, the number of generated hyper-
spheres could be large. Therefore, the final stage needs to select hyper-spheres.

There are three types of hyper-spheres that are prominent, which are described
as follows:

(1) The first type of hyper-spheres includes large number of instances. Because
these are the fundamental hyper-spheres that contain most data points, they are
marked as “Core Hyper-spheres”.

(2) The second type of hyper-spheres has less instances but locates near the border.
They are marked as “Support Hyper-spheres” because such hyper-spheres can
be found by measuring the distance between hyper-spheres and the nearest
DMZ points.

(3) The third type of hyper-spheres has small number of instances and is far away
from the border. These hyper-spheres can be discarded.

To achieve high classification accuracy, both core hyper-spheres and support
hyper-spheres should be selected. The logic of the third stage is outlined in
Algorithm 6.21.

B. Mini-Batch Learning and Distributed Computing

To make it applicable in large scale applications, we encapsulate the proposed
algorithms into a Map-Reduce framework. We can collect the incoming instances
as mini-batch set and then train them in MapReduce tasks. The computing model of
the algorithms is illustrated in Fig. 6.12.

The collected mini-batch instances can be encapsulated in key-value pairs and
mapped into mapper tasks.
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Algorithm 6.21 Selection of hyper-spheres
1: Input: C: The set of hyper-spheres which are formed in preceding stages.
2: Output: C: The remaining hyper-spheres after selection.
3: Method:
4: for each ci in C do
5: % T is the threshold of the instances number which one hyper-sphere must at least have.
6: % num(c) is a function computing the number of instances in a hyper-sphere.
7: if num(ci ) < T then
8: % Let d(ci ,DMZ) be the distance from the centroid of ci to the nearest data point in

DMZ.
9: if ri < d(ci ,DMZ) then

10: Discard ci .
11: end if
12: else
13: Mark ci as “core hyper-sphere”.
14: end if
15: end for

Fig. 6.12 MapReduce computing model

In each mapper tasks, the operations are based on instances. It queries local cache
for every instance to find out in which hyper-spheres the instance falls, marks the
winning hyper-sphere and the conflicting ones, and sents the hyper-spheres along
with the description of the needed operations in another form of key-value<id,
hyper-sphere> pairs.

In each reducer task, the operations are based on every hyper-sphere, which
is aggregated according to the hyper-sphere id emitted from mapper tasks. The
competitive learning can be conducted collectively with the aggregated instances.
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The tuning of a radius can be performed for only once with the closest conflicting
instance, and it should find out the orphan points and return the tuned hyper-sphere
at the end.

After a turn of the MapReduce tasks, the merging and selection of the hyper-
spheres should be performed. After all of the operations, the tuned hyper-spheres
should be saved to the cache. The orphan points should be retrained in the next turn.
In the whole MapReduce process, sub-tasks do not coordinate with each other. Thus
the hyper-spheres and DMZ are not updated in real time in a mini-batch turn, and
they are updated collectively after all reducer tasks return.

C. Predicting Labels

Just like other supervised competitive neural networks, AdaHS must determine the
winning hyper-sphere in the hidden layer to predict the label of a new instance.
There are two situations. In the first situation, the new instance falls into an existing
hyper-sphere and the label of the instance is determined by the label of the hyper-
sphere. In the second situation, the new instance does not fall into an existing hyper-
sphere, and the label of the new instance is coordinated by the k nearest hyper-
spheres’ labels:

y = arg max
lj

∑
ci∈Nk(x)

wj I (yi = lj ),

where wj = exp(−([dE(φ(x), cj )
2]/[2r2

j ])); i = 1, 2, . . . , L; j = 1, 2, . . . , k;
Nk(x) is the k nearest hyper-spheres; and I is the indicator function. The default
value of k is set to 3.

6.3.2 A Construction of Robust Representations for Small Data
Sets Using Broad Learning System

6.3.2.1 Review of Broad Learning System

This subsection is mainly a simple introduction to the BLS. The details of this
system can be found in [11]. The BLS is designed based on the random vector
functional-link neural network (RVFLNN) [25, 47]. In the BLS, the mapped features
and enhancement features instead of the original features are used to feed into a
single layer neural network. Figure 6.13 shows the structure of the BLS.

In Fig. 6.13, X means the input features, and Y means the corresponding labels.
The label Y uses one-hot encoding, which means all neurons are set to 0 except the
one that belongs to the label is set to 1. The mapped features can be represented as
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Fig. 6.13 The structure of the BLS

follows:

Zi = φi(XWei + βei), (6.118)

where Zi is the i-th mapped features and Wei is the random weights. All the mapped
features are concatenated as Zn ≡ [Z1, Z2, . . . , Zn], then the enhancement features
can be represented as follows:

Hj = ξj (Z
nWhj + βhj ). (6.119)

All the enhancement features are concatenated as Hm ≡ [H1,H2, . . . , Hm].
Therefore, the broad model can be represented as follows:

Y = [Zn|Hm]Wm, (6.120)

where Wm = [Zn|Hm]+Y is the weights of the single-layer neural network and can
be easily calculated through the ridge regression approximation of [Zn|Hm]+ using
the following equation:

A+ = lim
λ→0

(λI + AAT )−1AT . (6.121)

Theoretically, the φi(·) and ξj (·) used in mapped features and enhancement
features can be different functions. The sparse autoencoder is applied to fine-tune the
Wei of mapped features, and the sigmoid function is used to generate enhancement
features in [11].
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6.3.2.2 Proposed BLS Framework and BLS with RLA

A. BLS Framework

To extend the BLS to a framework of transforming inputs into robust representa-
tions, feature extraction methods instead of random mapping are used to generate
mapped features. Let Zi = φi(X) denote the i-th mapped features, where φi(·) can
be any feature extraction method. Different feature extraction methods can generate
different mapped features. Even if all mappings of mapped features use the same
AE method, the mapped features are different due to the randomness of neural
networks. All the mapped features are concatenated as Zn ≡ [Z1, Z2, . . . , Zn], and
the ensemble of mapped features Zn can provide a robust representation of inputs.

The setting of a large number of enhancement nodes in the original BLS is
removed. Deep representations, called enhancement features, are learned from the
ensemble mapped features Zn. The enhancement features can be denoted as Hj =
ξj (Z

n), where ξj (·) can be any feature extraction method. All the enhancement
features are concatenated as Hm ≡ [H1,H2, . . . , Hm]. The concatenation of
mapped features Zn and enhancement features Hm can provide more robust
representations to enhance the performance of downstream tasks.

Figure 6.14 shows the structure of the BLS framework. It should be noted that w
and β used in (6.118) and (6.119) are random, so their method is random mapping.
The mappings φ(·) and ξ(·) in Fig. 6.14 can be any feature extraction method,
including random mapping, autoencoder, convolution feature extraction, recursive
feature extraction, etc. Therefore, w and β are omitted in the new equations.

Further, to generate more different mapped features and enhancement features
in the BLS framework, samples and features can be randomly selected for each
mapping. Figure 6.15 shows the structure of a random version of the BLS
framework.

Fig. 6.14 The structure of the BLS framework
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Fig. 6.15 The structure of a random version of the BLS framework

B. BLS with RLA

Deep autoencoder (DA) is a nonlinear dimensionality reduction approach and
usually works much better than PCA [20]. Instead of the unsupervised architecture
used in DA, LA uses supervised architecture to connect the features and the labels
together. The representation features learned from the LA not only contain the
information of original features but also contain the estimated label belonging to
the sample. In that case, the representation features can provide more information
to the machine learning models and may promote the performance of these models.
Figure 6.16 shows the structure of the LA.

Fig. 6.16 The structure of the LA
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In Fig. 6.16, X means the input features, and Y means the corresponding labels
using one-hot encoding. The label layer is added on the top of the representation
layer, and a softmax function is used to forecast the label. The loss of the
reconstruction of X is measured by the mean squared error (MSE), and the loss
of forecasting label Y is measured by the cross-entropy error (CEE). Therefore, the
loss function of LA can be represented as follows:

loss = 1

n

n∑
i=1

(α(xi − x̂i)
2 − βyilogŷi ),

where n is the number of samples, xi is the i-th sample, x̂l is the i-th reconstruction
sample, yi is the i-th sample’s one-hot label, ŷl is the i-th sample’s softmax output,
α and β are the scale factors.

To illustrate how the BLS framework works, LA is embedded in the BLS
framework as an example. More specifically, the mappings φi(·) and ξj (·) in the
BLS framework is the same feature extraction method, LA. The mapped feature Zn

is learned by using the original data X as the input and output of the LA. After
learning n mapped features, all the mapped features are concatenated as Zn. The
enhancement feature Hm is learned by using the Zn as the input and output of the
LA, then all the mapped features and enhancement features are concatenated as the
final input and fed into any machine learning model.

Because of the random initialization of the weights of LA, each mapped feature
and enhancement feature will be different. Further, randomly picked samples and
randomly picked features can be used as inputs for each LA, and the random
label-based autoencoder (RLA) can generate more different mapped features and
enhancement features in the BLS. The randomness of RLA is controlled by two
parameters: selected sample size and selected feature size. If the selected sample
size and the selected feature size are less than 1, samples and features are randomly
picked according to these two selected sizes. If the selected sample size and the
selected feature size are equal to 1, all samples and features are used to train RLA.
Therefore, LA is a special case of RLA.

Given a two-layer encoder structure, the input fed into a machine learning model
is as follows:

input = [Zn|Hm]
= [Z1, . . . , Zn|H1, . . . , Hm]

=
[

σ(w11σ(w12x + b12)+ b11), . . . , σ (wn1σ(wn2x + bn2)+ bn1)|
σ(w

′
11σ(w

′
12Z

n + b
′
12)+ b

′
11), . . . , σ (w

′
m1σ(w

′
m2Z

n + b
′
m2)+ b

′
m1)

]
,

where w is the weight, b is the bias, and σ(·) is the activation function.
The number of mapped features n and the number of enhancement features m are

different and depend on the complexity of modeling problems. Additional mapped
features and enhancement features can be added to achieve a better performance
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when the setting (n,m) cannot reach the desired accuracy. The pseudocode of the
BLS with RLA is shown in Algorithms 6.22 and 6.23.

Algorithm 6.22 Broad learning: increment of additional enhancement features
1: for i = 0, i < n do
2: Train RLA model with training data set.
3: Generate Zi using the RLA.
4: end for
5: Concatenate the mapped features Zn ≡ [Z1, Z2, . . . , Zn].
6: for j = 0, j < m do
7: Train RLA model with data set Zn.
8: Generate Hj using the RLA.
9: end for

10: Concatenate the mapped features and enhancement features [Zn|Hm] as inputs.
11: Train the machine learning model.
12: while VALIDATION ERROR is not satisfied do
13: Train RLA model with data set Zn.
14: Generate Hm+1 using the RLA.
15: Concatenate the mapped features and enhancement features [Zn|Hm+1] as inputs.
16: Train the machine learning model.
17: m = m+ 1.
18: end while

Algorithm 6.23 Broad learning: increment of additional mapped features
1: for i = 0, i < n do
2: Train RLA model with training data set.
3: Generate Zi using the RLA.
4: end for
5: Concatenate the mapped features Zn ≡ [Z1, Z2, . . . , Zn].
6: for j = 0, j < m do
7: Train RLA model with data set Zn.
8: Generate Hj using the RLA.
9: end for

10: Concatenate the mapped features and enhancement features [Zn|Hm] as inputs.
11: Train the machine learning model.
12: while VALIDATION ERROR is not satisfied do
13: Train RLA model with training data set.
14: Generate Zn+1 using the RLA.
15: Concatenate the mapped features Zn+1 ≡ [Zn,Zn+1].
16: for j = 0, j < m do
17: Train RLA model with data set Zn+1.
18: Generate Hj using the RLA.
19: Concatenate the mapped features and enhancement features [Zn+1|Hm] as inputs.
20: Train the machine learning model.
21: end for
22: n = n+ 1.
23: end while
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In addition, it should be noted that the BLS is not conflicted with feature selection
methods. The BLS can be used before or after the feature selection methods,
and the selected features can also be concatenated with the mapped features and
enhancement features.
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Chapter 7
Sentiment Analysis

Sentiment analysis (SA) refers to the use of computational linguistics to identify
and extract subjective information in source material, usually unstructured and
heterogeneous text data [24]. This chapter summarizes the recent findings of the
authors’ research team on SA [7, 15, 21–24, 28]. It has two sections. Section 7.1
is word embedding with two Sect. 7.1.1 is about single sense model vs. multiple
sense model while Sect. 7.1.2 is about intrinsic vs extrinsic evaluation. Section 7.2
outlines the SA applications.

SA can be extensively applied to a large number of application scenarios such
as improving customer service and analyzing social media. There are three types of
SA in terms of classification levels. i.e., aspect-level, sentence-level and document-
level SA. Document-level SA means predicting the sentiment polarity of a document
which is composed of several sentences. Sentence-level SA refers to detecting the
sentiment of a single sentence. Furthermore, a document or sentence may describe
some aspects of a product like travel product and we sometimes need to know the
exact sentiment polarities of each aspect. This is regarded as aspect-level SA. Taking
a tourism review as an example, “We went to The Forbidden City last week, and the
tour guide is knowledgeable, but it was crowded in The Forbidden City. The worst
thing was that it rained when we visited” discusses the cicerone, scenery spot and
weather [24]. Here the tour guide is praised whereas the scenery spot and weather
are criticized in this tourism review.

Text, audio, image and video comprise the basic information carriers in modern
times. Users post plenty of microblogs and tweets on social media platform such as
Microblog and Twitter. People can obtain valuable knowledge from different kinds
of aforementioned medium. In fact, not only text modality but also audio video
modalities convey sentiment information. However, how to effectively extract useful
information from unstructured text data remains a challenge. To this end, researchers
presented a large amount of sophisticated SA techniques to tackle this challenge. As
shown in Fig. 7.1, existing SA techniques can be classified as three types, namely
lexicon-based, traditional machine learning based and new approaches.
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Sentiment lexicon, which contains numerous sentiment words with different sen-
timent polarities or intensities, is one of the most popular lexicon-based approaches.
sentiment lexicon can be built by expert knowledge, which requires huge human
work and resources. Therefore, some data-driven methods [15, 27] are created to
automatically construct the sentiment lexicon and cover as many sentiment words
as possible. General steps of sentiment lexicon based SA are as follows:

• extract sentiment words from a given sentence or document.
• sum the sentiment scores of each sentiment words in the sentence or document.
• classify the sentence or document according to the total sentiment score.

Traditional machine learning based approaches, such as naive bayes and rule
based approach get good performances on a number of SA tasks including sentence-
level and document-level. Taking rule-based approaches as an example, it consists
of, as the name partially suggests, a set of rules that classify data in data space.
For instance, VADER [11], a simple rule-based modal, contains a gold-standard
list of lexical features. extensive experiments on four distinct domain datasets
demonstrated that VADER outperformed some benchmarks in the social media
domain.

Recently, a lot of new approaches are proposed among which deep learning
based and hybrid approaches attract more attention. Deep learning based approaches
employ deep learning techniques such as recurrent neural network [25], long short-
term memory model [9], convolutional neural network [13], memory networks
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[26] and transformer [29] to classify sentences or documents. Hybrid approaches
combine the advantages of different methods and get the state-of-the-art on many
benchmark SA datasets. For example, cambria et al. [5] proposed an ensemble
of symbolic and sub-symbolic AI techniques to perform sentiment analysis. More
concretely, they built a new three-level knowledge representation SenticNet 5 for
SA, where long short-term memory model (LSTM) was used to discover verb-
noun primitives. The generation process largely extend the coverage of basic
SenticNet4 [4].

In general, raw data contains numerous useless information. Therefore, it is
necessary to pre-process raw data for machine learning and deep learning based
SA. For example, HTML contains a lot of HTML tags and non-alphabetic signs
which should be removed to improve the data quality. In this paper [7], the authors
proposed a data pre-processing framework which is proved to be effective in SA
task. The first step is data transformation, where all the HTML tags, non-alphabetic
signs, stop words and non-informative words like file, movie, actor, actress, scene
are removed from the raw data. After that, stemming is performed on the documents
to reduce redundancy. Then, three feature matrices are constructed for each of the
datasets based on three different types of feature weighting : TF-IDF, FF and FP.
Furthermore, the second step is filtering step, where univariate method chi-squared
is utilized to conduct filtering procedure and it measures the dependency between
the word and the category of the document it is mentioned in. If the word is frequent
in many categories, chi-squared value is low and vice versa. Extensive experiments
indicate that appropriate text pre-processing methods including aforementioned data
transformation and filtering can significantly improve the classifier’s performance.
Nevertheless, machine learning and deep learning models cannot directly process
words or sentences. In this case, we need a more generalized method to convert the
unstructured text data into vector space where words, sentences and even documents
can be represented as vectors. This process is named as word embedding or word
representation which will be introduced in next section.

7.1 Word Embedding

7.1.1 Methods: Single Sense Model vs Multiple Sense Model

Distributional hypothesis proposed by Harris [8] is the footstone of NLP and word
embedding. The word embedding methods consists of three types [23]: matrix-
based methods such as TF-IDF matrix, Latent Semantic Analysis (LSA) [14],
and GloVe [20]; cluster-based methods, such as Brown [3]; and neural network
based methods, such as Neral Network Language Model (NNLM) [1], Log-Bilinear
Language model (LBL) [18], C&W [6], skip-gram [17], continuous bag-of-words
model (CBOW) [17], and FastText [12], etc.
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The aforementioned methods deal with the single sense word embedding, which
fails to represent words with multiple meanings. For example, word “apple” is
a kind of fruit when it occurs in an article about food or botany; while “apple”
refers to a technology company when it comes with MacBook, iphone, etc. In
single sense model, only one vector is generated for word “apple” by averaging
the results for all meanings, and it cannot comply with all language rules. This calls
for a multiple sense word embedding, where each sense of the word corresponds
to an independent word vector which serves as an auxiliary vector in the mean
while.

How to determine a word’s sense according to the current context is one of the
greatest challenges for multiple sense word embedding. An intuitive method is to
represent the corresponding sense vector via clustering all contexts of the target
word by maximizing the probability P(S) in formula (7.1).

P(S) =
n∏

i=1

mi∏
j=1

p(w
j

i |C(w
j

i )) ≈
n∏

i=1

mi∏
j=1

p(w
j

i |C(wi)) (7.1)

where S = w1, w2, . . . , wn is the word sequence of a sentence, wi is the ith word,
C(wi) is the context of word wi , mi is the number of total senses of word wi , w

j
i is

the embedding for the j th sense of the ith word. Here, replacing C(w
j
i ) with C(wi)

is an effective simplification method.
Based on this intuitive idea, tow-stage hard clustering method [10] was pro-

posed to learn the multiple prototype embedding by means of spherical K-means
algorithm and relabeling contexts with corresponding cluster centroids before
training. However, the spherical k-means cluster is time-consuming and relabeled
context may lose certain detailed information. Zheng Y. et al. [28] presented multi-
prototype continuous bag-of-words model (MCBOW) based on a common word
vector cell and CBOW, which is illustrated in Fig. 7.2. The objective of this
model is to predict multiple target word embedding by exploiting different context
information. For each prediction, every context word containing several different
sense embeddings (represented by light green modes), the red arrows show how
each sense embedding is chosen to form a temp context vector (represented by pink
nodes) in Fig. 7.2. Here, uj

i is the weight (coefficient) for the ith word sense w
j
i .

The selection procedure is based on the similarity between the target word’s context
and the temp context vector. Then the embedding of target word is determined
and the vectors is updated through stochastic gradient descent [2] based back-
propagation.
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Fig. 7.2 Multi-prototype continuous bag-of-words model [28]

7.1.2 Evaluation: Intrinsic vs Extrinsic

Intrinsic evaluation and extrinsic evaluation are two perspectives to measure the
quality of learned word embeddings. Intrinsic evaluation mainly focus on evaluating
the word properties, such as the semantic information, syntactic information,
and morphology information, etc. While, extrinsic concentrate on specific natural
language processing (NLP) tasks in practice.

Some methods employed as intrinsic evaluation for single sense word embedding
are shown as follows. Word similarity (WS) measures the similarity between two
words by calculating the cosine values of their word vectors; Word analogy (WA)
explores the analogical relationship between the word pair and searches for the other
matching word pairs satisfying the same relationship; Word synonym detection
(WSD) is to find the synonyms given the current token; Selectional preferences (SP)
utilizes the verb-noun pairs to construct a verb-noun phrase and noun-verb phrase.

For multiple sense embedding models, each word contains various sense vectors
and the aforementioned basic evaluation methods may fail. Thus, four cosine value
based distances were proposed by [10], i.e. AvgSimC, GlobalSim, AvgSim, and
LocalSim.

For extrinsic evaluation, the learned word embeddings are fed to a specific
model as features or for the initialization of neural networks. The tasks includes
named entity recognition (NER), part-of-speech tagging (POST), text classification
(TC), and sentiment analysis (SA), etc. Different from the small intrinsic evaluation
datasets, extrinsic evaluation datasets usually contains sufficient training and test
samples. However, the input word embedding and the experiment settings may both
influence the final results. Thus, it is important to control the experiment settings
while evaluating the learned word embeddings using extrinsic evaluation methods
[23].
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7.2 Sentiment Analysis Applications

As mentioned in Sect. 7.1, sentiment analysis can be applied to a number of
application scenarios such as product review analysis and investor sentiment
analysis.

The rapid development of online travel websites like TripAdvisor1 lead to a
significant increase in user-generated content (UGC) [16]. Here UGC refers to
reviews and interactions among users on travel websites. These user generated
reviews will be displayed under a certain travel product and other users who
browse the web page of this travel product will see related reviews. Therefore,
it is necessary to design an algorithm to automatically analyze such reviews and
travel websites can improve their service accordingly. In 2018, [15] proposed a
framework named DWWP for tourism review SA, where a domain-specific new
words detection method (DW) and word propagation (WP) are presented. Tourism
reviews have a number of user-invented domain-specific words such as ” (a large
costume show), proper nouns, converted words and multiword expressions (MWEs)
which are not included in the existing sentiment lexicons. Manual detection of such
words is time-consuming and costly. Therefore, automatic and effective construction
of a high-quality tourism-specific sentiment lexicon is of great value. What’s more,
Chinese SA was even harder due to the lack of segmentation symbols like blank
space in English. In this case, the aforementioned four types of words cannot
be easily detected by Chinese word segmentation tools. Besides, one limitation
of existing data driven sentiment lexicon construction methods is the lack of
robustness. To this end, DWWP framework is presented to solve the above issues
and build a high-quality tourism-specific sentiment lexicon.

Figure 7.3 is the concept map of the proposed DWWP framework. As shown
in the figure, raw data is first collected, pre-processed and then fed into domain
new words detection (DW) block. First, Chinese word segmentation tool is utilized
to segment the raw text data into a series of single morphemes. Then the authors
proposed a statistical indicator named Assembled Mutual Information (AMI) to
determine if a candidate word is a valid word or not. The formula of AMI is as
follows:

AMI(w) =
∑
j

(log
nw/N

T

√∏T
i=1[(nj

wi − nw + sf )/N]
) (7.2)

where w means the candidate new word which is composed of T single morphemes.
nw is the occurrence number of w, whereas nmi is the occurrence number of mi . N
stands for the total number of documents. If the AMI score of a candidate new
word is high, it is more probable to be a valid new word and vice versa. With
the help of this domain new words detection algorithm, plenty of domain new

1 https://www.tripadvisor.com.sg/.

https://www.tripadvisor.com.sg/
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words, converted words, proper nouns and multiword expressions can be obtained.
Next, a word propagation algorithm is employed to build a high-quality tourism-
specific sentiment lexicon. Here the algorithm starts from a small set of seed words
(detected new words are partly included in the seed words). Then both the semantic
similarity (measured by cosine value between two word vectors) and statistical
similarity (measured by pointwise mutual information) are used to measure the real
world similarity between two words. Additionally, an optimization function which
considers seed word, semantic similarity, statistical similarity is designed to tune
the sentiment scores of sentiment words. Extensive experiments on Chinese tourism
review dataset demonstrate the superiority of the proposed DWWP SA framework.

Besides the product review analysis, SA can also be applied to investor sentiment
analysis. Shi et al. [21] proposed a text mining system using data cleaning, text
representation, feature extraction and a two-step sentiment analysis techniques to
identify individual investor sentiment and comply an index. Then the investor
sentiment index is applied to Chinese stock market to study its relationship with
CSI 300 stock index returns. Investor sentiment measure process is as follows:

• Extract individual investor posts from large-scale online stocks forum posts on
East money stock forum.

• Employ linguistic module to process posts data, where text representation,
feature extraction and noise classifier are utilized.

• The processed text data is fed into a sentiment identification block (support
vector machine classifier in this section). Here bullish-bearish classifier is used
to identify investor sentiment as either bullish or bearish.

• Build investor sentiment index and the index formula is:

Mt = ln
[ 1+MBUY

t

1+MSELL
t

]
(7.3)

where MBUY
t is the total bullish posts in time interval t , and MSELL

t is the total
bearish posts in time interval t .

Based on 5,163,210 online posts on East money stock forum, investor sentiment
index is built by means of the aforementioned investor sentiment index construction
method. The result shows that on average, investor sentiment is towards bullish,
which verifies the viewpoint of investors’ irrational biases in behavioral finance [19].
Moreover, this chapter studied the relationship between CSI 300 index and investor
sentiment index. The similarity rate of investor sentiment is 60.76% and is much
higher than that of institutional view, which suggests that investor sentiment from
online stock forum can predict stock returns, especially short term. To this end, this
chapter established a 3 order VAR model which indicates the asymmetric effects of
investor sentiment on stock market.
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Sentiment analysis, a promising research field in natural language processing
(NLP), attracts more attention in recent years. With the development of deep
learning based NLP techniques, the performance of SA increases fast. Basic SA
techniques such as word embedding as well as the application scenarios will be the
future research focus.
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Chapter 8
Link Analysis

Link analysis has been recognized as an effective technique in data science to
explore the relationships of objects. The objects can be social events, people,
organization and even business transactions. This chapter reports the practical
models of link analysis in various data-driven application areas. Section 8.1 presents
a recommendation system for marketing optimization [1]. Section 8.2 is about
advertisement clicking prediction [2]. Section 8.3 presents a model for customer
churn prediction [3]. Section 8.4 provides node coupling clustering approaches
for link prediction [4]. Finally, Sect. 8.5 discusses a pyramid scheme model for
consumption rebate frauds [5].

8.1 Recommender System for Marketing Optimization

This section proposes a new method called trigger and triggered (TT) model. It aims
to solve the problems described above and provide a lifecycle recommendation. The
proposed method consists of two parts. The first part eliminates concentration noise
in the training data and can be used as independent anonymous recommendation
system. The second part serves as a recommendation system with lifecycle aware-
ness among products. In the following, Sect. 8.1.1 introduces terminologies and
related techniques while Sect. 8.1.2 describes the proposed model.

8.1.1 Terminologies and Related Techniques

8.1.1.1 Score Matrix

For convenience of discussion, this section uses the term “score-matrix” to describe
the score between different stock keeping units (SKU, a unique identification of
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each products). The score of SKU can be the number of times of co-purchases, or
that of sequential purchases (a customer buys B because of the product A is bought
first) or the similarity of products.

8.1.1.2 Weibull Distribution

The Weibull distribution [6] is one of the most widely used lifetime distributions.
It was originally proposed by the Swedish physicist Waloddi Weibull, who used
the model to approximate the distribution of breaking strength of materials.
The versatility of distribution can take on the characteristics of other types of
distributions, by tuning value of the shape parameter [6]. The probability density
function of a Weibull model with a random variable x is shown in (8.1):

f (x) = α

β

(
x − μ

β

)α−1

e
−
(

x−μ
β

)α
(8.1)

where α, β and γ are known as the shape, scale and threshold parameters,
respectively with constraints that α > 0, β > 0, γ > 0. The advantage of Weibull
distribution is its versatility of distribution. Therefore, in this section we use the
characteristics to simulate distributions with a left long tail or right long tail, that
looks like the sequential consumptions from a customer.

8.1.1.3 Gradient Descent

Gradient descent [7] is an optimization algorithm. It uses the method of first-order
iterative gradient optimization to find the minimum of a function. To find a local
minimum of a function, small steps are taken forward from the negative direction
of the gradient of the function at current points. Stochastic gradient descent is a
stochastic approximation of the gradient descent by aggregating a batch of gradient
descent of sample data, which can largely increase the speed of parameter tuning
[8]. Conjugate gradient descent derives from gradient descent, but instead of using
gradient descent, it applies conjugate directions in the process of optimization [9].

8.1.1.4 Loss Function and Measurement

There are several metrics in the evaluation of recommender system [10, 11]:
accuracy, coverage and diversity. Accuracy is the most important metric in a
recommender system. A recommender system for top-k will give top k items to
users in a sequence. There are multiple ways to measure its accuracy, for example:

precision@k =
∣∣Tclicked ∩ TK,recommended

∣∣
K

(8.2)
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where Tclicked is the items have been clicked in the test set for a user, TK, recommended
is the k items recommended to a user.

If the rank of recommendation items is the major concern, the metric ap @ k will
be used (see Eq. (8.3)).

ap@k =
k∑

n=1

P(n)

min (m, k)
(8.3)

where p(n) denotes the precision at the nth item in the item list.
For ap @ k metric, the same recommendation with different ranks will give

different evaluations. For example, if user bought 3 items, follows recommended
item #1 and #3, then ap@10= (1/1+ 2/3)/3 � 0.56. For the same recommendation
list, if user follows item #1 and #10, then ap@10 = (1/1 + 2/10)/3 = 0.4.

The metrics are applied to evaluate the difference between estimated and actual
purchase time, which are ŷc

u and yc
u. This section uses the mean absolute error

(MAE), the root means square error (RMSE) and the mean absolute percentage
error (MAPE) to evaluate the overall effect. The definitions are shown in (8.4), (8.5)
and (8.6).

MAE = 1

Nu × Nc

∑
c

∑
u

∣∣∣yc
u − ŷc

u

∣∣∣ (8.4)

RMSE =

√√√√
∑

c

∑
u

(
yc
u − ŷc

u

)2

Nu ×Nc

(8.5)

MAPE = 1

Nu × Nc

Nu×Nc∑
1

∣∣∣∣∣
yc
u − ŷc

u

yc
u

∣∣∣∣∣ (8.6)

8.1.2 Trigger and Triggered Model

The goal of recommender systems is not only to satisfy customers but also to
meet the demands of marketing. From the view of marketing, the accuracy along
with the history data cannot be the only measurement, the goal of marketing
is the other important metric. In addition, the other contribution in this method
is to effectively connect experts’ knowledge with algorithm. Unlike traditional
recommender systems, Trigger and Triggered (TT) model concerns more on con-
centration elimination, marketing optimization and lifecycle of trigger and triggered
products. The workflow moves from product to personalized granularity through
two independent algorithms: TT_PAR and TT_PPE. TT_PAR is responsible for the
generation of meaningful trigger and triggered pairs, and TT_PPE is for the lifecycle
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Generate add-on products as 

anonymous recommendation

Give meaningful trigger and 

triggered products as input

Monitor the lifecycle of trigger 

and triggered products at 

personalized level

Fig. 8.1 The workflow of TT_PAR and TT_PPE algorithms

of sequential purchases. The relationship between these two algorithms is shown in
Fig. 8.1.

The algorithm TT_PAR handles eliminating concentration noise and maximizing
marketing goals quite well. Trigger and triggered pairs happened in short timeframe
can be treated directly as an anonymous add-on recommendation, and positive
results are shown in the experiment. The TT_PPE algorithm takes trigger and
triggered pairs from each customer as inputs. By combining with customers’ activ-
ities and demographic information, the lifecycles of trigger and triggered products
are estimated, which can be used for both onsite and offsite recommendation and
promotions. The TT_PPE algorithm provides more accurate prediction on lifecycle
of product pairs by comparing with other practical algorithms.

8.1.2.1 Meaningful Trigger and Triggered Pairs

When an algorithm is designed to auto recommend products, accuracy is always
the most important criterion. However, focusing on accuracy alone may lead to the
phenomenon of “filter bubbles”, which means hot products become more popular
but other options may decrease their exposure to customers as a result of sale
diversity diminishing. For example, if a laptop is the most popular item in an
e-commerce site and the popularity reaches to a critical point, the laptop might
be treated as first recommendation option from the view of accuracy, no matter
whatever the customer bought last time. This problem is even more serious when a
store is featured by a certain type of products.

On the other hand, from the marketing perspective, accuracy is the primary
objective. For instance, when the sales of refrigerator inexplicably decline, the
recommender system should transform its role as a promotor to locate potential
customers and increasing exposure of refrigerators.



8.1 Recommender System for Marketing Optimization 437

Table 8.1 The example of a
customer’s consumption
records

Date Product id

2018-01-02 1
2018-01-02 2
2018-01-03 1
2018-01-10 3
2018-01-10 1
2018-01-10 4
2018-01-13 3
2018-01-20 3

Therefore, extracting meaningful trigger and triggered pairs in the history is
important. For example, in a dataset, “iPhone–iPhone case” and “iPhone–bed”
could be two pairs with the same numbers of co-purchase records. To deliver
qualified results, the meaningless pair “iPhone–bed” should be excluded. This
section illustrates the proposed method to run pair cleaning. The cleaned pairs can
be used independently as an anonymous recommendation or combining with other
information for lifecycle prediction.

8.1.2.2 Transformation of Trigger and Triggered Pairs

Trigger-Triggered (TT) pairs are product pairs of a user (at categorical level)
purchased at a different time. An example of an original transaction record for user
u is shown in Table 8.1.

In a store, a customer normally buys multiple products at the same day, and the
same product items or new items will appear in future consumption. As mentioned
above, “the same product” purchase is defined as a repetitive purchase and “new
item” purchase is defined as a complementary purchase.

In general, the TT-pairs are created between purchases at a different time.

8.1.2.3 Extract Meaningful Pairs

It is necessary to design an algorithm to decrease the bias in triggered items. A
TT-Paris filtering method is proposed to solve the problem. It starts with a reverted
ranking approach, and applies second-order mining (a post-stage of data mining
projects in which humans collectively make judgments on data mining models’
performance.) [12, 13] to find meaningful pairs that are most important to the
marketing. The tt-pairs filtering consists of two steps.

Algorithm 8.1 TT-Pairs Filtering

Step1: obtain reverted ranking using formula (8.7)

Step2: second-order mining by experts
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Below we explain these two steps in detail.

Step 1: Rank the tt-pairs via tt-score, and extract k pairs with the highest grades.
The purpose of tt-score is to diminish the concentration bias in triggereds. TT-
pairs are ranked by tt-score instead of numbers of occurrence. The tt-score is
calculated as follows:

t tscore = nor
(
Otrigger1t riggeredj ,Otrigger2t riggeredj , . . .

,Otriggerntriggeredj

)

nor (· ) = x−xmin

xmax−xmin+δ

(8.7)

where O denotes occurrences and δ is a constant value used to increase weights
of a list with higher occurrences.

Step 2: Experts’ opinions about the best products.
To collect experts’ opinions about the important products, a filtering and grading
system is designed for marketing experts. The experts are required to filter the
most important pairs and to grade the products.
In this system, once a category code is selected, its triggered candidates are
shown in the following two sections: “Add On Products” and “Products in
Selection Pool”. The first section is what the expert chooses as the most important
triggers and the second section includes all candidates that can be added to the
selected section.
For grading system, the marketing experts will give their weights to three
components: margin, quantity and price for each product (in categorical level),
and observe the correctness of their grades. The final scores for products are
published after their adjustment.
The formula of calculating score is shown in (8.8):

pscore = α ×margin+ β × quantity + γ × price (8.8)

The product score shows the importance of products. Products with pscore higher
than a threshold will be selected. Finally, part of the top k tt-pairs extracted from
step 1 will be excluded if their pscore is less than the expert-defined threshold.

8.1.3 Trigger-Triggered Model for the Anonymous
Recommendation

The anonymous recommendation should match three basic requirements: (1) reduce
concentration bias in the dataset and reflect the logic correlation between products,
(2) help the marketing to promote products, (3) guarantee the variety of products
can be shown on the site.
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Fig. 8.2 Scoring matrix

To realize these goals, we use both the information of the category and SKU level
of products. The categorical connections between tt-pairs are generated based on tt-
scores and experts’ selection which is described in Sect. 8.1.1. The application of
tt-scores and experts’ inputs significantly reduce the problem of concentration bias.
At the product level, linear programming is applied to find the right SKU pairs.

In Fig. 8.2, the matrix is the correlation score of products (tt-pairs). The size of
the matrix is constrained by the generated group pair, and only relative SKUs in
the groups can be connected. The scores in the matrix derive from the historical
transactions. The formula of the score is shown in (8.9):

ppScore = CO −Occurrence+ α × pscore (8.9)

where CO − Occurrence is the number of co-occurrence of these two products
in the last 1 year. The definition of co-occurrence is that the trigger and triggered
products have been bought at the same time or the triggered products have been
bought within 30 days after trigger products bought firstly. The linear programming
problem (shown in (8.10)) is aimed to choose the best scores among all pairs while
satisfying the goals of marketing promotion and recommendation variety will be
reached.

maximize Z = ppScoreij × βij

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βij = 0 or 1
n∑

i=1
βc
ij ≤ ϕj

n∑
j=1

βc
ij ≤ ωi

∑
js is market ing promtion

βc
ij = δj

(8.10)
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where ϕ and ω are both a constant non-negative integer value, and δ is a constant
positive integer value. The parameter ϕ is used to constrain the maximum numbers
of products in each triggered category, that improves the variety of recommendation.
The parameter ω is used to constrain the maximum numbers of a product can
be shown as a triggered recommendation in the recommendation list. The value
restricts over-recommendation on popular items. The parameter δ is used to
promote specific products, makes sure the products can be shown more frequent
at recommendation list.

8.1.4 Trigger-Triggered Model for Product Promotion

Managing the lifecycle of consumption is a key to the success of customer
engagement. Appropriate advertising should be sent to customers at the appropriate
time in order to stimulate customers’ potential consumption. For example, a good
promotion plan should send customers a new iPhone promotion 1 or 2 year after the
consumption of an iPhone, or a case promotion should be sent much earlier once the
customer bought a phone. A product trigger and triggered system has been designed
to track lifecycle of products at individual level, which can be used for product
promotion by real time recommendation system or digital advertising through email
or ad platforms. The principle of the system design is that once a certain product has
been purchased, then the tracking system is activated, and related products will be
sent to customers at right time if the products have not been purchased yet at that
time.

To study the time frame between two sequential purchase activities in personal-
ized level, it is to estimate the probability of a user’s consumption at a time interval
(j, j + Δt). That is the conditional probability p(T ∈ (j, j + Δt|product_u_t)): if
the consumer u is going to buy product i in the future, what is the most likely time
the consumer will buy. By examining the dataset, it is shown that the probability
distribution of p(T ∈ (j, j + Δt|product_u_t)) is usually a long tail with left
or right peak. Therefore, a normal distribution may not be a good candidate to
simulate it. Alternatively, a Weibull distribution has been applied. Wang and Zhang
[14] have applied Weibull distribution to predict the time frame in ecommerce
application. Different from that work, in the section we use a Weibull model with
three parameters to predict the time frame. Threshold parameter is included to deal
with the case that some triggered items normally are not purchased immediately
after the consumption of trigger products. In addition, we use gradient descent
approach to tune the parameters instead of variational inference proposed in [14].
Even though gradient descent inference takes more time to locate a minimum, it
will be easier to derive the algorithm. The probability density function of a Weibull
model with random variable x is shown in (8.11).

As indicated in the formula, the scale parameter β is transformed to be a linear
function of variables βTX, where X is a vector of variables to capture signals of
purchase, including a binary value indicating if the customer bought any same
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product or similar products in time bins t1, t2 . . . tm, or if triggereds have been
purchased during promotion dates, or seasonality information, and etc. To make
sure the derived scale parameter βT

1 X > 0, let’s transform βT
1 X to be eβ

T
1 X. The

derived density equation is:

f (y) = α

eβ
T
1 x

(
y − μ

eβ
T
1 x

)α−1

exp

(
−
(
y − μ

eβ
T
1 x

)α)
(8.11)

For each ith observation at each specific tt-pair c, the density function of purchase
time is shown in (8.12):

p
(
yc
i |Xc

i , α
c, βc, μc

) = αc

e
βc

T

1 xc

(
yc
i −μc

e
βc

T

1 xc

)αc−1

exp

(
−
(

yc
i−μc

e
βc

T

1 xc

)αc)
(8.12)

The distributions of parameters are: αc ∼ N(μα , δα), μc ∼ N(μμ, δμ),
βc ∼ N(μβ , δβ ). It is denoted that ω = (μa, δa, μμ, δμ, μβ ,

∑
β ).

To solve the equation, we build a model separately for each product group m,
where group refers to products at a particular categorical level. Therefore, in each
group, the parameters are ϕ = ({α1,μ1, β1}, {α2, μ2,β2}, . . . , {αm,μm,βm}). By
grouping pairs, the purchase signal of similar products in a group is used. The joint
likelihood for all variables is extended, as shown in (8.13):

L
(
ϕ|Dg

) ∝ L
(
Dg, ϕ

) = p (ω)
m∏

c=1
p (αc, μc, βc|ω)

nm∏
i=1

p
(

yc
i | αc, μc, βc,Xc

i

) (8.13)

Since the model contains many variables, the traditional method is computation-
ally too expensive to get an answer. Instead, functions of parameters are replaced as
constant ci and MLE is used to estimate parameters, as shown in (8.14):

ϕ =
({

α̂1, μ̂1, β̂1
}
,
{
α̂2, μ̂2, β̂2

}
, . . . ,

{
α̂m, μ̂m, β̂m

})

= argmax {L (Data, ϕ)}
= argmin

{ m∑
c=1

(
c1α

c2 + c2μ
c2 + c3β

c2
)+

m∑
c=1

nm∑
i=1
− log

(
p
(
yc
i |Xc

i , α
c, βc, μc

)) }
(8.14)

The pseudocode to solve the previous equation is shown in the following Algorithm
8.2. The parameters (μa, μμ, μβ ) are initialized in the beginning. It is hidden
parameters for grouping. Then Step 1 in the algorithm is to get a local minimal
value of parameters ϕ, that is ({α1, μ1, β1}, {α2,μ2, β2}, . . . , {αm,μm, βm}). On the
basis of ϕ, parameters (μa, μμ, μβ ) are updated. These two iteration steps continue
until converge.
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Algorithm 8.2 Trigger-TriggeredModel

Initialize
(
μa,μμ,μβ

) =
(
μ0

α, μ
0
μ,μ

0
β

)

i = 0
repeat
for tt-pair c = (1, 2, . . . ,m) in group:

updating parameters (αm,μm,βm) in (8.15) on the basis of known(
μi

α, μ
i
μ, μ

i
β

)

end for
i = i + 1
updating parameters

(
μi

α, μ
i
μ, μ

i
β

)
in (8.16) based on known (αm,μm, βm)

end repeat (convergence)

(αm,μm, βm) = argmin
{
c1α

c − μa
2 + c2μ

c − μμ
2

+ c3β
c − μβ

2 +
nm∑
i=1
− log
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p
(
yc
i |Xc

i , α
c, βc, μc

)) } (8.15)

(
μa,μμ,μβ

) = argmin
{
c1α

c − μa
2 + c2μ

c − μμ
2

+ c3β
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2 + c4μa
2 + c5μμ

2

+ μβ
2

nm∑
i=1
− log

(
p
(
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i |Xc

i , α
c, βc, μc

)) } (8.16)

Formulas (8.15) and (8.16) are hierarchical expression of (8.14) where prior
knowledge are applied, two steps of inference improve the stability of prediction.

The updating methods at here can be algorithms such as Conjugate Gradient
Descent, Broyden-Fletcher-Goldfarb-Shanno or others [7]. The optimum function
[15] in R has been applied for parameters inference.

The experimental study of using a transaction dataset is collected from a retail
store can be found in [1].

8.2 Advertisement Clicking Prediction by Using Multiple
Criteria Mathematical Programming

This section proposes a multi-criteria linear regression (MCLR) [16] and kernel-
based multiple criteria regression (KMCR) [17, 18] algorithms to predict CTR of
ads in a web search engine given its logs in the past.
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8.2.1 Research Background of Behavioral Targeting

8.2.1.1 Concept of Click-Through Rate

This section provides the concept of click-through rate (CTR). For example: As Fig.
8.3 showing, when one user views a known Chinese website 163.com, which has an
ad slot that can display an advertisement. For the media 163.com, the problem is:
Which advertiser should be chosen for this ad slot? The answer can be: Choose the
one with max revenue. The definition is:

Max revenue = Max {CPCi × P−CTRi} (8.17)

where i represents the ith of the advertiser; CPC is the Cost per Click [The money
paid to the media when one ad is clicked, set by advertiser]; and P _ CTR is the
Prediction CTR [Expected CTR, is given by prediction model, the predict target in
this section].

Note that the CTR model is very important for the platform to keep their revenue
maximum. Some machine learning based regression algorithms such as logistic
regression [19], maximum entropy [20], support vector regression (SVR) [21] and
conditional random field (CRF) [22] have been adopted to predict the clicks of
advertisements presented for a query.

In this section, the proposed multi-criteria linear regression (MCLR) and kernel-
based multiple criteria regression (KMCR) algorithms will be used for CTR
prediction. Note that the regression models for CTR problems are different from
classification models because the former do not need the testing process for
verification while the later do. However, the clicking events prediction needs
classification models as introduced below.

Fig. 8.3 Application scenarios of CTR

http://163.com
http://163.com
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8.2.1.2 Concept of Clicking Events Prediction

For the advertiser with several candidate advertisements has the chance to display
their advertisements on the ad slot, he needs to decide which ad to display. Under
this scenario, a clicking events prediction model is needed to solve this problem.
Through model prediction, the advertiser can learn about which ad will be clicked
or not, then he can choose displaying ad that will be clicked for a good revenue.
Figure 8.4 shows the application scenario of Clicking Events Prediction.

8.2.2 Feature Creation and Selection

To show the practical ability of the proposed method, the datasets of track2 of the
KDD Cup 2012 are used for testing (http://www.kddcup2012.org/). The training
set contains 155,750,158 instances that are derived from log message of search
sessions, where a search session refers to an interaction between a user and the
search engine. During each session, the user can be impressed with multiple ads,
then, the same ads under the same setting (such as position, depth) from multiple
sessions are aggregated to make an instance in the datasets. Each instance can be
viewed as a vector (#click, #impression, DisplayURL, AdID, AdvertiserID, Depth,
Position, QueryID, KeywordID, TitleID, DescriptionID, UserID). It means that
under a specific setting, the user (UserID) has been impressed with the ad (AdID) for
#impression times, and has clicked #click times of those. In addition to the instances,

Fig. 8.4 Application scenario of Clicking Events Prediction

http://www.kddcup2012.org/
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the datasets also contain token lists of query, keyword, title and description, where
a token is a word represented by its hash value. The gender and segmented age
information of each user are also provided in the dataset. The test set contains
20,297,594 instances and shares the same format as the training set, except for the
lack of #click and #impression. The test set is generated with log messages that
come from sessions latter than those of the training set. More detailed information
about the datasets can be found in (http://www.kddcup2012.org/).

However, a major challenge is to create efficient features. Feature creation and
selection are the most important steps in solving a supervised learning problem.
After comparing different methods, this section chooses two of them to create the
features, which are called T-Set-1 and T-Set-2, respectively:

8.2.2.1 Feature Creation Method for T-Set-1

In T-Set-1, the bag of words model was used. This method is frequency-based
method that is used to predict the probability of each presented word on a clicked
instance based on each feature (tokens). Then, we built the whole feature space by
combining the query dictionary and ad dictionary.

8.2.2.2 Feature Creation Method for T-Set-2

Two kinds of features, original feature and synthetic feature, are used for modeling
in this section:

1. Original Features: The original feature set contains discrete features and con-
tinuous features. The discrete features are the unique ID of each ad, advertiser,
query, keyword, tile, description, token, gender and age for one user, depth and
position of ads, and the displayed URL. The continuous features are the click-
through rates of each value of the discrete features. When a discrete feature is
being used; the corresponding click-through rate will be activated and adopted as
a continuous feature.

2. Synthetic Feature: First of all, we join any two original discrete features with
each other and use them as synthetic features. We also test some 3-tuple features
but only the QueryID_AdID_UserID is available. Since most 3-tuple features are
too sparse and seldom activated. Secondly, we join the original discrete features
with each of the tokens. Position information is added to the original discrete
features to generate one 2-tuple position-based feature. Bigram features are also
adopted for analyzing the queries, titles and descriptions.

http://www.kddcup2012.org/
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8.2.2.3 Normalization

Since the ranges of all the variables’ value are significantly different, a linear
scaling transformation needs to be performed for each variable. The transformation
expresses as:

xn = xi −min (x1,K, xn)

max (x1,K, xn)−min (x1,K, xn)
(8.18)

where xn is the normalized value and xi is the instance value.

8.2.2.4 Categorization Method for Positive/Negative Samples

To analyze the dataset for predicting accurately, let’s consider:

Advertisement 1: The time of display is 10, the time of click is 0.
Advertisement 2: The time of display is 10, the time of click is 1.
Advertisement 3: The time of display is 10, the time of click is 8.

From above, it can be seen that the gap between advertisements 2 and 3 is bigger
than the gap between advertisements 1 and 2. If we simply categorize those samples
based on click times, those with click times greater than 1 are categorized as positive
samples and those less than 1 as negative samples, then the advertisement 2 and 3
are both labeled as 1 while the label of advertisement 1 is −1. In this situation, the
influence of advertisement 2 and 3 are the same. However, as the time of click 0 and
1 is closer than 1 and 8, it is not reasonable. Therefore, we treat the click-through-
rate as a probability problem. For one wonderful advertisement, someone will click
it while others won’t. Therefore, in this section, we calculate the click-through-rate
(CTR) of each instance, and the average CTR. Then we compare each instance’s
CTR with the average CTR. If it is greater than the average CTR, the label of the
instance should be 1; otherwise, it should be 0. The formula to calculate the CTR is
described as below:

Click − T hrough− Rate(CT R) = (#click + α ∗ β) /

(#impression+ β)
(8.19)

where α = 0.05, β = 75, that obtained from the experiment.
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8.2.2.5 Confusion Matrix

The confusion matrix is used for the performance analysis:

TP (True Positive) the number of records in the first class that has been classified correctly
FP (False Positive) the number of records in the second class that has been classified into

the first class
TN (True Negative) the number of records in the second class that has been classified

correctly
FN (False Negative) the number of records in the first class that has been classified into the

second class

Then four different performance measures are:

Specif icity = T N
T N+FP

;
Sensitivity = T P

T P+FN
;

False Positive Rate = FP
TN+FP

;
False Negative Rate = TN

FN+T N
.

(8.20)

8.2.2.6 Receiver Operating Characteristics (ROC) Graph

Receiver Operating Characteristics (ROC) graph is a useful technique for organizing
classifiers and visualizing their performance. ROC graphs are commonly used in
decision making, and in recent years have been increasingly adopted in the machine
learning and data mining research communities. In addition to a generally useful
performance graphing method, they have properties that make them especially use-
ful for domains with skewed class distribution and unequal classification error costs.
These characteristics have become increasingly important as research continues
into the areas of cost-sensitive learning and learning in the presence of unbalanced
classes. The reader can find details of experimental and comparison studies of the
MCLR and KMCR regression models as well as the classifications MCLP and
KMCP for the clicking events prediction in [2].

8.3 Customer Churn Prediction Based on Feature Clustering
and Nonparallel Support Vector Machine

Bank customer churn prediction is one of the key businesses for modern commercial
banks. Recently, various methods have been investigated to identify the customers
who would leave away. This section presents a framework based on feature
clustering and classification technique to help commercial banks make an effective
decision on customer churn problem.
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8.3.1 Related Work

8.3.1.1 Maximal Information Coefficient

Relationship coefficient is usually used for measuring the similarity of two variables.
Person coefficient is one of the most famous relationship metrics, because it is easy
to calculate and has a naive explanation. However, only linear relationship can be
captured well using this metric when other kinds of dependence work badly such as
sin or cubic function. Recently, [23] proposed a novel relationship measure called
MIC. Inspired by innovative idea, they show that MIC could capture a wide range of
associations both functional and not. Furthermore, the MIC value is roughly equal
to the coefficient of determination R2 in statistics [23]. Now we provide a little
introduction to MIC.

Given a finite set D whose elements are two dimensions data points, one
dimension is x-values and the other is y-values. Suppose x-values is divided into
x bins and y-values into y bins, this type of partition is called x-by-y grid G. Let D|G
represent the distribution of D divided by a x-by-y grid G. I ∗ (D, x, y)= max I(D|G),
where I(D|G) is the mutual information of D|G. There are infinite amount of x-by-
y grids, so there are infinite number of I(D|G) either. Set the maximal I(D|G) as
I ∗ (D, x, y). Given different x- and y-value, a matrix named characteristic matrix
could be constructed as M(D)x,y = I∗(D,x,y)

log min{x,y} . Furthermore, MIC can be obtained
by MIC(D)= maxxy < B(n){M(D)x, y}, where B(n) is the upper bound of the grid size.
The elements in characteristic matrix I ∗ (D, x, y) is chosen from a infinite amount
of I(D|G), thus Reshef et al. develop an approximation algorithm and program for
generating characteristic matrix and the estimators derived from MIC [24, 25]. With
these state-of-the-art utilities, data exploration could be easily completed before
other data mining procedure.

8.3.1.2 Affinity Propagation Clustering

Clustering data through similarity is a popular step in many scientific analysis
and application systems. Frey and Dueck [26] developed a modern clustering
method named “affinity propagation” (AP) which constructs clusters by information
messages exchanged between data points. Given the similarities of each two distinct
data points as input, AP algorithm considers all the instance as potential centroids
at the beginning of the algorithm. And then, algorithm merges small cluster into
bigger ones step by step. Different from classical clustering algorithms like k-means,
each instance is regarded as one node in a network by AP clustering approach.
Messages was transmitted between nodes, so each data point reconsidered their
situation through new information and properly modified the cluster they belong
to. This procedure went on until a good set of clusters and centroids produced.

In this process, there are mainly two categories of message exchanged between
data points. One of them is sent from point i to point j which formulated as r(i, j).
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It illustrates the strength point i choosing point j as its centroid. The other sort
information is from point j to point i as a(i, j). It shows the confidence that one point
j recommends itself as the centroid of another point i. And the author of AP take
r(i, j) ← s(i, j) − maxj ′ s. t. j ′ �= j{a(i, j

′
) + s(i, j

′
)} and a (i, j)← min {0, r (k, k)} +∑

i′s.t.i′ �=i,j max
{
0, r

(
i ′, k

)}} to update current situation. Update is needed only
for the pairs of points whose similarities are already known. This trait makes the
algorithm much faster than other methods. To identify the centroid of point i, point
j that maximizes r(i, j) + a(i, j) should be considered during each iteration. AP
clustering method requires a similarity matrix s as input, and the element of the
matrix s(i, j) provides the distance from point i to point j. In addition, the diagonal
values of the matrix is not assigned 1 as usual. These values are called “preference”
which show how point i is likely to be chosen as a centroid. That is to say, the larger
s(i, i) is, the more probability that point i play a role of a centroid. Obviously, s(i, i)
are key parameters which control the number of final clusters by AP method.

8.3.1.3 Nonparallel Support Vector Machine

Optimization has a long history for discovering valuable patterns and making
decisions [27]. A lot of approaches have been investigated based on optimization
techniques such as SVM [28], multiple criteria linear programming (MCLP) [29],
etc. SVM is a serial of modern methods for data mining and pattern recognition
including classification, regression and other data analytical task. Based on the
theory of statistical learning, SVM use a single hyperplane to construct discrimi-
native model which follow the Structure Risk Minimization (SRM) principle [28].
Recently, inspired by twin SVM [30, 31] (see Chap. 3 as well) proposed a novel
classification method called NPSVM. Similar to twin SVM, this method applied
two nonparallel hyperplanes to handle the classification problem [31].

f+(x) = ωT+· x + b+ = 0 and f−(x) = ωT−· x + b− = 0 (8.21)

Given a binary classification dataset D = {(x1, y1), (x2, y2), . . . , (x�, y�)} with �

instances and n attributes, let �+ + �− = �, �+ positive and �− negative instances.
In order to express by matrix, the positive instances were represented by matrix
A ∈ R�+×n. Each row of matrix A is one instance. The negatives were expressed
by matrix B ∈ R�−×n. So the primal optimization problems for NPSVM are

min
ω+,b+,η+,ξ−

1
2η

T+η+ + c1e
T−ξ− + 1

2c2
(‖ ω+‖2

2 + b2+
)

s.t.− (Bω+ + b+e−)+ ξ≥e− ≥ e−,
Aω+ + b+e+ = η+,

ξ− ≥ 0

(8.22)

http://dx.doi.org/10.1007/978-981-16-3607-3_3
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and

min
ω−,b−,η−,ξ∓

1
2η

T−η− + c3e
T+ξ∓ + 1

2c4
(‖ ω−‖2

2 + b2−
)

s.t. Aω− + b−e+ + ξ+ = e+,
Bω− + b−e− = η−,

ξ+ ≥ 0

(8.23)

where c1, c2 are the model parameters, and e+ and e− are the vector of ones with
proper dimensions. For each hyperplane in 1, NPSVM try to make the instances of
one category close to this hyperplane, and the distance between the instance of the
other class and the hyperplane is more than 1 at least. The Wolf Dual problem for
Eqs. (8.22) and (8.23) could be expressed as

min
α1,α3

1
2

(
αT

1 , αT
3

)
Q
(
αT

1 , αT
3

)T − c2e
T α1

s.t. 0 ≤ α1 ≤ c1e,
(8.24)

where

Q =
[
BBT BAT

ABT AAT + c2I

]
+ E (8.25)

and

min
α′1,α′3

1
2

(
α′T1 , α′T3

)
Q
(
α′T1 , α′T3

)T − c4e
T α′

s.t. 0 ≤ α′3 ≤ c3e,

(8.26)

where

Q =
[

AAT −ABT

− BAT BBT + c4I

]
+
[

E −E

− E E

]
(8.27)

The final decision could be made by comparing the distance to these two
hyperplanes, respectively. The distance could be obtained from

f+(x) = ω+· x + b+
= − 1

c2

(
BT α1 + AT α3

) · x
− 1

c2

(
eT α1 + eT+α3

) (8.28)
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and

f−(x) = ω−· x + b−
= − 1

c4

(−AT α′1 + BT α′3
) · x

− 1
c4

(−eT−α′1 + eT+α′3
) (8.29)

Once the distances has been obtained, for a new customer xj ∈ Rn, the attrition
prediction could be obtained according to the closer hyperplane in Eq. (8.21), such
as

f (x) = argmin
∣∣f±

(
xj
)∣∣ = argmin

∣∣∣ωT±· xj + b±
∣∣∣ , (8.30)

where |·|means the perpendicular distance from point xj to hyperplaneωT±· x+b± =
0.

8.3.2 Customer Churn Prediction with NPSVM

Missing items in data would produce big problems for calculation. Usually, the
missing elements are filled by some fixed real number which is easily distinguish-
able. Another way to process missing values is to remove the features that the ratio
of missing items is higher than certain threshold (like 30%). However, this kind of
operations may be subjective and not suitable.

Instead of directly deleting features, feature selection strategy is applied. Fur-
thermore, to eliminate useless descriptors, it focuses on the relationship and missing
ratio among features. Pairwise relationship between features are applied to reduce
the calculation problem from the missing value. The MIC relationship measure are
calculated through the available values at the same instance for each pair of features,
e.g., there are five customers with two features, “-” represents missing items.

The values for the first feature are {1, 3, 7, 9, -}, and for the other are {-, 2, 6,
7, -}. So items {3, 7, 9} and {2, 6, 7} are the available values that could be used for
the MIC calculation. Thus, even there are numerous missing items for some feature,
the relationship between two features could also been obtained.

In order to combine feature relationship and the missing ratio together for feature
filter, a new measure is defined as:

Pref erence(i) = Max(MICV alue)+ λ

log (MissingRatio(i))+ ε
, (8.31)

where ε is a very small real number and λ is the parameter which is also a real
number. Equation (8.31) provides a new preference measure which balances the
consideration between missing ratio and relationship of features. On the left part of
Eq. (8.31), Max (MICValue) is the maximum of all the MIC values among each pair
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of features. The right part represents the missing ratio of feature i. When affinity
propagation algorithm takes this measure as parameter, as it is showed in Ref. 1,
the larger the preference parameters are, the more probability an instance tended
to become the center of clusters. That means when the missing ratio for feature i
is too large, the corresponding value would be much smaller than the other. As a
result, feature i would has less probability to be chosen as centroid. Finally, only the
centroid features are preserved as the selected features.

Based on these chosen data, two hyperplane for churn and not churn customer
could be constructed according to NPSVM model (8.24) and (8.26). In intuition,
each hyperplane represents one category of customers. Once the two hyperplanes
have been achieved, different decision functions could be obtained by providing
different weights for the two distances f−(x) and f+(x). The parameter μ balances
the two distances after the model construction. This characteristic provides the
capability to make further adjustments when the preference has changed. The
advantage is that the reconstruction and calculation for the model does not need
any more. Once the two hyperplanes have been received, the further adjustments
could be achieved for giving different μ values and recalculating only Eq. (8.30).
The detail of the procedure could be found in Algorithm 8.3.

Algorithm 8.3 MICAP-NPSVM Customer Churn Prediction Framework

Input:
Customer churn training dataset D = {�,C}, Ω = (f1, f2, . . . , fn). The

missing ratio vector
MissingRatio for all the features. Parameters c1, c2, c3, c4, λ, μ, ε.

Output:
Customer churn prediction function F(x).

1: Begin
2: Ω

′ = ∅;
3: for all fi, fj ∈ Ω , i �= j do

4:
(
f ′i , f ′j

)
= FilterMissingI tems

(
fi, fj

) ;
5: M (i, j) = CalculateMIC

(
f ′i , f ′j

)
;

6: end for
7: M (i, i) = Max(M)+ λ

log(MissingRatio(i))+ε
;

8: Y = {Cluster1,Cluster2, . . . ,Cluster�, } = APClustering(M);
9: for all Clusterk ∈ Y do
10: I = ClusterCentroid(Clusterk), I ∈ Clusterk;
11: Ω

′ =Ω
′ ∪ I

12: end for
13: Constructing new dataset D′ according to Ω

′
;

14: Generating churn customer matrix A and not churn customer matrix B from
the new dataset D′;

15: Construct and solve the optimization problem (8.24) and (8.26);
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16: Calculating the distance from instance x to the two hyperplanes f−(x) and
f−(x) by Eqs. (8.28) and (8.29);

17: Obtain decision function by F(x)= abs(f−(x)) − μ · abs(f+(x)).
18: End

The input of the method is the original dataset of customer churn and the
model parameters. In practice, the parameter of c1 to c4 could be arranged as
c1 = c3, λ = 0.5, μ = 1, ε = 0.001. Line 4 extracts two different features fi, fj from
the original dataset D, and filters the rows with missing values in either of the two
features. Line 5 calculates the MIC based on the result of line 4 and stores the
MIC values in the similarity matrix M. According to Eq. (8.31), line 7 combines
the maximum of all the MIC values and the missing ratio of each feature as the
preference measure. Line 8 applies affinity clustering on the similarity matrix M
and obtains feature cluster set Y. Line 9 to 12 selects the centroid of each cluster
from Y and generates a new dataset according to the chosen features D′ in line 13.
Line 14 extracted the churn customer data as matrix A, not churn customer data as
matrix B. Line 15 constructs the optimization problem (8.24) and (8.26) through
matrix A and B, and then solves it. Line 16 constructs the two hyperplanes by Eqs.
(8.28) and (8.29). Line 17 achieve the customer churn prediction decision function
through F(x) = abs(f−(x)) − μ · abs(f+(x)). The detailed data analysis based on a
well-known commercial bank of China can be found in [3].

8.4 Node-Coupling Clustering Approaches for Link
Prediction

This section provides two novel node-coupling clustering approaches and their
extensions for the link prediction problem. They consider the different roles of
nodes, and combine the coupling degrees of the common neighbor nodes of a
predicted node-pair with cluster geometries of nodes. Our approaches remarkably
outperform the existing methods in terms of efficiency accuracy and effectiveness.

8.4.1 Preliminaries

8.4.1.1 Clustering Coefficient

In graph theory, clustering coefficient is a metric that can evaluate the extent to
which nodes tend to cluster together in a graph [32]. It can capture the clustering
information of nodes in a graph [33]. An undirected network can be described as a
graph G= (V,E), where V denotes the set of nodes and E indicates the set of edges.
vi 2 V is a node in Graph G. The clustering coefficient of node vi in Graph G can be
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defined as

C(i) = Ei

ki ·(ki−1)
2

= 2·Ei

(ki · (ki − 1))
(8.32)

where C(i) denotes the clustering coefficient value of node vi. ki represents the
degree value of node vi. Ei is the number of the con-nected links among ki neighbors
of node vi. For example, there is a node v1 in Graph G. The degree value of
node v1 is 5 (i.e. k1 = 5). The number of connected links among the neighbors
of node v1 is 6 (i.e. E1 = 6). Thus, the clustering coefficient value of node v1 is:
C(1) = 2·E1

(k1·(k1−1)) = 2·6
5·(5−1) = 0.6.

8.4.1.2 Evaluation Metrics

In this section, we present two popular metrics for link prediction accuracy: Area
under curve (AUC) and Precision. In general, a link prediction method can compute
a score Sxy for each unknown link to evaluate its existence probability and give an
ordered list of all unknown links based on these Sxy values [34].

It can evaluate the overall performance of a link prediction method. As described
in [35, 36], the AUC value can be considered as the probability that the Sxy value
of an existing yet unknown link is more than that of a non-existing link at random.
That is, we randomly select an existing yet unknown link in the test set and com-
pare its score with that of a non-existing link at a time. There are N independent
comparisons, where the times that the existing yet unknown links have higher Sxy
value are H, and the times that they have the same Sxy value are E. The AUC value
is defined as:

AUC = H + 0.5·E
N

(8.33)

This metric considers N links with the highest Sxy values in all unknown links.
If there are T existing yet unknown links in the top N unknown links [35, 36], the
Precision is defined as:

Precision = T

N
(8.34)

8.4.2 Node-Coupling Clustering Approaches

In this section presents the proposed approaches for link prediction. Firstly, it
presents a new node-coupling degree metric—node-coupling clustering coefficient.
Then, it discusses the process of our approaches. Finally, the complexity analysis is
given.
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8.4.2.1 Node-Coupling Clustering Coefficient

Many similarity-based methods only consider the number or degrees of common
neighbor nodes of a predicted node-pair in link prediction, and few exploit further
the coupling degrees among the common neighbor nodes and the clustering
information to improve the prediction accuracy. Based on the above reason, we
propose a new node-coupling degree metric—node-coupling clustering coefficient
(NCCC), which can capture the clustering information of a network and evaluate
the coupling degrees between the common neighbor nodes of a predicted node-pair.
It also considers different roles of the common neighbor nodes of a predicted node-
pair in a network. Now, we introduce this metric through a simple example.

Figure 8.5 shows an example for predicting the link between nodes M and N in
two networks. Two original networks are described in Fig. 8.5a, b. Figure 8.5c, d are
two subgraphs that consist of nodes M; N and their common neighbors in Fig. 8.5a,
b, respectively. We aim to predict which link between nodes M and N is more likely
to exist in Fig. 8.5a, b. In general, we find that the coupling degrees of nodes M; N
and their common neighbors are higher in Fig. 8.5c, d. Thus, we believe the link of
nodes M; N in Fig. 8.5a is more likely to exist than in Fig. 8.5b. If we apply CN;
AA; RA; PA to predict the link of nodes M; N in these two original networks, we can
gain the same prediction result for each method. The reasons are as follows: from
Fig. 8.5a, b, we can see that the common neighbor set {bdf } of nodes M; N are the
same, and every corresponding common neighbor node has the same degree value
in these two original networks. The similarity metric is the number of the common
neighbor nodes of a predicted node-pair in CN. CN has the same prediction results
because of the same common neighbor node set {bdf } of nodes M; N in these two
original networks. RA; AA are based on the degree values of the common neighbor
nodes. RA has the same prediction probability as AA because of the same degree
value of every corresponding common neighbor node in {bdf } in these two original
networks. For the same reason, PA provides the same prediction result because that
there are the corresponding same degree values for nodes M and N in these two
original networks. However, the link probabilities between node M and node N in
Fig. 8.5a, b are not likely to be the same.

In the above case, inspired by [37, 38], we propose a new node-coupling
degree metric based on the clustering information and node degree—node-coupling
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Fig. 8.5 An example for predicting the link between nodes M and N in two original networks
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clustering coefficient. This metric cannot only resolve the above prediction problem
in Fig. 8.5, but also capture the clustering information of a network. If node n is
a com-mon neighbor node of the predicted node-pair (M,N), the node-coupling
clustering coefficient of noden, NCCC(n), can be defined as follows:

NCCC(n) =
∑

i∈Cn

(
1
di
+ C(i)

)

∑
j∈�n

(
1
dj
+ C(j)

) (8.35)

where Γ n is the neighbor node set of nodes n. (M,N) denotes a predicted
node-pair n ∈ Γ (M) ∪ Γ (N). Cn denotes the common neighbor node set
of the node-pair (M,N) in Γ (N), which includes nodes M, N. Namely
Cn = Γ (M) ∩ Γ (N) ∩ Γ (n) ∪ {M,N}. di denotes the degree value of node i. C(i)
denotes the clustering coefficient of node i. In this metric, 1

di
+ C(i) is considered

as the contribution of node i to the coupling degree of the common neighbor nodes
of the predicted node-pair (M,N). The node-coupling clustering coefficient of node
n is the ratio of the contribution sum of all nodes in Cn to that in Γ (n). In this way,
our approaches can apply this metric that incorporates the clustering information
and different roles of each related node to improve the prediction accuracy for link
prediction.

In Eq. (8.35), since Cn ⊆ Γ (n),
∑

i∈Cn

(
1
di
+ C(i)

)
≤∑j∈�n

(
1
dj
+ C(j)

)
. As

a result, NCCC(n) ∈ (0, 1]. Specially, NCCC(n) = 1 when Cn = Γ (n).

8.4.2.2 Node-Coupling Clustering Approach Based on Probability Theory
(NCCPT)

From probability theory, we propose a new link prediction approach based on the
node-coupling clustering coefficient (NCCC) in the previous section. Given a pair
of predicted nodes (x, y), node n is a common neighbor node of the node-pair (x, y).
P(n) denotes the link existence probability that node x and node y connect because
of node n. P(n) denotes the link non-existence probability that node n connects
node x to node y. Therefore, P(n) = NCCC(n) and P(n) = 1 − NCCC(n).
{A1,A2, . . . ,Ai, . . . ,Am} is the common neighbor set of the predicted node-pair
(x, y), namely Γ (x) ∩ Γ (y) = {A1,A2, . . . ,Ai, . . . ,Am}. We assume that these
common neighbor nodes of the node-pair (x, y) are independent to each other. If
there exists a link between nodes x and y, at least one common neighbor node
in {A1,A2, . . . ,Ai, . . . ,Am} connects node x to node y. According to probability
theory, the link existence probability of the predicted node-pair (x, y), Sxy can be
written as follows:
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Sxy = 1− P (A1)·P (A2) · · ·P (Ai) · · ·P (Am)

= 1− (1− P (A1)) · (1− P (A2)) · · · (1− P (Ai)) · · · (1− P (Am))

= 1− (1−NCCC (A1)) · (1−NCCC (A2)) · · · (1−NCCC (Ai)) · · ·
(1− NCCC (Am))

= 1−∏n∈�(x)∩�(y)

⎛
⎝1−

∑
i∈Cn

(
1
di
+C(i)

)

∑
j∈�n

(
1
dj
+C(j)

)

⎞
⎠

(8.36)

Equation (8.36) is a new node similarity metric in our approach. Clearly, a
larger value of Sxy means a higher probability that there exists a potential
link between node x and y. The related parameters in Eq. (8.36) have been
described in the last section. In Eq. (8.36), since NCCC(n) ∈ (0, 1], we will have

∏
n∈�(x)∩�(y)

⎛
⎝1−

∑
i∈Cn

(
1
di
+C(i)

)

∑
j∈�n

(
1
dj
+C(j)

)

⎞
⎠ ∈ (0, 1], and Sxy ∈ (0, 1]. Specially, Sxy = 1

when Cn = Γ (n) for every node in Γ (x) ∩ Γ (y). For example, we apply our
approach to predict the link probability of nodes M, N in Fig. 8.5.

Fig.5(a) : SMN = 1−
(

1− 2.92
4.92(b)

)
·
(

1− 2.8
2.8(d)

)
·
(

1− 2.92
4.92(f )

)
= 1.

F ig.5(b) : SMN = 1−
(

1− 0.67
3.67(b)

)
·
(

1− 0.67
2.67(d)

)
·
(

1− 0.67
3.67(f )

)
= 0.50.

From the above computing results, we find that the potential link between node
M and node N is more likely to exist in Fig. 8.5a than in Fig. 8.5b. Algorithm 8.4
describes the process of our above approach.

8.4.3 Node-Coupling Clustering Approach Based on Common
Neighbors (NCCCN)

The traditional CN method is based on the number of the com-mon neighbor nodes
of a predicted node-pair [39]. Its similarity metric is defined as follows:

SCN
xy = |�(x) ∩ �(y)| (8.37)

where Γ (i) denotes the common neighbor node set of node i. |Γ (i)| represents the
number of the common neighbor nodes of node i.

Although CN has low complexity in the link prediction problem, it does not
consider the different roles of the common neighbor nodes of a predicted node-pair.
This results in low prediction accuracy. Here, we propose a new link prediction
approach based on CN, which combines the different contributions of different
nodes to the connecting probability with the clustering information of a network.
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In our approach, (x, y) is a predicted node-pair. Node n is a common neighbor
node of the node-pair (x, y). NCCC(n) can be considered as the contribution of
node n that connects node x to node y. Score(n) denotes the contribution score
value that node n connects node x to node y. Therefore, Score(n) = NCCC(n).
{A1,A2, . . . ,Ai, . . . ,Am} is the common neighbor set of the predicted node-pair
(x, y), namely Γ (x) ∩ Γ (y) = {A1,A2, . . . ,Ai, . . . ,Am}. Here, these common
neighbor nodes of the node-pair (x, y) are assumed to be independent to each other.
We use the contribution sum of all common neighbor nodes of the predicted node-
pair (x, y), Sxy, to evaluate the link existence likelihood between node x and y.
Therefore, the new similarity metric in our approach is defined as follows:

Sxy = Score (A1)+ Score (A2)+ · · · + Score (Ai)+ · · · + Score (Am)

= NCCC (A1)+ NCCC (A2)+ · · · +NCCC (Ai)+ · · · + NCCC (Am)

=∑1≤i≤m NCCC (Ai)

=∑n∈�(x)∩�(y)

∑
i∈Cn

(
1
di
+C(i)

)

∑
j∈�n

(
1
dj
+C(j)

)

(8.38)

In our approach, the related parameters in Eq. (8.38) have been described in Sect.
8.4.2. Clearly, a larger value of Sxy means a higher likelihood that there exists a
potential link between node x and y. Γ (x)∩ Γ (y) is the number of common neighbor
nodes of the predicted node-pair (x, y). In Eq. (8.38), since 0 < NCCC(n) ≤ 1,

we have 0 <
∑

n∈�(x)∩�(y)

∑
i∈Cn

(
1
di
+C(i)

)

∑
j∈�n

(
1
dj
+C(j)

) ≤| �(x) ∩ �(y) |, and Sxy ∈ (0,

|Γ (x) ∩ Γ (y)| ). Specially, Sxy = � Γ (x) ∩ Γ (y)� when Cn = Γ (n) or every node in
Γ (x) ∩ Γ (y). For example, we use this approach to compute the similarity score of
the predicted node-pair (M,N) in Fig. 8.5a, b, respectively.

Fig.5(a) : SMN = 2.92
4.92(b) + 2.8

2.8(d) + 2.92
4.92(f )

= 2.19.

F ig.5(b) : SMN = 0.67
3.67(b) + 0.67

2.67(d) + 0.67
3.67(f )

= 0.61.

We obtain the same prediction result as NCCPT. From this example, we find that
our node-coupling clustering approaches can provide better prediction results than
the traditional methods. Algorithm 8.4 illustrates the process of our above approach.

8.4.4 The Extensions of NCCPT and NCCCN

To further improve the performance of link prediction, we extend NCCPT and
NCCCN by adding its clustering coefficient information of every selected common
neighbor node, Cn, to the above two approaches respectively.
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For the same reason, (x, y) is a predicted node-pair; node n is a common
neighbor node of the node-pair (x, y). When we add the node clustering coefficient
information, Cn, in the contribution of node n to the connecting probability based
on NCCPT, we can obtain a new contribution of node n:

NCCC(n) + Cn. However, 0 ≤ NCCC(n) + Cn ≤ 2. This is outside the scope
of the probability value. In order to extend NCCPT, we use the average value of
NCCC(n) and Cn, 1

2 · (Cn +NCCC(n)), as the contribution of node n. Therefore,
Sxy in the extended NCCPT approach (ENCCPT) is defined as follows:

Sxy = 1− P (A1)·P (A2) · · ·P (Ai) · · ·P (Am)

= 1− (1− P (A1)) · (1− P (A2)) · · · (1− P (Ai)) · · · (1− P (Am))

= 1−
(

1− 1
2 · (NCCC (A1)+ C (A1))

)
·
(

1− 1
2 · (NCCC (A2)+ C (A2))

)

· · ·
(

1− 1
2 · (NCCC (Ai)+ C (Ai))

)
· · ·
(

1− 1
2 · (NCCC (Am)+ C (Am))

)

= 1−∏n∈�(x)∩�(y)

⎛
⎝1− 1

2 ·
⎛
⎝

∑
i∈Cn

(
1
di
+C(i)

)

∑
j∈�n

(
1
dj
+C(j)

)

⎞
⎠+ Cn

⎞
⎠

(8.39)

where Cn is the clustering coefficient of node n. The other parameters are the
same as Eq. (8.36). In Eq. (8.39), since NCCC(n) ∈ (0, 1] and Cn ∈ [0, 1], we

have
∏

n∈�(x)∩�(y)

⎛
⎝1− 1

2 ·
⎛
⎝

∑
i∈Cn

(
1
di
+C(i)

)

∑
j∈�n

(
1
dj
+C(j)

)

⎞
⎠+ Cn

⎞
⎠ ∈ [0, 1), and Sxy ∈ (0, 1].

Specially, Sxy = 1 when Cn = Γ (n) and Cn = 1 for every node in Γ (x) ∩ Γ (y). For
instance, ENCCPT is used to predict the link existence probabilities of node-pair
(M,N) in Fig. 8.5a, b as follows:

Fig.5(a) : SMN = 1−
(

1− 0.5·
(

2.92
4.92 + 0.2

)
(b)
)
·
(

1− 0.5·
(

2.8
2.8 + 0.67

)
(d)
)

·
(

1− 0.5·
(

2.92
4.92 + 0.2

)
(f )

)
= 0.94.

F ig.5(b) : SMN = 1−
(

1− 0.5·
(

0.67
3.67 + 0

)
(b)
)
·
(

1− 0.5·
(

0.67
2.67 + 0

)
(d)
)

·
(

1− 0.5·
(

0.67
3.67 + 0

)
(f )

)
= 0.28.

Similarly, (x, y) represents a pair of predicted nodes, and node n is a common
neighbor node of the node-pair (x, y). When we add the node clustering coefficient
information, Cn, in the contribution of node n that connects node x to node y
based on NCCCN, we can obtain a new contribution of node n: NCCC(n) + Cn.
Score(n) denotes the contribution score value that node n connects node x to node
y. Therefore, Score(n) = NCCC(n) + Cn. Hence, the extended NCCCN approach
(ENCCCN) is shown in the following Eq. (8.40).
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Sxy = Score (A1)+ Score (A2)+ · · · + Score (Ai)+ · · · + Score (Am)

= (NCCC (A1)+ C (A1))+ (NCCC (A2)+ C (A2))+ · · ·
+ (NCCC (Ai)+ C (Ai))+ · · · + (NCCC (Am)+ C (Am))

=∑1≤i≤m (NCCC (Ai)+ C (Ai))

=∑n∈�(x)∩�(y)
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(
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)

∑
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(
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⎞
⎠

(8.40)

where C(n) denotes the clustering coefficient of node n. Other parameters are the
same as Eq. (8.38). In Eq. (8.40), since 0 < NCCC(n)≤ 1 and 0≤ C(n)≤ 1, we have

0 < NCCC(n) + C(n) ≤ 2, and 0 <
∑
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(
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+C(i)

)

∑
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(
1
dj
+C(j)

) + C(n)

⎞
⎠ ≤

2· | �(x) ∩ �(y) |, namely Sxy ∈ (0, 2 · � Γ (x) ∩ Γ (y) � ]. Specially,
Sxy = 2 · � Γ (x) ∩ Γ (y)� when C(n) = Γ (n) and C(n) = 1 for every mode in
Γ (x) ∩ Γ (y). For instance, we use ENCCCN to predict the existence possibility
of the link between nodes M and N in Fig. 8.5a, b, respectively. The results are as
follows:

Fig.5(a) : SMN = 1−
(

1− 0.5·
(

2.92
4.92 + 0.2

)
(b)
)
·
(

1− 0.5·
(

2.8
2.8 + 0.67

)
(d)
)

·
(

1− 0.5·
(

2.92
4.92 + 0.2

)
(f )

)
= 0.94.

F ig.5(b) : SMN = 1−
(

1− 0.5·
(

0.67
3.67 + 0

)
(b)
)
·
(

1− 0.5·
(

0.67
2.67 + 0

)
(d)
)

·
(

1− 0.5·
(

0.67
3.67 + 0

)
(f )

)
= 0.28.

From the above prediction results, it can be found that ENCCPT and ENCCCN
have the same prediction results as NCCPT and NCCCN. Moreover, we notice that
the prediction results of ENCCPT and ENCCCN have more obvious differences
than NCCPT and NCCCN in the same example, respectively. This results in better
prediction results compared with our baseline approaches (i.e. NCCPT, NCCCN),
and it shows the importance of the clustering information in the link prediction.
Algorithm 8.4 describes the process of our above extended approaches.

8.4.5 Complexity Analysis of Our Approaches

In real applications, most link prediction methods are based on local analysis and
global analysis. CN is the simplest link prediction method in these methods. As
a representative of the methods based on local analysis, CN has low complexity
and suitable for large-scale networks. Its time complexity is O(n2), where n is the
number of nodes in a network. Its space complexity is O(n2). In contrast, Katz is a
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representative of the methods based on global analysis. Its time complexity is O(n3).
Its space complexity is O(n2). The methods based on global analysis are impractical
for large-scale networks because of their high complexity.

Algorithm 8.4 Node-Coupling Clustering Approaches

1: Set d[ ] = 0; C[ ] = 0;
2: Divide the original network G into the training set TS and test set PS;
3: for each node i in G do
4: Compute the degree value of this node: d[i];
5: Compute the clustering coefficient of this node: C[i];
6: end for
7: for each nonexistent edge (x, y) in G do
8: Compute the similarity score Sxy by Eqs. (8.36), (8.38), (8.39) or Eq. (8.40);
9: end for

10: Arrange the list of all Sxy in descending order;
11: Compute AUC by Eq. (8.33);
12: Return AUC;

As illustrated in Algorithm 8.4, the main operations of our algorithms consist
of lines 3–6 and lines 7–9. The time complexity of lines 3–6 is Oðn2Þ in the
worst case. The time complexity of lines 7–9 is O(n2). Therefore, the overall time
complexity of our algorithms is O(n2). The space complexity of our algorithms is
O(n2). Because our approaches have the same complexity as CN, they are suitable
for large-scale networks. The experimental analysis to evaluate the performance of
proposed approaches on two synthetic datasets and six real datasets can be found in
[4].

8.5 Pyramid Scheme Model for Consumption Rebate Frauds

This section provides a pyramid scheme model which has the principal characters of
many pyramid schemes that have appeared in recent years: promising high returns,
rewarding the participants for recruiting the next generation of participants, and the
organizer takes all of the money away when they find that the money from the new
participants is not enough to pay the previous participants interest and rewards. It
assumes that the pyramid scheme is carried out in the tree network, Erdős-Réney
(ER) random network, Strogatz–Watts (SW) small-world network, or Barabasi–
Albert (BA) scale-free network. The section then gives the analytical results of the
generations that the pyramid scheme can last in these cases.
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8.5.1 Networks

8.5.1.1 Tree Network

Tree networks are connected acyclic graphs. The word tree suggests branching out
from a root and never completing a cycle. Tree networks are hierarchical, and each
node can have an arbitrary number of child nodes. Trees as graphs have many
applications, especially in data storage, searching, and communication [40].

8.5.1.2 Random Network

Random network, also known as stochastic network or stochastic graph, refers to a
complex network created by stochastic process. The most typical random network
is the ER model proposed by Paul Erdős and Alfred Réney [41]. The ER model is
based on a natural construction method: suppose there are n nodes, and assume that
the possibility of connection between each pair of nodes is constant 0 < p < 1. The
network constructed in this way is an ER model network. Scientists first used this
model to explain real-life networks.

8.5.1.3 Small-World Network

The original model of small-world was first proposed by Watts and Strogatz, and
it is the most classical model of small-world network, which is called SW small-
world network [32]. The SW small-world network model can be constructed as
follows: take a one-dimensional lattice of L vertices with connections or bonds
between nearest neighbors and periodic boundary conditions (the lattice is a ring),
then go through each of the bonds in turn and independently with some probability
φ “rewiring” it. Rewiring in this context means shifting one end of the bond to a new
vertex chosen uniformly at random from the whole lattice, with the exception that no
two vertices can have more than one bond running between them and no vertex can
be connected by a bond to itself. The most striking feature of small-world networks
is that most nodes are not neighbors of one another, but the neighbors of any given
node are likely to be neighbors of each other and most nodes can be reached from
every other node by a small number of hops or steps. It has been found that many
networks in real life have the small-world property, such as social networks [42],
the connections of neural networks [32], and the bond structure of long macro-
molecules in the chemical [43].

8.5.1.4 Scale-Free Network

A scale-free network is a network whose degree distribution follows a power law,
at least asymptotically. The first model of scale-free network was proposed by
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Barabasi and Albert, which is called BA scale-free network [44]. The BA model
describes a growing open system starting from a group of core nodes, new nodes
are constantly added to the system. The two basic assumptions of the BA scale-
free network model are as follows: (1) from m0 nodes, a new node is added at
each time step, and m nodes from the m0 nodes are selected to be connected to
the new node (m ≤ m0); (2) the probability Π i that the new node is connected to
an existing node i satisfies 2i = ki/

∑N−1
j=1 kj , where ki denotes the degree of the

node i and N denotes the number of nodes. In this way, when added enough new
nodes, the network generated by the model will reach a stable evolution state, and
then the degree distribution follows the power law distribution. In [45], it was shown
that the degree distribution of many networks in real world is approximate or exact
obedience to the power law distribution.

8.5.2 The Model

8.5.2.1 Assumptions

We consider a simple pyramid scheme that meets the basic features of many pyramid
schemes in the real world, especially the consumption rebate platforms. First, it
has an organizer that attracts participants through promising a high rate of return
compared to the normal interest rate. Besides the promising return, any participant
will be rewarded by the organizer with a proportion of the total investment of
the participants he or she directly attracted, thus the early participants will be
motivated enough to recruit the next-generation participants and the next-generation
participants will do the same thing in order to get more returns. Secondly, we assume
all the participants at current generation are recruited by the participants at the upper
generation, and the organizer pays the participants at the previous generations the
interests and rewards when all possible participants at current generation have joined
in the scheme. The third assumption is that the organizer will take all the money
away when he finds the money from the new participants is not enough to pay the
previous participants interest and rewards. To simplify the model, we also assume all
the participants invest the same amount of money and invest only once. Figure 8.6
is a schematic diagram of the pyramid scheme, which has one organizer and two
generations of participants.

Based on these assumptions, we discuss the pyramid scheme spreads in the tree
network, random network, small world network, and scale-free network below.

8.5.2.2 Tree Network Case

If the pyramid scheme expands in the form of tree network that has a constant
branching coefficient a and the root node of the tree network represents the
organiser, we can simply write the number of participants at the g-th generation
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Fig. 8.6 A schematic diagram of pyramid scheme. From top to bottom are the organizer, the first-
generation participants, and the second-generation participants

as n1 αg − 1 and the total amount of money entering the pyramid scheme at the
g-th generation as mn1 αg − 1, where n1 is the number of participants at the
first generation and m is the amount of money that every participant invests. For
simplification, we assume n1 = a and m= 1. We suppose the number of all potential
participants is N in this case. Removing the interest and rewards, the relationship
between the net inflow of money M of the pyramid scheme and the generation g
when all possible participants at the g-th generation have joined in the scheme can
be given by:

M(g) = αg − r0

g−1∑
i=1

αi − r1α
g (8.41)

where r0 is the promised rate of return of the organizer, and r1 is the ratio of
the money rewarded to a participant to the total investment of the participants he
or she directly recruited. Normally in real pyramid scheme cases, r0 and r1 are
between 0% and 50%. The first term of Eq. (8.41) represents the investment of
all the participants, the second term represents the interest paid to the participants
before the generation g, and the third term represents the rewards paid to the
recruiters of participants at the g-th generation. Notice that in our pyramid scheme,
the participants at the g-th generation are all recruited by the participants at the
(g − 1)-th generation.

The second term of Eq. (8.41) is the sum of geometric sequences, after summing
them up, Eq. (8.41) can be rewritten as:

M(g) = α

α − 1

[
(1− r1) α

g − (1+ r0 − r1) α
g−1 + r0

]
. (8.42)
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Through Eq. (8.42) we can find that if the branching coefficient a satisfies the
condition:

α ≥ 1− r1 + r0

1− r1
(8.43)

the inflow of money M(g) of the pyramid scheme is always positive, so the pyramid
scheme will continue forever under the circumstances.

However, the potential participants are limited to N and the pyramid scheme will
stop eventually. The maximum generation G of the pyramid scheme is given by:

GTR =
[

logα

Nα −N + α

α

]
+ 1 (8.44)

where [x] is the integer part of x. At the G-th generation, all the potential participants
have joined the pyramid scheme, and the organizer will take away all the money
and not pay the interest and rewards any more. We can write the final income of the
pyramid as:

Rp = N − r0

G−2∑
i=1

(G− i − 1) αi − r1

G−1∑
i=2

αi (8.45)

and the income of the participants at the i-th generation is:

Ri =
{
r0 (G− i − 1) ·αi + r1α

i+1 − αi, f or 1 ≤ i ≤ G− 2,
− αi, f or G− 2 ≤ i ≤ G.

(8.46)

Figure 8.7a shows the analytical result and the simulative result of maximum
generation GER when the branching coefficient α changes, and we take the
parameters N = 10,000, r0 = 0.1, r1 = 0.1. Figure 8.7b shows the analytical result
and the simulative result of maximum generation GER when the number of possible
participants N changes, and we take the parameters α = 4, r0 = 0.1, r1 = 0.1.
Figure 8.7 illustrates intuitively that in the tree network case, if other conditions of
the pyramid scheme remain unchanged, the larger the branch coefficient—that is,
the newer participants each person recruits—, the fewer generations the pyramid
scheme can last. Meanwhile, when other conditions remain unchanged, the larger
the number of potential participants, the more generations the pyramid scheme can
sustain, but every new generation needs more participants and this growth of new
participants is exponential.
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Fig. 8.7 (a) The analytical result and the simulative result of maximum generation GTN when
the branching coefficient a change. We take the parameters N = 10,000, r0 = 0.1, r1 = 0.1. (b)
The analytical result and the simulative result of maximum generation GTN when the number of
possible participants N changes. We take the parameters a = 4, r0 = 0.1, r1 = 0.1

8.5.2.3 Random Network Case

If the pyramid scheme takes place in an ER random net-work that has an average
degree k and N nodes, we assume the organizer is a random node in the network
and other nodes represent the potential participants. The organizer recruits the
potential participants nearest to him as the first-generation participants, and the
first-generation participants recruit the potential participants nearest to them as the
second-generation participants, and so on. So the generation of any participant in
the pyramid scheme is given by the shortest path length to the node representing the
organizer. Katzav et al. [46] have given the approximate analytical results for the
distribution of shortest path lengths in ER random networks, the number of nodes
at the i-th generation is about ki if ilogNk < 1 and all the nodes are included in the
pyramid scheme if ilogNk > 1. Therefore, the pyramid scheme in the ER random
network is approximate to the case in the tree network above and the difference is
the branching coefficient α should be replaced by the average degree k.

First, like the case in the tree network, r0, r1, and k should satisfy the following
condition:

k ≥ 1− r1 + r0

1− r1
(8.47)

The approximate maximum generation G of the pyramid scheme in this case is
given by:

GER ≈
∣∣1/logNk

∣∣+ 1 (8.48)
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Fig. 8.8 (a) The analytical result and the simulative result of maximum generation GER when
the average degree k changes. We take the parameters N = 10,000, r0 = 0.1, r1 = 0.1. (b)
The analytical result and the simulative result of maximum generation GER when the number of
possible participants N changes. We take the parameters k = 4, r0 = 0.1, r1 = 0.1. The simulative
results are averaged after 100 simulations

In addition, we can also write the approximate expressions of the organiser’s and
participants’ income which have the same form of Eq. (8.46), which we omit
here. Figure 8.8a shows the analytical result and the simulative result of maximum
generation GER when the average degree k changes, and we take the parameters
N = 1000, r0 = 0.1, r1 = 0.1. Figure 8.8b shows the analytical result and
the simulative result of maximum generation GER when the number of possible
participants N changes, and we take the parameters k = 4, r0 = 0.1, r1 = 0.1.
The simulative results in the figures are averaged after 100 simulations. From Fig.
8.8, we can find that in the ER random network case, the relationship between
maximum generationGER and mean degree k, and the relationship betweenGER and
N are similar to those in the tree network case, where the mean degree k represents
the amount of participants that each participant can recruit averagely. We can also
find that within the range of parameters we have chosen, the analytical results and
simulative results are very close.

8.5.2.4 Small World Network Case

Now we consider the pyramid scheme carries out in an SW small-world network,
to some extent this case is similar to the case in the ER random network. We
also randomly choose a node as the organizer, other nodes represent the potential
participants, and r0, r1 represent the interest rate and reward ratio, respectively. The
generation of any participant in the pyramid scheme is the shortest path length to
the node representing the organizer. Newman and Watts [47] pointed out that the
number of nodes increases exponentially with the average length of the shortest
path when the nodes are infinite. The approximate surface area of a sphere of radius
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r on the SW small-world network can be given by [47]

A(r) = 2e4r/ξ, (8.49)

where ξ = 1/φk, and φ is the rewriting probability and k is the degree of the
corresponding rule graph.

Changing r to g, we can obtain the approximate number of participants at the g-th
generation. Because of the exponential form of A(g), we can deal with this case just
like in the cases of tree network and ER random network. The branching coefficient
α should be replaced by e4/ξ , and the following condition should be satisfied:

e4/ξ ≥ 1− r1 + r0

1− r1
. (8.50)

If the nodes are finite, then the number of nodes reaches the maximum when the
distance from the node to the organizer is near the average length of the shortest
path. If the distance is greater than the average length of the shortest path, the
number of nodes quickly reduces to 0, so it can be approximately considered that
the maximum generation G is close to the average length of the shortest path. The
average path length d of the SW small-world network is given by [47]

lSW ≈ N

K
f (φKN) , (8.51)

where

f (u) ≈
{

1/4, if u→ 0,
lnu/u, if u→∞.

(8.52)

The number of nodes with the average shortest path length to the node representing
the organizer is the largest. So we can infer the maximum generation GSW of the
pyramid scheme is given by [48]

GSW ≈ [lSW
]+ 1 (8.53)

In the simulation, we find that the values of r0 and r1 are very important.
Generally speaking, the greater the values of r0 and r1 satisfying Eq. (8.50) are, the
closer the simulation results and numerical results are. This happens because when
the values of r0 and r1 are larger, the pyramid scheme can easily terminate when
the number of generations exceeds the average shortest path length. Figure 8.9a
shows the analytical result and the simulative result of maximum generation GSW
when the possible participants f changes, and we take the parameters N = 1000,
K = 3, r0 = 0.2, r1 = 0.2. Figure 8.9b shows the analytical result and the simulative
result of maximum generation GSW when the number of possible participants N
changes, and we take the parameters K = 3, φ = 0.1, r0 = 0.2, r1 = 0.2. The
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Fig. 8.9 (a) The analytical result and the simulative result of maximum generation GSW when the
possible participants f changes. We take the parameters N = 1000, K = 3, r0 = 0.2, r1 = 0.2. (b)
The analytical result and the simulative result of maximum generation GSW when the number of
possible participants N changes. We take the parameters K = 3, φ = 0.1, r0 = 0.2, r1 = 0.2. The
simulative results are averaged after 100 simulations

simulative results in the figures are averaged after 100 simulations. In Fig. 8.9, we
find that within the range of parameters we selected, the maximum generation GSW
of the pyramid scheme is not very sensitive to the reconnection probability φ and
the potential participants, and the analytical results are basically in accordance with
the simulative results.

8.5.2.5 Scale-Free Network Case

If the pyramid scheme expands in a BA scale-free net-work, similar to the cases in
ER random network and SW small-world network above, then we also randomly
choose a node as the organizer and other nodes represent the potential participants.
The organizer recruits participants and the participants recruit the next generation
participants through the network connections. To ensure positive inflows, the
following condition must be satisfied:

(1− r1) n (g + 1) ≥ r0

g∑
i=1

n(g), (8.54)

where n(g) represents the number of participants at the g-th generation, and n(g+ 1)
represents the number of participants at the (g + 1)-th generation. The distribution
of shortest path length approximates the normal distribution and the position
corresponding to the highest point of the normal distribution is the average shortest
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path length [49]. The average path length s of the BA scale-free network is given by
[50]

lBA ≈ lnN

lnlnN
. (8.55)

Before the peak, the number of participants per generation grows faster than
the exponential growth. But after that, the number of participants per generation
declines rapidly, so the condition can no longer be satisfied. So we can infer that the
maximum generation GBA is close to the average shortest path length, and is given
by

GBA ≈
[
lBA

]+ 1. (8.56)

Figure 8.10 shows the analytical result and the simulative result of maximum
generation GBA when the number of possible participants N changes. We taken
the parameters r0 = 0.2, r1 = 0.2, and the simulative result is averaged after 100
simulations. We can find that in scale-free networks, the maximum generation GBA
is not very sensitive to the potential participants in Fig. 8.10. The analytical results
can basically reflect this characteristic.

Fig. 8.10 The analytical result and the simulative result of maximum generation GBA when the
number of possible participants N changes. We take the parameters r0 = 0.2, r1 = 0.2. The
simulative result is averaged after 100 simulations
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8.5.3 A Pyramid Scheme in Real World

Although real cases of pyramid scheme are easy to find in news reports, there are few
cases that give details of the number of people involved and the pyramid generations.
Usually, when the organizer of the pyramid scheme disappears, the participants with
loss will report the case to the police, who will then investigate the case. On July 23,
2018, China news network Guangzhou Station reported a pyramid scheme that had
75,663 account numbers and 46 generations, and the pyramid scheme had amassed
76 million yuan in 3 months [51]. This is the same type of pyramid scheme as
described in the introduction. Using the analysis in Sect. 8.3, we assume that the
pyramid scheme carries on the tree network, ER random network, SW small-world
network, and BA scale-free net-work. We then verify which network can describe
the pyramid scheme in the real world well. We assume that one account number
represents a participant.

If this real pyramid scheme expands in a tree network, we can calculate the
tree network’ branching coefficient α ≈ 1.28. This means on average less than two
participants are recruited by each participant. However, we cannot know more about
the connections between the participants, except the branching coefficient.

If this real pyramid scheme spreads in an ER Random network, we can calculate
the average degree k ≈ 1.28 through Eq. (8.48). So each node is connected to 1.28
nodes on average, and the connection probability in the ER random network is less
than 1.28/75663≈ 1.7 × 10−5, which is very small, then isolated nodes and nodes
with degree 1 easily to appear in the network. Although this case is similar to that
of tree network, the branching coefficient in the random network is not stable and it
is easy to end the pyramid scheme if Eq. (8.43) is not satisfied (the minimum of the
formula (1 − r1 + r0)/(1 − r1) is greater than 1). So we think the pyramid scheme
can hardly happen in the ER random network.

If this real pyramid scheme carries out in a BA scale-free network, through
the analysis and simulation, we find that developing to 46 generations needs far
more than 75,663 participants. Therefore, the connections between participants are
impossible to form a BA scale-free network.

If this real pyramid scheme takes place in a SW small-world network and accords
to all our assumptions, then we could find a simulative result to fit the result of
the real pyramid scheme. The parameters we select are N = 100,000, φ = 0.02,
K = 4, r0 = 0.1, r1 = 0.1, and each participant invests 23,500 yuan. The simulative
pyramid scheme has 74,652 participants, and develops to 46 generations, and the
fund pool of the pyramid is about 76 million yuan. The simulation results are in
good agreement with the real pyramid scheme. Figure 8.11a, b show the cumulative
number of participants Ncum, the number of participants Ng in each generation, and
the cumulative money Mcum changing over generation g in the simulative pyramid
scheme.

Figure 8.11 shows that, the number of participants and the amount of accu-
mulated money of the pyramid scheme grow slowly in the initial stage and
explosively in the later stage. Once the growth rate slows down, the amount of the
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Fig. 8.11 The cumulative number of participants Ncum, the number of participants Ng in each
generation, and the cumulative money Mcum changing over generation g in the simulative pyramid
scheme. This is one simulative result in the SW small-world case, the parameters we select are
N = 100,000, φ = 0.02, r0 = 0.1, r1 = 0.1, and each participant invests 23,500 yuan

pyramid scheme’s accumulated money will soon reach a peak and the organizer
will escape. The probability of reconnection in simulation is 0.02, which can be
understood according to the actual situation and means that participants tend to
recruit new participants from familiar people. In fact, according to our investigation
and many news reports, such pyramid frauds always arise in small cities and
most of the participants recruit new participants from their familiar people. As the
generations go on, the network constituted by all participants has the properties
of small world: agglomeration and having some flocks, which are similar to the
interpersonal network. Although our model has been simplified and approximated,
it is enlightening to explain the real case.

Through this simulation analysis, we can speculate that the connections between
participants in the real case may constitute a SW small-world network.

This work is helpful to understand the operation mechanism and characteristics
of the pyramid schemes of consumption rebate type. The model may be able to
apply to some current illegal high-interest loans, if these illegal projects promise a
high interest rate and reward the investors who encourage others to invest in such
projects but the money accumulated is not actually invested in any real projects.
It shows that the pyramid schemes of consumption rebate type are not easy to be
detected by the supervision because of the small amount of funds and the small
number of participants accumulated in the initial stage. After the rapid growth of
funds and participants, it often comes to the end of this kind of pyramid frauds, and
the organizers have often already fled. Therefore for regulators, it is better to nip
such platforms in the bud to avoid any more people suffering a loss. In addition,
to some extent, this research finding provides some basis for further study of such
frauds. For example, we will further consider how the participants’ beliefs about
always having enough new participants affect the operation of these frauds.
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Chapter 9
Evaluation Analysis

Evaluation is one of the key steps in big data analytics, which determines the
merit of data analysis towards the experimental objectives. It usually relates a
trade-off comparison of multiple criteria which may conflict each other or complex
interpretations of the problems in nature. This chapter provides several of evaluation
models of the recent studies on data science. Section 9.1 reviews three evaluation
formations for the known methodologies. Section 9.1.1 describes a decision-making
support for the evaluation of clustering algorithms based on multiple criteria
decision making (MCDM) [1]. Section 9.1.2 is about evaluation of classification
algorithms using MCDM and rank correlation [2]. Section 9.1.3 discusses the public
blockchain evaluation using entropy and Technique of Order Preference Similarity
to the Ideal Solution (TOPSIS) [3]. Section 9.2 outlines two evaluation methods
for Software. Section 9.2.1 is about a classifier evaluation for software defect
prediction [4], while Sect. 9.2.2 is about an ensemble of software defect predictors
by AHP-based evaluation method [5]. Section 9.3 describes four evaluation methods
for sociology and economics. Section 9.3.1 is about a delivery efficiency and
supplier performance evaluation in China’s E-retailing industry [6]. Section 9.3.2
is about the credit risk evaluation with Kernel-based affine subspace nearest points
learning method [7]. Section 9.3.3 is a dynamic assessment method for urban eco-
environmental quality evaluation [8], while Sect. 9.3.4 is an empirical study of
classification algorithm evaluation for financial risk prediction [9].

9.1 Reviews of Evaluation Formations

9.1.1 Decision-Making Support for the Evaluation
of Clustering Algorithms Based on MCDM

In many disciplines, the evaluation of algorithms for processing massive data is a
challenging research issue. However, different algorithms can produce different or
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even conflicting evaluation performance, and this phenomenon has not been fully
investigated. The motivation of this section aims to propose a solution scheme for
the evaluation of clustering algorithms to reconcile different or even conflicting
evaluation performance. This section develops a model, called decision making
support for evaluation of clustering algorithms (DMSECA), to evaluate clustering
algorithms by merging expert wisdom in order to reconcile differences in their
evaluation performance for information fusion during a complex decision-making
process.

9.1.1.1 Clustering Algorithms

Clustering is a popular unsupervised learning technique. It aims to divide large
data sets into smaller sections so that objects in the same cluster are lowly distinct,
whereas objects in different clusters are lowly similar [10]. Clustering algorithms,
based on similarity criteria, can group patterns, where groups are sets of similar
patterns [11–13]. Clustering algorithms are widely applied in many research fields,
such as genomics, image segmentation, document retrieval, sociology, bioinformat-
ics, psychology, business intelligence, and financial analysis [14].

Clustering algorithms are usually known as the four classes of partitioning
methods, hierarchical methods, density-based methods, and model-based methods
[15]. Several classic clustering algorithms are proposed and reported, such as
the K-means algorithm [16], k-medoid algorithm [17], expectation maximization
(EM) [18], and frequent pattern-based clustering [15]. In this section, the six
most influential clustering algorithms are selected for the empirical study. These
are the KM algorithm, EM algorithm, filtered clustering (FC), farthest-first (FF)
algorithm, make density-based clustering (MD), and hierarchical clustering (HC).
These clustering algorithms can be implemented by WEKA [19].

The KM algorithm, a partitioning method, takes the input parameter k and
partitions a set of n objects into k clusters so that the resulting intracluster similarity
is high, and the intercluster similarity is low. And the cluster similarity can be
measured by the mean value of the objects in a cluster, which can be viewed as
the centroid or center of gravity of the cluster [15].

The EM algorithm, which is considered as an extension of the KM algorithm, is
an iterative method to find the maximum likelihood or maximum a posteriori esti-
mates of parameters in statistical models, where the model depends on unobserved
latent variables [20]. The KM algorithm assigns each object to a cluster.

In the EM algorithm, each object is assigned to each cluster according to a
weight representing its probability of membership. In other words, there are no strict
boundaries between the clusters. Thus, new means can be computed based on the
weighted measures [18].

The FC applied in this work can be implemented by WEKA [19]. Like the cluster,
the structure of the filter is based exclusively on the training data, and test instances
will be addressed by the filter without changing their structure.
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The FF algorithm is a fast, greedy, and simple approximation algorithm to the k-
center problem [17], where the k points are first selected as a cluster center, and the
second center is greedily selected as the point farthest from the first. Each remaining
center is determined by greedily selecting the point farthest from the set of chosen
centers, and the remaining points are added to the cluster whose center is the closest
[16, 21].

The MD algorithm is a density-based method. The general idea is to continue
growing the given cluster as long as the density (the number of objects or data
points) in the neighborhood exceeds some threshold. That is, for each data point
within a given cluster, the neighborhood of a given radius must contain a minimum
number of points [15]. The HC algorithm is a method of cluster analysis that seeks
to build a hierarchy of clusters, which can create a hierarchical decomposition of
the given data sets [16, 22].

9.1.1.2 MCDM Methods

The MCDM methods, which were developed in the 1970s, are a complete set
of decision analysis technologies that have evolved as an important research
field of operation research [23, 24]. The International Society on MCDM
defines MCDM as the research of methods and procedures concerning multiple
conflicting criteria, which can be formally incorporated into the management
planning process [24]. In an MCDM problem, the evaluation criteria are
assumed to be independent [25, 26]. MCDM methods aim to assist decision-
makers (DMs) to identify an optimal solution from a number of alternatives
by synthesizing objective measurements and value judgments [27, 28]. In this
section, four classic MCDM methods: the weighted sum method (WSM), grey
relational analysis (GRA), TOPSIS, and PROMETHEE II are introduced as
follows.

WSM

WSM [29] is a well-known MCDM method for evaluating finite alternatives in
terms of finite decision criteria when all the data are expressed in the same unit
[30, 31]. The benefit-to-cost-ratio and benefit-minus-cost approaches [32] can be
applied to the problem of involving both benefit and cost criteria. In this section, the
cost criteria are first transformed to benefit criteria. Besides, there is nominal-the-
better (NB), when the value is closer to the objective value, the nominal-the-better
(NB) is better. The calculation steps of WSM are as follows. First, assume n
criteria, including benefit criteria and cost criteria, and m alternatives. The cost
criteria are first converted to benefit criteria in the following standardization
process.
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1. The larger-the-better (LB): a larger objective value is better, that is, the benefit
criteria, and it can be standardized as

x ′ij =
xij −min

i
xij

max
i

xij −min
i

xij
(9.1)

2. The smaller-the-better (SB): the smaller objective value is better, that is, the cost
criteria, and it can be standardized as

x ′ij =
max

i
xij − xij

max
i

xij −min
i

xij
(9.2)

3. The nominal-the-better (NB): the closer to the objective value is better, and it can
be standardized as

x ′ij = 1−
∣∣xij − xob

∣∣

max

{
max

i
xij − xob; xob −min

i
xij

} (9.3)

Finally, the total benefit of all the alternatives can be calculated as

Ai =
k∑

j=1

wjx
′
ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n (9.4)

The larger WSM value indicates the better alternative.

GRA

GRA is a basic MCDM method of quantitative research and qualitative analysis
for system analysis. Based on the grey space, it can address inaccurate and
incomplete information. GRA has been widely applied in modeling, prediction,
systems analysis, data processing, and decision-making [33]. The principle is to
analyze the similarity relationship between the reference series and alternative
series. The detailed steps are as follows.

Assume that the initial matrix is R:

R =

⎡
⎢⎢⎢⎣

ccccx11 x12 · · · x1n

x21 x22 · · · x2n
...

... · · · ...
xm1 xm2 · · · xmn

⎤
⎥⎥⎥⎦ (1 ≤ i ≤ m, 1 ≤ j ≤ n) (9.5)
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1. Standardize the initial matrix:

R′ =

⎡
⎢⎢⎢⎣

ccccx ′11 x ′12 · · · x ′1n
x ′21 x ′22 · · · x ′2n
...

... · · · ...
x ′m1 x ′m2 · · · x ′mn

⎤
⎥⎥⎥⎦ (1 ≤ i ≤ m, 1 ≤ j ≤ n) (9.6)

2. Generate the reference sequence x ′0:

x ′0 =
(
x ′0(1), x ′0(2), . . . , x ′0(n)

)
(9.7)

where x ′0(j) is the largest and standardized value in the jth factor.
3. Calculate the differences Δ0i(j) between the reference series and alternative

series:

Δ0i (j ) = |x ′0(j)− x ′ij |,

Δ =

⎡
⎢⎢⎢⎣

Δ01(1) Δ01(2) · · · Δ01(n)

Δ02(1) Δ02(2) · · · Δ02(n)
...

...
...

...

Δ0m(1) Δ0m(2) · · · Δ0m(n)

⎤
⎥⎥⎥⎦ (1 ≤ i ≤ m, 1 ≤ j ≤ n)

(9.8)

4. Calculate the grey coefficient r0i(j):

r0i (j ) =
min
i

min
j

Δ0i (j )+ δmax
i

max
j

Δ0i (j )

Δ0i (j )+ δmax
i

max
j

Δ0i (j )
(9.9)

5. Calculate the value of grey relational degree bi:

bi = 1

n

n∑
j=1

r0i (j ) (9.10)

6. Finally, standardize the value of grey relational degree β i:

βi = bi
n∑

i=1
bi

(9.11)

TOPSIS

TOPSIS is one of the classic MCDM methods to rank alternatives over multicriteria.
The principle is that the chosen alternative should have the shortest distance from the
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positive ideal solution (PIS) and the farthest distance from the negative ideal solution
(NIS) [34]. TOPSIS can find the best alternative by minimizing the distance to the
PIS and maximizing the distance to the NIS [35]. The alternatives can be ranked
by their relative closeness to the ideal solution. The calculation steps are as follows
[36]:

1. The decision matrix A is standardized:

aij = xij√
m∑
i=1

(
xij
)2

(1 ≤ i ≤ m, 1 ≤ j ≤ n) (9.12)

2. The weighted standardized decision matrix is computed:

D = (aij ∗wj

)
(1 ≤ i ≤ m, 1 ≤ j ≤ n)

m∑
i=1

wj = 1
(9.13)

3. The PIS V* and the NIS V—are calculated:

V ∗ = {v∗1 , v∗2 , . . . , v∗n
} =

{(
max

i
vij |j ∈ J |

)
,

(
min
i

vij
∣∣j ∈ J ′

∣∣
)}

V− = {v−1 , v−2 , . . . , v−n
} =

{(
min
i

vij |j ∈ J |
)
,

(
max

i
vij
∣∣j ∈ J ′

∣∣
)}

(9.14)

4. The distances of each alternative from PIS and NIS are determined:

S+i =
√

n∑
j=1

(
V

j

i − V ∗
)2

(1 ≤ i ≤ m, 1 ≤ j ≤ n)

S−i =
√

n∑
j=1

(
V

j

i − V −
)2

(1 ≤ i ≤ m, 1 ≤ j ≤ n)

(9.15)

5. The relative closeness to the ideal solution is obtained:

Yi = S−i
S+i + S−i

(1 ≤ i ≤ m) (9.16)

6. The preference order is ranked.

The larger relative closeness indicates the better alternative.
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9.1.1.3 PROMETHEE II

PROMETHEE II, proposed by Brans in 1982, uses pairwise comparisons and
“values outranking relations” to select the best alternative [37]. PROMETHEE II can
support DMs to reach an agreement on feasible alternatives over multiple criteria
from different perspectives [38, 39]. In the PROMETHEE II method, a positive
outranking flow reveals that the chosen alternative outranks all alternatives, whereas
a negative outranking flow reveals that the chosen alternative is outranked by all
alternatives. Based on the positive outranking flows and negative outranking flows,
the final alternative can be selected and determined by the net outranking flow. The
steps are as follows:

1. Normalize the decision matrix R:

Rij = xij −minxij

maxxij −minxij
(1 ≤ i ≤ n, 1 ≤ j ≤ m) (9.17)

2. Define the aggregated preference indices. Let a, b ∈ A and

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

π (a, b) =
k∑

j=1
pj (a, b)wj

π (a, b) =
k∑

j=1
pj (b, a)wj

(9.18)

where A is a finite set of alternatives {a1, a2, . . . , an}, k is the number of

criteria such that 1 ≤ k ≤ m, wj is the weight of criterion j, and
k∑

j=1
wj =

1 (1 ≤ k ≤ m). π(a, b) represents how a is preferred to b over all criteria, and
pj(a,b) represents how b is preferred to a over all criteria. pj(a, b) and pj(b, a) are
the preference functions of the alternatives a and b.

3. Calculate π(a, b) and π(b, a) for each pair of alternatives
In general, there are six types of preference function. DMs must select one

type of preference function and the corresponding parameter value for each
criterion [40, 41].

4. Determine the positive outranking flow and negative outranking flow. The
positive outranking flow is determined by

φ+(a) = 1

n− 1

∑
x∈A

π (a, x) (9.19)

and the negative outranking flow is determined by

φ−(a) = 1

n− 1

∑
x∈A

π (a, x) (9.20)
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Table 9.1 Contingency table Partition C �

C1 C2 . . . . . . Ck

Partition P P1 n11 n12 . . . . . . n1k N1

P2 n21 n22 . . . . . . n22 N2

Pk nk1 nk2 . . . . . . nkk nk
� n1 n2 . . . . . . nk n

5. Calculate the net outranking flow:

φ(a) = φ+(a)− φ−(a) (9.21)

6. Determine the ranking according to the net out-ranking flow.

Larger φ(a) is the more appropriate alternative.

9.1.1.4 Performance Measures

External measures for evaluating clustering results are more effective than internal
and relative measures. Accordingly, in this study, nine clustering external measures
are selected for evaluation. These are entropy, purity, micro-average precision
(MAP), Rand index (RI), adjusted Rand index (ARI), F-measure (FM), Fowlkes–
Mallows index (FMI), Jaccard coefficient (JC), and Mirkin metric (MM). Among
them, measures of entropy and purity are widely applied as external measures in the
fields of data mining and machine learning [42, 43]. The nine external measures are
generated by a computer with an Intel core i5-3210M CPU @ 2.50 GHz with 8G
memory. Before introducing external measures, the contingency table is described.

9.1.1.5 The Contingency Table

Given a data set D with n objects, suppose we have a partition P= {P1,P2, . . . ,Pn}
by some clustering method, where ∪k

i=1Pi = D and Pi ∩ Pj = φ, for 1 ≤ i �= j ≤ k.
According to the preassigned class labels, we can create another partition on
C = {C1,C2, . . . ,Ck} where Uk

i=1Ci = D and Ci ∩ Cj = φ for 1 ≤ i �= j ≤ k.
Let nij denote the number of objects in cluster Pi with the label of class Cj. Then,
the data information between the two partitions can be displayed in the form of a
contingency table, as shown in Table 9.1.

The following paragraphs define the external measures. The measures of entropy
and purity are widely applied in the field of data mining and machine learning.

1. Entropy. The measure of entropy, which originated in the information-retrieval
community, can measure the variance of a probability distribution. If all clusters
consist of objects with only a single class label, the entropy is zero, and as the
class labels of objects in a cluster become more varied, the entropy increases.
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The measure of entropy is calculated as

E = −
∑
i

ni

n

⎛
⎝∑

j

nij

ni

log
nij

ni

⎞
⎠ (9.22)

2. Purity. The measure of purity pays close attention to the representative class (the
class with majority objects within each cluster). Purity is similar to entropy. It is
calculated as

P =
∑
i

nii

n

(
max
j

nij

nii

)
(9.23)

A higher purity value usually represents more effective clustering.
3. F-Measure. The F-measure (FM) is a harmonic mean of precision and recall. It is

commonly considered as clustering accuracy. The calculation of FM is inspired
by the information-retrieval metric as follows:

F −measure = 2×precision×recall
precision+recall

precision = nij

nj
, recall = nij

ni

(9.24)

A higher value of FM generally indicates more accurate clustering.
4. Micro-average Precision. The MAP is usually applied in the information-

retrieval community. It can obtain a clustering result by assigning all data objects
in a given cluster to the most dominant class label and then evaluating the
following quantities for each class:

(a) α(Cj): the number of objects correctly assigned to class Cj.
(b) β(Cj): the number of objects incorrectly assigned to class Cj.

The MAP measure is computed as follows:

MAP =
∑

j α
(
Cj

)
∑

j α
(
Cj

)+ β
(
Cj

) (9.25)

A higher MAP value indicates more accurate clustering.

5. Mirkin Metric. The measure of Mirkin metric (MM) assumes the null value for
identical clusters and a positive value, otherwise. It corresponds to the Hamming
distance between the binary vector representations of each partition [44]. The
measure of MM is computed as

M =
∑
i

n2
i. +

∑
j

n2
i − 2

∑
i

∑
j

n2
ij (9.26)
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A lower value of MM implies more accurate clustering. In addition, given a
data set, assume a partition C is a clustering structure of a data set and P is a
partition by some clustering method. We refer to a pair of points from the dataset
as follows:

(a) SS: if both points belong to the same cluster of the clustering structure C and
to the same group of the partition P

(b) SD: if the points belong to the same clusters of C and to different groups of
P

(c) DS: if the points belong to different clusters of C and to the same groups of
P

(d) DD: if the points belong to different clusters of C and to different groups of
P

Assume that a, b, c, and d are the numbers of SS, SD, DS, and DD pairs,
respectively, and that M a + b + c + d, which is the maximum number of
pairs in the data set. The following indicators for measuring the degree of
similarity between C and P can be defined.

6. Rand Index. The RI is a measure of the similarity between two data clusters in
statistics and data clustering [45]. RI is computed as follows:

R = (a + d)

M
(9.27)

A higher value of RI indicates a more accurate result of clustering.
7. Jaccard Coefficient. The JC, also known as the Jaccard similarity coefficient

(originally named the “coefficient de commutate” by Paul Jaccard), is a statistic
applied to compare the similarity and diversity of sample sets [46]. JC is
computed as follows:

J = a

(a + b + c)
(9.28)

A higher value of JC indicates a more accurate result of clustering.
8. Fowlkes and Mallows Index. The Fowlkes and Mallows index (FMI) was

proposed by Fowlkes and Mallows [47] as an alternative for the RI. The measure
of FMI is computed as follows:

FMI =
√

a

a + b
· a

a + c
(9.29)

A higher value of FMI indicates more accurate clustering.
9. Adjusted Rand Index. The adjusted Rand index (ARI) is the corrected-for-chance

version of the measure of RI. It ranges from −1 to 1 and expresses the level of
concordance between two bipartitions [48]. A value of ARI closest to 1 indicates
almost perfect concordance between the two compared bipartitions, whereas a
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value near −1 indicates almost complete discordance [49]. The measure of ARI
is computed as:

ARI = a − ((a + c)+ a+b
M

)
(
(a + c)+ a+b

2

)− ((a + c)+ a+b
M

) (9.30)

A higher value of ARI indicates more accurate clustering.

9.1.1.6 Index Weights

In this work, the index weights of the four MCDM methods can be calculated by
AHP. The AHP method, proposed by Saaty [50] is a widely used tool for modeling
unstructured problems by synthesizing subjective and objective information in many
disciplines, such as politics, economics, biology, sociology, management science,
and life sciences [51–53]. It can elicit a corresponding priority vector according
to pair-by-pair comparison values [54] obtained from the scores of experts on an
appropriate scale. AHP has some problems, for example, the priority vector derived
from the eigenvalue method can violate a condition of order preservation pro-posed
by Costa and Vansnick [55]. However, AHP is still a classic and important approach,
especially in the fields of operation research and management science [56]. AHP has
the following steps:

1. Establish a hierarchical structure: a complex problem can be established in such
a structure, including the goal level, criteria level, and alternative level [57].

2. Determine the pairwise comparison matrix: once the hierarchy is structured,
the prioritization procedure starts for determining the relative importance of the
criteria (index weights) within each level [5]. The pairwise comparison values
are obtained from the scores of experts on a 1–9 scale.

3. Calculate index weights: the index weights are usually calculated by the eigen-
vector method proposed by Saaty [50].

4. Test consistency: the value of 0.1 is generally considered the acceptable upper
limit of the consistency ratio (CR). If the CR exceeds this value, the procedure
must be repeated to improve consistency.

9.1.1.7 The Proposed Model

Clustering results can vary according to the evaluation method. Rankings can
conflict even when abundant data are processed, and a large knowledge gap can
exist between the evaluation results [58] due to the anticipation, experience, and
expertise of all individual participants. The decision-making process is extremely
complex. This makes it difficult to make accurate and effective decisions [41]. The
proposed DMSECA model consists of three steps. They are as follows.
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The first step usually involves modeling by clustering algorithms, which can
be accomplished using one or more procedures selected from the categories
of hierarchical, density-based, partitioning, and model-based methods. In this
section, we apply the six most influential clustering algorithms, including
EM, the FF algorithm, FC, HC, MD, and KM, for task modeling by using
WEKA 3.7 on 20 UCI data sets, including a total of 18,310 instances and
313 attributes. Each of these clustering algorithms belongs to one of the four
categories of clustering algorithms mentioned previously. Hence, all categories are
represented.

In the second step, four commonly used MCDM methods (TOPSIS, WSM,
GRA, and PROMETHEE II) are applied to rank the performance of the clustering
algorithms over 20 UCI data sets based on nine external measures as the input,
computed in the first step. These methods are highly suitable for the given
data sets. Unsuitable methods were not selected. For example, we did not select
VIKOR because its denominator would be zero for the given data sets. The index
weights are determined by AHP based on the eigenvalue method. Three experts
from the field of MCDM are selected and consulted as the DMs to derive the
pairwise comparison values completed by the scores of experts. We randomly assign
each MCDM method to five UCI data sets. We apply more than one MCDM
method to analyze and evaluate the performance of clustering algorithms, which
is essential.

Finally, in the third step, we propose a decision-making support model to
reconcile the individual differences or even conflicts in the evaluation performance
of the clustering algorithms among the 20 UCI data sets. The proposed model
can generate a list of algorithm priorities to select the most appropriate clustering
algorithm for secondary mining and knowledge discovery. The detailed steps of
the decision-making support model, based on the 80-20 rule, are described as
follows.

Step 1. Mark two sets of alternatives in a lower position and an upper position,
respectively.
It is well known that the 80-20 rule reports that 80% of the results originate
in 20% of the activity in most situations. The rule can be credited to Vilfredo
Pareto, who observes that 80% of the wealth is usually controlled by 20% of the
people in most countries. The implication is that it is better to be in the top of
20% than in the bottom of 80%. So, the 80-20 rule can be applied to focus on the
analysis of the most important positions of the rankings in relation to the number
of observations for predictable imbalance. The 80-20 rule indicates that the 20%
of people, who are creating 80% of the results, which are highly leveraged. In
this research, based on the expert wisdom originating from the 20% of people,
the set of alternatives is classified into two categories, where the top of 1/5 of the
alternatives is marked in an upper position, which represents more satisfactory
rankings from the opinion of all individual participants involved in the algorithm
evaluation process. The bottom of 1/5 is in a lower position, which represents
more dissatisfactory rankings from the opinion of all individual participants. The
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element marked in the upper position is calculated as follows:

x = n ∗ 1

5
(9.31)

where n is the number of alternatives. For instance, if n 7, then× 7× 1/5 1.4≈ 2.
Hence, the second position classifies the ranking, where the first and second
positions are those alternatives in the upper position, which are considered as
the collective group idea of the most appropriate and satisfactory alternatives.
Similarly, the element marked in the lower position is calculated as

x = n ∗ 4

5
(9.32)

where n is the number of alternatives. For instance, if n= 7, then 7*4/5= 5.6≈ 6.
Thus, the sixth position classifies the ranking, where the sixth and seventh
positions in the lower positions are considered collectively as the worst and most
dissatisfactory alternatives.

Step 2. Grade the sets of alternatives in the lower and upper positions, respectively.
A score is assigned to each position of the set of alternatives in the lower position
and upper position, respectively.
The score in the lower position can be calculated by assigning a value of 1 to the
first position, 2 to the second position, . . . , and x to the last position. Finally, the
score of each alternative in the lower position is totaled, marked d.
Similarly, the score in the upper position can be calculated by assigning a value of
1 to the last position, 2 to the penultimate position, . . . , and x to the first position.
Finally, the score of each alternative in the upper position is totaled, marked b.

Step 3. Generate the priority of each alternative.
The priority of each alternative fi, which represents the most satisfactory rankings
from the opinions of all individual participants, can be determined as

fi = bi − di (9.33)

where a higher value of fi implies a higher priority.

9.1.2 Evaluation of Classification Algorithms Using MCDM
And Rank Correlation

This subsection combines MCDM methods with Spearman’s rank correlation
coefficient to rank classification algorithms. This approach first uses several MCDM
methods to rank classification algorithms and then applies Spearman’s rank cor-
relation coefficient to resolve differences among MCDM methods. Five MCDM
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methods, including TOPSIS, ELECTRE III, grey relational analysis, VIKOR, and
PROMETHEE II are implemented in this research.

9.1.2.1 Two MCDMMethods

In addition to GRA, TOPSIS, and PROMETHEE II methods, here two more MCDM
methods are outlined as below.

ELimination and Choice Expressing REality (ELECTRE)

ELECTRE stands for ELimination Et Choix Traduisant la REalite (ELimination and
Choice Expressing the REality) and was first proposed by Roy [59] to choose the
best alternative from a collection of alternatives. Over the last four decades, a family
of ELECTRE methods has been developed, including ELECTRE I, ELECTRE II,
ELECTRE III, ELECTRE IV, ELECTRE IS, and ELECTRE TRI.

There are two main steps of ELECTRE methods: the first step is the construction
of one or several outranking relations; the second step is an exploitation procedure
that identifies the best compromise alternative based on the outranking relation
obtained in the first step.[60] ELECTRE III is chosen in this section because it
is appropriate for the sorting problem. The procedure can be summarized as follows
[59, 61, 62]:

Step 1. Define a concordance and discordance index set for each pair of alternatives

Aj and Ak, j, k = 1, . . . ,m; i �= k

Step 2. Add all the indices of an alternative to get its global concordance index Cki.
Step 3. Define an outranking credibility degree σ s(Ai,Ak); by combining the

discordance indices and the global concordance index.
Step 4. Define two outranking relations using descending and ascending distillation.

Descending distillation selects the best alternative first and the worst alternative
last. Ascending distillation selects the worst alternative first and the best alterna-
tive last.

Step 5. Alternatives are ranked based on ascending and descending distillation
processes.

VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)

VIKOR was proposed by Opricovic [63] and Opricovic and Tzeng [64] for
multicriteria optimization of complex systems. The multicriteria ranking index,
which is based on the particular measure of closeness to the ideal alternative, is
introduced to rank alternatives in the presence of conflicting criteria. This section
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uses the following VIKOR algorithm provided by Opricovic and Tzeng in the
experiment:

Step 1. Determine the best f ∗i and the worst f−i values of all criterion functions,
i = 1, 2, · · · , n.

f ∗i =
{

maxj fij , for benefit criteria
minj fij , for cost criteria

}
, j = 1, 2, . . . , J,

f−i =
{

minj fij , for benefit criteria
maxj fij , for cost criteria

}
, j = 1, 2, . . . , J,

where J is the number of alternatives, n is the number of criteria, and fij is the
rating of ith criterion function for alternative aj.

Step 2. Compute the values Sj and Rj; j = 1, 2, · · · , J, by the relations

Sj =∑n
i=1wi

(
f ∗i − fij

) (
f ∗i − f−i

)
Rj = maxi

[
wi

(
f ∗i − fij

) (
f ∗i − f−i

)]

where wi is the weight of ith criteria, Sj and Rj are used to formulate ranking
measure.

Step 3. Compute the values Qj; j = 1, 2, · · · , J, by the relations

Qj = v
(
Sj − S∗

) (
S− − S∗

)+ (1− v)
(
Rj − R∗

) (
R− − R∗

)
S∗ = minj Sj , S

− = maxj Sj

R∗ = miniRj , R
− = maxjRj

where the solution obtained by S is with a maximum group utility, the solution
obtained by R is with a minimum individual regret of the opponent, and v is the
weight of the strategy of the majority of criteria. The value of v is set to 0.5 in
the experiment.

Step 4. Rank the alternatives in decreasing order. There are three ranking lists: S; R,
and Q.

Step 5. Propose the alternative a′, which is ranked the best by Q, as a compromise
solution if the following two conditions are satisfied:
(a) Q(a′′) − Q(a

′
) ≥ 1(J − 1); (b) Alternative a 0 is ranked the best by S or/and

R.
If only the condition (b) is not satisfied, alternatives a

′
and a′′ are proposed as

compromise solutions, where a′′ is ranked the second by Q. If the condition
(a) is not satisfied, alternatives a

′
; a′′ . . . ; aM are proposed as compromise

solutions, where aM is ranked the Mth by Q and is determined by the relation
Q(aM) − Q(a

′
) < 1(J − 1) for maximum M.
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9.1.2.2 Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient measures the similarity between two sets
of rankings. The basic idea of the proposed approach is to assign a weight to each
MCDM method according to the similarities between the ranking it generated and
the rankings produced by other MCDM methods. A large value of Spearman’s rank
correlation coefficient indicates a good agreement between a MCDM method and
other MCDM methods.

The proposed approach is designed to handle conflicting MCDM rankings
through three steps. In the first step, a selection of MCDM methods is applied to rank
classification algorithms. If there are strong disagreements among MCDM methods,
the different ranking scores generated by MCDM methods are used as inputs for the
second step.

The second step utilizes Spearman’s rank correlation coefficient to find the
weights for each MCDM method. Spearman’s rank correlation coefficient between
the kth and ith MCDM methods is calculated by the following equation:

ρki = 1− 6
∑

d2
i

n
(
n2 − 1

) (9.34)

where n is the number of alternatives and di is the difference between the ranks of
two MCDM methods. Based on the value of ki, the average similarities between the
kth MCDM method and other MCDM methods can be calculated as

ρk = 1

q − 1

∑q

i=1,i �=k
ρki , k = 1, 2, . . . , q, (9.35)

where q is the number of MCDM methods. The larger the k value, the more
important the MCDM method is. Normalized k values can then be used as weights
for MCDM methods in the secondary ranking.

The third step uses the weights obtained from the second step to get secondary
rankings of classifiers. Each MCDM method is applied to re-rank classification
algorithms using ranking scores produced by MCDM methods in the first step and
the weights obtained in the second step.

• The detailed experimental study of this method can be found in [2]

9.1.3 Public Blockchain Evaluation Using Entropy
and TOPSIS

This subsection aims to make a comprehensive evaluation of public blockchains
from multiple dimensions. Three first-level indicators and eleven second-level
indicators are designed to evaluate public blockchains. The technique for order
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preferences by similarity to an ideal solution (TOPSIS) method is used to rank
public blockchains, and the entropy method is used to determine the weights of
each dimension. Since Bitcoin has an absolute advantage, a let-the-first-out (LFO)
strategy is proposed to reduce the criteria of the positive ideal solution and make a
more reasonable evaluation.

9.1.3.1 Proposed Evaluation Model

Evaluation Indicator

With the increasing requirement of performance, more and more blockchains are
designed by new technology. Technology is an important indicator to evaluate public
blockchains, but technology is not everything. The popularity is a key factor to
measure a platform or system, and the blockchain is the same. For example, the
second global public blockchain technology assessment index shows that Bitcoin
ranks 17th, but Bitcoin is still one of the most popular blockchains.

Therefore, two indicators are designed to measure the popularity of public
blockchains. One is recognition, which is the degree of acceptance of public
blockchains by developers and others. The greater the acceptance, the better the
blockchain. The other is activity, which measures the activity of developers and
others. When developers stop maintaining and improving a blockchain, or people
stop talking about it, the blockchain is no longer popular. Developers and other
people can be considered separately, but they are under the same indicator in this
section because of the same topic. Figure 9.1 shows the first-level indicators and
their second-level indicators.

Technology

The basic technology (I11) and the applicability (I12) are the first and the sec-
ond second-level indicators of technology respectively. These two indicators are
quantified by the expert scoring method. Since CCID has established a technology
assessment index for public blockchains, this section will reference its scoring
results for the two indicators. The basic technology mainly examines the real-
ization function, basic performance, safety and degree of centralization of public
blockchains. The applicability focuses on the application scenarios, the number of
wallets, the ease of use, and the development support on the chain.

The TPS (I13) is the most important indicator of public blockchain networks.
The TPS of Bitcoin and Ethereum are 7 and 20 respectively, while the TPS of VISA
is 2000. A blockchain’s TPS depends on its consensus algorithm, and the POW
consensus algorithm makes the TPS of Bitcoin and Ethereum small.

In November 2017, Ethereum launched a pet cat game called CryptoKitties.
Since December 3, 2017, pending transactions at Ethereum have skyrocketed.
CryptoKitties accounted for more than 10% of the activity in Ethereum, resulting in
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Fig. 9.1 The evaluation indicators for public blockchains evaluation

serious congestion in the Ethereum network. The gas fee, also called transaction fee,
is required to be paid to the miners to run a particular transaction or contract. With
the congestion of the Ethereum network, the gas fee will increase. As can be seen
in Fig. 9.2, the gas fee increases rapidly since December 3, 2017. Additionally, the
congestion appears again in the Ethereum network since June 30, 2018, because
of the principles of FCoin GPM listing. These high transaction costs show the
congestion in the Ethereum network. Since people pay most attention to the TPS
nowadays, the TPS is independent of the I11 as the third second-level indicator of
technology.

However, even if the TPS needs to be upgraded to solve the congestion problem,
too large TPS is meaningless. For example, if 2000 TPS is enough to handle the
daily transactions, there is no difference between 5000 TPS and million TPS. In
this case, the hyperbolic tangent function is introduced to reduce the benefits of the
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Fig. 9.2 The transaction fee of Ethereum network

increased TPS:

y = ex − e−x

ex + e−x
, x = TPS

α
(9.36)

where α is a scale factor and set to 2000 in this section.

Recognition

The market capitalization (I21) is the first second-level indicator of recognition.
The market capitalization of a company is the result of the transaction price of
the company’s stock in the securities market multiplied by the total share capital,
reflecting the company’s asset value, profitability value, and growth value. Similarly,
the market capitalization of a public blockchain is the result of the transaction price
of the public blockchain’s coin in the cryptocurrency market multiplied by the total
number of coins. It reflects the blockchain’s use value and growth value. Once a
blockchain is not recognized and no longer used, its value will be zero.

The fork (I22), the total commits (I23), and the star (I24) in GitHub are the second,
third, and fourth second-level indicator of recognition respectively. A basic technical
feature of the blockchain is the shared ledger, which requires multiple participation
and cooperation. Due to the openness and transparency of the open source, the
open source of blockchain not only quickly obtain the recognition and trust of
partners, but also quickly gather a number of outstanding talents for continuous
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developments. The fork in GitHub represents the number of people who recognize
or want to contribute to the blockchain; the total commits in GitHub represent
the improvements of the blockchain; the star in GitHub represents the number of
developers who like the blockchain.

The number of followers in Twitter (I25) is the fifth second-level indicator of
recognition. Twitter is one of the most famous online news and social networking
service. The blockchains always have Twitter accounts to post news to the public,
and the followers of a public blockchain’s Twitter account represent the people who
care and recognize the public blockchain.

Activity

The Google search heat in the previous month (I31) is the first second-level indicator
of activity. In the search market, Google handles around 90% of searches worldwide.
The popularity of search terms over time and across various regions of the world can
be compared in Google Trends. The Google search heat of a public blockchain is
the sum of its name’s search heat and its short name’s search heat.

The number of commits in GitHub in the previous month (I32) is the second
second-level indicator of activity. It reflects the improvements of blockchains in the
previous month.

The turnover rate in the previous month (I33) is the third second-level indicator
of activity. The turnover rate is the frequency of coins traded in the market in a
certain period of time. The higher the turnover rate, the more active the transactions
of cryptocurrency and the more popular the public blockchain. Generally, a high
turnover rate means good liquidity of the cryptocurrency.

Evaluation Process

The choice of indicators weights is an important step in the TOPSIS. The entropy
method is an objective method to calculate weights based on the objective informa-
tion of indicators [65]. An indicator with small entropy value means the indicator is
important and has a large weight [66]. The entropy is calculated as follows:

ej = − 1

lnn

n∑
i=1

pij lnpij , pij = xij∑n
i=1 xij

(9.37)

where xij is the jth normalized indicator value of the ith public blockchain. Then the
degree of divergence (dj) and the weight (wj) can be calculated as follows:

dj = 1− ej (9.38)

wj = dj∑m
j=1 dj

(9.39)
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The TOPSIS ranks public blockchains according to their relative proximities
calculated by the distance from the positive ideal solution and the distance from
the negative ideal solution [67]. The steps for the TOPSIS are described below. The
first step is to normalize the indicator matrix:

rij = xij√∑n
i=1 x2

ij

(9.40)

With the weights obtained by the entropy method, the weighted normalization
matrix is calculated as follows:

v = r · diag(w) (9.41)

where diag(w) is a diagonal matrix where the diagonal elements are the weights w.
Then the positive ideal solution (A+) and the negative ideal solution (A−) can be
obtained:

A+ =
{(

max
i

vij |j ∈ J1

)
,

(
min
i

vij |j ∈ J2

)
|i = 1, 2, . . . , n

}
=
{
v+1 , v+2 , . . . , v+j , . . . , v+m

}

(9.42)

A− =
{(

min
i

vij |j ∈ J1

)
,

(
max

i
vij |j ∈ J2

)
|i = 1, 2, . . . , n

}
=
{
v−1 , v−2 , . . . , v−j , . . . , v−m

}

(9.43)

where J1 and J2 are the benefit and the cost indicators respectively. The distance of
each indicator from A+ and A− can be calculated as follows:

S+i =
√

m∑
j=1

(
vij − v+j

)2
, i = 1, 2, . . . , n (9.44)

S−i =
√

m∑
j=1

(
vij − v−j

)2
, i = 1, 2, . . . , n (9.45)

The relative proximity of each public blockchain to the ideal solution can be
calculated as follows:

C∗i = S−i
S+i +S−i

, i = 1, 2, . . . , n (9.46)

Lastly, the public blockchains can be ranked by their relative proximities.
The relative proximities are based on the positive ideal solution and the negative

ideal solution. If the relative proximity of the first place is much larger than that of
the second place, then some indicator values of the first place are much larger than
those of the second place. In this case, even if the second place is much better than
the third place, the advantage will become very small under the absolute advantage
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of the first place. Since the positive ideal solution cannot be achieved by other items,
it is better to reduce the criteria of the positive ideal solution. Therefore, a let-the-
first-out (LFO) strategy is proposed to make a more reasonable evaluation. In the
LFO, if the relative proximity of the first place is much larger than that of the second
place, the position of the first place is retained and the other items are re-evaluated.

• The data analysis can be found in [3].

9.2 Evaluation Methods for Software

9.2.1 Classifier Evaluation for Software Defect Prediction

This subsection integrates traditional feature selection methods and multi-criteria
decision making (MCDM) methods to improve the accuracy and reliability of
defect prediction models and evaluate the performances of software defect detection
models.

9.2.1.1 Research Methodology

Results of empirical studies on software defect prediction models do not always
converge. Myrtveit et al. [68] analyzed some empirical software engineering studies
and identified three factors that may contribute to the divergence: a single sample
dataset, choice of accuracy indicators, and cross validation. They concluded that
a crucial step in software defect prediction is the design of research proce-
dures.

The inputs are four public-domain software defect datasets provided by the
NASA IV&V Facility Metrics Data Program (MDP) repository. Feature selection
and classification are conducted in four steps. First, feature selection is conducted
using traditional techniques. Features are then ranked using the proposed feature
selection method. The third step employs MCDM methods to evaluate feature
selection techniques and choose the better performed techniques. In the last step,
the selected features are used in the classification to predict software defects.
The performances of classifiers are also evaluated using MCDM methods and a
recommendation of classifiers for software defect prediction is made based on their
accuracy and reliability.

Multiple criteria decision making (MCDM) aims at solving decision prob-
lems with multiple objectives and often conflictive constraints [40, 68, 69]. Five
MCDM methods, i.e., DEA (BCC model), ELECTRE, PROMETHEE, TOPSIS,
and VIKOR, are used in the experimental study to evaluate algorithms.
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For feature selection algorithms, output components include seven attributes:

LOC_COMMENTS (The number of lines of comments in a module),
HALSTEAD_PROG_TIME (The halstead programming time metric of a module),
MAINTENANCE_SEVERITY (Maintenance Severity),
NODE_COUNT (Number of nodes found in a given module),
NUM_OPERATORS (The number of operators contained in a module),
NUM_UNIQUE_OPERATORS (The number of unique operators contained in a

module),
PERCENT_COMMENTS (Percentage of the code that is comments).

All other attributes are input components. For classification algorithms, input
component is false positive rate and output components include the area under
receiver operating characteristic (AUC), precision, F-measure, and true positive rate.

9.2.1.2 Experimental Study

Data Sources

The data used in this study are modified public-domain software defect datasets
provided by the NASA IV&V Facility Metrics Data Program (MDP) repository
[70]. The structures of the datasets are summarized in Table 9.2.

CM is from a science instrument written in a C code with approximately 20 kilo-
source lines of code (KLOC). KC is about the collection, processing and delivery of
satellite metadata and is written in Java with 18 KLOC. PC is flight software from an
earth orbiting satellite written in a C code with 26 KLOC. UC is dynamic simulator
for attitude control systems. Forty common attributes are selected for each dataset.

Discussion of Results

Table 9.3 summarizes the feature weights for each dataset. Features that are highly
ranked in one or two dataset may have low rankings in other datasets, such
as attribute 4, 9, and 27. This indicates that performances of feature selection
techniques vary at different datasets. It also shows a need for evaluation of feature
selection techniques.

Table 9.2 Dataset structures

Dataset Number of instances Normal instances Bug instances

CM 568 425 143
KC 804 495 309
PC 4472 3718 754
UC 10, 064 9285 779
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Table 9.3 Feature weights
for the four datasets

Attributes CM Data KC Data PC Data UC Data
W R W R W R W R

att1 0.57 7 0.44 24 0.60 12 0.68 3
att2 0.26 37 0.40 30 0.35 39 0.22 39
att3 0.64 5 0.59 8 0.63 8 0.47 28
att4 0.27 36 0.57 9 0.95 1 0.74 2
att5 0.57 8 0.51 15 0.55 17 0.64 9
att6 0.48 21 0.30 39 0.43 31 0.48 26
att7 0.41 26 0.55 12 0.51 21 0.40 35
att8 0.44 23 0.33 37 0.65 7 0.67 4
att9 0.68 3 0.35 33 0.47 27 0.31 38
att10 0.33 33 0.64 2 0.69 4 0.62 13
att11 0.50 19 0.48 19 0.52 20 0.47 29
att12 0.33 32 0.57 10 0.55 18 0.62 12
att13 0.56 10 0.51 16 0.45 29 0.60 14
att14 0.51 18 0.44 23 0.63 9 0.60 15
att15 0.52 17 0.34 36 0.40 35 0.42 34
att16 0.24 39 0.51 14 0.49 24 0.45 30
att17 0.49 20 0.49 18 0.56 16 0.66 6
att18 0.56 9 0.41 29 0.29 40 0.18 40
att19 0.29 35 0.61 4 0.43 34 0.43 33
att20 0.43 25 0.60 5 0.77 2 0.79 1
att21 0.47 22 0.47 21 0.43 32 0.53 19
att22 0.52 14 0.44 25 0.49 25 0.47 27
att23 0.43 24 0.43 26 0.43 33 0.59 17
att24 0.52 16 0.39 31 0.49 23 0.53 21
att25 0.54 12 0.49 17 0.59 13 0.52 22
att26 0.55 11 0.42 28 0.58 14 0.55 18
att27 0.72 1 0.43 27 0.39 37 0.40 36
att28 0.62 6 0.54 13 0.46 28 0.33 37
att29 0.38 30 0.34 35 0.40 36 0.49 23
att30 0.65 4 0.38 32 0.65 6 0.65 8
att31 0.24 38 0.32 38 0.45 30 0.48 24
att32 0.37 31 0.45 22 0.62 10 0.60 16
att33 0.40 28 0.25 40 0.47 26 0.43 32
att34 0.32 34 0.35 34 0.50 22 0.53 20
att35 0.70 2 0.64 3 0.68 5 0.62 11
att36 0.52 13 0.59 7 0.57 15 0.65 7
att37 0.41 27 0.56 11 0.61 11 0.64 10
att38 0.52 15 0.47 20 0.36 38 0.43 31
att39 0.40 29 0.65 1 0.73 3 0.66 5
att40 0.21 40 0.59 6 0.53 19 0.48 25

W for Weight, R for Rank
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Table 9.4 MCDM evaluation of classifiers for CM dataset

DEA ELECTRE PROMETHEE TOPSIS VIKOR

Naïve Bayes 2 3 2 2 2
Logistic 8 7 6 6 1
RBFNetwork 7 5 7 5 6
SMO 6 9 4 8 5
IB1 5 8 8 9 9
FLR 1 1 1 1 3
DecisionTable 3 6 9 3 4
RIPPER 9 2 3 7 7
C4.5 4 4 5 4 8

Table 9.5 MCDM evaluation of classifiers for KC dataset

DEA ELECTRE PROMETHEE TOPSIS VIKOR

Naïve Bayes 5 5 3 2 7
Logistic 1 2 2 1 1
RBFNetwork 7 4 4 4 9
SMO 6 6 6 5 8
IB1 9 9 5 7 6
FLR 4 1 1 3 3
DecisionTable 3 3 7 6 2
RIPPER 2 8 9 9 5
C4.5 8 7 8 8 4

The five MCDM methods are applied to evaluate the 11 feature selection
techniques.

Tables 9.4, 9.5, 9.6, and 9.7 summarize the evaluation results of the nine
classifiers on the four datasets. The rankings of classifiers vary with different
datasets. Even within a dataset, different MCDM methods may produce divergent
rankings for the same classifier. For example, RIPPER was ranked the second best
classifier by ELECTRE and the worst classifier by DEA for CM dataset. In general,
FLR outperforms other classifiers. It was ranked the best classifier by at least two
MCDM methods for every dataset. SMO achieves good performances on PC and
UC, which are larger than CM and KC. The performances of other classifiers on the
four software defect datasets are rather mixed.

9.2.2 Ensemble of Software Defect Predictors: An AHP-Based
Evaluation Method

This subsection evaluates the quality of ensemble methods for software defect
prediction with the analytic hierarchy process (AHP) method. The AHP is a
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Table 9.6 MCDM evaluation of classifiers for PC dataset

DEA ELECTRE PROMETHEE TOPSIS VIKOR

Naïve Bayes 9 9 3 4 7
Logistic 8 6 7 7 5
RBFNetwork 2 3 4 3 3
SMO 1 1 2 2 1
IB1 5 8 9 9 9
FLR 4 2 1 1 2
DecisionTable 3 4 6 6 6
RIPPER 7 5 5 5 8
C4.5 6 7 8 8 4

Table 9.7 MCDM evaluation of classifiers for UC dataset

DEA ELECTRE PROMETHEE TOPSIS VIKOR

Naïve Bayes 5 8 3 4 6
Logistic 3 4 5 5 3
RBFNetwork 2 5 4 3 2
SMO 1 2 2 2 1
IB1 8 7 8 8 7
FLR 4 1 1 1 5
DecisionTable 7 3 7 6 4
RIPPER 6 9 6 7 8
C4.5 9 6 9 9 9

multicriteria decision-making approach that helps decision makers structure a
decision problem based on pairwise comparisons and experts’ judgments. Three
popular ensemble methods (bagging, boosting, and stacking) are compared with 12
well-known classification methods using 13 performance measures over 10 public-
domain datasets from the NASA Metrics Data Program (MDP) repository.[70] The
classification results are then analyzed using the AHP to determine the best classifier
for software defect prediction task.

9.2.2.1 Ensemble Methods

Ensemble learning algorithms construct a set of classifiers and then combine the
results of these classifiers using some mechanisms to classify new data records [71].
Experimental results have shown that ensembles are often more accurate and robust
to the effects of noisy data, and achieve lower average error rate than any of the
constituent classifiers [15, 72–75].

How to construct good ensembles of classifiers is one of the most active
research areas in machine learning, and many methods for constructing ensembles
have been proposed in the past two decades [76]. Dietterich [71] divides these
methods into five groups: Bayesian voting, manipulating the training examples,
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manipulating the input features, manipulating the output targets, and injecting
randomness. Several comparative studies have been conducted to examine the
effectiveness and performance of ensemble methods. Results of these studies
indicate that bagging and boosting are very useful in improving the accuracy of
certain classifiers [77], and their performances vary with added classification noise.
To investigate the capabilities of ensemble methods in software defect prediction,
this study concentrates on three popular ensemble methods (i.e. bagging, boosting,
and stacking) and compares their performances on public-domain software defect
datasets.

Bagging

Bagging combines multiple outputs of a learning algorithm by taking a plurality
vote to get an aggregated single prediction [78]. The multiple outputs of a learning
algorithm are generated by randomly sampling with replacement of the original
training dataset and applying the predictor to the sample. Many experimental results
show that bagging can improve accuracy substantially. The vital element in whether
bagging will improve accuracy is the instability of the predictor [78]. For an
unstable predictor, a small change in the training dataset may cause large changes in
predictions [79]. For a stable predictor, however, bagging may slightly degrade the
performance [78].

Researchers have performed large empirical studies to investigate the capabilities
of ensemble methods. For instance, Bauer and Kohavi [77] compared bagging
and boosting algorithms with a decision tree inducer and a NaÏve Bayes inducer.
They concluded that bagging reduces variance of unstable methods and leads
to significant reductions in mean-squared errors. Dietterich [72] studied three
ensemble methods (bagging, boosting, and randomization) using decision tree
algorithm C4.5 and pointed out that bagging is much better than boosting when
there is substantial classification noise.

In this subsection, bagging is generated by averaging probability estimates [16].

Boosting

Similar to bagging, boosting method also combines the different decisions of a
learning algorithm to produce an aggregated prediction [80]. In boosting, however,
weights of training instances change in each iteration to force learning algorithms
to put more emphasis on instances that were predicted incorrectly previously and
less emphasis on instances that were predicted correctly previously. Boosting often
achieves more accurate results than bagging and other ensemble methods. However,
boosting may overfit the data and its performance deteriorates with classification
noise.

This study evaluates a widely used boosting method, AdaBoost algorithm, in the
experiment. AdaBoost is the abbreviation for adaptive boosting algorithm because
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it adjusts adaptively to the errors returned by classifiers from previous iterations
[73, 81]. The algorithm assigns equal weight to each training instance at the
beginning. It then builds a classifier by applying the learning algorithm to the
training data. Weights of misclassified instances are increased, while weights of
correctly classified instances are decreased. Thus, the new classifier concentrates
more on incorrectly classified instances in each iteration.

Stacking

Stacking generalization, often abbreviated as stacking, is a scheme for minimizing
the generalization error rate of one or more learning algorithms [82]. Unlike
bagging and boosting, stacking can be applied to combine different types of learning
algorithms. Each base learner, also called “level 0” model, generates a class value
for each instance. The predictions of level-0 models are then fed into the level-1
model, which combines them to form a final prediction [16].

Another ensemble method used in the experiment is voting, which is a simple
average of multiple classifiers probability estimates provided by WEKA [16].

9.2.2.2 Selected Classification Models

As a powerful tool that has numerous applications, classification methods have been
studied extensively by several fields, such as machine learning, statistics, and data
mining [83]. Previous studies have shown that an ideal ensemble should consist of
accurate and diverse classifiers. [84] Therefore, this study selects 12 classifiers to
build ensembles. They represent five categories of classifiers (i.e., trees, functions,
Bayesian classifiers, lazy classifiers, and rules) and were implemented in WEKA.

For trees category, we chose classification and regression tree (CART), NaÏve
Bayes tree, and C4.5. Functions category includes linear logistic regression, radial
basis function (RBF) network, sequential minimal optimization (SMO), and Neural
Networks. Bayesian classifiers include Bayesian network and NaÏve Bayes. K-
nearest-neighbor was chosen to represent lazy classifiers. For rules category,
decision table and Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) rule induction were selected.

Classification and regression tree (CART) can predict both continuous and
categorical dependent attributes by building regression trees and discrete classes,
respectively [85]. NaÏve Bayes tree is an algorithm that combines NaÏve Bayes
induction algorithm and decision trees to increase the scalability and interpretability
of NaÏve Bayes classifiers [86]. C4.5 is a decision tree algorithm that constructs
decision trees in a top–down recursive divide-and-conquer manner [87].

Linear logistic regression models the probability of occurrence of an event as a
linear function of a set of predictor variables [88]. Neural network is a collection of
artificial neurons that learns relationships between inputs and outputs by adjusting
the weights. RBF network [89] is an artificial neural network that uses radial basis
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functions as activation functions. The centers and widths of hidden units are derived
using k-means, and the outputs obtained from the hidden layer are combined using
logistic regression [16]. SMO is a sequential minimal optimization algorithm for
training support vector machines (SVM) [90, 91].

Bayesian network and NaÏve Bayes both model probabilistic relationships
between the predictor variables and the class variable. While NaÏve Bayes classifier
[92] estimates the class-conditional probability based on Bayes theorem and can
only represent simple distributions, Bayesian network is a probabilistic graphic
model and can represent conditional independencies between variables [93].

K-nearest-neighbor [94] classifies a given data instance based on learning by
analogy. That is, it assigns an instance to the closest training examples in the feature
space.

Decision table selects the best-performing attribute subsets using best-first search
and uses cross-validation for evaluation [95]. RIPPER [96] is a sequential covering
algorithm that extracts classification rules directly from the training data without
generating a decision tree first.

Each of stacking and voting combines all classifiers to generate one prediction.
Since bagging and boosting are designed to combine multiple outputs of a single
learning algorithm, they are applied to each of the 12 classifiers and produced a
total of 26 aggregated outputs.

9.2.2.3 The Analytic Hierarchy Process (AHP)

The analytic hierarchy process is a multicriteria decision-making approach that
helps decision makers structure a decision problem based on pairwise comparisons
and experts’ judgments [97, 98]. Saaty [99] summarizes four major steps for the
AHP. In the first step decision makers define the problem and decompose the
problem into a three-level hierarchy (the goal of the decision, the criteria or factors
that contribute to the solution, and the alternatives associated with the problem
through the criteria) of interrelated decision elements [100]. The middle level of
criteria might be expanded to include subcriteria levels. After the hierarchy is
established, the decision makers compare the criteria two by using a fundamental
scale in the second step. In the third step, these human judgments are converted to a
matrix of relative priorities of decision elements at each level using the eigenvalue
method. The fourth step calculates the composite or global priorities for each
decision alternatives to determine their ratings.

The AHP has been applied in diverse decision problems, such as economics and
planning, policies and allocations of resources, conflict resolution, arms control,
material handling and purchasing, manpower selection and performance measure-
ment, project selection, marketing, portfolio selection, model selection, politics, and
environment [101]. Over the last 20 years, the AHP has been studied extensively and
various variants of the AHP have been proposed. [102–105].

In this study, the decision problem is to select the best ensemble method for
the task of software defect prediction. The first step of the AHP is to decompose
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Fig. 9.3 An AHP hierarchy for the ensemble selection problem

the problem into a decision hierarchy. As shown in Fig. 9.3, the goal is to select
an ensemble method that is superior to other ensemble methods over public-
domain software defect datasets through the comparison of a set of performance
measurements. The criteria are performance measures for classifiers, such as overall
accuracy, F-measure, area under ROC (AUC), precision, recall, and Kappa statistic.
The decision alternatives are ensembles and individual classification methods, such
as AdaBoost, bagging, stacking, C4.5, SMO, and NaÏve Bayes. Individual classifiers
are included as the decision alternatives for the purpose of comparisons.

In step 2, the input data for the hierarchy, which is a scale of numbers that
indicates the preference of decision makers about the relative importance of the
criteria, are collected. Saaty [97] provides a fundamental scale for this purpose,
which has been validated theoretically and practically. The scale ranges from 1 to 9
with increasing importance. Numbers 1, 3, 5, 7, and 9 represent equal, moderate,
strong, very strong, and extreme importance, respectively, while 2, 4, 6, and 8
indicate inter-mediate values. This study uses 13 measures to assess the capability
of ensembles and individual classifiers. Previous works have proved that the AUC
is the most informative and objective measurement of predictive accuracy [106] and
is an extremely important measure in software defect prediction. Therefore, it is
assigned a number of 9. The F-measure, mean absolute error, and overall accuracy
are very important measures, but less important than the AUC. The true positive
rate (TPR), true negative rate (TNR), false positive rate (FPR), false negative rate
(FNR), precision, recall, and Kappa statistic are strongly important classification
measures that are less important than the F-measure, mean absolute error, and
overall accuracy. Training and test time refer to the time needed to train and test a
classification algorithm or ensemble method, respectively. They are useful measures
in real-time software defect identification. Since this study is not aimed at real-time
software defect identification problem, they are included to measure the efficiency
of ensemble methods and are given the lowest importance.

The third step of the AHP computes the principal eigenvector of the matrix to
estimate the relative weights (or priorities) of the criteria. The estimated priorities
are obtained through a two-step process: (1) raise the matrix to large powers
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(square); (2) sum and normalize each row. This process is repeated until the
difference between the sums of each row in two consecutive rounds is smaller than
a prescribed value. After obtaining the priority vector of the criteria level, the AHP
method moves to the lowest level in the hierarchy, which consists of ensemble meth-
ods and classification algorithms in this experiment. The pairwise comparisons at
this level compare learning algorithms with respect to each performance measure in
the level immediately above. The matrices of comparisons of the learning algorithms
with respect to the criteria and their priorities are analyzed and summarized in Sect.
9.2.1.2. The ratings for the learning algorithms are produced by aggregating the
relative priorities of decision elements [107].

• The data analysis can be found in [5]

9.3 Evaluation Methods for Sociology and Economics

9.3.1 Delivery Efficiency and Supplier Performance
Evaluation in China’s E-Retailing Industry

This subsection focuses on overall and sub-process supply chain efficiency evalua-
tion using a network slacks-based measure model and an undesirable directional
distance model. Based on a case analysis of a leading Chinese B2C firm W, a
two-stage supply chain structure covering procurement-stock and inventory-sale
management is constructed.

In Chinese B2C e-commerce websites, two typical operation models are widely
taken based on different strategic positioning. One is the third-party platform
model which provides an e-commerce platform, technical support, advertising
and marketing services for franchises. The leading B2C e-commerce platform in
China is Taobao.com and Tmall.com. Their business revenue stems mainly from
commissions and service. Another model is called the self-operated model, which
has a logistics system for transferring and distributing goods. Examples include
companies such as Jingdong, Dangdang, Amazon, Yihaodian and Suning. The
source of their profits is that sales revenues decrease purchasing costs. According to
a research report from IResearch, a leading internet consultant company and online
media in China, platform model companies like Tmall accounts for most of B2C
e-commerce market share, as shown in Fig. 9.4.

However, with the ongoing rapid growth of e-commerce in virtual markets,
logistics has become the largest bottleneck of e-commerce’s constant development.
Most e-commerce players take the third party logistics (3PL) model in the initial
development because of its advantage in reducing operations costs and capital
investment. Because 3PL is either contractual or out-sourced logistics concentrating
on regional operations, with business expansion, the drawbacks of 3PL are gradually
arising. For example, lost packages and theft are common when using 3PL. Frequent
overstocking during holidays and promotion days are also often disclosed due to the

http://taobao.com
http://tmall.com


508 9 Evaluation Analysis

Fig. 9.4 Market share of major Chinese B2C e-commerce players in 2013

insufficient shipping capacity of 3PL. 3PL services are offered to both suppliers and
customers while self-operated logistics are often built by B2C websites to improve
service quality and “last mile delivery” efficiency through control of every section
of the supply chain, from warehouse to consumer. As a result, a hybrid form of
logistics combining 3PL and self-managed logistics is currently a popular topic of
study.

From an e-retail supply chain perspective, whatever business you are in, suppliers
and vendors play a crucial role in your company’s success. The merchandise
quality and richness provided by suppliers determine the popularity of goods, which
in turn affect inventory turnover and sales. Based on that, e-retail supply chain
process can be generally divided into two stages—procurement-stock management
and inventory-sale control. The first sub-stage, procurement-stock management,
represents “the first mile delivery” efficiency of e-retail. The second sub-process,
stock-sale control describes supplier performance due to the conversion of inventory
into sales revenue, as shown in Fig. 9.5. It should be noted that the overall
supply chain efficiency is measured without considering internal link activities or
intermediate variables.

9.3.1.1 Case, Research Problem and Data

W firm, one of China’s leading B2C e-commerce firms, is chosen as our research
case. The reasons are given as follows:
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Fig. 9.5 E-commerce procurement-inventory-sale supply chain structure

Fig. 9.6 E-retail supply chain for W firm

Firstly, W firm has established a nationwide supply chain network and has an
industry-leading supply chain management system in the Chinese B2C e-commerce
sector.

Secondly, W firm has the ability to realize a full online operation based on
its open supply chain platform which aims to serve traditional enterprises who
would like to tap into the e-commerce sector but lack online operating ability. It
is similar to the third party platform model in regards to covering an integrated
online operations service, improving suppliers’ supply chain efficiency and reducing
operations costs by system integration, cloud-based marketing, promotion tools,
logistics, warehousing and information services.

Thirdly, from “the last mile delivery”, those suppliers who choose the “shop in
shop” model sell their merchandise by third party logistics (3PL), while running
business operations on independently. For contrast, those suppliers choosing the
third party platform model only need to provide their merchandise to the platform
of W firm, while online operations-related activities are executed by W firm. E-retail
supply chain for W firm is described in Fig. 9.6.
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In conclusion, the operations model of the suppliers in W firm can be clearly
divided into the third party platform model and self-operated model, which are two
predominant e-business models in china. The third party platform model and self-
operated model offer different “last mile delivery” choices for e-commerce players.
Thus, this case can be used to analyze the following questions:

1. What causes overall e-retail supply chain inefficiency? “The first mile delivery”
or “the last mile delivery”?

2. How do self-operated mode and the third party platform mode affect supply chain
efficiency respectively?

3. What is the way forward for product category and Geographic expansion for
major Chinese B2C e-commerce players?

4. Which is better for e-retail supply chains: Self-logistics, 3PL or the hybrid
model?

Accordingly, the data of more than 2400 suppliers covering purchasing cost,
the lead time, inventory, sale, delivery and returned goods were collected from W
firm. Excluding incomplete data, 1229 suppliers of the “shop in shop” model and
899 suppliers of the third party platform model were obtained. Nine major product
categories are included in this data set, and the research methods are described in
detail.

9.3.1.2 Research Methodology

Network Slacks-Based Measure of Efficiency (NSBM)

Suppose there are n DMUs (j = 1, 2, . . . , n) consisting of k divisions (k = 1, 2,
. . . , k) in a supply chain. mk and rk represent the number of inputs and outputs of
Division k, respectively. The set of links leading from Division h to division k is
defined as L(k. h). Accordingly, the production possibility set (xk, yk, zk, h) under the
assumption of variable returns-to-scale (VRS) production is defined by

xk ≥∑n
j=1x

k
j λ

k
j , k = 1, 2, · · · , k

yk ≤∑n
j=1x

k
j λ

k
j , k = 1, 2, · · · , k

zk,h =∑n
j=1z

k,h
j λk

j ,∀k, h (as outputs from k and inputs to h) ,∑n
j=1λ

k
j = 1,∀k, λk

j ≥ 0,∀j, k

where, λk ∈ Rn+ is the intensity vector corresponding to Division k (k = 1, 2, . . . ,
n).

For the evaluated DMU0 (0 = 1, 2, . . . , n), in the case of linking activities
determined freely while keeping continuity between input and output, non-oriented
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overall efficiency can be represented as:

ρ∗ = minλk,sk−,sk+

∑k
k=1 wk

[
1− 1

mk

(∑mk

i=1
sk−i
xk
is

)]

∑k
k=1 wk

[
1− 1

rk

(∑rk
r=1

sk+r
yk
ro

)] (9.47)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk
o = Xkλk + sk−

yk
o = Y kλk − sk+

λk = 1
Xk = (xk

1 , x
k
2 , · · · , x

) ∈ Rmk × n

Y k = (yk
1 , y

k
2 , · · · , yk

n

) ∈ Rrk × n

zk,hλh = zk,hλk, (∀k, h)
zk,h =

(
z
k,h
1 , z

k,h
2 , · · · , zk,hn

)
∈ Rtk,h × n

λk ≥ 0, sk− ≥ 0, sk+ ≥ 0,∀k

(9.48)

where
∑k

k=1w
k,wk ≥ 0 (∀k), and wk is the relative weight of division k defined

by the decision makers. Non-oriented division efficiency score can be calculated by
the below:

ρk =
1− 1

mk

(
∑mk

i=1
s
k−∗
i

xk
io

)

1− 1
rk

(∑rk
r=1

s
k+∗
r

ykro

) , k = 1, 2, · · · , k (9.49)

sk − ∗ and sk + ∗ are the excessive inputs and short outputs for the above Eq.
(9.47).

Undesirable Output Directional Distance Function Model

It is important for a retail supply chain to effectively manage inventory and avoid
returned purchases. It is therefore reasonable to extend the network slack-based
measure (NSBM) to incorporate undesirable outputs so that it can give a compre-
hensive and accurate evaluation on delivery efficiency and supplier performance in
a given e-retail supply chain.

The usual technical efficiency measurement is based on input and output distance
functions, which cannot simultaneously contract undesirable/bad outputs and inputs
and expand good/desirable outputs. Directional distance function is a generalized
form of the radial model, and it allows us to explicitly increase the desirable outputs
and simultaneously decrease undesirable outputs and inputs. To see this let good
outputs be denoted by y ∈ RM+ , bad or undesirable outputs by b ∈ RJ+, and inputs
by x ∈ RN+ ,. Suppose there are k (k = 1, 2, . . . , K) DMUs in an e-retail supply
chain. Each DMU uses input xk = (

xk
1 , x

k
2 , · · · , xk

N

) ∈ RN+ to jointly produce
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desirable/good outputs yˆk = (yk
1 , y

k
2 , · · · , yk

M

) ∈ RM+ and undesirable/bad outputs
bˆk = (

bk
1, b

k
2, · · · , bk

J

) ∈ R+J . For a specific DMU0, a more generalized form of
directional distance function is denoted by Chambers et al. [85] as follows:

θ = min
1− 1

m

∑m
i=1wiαgxi0xi0

1+od
1
sd

∑sd
d=1wdβgyd0yd0−ou

1
su

∑su
u=1wuγgyu0yu0

(9.50)

s.t.

⎧
⎪⎨
⎪⎩

Xλ+ αgx ≤ x0

Y dλ− βgd
y ≥ yd

0
Yuλ+ γgu

y ≤ yu
0

(9.51)

with
∑m

i=1wi = m,
∑sd

d=1wd = sd ,
∑su

u=1wu = su,, ou + od = 1, where m, sd,
and su denote the number of inputs, desirable (good) outputs and undesirable (bad)
outputs respectively. x0 and y0 are the inputs and outputs of the evaluated DMU0.
wi, wd , and wu separately express the weights of inputs, desirable (good) outputs
and undesirable (bad) outputs defined by decision makers. gx and gy represent the
direction vector of inputs and outputs defined by decision makers. ou and od refer
to the overall weight of undesirable (bad) and desirable (good) outputs defined by
decision makers.

Noted that α, β, γ represent the expansion rate for desirable output items,
contraction rate for undesirable output items and input items respectively, and α,
β, γ are not necessarily the same value. Namely, it allows for different proportional
contraction and expansion rate for inputs, undesirable outputs and desirable outputs.

Performance assessed by directional distance model can be flexibly applied
to different analysis purposes. For example, if the direction is chosen by set-
tingg= (−gx,gy,−gb)= (−xk, yk,−bk ), the efficiency score represents how much
the percentage needed to be improved in good outputs, bad outputs and inputs [78].
If instead the direction is set by g= (−gx,gy,−gb)= (−1, 1,−1), the solution value
can be interpreted as the net improvement in performance in the case of feasible
expansion in good outputs and feasible contraction in bad outputs and inputs [107].

Here we choose the measurement based on the observed data, namelyg = (−gx,
gy,−gb) = (−xk, yk,−bk), because we would like to observe the potential propor-
tionate change in good outputs, bad outputs and inputs.

9.3.1.3 Variables Description

Input-Output Variables Description in the First Sub-process

As a non-parametric method for converting multi-inputs into multi-outputs, how
to choose suitable input-output variable combination is crucial for DEA efficiency
evaluation. Thus, in order to give an accurate efficiency measurement, it is necessary
to give a reasonable input-output variable description based on e-retail supply chain
network structure. Unlike in traditional retail, data mining techniques make demand
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forecasts possible. An e-commerce supply chain therefore starts with procurement
management based on demand forecast. Purchasing plays an important role in cost
saving and making profit. The way of orders is scheduled and the resultant lead time
directly determines the performance of downstream activities and inventory levels.
As a result, order-related input and output variables such as the selection of the right
supplier, product variety, purchasing cost, average arrival rate, on time delivery rate
are considered in the first sub-process of e-retail supply chain.

The number of brands and stock keeping unit (SKU) describe a variety and
richness of the products in e-retail [108, 109]. Higher variety will lead to an
increase in consumer’s utility, which in turn affects inventory turnover and finally
results in an increase in gross margin [110]. Additionally, the number of dealers
determines the size of the suppliers and purchasing cost denotes the total financial
inputs. Therefore, the number of brands, the number of dealers, the minimal stock
keeping unit (SKU) and purchasing cost can be considered as the initial inputs of
procurement-delivery management.

Furthermore, gross margin is associated with stockout costs. In practice, stock-
outs will lead consumer to switch retailers on subsequent shopping trips due to poor
shopping experience [111]. As a result, higher stockouts mean higher lost profits.
Hence, an important task of procurement managers is to reduce stockout SKUs and
shorten stockout days. Accordingly, the variables of stockout SKUs and stockout
days are considered as undesirable outputs in the first sub-process of e-retail supply
chain performance measurement.

It is crucial that purchasing management is not something stand-alone, but
has close links with the measurement of overall supply chain performance. Thus,
average arrival rate and on-time delivery rate are used to measure procurement-
delivery efficiency. They are the outputs in the first sub-process and the inputs in the
second sub-process of e-retail supply chain. The detail input-output variables are
described in Table 9.8.

Input-Output Variables Description in the Second Sub-process

Efficient procurement-stock performance can accelerate inventory turnover and
promote sales. It is easier for e-commerce players to turn their capital into inventory,
but it is difficult for them to turn their inventory into money. According to a
statistics of Slywotzky [112], there are 95% of the time used for storage, loading
and transportation in a commodity production and sales process. Hence, inventory
turnover plays a crucial role in supply chain efficiency measurement. Generally
speaking, shorter turnover times mean greater capacity to turn stock into revenue.
Accelerating inventory turnover means an increase in the liquidity of capital. Based
on that, average days to turnover inventory is considered as one of outputs in the
second sub-process of e-retail supply chain. It should be noted that average days to
turn over inventory refers to the number of days it takes to sell all on-hand inventory,



514 9 Evaluation Analysis

T
ab

le
9.
8

In
pu

ta
nd

ou
tp

ut
va

ri
ab

le
s

de
sc

ri
pt

io
n

in
th

e
pr

oc
ur

em
en

t
su

b-
pr

oc
es

s

Pr
oc

ur
em

en
t

V
ar

ia
bl

es
D

es
cr

ip
ti

on
M

et
ri

cs

In
pu

ts
Su

pp
li

er
se

le
ct

io
n

T
he

nu
m

be
r

of
br

an
ds

(X
1)

T
he

su
pp

li
er

s
of

fe
r

th
e

va
ri

et
y

of
br

an
d

M
at

er
ia

lq
ua

li
ty

th
e

nu
m

be
r

of
de

al
er

s
(X

2)
T

he
sa

m
e

br
an

d
ow

ns
th

e
di

ff
er

en
t

de
al

er
s

Su
pp

li
er

sc
al

e

T
he

m
in

im
al

SK
U

(X
3)

T
he

m
in

im
al

st
oc

k
ke

ep
in

g
un

it
s

of
fe

re
d

by
su

pp
li

er
s

M
er

ch
an

di
se

ri
ch

ne
ss

Pu
rc

ha
si

ng
vo

lu
m

e
Pu

rc
ha

si
ng

co
st

(X
4)

T
he

to
ta

lo
rd

er
vo

lu
m

e
To

ta
lp

ur
ch

as
in

g
co

st
D

es
ir

ab
le

ou
tp

ut
s

A
ve

ra
ge

on
-t

im
e

de
liv

er
y

ra
te

(Z
1)

T
he

ra
ti

o
of

on
-t

im
e

de
liv

er
y

to
de

la
ye

d
de

liv
er

y
Ju

st
-i

n-
ti

m
e

de
liv

er
y

pe
rf

or
m

an
ce

U
nd

es
ir

ab
le

ou
tp

ut
s

A
ve

ra
ge

ar
ri

va
l

ra
te

(Z
2)

T
he

ra
ti

o
of

th
e

ac
tu

al
de

liv
er

ed
pr

od
uc

ts
by

su
pp

li
er

to
th

os
e

or
de

re
d

by
pu

rc
ha

si
ng

m
an

ag
er

s

Ju
st

-i
n-

ti
m

e
de

liv
er

y
pe

rf
or

m
an

ce

St
oc

ko
ut

da
ys

(Z
3)

T
he

sh
or

td
ay

s
of

th
e

SK
U

s
w

he
n

SK
U

s
is

be
lo

w
th

e
sa

fe
ty

st
oc

k
In

ve
nt

or
y

le
ve

l

St
oc

ko
ut

SK
U

(Z
4)

SK
U

s
w

it
ho

ut
be

in
g

of
fe

re
d

or
re

st
oc

ke
d

by
su

pp
li

er
s

In
ve

nt
or

y
le

ve
l



9.3 Evaluation Methods for Sociology and Economics 515

and can be calculated by the following formula:

days to turnover inventory = 365/inventory turnover

A change in inventory is a response to the change in sales, while dynamic
sale is a key for inventory turnover. In practice, dynamic sale days is often used
to illustrate inventory change and judge whether the merchandise is popular or
not. In general, shorter dynamic sale days mean faster inventory turnover and less
unmarketable goods. The unmarketable goods will lead to the loss of sales revenue
due to an increase in stock costs. In e-retail, another loss of sales revenue can be
attributed to consumer returned goods. Therefore, when associated with average
days to turn inventory and sales revenue, dynamic sale days are considered as
the output variables, while no-sale SKU and users’ returned goods amount are
chosen as undesirable output variables of supplier performance measurement in the
second sub-process of e-retail supply chain. The detail input and output variables’
illustration is shown in Table 9.9.

9.3.1.4 Empirical Results

E-Retail Efficiency of “the First Mile Delivery” and “the Last Mile Delivery”

Procurement-stock sub-process of e-retail supply chain is called as “the first mile
delivery” due to its nature of affecting inventory management. It is the first section of
e-retail supply chain, and its performance directly affects subsequent inventory and
sales. Therefore, we give more weight to the first stage of e-retail supply chain than
to the second stage. According to network slacks-based measure (NSBM) model, for
a specific division k, the weight w1k of procurement-stock sub-process is given 0.6
and w2k of inventory-sale sub-process is given 0.4. Associated with the directional
distance model with undesirable output, the weights wd of desirable (good) outputs
is denoted as 0.6 and the weights wd of undesirable (bad) outputs is denoted as 0.4.
We simultaneously run the above two models using the software of MaxDEA 6.2,
and the results are given in Fig. 9.7.

As shown in Fig. 9.7, efficiency scores of the procurement-stock stage (Node 1)
are lower than those of inventory-sale stage (Node 2). We can hence conclude that it
is procurement-stock conversion inefficiency that results in W firm’s overall supply
chain inefficiency. The process from purchasing to putting in stock is named “first
mile delivery”, which is essential to developing a healthy buyer-supplier relationship
and improving inventory control level.

Specifically, the suppliers of the “shop in shop” model have higher overall
supply chain efficiency in kitchen and cleaning products than others due to higher
purchasing-stock efficiency in the first sub-process of supply chain. In contrast, the
suppliers of the third party platform model achieve better stock-sale performance
in kitchen and cleaning products than others but it has low overall supply chain
efficiency due to the poor performance in purchasing-stock efficiency, referring to
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Fig. 9.7 E-retail procurement efficiency and supplier performance

Table 9.10. For this discussion, we can conclude that purchasing-stock efficiency
plays a more key role in affecting overall supply chain efficiency. This conclusion
further verifies the finding in Fig. 9.7.

Product Categories Expansion and Efficiency Analysis

As China’s leading B2C e-commerce online supermarket, W firm has more
advantages in fast moving consumer goods (FMGG) like food and drink, as shown
in Fig. 9.8. In line with strategic positioning of W firm, this finding displays its
core business focus on online supermarket and the concept of “the home”. It is
this strategic positioning that creates a barrier to potential competitors entering,
thus affording a competitive advantage compared with other B2C websites such
as dangdang, Suning and Redbaby. As a result, this unique positioning has allowed
W firm to quickly build a loyal customer base and win a first-mover advantage.

However, with growing orders, one-stop shopping of “the home” becomes more
and more important for attracting customers. Thus, W firm gradually expands
its product categories from FMCG products to electronics, apparel, auto parts,
maternity, and household products. In general, all major Chinese B2C e-commerce
websites experience similar product categories expansion, namely starting with a
narrow, vertical product line then expanding to a broad range of categories. For
example, Dangdang started with books and Jingdong with digital products. Then,
with growing user and market demands, all of them are in pursuit of all-categories
expansion. In other words, Chinese B2C e-commerce websites experience a devel-
opment of transferring from a vertical model to an integrated model.
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Table 9.10 Overall and sub-process efficiency comparison for two different supply chain model

Categories
Overall supply
chain efficiency

Stage 1
Purchasing-Stock
efficiency

Stage 2
Stock-Sale
performance

Self-operated model with a third party logistics (3PL) (shop in shop)
Auto parts 0.4779 0.5392 0.8299
Beauty and personal care 0.6273 0.6576 0.8741
Computer and digital 0.7061 0.7263 0.9207
Food and drink 0.7190 0.7437 0.9097
Health products 0.5701 0.5840 0.9068
Household 0.6281 0.6656 0.8737
Home appliances 0.7015 0.7537 0.8763
Kitchen and cleaning 0.7548 0.8045 0.8697
Toys, mom and baby 0.6241 0.6408 0.8917
All 0.6914 0.7200 0.8982
Third-party platform model with a self-logistics
Auto parts 0.8021 0.8080 0.9520
Beauty and personal care 0.7770 0.7893 0.9240
Computer and digital 0.8145 0.8374 0.9249
Food and drink 0.8395 0.8496 0.9531
Health products 0.7807 0.7857 0.9427
Household 0.7854 0.7987 0.9396
Home appliances 0.8284 0.8329 0.9556
Kitchen and cleaning 0.7973 0.8009 0.9573
Toys, mom and baby 0.8329 0.8427 0.9520
All 0.8147 0.8254 0.9459

Toys, mother &
baby
9%Kitchen&Cleaning

8%

Home
Appliances

6%

Household
11%

Health products
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Food&Drink
33%

Computer&office
& Digital
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Fig. 9.8 The distribution of overall efficient supplier in different product categories
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9.3.1.5 Operations Model Comparison

By the way of third party platform model, the “last mile delivery” fleet serves shops
settled on the W platform while simultaneously serving merchants who sell their
products on their own web page or other market platforms. The full operations
service effectively reduces “the last mile delivery” cost and has allowed W firm
to create higher supplier performance in the second sub-process of supply chain,
referring to Fig. 9.9. However, which model is more efficient in the first stage known
as “first mile delivery”, self-operated model or platform model?

From inventory management, too much stock will increase inventory cost while
too little stock will affect stockout rate. Thus, it is necessary for an integrated
platform to make automated procurement decisions. Figure 9.9 describes inventory
management for W firm. It can be seen that a purchase order would be automatically
issued and sent to the suppliers when inventory dropped below a defined safety
stock, and then the order will be filled by the suppliers [113]. In this way, W
firm can record the delivery time, receiving and shelving information and process
payment. Therefore, it can be seen in Fig. 9.9 that platform model presents higher
procurement-stock efficiency scores than the self-operated (shop in shop) model.

Is the platform model efficient for all product categories?
In response to this question, we compare the “last mile delivery” efficiency

of different product categories for the platform model and self-operated model,
referring to Fig. 9.10. The results show self-operated (shop in shop) model performs
better in computer and Office and digital, food and drink and healthy products. This
is because of the high values of computer and Office and digital, and the shorter
shelf life of food and drink and healthy products, which determine their priority in
order of handling, picking, stockout-compensation and delivery. Furthermore, from
the consumer’s demand, products such as food and drink and healthy products are
often bought based on the temporary needs of customers. Thus it is more suitable for
these products to be delivered from regional distribution centers, while self-operated
model is more helpful to reduce these product’s delivery cost. This is also the reason

Fig. 9.9 Inventory management for W firm
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Fig. 9.10 Supplier performance comparison in different product categories and operations model

why Jingdong, the top Chinese self-operated B2C e-commerce website, starts with
3C (Computer, Communication, and Consumer electronic) products.

For the above discussion, we can conclude that the third party platform model
generally performs better than self-operated model, due to its higher efficiency in
“first mile delivery” and “last mile delivery”. However, from a product categories
perspective, self-operated model has greater efficiency in computer and Office and
digital, food and drink and healthy products than the third party platform model due
to these products’ characteristics of regional demand and delivery.

Geographic Expansion and Efficiency Evaluation on 3PL and Self-Operated
Model

As e-commerce continues its rapid growth into virtually every market sector,
retailers are eager to expand their presence online to capture this market share.
According to a research report of i-Research, a leading organization focusing
on in-depth research in China’s internet industry, China’s business-to-consumer
(B2C) market is to CNY 666.1 billion in 2013, accounting for 36.2% of online
shopping market, and has become a formidable force. However, because B2C is
an e-commerce model directly facing the customers, the “last mile delivery” is a
crucial challenge for improving users’ online shopping experience. Therefore, it is
very important for e-commerce players to improve the “first mile delivery” (from
order to warehouse) and the “last mile delivery” (from warehouse to consumer).
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Starting with a large selection spanning many different product categories is
a great challenge for the supply chain capacity of W firm. Although the FMCG
category contributes to increasing traffic and consumer stickiness due to its nature
of meeting daily needs, how to pick, pack and delivery these small items is a constant
struggle. For example, by 2013, W firm had about 2,000,000 SKUs, which is 100
times that of a traditional supermarket, and each order of W firm has an average of
10 merchandises while each order of Jingdong has less than 2 merchandises. So it
is stringent on warehouse design and the method of choosing food and drink supply
chain. Most importantly, food and drink require faster inventory turnover due to
their shorter shelf life. As a result, procurement-inventory-sale-delivery decisions
needs to be automated as much as possible.

Like most B2C e-commerce players, W firm initially took 3PL delivery service
model for the purpose of saving cost. But initial on-time delivery was only 90%
and customer returns reached over 3% [113]. Coupled with growing orders, 3PL
struggles to keep up with this growth. Therefore, the self-built logistics system
becomes essential. In light of Amazon China’s centralized distribution model, W
firm controls all decisions from its headquarters and builds multiple distribution
centers. A new “line-haul + regional distribution center + last mile delivery”
model is taken. It is noted that the centralized distribution model serves nationwide
consumers with the same selection on one website utilizing transshipment between
warehouses to ensure the availability of products from all warehouses. In contrast,
the decentralized distribution model offers different selections from local branch
websites and delivers products from local distribution centers to consumers.

In the term of warehousing expansion, W firm has built five large warehousing
centers covering Beijing, Shanghai, Guangzhou, Wuhan and Chengdu. By the way
self-established logistics system and the third party platform operations model, W
firm has borne fruit with a drastically enhanced customer experience and a 10%
improvement in consumer satisfaction. The results in Table 9.10 verify that the
third party platform model with self-operated logistics has better delivery efficiency,
supplier performance and supply chain efficiency than self-operated (shop in shop)
model.

In summary, both the self-operated model and the third platform model are more
efficient in supplier performance than that in purchasing-stock efficiency, as shown
in Fig. 9.10 and Table 9.10. Thus, it is urgent for W firm to strengthen their “first
mile delivery” efficiency because the “first mile delivery” plays a more crucial role
in supplier selection and inventory control. From an e-commerce logistics view, self-
operated logistics can improve service quality and efficiency through controlling
each section from warehouse to consumers, including “the last mile delivery” and
is hence more efficient in the coordination of supply chain. But the complicated
supply chain network and growing product categories make most e-retail players
tend towards a hybrid form of 3PL and self-logistics.
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9.3.2 Credit Risk Evaluation with Kernel-Based Affine
Subspace Nearest Points Learning Method

This subsection presents a novel kernel-based method named kernel affine sub-
space nearest point (KASNP) method for credit evaluation. KASNP method is an
extension of a new method named affine subspace nearest point method (ASNP)
[114, 115] by kernel trick. Compared with SVM, KASNP is an unconstrained
optimal problem, which avoids the convex quadratic programming process and
directly computes the optimum solution by training set. On three credit datasets,
our experimental results show that KASNP is more effective and competitive.

9.3.2.1 Affine Subspace Nearest Point Algorithm

The idea of affine subspace nearest point algorithm is derived from the geometric
SVM and its nearest-points problem. Here we first give a brief overview of the
geometric interpretation and the nearest point problem of SVM in original space.

Nearest Point Problem of SVM

Given a set S, co(S) denotes the convex hull of S, and is the set of convex
combinations of all elements of S:

co (S) =
{∑

kαkxk|xk ∈ s, αk ≥ 0,
∑
k

αk = 1

}
(9.52)

For the linearly separable binary case, given training data, (x1, y1), (x2, y2),
. . . , (xl, yl), xi ∈ Rd , yi ∈ {+1,−1}, i = 1, . . . , l, yi is the class label, i.e.
S1 = {(xi, yi)| yi = + 1} and S2 = {(xi, yi)| yi = − 1}, then the convex hulls of
the two sets are

co (S1) =
{∑

i:yi=+1αixi |∑i:yi=+1αi = 1, αi ≥ 0
}

(9.53)

co (S2) =
{∑

i:yi=−1αixi |∑i:yi=−1αi = 1, αi ≥ 0
}

(9.54)

As we know, the aim of normal SVM is to find the hyperplane, which separates
training data without errors and maximizes the distance (called margin) from the
closest vectors to it. In fact, from geometric view, the optimal separating hyperplane
is just the one that is orthogonal to and bisects the shortest line segment joining the
convex hulls of two sets, and the optimal problem of SVM is equivalent to finding
the nearest point problem in the convex hulls [116]. The geometric interpretation
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co(S1) co(S2)

w

H1 H2H

c d

Fig. 9.11 The geometric interpretation and nearest point problem of SVM. co(S1) and co(S2) are
two smallest convex sets (convex hulls) shown with dashed lines which contain each class. c and d
are the nearest points on them

and nearest point problem (NNP) of SVM can be easily understood by Fig. 9.11.

minα

∥∥∥∑i:yi=+1αixi −∑i:yi=−1αixi

∥∥∥
2

s.t.
∑

i:yi=+1αi = 1,
∑

i:yi=−1αi = 1
αi ≥ 0, i = 1, . . . , l

(9.55)

If α∗ = (
α∗1 , α∗2 , . . . , α∗l

)
is the solution to the convex quadratic optimization

Eq. (9.55), then the nearest points in two convex hulls are c = ∑
i:yi=+1α

∗
i xi and

d =∑
i:yi=−1α

∗
i xi . Constructing the decision boundary f (x) = w · x + b to be the

perpendicular bisector of the line segment joining the two nearest points means that
w lies along the line segment and the midpoint p of the line segment satisfies the
function f (x) = 0. w and p can be computed by c and d: w = c d, p = (1/2)(c + d),
then b = w p. In the end, the classification discriminant function can be written as:
f(x)= sgn(w x + b), where sgn( ) is the sign function.

Similar to the above process of the geometric method of SVM, ASNP method
[114] extends the areas searched for the nearest points from the convex hulls in SVM
to affine subspaces, and constructs the decision hyperplane separating the affine
subspaces with equivalent margin.

9.3.2.2 Affine Subspace Nearest Points (ASNP) Algorithm

Definition 9.1 (Affine subspace). Lee and Seung [117] Given a sample set
S = {x1, . . . , xm}, xi ∈ Rd, the affine subspace spanned by S can be written as
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Fig. 9.12 The affine
subspace H(S) created by the
three samples set S. F is the
space three samples lie in.
The inner area of the triangle
shown with dashed lines is
the convex hull co(S),
whereas the minimum
hyperplane that contains the
triangle is the affine subspace
H(S) o

co (S )

H(S )F

Eq. (9.56) or Eq. (9.57):

H (S) = {∑m
i=1αixi |∑m

i=1αi = 1
}

(9.56)

H (S) = {x0 +∑m
i=1αi (xi − x0)

}
, x0 ∈ H (S) (9.57)

For Eq. (9.56), we can get rid of the constraint
∑m

i=1αi = 1 by taking a point in
H(S) as a new origin x0. Therefore the equivalent of Eq. (9.56) can be written as Eq.
(9.57). We can let x0 be the average of all samples, x0 = 1

m

∑m
i=1xi .

In order to interpret the affine subspace, we simply depict the affine subspace in
geometry, see, for example in Fig. 9.12.

Compared with the convex hull co(S), the affine subspace contains the convex
hull, but is not constrained by αi ≥ 0 (see Eq. 9.56). The convex hull only contains
the interpolations of the basis vectors, whereas the affine subspace contains not only
the convex hull but also the linear extrapolations.

For a binary-class problem with training sets S1 = {x1, x2, . . . , xm} and
S2 = {xm + 1, xm + 2, . . . , xn}. Two affine subspaces respectively spanned by them
are

H (S1) =
{∑m

i=1
αixi |

∑m

i=1
αi = 1

}
(9.58)

H (S2) =
{∑n

i=m+1
αixi |

∑n

i=m+1
αi = 1

}
(9.59)

Then the problem of finding the closest points in affine subspaces can be written
as the following optimization problem:

minα

∥∥∑m
i=1αixi −∑n

i=m+1αixi

∥∥2

s.t.
∑m

i=1αi = 1,
∑n

i=m+1αi = 1, i = 1, . . . , l
(9.60)
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Compared with Eq. (9.56), Eq. (9.60) is not under constraint αi ≥ 0 which can
be also converted into an unconstrained optimal problem as follows:

As Eq. (9.57) is represented, Eqs. (9.58) and (9.59) can be written in uncon-
strained Eqs. (9.61) and (9.62).

H (S1) =
{
u1 +

∑m

i=1
αi (xi − u1)

}
(9.61)

H (S2) =
{
u2 +

∑n

i=m+1
αi (xi − u2)

}
(9.62)

where u1 = 1
m

∑m
i=1xi and u2 =

(
1

n−m

)∑n
i=m+1xi .

So Eq. (9.60) can be rewritten as

minα

∥∥(u1 +∑m
i=1αi (xi − u1)

)− (u2 +∑n
i=m+1αi (xi − u2)

)∥∥2 (9.63)

where α = {α1,α2, . . . , αm}T .
Equation (9.63) is an unconstrained optimal problem, which can be computed

directly, and α is

α = (ATA
)+

AT (u1 − u2) (9.64)

Or

α = (AT A+ σI
)−1

AT (u1 − u2) (9.65)

where A = ((u1 − x1) , . . . , (u1 − xm) , (xm+1 − u2) , . . . , (xn − u2)), and
(ATA)+ is the pseudo-inverse of ATA; σ ≥ 0, and I is n*n identity Matrix.

Then the two nearest points in affine subspaces are

c = u1 +∑m
i=1αi (xi − u1) (9.66)

d = u2 +∑n
i=m+1αi (xi − u2) (9.67)

The midpoint of the line segment joining c and d is p = (1/2) (c + d). Similar
to the nearest point problem of SVM, the decision boundary w x + b = 0 is the
perpendicular bisector of the line segment. Thus, w = c − d and b = −w*p.
Correspondingly, the decision function is.

f (x) = sgn (w · x + b)

= sgn
(∑n

i=1yiαi (xi · x)− (12)
∑n

i=1
∑n

j=1yiαiαj

(
xi · xj

)) (9.68)
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From the above process, we can see that ASNP computing the nearest points in
the affine subspaces avoids convex quadratic programming routine and can directly
obtain the optimum solution as Eq. (9.67) or Eq. (9.68).

We have introduced the linear ASNP above. But in real world, some data
distribution is more complex and nonlinear. When convex hulls intersect (i.e.
nonlinearly separating), the distance of nearest points from convex hulls will be
zero. Similar with that, when the affine subspaces intersect, the distance in ASNP
will also be zero. For the nonlinear distribution data, SVM introduces kernel
trick to transform the nonlinear problem to a linear problem (i.e. convex hulls
are non-intersection) theoretically. Now kernel method has been widely applied in
classification problem, and it has been an effective method for nonlinear or complex
data problems. In order to deal with nonlinear problems, we extend the ASNP
algorithm to a nonlinear KASNP algorithm by the kernel trick in this section.

9.3.2.3 Kernel Affine Subspace Nearest Points (KASNP) Algorithm

Kernel Method and Kernel Trick

Kernel method [91, 118] is an algorithm that, by replacing the inner product with
an appropriate positive definite function, implicitly performs a nonlinear mapping
U of the input data from Rd into a high-dimensional feature space H. To compute
dot products of (U(x) U(x0)), we employ kernel representation of the form k(x,
x0) = (U(x) U(x0)), which allows us to compute the value of the dot products in H
without having to actually carry out the map U.

Cover’s theorem states that if the transformation is nonlinear and the dimen-
sionality of the feature space is high enough, then the input space may be
transformed into a new feature space where the patterns are linearly separable
with high probability [119]. That is, when the decision function is not a linear
function of the data, the data can be mapped from the input space into a high
dimensional feature space by a nonlinear transformation. In this high dimensional
feature space, a generalized optimal separating hyperplane is constructed. This
nonlinear transformation just can be performed in an implicit way through the kernel
methods. Thus the basic principle behind kernel-based algorithms is that a nonlinear
mapping is used to extend the input space into a higher-dimensional feature space.
Implementing a linear algorithm in the feature space then corresponds to a nonlinear
version of the algorithm in the original input space. Kernel-based classification
algorithms, primarily in Support Vector Machines (SVM), have gained a great deal
of popularity in machine learning fields [91, 118, 120, 121].

Common choices of kernel function are the linear kernel k(x, y) = (x y), the
polynomial kernel k(x, y)= (1+ (x y))d, and the radial basis function (RBF) kernel
k(x, y)= exp (1/2)(kx yk/r)2 and the sigmoid kernel k(x, y)= tanh(b(x y) c). In this
section, we adopt linear kernel and RBF kernel for experiments.
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Kernel Affine Subspace Nearest Points (KASNP) Algorithm

Suppose a nonlinear mapping U of the input data in Rd into a high-dimensional
feature space H. In space H, we construct the ASNP classifier. Similar to the linear
case (see Eq. 9.63), the optimal problem of the closest points in H can be written as
the following optimization problem:

minα

∥∥∥
(
u1 +

∑m

i=1
αi (� (xi )− u1)

)
−
(
u2 +

∑n

i=m+1
αi (� (xi )− u2)

)∥∥∥
2

(9.69)

Where u1 = 1
m

∑m
i=1�(xi ) ,u2 = 1

n−m

∑n
i=m+1�(xi ).

Let A =
(
u1 − �(x1) , . . . ,u1 − �(xm) ,� (xm+1) − u2, . . . ,� (xn) − u2,

Formula (9.69) can written as

minαf (α) = minα‖(u1 − u2)−Aα‖2 (9.70)

By solving ∂f
∂α
= 0, we have

AT Aα = AT (u1 − u2) (9.71)

In Eq. (9.71) AT A and AT (u1 − u2) can be cast in terms of dot products
(Φ(xi) · Φ(xj)) as follows:

AT A =
(
MT F +E

)T (
�T �

) (
MT F +E

)
(9.72)

AT (u1 − u2) =
(
MT F +E

)T (
�T �

)
F T mT (9.73)

Where � = (Φ(x1), . . . , Φ(xm),Φ(xm + 1), . . . ,Φ(xn)),

M =
(

1
m

0
0
1

n−m

)(
1 · · · 1
0 · · · 0

0 · · · 0
1 · · · 1

)

2×0

,

F =
(

1 · · · 1
0 · · · 0

0 · · · 0
1 · · · 1

)

2×n

,m =
(

1

m
,

1

n−m

)
,
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E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
. . .

−1
1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ,

ΦT Φ =
⎛
⎜⎝

(� (x1) ·�(x1)) · · · (� (x1) ·�(xn))
...

. . .
...

(� (xn) ·�(x1)) · · · (� (xn) ·�(xn))

⎞
⎟⎠ .

Employing kernel representations of the form k(xi, xj)= (�(xi) · �(xj)), �T� is

K = ΦT Φ =

⎛
⎜⎜⎝

k (x1, x1) k (x1, x2) . . . k (x1, xn)

k (x2, x1) k (x2, x2) . . . k (x2, xn)
...

...
. . .

...

k (xn, x1) k (xn, x2) . . . k (xn, xn)

⎞
⎟⎟⎠

Equations (9.72) and (9.73) can be kernelized:

AT A = (MT F +E
)T

K
(
MT F + E

)
(9.74)

AT (u1 − u2) =
(
MT F +E

)T
KF T mT (9.75)

So we can directly obtain the solution α of Eq. (9.69):

α = (AT A
)+ (

AT (u1 − u2)
)

(9.76)

or

α = (AT A+ σI
)−1 (

AT (u1 − u2)
)

(9.77)

where ATA+ is pseudo-inverse of ATA; σ ≥ 0, and I is n*n identity Matrix.
After getting the optimal solution α, two nearest point c and d can be represented

by α:

c = u1 +∑m
i=1αi (Φ (xi )− u1)

=∑m
i=1

∑(
1
m

(
1−∑m

i=1αi

)+ αi

)
Φ (xi )

(9.78)
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d = u2 +∑n
i=m+1αi (Φ (xi )− u2)

=∑n
i=m+1

(
1

n−m

(
1−∑n

i=m+1αi

)+ αi

)
Φ (xi )

(9.79)

then, w, p and b can be written as:

w = c − d = Φv1 (9.80)

p = (12) (c + d) = 1
2Φv2 (9.81)

b = −w · p = − 1
2v

T
1 ΦT Φv2 = − 1

2v
T
1 Kv2 (9.82)

where

v1 =

⎛
⎜⎜⎜⎝

1
m

(
1−∑m

i=1αi

)+ α1
1
m

(
1−∑m

i=1αi

)+ αm
−1
n−m

(
1−∑n

i=m+1αi

)− αm+1
−1
n−m

(
1−∑n

i=m+1αi

)− αn

⎞
⎟⎟⎟⎠ (9.83)

v1 =

⎛
⎜⎜⎜⎝

1
m

(
1−∑m

i=1αi

)+ α1
1
m

(
1−∑m

i=1αi

)+ αm
−1
n−m

(
1−∑n

i=m+1αi

)− αm+1
−1
n−m

(
1−∑n

i=m+1αi

)− αn

⎞
⎟⎟⎟⎠ · Z (9.84)

So the decision boundary (w · �(x)) + b = 0 is

vT
2 kx − 1

2vT
2 Kv1 = 0 (9.85)

Where kx = �T�(x) = (k(x1, x), k(x2, x), . . . , k(xn, x))T .
The decision function f (x) = sgn (w · �(x)+ b) is

f (x) = sgn (w ·Φ (x)+ b) = sgn
(
vT

2 kx − 1
2vT

2 Kv1

)
(9.86)

According to the previous descriptions, the overall process of KASNP learning
algorithm can be summarized into the following three steps:

Step 1: Computing the optimal solution α of the nearest points problem of KASNP
by training set:

α =
(
AT A

)+ (
AT (u1 − u2)

)
or α =

(
AT A+ σI

)−1 (
AT (u1 − u2)

)
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Step 2: Constructing decision boundary by α:

vT
2 kx − 1

2
vT

2 Kv1 = 0

Correspondingly, the decision function is

f (x) = sgn

(
vT

2 kx − 1

2
vT

2 Kv1

)

Step 3: Testing a sample y,

If f (y) ≥ 0, y ∈ the class of S1; otherwise, y ∈ the class of S2

9.3.2.4 Two-Spiral Problem Test

2D two-spiral classification is a classical nonlinear problem and has been par-
ticularly popular for testing novel statistical pattern recognition classifiers. The
problem is a difficult test case for learning algorithms [122, 123] and is known
to give neural networks severe problems, but it can be successfully solved by
nonlinear kernel SVMs [124, 125]. In this section, we also tested our KASNP

with RBF kernel k (x, y) = exp
(

1
2

)
(x − y/σ)2 on a 2D two-spiral dataset

accessible from the Carnegie Mellon repository [126]. The benchmark dataset,
download from http://www.cgi.cs.cmu.edu/afs/cs.cmu.edu/project/vairepository/ai/
areas/ai/areas/neural/bench/cmu/0.html, has two classes of spiral-shaped training
data points, with 97 points for each, and is illustrated in Fig. 9.13. In order to
visualize the separating surface by KASNP, the nodes of a 2D grid (0.05 space
per grid) are tested and marked with different color (gray and white) to show their
class. Figure 9.14 shows the decision region by KASNP. The parameter r of RBF
kernel for KASNP is 0.8.

In Fig. 9.14, our KASNP constructs a smooth nonlinear spiral-shaped separating
surface for the 2D two-spiral dataset, which implies that the KASNP classification
method can achieve an excellent generalization for nonlinear data.

9.3.2.5 Credit Evaluation Applications and Experiments

Credit risk evaluation is a very typical classification problem to identify “good”
and “bad” creditors. In this section, we apply KASNP for credit risk evaluation.
To test the efficacy of our proposal KASNP for creditor evaluation, we compare
it with SVM by linear kernel and RBF kernel on three real world credit datasets:
Australian credit dataset, German credit dataset and a major US credit dataset.

http://www.cgi.cs.cmu.edu/afs/cs.cmu.edu/project/vairepository/ai/areas/ai/areas/neural/bench/cmu/0.html
http://www.cgi.cs.cmu.edu/afs/cs.cmu.edu/project/vairepository/ai/areas/ai/areas/neural/bench/cmu/0.html
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Fig. 9.13 2D two-spiral dataset: “o” spiral 1, “*” spiral 2

Fig. 9.14 The separation generated by RBF kernel KASNP

The compared linear kernel KASNP is equivalent to original ASNP method [114],
that is, ASNP method is a special case of KASNP when kernel function is linear
kernel.
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Experiment Design

In our experiments, three accuracies will be tested to evaluate the classifiers, “Good”
accuracy, “Bad” accuracy and Total accuracy:

"Good"Accuracy = number of correctly classif ied"Good" samples in test set

number of "Good" samples in test set

"Bad"Accuracy = number of correctly classif ied"Bad" samples in test set

number of "Bad" samples in test set

T otal Accuracy = number of correct classif ication in test set

number of samples in test set

where “Good” accuracy and “Bad” accuracy respectively measure the capacity of
the classifiers to identify “Good” or “Bad” clients. In the real world, for the special
purposes to prevent the credit fraud, the accuracy of classification for the risky class
must be improved to reach an acceptable standard but not excessively affecting the
accuracy of classification for other classes. Thus, improving “Bad” accuracy is one
of the most important tasks in credit scoring [127].

In our experiments of each dataset, we randomly select p (p = 40, 60, 80, . . . ,
180) samples from each class to train the compared classifiers and the remaining for
the test. We repeat the test 20 times and report the mean of “Bad”, “Good” and Total
accuracies for each compared classifiers. All of our experiments are carried out on
Matlab 7.0 platform. The convex quadratic programming problem of SVM is solved
utilizing Matlab optimal tools. The experimental results on three credit datasets are
separately given in the following subsections.

Results on Australian Credit Dataset

The Australian credit dataset from the UCI Repository of Machine Learning
Databases (http://archive.ics.uci.edu/ml/) contains 690 instances of MasterCard
applicants, 307 of which are classified as positive and 383 as negative. Each
instance has 14 attributes, and all attribute names and values have been changed
to meaningless symbols to protect confidentiality of the data. With the number
variety (40, 60, . . . , 180) of randomly selected training samples per class, the “Bad”
accuracy, “Good” accuracy and total accuracy comparisons of different methods
on Australian credit dataset, are shown in Tables 9.11, 9.12, and 9.13 respectively.
Parameter r of RBF kernel is set to 50,000 for both RBF SVM and RBF KASNP,
and the penalty constant C of SVM is∞.

In above experimental results, for “Bad” accuracy, nonlinear classifiers RBF
SVM and RBF KASNP outperform other two linear classifiers, and RBF KASNP
is better than RBF SVM. For “Good” accuracy, linear kernel KASNP is the best

http://archive.ics.uci.edu/ml/
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Table 9.11 “Bad” accuracy (%) comparisons of different methods on Australian dataset

Number of training data per class “Bad” accuracy (%) comparisons on Australian dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 79.65 84.50 81.97 86.90
60 83.08 85.20 82.06 88.05
80 81.01 86.07 81.34 88.18
100 84.12 87.37 81.27 87.60
120 83.71 86.71 81.48 87.51
140 82.12 87.14 81.40 87.43
160 82.38 87.00 80.25 87.02
180 79.48 86.77 80.07 86.26

Table 9.12 “Good” accuracy (%) comparisons of different methods on Australian dataset

Number of training data per class “Good” accuracy (%) comparisons on Australian dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 81.85 73.95 89.76 72.73
60 87.00 74.98 89.74 76.84
80 85.15 78.28 91.43 79.52
100 83.31 79.44 91.69 81.06
120 84.87 81.36 91.90 82.86
140 83.68 82.49 91.32 84.07
160 84.25 84.05 92.24 85.14
180 84.76 83.86 91.85 86.22

Table 9.13 Total accuracy (%) comparisons of different methods on Australian dataset

Number of training data per class Total accuracy (%) comparisons on Australian dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 80.61 79.89 85.38 80.70
60 84.78 80.77 85.39 83.19
80 82.78 82.74 85.66 84.47
100 83.78 84.02 85.67 84.84
120 84.19 84.49 85.81 85.58
140 82.76 85.24 85.44 86.06
160 83.12 85.82 85.01 86.27
180 81.52 85.65 84.61 86.24

of all classifiers, and its “Good” accuracy can get 89.74–92.24% (see Table 9.12).
From the total accuracy comparisons, KASNP dominates SVMs. Linear KASNP
can reach the highest total accuracy when the number of training samples p = 40,
. . . , 120, and RBF KASNP is the best one when p= 140, 160, 180 (see Table 9.13).
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Table 9.14 “Bad” accuracy (%) comparisons of different methods on German dataset

Number of training data per class “Bad” accuracy (%) comparisons on German dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 65.87 67.08 67.12 67.15
60 67.90 68.77 67.08 67.60
80 69.64 70.20 69.73 70.66
100 71.47 69.92 71.35 71.53
120 70.92 71.81 72.28 72.36
140 71.06 72.47 73.59 73.16
160 71.29 72.75 71.46 73.75
180 73.13 72.13 72.42 72.83

Table 9.15 “Good” accuracy (%) comparisons of different methods on German dataset

Number of training data per class “Good” accuracy (%) comparisons on German dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 64.91 68.83 66.56 68.89
60 67.73 69.16 66.95 71.09
80 68.75 69.75 69.56 69.60
100 68.23 69.83 69.38 69.89
120 69.89 69.59 68.88 69.58
140 69.63 69.96 69.22 69.83
160 70.94 70.56 70.85 71.31
180 70.33 70.57 70.40 70.66

Results on German Credit Dataset

The German credit dataset from the UCI Repository of Machine Learning Databases
(http://archive.ics.uci.edu/ml/) concludes 1000 instances, 700 instances of credit-
worthy applicants and 300 instances whose credit should not be extended. For each
instance, 24 numerical attributes describe the credit history, account balances, loan
purpose, loan amount, employment status, and personal information. The different
accuracy comparisons of the classifiers on German dataset are given in Tables 9.11,
9.12, and 9.13 respectively. The parameter r of RBF kernel for SVM and KASNP is
set to r = 20,000, and the penalty constant C of SVM is set to 1.

From the experimental results in Tables 9.14, 9.15, and 9.16, we can see that our
proposed RBF KASNP is slightly better than others. RBF KASNP has five highest
accuracies (when p= 40, 80, 100, 120, 160) in “Bad” accuracy comparison, and six
best results (when p = 40, 60, 80, 100, 160, 180) for “Good” clients identification.
For total accuracy, RBF KASNP continuously achieves the highest accuracy in eight
comparison results.

http://archive.ics.uci.edu/ml/


9.3 Evaluation Methods for Sociology and Economics 535

Table 9.16 Total accuracy (%) comparisons of different methods on German dataset

Number of training data per class Total accuracy (%) comparisons on German dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 65.18 68.34 66.72 68.40
60 67.77 69.05 66.99 70.14
80 68.98 69.87 69.60 69.88
100 69.04 69.86 69.87 70.30
120 70.13 70.12 69.68 70.24
140 69.95 70.51 70.19 70.57
160 71.01 71.01 70.98 71.82
180 70.85 70.86 70.78 71.07

Table 9.17 “Bad” accuracy (%) comparisons of different methods on USA dataset

Number of training data per class “Bad” accuracy (%) comparisons on USA dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 63.97 65.34 61.83 81.32
60 65.82 66.01 68.35 82.44
80 67.37 69.99 71.89 83.33
100 66.32 70.69 74.41 83.29
120 68.07 69.43 77.40 82.82
140 67.58 71.64 78.14 84.59
160 69.27 73.21 78.39 84.14
180 73.13 74.44 79.57 84.37

Results on USA Credit Dataset

The last credit card dataset used in our experiments is provided by a major U.S.
bank. It contains 6000 records and 66 derived attributes. Among these 6000 records,
960 are bankruptcy accounts and 5040 are “good” status accounts [128]. The “Bad”,
“Good” and total accuracy comparisons of the classifiers are shown in Tables 9.17,
9.18, and 9.19 respectively. Parameter r of RBF kernel of SVM and KASNP is
r = 10,000, and the penalty constant C of SVM is C = 1.

Comparing the results reported in Tables 9.17, 9.18, and 9.19, we find the
following results: (1) RBF KASNP is superior to other classifiers in finding “Bad”
clients. As we can see from Table 9.17, only using 80 training samples (40 per class),
RBF KASNP can achieve best “Bad” classification results 81.32% which is at least
higher 15% than the accuracies of other approaches. (2) For identifying “Good”
clients, four approaches have not clear difference, and RBF SVM and linear KASNP
respectively have four best results in Table 9.18. (3) From the general view (see
Table 9.19), the two KASNP approaches dominate SVMs. RBF KASNP performs
the best when p = 40, . . . , 120, and linear KASNP outperforms the others when
p = 140, 160, 180.



536 9 Evaluation Analysis

Table 9.18 “Good” accuracy (%) comparisons of different methods on USA dataset

Number of training data per class “Good” accuracy (%) comparisons on USA dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 67.12 67.62 59.13 66.11
60 66.46 67.84 65.73 67.15
80 66.65 66.35 68.33 67.15
100 67.02 67.97 67.40 67.45
120 69.34 69.72 68.36 68.00
140 68.04 68.79 69.44 67.13
160 66.59 68.66 70.52 67.73
180 61.38 68.93 70.18 67.69

Table 9.19 Total accuracy (%) comparisons of different methods on USA dataset

Number of training data per class Total accuracy (%) comparisons on USA dataset
Linear SVM RBF SVM Linear KASNP RBF KASNP

40 67.81 67.27 59.55 68.48
60 66.44 67.56 66.13 69.49
80 67.39 66.90 68.86 69.59
100 66.92 68.37 68.44 69.80
120 69.15 69.68 69.68 70.16
140 67.98 69.20 70.69 69.63
160 66.97 69.30 71.63 70.04
180 63.01 69.69 71.48 69.99

9.3.2.6 Discussion

From above experimental results of three credit datasets, we can conclude that as a
whole the proposed KASNP is comparable with SVM for creditor classification. As
we know, the capacity of finding “Bad” clients is an important measure for credit
risk evaluation approaches. From “Bad” accuracy comparison experimental results
in Tables 9.11, 9.12, and 9.13, we note that our proposed KASNP with RBF kernel
can achieve the best performance for identifying “Bad” creditors. Especially for US
dataset, KASNP obviously outperformed other approaches. In total performance,
RBF KASNP also performed better than SVMs. Thus, RBF KASNP classifier made
a better risky classification performance. Moreover, we also note that, for “Good”
clients identification, linear KASNP is a good classifier. Especially on Australian
dataset, linear KASNP obtained wonderful “Good” accuracies, while its “Bad”
accuracies also kept acceptable standard.
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9.3.3 A Dynamic Assessment Method for Urban
Eco-Environmental Quality Evaluation

This subsection provides an urban eco-environmental quality assessment system
with a dynamic assessment of the Yangtze River Delta and the Pearl River Delta
economic zones are proposed and analyzed.

9.3.3.1 Related Works

Assessment of Urban Eco-Environmental Quality

With the rapid surge in urbanization around the world, there are a series of
urban eco-environmental problems. In 1962, Carson described the destruction of
urban eco-environment in Silent Spring for the first time, which led to the wide-
range attention. In 1971, the United Nations Educational, Scientific and Cultural
Organization developed the ‘Man and the Biosphere’ research project, which
focused on the eco-environment of human settlements and carried out the urban
research subject in human ecology theories and views [129]. Schneider pointed out:
‘in contrast with common sense of many urban sociologist and environmentalists,
that the urban basic issues are not clean air and water, not endangered species
or environment, not energy, nor the urban housing construction and renovation
investment, but the association structure of the human environment—the city, it
is necessary to build up a harmonious developing city to solve the problem’ [29].
In 1984, Yanitsky established a human residence where economy, society and
nature are coordinated in development. In 1998, Bohm studied the special urban
development process of Vienna in Australia. Although the number of population has
not changed significantly, the residential area, road area, and energy consumption
have increased significantly, and urban green space reduced significantly. The
United Nations human environment and development conference held in Rio de
Janeiro, Brazil, pointed out that environmental issue will be the largest challenge in
the twenty-first century. The urban eco-environmental quality problem has been an
active research fields for years [115, 130–132].

Sensitivity Analysis

Multi-attribute evaluation (MAE) is used in assessment when the known options
available are fixed, and the number of the evaluation alternatives are limited [133].
The reliability of the evaluation results is tested in the sensitivity analysis. For
a limited alternative set, there are two parameters to determine their ranking of
the alternatives: one is the relative importance among attributes, that is, attribute
weights; and the other is attribute value correspondent to each alternative.
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The early studies of the sensitivity analysis focused on the key attribute weights
[134, 135]. Starr [136], Isaacs [137], Fishbum [138] and Evans [139], studied the
maximum regional-changed issues when the alternative order remained constant.
French and Insua [140] determined the potential competitors in the current optimal
solution with the minimum distance method. Masuda [141] and Armacost and
Hosseini [142] studied the sensitivity analysis on the analytic hierarchy process
(AHP). Ringuest [143] studied the distance sensitivity analysis between the set
closest to the original weight and original weight when the optimal solution
remained unchanged.

Urban Eco-Environmental Quality Index System

Here, an Urban Eco-Environmental Quality Index System is proposed to assess
urban eco-environmental development and quality level.

To build an Urban Eco-Environmental Quality Index System, the following
principles should be followed.

People-oriented principle. The core of urban eco-environment is ‘human’, who
is both the creator and the bearer of urban eco-environment. Therefore, the
assessment index system should not only reflect on what are closely related with
people’s living, but also reflect the objective and subjective experience on the
environment.

Comprehensiveness principle. The construction of the assessment index system
must reflect all aspects of urban eco-environment, including the living conditions,
natural environment, social environment, and infrastructure indicators, as well as
all aspects of urban environment.

Representative principle. The assessment index system should reflect the main
features of urban eco-environment. Both qualitative indicators and quantitative
indicators should be included.

9.3.3.2 Selecting Indicators

According to the previous studies [144–146], we selected 25 comprehensive
evaluation index, from four perspectives—population ecological indicators, nature
ecological indicators, economy ecological indicators, and society ecological indica-
tors to establish the index system, which includes both the cost-based indicators and
efficiency-based indicators [147]. The details of all indicators are shown in Table
9.20.

These indicators are collected from the ‘China City Statistical Yearbook’ and
the ‘China Statistical Yearbook for Regional Economy’, in order to increase the
comparability of the index, we unify the indicators to the relative ratio, such as
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Table 9.20 Urban eco-environmental quality index system

Factors Subfactors

Population ecological indicators Natural population growth rate (%) population density
(person/km)

Nature ecological indicators Percentage of hospital doctors in urban population (%)
Percentage of college students in urban population (%)
Percentage of industrial waste water up to the discharge
standards (%)

Economy ecological indicators Industrial waste gas treatment rate (%)
Industrial solid waste comprehensive utilization rate (%)
Urban sewage treatment rate (%)
Domestic garbage treatment rate (%)
Percentage of comprehensive utilization value of waste
products in gross regional product (%)
Green area per person (square meter/person) green coverage
rate in completed area (%)
Unemployment rate (%)

Society ecological indicators Public library collection per 100 people (book, part/100
people) percentage of the internet users in urban population
(%)
Household water consumption per person
(ton/person)
Household electricity consumption per person (kilowatt
hour/person)
Bus per 10,000 people (bus/10,000 people)
Urban road area per person (square meter/person)
Percentage of urban construction land in urban area (%)
Percentage of tertiary industries in gross regional product
(%)
Gross regional product per person (RMB/person)
Gross regional product growth rate (%)
Percentage of investment in science and education in fiscal
expenditure (%)
Average wage of staff and workers (RMB/person)

percentage of hospital doctors in urban population = hosptial doctors
urban population × 100%

percentage of investment in science and education in fiscal expenditure
= investment in science and education

fiscal expenditure × 100%

Evaluation Method

The proposed evaluation method includes three steps: The first step is the data
preprocessing, the second step is the Dynamic Assessment, and the third step is
the sensitivity analysis.
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Fig. 9.15 The evaluation framework flow chart

In data preprocessing, evaluation index system is setup and data is processed.
The evaluation index system is based on ecological theory, and advices of experts.
In data processing, data is cleaned and transformed. A Dynamic Assessment model
to evaluate the urban eco-environmental quality is proposed. The sensitivity of
attributes weights and values are analyzed.

Figure 9.15 shows the structure of the proposed evaluation model. In the
following subsections, we will present the details of the models and methods in
proposed framework.
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Multi-criteria Decision Making Method

Multi-criteria decision making method (MCDM) is a decision making analysis
method, which has been developed since 1970s. MCDM is the study of methods and
procedures by which concerns about multiple conflicting criteria can be formally
incorporated into the management planning process and the optimum one can be
identified from a set of alternatives. In the following subsections, MCDM related
methods, Entropy Method, Grey Relation Analysis (GRA) and Technique for order
preference by similarity to ideal solution (TOPSIS), which are integrated in this
research, are discussed.

Entropy Method

In this research, we introduced the concept of entropy to measure the information,
which is a term in information theory, also known as the average amount of
information. The index weight is calculated by the Entropy Method. According
to the degree of index dispersion, the weight of all indicators is calculated by
information entropy. Entropy method is highly reliable and can be easily adopted
in information measurement. The calculation steps are as follows:

Suppose we have a decision matrix B with m alternatives and n indicators:

1. In matrix B, feature weight pij is of the ith alternative to the jth factor:

pij = yij
∑m

i=1yij (1 ≤ i ≤ m, 1 ≤ j ≤ n) (9.87)

2. The output entropy ej of the jth factor becomes

ej = −k
∑m

i=1pij ln pij (k = 1 lnm; 1 ≤ j ≤ n) (9.88)

3. Variation coefficient of the jth factor: gj can be defined by following equation:

gj = 1− ej , (1 ≤ j ≤ n) (9.89)

Note that the larger gj is, the higher the weight should be.
4. Calculate the weight of entropy αj:

αj = gj

∑m

j=1
gj , (1 ≤ j ≤ n) (9.90)

Grey Relational Analysis Method

Grey relational analysis is a part of grey theory, which can handle imprecise
and incomplete information in grey systems. GRA only requires small sample
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data, simple calculation and the precision is quite high. Specifically, weights are
calculated as [148].

Suppose we have the initial matrix R

R =

⎡
⎢⎢⎢⎣

x1 x12 · · · x1n

x21 x22 · · · x2n
...

... · · · ...

xm1 xm2 · · · xmn

⎤
⎥⎥⎥⎦

1. Standardize the raw matrix R

R =

⎡
⎢⎢⎢⎣

x ′1 x ′12 · · · x ′1n
x ′21 x ′22 · · · x ′2n
...

... · · · ...

x ′m1 x ′m2 · · · x ′mn

⎤
⎥⎥⎥⎦ (9.91)

2. Generate the reference sequence x ′0

x ′0 =
(
x ′0(1), x ′0(2), · · · , x ′0(n)

)
(9.92)

x ′0(j) is the largest and normalized value in the jth factor.
3. Calculate the difference Δ0i(j) between the normalize sequences and the refer-

ence sequence x ′0

Δ0i (j ) = |x ′0(j)− x ′ij |

Δ =

⎡
⎢⎢⎢⎣

Δ01(1) Δ01(2) · · · Δ01(n)

Δ02(1) Δ02(2) · · · Δ02(n)
...

...
...

...

Δ0m(1) Δ0m(2) · · · Δ0m(n)

⎤
⎥⎥⎥⎦

(9.93)

4. Compute the grey coefficient: r0i(j)

r0i (j ) =
minn

i=1 minm
j=1Δ0i(j )+ δmaxn

i=1maxm
j=1Δ0i(j )

Δ0i (j )+ δmaxn
i=1maxm

j=1Δ0i (j )
(9.94)

where δ is a distinguished coefficient. Usually, the value of d often is set to
0.5, to offer moderate distinguishing effects and good stability.

5. Obtain the grey relational degree value: bi

bi = 1

n

∑n

j=1
r0i (j ) (9.95)
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6. Finally, calculate the weight of GRA: β i

βi = bi∑n
i=1 bi

(9.96)

In this research, we use Entropy and the GRA method to calculate the normalized
weight of the indicators.

Technique for Order Preference by Similarity to Ideal Solution Method

Technique for order preference by similarity to ideal solution TOPSIS was initially
developed to rank alternatives over multiple criteria. TOPSIS finds the best alterna-
tives by minimizing the distance to the ideal solution and maximizing the distance
to the nadir or negative-ideal solution [34]. All alternative solutions can be ranked
according to their closeness to the ideal solution. Because its first introduction, a
number of extensions and variations of TOPSIS have been developed over the years.
The calculation steps are as follows:

1. Calculate the normalized decision matrix A. The normalized value aij is calcu-
lated as

aij = xij√∑m
i=1

(
xij
)2 (1 ≤ i ≤ m, 1 ≤ j ≤ n) (9.97)

2. Calculate the weighted normalized decision matrix

D = (aij ∗wj

)
(1 ≤ i ≤ m, 1 ≤ j ≤ n) (9.98)

where wj is the weight of the ith criterion, and
∑n

j=1wj = 1.
3. Calculate the ideal solution V∗ and the negative ideal solution V−

V ∗ = {v∗1 , v∗2 , · · · , v∗n
} =

{(
max

i
vij |j ∈ J

)
,

(
min
i

vij |j ∈ J ′
)}

V − = {v−1 , v−2 , · · · , v−n
} =

{(
min
i

vij |j ∈ J

)
,

(
max

i
vij |j ∈ J ′

)} (9.99)

4. Calculate the separation measures, using the m-dimensional Euclidean distance

S+i =
√∑n

j=1

(
V

j
i − V ∗

)2
(1 ≤ i ≤ m, 1 ≤ j ≤ n)

S−i =
√∑n

j=1

(
V

j
i − V −

)2
(1 ≤ i ≤ m, 1 ≤ j ≤ n)

(9.100)
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5. Calculate the relative closeness to the ideal solution

Yi = S−i
S+i +S−i

(1 ≤ i ≤ m) (9.101)

where Yi ∈ (0, 1). The larger Yi is, the closer the alternative is to the ideal
solution.

6. Rank the preference order

The larger TOPSIS value, the better the alternative.

Dynamic Assessment Method

Dynamic assessment has been introduced by Feuesrtein in the ‘theory, tools,
techniques of learning potential assessment—the dynamic assessment on hysteresis
operators’ in 1979. The root of its theory can be traced back to ‘the zone of
proximal development’ by Vygotsky [149]. Over time and the accumulation of
the data, people have many chronological sequence data of the plane data table
series, called ‘time series data sheet.’ Comprehensive evaluation with time series
data, its parameter values are dynamic, which is defined as ‘dynamic comprehensive
evaluation’ problem [150].

Dimension Reduction for Time Series Data

With the proposed dynamic TOPSIS model, the three-dimensional time series data
is reduced to two-dimensional data using the time–weight vector described in the
following subsection. The time-weighted vector w = (w1, w2, wn) T represents the
degree of emphasis on different time, according to different criteria. The ‘time–
weight vector entropy’ I is given as I = −∑p

k=1wk ln wk , and the ‘time degree’ T

is T =∑p

k=1wk
p−k
p−1 , where p is the number of years.

The ‘time degree’ T indicates the degree to which the aggregation operator values
a time interval. It can take a value between 0 and 1 to reflect the attitude of a decision
maker as shown in Table 9.21. T = 0 implies that time weighted vector w becomes
(0, 0, . . . , 1) and the element with the latest time value obtains the largest weight.
T = 1 implies that time weighted vector w becomes (1, 0, . . . , 0) and the element
with the earliest time value obtains the largest weight. T = 0.5 implies that data
elements of different years have the same importance.

The criterion to determine the time–weight vector is that in the condition of a
given ‘time degree’ T, to mine sample information as much as possible and consider
different information of evaluated samples in the timing. The time weighted vector
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Table 9.21 The Mean of the time degree T

T value Illustration

0.1 The recent data is most important
0.3 The recent data is more important
0.5 The data is of equal importance
0.7 The earlier data is more important
0.9 The earlier data is most important
0.2, 0.4, 0.6, 0.8 Intermediate values between adjacent scale values

can be calculated:
⎧
⎪⎨
⎪⎩

MAX
(−∑p

k=1wk lnwk

)
s.t.T =∑p

k=1wk
p−k
p−1∑p

k=1wk = 1, wk ∈ [0, 1] , k = 1, 2, · · · , p
(9.102)

9.3.3.3 Dynamic Technique for Order Preference by Similarity to Ideal
Solution Evaluation Method

The dynamic TOPSIS evaluation method based on a dynamic assessment model is
used to assess eco-environmental quality, and the proposed method considers the
time weight vector to construct three-dimensional time series data [151]. In this
model, through the MCDM (TOPSIS), the two-dimensional data is reduced to one-
dimensional data to dynamically assess the quality of the urban eco-environment.
The steps of proposed dynamic assessment method are as follows:

1. Determine the evaluation index system, according to the ecological theory.
2. Data preprocessing and standardization.
3. Use multi-attribute evaluation method to determine the combination weight.
4. Use MCDM: TOPSIS method to assess the level of urban eco-environmental

quality from 2005 to 2009.
5. Create a dynamic assessment model as

Z = α1Y1 + α2Y2 + · · ·αiYi + · · · + αnYn (i = 1, 2, · · · n) (9.103)

Where Yi is defined in Eq. (9.101) used by TOPSIS method to determine
relative closeness degree of the urban eco-environmental quality each year. ai
is defined in Eq. (9.102) and is the time–weight vector wi.

Calculate the utility value of urban eco-environmental quality.
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Dynamic Sensitivity Analysis

There are two aspects of sensitivity analysis—one is the sensitivity analysis of
attribute weight, and the other is the sensitivity analysis of attribute value. However,
previous studies on sensitivity analysis are static assessment, which does not show
the influence of time [152].

The Dynamic sensitivity analysis is to consider the influence of the Dynamic
time weight vector for decision-maker to make the final decisions. Because of the
uncertainty of the time–weight vector, the assessment results are uncertain. It is
necessary and critical to do sensitivity analysis of dynamic assessment method.

Assume that the weight wk of index Tk has small fluctuations wk, the changes in
weight value are defined as w∗k = wk + Δwk , whereas the other weights remain
unchanged. After the normalization, we obtain

w′k = wk

w1+w2+···wk+Δwk+···wn

= wi

(w1+w2+···w∗k+···wn)(k=1,2,···n)
(9.104)

The stable range of the index Tk is

⎧
⎪⎪⎨
⎪⎪⎩

Δwk > −wk, yik = ytk

−wk < Δwk <
∑n

j=1
(yij−ytj )wk

ytj−yij
, yik < ytk

Δwk > max
[∑n

j=1
(yij−ytj )wk

ytj−yij
,−wk

]
, yik > ytk

(9.105)

K-Means Clustering Algorithm

Clustering analysis divides data set into several different classes, making the data
in the same class as similar as possible, but in the different class, as dissimilar as
possible [10]. The higher the degree of similarities among similar objects and the
more differences among the dissimilar objects, the better the cluster quality.

Cluster is ‘the process of dividing physical or abstract objects into similar object
classes’ [15]. The steps of the K-means cluster algorithm are as follows:

1. Put n objects into k non-empty set.
2. Select random seed value as the current center of clusters.
3. Assign each object with the nearest seed value.
4. Repeat the second step, until there are no new assignments.

In this study, we complete the K-means clustering method by using the WEKA
software [16], the specific processes are showed in Fig. 9.16.

The data of empirical study is collected from the ‘China City Statistical
Yearbook’ and ‘China Statistical Year-book for Regional Economy’ between 2005
and 2009 in [8].
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Fig. 9.16 K-means clustering algorithm based on WEKA flow chart

9.3.4 An Empirical Study of Classification Algorithm
Evaluation for Financial Risk Prediction

This subsection is to develop an approach to evaluate classification algorithms
for financial risk prediction. It constructs a performance score to measure the
performance of classification algorithms and introduces MCDM methods to rank the
classifiers. An empirical study is designed to assess nine classification algorithms
using five performance measures over seven real-life credit risk and fraud risk
datasets from six countries. For each performance measure, a performance score is
calculated for each selected classification algorithm. The classification algorithms
are then ranked using three MCDM methods (i.e., TOPSIS, PROMETHEE, and
VIKOR) based on the performance scores.

Another problem in financial risk detection is that the knowledge gap [58]
between the results classification methods can provide and taking actions based
on them remains large. The lack of interaction between industry practitioners and
academic researchers makes it hard to discover financial risks or opportunities and
hence weakens the value that classification methods may bring to financial risk
detection. To deal with the knowledge gap problem, this section combines the
classification results, the knowledge discovery in database (KDD) process, and the
concept of chance discovery to build a knowledge-rich financial risk management
process in an attempt to increase the usefulness of classification results in financial
risk prediction.

9.3.4.1 Evaluation Approach for Classification Algorithms

This section develops a two-step process to evaluate classification algorithms for
financial risk prediction. In the first step, a performance score is created for each
selected classification algorithm. The second step applies three MCDM methods
(i.e., TOP-SIS, PROMETHEE, and VIKOR) to rank the selected classification
algorithms using the performance scores as inputs. This section describes how the
performance scores are calculated and gives an overview the three MCDM methods
used in the study.
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Performance Score

There are a variety of measures for classification algorithms and these measures
have been developed to evaluate very different things. Some studies have shown
that the classification algorithm achieves the best performance according to a given
measure on a dataset, may not be the best method using a different measure [106,
153]. In addition, characteristics of datasets, such as size, class distribution, or noise,
can affect the performance of classifiers. Hence, evaluating the performance of
classification algorithms using one or two measures on one or two datasets often
proves to be inadequate.

Based on these two considerations, this study constructs a performance metric
that assesses the quality of classifiers using a set of measures on a collection
of financial risk datasets in an attempt to give a comprehensive evaluation of
classification algorithms. The basic idea of this performance metric is similar to
ranking methods, which use experimental results generated by a set of classification
algorithms on a set of datasets to rank those algorithms [154]. Specifically, it
resembles the significant wins (SW) ranking method by conducting pairwise
comparisons of classifiers using tests of statistical significance.

Selection of Performance Measures

Accuracy and error rates are important measures of classification algorithms in
financial risk prediction. This work utilizes overall accuracy, precision, true positive
rate, true negative rate, and the area under the receiver operating characteristic curve
(AUC) to build the performance score. The following paragraphs define and describe
these measures.

• Accuracy is the percentage of correctly classified instances [15]. It is one the
most widely used classification performance metrics.

overall accuracy = TN+ TP

TP+ FP+ FN+ TN

where TP, TN, FP, and FN represent true positive, true negative, false positive,
and false negative, respectively. TP and TN are defined below. FP is the number
of non-fault-prone instances that is misclassified as fault-prone class. FN is the
number of fault-prone instances that is misclassified as non-fault-prone class.

• Precision is the number of classified positive or abnormal instances that actually
are positive instances.

precision = TP

TP+ FP

• TP (true positive) is the number of correctly classified positive or abnormal
instances. TP rate measures how well a classifier can recognize abnormal records.
It is also called sensitivity measure. In the case of financial risk detection,
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abnormal instances are bankrupt, fraudulent or erroneous accounts. A classifier
with a higher TP rate can help financial institutions reduce their potential credit
losses than a classifier with a lower TP rate.

true positive rate/sensitivity = TP

TP+ FN

• TN (true negative) is the number of correctly classified negative or normal
instances. TN rate measures how well a classifier can recognize normal records.
It is also called specificity measure.

true negative rate/specificity = TN

TN+ FP

• ROC stands for receiver operating characteristic, which shows the tradeoff
between TP rate and FP rate [15]. The area under the ROC (AUC) represents
the accuracy of a classifier. The larger the area, the better the classifier.

Calculation of the Performance Score

The performance score is generated by conducting paired t tests with a significance
level of 5% for each classifier. The goal of a paired statistical significance test is to
evaluate whether the superior or inferior performance of one classifier over another
is statistically significant. The performance score for each classifier is calculated as
follows:

Step 1: for each dataset, compare the tenfold cross-validation results of individual
performance measure for two classifiers. The null hypothesis is that the two
classifiers are the same. If the paired statistical significance (0.05) test indicates
that one classifier is better than the other classifier, the performance scores of
the superior classifier and the inferior classifier equals to 1 and−1, respectively.
If the paired statistical significance (0.05) test indicates that the null hypothesis
cannot be rejected, then the performance scores for both classifiers equal to 0 in
this case.

Step 2: repeat Step 1 for all classifier pairs for the dataset tested in Step 1. Then
we get performance scores of all classifiers for the specific dataset and specific
performance measure.

Step 3: repeat Steps 1 and 2 for other datasets included in the experiment. The sum of
performance scores from all datasets is the performance score of this classifier for
the current performance measure. The larger the score is, the better the classifier
performs in this measure.

Step 4: repeat Steps 1, 2 and 3 for other four performance measures to get the
performance scores of all classifiers for all performance measures.
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MCDM Methods

To evaluate classification algorithms, normally more than one criterion needs to
be examined, such as accuracy, AUC, and misclassification rate. Thus algorithm
selection can be modeled as multiple criteria decision making (MCDM) problems
[155]. This subsection uses three MCDM methods, i.e., TOPSIS, PROMETHEE,
and VIKOR, and explains how they can be used to rank classification algorithms.

Experiment

The experiment is designed to validate the proposed two-step evaluation approach
using nine classification methods over seven real-life credit risk and fraud risk
datasets from six countries. The first and second parts of this section give an
overview of classification algorithms and financial risk datasets used in the empirical
study. The third and fourth parts describe the experimental design and the evaluation
results.

9.3.4.2 Classification Algorithms

The classification algorithms used in the experiment include eight well-known
classification techniques and ensemble method. The eight classification methods
are Bayesian Network [93], Naïve Bayes [92], support vector machine (SVM)
[90], linear logistic regression [156], k-nearest neighbor [94], C4.5 [87], Repeated
Incremental Pruning to Produce Error Reduction (RIPPER) rule induction [96], and
radial basis function (RBF) network [89]. All algorithms were implemented using
Weka 3.6, a free data mining software package [16].

Bayesian Network and Naïve Bayes both model probabilistic relationships
between predictor variables and the class variable. While Naïve Bayes classifier
estimates the class-conditional probability based on Bayes theorem and can only
represent simple distributions, Bayesian Network is a probabilistic graphic model
and can represent conditional independencies between variables. SVM classifier
uses a nonlinear mapping to transform the training data into a higher dimension and
search for the linear optimal separating hyperplane, which is then used to separate
data from different classes [15]. Linear logistic regression models the probability of
occurrence of an event as a linear function of a set of predictor variables. k-nearest
neighbor classifies a given data instance based on learning by analogy, that is,
assigns it to the closest training examples in the feature space. C4.5 is a decision tree
algorithm that constructs decision trees in a top-down recursive divide-and-conquer
manner. RIPPER is a sequential covering algorithm that extracts classification rules
directly from the training data without generating a decision tree first [15]. RBF
network is an artificial neural network that uses radial basis functions as activation
functions.

In addition to the eight classification techniques, ensemble method was included
in the experiment. An ensemble consists of a set of individually trained classifiers
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whose predictions are combined when classifying novel instances. There are two
fundamental elements of ensembles: a set of properly trained classifiers and an
aggregation mechanism that organizes these classifiers into the output ensemble.
This study uses the vote algorithm in Weka to perform the ensemble method. Vote
combines classifiers by averaging their probability estimates [16].

9.3.4.3 Financial Risk Datasets

The datasets used in this study come from six countries and represent four aspects of
financial risk: credit approval (credit card application), credit behavior, bankruptcy
risk, and fraud risk.

German Credit Card Application Dataset (UCI MLR)

The German credit card application dataset comes from UCI machine learning
databases. It contains 1000 instances with 24 predictor variables and 1 class variable
(UCI). The 24 variables describe the status of existing checking account, credit
history, education level, employment status, personal status, age, and so on. The
class variable indicates whether an application is accepted or declined. Seventy
percent of the instances are accepted applications and 30% are declined instances.

Australian Credit Card Application Dataset [87]

This dataset was provided by a large bank and concerns consumer credit card
applications. It has 690 instances with 15 predicator variables plus 1 class variable.
The class variable indicates whether an application is accepted or declined. 55.5%
of the instances are accepted applications and 44.5% are declined instances.

USA Credit Cardholders’ Behavior Dataset [157]

The dataset was from a major US bank and contains 6000 credit card data with 64
predictor variables plus 1 class variable. Each instance has a class label indicating its
credit status: either good or bad. Eighty-four percent of the data are good accounts
and 16% are bad accounts. Good indicates good status accounts and bad indicates
accounts with late payments, delinquency, or bankruptcy. The predictor variables
describe account balance, purchase, payment, cash advance, interest charges, date
of last payment, times of cash advance, and account open date.
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China Credit Cardholders’ Behavior Dataset

This dataset was collected by a commercial bank in China and contains 5456 credit
card data with 13 attributes. These attributes describe credit cardholders’ daily
balance, abnormal usage, limit usage rate, first time used, revoking pay, suspend
pay, transactions detail, and personal information. Each record in the dataset has a
class label denotes the status of a credit card account: either good or bad. There are
91.9% good accounts and 8.1% bad accounts.

Japanese Bankruptcy Dataset [158]

This set collects 37 bankrupt Japanese firms and 111 non-bankrupt Japanese firms
from various sources during the post-deregulation period of 1989–1999. Final
sample firms are ones traded in the First Section of Tokyo Stock Exchange, and
their financial data are available from 2000 PACAP database for Japan compiled
by the Pacific-Basin Capital Market (PACAP) Research Center at the University of
Rhode Island. Each case has 13 predictor variables and 1 class variable (bankrupt or
non-bankrupt). The predictor variables describe financial state and performance of
firms.

Korean Bankruptcy Dataset [159]

This dataset collects bankrupt firms in Korea from 1997 to 2003 from public
sources. It consists of 65 bankrupt and 130 non-bankrupt firms whose data are
available and publicly trading firms in the Korean Stock Exchange. Each case has
13 predictor variables with one class variable (bankrupt or non-bankrupt).

Insurance Dataset [160]

The data was provided by an anonymous US corporation. Each record concerns
about an insurance claim. The set has 18,875 instances with 103 variables. A binary
class attribute indicates whether an instance is a normal claim or abnormal claim.
There are 353 abnormal claims and 18,522 normal claims. The abnormal instances
represent fraudulent or erroneous claims and were manually collected and verified.

9.3.4.4 Experimental Design

The calculation process of the performance score and the three MCDM methods
were applied to the nine classifiers over the seven financial risk datasets. The
experiment was carried out according to the following process:
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Input: a financial risk related dataset.
Output: ranking of classification algorithms.
Step 1: understand business requirements, dataset structure and data mining task.
Step 2: prepare target datasets: select and transform relevant features; data cleaning;

data integration. Communicate any findings during data preparation with domain
experts.

Step 3: train and test multiple classification models in randomly sampled partitions
(i.e., tenfold cross-validation) using Weka 3.6 [19].

Step 4: calculate the performance scores following the process discussed in section
“Performance Score”.

Step 5: evaluate classification algorithms using TOPSIS, PROMETHEE II, and
VIKOR. The performance scores for each classifier obtained from Step 4 are
used as inputs to the MCDM methods. All the MCDM methods are implemented
using MATLAB.

Step 6: generate three separate tables of the final ranking of classification algorithms
provided by each MCDM method.

Step 7: discuss the results with domain experts. Explore potential chance(s) from
data mining results. Go back to Step 1 if new business questions are raised during
the process.

END

Measures have different importance in financial risk prediction. For example,
false negative (FN) is the number of positive or abnormal instances that is
misclassified as normal class. Since positive instances are bankrupt, fraudulent or
erroneous accounts in financial risk detection, a classifier with a high FN rate can
cause huge lost to creditors. Thus FN measure should have higher importance in
financial risk prediction than other measures, such as false positive measure [161].
Another important measure in financial risk prediction is AUC because it selects
optimal models independently from the class distribution and the cost associated
with each class.

Weights of each performance measure used in TOPISIS, PROMETHEE, and
VIKOR are defined according to these findings from previous research. In this study,
FN rate is not included because it equals to one minus TP rate. The importance of
FN rate in financial risk prediction is then reflected in the weight of TP rate. The
weights of the five performance measures are defined as: TP rate and AUC are set
to 10 and other three measures (i.e., over-all accuracy, precision, and TN rate) are
set to 1. The weights are normalized and the sum of all weights equal to 1.

9.3.4.5 Results and Discussion

The results of test set overall accuracy, precision, AUC, TP rate, and TN rate of all
classifiers on the seven datasets are reported in Table 9.22. In the dataset column
of Table 9.22, Australian indicates the Australian credit card application data; USA
indicates the credit cardholders’ behavior data from the United States; China refers
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to the credit cardholders’ behavior data collected from a Chinese bank; IN indicates
the insurance data; German indicates the German credit card application data; and
Japan and Korea indicate the Japanese and the Korean bankruptcy data, respectively.
The nine classification methods were applied to each dataset using tenfold cross-
validation. For each dataset, the best result of a specific performance measure is
highlighted in boldface.

When the distribution of classes is highly skewed, as in the IN dataset (1.87%
abnormal instances versus 98.13% normal cases), Naïve Bayes and Bayesian
Network outperform other classifiers. Naïve Bayes has the highest TP rate (0.9065),
which indicates that it captured 90.65% of the abnormal records, while Bayesian
Network achieves a good TN rate (0.8291). Although SVM and RBF network
got perfect overall accuracy (100%), they failed to identify any abnormal behavior
(TP = 0 and FN = 1). For evenly distributed dataset, such as the Australian data,
all classifiers have good over-all accuracy and AUC. For small datasets, such as
the Japanese bankruptcy data, no classifier produces satisfactory results on AUC
and TP rate. However, SVM and ensemble obtained good AUC and TP rate for the
small size Korea bankruptcy dataset. For medium sized datasets, such as the credit
cardholders’ behavior datasets, linear logistic generates the best AUC, while Naïve
Bayes and SVM produce the best TP rates. There is no classification algorithm
which achieves the best results across all measures for a single dataset or has the
best outcomes for a single performance measure across all datasets.

Based on the classification results presented in Table 9.22, the performance
scores of all classifiers are calculated following the process discussed in Sect. 9.3.4.6
and the results are summarized in Table 9.23. For each performance measure, the
best result generated by a classification algorithm is highlighted in boldface and
italic. Since the performance scores are generated by conducting paired t tests with
a significance level of 5% for all classifier pairs across all datasets, a classification
algorithm with the highest performance score indicates that it performs significantly
better than other classifiers for that specific performance measure over the seven
datasets. Similar to the classification results reported in Table 9.22, no classifier
has the highest performance scores for all five measures and classifiers with the
best scores on some measures may perform poorly on other measures. For example,
SVM achieves the best performance scores on overall accuracy and TN rate, but
its scores on precision and AUC are quite low. Therefore the MCDM methods are
introduced to provide a final ranking of classification algorithms.

The ranking of classifiers generated by TOPSIS, PROMETHEE II, and VIKOR
is summarized in Tables 9.23, 9.24, 9.25, and 9.26, respectively. The results of
TOPSIS and PROMETHEE are straightforward: the higher the ranking, the better
the classifier. Linear logistic, Bayesian Network, and ensemble methods are the top-
three ranked classifiers using the TOPSIS approach. The same set of classifiers is
ranked as the top-three classifiers by the PROMETHEE II, however, the order of
Bayesian Network and ensemble is reversed.

Since VIKOR provides compromised solutions, the ranking of classifiers needs
to be determined by the Step 5 of the VIKOR algorithm.
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Table 9.22 Classification results

Dataset Algorithm
Overall
accuracy Precision

Area
under
ROC

True
positive
rate

True
negative
rate

Australian Bayesian Network 0.8522 0.8596 0.9143 0.7980 0.8956
Australian Naïve Bayes 0.7725 0.8571 0.8978 0.5863 0.9217
Australian SVM 0.8551 0.7867 0.8622 0.9251 0.7990
Australian Linear logistic 0.8623 0.8313 0.9312 0.8664 0.8590
Australian K nearest neighbor 0.7942 0.7653 0.7922 0.7752 0.8094
Australian C4.5 0.8348 0.8271 0.8346 0.7948 0.8668
Australian RBF network 0.8304 0.8493 0.8995 0.7524 0.8930
Australian RIPPER rule induction 0.8522 0.8213 0.8714 0.8534 0.8512
Australian Ensemble 0.8551 0.8439 0.99 0.8274 0.8773
USA Bayesian Network 0.7055 0.3366 0.8424 0.8656 0.6750
USA Naïve Bayes 0.6933 0.3280 0.8395 0.8740 0.6589
USA SVM 0.8372 0.4738 0.5632 0.1604 0.9661
USA Linear logistic 0.8532 0.5785 0.8539 0.3031 0.9579
USA K nearest neighbor 0.8028 0.3830 0.6327 0.3802 0.8833
USA C4.5 0.8170 0.4156 0.6245 0.3542 0.9052
USA RBF network 0.8400 0.0000 0.8256 0.0000 1.0000
USA RIPPER rule induction 0.8443 0.5212 0.6380 0.3333 0.9417
USA Ensemble 0.8382 0.4929 0.8432 0.3990 0.9218
China Bayesian Network 0.9111 0.9805 0.9388 0.9216 0.7909
China Naïve Bayes 0.8645 0.9822 0.9102 0.8684 0.8205
China SVM 0.9417 0.9507 0.9359 0.9878 0.4159
China Linear logistic 0.9426 0.9555 0.9453 0.9835 0.4773
China K nearest neighbor 0.9263 0.9598 0.7505 0.9601 0.5409
China C4.5 0.9443 0.9622 0.8593 0.9779 0.5614
China RBF network 0.9247 0.9374 0.9113 0.9840 0.2477
China RIPPER rule induction 0.9351 0.9576 0.7419 0.9727 0.5068
China Ensemble 0.9472 0.9661 0.9229 0.9769 0.6091
IN Bayesian Network 0.8261 0.0694 0.8361 0.6686 0.8291
IN Naïve Bayes 0.3368 0.0250 0.7307 0.9065 0.3260
IN SVM 0.9813 0.0000 0.5000 0.0000 1.0000
IN Linear logistic 0.9809 0.0000 0.7546 0.0000 0.9996
IN K nearest neighbor 0.9723 0.2300 0.5961 0.2040 0.9870
IN C4.5 0.9786 0.3641 0.6656 0.1898 0.9937
IN RBF network 0.9813 0.0000 0.7097 0.0000 1.0000
IN RIPPER rule induction 0.9806 0.4444 0.5774 0.1586 0.9962
IN Ensemble 0.9817 0.5745 0.8443 0.0765 0.9989
German Bayesian Network 0.7250 0.5654 0.7410 0.3600 0.8814
German Naïve Bayes 0.7550 0.6104 0.7888 0.5067 0.8614
German SVM 0.7740 0.6667 0.6938 0.4933 0.8943
German Linear logistic 0.7710 0.6578 0.7919 0.4933 0.8900

(continued)
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Table 9.22 (continued)

Dataset Algorithm
Overall
accuracy Precision

Area
under
ROC

True
positive
rate

True
negative
rate

German K nearest neighbor 0.6690 0.4485 0.6064 0.4500 0.7629
German C4.5 0.7190 0.5388 0.6607 0.4400 0.8386
German RBF network 0.7400 0.5840 0.7520 0.4633 0.8586
German RIPPER rule induction 0.7340 0.5720 0.6557 0.4500 0.8557
German Ensemble 0.7620 0.6476 0.7980 0.4533 0.8943
Japan Bayesian Network 0.7568 0.5135 0.7292 0.5135 0.8378
Japan Naïve Bayes 0.7432 0.4857 0.7197 0.4595 0.8378
Japan SVM 0.7500 0.0000 0.5000 0.0000 1.0000
Japan Linear logistic 0.7770 0.5667 0.7290 0.4595 0.8829
Japan K nearest neighbor 0.7770 0.5714 0.6595 0.4324 0.8919
Japan C4.5 0.7162 0.4242 0.5270 0.3784 0.8288
Japan RBF network 0.7162 0.3810 0.6533 0.2162 0.8829
Japan RIPPER rule induction 0.7365 0.4706 0.6193 0.4324 0.8378
Japan Ensemble 0.7905 0.6667 0.7424 0.3243 0.9459
Korea Bayesian Network 0.8667 0.8095 0.8773 0.7846 0.9077
Korea Naïve Bayes 0.7744 0.7059 0.8168 0.5538 0.8846
Korea SVM 0.8718 0.7778 0.8682 0.8615 0.8769
Korea Linear logistic 0.8462 0.7692 0.8749 0.7692 0.8846
Korea K nearest neighbor 0.8154 0.7101 0.7993 0.7538 0.8462
Korea C4.5 0.8359 0.7797 0.7948 0.7077 0.9000
Korea RBF network 0.8256 0.7460 0.8033 0.7231 0.8769
Korea RIPPER rule induction 0.8667 0.7826 0.8577 0.8308 0.8846
Korea Ensemble 0.8564 0.7681 0.9026 0.8154 0.8769

Table 9.23 Performance scores of classifiers

Classifier/measure Overall accuracy Precision AUC TP rate TN rate

Bayesian Network −19 8 23 5 −4
Naïve Bayes −28 8 24 2 3
SVM 22 −20 −27 1 13
Linear logistic 22 6 32 4 6
K nearest neighbor −26 −13 −36 −2 −23
C4.5 −4 5 −26 1 −7
RBF network 4 −22 3 −22 5
RIPPER rule induction 10 9 −23 8 −4
Ensemble 19 19 30 3 11

The classifier with the first position in the ranking list by Q cannot be proposed
as the compromise solution because the condition (a) Q(a′′) − Q(a

′
) ≥ 1(J − 1)

is not satisfied. Therefore, alternatives a
′
, a′′, and a′′′ are proposed as compromise

solutions, since a is the maximum number of alternative determined by the relation
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Table 9.24 Results of the
TOPSIS approach

Classifier TOPSIS

Linear logistic 0.891293
Bayesian Network 0.874166
Ensemble 0.866155
Naïve Bayes 0.815243
RIPPER rule induction 0.638725
C4.5 0.544801
SVM 0.542099
K nearest neighbor 0.457113
RBF network 0.283217

Table 9.25 Results of the
PROMETHEE II approach

Classifier PROMETHEE II

Linear logistic 0.711957
Ensemble 0.532609
Bayesian Network 0.413043
RIPPER rule induction 0.353261
Naïve Bayes 0.190217
C4.5 −0.43478
SVM −0.44022
RBF network −0.46739
K nearest neighbor −0.8587

Table 9.26 Results of the
VIKOR approach

Classifier VIKOR Q VIKOR S VIKOR R

Linear logistic 0.00055 0.080211 0.057971
Ensemble 0.027268 0.090276 0.072464
Bayesian Network 0.070517 0.168871 0.057545
Naïve Bayes 0.137489 0.205328 0.086957
RIPPER rule induction 0.628727 0.393233 0.351662
SVM 0.76261 0.520044 0.377238
C4.5 0.765376 0.533903 0.370844
RBF network 0.971288 0.688997 0.434783
K nearest neighbor 0.979134 0.698862 0.434783

Q(aM)−Q(a
′
) < 1(J− 1). That is, the rankings of linear logistic, Bayesian Network,

and ensemble methods are in closeness according to VIKOR.
The results of Tables 9.23, 9.24, 9.25, and 9.26 indicate that TOPSIS,

PROMETHEE II, and VIKOR provide similar top-ranked classification algorithms
for financial risk prediction.
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9.3.4.6 Knowledge-Rich Financial Risk Management Process

Even though classification has become a crucial tool in financial risk prediction,
most studies focus on developing algorithms or improving existing algorithms
that can identify suspicious patterns and have not paid enough attention to the
involvement of end users and the actionability of the classification results [83]. This
is mainly due to two reasons: (1) the difficulty in accessing real-life financial risk
data and (2) limited access to domain experts and background information. The
lack of interaction between industry practitioners and academic researchers makes
it hard to discover financial risks or opportunities and hence weaken the value that
classification methods may bring to financial risk detection.

In an attempt to improve the usefulness of classification results and increase the
probability of identifying unusual chances in financial risk analysis, this section
proposes a knowledge-rich financial risk management process (Fig. 9.17). Chance
discovery (CD) is defined as “the awareness of a chance and the explanation
of its significance” [162]. Ohsawa and Fukuda [162] suggested three keys to
chance discovery: communicating the significance of an event; enhancing user’s
awareness of an event’s utility using mental imagery; and revealing the causalities
of rare events using data mining methods. Figure 9.17 combines the knowledge
discovery in database (KDD) process model [113], the chance discovery process
[162], and the CRISP-DM process model [163]. It emphasizes three keys to chance
discovery and knowledge-rich data mining: users, communication and data mining
techniques. Users refer to domain experts and decision makers. Domain experts are
knowledgeable of the field information, data collection procedures and meaning of
variables. With the assistance of data miners, domain experts can gain insights of
financial risk data from different aspects and potentially observe new chances. To
turn the identified knowledge into financial or strategic advantages, decision makers,
who understand the operational and strategic goals of a company, are required to
provide feedbacks on the importance of the potential new chances and determine
what actions should be taken. Moving back and forth between steps is always
required. The cyclical nature is illustrated by the outer circle of the chance discovery
process in Fig. 9.17.

This study chose the insurance data as an example to examine the proposed
process. The business objective(s) of this project was to develop classification
model(s) to assist human inspection of suspicious claims. After the business
objective has been deter-mined, the dataset was preprocessed for classification task.
During the preparation stage, two issues were brought up by the data miners: first,
there are several attributes with missing values for all the instances in the dataset;
second, the definitions of four attributes are conflicting. From the data miner’s point
of view, an attribute with completely missing values is useless in data mining tasks
and should be simply removed. But from the domain expert’s perspective, this is
an unusual situation and represents a potential chance for operational improvement.
Any attribute stored in the database was designed to capture relevant information
and an attribute with complete missing value may indicate errors in the data
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Fig. 9.17 Knowledge-rich financial risk management process

collecting process. After careful examination, domain experts found out the reasons
for missing values and took corrective actions.

Then nine classifiers were applied to the insurance data using tenfold cross-
validation. A classifier with low false negative (FN) rate can minimize insurance
fraud risk because FN rate denotes the percentage of high-risk claims that were
misclassified as normal claims. For this dataset, Naïve Bayes has the lowest FN
rate (1 − 0.9065 = 0.00935). Because it achieves the lowest FN rate and provides
classification results that can be easily understood and used by domain experts,
Naïve Bayes was chosen as the decision classifier. This model can be used to
predict high-risk claim; narrow down the size suspicious records; and accelerate the
claim-handling process. The classification results obtained from data mining step
can further be analyzed to provide additional insights about the data. For instance,
if some general features of high- or low-risk claims can be identified from the
classification results, it may help the insurance company to establish profiles for
each type of claims, which potentially may bring profits to the company.

To summarize, the empirical study demonstrates that introducing the concept of
chance discovery into the KDD process can help users choose the most appropriate
classifier, promote the awareness of previously unnoticed chances, and increase the
usefulness of data mining results.
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Chapter 10
Business and Engineering Applications

By implementing the algorithms for big data analytics described in the previous
chapters, this chapter outlines three sections about related business and engineering
applications. Section 10.1 relates to banking and financial market analysis with
three subsections. The first one is about domestic systemically important banks:
a quantitative analysis for the Chinese banking system [1]. The second is about
how does credit portfolio diversification affect banks’ return and risk: evidence
from Chinese listed commercial banks [2]. The third one is about an approach of
integrating piecewise linear representation and weighted support vector machine for
forecasting stock turning points [3]. Section 10.2 describes an agriculture problem
that is the classification of orange varieties based on near infrared spectroscopy [4].
Section 10.3 provides two engineering applications. The first one is about automatic
road crack detection using random structured forests [5] while the second one
is efficient railway tracks detection and turnouts recognition method using HOG
features [6].

10.1 Banking and Financial Market Analysis

10.1.1 Domestic Systemically Important Banks: A Quantitative
Analysis for the Chinese Banking System

Recent financial crises and financial contagion worldwide have brought the issue
of Systemically Important Financial Institutions (SIFIs) into intense discussions
[7]. Although there is no clear consensus on how systemic risk of an institution is
measured, policy makers and regulators reach an agreement that to identify financial
institutions whose viability is crucial for the smooth functioning of the overall
financial system is essential.
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No SIFI definitions are commonly accepted, however, policy makers generally
consider institutions as systemically important that cannot exist the market without
causing major disruption to the financial system [8]. The common characteristics of
SIFI are: big in size, too connected with other institutions, lack of substitutability
and also complex in their business. Regulators are working on a new regulatory
framework to address systemic risk, under which, the designated systemically
important institutions are candidates for tighter supervision and additional loss
absorbency requirements to ensure financial stability.

In November 2011, the Basel Committee on Banking Supervision (BCBS)
finalized its assessment methodology to identify Global Systemically Important
Banks (G-SIBs), and mandate them to hold additional Common Tier 1 capital (on
the top of minimum capital charges of Basel III) [9, 10]. At the same time, Financial
Stability Board identified an initial group of 29 banks as Global Systemically
Important Banks, using the methodology developed by BCBS [11].

China Banking Regulatory Commission (CBRC) also followed the BCBS assess-
ment framework and proposed that size, interconnectedness, non-substitutability
and complexity should be considered when evaluating domestic systemic impor-
tance of banks in Guidance on the implementation of the new Regulatory Standards
for Chinese banking system.

This subsection presents a response to the official assessment approach proposed
by Basel Committee to identify domestic systemically important banks (D-SIBs) in
China. Its analysis not only presents current levels of domestic systemic importance
of individual banks but also the changes.

10.1.1.1 Literature Review

Issue of how to measure systemic importance of banks has drawn much attention in
recent literatures, as a direct response to the regulatory requirement [12–18]. Most
of the widely-used approaches fall into the following two categories: market-based
techniques and indicator-based approach [19].

Market-based techniques usually rely on information extracted from market
prices and sophisticated financial models. Weistroffer, Speyer [19] distinguish
market-based techniques in to two strands: in an additive manner and in a non-
additive manner. However, they leave behind a large portion of studies that used
network analysis. Therefore, according to the model structure, we classify market-
based approaches into two buckets: network analysis and portfolio models.

Network analysis constructs a matrix of mutual exposures to describe the
interconnectedness within the banking system [7]. With a hypothetical credit event
to a specific bank, the researchers on this ground then simulate spillover from the
credit event, and assess the possible fallout for the rest of the system. The logic of the
method is that: when a bank fails, it will trigger other banks’ defaults resulting from
their exposures (both direct and indirect) to the failing bank. Majority of the applied
network literatures [20, 21] has focused on the interbank credit market due to data
availability. Recently, Li et al. [22] developed a transfer entropy-based method to
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derive information from stock market, and determine the interbank exposure matrix
when the exposure matrix data is not available.

Portfolio models were derived from measurement of risk in portfolio of security,
and extend to the measurement of systemic risk for a portfolio of banks [7]. The
portfolio models follow two routines to measure a bank’s systemic importance from
different angles. “Bottom-up” approaches start with distress of a particular bank, and
then assess the associated system-wide distress. Conditional Value at Risk (CoVaR)
is the important concept in this routine, which is defined as the value at risk of
the banking system conditional on institutions in distress [15]. While “top-down”
methods focused on examining the fragility of the overall banking system, and
required a methodology for allocating the overall risk into individual banks. Shapley
Value [23] and Marginal Expected Shortfalls [13, 14, 16] are the common measures
derived from “top-down” routine.

Although market-based approaches play an important role in risk supervision,
shortcomings such as lack of available data, market-based indicators’ instability
make them less suitable as supervisory benchmarks. In contrast with market-based
approach, policy makers tend to prefer a more hand-on approach using the available
bank-level data (but not include market assessment). Market-based measures are
only used as a cross-check if possible [19]. Besides, Drehmann and Tarashev
[12] proved that some simple indicators (bank size, total interbank lending and
borrowing) help approximate market-based measures of systemic importance. This
research built the linkage between market-based approaches and indicator-based
approaches, and laid an empirical foundation for regulatory authorities’ adoption of
indicator-based for practical purpose. Similar work can also be found in [24].

Under indicator-based approach framework, choice of indicators and their
respective weights is determined. Systemic importance of banks is then scored and
ranked accordingly. The Basel Committee on Banking Supervision (BCBS) has
developed an indicator-based approach for assessing systemic importance of Global
Systemic Important Banks (G-SIBs) [9]. Indicators of five categories are used to
fully reflect a bank’s systemic importance from different dimensions. The five
categories are: size, interconnectedness, non-substitutability, complexity and cross-
jurisdictional activity, with equal weight of 20%. The assessment methodology
provides guidance for the countries that attempt to assess domestic systemically
important banks of their own. Braemer and Gischer [10] followed the official
technique and made practical modification to determine the domestic systemic risk
of each bank in Australia.

To be consistent with transparent requirement, this section is much in line with
the BCBS methodology under indicator-based measurement approach while doing
modifications to suit for real situations in China. While the list of D-SIBs might
be obvious, we intend to highlight relative proportion among the banks as well as
the change of the results. Besides using indicator-based measurement approach to
identify D-SIBs, we also consider the systemic risk of the whole banking system, by
investigating how D-SIBs and non D-SIBs are correlated before and after the recent
financial crises using Copula. This part of analysis also provides cross-check of the
D-SIBs identification based on market-based data.



572 10 Business and Engineering Applications

10.1.1.2 Methodology and Data

Indicator-Based Measurement Approach

Systemic consequence of G-SIBs’ failures can be dramatic but difficult to predict,
therefore, Basel Committee require G-SIBs to hold additional common Tier 1
capital on the top of Basel III standard just in case of insolvency and can be bailed
out by the government.

To precisely identify which banks are G-SIBs, the BCBS indicator-based assess-
ment methodology measures a bank’s systemic importance from five dimensions:
cross-jurisdictional activity, size, interconnectedness, non-substitutability, and com-
plexity [9]. All the categories have the equal weights of 20%, and total score of each
bank is summed from the five categories. The multiple indicators within a category
are also equally weighted. Each value of an indicator is the individual bank amount
divided by the aggregate amount across all the banks in the sample. Based on the
score of systemic importance, the BCBS methodology classifies the banks into four
different buckets with additional loss absorbency requirements varied from 1% to
2.5% accordingly. This methodology mainly aims to capture the impact that a failure
of a bank may have on the global financial system and economy.

The proposed methodology for D-SIBs identification in Chinese banking system
is much in line with the official BCBS indicator-based approach. In general, the
difference lies in the choice of financial indicators due to data availability under the
five categories depicting systemic importance, and also the weights of individual
indicators within a certain category. Besides, a major adjustment is that the official
category—“cross-jurisdictional activity” is changed to “public confidence” which
was called “domestic sentiment” in Braemer and Gischer’s work [10].

The categories that compose the measurement system of Chinese D-SIBs and the
respective indicators within each category are presented and explained below.

Size

The size of a bank is regarded as a key measure of systemic risk, as illustrated in
the too-big-to-fail problem [18, 25]. In official BCBS approach, the size category is
consisted of one single indicator—“total exposure” of a bank, as defined in Basel
III rule text [9].

However, the indicator “total exposures” requires both on-balance items as well
as off-balance items, which are not available to the public. We instead adopt the
common and observable proxy—“total asset” on the balance sheet to reflect the
relative size of a bank in the sample.
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Interconnectedness

Systemic risk can rise through interlinkages between the nodes in banking network
system both directly and indirectly [7]. If one bank defaults, it might not able to
repay its interbank liabilities, therefore, the probability of other banks’ distress
increase, or may lead to domino effects of default contagion within the intercon-
nected system [9, 26].

Interconnectedness of a bank is measured by the volume of its intra-financial sys-
tem assets and intra-financial system liabilities under the official BCBS approach,
also with the wholesale funding ratio. However, in agreement with the work that
identifies D-SIBs in Australia [10], we are skeptical that retail funding enhances
financial stability. Therefore, we only include “intra-financial system assets” and
“intra-financial system liabilities” in the category. Intra-financial system assets are
the sum of:

1. Due from banks and other financial institutions, which include deposits in
banks and other financial institutions, and lendings to banks and other financial
institutions.

2. Reverse repo agreement.

Intra-financial system liabilities are the sum of:

1. Due to banks and other financial institutions, which include deposits from banks
and other financial institutions, and borrowings from banks and other financial
institutions.

2. Repo agreement.

Non-substitutability

A bank is systemic important within the system if it is difficult for other banks to
provide the similar services in case of a default [19]. The Basel Committee regards
an institution that plays a dominant role in a specific business segment or as a
provider of market infrastructure as systemic important. The three indicators under
this category designed by BCBS are: “assets under custody”, “payment cleared and
settled through payment systems”, and “value of underwritten transactions in debt
and equity markets” [9].

The major role of a bank within China is to provide loans to corporates and
households. A high share of the loans indicates low substitutability of the bank, and
will have a negative impact on economy if it is difficult to find an alternative source
of funding [10]. Therefore, we include two indicators within the category: “personal
loans and advances” and “corporate loans and advances”.
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Complexity

This dimension of systemic importance is regarding to the “too-complex to fail”
theory [27]. The logic behind the category is that more complex bank is more
difficult to dissolve in case of a failure as greater costs and time are needed [9]. The
official BCBS approach includes three indicators in the category: “OTC derivatives
notional value”, “level 3 assets”, and “held for trading and available for sale” with
equal weights.

Due to absence of OTC derivative market and data availability in China, we
include three indicators in the category of “complexity”: “derivative financial
assets”, “held for trading” and “available for sale”. Among them, “Held for trading”
and “available for sale” are distinguished to ensure data consistency among the
banks.

Public Confidence

This is the category that we did major modification on.
The official BCBS measurement approach focuses on the banks’ footprints

worldwide to capture their global impact. The two indicators: cross-jurisdictional
claims, and cross-jurisdictional liabilities measure the bank’s activities outside its
headquarters to describe how much is the international impact from its distress or
failure [9]. The idea behind the indicator is that the greater global reach of a bank,
the more widespread the spillover effect from its failure.

Different from BCBS approach, our objective is to identify the systemically
important banks within China rather than worldwide. Therefore, a proxy to empha-
size the domestic importance of a bank should be replaced with the category. As with
the last category of systemic importance proposed by Braemer and Gischer [10],
we also adopt “public confidence” to capture the public perception of the domestic
impact that will be after a bank’s failure. The more deposits from household of a
bank are at risk, the worriedness about financial instability is more likely to spread
over the whole nation. Bank runs over the whole banking system which come
afterwards will then be defined as a systemic event that the bank contributes to.
Hence, under the category of “public confidence”, “deposit from household” which
is the sum of demand deposit and time deposit is used as the measure.

The choice of indicators relies on the assessment objective, real situation and also
data availability. We present an overview of difference and linkage between official
BCBS assessment methodology for G-SIBs, measurement method for Australian
D-SIBs and our measurement approach for Chinese D-SIB in Table 10.1.

One thing that should be noticed is that there exists inconsistency of accounts
in financial statements among the banks. Therefore, we double check the original
figures from financial statements and adjust them into a general framework of
accounts under Generally Accepted Accounting Principles (GAAP) to ensure that
all the indicators we use convey the same implications among the samples.
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Table 10.1 Indicators of assessment approaches for G-SIBs and D-SIBs

Category (and
weights) Individual indicator

BCBS approach
(G-SIBs)

Approach for
Australia (D-SIBs)

Approach for China
(D-SIBs)

Size (20%) • Total exposures as
defined for use in the
Basel III leverage ratio

• Total residence
assets

• Total assets (on
balance)

Interconnectedness
(20%)

• Intra-financial
system assets
• Intra-financial
system liabilities
• Wholesale funding
ratio

• Loans to financial
corporations
• Deposits from
financial corporations

• Intra-financial
system assets
• Intra-financial
system liabilities

Non-
substitutability
(20%)

• Assets under
custody
• Payment cleared
and settled through
payment systems
• Values of
underwritten
transactions in debt
and equity markets

• Loans to
households
• Loans to
non-financial
corporations
• Loans to the
general government
• Loans to
community service
and non-profit
organizations

• Personal loans
and advances
• Corporate loans
and advances

Complexity (20%) • OTC derivatives
notional value
• Level 3 assets
• Held for trading
and available for sale

• Investment
securities
• Trading securities

• Held for tradinga

• Available for sale
• Derivative
financial assets

Cross-jurisdictional
activity (20%)

• Cross-jurisdictional
claims
• Cross-jurisdictional
liabilities

Not included Not included

Public confidenceb

(20%)
Not included • Deposits from

households
• Deposits from
households

aIncluding designated at fair value through profit or loss
b“Public confidence” is called “domestic sentiment” in measurement approach for Australia D-
SIBs

Weights and Scores

The five categories of the indicators describe a bank’s systemic importance from
different distinct dimensions. As with the official BCBS approach, we also equal
weight the five categories with 20%.
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As for indicators within one category, the official BCBS approach as well
as assessment method for Australian D-SIBs equal weights of all the indicators.
However, to emphasize the different role that each indicator plays in distinguishing
banks, we proposed an entropy-based method to determine the weights. We want to
design the weighting method, which puts more weights on the indicators in which
the samples distribute more dispersedly. That means, if the indicator is better to
differentiate the banks, it should have more weights. Also, this weighting method
ensures weight update every year, which captures the changing importance of the
indicators.

For a category with more than one indicator, suppose each bank i has its value
Xij on indicator j. The entropy of indicator j is defined as in Eq. (10.1):

ej = −
∑n

i=1 Pij lnPij

ln(n)
(10.1)

where Pij = Xij∑n
i=1 Xij

and the total number of banks is n.

The greater difference of indicator value among the banks, the smaller entropy
of the indicator is. And that means the indicator plays a more important role to
differentiate the banks. Therefore, we define difference coefficient as in Eq. (10.2)
to weight the indicator.

gj = 1− ej (10.2)

Then we do normalization as in Eq. (10.3) to ensure the sum of indicators’
weights within one category is 1, where m indicators in total are assumed. Then
the weight of indicator j within the category is determined as Wj.

Wj = gj∑m
j=1 gj

(10.3)

The score on each indicator is calculated in way that identical with the official
BCBS approach to capture the relative systemic importance among the sample. That
is to divide individual bank amount by the aggregate amount across all the banks in
the sample. The score is then weighted by the indicator’s weight respectively. The
final score of systemic importance comes with all the weighted scores on all the
indicators (there are nine indicators under our measurement approach) added.

10.1.1.3 Copula Approach

Besides identification of Chinese D-SIBs under the indicator-based measurement
approach presented in previous subsection, another goal of the section is to
empirically investigate whether there are contagion effects from D-SIBs to the rest
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of the banking system during the recent major financial crises, which will also
provide ancillary evidence for the previous judgment of D-SIBs.

What are the dependence structures between D-SIBs and the rest banks before
and after the crises? Is there a tendency of strengthened distress correlations with
D-SIBs after the crises? To answer these questions, the nonlinear model—Copula
provides a powerful tool for this analysis, which will be introduced below.

Basic Concept of Copula

A Copula function is a function that joins multivariate distribution functions to
their one-dimensional margins; therefore, it is called a link function [28]. For given
univariate marginal distribution functions F1(x1), F2(x2), · · ·Fm(xm) of variables x1,
x2, · · · xm, the multivariate distribution function C is defined as a Copula function in
Eq. (10.4) [29].

C (F1 (x1) , F2 (x2) , · · ·Fm (xm)) = F (x1, x2 · · · xm) (10.4)

Sklar [30] proved that a Copula function has the following property: If
F(x1, x2· · · xm) is a joint multivariate distribution function with univariate marginal
distribution functions F1(x1), F2(x2), · · ·Fm(xm), then there exists a Copula function
C(u1, u2· · · um) that F(x1, x2· · · xm) = C(F1(x1),F2(x2), · · ·Fm(xm)) holds. If each
Fi is continuous then C is unique. Hence, copula functions provide a unifying
and flexible way to study multivariate distributions [31]. In recent years, Copula
functions have been widely used in financial modeling [32, 33]. Applications of
Copula functions in finance range from capital allocation [23, 34], financial markets
contagion [35–38], risk integration [39–41], to default correlations [42].

The commonly used Copula functions are Gaussian Copula, Students’ Copula
(t-Copula), which are symmetric, and Archimedean family of Copulas [43], with
their definitions presented as in Table 10.2.

Measurement of Contagion Effects

To investigate the contagion effects between the banks, our focus is on the lower
tail dependence. That means we attempt to explore how much is the probability the
other bank also falls in the extremely bad situation when one bank is in its worst
situation. To express the conditional probability sense in a mathematical way, we
have Eq. (10.5) to define the lower tail-dependence coefficient [44].

λlo = lim
u→0

P
{
Y < G−1(u)|X < F−1(u)

}
(10.5)

where F(x) and G(y) are the marginal distributions of random variables X and Y,
G−1(u) and F−1(u) are the inverse distribution functions of X and Y respectively.
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Table 10.3 Archimedean family of Copulas

Copula C(u, v) Generator ϕ(t)

Lower tail-
dependence
coefficient λlo

Upper tail-
dependence
coefficient
λup

Gumbel Copula exp[−{(−lnu)α + (−lnv)α} 1
α ] (− ln t)α 0 2− 2

−1
α

Clayton Copula
(
u−α + v−α

)−1
α t−α − 1 2

−1
α 0

Frank Copula − 1
α

ln
[
1+ (e−uα−1)(e−vα−1)

e−α−1

]
−ln

[
e−tα−1
eα−1

]
0 0

An equivalent definition of lower tail dependence in terms of a bivariate copula
function is given in Eq. (10.6).

λlo = lim
u→0

C (u, u)

u
(10.6)

Gaussian Copula and Student’s Copula are symmetric in their tails, while the
real world is not always the case. Archimedean family of Copulas, which is also
extensively applied, does have some typical distributions, to better capture the
asymmetric tail dependence structure. Among Archimedean family of Copulas, the
most popular functions are Gumbel Copula, Clayton Copula and Frank Copula. We
present bivariate distribution of the three Archimedean Copulas, as well as their
generators and tail-dependence coefficients in Table 10.3.

Frank Copula also has symmetric tail dependence as with Gaussian Copula and
t-Copula, while Gumbel Copula and Clayton Copula are more flexible to describe
the different dependence structure on the tails. Clayton Copula is sensitive to the
changes of lower tail dependence, and provides us a useful measure to calculate to
what extent two banks correlates when they are simultaneously in extremely bad
situations. Therefore, we choose Clayton Copula to model the correlations between
D-SIBs and the other banks.

Our analysis splits into two parts concerning the two financial crises respectively.
The first part is about the contagion effects during the subprime crisis. And the
second part is about the contagion effects during the European debt crisis.

Closing prices of every trading day for all the 16 listed commercial banks are
used. Daily return rate of each bank at time t is then calculated as:

returnt = ln
closepricet
closepricet−1

(10.7)

Pairs of two, one from D-SIBs, and the other from the rest banks are formed
respectively. Then we use Clayton Copula to model daily return correlations of the
two banks both before and after the crises, and estimate the parameter. We focus on
the change of lower tail-dependence coefficients before and after the crises.
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Besides the analysis between individual D-SIB and non D-SIB in pairs of two,
we also consider D-SIBs as a whole subsystem, to eliminate the mutual correlations
among D-SIBs. Then the rest of banks are examined one by one with the D-SIB
subsystem by the same procedure.

The main issue here is to construct a series of daily return rate of the D-SIB
subsystem. The return rate series of the D-SIB subsystem is the weighted average
of daily return rates of individual D-SIBs that are included in the subsystem, where
the weights are the relative market value of these banks at the end of last year as
shown in Eq. (10.8).

returnsubsystem =
∑n

i=1

marketvaluei∑n
i=1 marketvaluei

returni (10.8)

Note that the market value which is used as weight is the figure reported at the
end of last year. That means to construct the weighted average series, weights are
updated every year, while the series also in daily frequency.

10.1.1.4 Data Description

At the end of year 2012, China’s banking sector consisted of two policy banks and
China Development Bank, 5 large commercial banks, 12 joint-stock commercial
banks, 144 city commercial banks, 337 rural commercial banks, etc. Overall, the
number of banking institutions in China’s banking system amounted to 3747 [30].

Although number of banking institutions is large, a small group of them
dominates the entire market. Due to data availability but also the non-substitutable
roles they play, we focus all the 16 Chinese listed commercial banks which are
potential D-SIBs in nature. The publicly traded banks include all the 5 large
commercial banks, 8 of 12 joint-stock commercial banks, and also 3 city commercial
banks. According to 2012 annual report of China Banking Regulatory Commission
(CBRC) and our estimates from annual reports of all the listed banks, the 16 banks
take a large asset proportion, around 62% of the whole banking sector, therefore are
reliable to represent the industry.

These listed commercial banks began to adopt new accounting standards in 2007.
After the year of 2007, Chinese banking sector has been developing stably without
significant reforms. This period also covers the before/after time of major recent
financial crises: subprime crisis and European debt crisis. We choose the time period
of 2007–2012 to gather and organize our data for analysis.

Under the indicator-based measurement approach to identify Chinese D-SIBs,
figures on all the indicators which are presented in Table 10.1 are gathered from
Wind database. Most of them are originally from annual financial statements and
their notes of the 16 listed commercial banks while some items are from the
regulatory agency—CBRC. We also double check them with the original sources.
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For Copula approach for modeling the dependence structure, we prepare daily
closing prices of the 16 listed banks during the identical time period, as well as the
market values at the end of each year. They are also available in Wind database.

10.1.1.5 Quantitative Results

Systemic Importance Distribution and Changes

This part presents our analysis for the systemic importance of all the banks covered
in the sample, using the indicator-based measurement approach. While the list of D-
SIBs might be obvious, we intend to highlight the relative distribution of systemic
importance, as well as the change of the results during the years.

Our quantitative calculation of systemic importance in the Chinese banking sys-
tem validates the public perception. Due to the final scores, the 16 listed commercial
banks perform differently from the five dimensions of systemic importance.

We firstly present the current levels of systemic risk in the Chinese banking
system using the end-2012 figures. As Table 10.4 shows, the “Big Four” major
banks, or “Big Five” major banks (which is called large commercial banks under
CBRC regulation) process high systemic impact in the banking system. The “Big
Four” takes 67.1% and the “Big Five” accounts for 73% systemic importance of the
total system. Our result demonstrates that the biggest systemic risk originates from
Industrial and Commercial Bank of China (ICBC) with 20% of the system, with
Bank of China (BOC) followed with 16.8%. Also in 2011, BOC followed ICBC and
ranked No. 2 in domestic systemic importance in Chinese banking sector. However,
ICBC has not been in the list of global systemic important banks until this year. It is
BOC that remains in the list for three years. That means global systemic importance
dos not equal to domestic systemic importance. It is the range systemic importance
covers that matters.

It can be also found that, BOC is smallest in “Size” and “Public Confidence”
measured by deposit from households among the “Big Four” banks, which, may
result from its branches in limited number. However, due to its highest score in
“interconnectedness” and “complexity” category, it still demonstrated itself as the
second systemically important banks within the nation, over Agricultural Bank of
China (ABC), and China Construction Bank (CCB). Therefore, it is important to
note the “Size” category. Although commonly utilized and may closely relate with
other categories, it is still not an adequate proxy of systemic risk, as it cannot detect
such disparities. “Too-complex-to-fail” is as important as “to-big-to-fail” problem
as the phenomenon suggests.

Another bank to note is BOCOM. Although we note “Big Five” major banks,
and put BOCOM together with “Big Four” major banks, a large difference between
BOCOM and “Big Four” major banks can be observed both in total scores and
scores within categories. CCB, which ranks the last in 2012 final score among
the “Big Four” major banks, is almost 2.5 times systemic important of BOCOM,
although the gaps in “complexity” and “interconnectedness” categories are not that
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Table 10.4 Domestic systemic importance of Chinese Banks at 2012

Ranking Bank Size
Inter con-
nectedness

Non-
substitutability Complexity

Public
confi-
dence

Final
score

1 Industrial
and
Commercial
Bank of
China

0.2042 0.1274 0.2022 0.2192 0.2466 0.1999

2 Bank of
China

0.1476 0.1319 0.1604 0.2465 0.1508 0.1675

3 Agricultural
Bank of
China

0.1542 0.1001 0.1492 0.1458 0.2416 0.1582

4 China
Construction
Bank

0.1627 0.0943 0.1751 0.1032 0.1931 0.1457

5 Bank of
Communica-
tions

0.0614 0.0639 0.0626 0.0611 0.0451 0.0588

6 Industrial
Bank
Corporation

0.0378 0.1027 0.0278 0.0343 0.0113 0.0428

7 China
Merchants
Bank

0.0397 0.0450 0.0492 0.0349 0.0348 0.0407

8 China
Minsheng
Banking
Corporation

0.0374 0.0871 0.0352 0.0241 0.0148 0.0397

9 Shanghai
Pudong
Development
Bank

0.0366 0.0588 0.0308 0.0203 0.0147 0.0323

10 China Citic
Bank

0.0345 0.0381 0.0346 0.0339 0.0155 0.0313

11 China
Everbright
Bank

0.0265 0.0455 0.0250 0.0264 0.0107 0.0268

12 Shenzhen
Development
Bank

0.0187 0.0346 0.0178 0.0107 0.0065 0.0177

13 Huaxia Bank 0.0173 0.0313 0.0141 0.0084 0.0061 0.0154
14 Bank of

Beijing
0.0130 0.0231 0.0102 0.0081 0.0053 0.0119

15 Bank of
Ningbo

0.0043 0.0087 0.0032 0.0186 0.0018 0.0073

16 Bank of
Nanjing

0.0040 0.0075 0.0025 0.0044 0.0014 0.0040
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large. BOCOM also has no overlaps in scores with other joint-stock commercial
banks in the years, seemingly independent from that system. Therefore, we argue
that it is not so fair if we put BOCOM into the same bucket as “Big Four” banks and
mandate it to hold the identical additional capital. Although, it is a natural member
of D-SIBs since its impact is more than a little, different bucket from “Big Four”
major banks should be considered.

Among the rest, we can observe that city commercial banks such as Bank
of Beijing, Bank of Ningbo, and Bank of Nanjing have hardly any systemic
relevance with total score under 1.5%. Some joint-stock commercial banks show
little domestic systemic importance accounting for less than 2% of the total, such as
Shenzhen Development Bank and Huaxia Bank.

Some other joint-stock commercial banks, however, are much closer to the
smallest major bank—Bank of Communications in their final scores in 2012, which
shows the trend to be included in the potential candidates list of D-SIBs. Hence, we
suggest that the impact of those banks such as Industrial Bank Corporation (IBC),
China Merchants Bank (CMB) and China Minsheng Banking Corporation (CMBC)
can’t be neglected. We will also address the issue later regarding to the changes of
systemic importance over time.

When we observe the scores in categories of the three banks, an interesting
finding is the high rankings of IBC and CMBC in the category of “interconnected-
ness”. IBC, which is characterized with its interbank activities, account more than
10% systemic importance in the category, ranking the third place. CMBC also list
before BOCOM, one of “Big Five” in the same category. These findings once again
validated that “size” only is not adequate to capture systemic importance. At least
IBC and CMBC expose themselves too much to the banking system, not consistent
with their rankings in the final, which should alert the regulators to tighten their
interbank activities.

We demonstrate the final scores of domestic systemic importance over the 5-year
period in Table 10.5. The banks are ranked according to the final scores of year
2012.

Focusing on the “Big Four” or “Big Five” major banks, the time series displayed
in Fig. 10.1 reveals important information about the levels as well as the changes of
domestic systemic importance yearly in the Chinese banking system.

We can find that, although the major banks (no matter BOCOM included or
not) still dominate the systemic importance at a high level, their domestic systemic
importance keeps decreasing sharply during the 5 years.

The decreasing trend of systemic importance of major banks means domestic
systemic importance is distributed among the system more evenly, rather than
concentrated on a small group that the regulatory always keeps an eye on. This gives
the authorities the implications that more banks with growing systemic importance
should also be noticed, otherwise it will be too late to regulate if they become too
domestic systemic important.

Figure 10.2 shows the levels and the changes of domestic systemic importance
of joint-stock commercial banks whose final scores are all above 0.02 in the 5 years.
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Table 10.5 Final scores of domestic systemic importance over 2008–2012

Banks 2008 2009 2010 2011 2012

Industrial and Commercial Bank of China 0.1915 0.1913 0.1891 0.2071 0.1999
Bank of China 0.2167 0.1964 0.2008 0.1811 0.1675
Agricultural Bank of China 0.1523 0.1721 0.1591 0.1530 0.1582
China Construction Bank 0.1584 0.1640 0.1484 0.1469 0.1457
Bank of Communications 0.0660 0.0599 0.0652 0.0614 0.0588
Industrial Bank Corporation 0.0291 0.0261 0.0338 0.0377 0.0428
China Merchants Bank 0.0408 0.0430 0.0415 0.0379 0.0407
China Minsheng Banking Corporation 0.0212 0.0212 0.0246 0.0278 0.0397
Shanghai Pudong Development Bank 0.0306 0.0248 0.0316 0.0338 0.0323
China Citic Bank 0.0256 0.0325 0.0291 0.0381 0.0313
China Everbright Bank 0.0223 0.0263 0.0270 0.0251 0.0268
Shenzhen Development Bank 0.0110 0.0095 0.0099 0.0133 0.0177
Huaxia Bank 0.0176 0.0152 0.0145 0.0147 0.0154
Bank of Beijing 0.0115 0.0096 0.0134 0.0129 0.0119
Bank of Ningbo 0.0025 0.0040 0.0067 0.0047 0.0073
Bank of Nanjing 0.0029 0.0040 0.0052 0.0045 0.0040
“Big Four” 0.7189 0.7238 0.6973 0.6882 0.6712
“Big Five” 0.7849 0.7838 0.7626 0.7496 0.7300

Fig. 10.1 Domestic systemic
importance of Chinese major
banks

0.600 

0.650 

0.700 

0.750 

0.800 

2008 2009 2010 2011 2012

Big Four Big Five

As for these potential candidates to be included in D-SIBs, we suggest that
Industrial Bank Corporation, China Merchants Bank and China Minsheng Banking
Corporation should be considered. They are ranking just after the “Big Five” major
banks with scores very close to BOCOM in the year 2012.

In addition, IBC’s and CMBC’s domestic systemic importance demonstrates a
tendency of growing over the 5 years, which are quite different in ways of change
from other joint-stock banks as Shanghai Pudong Development Bank (SPDB),
China Citic Bank (CITIC), and China Everbright Bank (CEBB), although they
were in an almost identical level between of systemic importance. Further, IBC and
CMBC present significant impacts on the whole banking system from the aspects of
“interconnectedness” in 2012, ranking the third and sixth.
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Fig. 10.2 Domestic systemic importance of main joint-stock banks

As for CMB, it always demonstrates itself as potential systemic important for
accounting around 4% of the banking system, significantly higher than the rest
joint-stock commercial banks. Therefore, we suggest IBC, CMBC and CMB to be
included in the list of Chinese D-SIBs, while SPDB, CITIC and CEBB remain in
the watch list.

We also follow the official BCBS approach to classify the banks into buckets
with additional capital charge while the tentative thresholds differ. According to our
suggestions, “Big Four” major banks should be in the top level of the buckets with
maximum additional capital requirement, while BOCOM follow behind the next
level. In the current state, besides “Big Five” major banks, the natural members of D-
SIBs, potential candidates such as IBC, CMBC and CMB should also be included,
which may provide an incentive to encourage them not to become more systemically
important. As for these banks with more than little systemic importance, but not to
a degree of potential systemically important, such as SPDB, CITIC and CEBB, we
suggest that the regulatory should also watch their status dynamically. Therefore, a
watch list is also recommended. To summarize, the list to be included in each bucket
of D-SIBs is then presented as in Table 10.6.

10.1.2 How Does Credit Portfolio Diversification Affect Banks’
Return and Risk? Evidence from Chinese Listed
Commercial Banks

This subsection investigates empirically the effects of diversification on the Chinese
banks’ return and risk from the aspect of sector. Panel data on 16 Chinese listed
commercial banks during the 2007–2011 period is used for the study.
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Table 10.6 Buckets of Chinese D-SIBs

Bucket Bank list

A Industrial and Commercial Bank of China
Bank of China
Agricultural Bank of China
China Construction Bank

B Bank of Communications
C Industrial Bank Corporation

China Merchants Bank
China Minsheng Banking Corporation

Watch list Shanghai Pudong Development Bank
China Citic Bank
China Everbright Bank

10.1.2.1 Methodology

Diversification Measures

Previous research works applied several commonly-used traditional diversification
measures including Hirschman-Herfindhl (HHI) [45, 46] and the Shannon Entropy
(SE) [47, 48]. Some of the papers also used distance-based diversification measures
to compare the differences between credit portfolio composition and a benchmark.
in most of the cases, the industry composition of the economy’s market portfolio is
a benchmark for diversification. Distance-based diversification measures therefore
take the differences in sizes of each sector into consideration [48, 49].

It’s important to highlight that the purpose of our work is to examine whether
the sectorial composition in the banks’ credit portfolios affect the banks’ return and
risk. Sectorial composition means the banks’ relative exposures to certain sectors.
Before we introduce our proxies of diversification which are used in the section at
length, we briefly illustrate why we do not consider distance-based diversification
measures.

The particular circumstance in China is that sector classification and definition
is slightly different between that in economic activity1 and in security markets.2

For example, K. Social service in the 13-sector classification in security markets
covers M. Science, P. education, Q health, etc. in 20-sector classification of
economic activity.3 However, most of the listed commercial banks report their
lending according to 13-sector classification set by CSRC respectively. Therefore,

1Twenty sectors in total, set by national Bureau of Statistics of China. See industry Classification
of national economy, gB/T 4754–2011.
2Thirteen sectors in total, set by China Securities Regulatory Commission (CSRC). See industry
Classification guidance for Listed Companies, CSRC Public announcement, 2012, no. 31.
3Details of the 20-sector classification is provided upon request, and 13-sector classification is
described in subsection HHI and risk-adjusted HHI calculation.
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it’s difficult to distinguish the difference between their sectorial composition of
credit portfolio and the macroeconomic market portfolio of the whole country.

Due to the above reason, we choose Herfindhl-Hirschman Index as the basic
measure of diversification, and also construct a new one based on it, taking
systematic risk of each sector into consideration.

Hirschman-Herfindhl Index (HHI)

Hirschman-Herfindhl Index (HHI) is a commonly used accepted measure of market
concentration [50]. it assumes perfect diversification as equal exposure to every
sector.

Before we calculate the diversification measure, for each bank, relative exposure
xit of each sector i at time t is defined as its nominal exposure exit divided by the
total exposure

∑N
k=1 exkt :

xit = exit∑N
i exkt

(10.9)

HHI is the sum of the squares of the relative exposures and thus for each
individual bank, it is defined as:

HHIt =
∑N

i=1
x2
it (10.10)

where N is the total number of sectors the banks provide their lending to. The lower
and upper bound of HHI is 1/N and 1, representing a perfect diversified and a perfect
focused portfolio respectively. The higher HHI value, the less is the diversification
of the bank.

Risk-Adjusted HHI

Traditional HHI equals relative exposure of every sector; however, sector itself has
different vulnerability as a response to the whole economy’s up and down. Lessons
learned from banking crises of the 1980s and early 1990s taught us that banks should
not exposure too much to only few sectors [51]. Subprime crisis was partly due to
too much exposure to real estate industry which has especially high correlations
with macro economy [52]. To address the risk that a sector has high correlation with
the macro economy, we introduce systematic risk of each sector in diversification
measure. That is to weight more on relative exposures of the offensive sectors than
these of the defensive sectors, rather than equal them in traditional HHI.

Systematic risk of one sector defined in this section is much in line with the
concept in economics and finance. Systematic risk is vulnerability to events which
affect aggregate outcomes such as broad market returns, rather than individual return
of a firm or an industry. It cannot be eliminated through diversification in a portfolio.
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in William Sharp’s capital asset pricing model, the important concept to evaluate an
asset’s exposure to systematic risk is beta. it is an indicator of an asset’s vulnerability
to systematic risk, and indicates the degree to which an asset’s expected return is
correlated with boarder market return [5, 53].

In this subsection, we replace an asset with a sector in Sharp’s framework. Sector
beta is used to measure to which extent a sector moves together with the entire
market. Then we introduce sector beta as weight of relative exposure of each sector
respectively to construct our new diversification measure.

Risk-adjusted HHI for each bank at time t as follows:

risk-adjusted HHIt =
∑N

{i=1}βitx
2
it (10.11)

In Eq. (10.11), βit reflects systematic risk of each sector i at time t, defined as
the covariance between market return and sector return cov(RMt,Rit ) divided by the
variance of market return σ 2

RMt
, as with Sharp’s definition of beta.

βit = cov (RMt , Rit )

σ 2
RMt

(10.12)

The higher risk-adjusted HHI value means not only the bank’s credit portfolio is
more concentrated, but also focused too much on the sectors with higher systematic
risk.

Dependent Variables

In this part, we briefly introduce the dependent variables and other control variables
we use in our regression models.

Return Performance Measures

– Return on assets (ROA): measured as the ratio of net income to total assets;
– Return on equity (ROE): measured as the ratio of net income to equity. The

measure is to describe the return performance of the bank from the perspective
of stockholders;

– We use both the measures for robustness check.

Risk Measure

– Nonperforming loans: we evaluate the banks’ monitoring effectiveness. The
variable is interpreted as an ex-post measure of the actual losses from lending
activity, and easy to be found in the banks’ annual reports.
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Other Control Variables

We control for characteristics that are commonly used as control variables in similar
studies as [45, 46, 54]. Control variables in this section are: asset, loan-to-deposit
ratio and equity ratio to describe a bank from the three important aspects—size,
liquidity and capital structure.

– Asset: we use the continuous variable to measure the size of the bank as most
of the previous literatures did. This control variable is to capture size-related
influences that stem from differences in size among banks, and to control for the
well-known size effect [55]. In our regression analysis, squared term ln2(asset)
asset along with ln2(asset) asset is also introduced to capture for the potential
nonlinear relationship between size and risk when the linear relationship is not
significant.

– Loan-to-deposit ratio: The control variable is defined as total loan divided by
total deposit. It is a commonly used statistic for assessing a bank’s liquidity.
If the ratio is too high, it means that banks might not have enough liquidity to
cover any unforeseen fund requirements; if the ratio is too low, banks may not be
earning as much as they could be. Therefore, this ratio has the potential impact
on banks’ return and risk that should be controlled when doing regressions.

– Equity ratio: This control variable is defined as equity divided by the total assets,
reflecting the capital structure of the bank. The reciprocal of equity ratio is the
well-known equity multiplier which is associated closely with financial risk.
Equity multiplier is also used to calculate return on equity in DuPont formula for
financial analysis. Therefore, this variable is used mainly to control the influence
of capital structure on banks’ return and risk.

10.1.2.2 Model Specification

The Relationship Between Bank Returns and Credit Portfolio Diversification

The basic question in this study is whether loan sectorial diversification yields
higher returns. We deal with this issue by regressing returns on diversification
measures, while controlling other important variables in the following equation.

returnkt = β0 + β1diversificationkt + γ ·Vkt + εkt , (10.13)

where returnkt is the return of bank k at time t measured by ROA and also ROE. Vkt

is a vector of control variables including asset, loan-to-deposit ratio and equity ratio.
diversificationkt is the variable we are interested in, representing separately HHI and
risk-adjusted HHI explained in the previous subsection. Finally, εkt is the residual
value.
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If β1 > 0, concentration seems to be more advantageous than diversification from
the aspect of return. Otherwise, β1 < 0 means that diversification across sectors
yields higher return.

In addition, we also test the nonlinear relationship between credit loan diver-
sification and banks’ return by introducing squared term diversification2

kt into the
regression.

returnkt = β0 + β1diversificationkt + β2diversification
2
kt

+γ ·Vkt + εkt . (10.14)

If the regression model is significant, it seems to suggest that there exists U-
shaped or reversed U-shaped relationship between diversification and banks’ return.

The Impact of Credit Portfolio Diversification on Bank Risk

This topic is to test how loan sectorial diversification impacts risk. We regress
risk measure on diversification measures in the following equation. Asset, loan-to-
deposit ratio and equity ratio are included in the regression as control variables.

riskkt = β0 + β1diversificationkt + γ ·Vkt + εkt , (10.15)

where riskkt is the risk of bank k at time t measured by nonperforming loans. Since
we evaluate the banks’ monitoring effectiveness, absolute value of nonperforming
loans is used. diversificationkt is separately HHI and risk-adjusted HHI explained in
the previous subsection. Finally, εkt is the residual value.

In our regression analysis, squared term ln(asset) asset along with ln2(asset) asset
are also introduced to capture for the potential nonlinear relationship between size
and risk when the linear relationship is not significant.

If β1 > 0, concentration seems to be less attractive than diversification since risk
is higher. Otherwise, β1 < 0 means that diversification across sectors brings more
risk.

In addition, we also test the potential nonlinear relationship such as U-shaped
or reversed U-shaped between credit loan diversification and banks’ return by
introducing squared term diversification2

kt into the regression.

riskkt = β0 + β1diversificationkt + β2diversification
2
kt

+γ ·Vkt + εkt . (10.16)
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10.1.2.3 Data

Sample and Data Source

In China, there are 16 listed commercial banks in all. These banks take a large
asset proportion of the whole banking sector. Our sample includes panel data of
all the 16 Chinese listed commercial banks in 2007–2011 period, 80 observations
in total. The 16 commercial banks are: Industrial and Commercial Bank of China
(ICBC), Agricultural Bank of China (ABC), Bank of China (BOC), China Construc-
tion Bank (CCB), Bank of Communications (BOCOM), China Merchants Bank
(CMB), Shanghai Pudong Development Bank (SPDB), China Minsheng Banking
Corporation (CMBC), China Citic Bank (CITIC), China Everbright Bank (CEBB),
Industrial Bank Corporation (IBC), Huaxia Bank (HXB), Shenzhen Development
Bank (SDB, now is merged with Ping’an Bank), Bank of Beijing (BBJ), Bank of
Nanjing (BNJ), and Bank of Ningbo (BNB).

These commercial banks began to adopt new accounting standards in 2007.
Besides, in the period of 2007–2011, Chinese banking sector was developing stably
without significant reforms. Therefore, our choice of the time period helps to
examine the stable relationship between diversification and banks’ return and risk.

Sector exposures of every listed commercial bank of the 5 years are from their
annual reports. They direct their loans to the following sectors: farming, forestry,
husbandry and fishing; mining; manufacturing, production and supply of electric
power, gas and water; construction; transportation and warehousing; information
technology; wholesale and retail trade; finance and insurance; real estate; social
service (including science, education and health); communication and culture,
etc. Their classification of sectors is mainly in accordance with the 13-sector
classification standard set by CSRC; therefore, we only adjust some of their reported
sector loan exposures to ensure consistency between the 16 banks and also the 13-
sector classification standard.

Return performance measures and risk measure is from Wind database.4 We also
double check them with those on the banks’ annual reports.

HHI and Risk-Adjusted HHI Calculation

Definition and classification of sectors in the 16 listed commercial banks’ loan
exposures reports show slight differences in some sectors. We adjust the inconsistent
ones to ensure that we can compare the calculated HHI between the banks and also
between the different years. 13-Sector classification specified by CSRC is listed in
Table 10.7.

The 16 listed banks all reported their exposures in the following sectors: B, C,
D, E, F, H, and J. However, some of the banks classified one, some or all of the

4Wind database is a widely used service provider of financial data in China.
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Table 10.7 13-Sector classification specified by CSRC

Sector code Description

A Farming, forestry, husbandry and fishing
B Mining
C Manufacturing
D Production and supply of electric power, gas and water
E Construction
F Transportation and warehousing
G Information technology
H Wholesale and retail trade
I Finance and insurance
J Real estate
K Social service
L Communication and culture
M Comprehensive industry

Table 10.8 Adjusted sector
classification standard

No Description Sector code

11 Mining B
12 Manufacturing C
13 Production and supply of electric

power, gas and water
D

14 Construction E
15 Transportation and warehousing F
16 Wholesale and retail trade H
17 Real estate J
18 Social services: science, education,

culture and health leasing and
business service communication
and publication

K, L

19 Others: (any, some or all of the
following) farming, forestry,
husbandry and fishing information
technology finance and insurance
comprehensive industry

A, G, I, M

Sector A, G, I, M into “others”, and the rest banks reported them separately if they
provided loans to any of Sector A, G, I, M. Besides, some banks had their own
sector “science, education, culture and health”, “public service” in their reporting,
while other confirmed to 13-classification regulation in which “communication and
culture” is an independent sector. To overcome the inconsistency, we adjust our
classification standard shown as Table 10.8.

The most important issue in calculation of risk-adjusted HHI is to estimate sector
betas. First, we choose the right proxy of market return. Cross correlations between
Shanghai index (SH), Shenzhen index (SZ) and HuShen 300 index (HS 300) are
calculated. Since they are highly positive related with correlation coefficient higher
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Table 10.9 Sector betas in
2007–2011 period

2007 2008 2009 2010 2011

A 0.885 1.074 1.042 0.845 1.148
B 1.117 1.092 1.238 1.358 0.769
C 1.017 1.055 0.998 0.966 1.251
D 0.971 0.888 0.881 0.812 1.009
E 1.130 1.067 1.008 0.914 1.238
F 0.921 1.075 1.086 1.069 1.047
G 0.784 0.952 0.918 0.899 1.128
H 1.086 0.976 0.995 0.825 1.175
I 1.112 1.166 1.065 0.929 0.855
I 1.213 1.232 1.421 1.068 1.269
K 0.976 1.166 1.145 0.848 1.254
L 0.867 0.961 0.950 0.788 1.377
M 1.121 1.078 1.112 0.970 1.387

than 0.85, we choose return rate of Shanghai composite index as proxy of market
return because it covers a wider range thus better describe the market. Shanghai
composite index is available in Wind database, which is in daily frequency.

Then, we prepare return rate of all the sectors. Wind database provides indices
of all the 13 sectors in accordance with CSRC standard, all in daily frequency.
To eliminate unnecessary volatility, we calculate weekly return of market and all
the sectors by doing logarithmic transformation of weekly closing index series
respectively.

βit = cov(RMt ,Rit )

σ 2
RMt

is used to estimate sector betas. Note that we list our results

according to CSRC 13-sector classification. When we introduce the sector betas to
calculate risk-adjusted HHI, we do adjustment according to our new classification
standard.

Original beta values of Sector B, C, D, E, F, H, and J is used. Average of Sector
K and L’s betas is replaced with I8 in our new standard. For I9, we calculate beta
of each bank according to the sectors included in “others” category (one, some or
all of Sector A, G, I, M) by averaging their betas. For example, we classify Sector I
and M for BOC into I9 “others”, average beta of Sector I and M is used to replace
I9’s beta. Table 10.9 presents the calculated betas of each sector of the 5 years.

Summary Statistics

Table 10.10 presents the summary statistics of the variables that we use in our
models specified. The most important issue in our study, by analyzing the mean
and standard deviation of the concentration measure, is that Chinese banks’ credit
portfolios seem to be well diversified.

We compare average HHI of Chinese banking sector with the main findings of
the previous study. In general it is more diversified than Italians’ whose average
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Table 10.11 Correlations of
HHI, risk-adjusted HHI and
asset

HHI Risk-adjusted HHI Asset

HHI 1
Risk-adjusted HHI 0.895 1
Asset −0.408 −0.358 1

HHI is 0.237 [54], Irish’s [56] and German’s [46] in which HHI both equal 0.291.
For emerging markets, Brazilians’ and Argentines’ are also more concentrated than
Chinese’s with HHI 0.316 [48] and 0.55 [57] respectively.

Table 10.11 depicts the cross correlations of the variables we are interested in
with asset. This provides evidence that a not absolutely pronounced correlation
exists between HHI and risk-adjusted HHI, suggesting that the effects of both on
return performance and risk may be at least slightly different. So it is necessary to
observe the effects of both on return and risk. Besides, there is an obvious negative
correlation between credit loan concentration and the size of bank. A possible
reason to explain is that larger banks have accesses to more resources, possess more
adequate capital and have deeper understanding in lending to several sectors.

Figure 10.3 shows the tendency of average HHI and risk-adjusted HHI of the
16 banks in the 5 years. It is easy to find that there is a decreasing tendency of
sectoral concentration as HHI reduces with time passes, which seems to indicate that
credit portfolios are less concentrated. However, risk-adjusted HHI grows sharply in
2011, suggesting that more exposures to sectors with higher systematic risk such as
real estate, manufacturing and construction. This may also result from increased
systematic risk of these sectors at the same time. An increased risk-adjusted HHI
may be a sign of higher risk resulting in more nonperforming loan, but it cannot be
captured by traditional measure HHI.

Fig. 10.3 Tendency of HHI and risk-adjusted HHI in 2007–2011
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10.1.3 A New Approach of Integrating Piecewise Linear
Representation and Weighted Support Vector Machine
for Forecasting Stock Turning Points

This subsection integrates the piecewise linear representation (PLR) and the
weighted support vector machine (WSVM) to forecast stock TPs and proposes
several methods to enhance the performance of the PLR-WSVM model. Firstly,
a fitness function is proposed to select the threshold of the PLR automatically.
Secondly, an oversampling method suitable for the problem of forecasting stock
TPs is proposed. The random undersampling combined with the oversampling is
used to balance the number of samples. Thirdly, the relative strength index (RSI) is
integrated to determine whether the predicted TP is a buying point or selling point.
Twenty stocks are used to test the proposed model. The experimental results show
that the proposed model significantly outperforms other models. The coefficient of
variation of the revenues obtained by the proposed model is the lowest, indicating
the proposed model is the most stable.

10.1.3.1 Literature Review

Financial Data Forecasting

Financial data forecasting can be mainly divided into three aspects: the financial
time series forecasting, the price trend forecasting, and the trading signal forecast-
ing. The financial time series forecasting uses continuous variables as prediction
targets. Machine learning algorithms, such as the artificial neural networks (ANN)
and the support vector machines (SVM), have been widely used in financial
time series forecasting and have better performance than traditional linear models
such as autoregressive integrated moving average (ARIMA) [58–60]. Combining
the nonlinear algorithm and linear algorithm also showed a good performance
in financial time series forecasting [61, 62]. The performance of different ANN
structures in financial time series forecasting was compared in [63].

The financial time series forecasting typically uses the root mean square error
(RMSE) as the performance metric, but it cannot give the accuracy of stocks’ rises
and falls [64]. Therefore, some researches focus on the price trend forecasting [65–
69]. The price trend forecasting uses binary variables or multivariate variables as
prediction targets. Technical indicators are used to forecast the stock’s daily trends
[65–69]. The ANN [67] has been used to forecast the trend of stocks during 1 day,
5 days and 10 days. The random forest (RF) [65] has been used to forecast the trend
of stocks during different time periods.

However, investors are more concerned with making trading decisions than
forecasting daily prices [70]. The financial time series forecasting and the price
trend forecasting mainly focus on daily forecasting. If investors simply buy and
sell stocks according to the daily predicted trends, frequent transactions will lead
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to high transaction fees and low profits. Therefore, some researches focus on the
trading signal forecasting [71–73]. The purpose of the trading signal forecasting
is to establish a system that predicts when to buy and sell stocks to make a profit
in the financial market. The ensemble artificial neural network (EANN) [74] has
been used to predict TPs and earned about 5% more than the buy-and-hold strategy
(BHS). Mabu et al. [75] used the genetic network programming and earned about
5% more than the BHS as well. Pham et al. [76] proposed a trading system based
on risk management and company assessment. Wu et al. [77] proposed a trading
system based on technical analysis and sentiment analysis. Reinforcement learning
is an algorithm based on maximizing reward and has been used to establish a system
to trade stocks [78–80]. Reference [81] used the league championship algorithm,
network structure, and reinforcement learning to extract stock trading rules, which
earned about 17% more than the BHS. Recently, the piecewise linear representation
(PLR) was integrated into the ANN to predict the trading points of stocks [70, 82].
The PLR is a method to split a series into serval segments, and the maximum error
of each segment does not exceed a threshold [83]. The financial time series can be
split into different segments by the PLR, and these split points are TPs. The SVM
and other algorithms were combined with the PLR to forecast trading signals as well
[39, 83–86].

Review of the PLR and the WSVM

The PLR is a method to split a series into serval segments [83]. Given a threshold δ,
a series can be split into serval segments, and the maximum error of each segment
does not exceed the threshold δ. The PLR algorithm [87] is shown in Algorithm
10.1.

Algorithm 10.1 Top-Down Algorithm

If the maximum error of the segment is higher than the threshold δ:
Split the segment into two segments from the position of the maximum error.
If the maximum error of the left segment is higher than the threshold δ:

Split the left segment using Algorithm 10.1.
If the maximum error of the right segment is higher than the threshold δ:

Split the right segment using Algorithm 10.1.

Proposed Model

In the proposed model, the PLR is used to generate TPs and OPs, and the threshold
of the PLR is automatically selected by a fitness function. The sample weights are
calculated by the change rate of price between adjacent TPs. The oversampling and
the undersampling are used to balance the number of samples. The WSVM [88] is
used to forecast the TPs, and the trading signals are determined by the RSI rule and
the DODS. Figure 10.4 shows the flowchart of the proposed model, and the detailed
methods are introduced in the following subsections.
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Start

i = 1

Split data into q training sets and test sets

Choose the i th training set and test set

Obtain a best threshold of the PLR using the fitness function

Generate the TPs using the PLR with the threshold

Calculate the weights of TPs

Oversampling using the neighbors of TPs

Undersampling to balance the samples

Set the weights for all samples

i = i +1

Train the WSVM model with the ith balanced training data

Forecast the TPs on the i th test data

Determine the trading signals using the RSI rule

Correct the trading signals using the DODS with RSI

Calculate the revenue according to all the trading signals

Y

N

End

i < q

Fig. 10.4 The flowchart of the proposed model



10.1 Banking and Financial Market Analysis 599

Input Indicators

The stock indicators are shown in Table 10.12 [68, 83, 86]. KDJ is a momentum
indicator and has been widely used to analyze the stock trends. There are three
indicators, K, D, and J, in KDJ, and they are calculated as follows:

K(t) = 2

3
×K (t − 1)+ 1

3
× pc(t)− Ln

Hn − Ln

× 100 (10.17)

where Ln and Hn are the lowest price and the highest price among n days
respectively.

D(t) = 2

3
D (t − 1)+ 1

3
K(t) (10.18)

Usually, when the K value is less than the D value, and the K line breaks through
the D line, it is a buying signal. When the K value is greater than the D value, and
the K line falls below the D line, it is a selling signal. Therefore, the different types
of KDJ are used as another input indicator.

The days d chosen to calculate the BIASd are 5, 10, 20, 30 and 60. The days
d chosen to calculate the RSId are 6, 12 and 24. Therefore, there are a total of 23
indicators used as input variables.

Generate TPs Using the PLR

The data set is split into q training sets and test sets sequentially, and the q is
calculated as follows [83, 86]:

q = /(r − r1) /r20 (10.19)

where r is the data set size, r1 is the training set size, and r2 is the test set size. The
example of splitting data set is shown in Fig. 10.5.

For each training set, the PLR is used to obtain the TPs of stocks. The points
with trough or peak are classified to TPs, and the other points are classified to OPs.
The threshold δ has an important influence on the TPs generated by the PLR. As
can be seen in Table 10.13, the smaller the threshold value, the more TPs the PLR
generates.

As the threshold decreases, the number of TPs increases, but the PLR will more
easily generate some TPs occurred within a short period. These points are only
short-term rebound points rather than TPs. Figure 10.6 shows an example. In Fig.
10.6a, three pairs of TPs, a, b and c, occurred within a short period. The three pairs of
TPs are still in a falling or rising trend and should not be TPs. Therefore, the more
reasonable TPs are shown in Fig. 10.6b after eliminating the short-term rebound
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Fig. 10.5 The example of splitting data set sequentially

Table 10.13 Number of TPs under different thresholds

δ = 0.01 δ = 0.05 δ = 0.10 δ = 0.15 δ = 0.20

Number of TPs 64 37 21 14 8
Percent of TPs 32% 18.5% 10.5% 7% 4%
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Fig. 10.6 The TPs generated by the PLR

points. Additionally, because of the different price fluctuations of different stocks,
it is unreasonable to set the same threshold δ for different stocks.

To overcome the above problems, this section proposes a fitness function that
focuses on medium or long-term trends rather than short-term rebounds:

rPLR = revenuePLR − αPLR
∑n

i=2
max

(
βPLR −

(
xi − xi−1

)
, 0
)

(10.20)

where revenuePLR is a revenue calculated according to the TPs generated by the
PLR, αPLR is a penalty factor, βPLR is a threshold to control the period within which
the TPs should not exist, and xi is the day of the ith TP.
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Because it can accurately buy at a low price and sell at a high price, the larger the
number of TPs, the larger the first item of the formula (revenuePLR). But with the
second item, the trades happened within βPLR days will be punished. The smaller the
number of days between trades, the greater the penalty is. Therefore, the threshold
δ of the PLR can be automatically selected by maximizing the fitness function rPLR.

Different samples, TPs and OPs, are differently weighted as follows [40]:

μ
(tr)
t =

{ |pc (nst )− pc(t)| /pc(t) if t is a TP
λ ∗min

St

μSt if t is a OP (10.21)

where pc (·) is the closing price, st is the TP, nst is the next TP, and λ is a scaled
factor. The sample weights are normalized into [46, 89] by the following equation:

μ
(tr)
i = 1+ μ

(tr)
i − μ

(tr)
min

μ
(tr)
max − μ

(tr)
min

(10.22)

Forecast TPs Using the WSVM

Generally, unbalanced samples will decrease the accuracy of a classifier [4]. As can
be seen in Table 10.13, the number of OPs is larger than that of TPs. Since the
fitness function is used to avoid generating TPs occurred within a short period, the
percentage of TPs is usually between 7.5% and 17.5%. Therefore, the oversampling
and the undersampling are used to balance the number of samples.

The oversampling method typically generates virtual samples to balance the data
set [8]. However, in the problem of forecasting TPs, TPs are labeled according to
financial experts or algorithms. Therefore, this section considers a TP should be
a period rather than a point. In this case, the neighbors of TPs generated by the
PLR should also be labeled as TPs. A neighbor window nwtp (nwtp ≥ 0) is defined
to control the neighbors that should be labeled as TPs. With the neighbor window
nwtp, the number of TPs will be expanded 2nwtp times. The weights of the neighbor
TPs are the same as their central TP. Further, the characteristic of a TP’s neighbors
is similar to that of the TP, and it may be hard to classify whether the neighbors are
the TPs or not. Therefore, a neighbor window nwop (nwop ≥ 0) is defined to control
the neighbors of TPs that should not be labeled as OPs. For example, as can be seen
in Fig. 10.7, point c is the TP obtained by the PLR. Given nwtp = 1 and nwop = 1,
the points b and c are labeled as TPs, and the points a and e are discarded and are
not labeled as OPs.

Note that in some cases, some points generated by the PLR are not TPs. For
example, in Fig. 10.8, an uptrend segment may follow two downtrend segments, so
the split points a and b are considered as OPs.
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Fig. 10.7 Example for the neighbor window

Fig. 10.8 Example for the OP generated by the PLR
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After adjusting samples according to the nwtp and the nwop, assuming the number
of TPs generated by the PLR is Nptp, the number of OPs generated by the PLR is
Npop, and the number of other OPs is Noop, then the OPs can be selected as follows:

⎧
⎨
⎩

NoopOPs+ random select
(
Nptp −Npop

)
OPs

if Npop +Noop > Nptp

keep
(
Npop +Noop

)
OPs else

(10.23)

The balanced samples and their weights are used to train the WSVM.

Determine Trading Signals Using the RSI Rule and the DODS

The WSVM forecasts the TPs, and the next step is to judge whether they are BPs or
SPs. RSI is a technical curve based on the ratio of the rise and the fall in a certain
period and can reflect the prosperity of the stock markets. The more the stock price
rises, the larger the RSI, and vice versa. When the RSI is around 50, the stock is in
a stable trend; When the RSI is above 70, the stock is overbought; When the RSI is
below 30, the stock is oversold [90]. In this subsection, the RSI is used to judge stock
trends and determine trading signals. The points with an RSI of around 50 are in a
stable trend, and it is difficult to determine whether they are BPs or SPs. Therefore,
these points are discarded, and other points can be determined as follows:

{
if RSI24(t) < 40, then t is a BP
if RSI24(t) > 60, then t is a SP

(10.24)

The delay-one-day strategy (DODS) [40] is a method to prevent the loss of
prediction errors. With the DODS, the trading is delayed by one day to determine if
the up or down trend will continue. Because the trading day is delayed according to
the DODS, the RSI of the next day must be examined to make the right transaction.
The RSI is further integrated into the DODS to adjust the transaction, and the new
DODS is shown in Algorithm 10.2, where cr (t) is the change rate and calculated by
the equation cr (t) = (Pc (t) − Pc (t − 1)) /Pc (t − 1), α and β represent the degree
of alleviation.

Algorithm 10.2 DODS with RSI

for each trading day t:
if t is a BP, the downward trend is alleviated on the day t + 1
(cr(t + 1) > α ∗ cr(t)), and the RSI12 is below 50 on the day t + 1:

Cancel the trading on the day t and set the day t + 1 as a BP
elseif t is an SP, and the upward trend is alleviated in the day t + 1
(cr(t + 1) < β ∗ cr(t)), and the RSI12 is above in the day t + 1:



10.2 Agriculture Classification 605

Cancel the trading on the day t and set the day t + 1 as a SP
else:

Cancel the trading on the day t and set the day t + 1 as a OP

10.2 Agriculture Classification

10.2.1 An Alternative Approach for the Classification
of Orange Varieties Based on Near Infrared
Spectroscopy

This section studies a multivariate technique and feasibility of using near infrared
spectroscopy (NIRS) for non-destructive discriminating Thai orange varieties.

10.2.1.1 Materials and Methods

Spectral Acquisition and Preprocessing

There are three different orange varieties to be classified in the present work
including Kaew Wan (K), Number One (N), and Sai Nam Pung (S) and some
properties of them are shown in Table 10.14. This dataset was obtained from a
previous study of quality evaluation of orange using near infrared spectroscopy
[91]. In order to characterize the features of the oranges, samples were selected
from orange orchard in the northern part of Thailand all year long to cover each
the studied orange varieties in all seasons. The collected samples were then graded
in the experiment with the same size, color and smoothness to avoid effects from
physical characteristics of samples. NIR absorbance were measured by shortwave
length-spectrometer (model: PureSpect, Saika Technological Institute Foundation,
Japan) increasing from 643.26 to 970.92 (nm) at a step of 1.29 (nm) in transmittance
measurement mode. The intensity of halogen lamp was 50 W and the sample holder
rotated with speed of 6 m/min. The experimental setup was shown in Fig. 10.9.

Table 10.14 Three varieties of oranges in experiment

Varieties Production area Rind color
Total soluble
solid mean Acidity mean

Keaw wan Chiang Mai province,
north of Thailand

Yellowish green 10.26 0.36

Number One Chiang Mai province,
north of Thailand

Yellowish green 9.88 0.54

Sai Nam Pung Chiang Mai province,
north of Thailand

Yellowish green 12.13 0.56
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Fig. 10.9 The NIR spectra collection of Thai oranges from spectrometer (model: PureSpect, Saika
Technological Institute Foundation, Japan)

Each orange sample was scanned two times and spectral records were averaged. An
orange is accordingly described by the NIR absorbance 255 different spectra (i.e.,
wavelength). From each variety, 100 samples (oranges) were measured for their NIR
absorbance. As a result, a data set contains 300 instances and 255 spectrum features
was generated for developing classification models to the three orange varieties. The
NIR spectral features were normalized into [0,1]. The averages of the three orange
varieties on each of the 255 spectra are illustrated in Fig. 10.10.

Classification Methods

A number of representative classification methods were evaluated in the present
work. Firstly, the complete data containing all the 255 spectrum features were used
to develop classification models for the three orange varieties. The performances of
these modeling methods were indexed by the classification accuracies obtained via
the commonly used tenfold cross-validation [92]. Once the best performing method
was identified, a subsequent feature selection was conducted to see whether a fewer
features instead of the full spectral range can achieved a comparable performance.

The first classification method evaluated in the present work is kNN in [93]. kNN
is a simple classification algorithm known as lazy method, which classifies a new
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Fig. 10.10 The average NIR absorbance of the three orange varieties at different spectra (identi-
fied by wavelength)

instance into the major class among its neighbors. Here, the parameter k that defines
the number of neighbor considered in classification of new instances is tuned among
different numbers of k.

Linear Discriminant Analysis (LDA) [94] is another method assessed in the
present work. This method assumes Gaussian distributions of the same covariance
for the samples of different classes (P(x|Ck)). As a result, the discriminate
(classification) function is a linear combination of input features.

Logistic Regression (LGR) in [95] is a simple linear (log-linear) nonparametric
classification model of good generalization capability, which is robust and makes
less assumption for the data. LGR simply assumes the posterior probability of class
Ck as P(Ck| x) = exp (ak)/

∑
j exp (aj). Where ak = 〈wk, x〉. Where Ck denotes the

k-th class, x is an instance (i.e., data point), w is the weight vector needs to be tuned
to fit into data.

Multi-Criteria Quadratic Programming (MCQP) in [96] formulated the classifi-
cation problem as

min
w,b

∑l

i=1
α2
i − λ

∑l

i=1
β2
i

Subject to wT xi + b = yi (αi − βi)

αi , βi ≥ 0 (10.25)
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where (xi, yi), i = 1, . . . ,l, denote the training data, where xi is an input sample
and yi ∈ {−1, 1}) is its class label. The solution to this optimization problem is
a discriminate function wTx + b = 0 that keeps the data miss-classified by it as
close as possible to this boundary while keeping the correct-classified ones as far as
possible from the boundary.

Support Vector Machine (SVM) in [97] is a sophisticated machine learning
method rooting in statistical learning theory. The SVM algorithm can be formulated
(using the same notations as MCQP) as the following optimization problem:

min
w,b,ξ

1

2
wT w + C

∑l

i=1
ξi

Subject to yi

(
wT φ (xi)+ b

)
≥ 1− ξi

ξi ≥ 0 (10.26)

In this formulation, φ(•) is the function that maps the input data onto a higher
dimensional space, which is implicitly defined by a kernel function that enables
the solution of the nonlinear optimization problem in a linear kernel space. The
Gaussian kernel (10.27) was selected for SVM, which is recommended as a
reasonable initial choice.

K
(
xi , xj

) = (φ (xi) , φ
(
xj

))

= exp
(
−γ

∥∥xi − xj

∥∥2
)

(10.27)

There are two adjustable model parameters (C, γ ) for the SVM with Gaussian
kernel. A heuristic “grid-search” using tenfold cross-validation was conducted
among C ∈ {2−15, 2−13, . . . , 23}m and γ ∈ {2−15, 2−13, . . . , 23} in order to find
the (C, γ ) with which the SVM can achieve the best predictive accuracy. It should
be noted that the above designs of MCQP and SVM are for binary classification
problems and must be extended in order to tackle the multiclass (i.e., the three
orange varieties) problem. In the present work, “one-against-one” strategy was
implemented for the multi-class classification.

Feature Selection Methods

In order to develop a “reduced” orange classification model involving only subsets
of spectrum features, a number of feature selection methods were performed to
identify features of good discriminative ability from the 255 spectra. These feature
selection methods are described in the following. Correlation-based Feature Selector
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(CFS) in [89] is a simple feature selection method which prefers feature subset that
is highly correlated with the class while having low inter-correlation. The CFS’s
feature subset evaluation function is calculated from

Ms = krcf√
k + k (k − 1) rff

(10.28)

where Ms is the heuristic merit of a feature subset S containing k features, rcf is
the mean feature–class correlation (f ∈ S), rff is the average feature–feature inter-
correlation.

Three information-based feature selection methods were also performed
in the present work. Among them, InfoGain assesses the value of a feature
by measuring the information gain (InfoGain(Class, Feature) = H(Class)
H(Class|Feature), where H denotes the information entropy) with respect to
the class. GainR is in the same spirit as InfoGain except that the valued of a
feature value is defined as gain ratio, i.e., GainR(Class, Feature) = (H(Class)
H(Class|Feature))/H(Feature). Likewise, SymmU evaluates the worth of a feature by
measuring the symmetrical uncertainty with respect to the class, which is defined by
SymmU(Class,Feature)= 2× (H(Class) H(Class|Feature))/H(Class)+ H(Feature).

ReliefF [98] is one of the sophisticated feature selection methods, which
repeatedly samples an instance and considers the value of a given feature for the
nearest instances of the same and different class. This method tries to find a good
estimation of the following probability as the weight of each feature (f ).

Wf = P (different value of f |different class)

−P (different value of f |same class) (10.29)

Like kNN, the number of nearest neighbors needs to be specified for ReliefF. In
the present work, this number was set as 10, which is often the default value for
ReliefF.

Unlike these feature selection introduced above, Least Square Forward Selection
(LS-FS) in [99] is an unsupervised method, which does not inquire class information
to decide which features are of good quality. Instead, LS-FS searches for the feature
subset which can best represent (or reproduce) the entire data. The optimal feature
subset can be found by least square combinatorial optimization. LS-FS is embedded
with kernel functions (i.e., linear, polynomial, radial basis function (RBF)) to handle
both linear and non-linear inter-feature relationships in data. In our research, the
non-linear extension of LS-FS is named as Kernel Least Square Forward Selection
(KLS-FS).

In addition to these feature selection methods, PCA [100] was also used in
the present work as a reference method because it is an effective method in data
mining and widely applied in NIR spectroscopic field. PCA is a well-known feature
reduction method which constructs new features by projecting the original features
to the directions in which the data scatter most instead of selecting original features.
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For performing the nonlinear form of principal component analysis, KPCA in [101]
reforms the traditional linear PCA by applied the kernel trick to construct non-linear
mapping.

The feature selection techniques were proposed to NIRS analysis because it
is normally high dimensionality composed by hundreds to thousands variables.
As a result, it usually occurs collinearity between variables and sometimes non-
linearity in NIR spectra can also happen from process measurement and chemical
nature of the target analytical parameter such as the effect of the environment
(pressure, temperature, etc.) to the different type of interaction to each functional
group in samples [102]. Our study tries to use both supervised and unsupervised
feature selection techniques to find the most relevant wavelengths (informative
variables), eliminate non-informative variables and reduce collinearity and non-
linearity effects. Improvement of the quality of spectra can develop reduced
classification model by the reasons of computational time, easier interpretation and
classification model improvement.

Various supervised feature selection methods in machine learning described
above were used to compare the results and search for alternative approaches. On
the other hand, unsupervised feature selection method is recognized as another
approach to select the feature subset from high dimensional data. LS-FS was chosen
by the reasons of easier interpretable result and removal of collinearity and non-
linearity effect from the spectra. Here we need to addition the advantages of feature
selection over feature transformation/projection (represented by PCA). Features
generated by PCA are weighted sum of all the original features, i.e., all spectra need
to be measured before using PCA to construct fewer (projected) features. Also, the
projected features (generated via PCA) do not keep their physical meaning. In these
regards, feature selection that keeps a few original features is superior to feature
projection.

By searching for good discriminative features, the threshold of the percentage of
variance kept by PCs was set as 99% in PCA. Then, LS-FS and all feature selection
methods above were tuned to number of principal components (PCs) constructed by
PCA for comparable result with PCA. In nonlinear searching, 99% of variance kept
by PCs was also set in KPCA. RBF kernel was adopted in both KPCA and KLS-FS
to find the optimal parameter by grid search among γ ∈ {2−15, 2−13, . . . , 23} and
number of PCs from one to threshold PCs number.

10.2.1.2 Results and Discussions

Full NIR Spectra

All the classification methods introduced in section “Classification methods” were
evaluated for discriminating the three orange varieties (i.e., Kaew Wan (K), Number
One (N), and Sai Nam Pung (S)) using NIR spectra. Their performances are indexed
by the classification accuracies (obtained through tenfold cross-validation) given
in Table 10.15. Along with the overall classification accuracies (i.e., the average
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Table 10.15 Classification accuracies (tenfold cross validation) of different models of three
orange varieties

In-group accuracy (%)
Model Overall accuracy (%) Keaw wan Number One Sai Nam Pung

kNN 93.67 88 96 97
LDA 93.33 93 91 96
LGR 100 100 100 100
MCQP 97.00 98 94 99
SVM 99.00 97 100 100

accuracy for the three classes), the in-group classification accuracies provide
detailed information about the performances of the classifiers for each variety. It
can be seen from Table 10.15 that LGR made no classification error in the cross-
validation. SVM and MCQP also performed very well on the data. For SVM, best
model parameters C and γ found by the heuristic grid-search are 211 and 2−7. With
these two parameters, SVM only made few miss-classifications for K class. The
performance of MCQP is slightly lower than SVM but it is also simpler than SVM.
The evaluation shows that the kNN (k = 1) and LDA failed to provide satisfying
classification accuracies.

Full NIR Spectra with Various Feature Selection Methods

In order to simplify classification model, the LGR method was selected to be a
classifier in the feature reduction/selection experiment. PCA was performed since
the original features showed strong linear dependence. As a result, four PCs were
constructed by PCA. For an aligned comparison, all other feature selection methods
were tuned to selected four features as well (except that CFS selected 18 features
since it cannot be tuned to have four features selected). The tenfold cross-validation
classification accuracies of the LGR models developed on the four reduced/selected
features were used to index the performances of the feature reduction/selection
methods, which are shown in Table 10.16.

It can be seen from Table 10.16 that the four PCs obtained via PCA lend the
LGR the highest classification accuracy. In other word, PCA provides more compact
representation for the original data. However, It should be recognized that the model
using PCs is still a “full model” (i.e., all the 255 spectra needs to be measured)
since each PC is indeed a linear combination of all the original features and there

Table 10.16 Classification accuracies (tenfold cross validation) of LGR model with different
feature reduction/selection methods based on 4 PCs or features

Model Accuracy of each feature reduction/selection method (%)
PCA LS-FS CFS InfoGain GainR ReliefF SymmU

LGR 97 95 92 80 81 80 80
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is no direct information about the discriminating ability of the original features
provided by PCA. The signature analysis or loading plot of each PC must be used
for further analysis to indicate discriminative features (i.e., wavelength). LS-FS, on
the contrary, identified that the feature subset comprised by the spectra of 769.68,
692.28, 662.61 and 959.31 (nm) is discriminative to the three orange varieties. This
feature subset lent the LGR model classification accuracy as high as 95%. It will
significantly reduce our experiment effort since such a model requires only the four
spectrum measurements instead of all the 255 ones. The rest of the feature selection
methods listed in Table 10.16 (CFS, InfoGain, GainR, ReliefF, and SymmU) failed
to identify features of good discriminating ability.

Furthermore, the performance of PCA and LS-FS was further compared by
constructing/selecting different numbers of features. The tenfold cross-validation
LGR classification accuracies of the features constructed by PCA and the ones
selected by LS-FS were illustrated in Fig. 10.11 as the number of features increase
from 4 to 250. Figure 10.11 shows that PCA brought increased classification
accuracy until the number of PCs (i.e., the features constructed by PCA) increases
up to 50; ever since, however, its performance continued to decrease as the number
of PCs increasing. This strange behavior of PCA is a result of that, when more
features need to be constructed, the smaller eigenvalue of the covariance matrix

Fig. 10.11 LGR classification accuracies of the PCs and the features selected via LS-FS
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of the data approaches to zero and its corresponding eigenvector (i.e., a PC) will
be a nearly random direction due to numerical error becomes dominant in the
PCA computation. And it is shown in the feature reduction/selection experiment
that 99% variance of the data studies in this work is accounted for by only four
PCs, which indicates that the subsequent eigenvalues are already close to zero. The
performance of LS-FS is slightly inferior to the PCA when only a few features were
used since PCA utilizes all the original features to construct the PCs. However, with
the increased number of selected features, LS-FS outperformed PCA and has 100%
classification accuracy with 170 features, which in turn indicates that at least 85
features (i.e., spectra) are redundant for classifying the three orange varieties.

For spectral interpretation, the loading plot of the first four principal components
(PCs) across the entire spectral region was drawn as shown in Fig. 10.12. Figure
10.12 shows that there are wave crests and wave vales in the wavelengths before
700 nm and wavelengths between 800 and 950 nm in different PC which can
indicate some properties in samples. If wavelength areas in loading plot were
compared with the feature subset selected from LS-FS, it showed that both methods
gave relatively similar wavelength ranges. Additionally, the discussion in term of
relationship between spectral wavelengths and sample chemical properties was
analyzed by LGR model based on the feature subset selected by LS-FS. The
favorable performance of the LGR model developed based on the feature subset
comprised by the spectra of 769.68, 692.28, 662.61 and 959.31 (nm) indicate
the suitableness of the subset for classification of the three orange varieties. For
wavelengths of 769.68 and 959.31 nm, some previous works [103, 104] showed
that the wavelength around 765 nm and wavelengths between 800 and 950 nm are
indicative to sugar content in orange juice. In our research wavelengths of 769.68

Fig. 10.12 Loading plot of the first four principal components (PCs) across the entire spectral
region from PCA
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Table 10.17 Classification accuracies of different methods with 5 PCs from KPCA (tenfold cross
validation)

In-group accuracy (%)
Model Overall accuracy (%) Keaw wan Number One Sai Nam Pung

LGR 97.33 98 96 98
MCQP 97.00 97 95 99
SVM 97.67 98 96 99

and 959.31 nm were selected in the same area of spectra which can describe sugar
content in our samples. For wavelengths of 692.28 and 662.61, it has been reported
in [104] that in the wavelength before 700 nm was mainly contribute to the color
or different growing conditions of orange juice and can also used to discriminate
orange varieties and work in [105] also showed that the wavelength around 620 nm
may be sensitive to some pigment in orange juice. The spectra selected by LS-FS as
most suitable for orange classification agree very well with these previous findings.

In order to search more compact or more discriminative features, the non-
linear feature selection/reduction experiment was also applied in this study. Our
research chooses two methods which are KPCA and KLS-FS. To investigate the
non-linear relation in this dataset, three classifiers (LGR, SVM and MCQP), which
can perform well to classify this dataset were firstly used to test with Kernel
Principal Component Analysis (KPCA). Their performances are also indexed by
the classification accuracies (obtained through tenfold cross-validation). KPCA
was tuned by RBF kernel among γ ∈ {2−15, 2−13, . . . , 23}. The threshold of the
percentage of variance kept by PCs was set as 99%. As a result, five PCs were
constructed by KPCA. The classification accuracies of LGR, SVM (linear kernel)
and MCQP models developed on the five PCs of KPCA were given in Table 10.17.
Best model parameter c for LGR, SVM and MCQP found in KPCA is 2−13, 2−11

and 2−13 respectively. For SVM, best model parameter C is 213. In comparison
between three methods, SVM can perform better than other methods. Therefore,
in this step SVM was chosen to be a classifier with KLS-FS. KLS-FS was also
adjusted by RBF kernel in the same condition of KPCA. Best model parameter c
of RBF kernel is 2−1. KLS-FS also gave the optimal feature subset at five features
comprised by spectra of 825.15, 848.37, 658.74, 707.76 and 778.71(nm). The best
parameter C is 215.

In aspect of spectral interpretation, the features selected by KLS-FS have still
been related to wavelengths before 700 nm and wavelengths between 800 and
950 nm which are sensitive to some pigments and sugar contents in orange.
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10.3 Engineering Problems

10.3.1 Automatic Road Crack Detection Using Random
Structured Forests

Cracks are a growing threat to road conditions and have drawn much attention
to the construction of intelligent transportation systems. However, as the key part
of an intelligent transportation system, automatic road crack detection has been
challenged because of the intense inhomogeneity along the cracks, the topology
complexity of cracks, the inference of noises with similar texture to the cracks,
and so on. This subsection proposes CrackForest, a novel road crack detection
framework based on random structured forests, to address these issues.

10.3.1.1 Related Work

In this section, we first give a brief review of crack detection, after that, the related
crack characterization methods are discussed. Crack characterization exploits the
spatial distribution of image tokens composing the detected cracks and thereby
transforms the structured tokens into discrete labels.

Crack Detection

Numerous papers have been written on road crack detection over the past 30 years.
Early works [29, 106–109] are mainly based on intensity-thresholding for its
simplicity and efficiency. Most recent work explores crack detection under more
challenging conditions and can be divided into five branches: methods based on
saliency detection, textured-analysis, wavelet transform, minimal path and machine
learning. An assessment of various pavement distress detection methods can be
found in [110, 111].

Salient Detection: Salient regions are visually more conspicuous due to their con-
trast with the surroundings. Although existing methods [112, 113] demonstrate
their effectiveness in detecting salient regions in the Berkeley database [114],
they perform poor on the completeness and continuity of detected crack.

Textured-Analysis: Since road surface images are often highly textured, textured-
analysis methods [92, 115, 116] are introduced in road crack detection. In
order to distinguish the cracks and the backgrounds, [92, 116] use the Wigner
model, and [115] uses classification method. These methods use a local binary
pattern operator to determine whether each pixel belongs to a crack and the local
neighbor information is not taken into consideration. Therefore, the cracks with
intensity inhomogeneity cannot be detected precisely.



616 10 Business and Engineering Applications

Wavelet Transform: Wavelet transform is applied to separate distresses from noises
[117]. In [118], complex coefficient maps are built by a 2D continuous wavelet
transform, wavelet coefficients maximal values are obtained for crack detection.
As a result, differences between crack regions and crack free regions could
be raised up. However, due to the anisotropic characteristic of wavelets, these
approaches may not handle the cracks with low continuity or high curvature
properly.

Minimal Path Selection: Give both endpoints of the curve as user’s input, minimal
path based method can extract simple open curves in images, that is first proposed
by Kass et al. [119]. In [120], Kaul et al. propose a method that is able to
detect the same types of contour-like image structures with less prior knowledge
about both the topology and the endpoints of the desired curves. To avoid
false detections that are assimilating loops, Amhaz et al. [121, 122] propose
an improved algorithm to select endpoints at the local scale and then to select
minimal paths at the global scale. It can also detect the width of the crack. In
[123], Nguyen et al. propose a method which takes into account intensity and
crack form features for crack detection simultaneously by introducing Free-Form
Anisotropy.

Machine Learning: With the increasing size of image data, machine learning based
methods [28, 124–127] have become an important branch in detecting road
cracks. In [54], artificial neural network models are used to separate crack pixels
from the background by selecting proper thresholds. Delagnes and Barba [125]
deals with the detection of poorly contrasted cracks in textured areas using a
Markov random field model. In [124], Cord et al. use AdaBoost to distinguish
images of road surfaces with defects from road surfaces based on textual
information with patterns. For all these methods, the training and classification
are conducted on each sub-image and as local method, they have drawbacks in
finding complete crack curves over the whole image.

Crack Characterization

Existing methods on crack characterization are mainly based on shape descriptor,
crack seeds and assigning crack type on each image block.

Reference [3] gives the definition of cracks based on mathematical morphology
and proposes that a crack is thought to be a succession of saddle points with linear
features. But this definition is pretty vague. References [128], [129] use the direction
indices of each pixels and extensible directions for each direction to characterize
cracks. A chromosome representation is applied to encode the different ensemble of
directions and its extensible directions. Therefore, a crack can be represented as a
long sequence of 0 and 1.

References [111, 126] categorize the cracks into five types: longitudinal, trans-
verse, diagonal, block, and alligator. Reference [126] uses a neural network based
method to search patterns of various crack types horizontally and vertically.
Reference [111] uses curves and buffers to describe certain regions of a crack.
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Reference [130] uses longitudinal, transverse, or diagonal crack seeds to identify
longitudinal and transverse cracks. Orientation and strength information are taken
into consideration by Ref. [131], which largely improves the diversity of crack
seeds.

In [132], cracks are classified into three types as defined by the Portuguese
Distress Catalog. They use two block features including the mean and the standard
deviation values of pixel-normalized intensities to categorize an image block as
longitudinal, transversal or miscellaneous. Reference [133] computes CTA (Condi-
tional Texture Anisotropy) values over the distribution of the mean and the standard
deviation values calculated on pixels to distinguish crack pixels from defect free
pixels.

However, there are two main drawbacks in these methods. On the one hand, new
types of crack cannot be generated. By applying the structured tokens, we extend the
crack types into thousands of dimensions. On the other hand, these methods perform
poor on the cracks with complex topology. To address this issue, we propose a novel
crack descriptor to describe the cracks with arbitrary complex topology.

10.3.1.2 Automatic Road Crack Detection

In this section, we will introduce our novel crack detection method which can take
advantage of the structured information of cracks. Figure 10.15 shows the overall
procedure of our proposed method. This framework can be divided into three parts:
In the first part, we extend the feature set of traditional crack detection method by
introducing the integral channel features. These features extracted from multiple
levels and orientations allow us to re-define representative crack tokens with richer
structured information. In the second part, random structured forests are introduced
to exploit such structured information, and thereby a preliminary result of crack
detection can be obtained. In the third part, we propose a new crack descriptor
by using the statistical character of tokens. This descriptor can characterize the
cracks with arbitrary topology. And a classification algorithm (KNN, SVM or One-
Class SVM) is applied to discriminate cracks from noises effectively. Please find the
results in every part of our method in Fig. 10.13 (Figs. 10.14 and 10.15).

Structured Tokens

Token (segmentation mask) indicates the crack regions of an image patch. Current
block-based methods [117, 132] are usually used to extract small patches and
calculate mean and standard deviation value on these patches to represent an image
token. These traditional features are computed on gray level images and applied
to describe the brightness and gradient information. However, local structured
information is not taken into consideration. So in the first step, we re-define the
tokens by introducing the integral channel features which incorporate the color,
gradient information from multiple levels and facets.



618 10 Business and Engineering Applications

Fig. 10.13 Consider the pavement surface shown in (a). (b) Preliminary detection results after
applying random structured forests. Darker color indicates that the pixel is more likely to contain a
crack. After eroding and dilating, the result is shown in (c). (d) Final result after the classification
stage

1. Learning the Tokens: Assume that we have a set of images I with a corresponding
set of binary images G representing the manually labeled crack edge from the
sketches. We use a 16 × 16 sliding window to extract image patches x ∈ X from
the original image. Image patch x which contains a labeled crack edge at its center
pixel, will be regarded as positive instance and vice versa. y ∈ Y encodes the
corresponding local image annotation (crack region or crack free region), which
also indicates the local structured information of the original image. These tokens
cover the diversity of various cracks, which are not limited to straight lines,
corners, curves, etc. From Fig. 10.16, we can see the extracted image patches
and their hand drawn contour tokens. These image patches and tokens will be
used to train CrackForest later.

2. Feature Extraction: To describe the above tokens, features are computed on the
image patches x extracted from the training images I, and considered to be weak
classifiers in the next step.
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Fig. 10.14 Examples of tokens learned from a manually labeled image database. (a) Most
representative token for each token set. (b) Mean contour structure for each token set

Fig. 10.15 Procedure of the proposed automatic road crack detection method

We use mean and standard deviation value as features. Two matrices are
computed for each original image: the mean matrix Mm with each block’s average
intensity and the standard deviation matrix STDm with corresponding standard
deviation value std. Each image patch yields a mean value and a 16 × 16 standard
deviation matrix.

To characterize the cracks more comprehensively, we also apply a set of channel
features composed with color, gradient and oriented gradient information. Integral
channel features not only perform better than other features including histogram
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Fig. 10.16 (Top) Example of original image and its ground truth. (Bottom) Example of extracted
image patches and their hand-drawn contours. Notice the variety of sketches

of oriented gradient (HOG), but also achieve fast detecting results and integrate
heterogeneous sources of information [134].

Three color, 2 magnitude and 8 orientation channels, for a total of 13 channels
yield 3328 candidate features. Each of the channel captures a different aspect of
information. Self-similarity features are compute for each channel. These features
capture the portion that an image patch contains similar textures based on color or
gradient information [135]. Texture information is computed on a m × m grid over

the patch. These differences yield

(
5· 5
2

)
more features per channel.

Structured Learning

In previous step, a set of tokens y which indicate the structured information of local
patches, and features which describe such tokens, are acquired. In this step, we
cluster these tokens by using a state-of-the-art structured learning framework, ran-
dom structured forests, to generate an effective crack detector. Random structured
forests can exploit the structured information and predict the segmentation mask
(token) of a given image patch. Thereby we can obtain the preliminary result of
crack detection.
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In random structured forests, each decision tree ft(x) classifies an image patch
x ∈ X by recursively branching left or right down to the tree until a leaf is reached.
And the class of the node is assigned to patch x. The leaf stores the prediction of
the input x, which is a target label y ∈ Y or a distribution over Y . By training such
a tree, tokens with the same structure will be gathered at one leaf. We use the most
representative token in each leaf to represent the token class. The class number of
tokens equals to the number of leaves.

A forest T can be seen as an ensemble of decision trees ft. Each tree ft(x) gives
a prediction of a sample x ∈ X . The final class prediction of multiple trees is
integrated by a majority voting algorithm. A leaf L(π) ∈ ft can assign a class
prediction for samples it is reached by, where π stands for the most represented
token in the leaf. Each node N

(
h, f L

t , f R
t

) ∈ ft is associated with a binary split
function

h
(
x, θj

) ∈ {0, 1} (10.30)

with feature θ j for each node j. If h(x, θ j) = 0, sample x should be branched to the
left sub-tree f L

t , otherwise the right sub-tree f R
t .

1. Class Prediction: Given a tree ft ∈ T, the class prediction of an image patch
x ∈ X can be obtained by recursively branching it forward until a leaf is reached.
An intuitive example has shown in Fig. 10.17. The prediction function ψ (x|ft ) :
X → Y for node j is

ψ
(
x|N

(
h, f L

t , f R
t

))
=
{
ψ
(
x|f L

t

)
, f or h

(
x, θj

) = 0
ψ
(
x|f R

t

)
, f or h

(
x, θj

) = 0

ψ (x|L (π)) = π. (10.31)

Fig. 10.17 Routing path of an image patch
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2. Randomized Training: Each tree is trained individually. For a given node Nj

and training set Sj ⊂ X × Y , the goal is to find the optimal feature θ j that
results in a good split of the data. In other words, the discrepancy of tokens in the
same leaf should be as small as possible. We apply information gain to measure
this discrepancy and maximize the information gain to choose θ j. The form of
information gain for node j is defined as follow:

Ij = I
(
Sj , S

L
j , SR

j

)
(10.32)

where Sj = SL
j ∪ SR

j , SL
j = {

(x, y) ∈ Sj |h
(
x, θj

) = 0
}

stands for a

set of samples that reaches the left sub-tree of the current node and SR
j ={

(x, y) ∈ Sj |h
(
x, θj

) = 1
}

refers to the other set of samples that reaches the
right sub-tree.

Whether a terminal node should be further split depends on the maximum
depth, the minimum size of node or the entropy of the class distribution. If
the node is no longer splitting, a leaf is grown where the class prediction π

is set to the most representative token in the training data. Otherwise a node
N
(
h, f L

t , f R
t

)
is grown where h is a split function regulated by parameter θ j,

maximizing the information gain about the label distribution due to the split{
SL
j , SR

j

}
of the training data S.

For multi-class classification (Y ⊂ Z), the definition of information gain is

Ij = H
(
Sj

)−
∑

k∈{L,R}

∣∣∣Sk
j

∣∣∣
∣∣Sj

∣∣H
(
SK
j

)
(10.33)

where H(Sj) = −∑ypy log (py) denotes the Shannon entropy and py stands
for the proportion of elements in S with label y. Alternatively, Gini impurity
H(Sj) =∑ypy(1 − py) can also be applied in Eq. (10.33).

Individual decision tree tends to overfit, which may negatively affected accu-
racy. To overcome this drawback, random structured forests combine multiple
decision trees together to assign the final label. Random structured forests have
shown promising flexibility and generalization ability, and most importantly, this
method is easy to parallel and extremely fast.

The randomness is embodied by randomly subsampling the data used to train
each tree and each node, and randomly subsampling the features used to split
each node. In order to maintain the diversity of trees, only a small pool of features
is used to select the optimal θ j when choosing the split function.

3. Structured Mapping: Random structured forests change the discrete outer space
of the traditional decision forests into a structured space Y . While dealing with
structured label y ∈ Y directly may cause significant computing expense, the
structured labels y ∈ Y at a leaf is mapped into a set of discrete labels c ∈
C, where C = {1, . . . , k}. Given the discrete label space C, information gain
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can be calculated efficiently via (10.4). We first map the label space Y into a
intermediate space Z .

Π : Y → Z . (10.34)

Define z = 2(y) in space Z as a

(
16· 16

2

)
= 32640 dimensional vector,

which encodes every pair of pixels in the segmentation mask y. The computa-
tional cost of z appears to be significant.

While the dimension of z is still very high, we randomly select 256 dimension
of z to train each split function, using a distinct reduced mapping function at each
node j

Πϕ : Y → Z . (10.35)

Then we apply PCA reduction to map 256 dimensions of z into 5 dimensions,
with the first dimension being the most significant factor. To obtain the discrete
label c ∈ Cof each structured label y, we use the first dimension of each
intermediate label z to cluster into two sets. Labels in the same cluster are
assigned to the same label c. With the label c, standard information gain can
be calculated at each node.

After the random structured forests are trained, the structured labels y is
gathered at the leaves of each tree (see Fig. 10.14). An image patch is routed
though each tree based on the split function until a leaf is reached. The most
representative token in the leaf is assigned to the image patch. Figure 10.18
shows an intuitive example. We select the token which has the lowest variance
with others as the most representative token.

4. Binarization: After the structured mapping, each image patch x is assigned to
a structured label y. Due to the overlapping, the result of detection is a map,
where each element indicates the probability that the corresponding position in
the original image is on crack region. So, we use a threshold α to obtain all
the possible regions. A high α value may cause the incontinuity of cracks and
the ignorance of inapparent cracks. Therefore, we choose 0.1 ≤ α ≤ 0.2 in this
section. Figure 10.19a shows the binarization result when α = 0.1.

We conduct the erosion and the dilation operation on the preliminary edge
detection results to make the cracks as connective as possible. The inside of the
crack is filled and the fragments are connected. Moreover, some of the noises are
eliminated. From Fig. 10.19b, we can see that small fragments of the detected
region have merged together and the continuity of the crack has been improved.

Crack Type Characterization and Detection

Each image patch is assigned to a structured label y (segmentation mask) after
structured learning. Although we obtain a preliminary result of crack detection
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Fig. 10.18 Assigning y to each image patch. The image patches have been assigned to the tokens
below (both from left to right)

Fig. 10.19 (a) Binarization result based on threshold when α = 0.1 (removing pixels of low
probability according to the given probability map). (b) Result after erosion and dilation with a
4 × 4 rectangular structuring elements

so far, a lot of noises are generated due to the textured background at the same
time. Traditional thresholding methods mark small regions as noises according to
their sizes. However, in this way, many inconspicuous cracks may be removed by
mistake.
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Cracks have a series of unique structural properties that differ from noises.
Based on this thought, we propose a novel crack descriptor by using the statistical
feature of structured tokens in this section. This descriptor consists of two statistical
histograms, which can characterize cracks with arbitrary topology. By applying clas-
sification method like SVM, we can discriminate noises from cracks effectively.

1. Crack Descriptor: Existing crack characterization methods categorize cracks into
several types, such as longitudinal, transverse, diagonal, block, and alligator.
However, the descriptor proposed, which consists of hundreds of dimensions
respectively, has greatly broadened the range of representable crack. What is
more, the crack is no longer limited to a few types, we extend the types of crack
into thousands of kinds.

We use 26,443 structured tokens obtained in the structured learning procedure
to characterize the cracks. The statistical histogram and the neighborhood
histogram of these tokens within a crack can be calculated precisely.

Statistical Feature Histogram: After the structured learning procedure, we
can obtain the token map. Each point in the map indicates the label of token
that the 16 × 16 image patch around the corresponding position is assigned to.
Statistical feature histogram in Fig. 10.20 reflects the composition of the crack
comprehensively. Each dimension of this histogram represents the number of a
certain token.

The token number from the training result is numerous. After plotting the
overall occurrence of each token in Fig. 10.21a, we notice a long tail effect of the
token distribution. After analyzing the statistical information of appeared tokens,
we find that over 90% occurrences of all the tokens are centered on 708 specific
tokens. The occurrences of most tokens make up only a small percentage of
all. Therefore, we only use these 708 tokens to construct the statistical feature
histogram and the statistical neighborhood histogram. Figure 10.21b shows the
occurrence of these tokens.

Statistical Neighborhood Histogram: The statistical neighborhood histogram
captures the neighborhood information of two tokens. We calculate the co-
occurrence of each pair of tokens only when they are adjacent. There would be(

708
2

)
= 250, 278 token pairs without reduction. Furthermore, we also find the

long tail effect of this distribution. Over 90% occurrences of all the token pairs
are centered on 956 specific token pairs. Thus, only these token pairs will be used
in the following section.

2. Crack Detection: With the two histograms for each separated region, we can
characterize cracks with arbitrary topology. In this section, we will introduce
how to discriminate the noises from cracks by using the two histograms.
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Fig. 10.20 (a) Original image. (b) One of the detected regions. (c) Statistical feature histogram of
the detected region. (d) Appearance of the ten most frequent tokens look

Fig. 10.21 Statistical feature histogram showing the occurrence (in logs) of each token (sorting
in descending order of occurrence). (a) Statistical feature of all 26,443 tokens. (b) Only the most
representative tokens are shown
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Fig. 10.22 Part of the results of road crack detection using our proposed method. Notice that our
method can eliminate the influence of oil stains, shadows, and complex background, effectively,
and can cope with miscellaneous crack topology

Vectorization: The distribution of occurrence and cooccurrence are scaled
to [0, 1]. Hence, each detected region is presented as a long vector with
708 + 956 = 1664 dimensions.

Classification: We consider the crack detection procedure as a classification
problem. The crack regions are assigned to class +1 and the crack free regions
are assigned to class−1. By applying KNN (k-Nearest Neighbor), SVM (Support
Vector Machine) with linear kernel and One-Class SVM with linear kernel,
we obtain the classification model which can discriminate cracks from noises
effectively. The results of our algorithm using SVM are shown in Fig. 10.22.
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10.3.2 Efficient Railway Tracks Detection and Turnouts
Recognition Method Using HOG Features

Railway tracks detection and turnouts recognition are the basic tasks in driver
assistance systems, which can determine the interesting regions for detecting
obstacles and signals. In this subsection, a novel railway tracks detection and
turnouts recognition method using HOG (Histogram of Oriented Gradients) features
was presented.

10.3.2.1 Railway Tracks Detection Using HOG Features

Histogram of Oriented Gradients

In the following, we describe the HOG features briefly, which include three steps.

First step: gradients computation
Image’s gradients are computed using Gaussian smoothing followed by one of
several discrete derivative masks. See Fig. 10.23a.

Second step: orientation binning
For the edge orientation histogram, in which the eight orientation bins are
evenly spaced over 0◦–360◦. Now we compute the weight votes of the gradient
orientation for the eight orientations at each pixel, in which the vote is a function
of the gradient magnitude itself at this pixel. At last, the votes are accumulated
into orientation bins over local spatial regions called blocks. In practice, the HOG
feature is an 8-dimensional vector. Each dimension represents an orientation in
0◦–360◦. The step is 45◦. The size of the block varies with it’s location. The
stride (block overlap) is fixed at each pixel size. See Fig. 10.23b.

Fig. 10.23 Left: (a) indicates each pixel’s gradient orientation value in the block. Center: (b)
shows the accumulated votes of all pixels in eight direction of the block. Right: (c) is the final
HOG feature vector histogram of the block
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Third step: normalization
Gradient strengths vary over a wide range because of the local variations in
illumination image contrast, which will directly affect region-growing algo-
rithm’s performance. Therefore, we need to normalize the HOG feature vector.
In practice, HOG feature vector is normalized from 0 to 1.

Integral Histogram Technology (IHT)

To avoid the repeated computation, the integral histogram technology [60] is
employed for improving the speed of computing HOG features, which is able to
make our algorithm done in real time, as required by railway tracks detection and
turnouts recognition.

The basic idea of IHT is as follows. The integral image at point (x, y) contains
the sum of the pixels above and to the left of (x, y):

II (x, y) =
∑

I
(
x ′, y ′

)
, (10.36)

where I(x
′
, y
′
) is an original image, and II(x, y) is it’s integral image. The integral

image allows to compute the sum of the pixels on arbitrary rectangular regions by
considering four integral image values at corners of the region. In other words, the
time of computing HOG feature is independent of the size of a region.

Eight integral images are established in order to compute HOG features over
arbitrary rectangular regions. Each integral image counts the cumulative number of
edge direction intensity falling into bins, respectively. By doing this, we are able to
compute the HOG feature vector of a given region instantly. In practice, the eight
integral images are pre-computed and stored in the memory of the computer for
being called at any time.

10.3.2.2 Railway Tracks Detection Based on Region-Growing Algorithm

The region-growing algorithm [136] is one of the commonly used methods in image
segmentation domain. In the section, this method will be used to detect railway
tracks.

The first step of the region-growing algorithm is to select seeds. In practice, all
blocks at the bottom of the image are seen as growing seeds.

At the beginning, the bottom blocks are taken as the exact location of these seeds,
which are then grown from these seeds to adjacent blocks depending on a region
membership criterion. In practice, our criterion is the distance of HOG features of
each other. Since all images are collected along the direction of tracks, here we use
3-connected neighborhoods to grow from seeds.
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The next step, we keep examining the adjacent blocks of seeds. If they have a
similarly HOG feature with the seed, we classify them into the seed. This is an
iterated process until there are no changes in two successive iterative stages. Finally,
Blocks with similarly HOG features in the image will be classified into a region.
Details are shown in Algorithm 10.3.

Algorithm 10.3 Region-Growing Algorithm for Railway Tracks Detection

Initial: Image I, the feature similarity threshold T, all seeds: seed_pi, i=1, . . . ,n,
growing point sets: grow_p. integral images initialized: inte_images.

For i=1, . . . ,n do
group_p.clear(), start=0, end=0,
grow_p(0)=seed_pi.
While start ≤ end do
cur_p=grow_p(start);
HOGcur

f = CompterFeature(cur_p, inte_images)
For k=1,2,3 do
point=Neighbor(cur_p) ;
if point was not involved in calculation do
HOGcur

f = CompterFeature(cur_p, inte_images)

Dis=CompterDistance(HOGcur
f ,HOGnei

f )
if Dis>T
growp.add(point),
end++.
End if
End if

End for
start++.

End While
End for
Output: Obtain similarly groups based on HOG features.

In order to improve the computation speed of railway tracks detection, we use the
histogram intersection [137] distance to compute the similarity of HOG features:

Dis = ComputerDistance
(
HOGcur

f ,HOGnei
f

)

=
∑8

i=1
min

(
HOGcur

f (i),HOGnei
f (i)

)
(10.37)

The railway image can be seen as a projection from 3-D space to 2-D space.
Suppose the angle between the camera installed the train and the ground is known
prior, we may describe the variation of tracks’ width from far to near through the
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Fig. 10.24 Left: red lattices show blocks generated for computing HOG features. The size of
blocks changes with its’ locations. Right: a block’s neighbors

Arithmetic Series Principle (see Fig. 10.24). The formula is as follows:

bx = bmin + bmax − bmin

h− bmax

, (10.38)

where x is a variable in the image height’s direction from top to bottom, h is the
image’s height, bmin and bmax represent the minimum and maximum of the block
size about HOG features, respectively. Then bx means the size of the block in x
point. In practice, bmin and bmax can be measured in a fixed size image, such as
bmax = 46 (pixels), bmin = 2 (pixels).

As the railway tracks’ block contains distinct shape features, it’s HOG feature
vector has some notable characteristics as follows (see Fig. 10.25):

1. The sum of the HOG features corresponding the block containing railway track is
relatively large. According to this characteristic, we may exclude many irrelevant
areas (e.g. dark areas) of the image;

Fig. 10.25 Left: red boxes and blue boxes are some blocks computed; Right: Histograms of
Oriented Gradients corresponding with blocks
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2. The variance of the HOG features corresponding the block containing railway
track is relatively large since such block always contains a prominent edge, which
can also be used to exclude many irrelevant areas of the image;

3. In most cases, the sum of it’s vertical edges is larger than horizontal edges, and
it’s 3rd and 7th’s feature values are almost zero. These characteristics mentioned
above may help us to improve the railway tracks detection’s speed and precision
by setting some thresholds.

Now we can construct the algorithm detecting railway tracks as follows (Algo-
rithm 10.4).

Algorithm 10.4 Railway Tracks Detection

1. Computing gradient direction intensities for each pixel in the image. Pixels with
weak gradient direction intensity will not be used in the following calculation.
These black pixels in Fig. 10.26b shows such pixels;

2. Computing eight HOG integral images;
3. Go to Algorithm 10.3;
4. Adjust railway tracks detection results obtained from Algorithm 10.3:

(a) Delete the groups not satisfying the prior knowledge;
(b) Cluster these adjacent groups.

Figure 10.26 gives some results of railway tracks detection.

10.3.2.3 Railway Turnouts Recognition

A railroad turnout is a mechanical installation enabling railway trains to be guided
from one track to another at a railway junction. It consists of the pair of linked
tapering rails lying between the diverging outer rails. The tapering rails can be
moved between two positions.

A classic turnout is shown in Fig. 10.27. In this section, we define the range of
the railway turnout as the area from the red intersection to the end of the tapering
rail in the railway image.

We need to find positions of the tapering rails before railway turnouts recogni-
tion. Here we apply an approach called mirror-method, in which a distance needs
to be computed: Assuming that tracks are parallel. Same to the method in Sect. 2.3,
we define f (y) = a1 + a2y, where f (y) denotes the distance of a pair of trails in (·,
y) of the image. a1, a2 are two unknown parameters, which can be computed by
minimizing the cost function:

min
a1,a2

∑n

i=1
||f (yi)− di ||2, (10.39)

where di can be measured. In this section, we get the value a1 = 60, a2 = 0.4. If a
point of a railway track is known before, then the corresponding point of the parallel
railway track can be computed; the parallel railway track is called the virtual-track.

http://dx.doi.org/10.1007/978-981-16-3607-3_2#Sec9
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Fig. 10.26 (a) Original images including railway tracks. (b) Gradient direction intensity’s images.
Different colors indicate different directions of the image gradient. (c) Region-growing results.
Different colors represent different groups. (d) Final detection results of railway tracks

Fig. 10.27 (a) The area between two yellow lines is called the railway turnout. The red circle is
the intersection of the turnout. (b, c) Red lines are the ones traveled by train. The black part shows
the turnout mechanism, which may be operated remotely using an electric motor or hand-operated
lever or from a nearby ground frame
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The mirror-method plays an important role in railway tracks detection and
turnouts recognition:

1. Supply railway tracks that are not detected by Algorithm 10.3;
2. Verify whether the railway track detected is correct by computing the distance

between the detected track and it’s virtual-track;
3. Find the tapering rail’s approximate location, where we can grow inversely the

tapering rail’s tracks using Algorithm 10.3.

We only consider the case of two railway tracks detected5 and assume that the
railway track detected does not contain the tapering rail when it is in the detached
state. Then there are only two cases when the image contains the railway turnout:

Case 10.1 (see the first column in Fig. 10.26): there is a branch in one of two
railway tracks (see Fig. 10.28b). This shows that the railway track contains the part
of the tapering rail, and they are connected together. In other words, the rail and the
tapering rail are closed in the side.

Case 10.2 (see the second column of Fig. 10.26): there is no branch in both the
railway tracks. At the same time, the change of the distance between two railway
tracks is nonmonotonic in the vertical direction of the image (see Fig. 10.28f).6

This is the most complicated case. We take Fig. 10.28g as an example to explain the
railway turnout recognition process. Firstly, we compute the virtual-tracks of the
two railway tracks respectively. The red and purple dotted lines denote the virtual-
tracks obtained by mirror-method; Secondly, we calculate the intersecting point of
two virtual-tracks. The blue point shows the railway tracks’ intersection; Thirdly, we
use Algorithm 10.3 to search tapering rails’ tracks from top to bottom in the image.
The blue and yellow lines represent the tapering rail’s tracks; Fourthly, we compute
the average distance between the railway tracks and the closest tapering rail’s tracks
from them separately. The range is set from the intersection to the end of the rail’s
track. The left average distance is 27, and the right is 38. The opening direction of
the turnout is decided by comparing the size of the two average distances. It is clear
that the opening direction of the turnout in Fig. 10.28g is the left.

5If only finding one railway track, the other can be obtained by mirror-method. We may delete
extra tracks by mirror-method and information of image sequences if more than two railway tracks
are detected.
6If the change of the distance between two railway tracks is monotonic, only the half of one railway
track is detected and connected with tapering rail (In practice, this case is almost impossible to
happen, we may deal with it as no existing turnout).
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Fig. 10.28 The first row: original images. The second row: results of railway tracks detection. The
third row: turnouts recognition. The fourth row: the blue part means the path traveled by train
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using ahp and weighted kernel LS-SVM. Soft. Comput. 21(18), 5387–5398 (2017)

69. Patel, J., Shah, S., Thakkar, P., Kotecha, K.: Predicting stock and stock price index movement
using trend deterministic data preparation and machine learning techniques. Expert Syst.
Appl. 42(1), 259–268 (2015)

70. Chang, P.C., Fan, C.Y., Liu, C.H.: Integrating a piecewise linear representation method and a
neural network model for stock trading points prediction. IEEE Trans. Syst. Man Cybernetics
C. 39(1), 80–92 (2008)

71. Bao, D., Yang, Z.: Intelligent stock trading system by turning point confirming and proba-
bilistic reasoning. Expert Syst. Appl. 34(1), 620–627 (2008)

72. Chavarnakul, T., Enke, D.: A hybrid stock trading system for intelligent technical analysis-
based equivolume charting. Neurocomputing. 72(16–18), 3517–3528 (2009)

73. Sevastianov, P., Dymova, L.: Synthesis of fuzzy logic and Dempster–Shafer theory for the
simulation of the decision-making process in stock trading systems. Math. Comput. Simul.
80(3), 506–521 (2010)

74. Li, X., Deng, Z., Jing, L.: Trading strategy design in financial investment through a turning
points prediction scheme. Expert Syst. Appl. 36(4), 7818–7826 (2009)

75. Mabu, S., Hirasawa, K., Obayashi, M., Kuremoto, T.: Enhanced decision making mechanism
of rule-based genetic network programming for creating stock trading signals. Expert Syst.
Appl. 40(16), 6311–6320 (2013)



References 639

76. Pham, H.V., Cooper, E.W., Cao, T., Kamei, K.: Hybrid Kansei-SOM model using risk
management and company assessment for stock trading. Inf. Sci. 256(1), 8–24 (2014)

77. Wu, J.L., Yu, L.C., Chang, P.C.: An intelligent stock trading system using comprehensive
features. Appl. Soft Comput. 23(2014), 39–50 (2014)

78. Bahar, H.H., Zarandi, M.H.F., Esfahanipour, A.: Generating ternary stock trading signals
using fuzzy genetic network programming. In: 2016 Annual Conference of the North
American Fuzzy Information Processing Society (NAFIPS), pp. 1–6 (2016)

79. Tan, Z., Quek, C., Cheng, P.Y.K.: Stock trading with cycles: a financial application of ANFIS
and reinforcement learning. Expert Syst. Appl. 38(5), 4741–4755 (2011)

80. Zhang, J., Maringer, D.: Using a genetic algorithm to improve recurrent reinforcement
learning for equity trading. Comput. Econ. 47(4), 551–567 (2016)

81. Alimoradi, M.R., Kashan, A.H.: A league championship algorithm equipped with network
structure and backward q-learning for extracting stock trading rules. Appl. Soft. Comput. 68
(2018)

82. Kwon, Y.K., Sun, H.D.: A hybrid system integrating a piecewise linear representation and
a neural network for stock prediction. In: Proceedings of 2011 6th International Forum on
Strategic Technology, pp. 796–799 (2011)

83. Luo, L., Chen, X.: Integrating piecewise linear representation and weighted support vector
machine for stock trading signal prediction. Appl. Soft Comput. 13(2), 806–816 (2013)

84. Chen, X., He, Z.J.: Prediction of stock trading signal based on support vector machine. In:
2015 8th International Conference on Intelligent Computation Technology and Automation
(ICICTA) (2016)

85. Li, F., Gao, F., Kou, P.: Integrating piecewise linear representation and Gaussian process
classification for stock turning points prediction. J. Comput. Appl. 35, 2397–2403 (2015)

86. Luo, L., You, S., Xu, Y., Peng, H.: Improving the integration of piece wise linear represen-
tation and weighted support vector machine for stock trading signal prediction. Appl. Soft
Comput. 56, 199–216 (2017)

87. Keogh, E.J., Chu, S., Hart, D., Pazzani, M.J.: An online algorithm for segmenting time series.
In: Proceedings 2001 IEEE International Conference on Data Mining, pp. 289–296 (2001)

88. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business Media,
New York (2013)

89. Hall, M.A.: Correlation-based feature selection for machine learning (1999)
90. Bhargavi, R., Gumparthi, S., Anith, R.: Relative strength index for developing effective

trading strategies in constructing optimal portfolio. Int. J. Appl. Eng. Res. 12(19), 8926–8936
(2017)

91. Kasemsumran, S., Thanapase, W., Teardwongworakul, A., Pathaweerut, S.: Nondestructive
internal quality evaluation of orange using near infrared spectroscopy Thailand research fund
(2008)

92. Petrou, M., Kittler, J., Song, K.Y.: Automatic surface crack detection on textured materials. J.
Mater. Process. Technol. 56(1–4), 158–167 (1996)

93. Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Pearson Education, India
(2006)

94. Larry, W.: All of Statistics: A Concise Course in Statistical Inference. Springer, New York
(2004)

95. Cessie, S.L., Houwelingen, J.C.V.: Ridge estimators in logistic regression. Appl. Stat. 41(1),
191–201 (1992)

96. Shi, Y., Liu, R., Yan, N., Chen, Z.: Multiple criteria mathematical programming and data
mining. In: International Conference on Computational Science, pp. 7–17 (2008)

97. Cristianini, N., Shawe-Taylor, J., et al.: An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

98. Kira, K., Rendell, L.A.: A practical approach to feature selection. Mach. Learn. Proc. 1992,
249–256 (1992)

99. Liu, R., Rallo, R., Cohen, Y.: Unsupervised feature selection using incremental least squares.
Int. J. Inf. Technol. Decis. Mak. 10(06), 967–987 (2011)



640 10 Business and Engineering Applications

100. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based
on the lasso. J. Comput. Graph. Stat. 12(3), 531–547 (2003)

101. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue
problem. Neural Comput. 10(5), 1299–1319 (1998)

102. Zou, X., Zhao, J., Povey, M., Holmes, M., Mao, H.: Variables selection methods in near-
infrared spectroscopy. Anal. Chim. Acta. 667(1–2), 14–32 (2010)

103. Kawano, S., Fujiwara, T., Iwamoto, M.: Nondestructive determination of sugar content in
satsuma mandarin using near infrared (NIR) transmittance. J. Jpn. Soc. Hortic. Sci. 62(2),
465–470 (1993)

104. Shao, Y., He, Y., Bao, Y., Mao, J.: Near-infrared spectroscopy for classification of oranges
and prediction of the sugar content. Int. J. Food Prop. 12(3), 644–658 (2009)

105. Cen, H., He, Y., Huang, M.: Measurement of soluble solids contents and pH in orange juice
using chemometrics and vis-nirs. J. Agric. Food Chem. 54(20), 7437–7443 (2006)

106. Ayenu-Prah, A., Attoh-Okine, N.: Evaluating pavement cracks with bidimensional empirical
mode decomposition. EURASIP J. Adv. Signal Process. 2008(1) (2008)

107. Oliveira, H., Correia, P.L.: Automatic road crack segmentation using entropy and image
dynamic thresholding. In: 17th European Signal Processing Conference, pp. 622–626 (2009)

108. Qi, Z., Tian, Y., Shi, Y.: Effcient railway tracks detection and turnouts recognition method
using hog features. Neural Comput. & Applic. 23(1), 245–254 (2013)

109. Zhao, H., Qin, G., Wang, X.: Improvement of canny algorithm based on pavement edge
detection. In: 3rd International Congress on Image and Signal Processing, pp. 964–967
(2010)

110. Chambon, S., Moliard, J.M.: Automatic road pavement assessment with image processing:
review and comparison. Int. J. Geophys. 2011, 1–20 (2011)

111. Tsai, Y.C., Kaul, V., Mersereau, R.M.: Critical assessment of pavement distress segmentation
methods. J. Transp. Eng. 136(1), 11–19 (2010)

112. Achanta, R., Estrada, F., Wils, P., Suesstrunk, S.: Salient region detection and segmentation.
In: The 6th International Conference on Computer Vision Systems (ICVS 2008), pp. 66–75
(2008)

113. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection.
In: The 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009),
pp. 1597–1604 (2009)

114. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

115. Hu, Y., Zhao, C.X.: A novel LBP based methods for pavement crack detection. J. Pattern
Recogn. Res. 5(1), 140–147 (2010)

116. Song, K.Y., Petrou, M., Kittler, J.: Texture crack detection. Mach. Vis. Appl. 8(1), 63–75
(1995)

117. Zhou, J., Huang, P.S., Chiang, F.P.: Wavelet-based pavement distress detection and evaluation.
Opt. Eng. 45(2), 027007 (2006)

118. Subirats, P., Dumoulin, J., Legeay, V., Barba, D.: Automation of pavement surface crack
detection using the continuous wavelet transform. In: 2006 International Conference on Image
Processing, pp. 3037–3040 (2006)

119. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis.
1(4), 321–331 (1988)

120. Kaul, V., Yezzi, A., Tsai, Y.: Detecting curves with unknown endpoints and arbitrary topology
using minimal paths. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1952–1965 (2011)

121. Amhaz, R., Chambon, S., Idier, J., Baltazart, V.: A new minimal path selection algorithm for
automatic crack detection on pavement images. In: 2014 IEEE International Conference on
Image Processing (ICIP), pp. 788–792 (2014)

122. Amhaz, R., Chambon, S., Idier, J., Baltazart, V.: Automatic crack detection on two-
dimensional pavement images: an algorithm based on minimal path selection. IEEE Trans.
Intell. Transp. Syst. 17(10), 2718–2729 (2016)



References 641

123. Nguyen, T.S., Begot, S., Duculty, F., Avila, M.: Free-form anisotropy: a new method for crack
detection on pavement surface images. In: 18th IEEE International Conference on Image
Processing, pp. 1069–1072 (2011)

124. Cord, A., Chambon, S.: Automatic road defect detection by textural pattern recognition based
on adaboost. Comput. Aided Civ. Inf. Eng. 27(4), 244–259 (2012)

125. Delagnes, P., Barba, D.: A Markov random field for rectilinear structure extraction in pave-
ment distress image analysis. In: 1995 IEEE International Conference on Image Processing,
pp. 446–449 (1995)

126. Lee, B.J., Lee, H.D.: Position-invariant neural network for digital pavement crack analysis.
Comput. Aided Civil Infrastruct. Eng. 19(2), 105–118 (2004)

127. Oliveira, H., Correia, P.L.: Supervised strategies for cracks detection in images of road
pavement flexible surfaces. In: 16th European Signal Processing Conference, pp. 1–5 (2008)

128. Cheng, H., Chen, J.R., Glazier, C., Hu, Y.: Novel approach to pavement cracking detection
based on fuzzy set theory. J. Comput. Civ. Eng. 13(4), 270–280 (1999)

129. Ying, L., Salari, E.: Beamlet transform-based technique for pavement crack detection and
classification. Comput. Aided Civil Infrastruct. Eng. 25(8), 572–580 (2010)

130. Huang, Y., Xu, B.: Automatic inspection of pavement cracking distress. J. Electron. Imaging.
15(1), 013017 (2006)

131. Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: Cracktree: automatic crack detection from
pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)

132. Oliveira, H., Correia, P.L.: Automatic road crack detection and characterization. IEEE Trans.
Intell. Transp. Syst. 14(1), 155–168 (2012)

133. Nguyen, T.S., Avila, M., Begot, S.: Automatic detection and classification of defect on road
pavement using anisotropy measure. In: 17th European Signal Processing Conference, pp.
617–621 (2009)

134. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features (2009)
135. Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: a learned mid-level representation for

contour and object detection. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3158–3165 (2013)

136. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell.
16(6), 641–647 (1994)

137. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)



Chapter 11
Healthcare Applications

Healthcare is also a very hot application area of data science, especially in the
COVID-19 pandemic around the world since the beginning of 2020. This chapter
provides two sections of the related healthcare applications. Section 11.1 deals with
the evaluation of medical doctor’s performance by using ordinal regression-based
approach [1], while Sect. 11.2 outlines a cutting-edge research finding to learn
transmission patterns of COVID-19 outbreak by using an age-specific social contact
characterization [2].

11.1 Evaluating Doctor Performance: Ordinal
Regression-Based Approach

Doctor’s performance evaluation is an important task in mobile health (mHealth),
which aims to evaluate the overall quality of online diagnosis and patient outcomes
so that customer satisfaction and loyalty can be attained. However, most patients
tend not to rate doctors’ performance, therefore, it is imperative to develop a model
to make doctor’s performance evaluation automatic. When evaluating doctors’
performance, we rate it into a score label that is as close as possible to the true
one.

This section aims to perform automatic doctor’s performance evaluation from
online textual consultations between doctors and patients by way of a novel machine
learning method.

A workflow of the OR-DPE model is shown in Fig. 11.1 OR-DPE comprises of
text preprocessing, representation, model training, and predictability. Because the
communication between doctor and patient is through a text message, the DPE task
is like text mining. The consultation texts are preprocessed and displayed as high
dimensional vectors. Because the SVM-based model with linear kernel [3] performs
excellently on large-scale data and is well suited for text mining fields, this model is
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Fig. 11.1 The general workflow of the ordinal regression for doctor performance evaluation (OR-
DPE) model

preferred to address the DPE. In this section, a new SVM-based Ordinal Partitioning
model (SVMOP) is proposed as the OR model for DPE. With the SVMOP model,
OR-DPE can, not only make sure that the predicted labels are as correct as possible,
but also ensure that the incorrect labels are as close to true as possible. To our
knowledge, this is the first time that the issue of DPE has been conceptualized as an
ordinal regression task. Empirical studies on real data sets from one of the largest
mobile doctor/patient communication platforms in China show that the model can
achieve state-of-the-art performance from multiple metrics.

11.1.1 Methods

11.1.1.1 Preprocessing and Text Representation

The original corpus should be preprocessed, and each sample should be represented
as an input vector. In the preprocessing step, punctuation and stop words will
be removed. If the experimental data is written in Chinese, the words must be
segmented as in Chinese text. Sentences are represented as character strings without
natural delimiters. Chinese Word Segmentation (CWS) is used to identify word
sequences in a sentence and mark boundaries in appropriate places. For example,
CWS can put the character sequence “ ” together as a Chinese word for “smallpox”
rather than the individual Chinese character “ ” (sky) and “ ” (flower) respectively.
Word segmentation is a preliminary and important step for preprocessing. Most
methods take the CWS as a sequence labeling problem [4], which can be formalized
as supervised learning methods with customized features. Additionally, domain
dictionaries with technical terms as ancillary resources, are beneficial for CWS and
medical feature extraction. Here, three medical dictionaries are employed; one for
Illness, one for Symptoms and one for Medicine. Most terms in the dictionaries are
customized by medical experts and extended with new word detection techniques.
We have collected 49,758 illness and symptom terms and 24,975 medical terms.
Information about the dictionaries is shown in Table 11.1. For this purpose, we
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Table 11.1 The details about the medical dictionaries. “1≤terms≤3” means the number of terms
having a character length less than 3 but greater than 1

Number of phrases
Dictionary Name Illness and
Symptom Dictionary (N = 49,758)

Medicine Dictionary
(N = 24,975)

1≤terms≤3, n (%)
4≤terms≤6, n (%)

32,840 (66.00)
16,918 (34.00)

3746 (15.00)
14,486 (58.00)

terms≥7, n (%)
Representative examples

0 (0)
(Neurosis), (HTN), (smallpox)

6743 (27.00)
(Paroxetine), (Flexeril)

Table 11.2 F1–F8 represent the customized medical features, while F9 and F10 are the text
features

Feature Description

F1 The number of symptom names in doctors’ answers
F2 The number of illness names in doctors’ answers
F3 The number of medicine names in doctors’ answers
F4 The number of patients’ questions
F5 The number of doctors’ answers
F6 The response time for the patient’s first question
F7 The number of Chinese characters in patients’ questions
F8 The number of Chinese characters in doctors’ answers
F9 Unigrams
F10 Bigrams

combined the dictionaries with Jieba tool, an open-sourced Chinese segmentation
software, for word segmentation.

For text representation, each sample is represented as an input vector where
each dimension of the vector represents a feature. The element is the corresponding
feature value. Feature engineering plays an important role in text mining. Apart from
the basic text features such as Bag of Words (BOW) [5], unigrams, and bigrams,
the custom medical features that can mirror some characteristics of the platform
are utilized. These are specifically designed for the doctor/patient communication
platform by domain experts and most are based on medical dictionaries. Typical
text and medical features used in OR-DPE are presented in Table 11.2. Customized
features (F1–F8) can capture domain knowledge: the count of medicine and
symptom names in doctors’ answers reflects the doctors’ professional level; the
number of Chinese characters in doctors’ answers mirrors the service attitudes, and
more. Likewise, the text features (F9 and F10) cover most consultation information.
The feature value is the numerical value of the feature while the feature value of
text features is the term frequency inverted document frequency (TF-IDF) [6]. TF-
IDF reflects how important a word is to a document. If a word occurs rarely but
appears frequently in a sample, it is most likely to reflect the characteristics of
this sample. Specifically, TF-IDF is the product of two statistics: term frequency
and inverse document frequency, where the former represents the frequency and the
latter represents the inverse frequency of occurrence in all samples.
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The quantity of text features is so large that the customized features (see Table
11.2) can easily be overshadowed. To highlight the importance of customized
features, they are boosted by the Gradient Boosting Decision Tree (GBDT) [7].
GBDT is a powerful tool in many industrial communities [8]. GBDT mines the
most effective features and feature combinations by a decision tree to boost the
performance of regression and classification tasks. This technique is applied to
increase the number of custom medical feature combinations. The main idea of
GBDT is to combine weak learners into a single, strong learner like other boosting
methods. GBDT is an iteration algorithm, which is composed of multiple decision
trees. In the m-th iteration of GBDT, assumes that there are some imperfect models,
Fm. The GBDT would construct a better model Fm + 1 to approach the best model
by adding an estimator h, namely Fm + 1 = Fm(x) + h(x). Then the problem is
transformed by the question of how to find h(x). As the above equations imply, a
perfect h should satisfy the equation:

h(x) = Fm+1 –Fm(x) ≈ y–Fm(x)

where y is the true label, y – Fm(x) is called a loss function. In practice, a general way
is to apply square loss function is: 1/2(y − Fm(x))2. Because the residual is exactly
the negative gradients of the squared loss function. The problem on the left can then
be solved directly by gradient descent algorithms. In our work, we apply GBDT to
boost the 8 customized features shown in Table 11.2 to generate several effective
feature combinations. According to the statistics, the number of features is 363,336
with text features, and 363,344 if adding the 8 customized features. After boosting
the customized features, the number becomes 370,858. Another 7514 combined
customized feature combinations have been added. The performances of various
features are shown in Sect. 11.2.2.

11.1.1.2 Model Training

There are many different models of OR. Referring to an OR survey [16], the models
are grouped into three categories, namely the (1) naive approach, (2) threshold
approach, and (3) ordinal partitioning approach. These models have corresponding
strengths and weakness. The naive approach considers OR naively, as a standard
classification task or a regression task [3, 9]. At the same time, the ordering
information between labels has been ignored. The threshold approach is based on
the idea of approximating a real value predictor and then dividing the real line
into intervals [10–13]. Assuming P is the number of categories, the objective of
threshold-based OR models is to seek P–1 parallel hyperplanes further dividing
the data into ordered classes. The ordinal partitioning approach uses the ordering
information to decompose the ordinal regression into several binary classification
tasks. For binary classification, there are many models to choose from. For example,
Frank and Hall [14], applied decision trees as submodels while Waegeman and
Boullart [15] used weighted SVMs as binary classifiers.
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Since the ordering of information is conducive to model building [16], we
chose the OR model from the latter two methods. As the number of samples is
large and the dimension of the representative vectors is high, a model was chosen
that can handle large-scale and high dimensional data. So, the ordinal partitioning
approach is used instead of the threshold approach for OR problems depending on
paralleled hyperplanes. There are many binary classifiers that can be chosen from
the submodels. Hsieh et al. [3] showed that the linear SVM is a robust tool that
can deal with large-scale and high dimensional data. Inspired by these, we want to
combine SVM with Ordinal Partitioning (SVMOP) as the OR model for the OR-
DPE.

The OR problem can be described as follows: given a training Set T =
{(xi, yi)}n{i=1} ⊆ (X, Y ) where xi ∈ Rl is the i-th input vector (i= 1, 2, . . . , n), where
n is the number of instances, l is the number of features, and yi ∈ Yi is the label of
xi. Assuming there are P categories and without loss of generality, we take the label
set Y = {1, 2, . . .P}. The goal of OR is to find a function f: X → Y to predict the
label of a new instance x. As mentioned earlier, SVMOP will be embedded into the
OR-DPE model. Figure 11.2 illustrates the SVMOP procedure. In this figure, five
ordinal categories of data are represented by different colors and shapes. The idea
of SVMOP is to partition the overall model into P–1 binary classifications. Then
the associated question: “Is the rank of the input greater than p?” can be asked. Here
p= 1, 2, . . . , P–1. Therefore, the rank of x can be determined by a sequence of these
binary classification problems. Specifically, when training the p-th binary classifier,
the label yi is retransformed to a new class label depending on whether the label yi
is greater than p or not, namely:

ŷpi =
{−1, if yi ≤ p

1, if yi > p
(11.1)

where i = 1, 2, . . . , n. Therefore, the problem can be reformulated: given a training
set = {(

xi, ŷpi

)}n
i−1, where xi ∈ Rl is the i-th input sample, ypi ∈ {−1,1} is defined

by Eq. (11.1). The model aims to find a function to predict the ordered labels of new
instances.

Linear SVM is one of the best candidates among the binary classifiers dealing
with high dimensional data. Then linear SVM is taken as the p-th sub-model:

min
wp,ξp

1

2
‖ wp‖2

2 + C
∑n

i=1
ξpi

s.t.ŷpi

(
wT

pxi

)
≥ 1− ξpi, i = 1, 2, . . . , n, (11.2)

ξpi ≥ 0, i = 1, 2, . . . , n,
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Fig. 11.2 The demo that shows how a combined support vector machine and ordinal partitioning
scheme model (SVMOP) works on ordinal data

where wp represents the parameter of the p-th submodel, ξpi is the slack variable of
the p-th submodel.

As for the optimization solver, we chose the Dual Coordinate Descent algorithm
(DCD) as the training algorithm of SVM [3]. DCD is one of the most effective
training algorithms for linear SVMs. It solves the model in Eq. (11.2) by the
Lagrange dual form. The dual form of the p-th sub-model in Eq. (11.2) is given
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as Eq. (11.3). Without loss of generality, we ignore the subscript p in the dual form:

min
α

f (α) = 1

2
αT Qα − eT α

s.t.0 ≤ αi ≤ C, i = 1, 2, . . . , n, (11.3)

where Qij = ŷpiŷpjx
T
i xj .DCD is to employ a classic divide-and-conquer method

for optimizing high dimensional problems. It starts from an initial zero vector α0 = 0
and generates a sequence of vectors

{
αk
}∞
k=0. For each iteration step, the algorithm

sequentially selects one dimension associated with α to optimize by fixing other
dimensions.Suppose α∗ is the solution of Eq. (11.3) then the optimal value of wp for
Eq. (11.2) can be computed as follows:

wp =
∑n

i=1
ŷpiα

∗
i xi (11.4)

11.1.1.3 Model Prediction

For model prediction, the research [16] shows that it is important to construct an
effective rule for predicting new instances in the ordinal partitioning-based OR
models. Many existing ways are based on the probability manipulation or outcomes
by submodels to predict the label of a new instance. In the work by Frank et al [14],
when estimating the probabilities for the first and the last class, the authors were
dependent on a corresponding classifier. However, it needs to rely on two adjacent
classifiers when computing the middle classes. This prediction method is simple
and easy to implement, but may lead to a negative probability [16, 17]. Another
example in the work [15], the authors combined the outcomes of all the submodels
to predict the label of a new instance x. However, their prediction function may
cause ambiguities for some test samples.

To alleviate the problem with the above prediction functions, we propose a new
prediction function as shown in Eq. (11.5):

r (x) = 1+ arg max
p∈{1,2,...,P−1}

{
p : wT

p x > 0
}

(11.5)

where r(x)=1 if none of wT
p x is greater than 0. This prediction function relies on the

discriminant planes and joins all binary classifiers to obtain a single classification.
The p-th binary classifier provides the answer to the associated question: “Is the

rank of the input x greater than p?”, where p= 1, 2, . . . , P–1. That is, for prediction,
the new sample x would be asked by a sequence of the questions above. And last,
the predicted label equals r(x) which represents the satisfaction degree. The greater
r(x), the more satisfied.
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11.1.1.4 Statistical Methods and Evaluation Metrics

To better highlight the characteristics of ordinal regression models, we evaluated
the performance with the following three common evaluation measures: (1) mean
absolute error (MAE) [11, 16, 18], (2) mean square error (MSE) [19–21], and (3)
pairwise accuracy (PAcc) [18, 22, 23]. MAE and MSE can directly measure the
degree of deviation between the true label (goldi) and predicted label (predicted).
They can be defined by the following equations:

MAE = 1

n

∑n

i=1
| goldi − predictedi | (11.6)

MSE = 1

n

∑n

i=1
(goldi − predictedi)

2 (11.7)

Since they are metrics measuring the error, the lower they are, the better their
performance. PAcc is widely applied in the medical data analysis, ranking and
statistics fields with the name of concordance index or Kendall τ [23, 24]. PAcc
could reflect the correct ratio of ranking between pairwise instances. Specifically,
the set of preference evaluation pairs is represented as S,S = {(i,j) | goldi > goldj}.

The PAcc is given by

PAcc =
∣∣{(i, j) | (i, j) ∈ S : predictedi > predictedj

}∣∣
|S| (11.8)

where “| S |” represents the number of the set S. It accords with the rule: the greater,
the better.

11.1.1.5 Mining Predictive Features

Apart from rating doctors’ performance, we continue to explore the most predictive
features among text features and customized features in DPE. In general, predictive
features always play significant and instructive roles on the platform construction.
In this case, the most important features were extracted by analyzing the weight
matrix W Rl x (P-1), where l and P–1 are the dimensions of the matrix. As mentioned,
l is the total number of all the features (that is, l = 363, 344) and P is the
number of categories, where P–1 is the number of the submodels. In Eq. (11.2),
W is composed of the weight parameters, with w in each submodel, namely
W = (w1,w2, . . . ,wP − 1). We denote W (j, :) as the j-th row vector and the absolute
value of the elements in the row vector represents the contributions to each submodel
for the j-th feature. The larger the value is, the more predictive property the feature
has. For every feature in each kind of text feature or customized feature, described
in Table 11.2, it owns its corresponding weight vector W (j, :), where 1 ≤ j ≤ l.
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We compute the total contribution Conj of the j-th feature to the model decision by
Eq. (11.9):

Conj =‖ W (j, :) ‖2 (11.9)

where “L2” represents the L2-norm of a vector. When the contributions of all the
features have been computed, they would be ranked and hence obtain the top-most
predictive features.

11.2 Transmission Patterns of COVID-19 Outbreak

COVID-19 has spread to six continents. Now is opportune to gain a deeper
understanding of what may have happened. The findings can help inform mitigation
strategies in the disease-affected countries.

This section examines an essential factor that characterizes the disease transmis-
sion patterns: the interactions among people. We develop a computational model to
reveal the interactions in terms of the social contact patterns among the population
of different age-groups. We divide a city’s population into seven age-groups: 0–
6 years old (children); 7–14 (primary and junior high school students); 15–17
(high school students); 18–22 (university students); 23–44 (young/middle-aged
people); 45–64 years old (middle-aged/elderly people); and 65 or above (elderly
people). We consider four representative settings of social contacts that may cause
the disease spread: (1) individual households; (2) schools, including primary/high
schools as well as colleges and universities; (3) various physical workplaces; and (4)
public places and communities where people can gather, such as stadiums, markets,
squares, and organized tours. A contact matrix is computed to describe the contact
intensity between different age-groups in each of the four settings. By integrating the
four contact matrices with the next-generation matrix, we quantitatively characterize
the underlying transmission patterns of COVID-19 among different populations.

It is found on six representative cities in China: Wuhan, the epicenter of COVID-
19 in China, together with Beijing, Tianjin, Hangzhou, Suzhou, and Shenzhen,
which are five major cities from three key economic zones. The results show
that the social contact-based analysis can readily explain the underlying disease
transmission patterns as well as the associated risks (including both confirmed
and unconfirmed cases). In Wuhan, the age-groups involving relatively intensive
contacts in households and public/communities are dispersedly distributed. This can
explain why the transmission of COVID-19 in the early stage mainly took place in
public places and families in Wuhan. We estimate that Feb. 11, 2020 was the date
with the highest transmission risk in Wuhan, which is consistent with the actual peak
period of the reported case number (Feb. 4 14). Moreover, the surge in the number
of new cases reported on Feb. 12 and 13 in Wuhan can readily be captured using our
model, showing its ability in forecasting the potential/unconfirmed cases. We further
estimate the disease transmission risks associated with different work resumption
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plans in these cities after the outbreak. The estimation results are consistent with the
actual situations in the cities with relatively lenient policies, such as Beijing, and
those with strict policies, such as Shenzhen.

With an in-depth characterization of age-specific social contact-based transmis-
sion, the retrospective and prospective situations of the disease outbreak, including
the past and future transmission risks, the effectiveness of different interventions,
and the disease transmission risks of restoring normal social activities, are com-
putationally analyzed and reasonably explained. The conclusions drawn from the
study not only provide a comprehensive explanation of the underlying COVID-19
transmission patterns in China, but more importantly, offer the social contact-based
risk analysis methods that can readily be applied to guide intervention planning and
operational responses in other countries, so that the impact of COVID-19 pandemic
can be strategically mitigated.

11.2.1 Methods

11.2.1.1 Scope of This Study

We select six major cities in China for our study: Wuhan, Beijing, Tianjin,
Hangzhou, Suzhou, and Shenzhen; their geographical locations and the disease
situations (in terms of total case number from Dec. 2019 to Feb. 2020) are shown
in Fig. 11.3. Wuhan was the epicenter of COVID-19 in China [25, 26]. The other
five cities are representative in that they are situated in the three most important
economic zones in China, which contribute more than 40% of the national GDP.
Specifically, Beijing and Tianjin are representing the Jing-Jin-Ji (Beijing-Tianjin-
Hebei) Metropolitan Region in Northern China. Hangzhou and Suzhou are the major
players in the Yangtze River Delta City Cluster in Eastern China. Shenzhen is the
flagship in the Greater Bay Area in Southern China. Another important reason to
select these cities for our study is that the population of these cities contains a large
number of migrant workers and college students from other cities or provinces. The
frequent human mobility largely increases the risk of imported cases, posing great
challenges to the control and prevention of COVID-19, especially when people are
gradually returning to workplaces and schools in a later stage.

11.2.1.2 Data Sources

The data used in our study include:

1. The daily confirmed cases from Dec. 8, 2019 to Feb. 29, 2020 in Wuhan, Beijing,
Tianjin, Hangzhou, Suzhou, and Shenzhen, which were accessed and collected
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Fig. 11.3 The geographical locations and the disease situations (total number of cases from Dec.
2019 to Feb. 2020) of six major cities selected in this study: Wuhan, Beijing, Tianjin, Hangzhou,
Suzhou, and Shenzhen

from the websites of the Health Commission of Hubei Province,1 the Beijing
Municipal Health Commission,2 the Tianjin Municipal Health Commission,3

the Hangzhou Municipal Health Commission,4 the Suzhou Municipal Health
Commission,5 and the Shenzhen Municipal Data Open Platform,6 respectively.

2. The demographic data of Wuhan,7 Beijing,8 Tianjin,9 Hangzhou,10 Suzhou,11

and Shenzhen.12

1http://wjw.hubei.gov.cn/
2http://wjw.beijing.gov.cn/
3http://wsjk.tj.gov.cn/
4http://wsjkw.hangzhou.gov.cn/
5http://wsjkw.suzhou.gov.cn/
6https://opendata.sz.gov.cn/data/data-Set/toDataDetails/29200_01503668
7http://tjj.hubei.gov.cn/tjsj/sjkscx/tjnj/gsztj/whs/
8http://tjj.beijing.gov.cn/
9http://stats.tj.gov.cn/
10http://tjj.hangzhou.gov.cn/
11http://tjj.suzhou.gov.cn/
12http://tjj.sz.gov.cn/

http://wjw.hubei.gov.cn/
http://wjw.beijing.gov.cn/
http://wsjk.tj.gov.cn/
http://wsjkw.hangzhou.gov.cn/
http://wsjkw.suzhou.gov.cn/
https://opendata.sz.gov.cn/data/data-Set/toDataDetails/29200_01503668
http://tjj.hubei.gov.cn/tjsj/sjkscx/tjnj/gsztj/whs/
http://tjj.beijing.gov.cn/
http://stats.tj.gov.cn/
http://tjj.hangzhou.gov.cn/
http://tjj.suzhou.gov.cn/
http://tjj.sz.gov.cn/
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11.2.1.3 Age-Specific Social Contact Characterization

The underlying transmission patterns of COVID-19 among different populations are
difficult to characterize because they are complex and related to various observations
and disease-related factors, including the number of confirmed cases, the potential
risks brought by unconfirmed cases, the distribution of different case categories
(indigenous/imported) in different regions/cities, the population distribution of dif-
ferent age-groups, the social contact patterns in different settings (e.g., households,
schools, workplaces, and public places), the extent of interventions implemented in
different regions/cities, etc. To address this challenging issue in a fundamental way,
we examine an essential factor that characterizes the disease transmission patterns:
the interactions among people [27, 28]. Specifically, we examine the interactions in
terms of the social contact patterns among the population of different age-groups. To
characterize the age-specific social contact-based transmission, we divide a city’s
population into seven age-groups: 0–6 years old (children); 7–14 (primary and
junior high school students); 15–17 (high school students); 18–22 (university and
college students); 23–44 (young/middle-aged people); 45–64 years old (middle-
aged/elderly people); and 65 or above (elderly people). The population in each of
the seven groups has its own specific social circles, gathering places, or activity
patterns. Meanwhile, we consider four representative settings of social contacts that
may cause the disease spread: (1) individual households, which may lead to the
transmission within families; (2) schools, including primary/high schools as well as
colleges and universities, which may cause the spread among students and teachers;
(3) various physical workplaces, which may affect in-office and outside workers;
and (4) public places and communities, such as stadiums, markets, squares, and
organized tours, where the spread within a dense population may arise. Let G1–
G7 be the seven age-groups: 0–6, 7–14, 15–17, 18–22, 23–44, 45–64, and 65 or
above, respectively. Then the contact frequencies between an individual from Gi and
an individual from Gj (i, j = 1, . . . ,7) under the settings of Households, Schools,
Workplaces, and Public/community, denoted by cHij , cSij , cWij and cPij , respectively,
are calculated as follows:

cHij =
CH

ij

PiPj

, cSij =
CS

ij

PiPj

, cWij =
CW

ij

PiPj

, cPij =
CP

ij

PiPj

(11.10)

CH =
[
CH

ij

]
7×7

, CS =
[
CS

ij

]
7×7

,CW =
[
CW

ij

]
7×7

, CP =
[
CP

ij

]
7×7

(11.11)

where CH
ij , CS

ij , CW
ij and CP

ij denote the total number of contacts between individuals
from Gi and those from Gj under the settings of Households, Schools, Workplaces,
and Public/community, respectively, Pi and Pj denote the population of Gi and Gj,
and CH , CS, CW and CP denote the 7 × 7 social contact matrices.
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In Eq. (11.1), we use demographic data to calculate Pi (i = 1, . . . ,7). For
CH

ij , CS
ij , CW

ij and CP
ij , as the city-specific data of social contacts between age-

groups is unavailable, we adopt a computational method [4] to estimate them. The
appropriateness of using such a computational method for social contact estimation
in data-scarce situations has been validated 20: the estimated CH , CS, CW andCP are
consistent with the results from a real-world social contact survey [29] in terms of
the strong assortativeness and the appearance of similar secondary diagonal contact
patterns.

Next, we represent the overall age-specific social contact matrix as a linear
combination of the above four matrices [28]:

C = rHCH + rSCS + rWCW + rP CP (11.12)

where rH , rS, rW , rP ≥ 0 are the weights of matrices CH , CS, CW , and CP,
respectively, and satisfy that rH + rS + rW + rP = 1.

According to Xia et al.’s work [5], the initial weights of four social contact
matrices in our study are set as: rH = 0.31, rS = 0.24, rW = 0.16, rP = 0.29. It
should be pointed out that similar settings have also been utilized to simulate the
contact matrices in other studies, e.g., the similar weight for the household matrix
has been used to calculate the contact matrix for Varicella and Parvovirus B19 [7].
The results in Fig. 11.3 show that our model with the above parameter settings can
adequately capture the disease trends in different cities; our sensitivity analysis also
confirms that the developed model (to be described below) is relatively robust to the
parameter settings.

With the overall age-specific social contact matrix C, we can characterize the
disease transmission pattern using the next-generation matrix Kt [8]:

K t =
(
μ

γ

)
S tBCAt

I t+1 = K tI t (11.13)

where St, B, A and Kt are 7 × 7 matrices and It is a 7 × 1 vector. Specifically,
St, B, and A are diagonal matrices, with the diagonal elements st, bii, and
aii(i = 1, . . . ,7) being the size of susceptible population in Gi at the t-th generation
of the disease infection, the individual susceptibility in Gi, and the infectivity of
infected individuals in Gi, respectively. The i-th element in vector It denotes the
number of infectious individuals in Gi at the t-th generation of the disease infection.
By referring to Li et al.’s work [30], we set the reproduction number R0 = 2.2.

For the recovery rate γ , we calculate it as follows: First, according to the
definition of recovery rate [31], it is the reciprocal of the duration of being infectious
(i.e., γ = 1/infectious period). Then, according to Svensson’s work [30], the
infectious period is equal to the mean generation time minus the mean latent
period, so we have γ = 1/(mean generation time − mean latent period). Further,
as pointed out in Binti Hamzah et al.’s work [25] and Liu et al.’s work [32], the
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mean generation time is 7.5 days. Moreover, Wu et al.’s work [26] indicates that
the mean incubation period is 5.2 days for COVID-19. As there is not precise
infection date for those patients to estimate the mean latent period, we use the
mean incubation period to approximate the mean latent period. Therefore, the
recovery rate is estimated as γ = 1/(7.5−5.2). For the infectivity, we set aii = 1.0
(for i = 1, . . . ,7) according to Xia et al.’s work [28]. For the susceptibility bii,
as it represents the probability of being infected when a susceptible individual is
exposed to infectious contacts, we estimate it as follows: For each Gi, we first
calculate its infected population ratio ri by dividing the number of infected cases
in Gi by Pi, i.e., ri = ni/Pi. With ri calculated for all seven age-groups, we then
obtain a multiplier, 1/min{r1, . . . , r7}, through normalizing the smallest ri to 1,
and inflate all other infected population ratios by 1/min{r1, . . . , r7}. Then we
estimate the susceptibility as bii = ri/min{r1, . . . , r7}. As different cities have
different numbers of infected cases and different population sizes, they will have
different susceptibilities. Specifically, we have: b11 = 1.00, b22 = 1.23, b33 = 35.33,
b44 = 21.09, b55 = 13.18, b66 = 42.16, and b77 = 97.48 for Wuhan; b11 = 9.08,
b22 = 1.00, b33 = 10.67, b44 = 4.15, b55 = 10.26, b66 = 14.58, and b77 = 17.90 for
Beijing; b11 = 1.00, b22 = 1.86, b33 = 1.66, b44 = 3.14, b55 = 5.24, b66 = 9.86, and
b77 = 11.94 for Tianjin; b11 = 1.06, b22 = 1.87, b33 = 1.00, b44 = 1.78, b55 = 5.46,
b66 = 9.38, and b77 = 4.51 for Hangzhou; b11 = 1.07, b22 = 1.18, b33 = 1.57,
b44 = 1.00, b55 = 3.97, b66 = 7.20, and b77 = 3.14 for Suzhou; and b11 = 3.57,
b22 = 4.72, b33 = 1.00, b44 = 2.76, b55 = 3.49, b66 = 17.59, and b77 = 32.51 for
Shenzhen.

The disease infection dynamics computed using Eqs. (11.2) and (11.3) corre-
sponds to the situation without any intervention. To take the effect of intervention
into consideration, it is important for us to further decrease rH , rS, rH, rP in Eq.
(11.2), i.e., the weights of different social contact matrices accordingly. Similarly, if
we consider different work resumption plans, we will need to increase these weights
proportional to the rate of work resumption. Specifically, we reduce rW from its
original value to 0 as of Jan. 23 (the starting date of implementing stringent public
health control policies). Moreover, we gradually recover its value from the starting
date of our work resumption plans to reflect the effect of “back-to-work” policies.
We apply the similar rationale to rS and rP. For rH , as the public social distancing
policies would increase social contacts within households, we increase the value of
rH starting from Jan. 23, and gradually reduce to its original value once the “back-
to-work” policy kicks in.

11.2.1.4 Role of the Funding Source

The funders of the study had no role in study design, data collection, data analysis,
data interpretation, writing of the Article, or the decision to submit for publication.
All authors had full access to all the data in the study and were responsible for the
decision to submit the Article for publication.
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11.2.2 Results

11.2.2.1 Social Contact-Based Transmission Characterization

As can be seen in Fig. 11.4, the distribution of age-groups involving relatively
intensive contacts in households and public/communities is rather scattered, and
thus it is easy to cause the disease spread among different age-groups in these two
settings. This is consistent with the observation that the transmission of COVID-
19 in the early stage mainly took place in public places and families. In contrast,
the distribution of age-groups with intensive contacts in schools and workplaces are
relatively concentrated. Moreover, the composition of people in these two settings
is relatively stable, making the management easier than that in public places or
communities. Because most of the schools and workplaces were closed before the
Chinese Spring Festival and have not been reopened or resumed yet, the scale of the
COVID-19 outbreak in these two settings is relatively limited. However, if normal
educational and economic activities are to be resumed, a large number of students
and staff will gather in these two settings, which may present a real challenge to the
control and prevention of COVID-19 infection in these concerned places.

Fig. 11.4 Measurement of the intensity of social contacts among seven age-groups (G1: 06; G2:
714; G3: 1517; G4: 1822; G5: 2344; G6: 4564; and G7: 65 or above) in four major settings: (a)
households; (b) schools; (c) workplaces; and (d) public/community, in Wuhan. The contact patterns
in these four settings are consistent with common social behaviors observed in a typical society.
Specifically, as shown in (a), the majority of the social contacts within households occur across
different generations. (b) Demonstrates that the main social contact in schools centers around kids
in the same age-group. As depicted in (c), workplaces are dominated by social contacts among
young adults and the middle-aged adults. In (d), the social contacts are more diverse when people
are in public places
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11.2.2.2 Retrospective Analysis of the Disease Outbreak

For different cities, the transmission patterns of COVID-19 might be different.
In Wuhan, the cases were mainly indigenous. In the other five cities, the cases
might be either indigenous or imported from Hubei. Therefore, for these five
cities, we need to take both indigenous cases and imported cases into consideration
when investigating the transmission patterns among populations. To model the
potential local transmission risk caused by the imported cases, we use the following
approach: First, for each confirmed case, we identify if it is imported or indigenous
according to the information provided by the Municipal Health Commission. If
the case is an imported case, we consider its potential risk in bringing in local
transmission. According to Li et al.’s results [33], the mean serial interval is
7.5 days, so we assume that for each imported case, from the day of arrival to
the day of hospitalization, he/she could infect 1/7.5 person per day. We apply the
same principle to all imported cases to estimate their potential infections. Those
cases infected by the imported ones are considered as potential cases in our study.
The confirmed cases and potential cases together constitute the disease transmission
risk, i.e., the focus of the following retrospective and prospective analyses.

With the age-specific social contact-based transmission modeling, we are able
to describe and explain what may have happened retrospectively and what can
be anticipated prospectively of the COVID-19 outbreak. Figure 11.5 shows the
estimation on the trends of disease infection and the transmission risks associated
with different work resumption plans based on the social contact patterns and
reported cases. From the results of Wuhan (Fig. 11.5a), we can observe that the
situation without any interventions (the brown line) is estimated to be much severer
than that with interventions (the blue line), indicating the effectiveness of the
interventions implemented in Wuhan. Here the interventions refer to various social
distancing measures, including quarantine of patients, closure of workplaces and
schools, suspension of public transportation, and requirement for people to wear
masks [34–36].

It can also be observed from Fig. 11.5a that the date with the estimated peak
number of the new cases was Feb. 11, which is consistent with the actual situation:
the number of reported cases reached the peak during Feb. 4–14. Moreover, note
that there was a sharp increase in the number of confirmed cases on 12 and 13 Feb.
This is because that the National Health Commission of China adopted a new case
definition in Hubei province. In the new case definition, the clinically diagnosed
cases (suspected cases with pneumonic-type imaging characteristics) were included
in the newly reported cases. To put it in the right context, the observed surge in
the number of reported cases does not imply a large number of cases were found
on 12 and 13 Feb, but an inflow of accumulated clinically confirmed cases from
the past few days. As can be observed from Fig. 11.5a, the result of our model
(the gap between the blue line and the red bars) offers a reasonable explanation of
the not-yet-reported cases over the period. Specifically, the model is not designed
to provide a mathematical estimation/prediction that fits exactly to the number of
reported cases, but to present an estimation of the risk to the community if certain



Fig. 11.5 Estimation on the trends of disease infection and transmission risks associated with
different work resumption plans based on the social contact patterns and reported cases. (a) The
estimated disease trends without any interventions (the brown line) and with interventions (the blue
line) in Wuhan. The newly confirmed cases reported every day are shown in red bars. (b–f) The
estimated disease trends with interventions (the blue line) and the transmission risks associated
with different work resumption plans in Beijing, Tianjin, Hangzhou, Suzhou, and Shenzhen.



Fig. 11.5 (continued) The dark red bars denote the newly confirmed cases reported every day
while the light red bars denote the potential cases locally infected by the imported cases, which
are estimated according to the mean serial interval of 7.5 days [33]. Plans A1–A3 refer to the
plans that start on Feb. 17 (Monday) and finish the resumption in 1 week, 1/2 months, and
1 month, respectively. Plans B1–B3 refer to the plans that start on Feb. 24 (Monday) and finish
the resumption in 1 week, 1/2 months, and 1 month, respectively
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measures are or are not exercised. One reasonable assumption included in the model
is the consideration of unreported cases, as it is nearly impossible to timely capture
all new cases given limited resources and the fixed capacity of the medical system.
For this reason, our model estimates a case number larger than that of the reported
confirmed cases, with the excessive number representing the potential risks that are
not yet identified as confirmed cases.

11.2.2.3 Prospective Analysis of Disease Transmission Risks
and Economic Impacts

The COVID-19 pandemic has hit the global economy by a storm. As the public
health crisis escalates, countries have responded by enforcing social distancing
measures, such as the closure of public venues and reduced working hours, to reduce
the chance of contracting the highly contagious virus in a social setting. At the same
time, this will inevitably lead to a massive decline in business activities, causing
unprecedented economic loss to the countries. When the COVID-19 outbreak is
contained, as in the case of Wuhan, China, it is foreseeable that the countries will
need to think about how to safely resume social activities and bring work and life
back to normal, as any pre-mature resumption of social contacts could potentially
cause a rebound (second wave) in new infection cases. In the light of the pressing
needs to provide a scientific ground for systematically planning the resumption of
social/business activities near the end of the outbreak, we present a prospective
analysis of different work resumption plans, which can enable us to assess not only
the respective economic implications of the plans, but more importantly, the levels
of disease transmission risks associated with the corresponding plans.

Specifically, to further understand what can be anticipated prospectively of the
disease outbreak, we analyze what may happen if the social/business activities
gradually restore from the strong control and isolation to the normal situation
(including public and work places). We analyze the disease transmission risks
associated with different work resumption plans in Beijing, Tianjin, Hangzhou,
Suzhou, and Shenzhen, respectively. Since Wuhan was in a serious situation during
the outbreak, its work resumption may take longer than the other five cities;
its detailed plans for the resumption and associated risks are discussed in the
original paper [2]. We conduct our prospective study on two sets of different
work resumption plans (Plans A1–A3 and Plans B1–B3) and accordingly examine
their associated risks of disease transmission. Plans A1–A3 resume work when the
disease transmission is well under control, i.e., the number of new reported cases
is about to become zero. Specifically, Plans A1–A3 start on Feb. 17 (Monday) and
finish the resumption in 1 week, 1/2 months, and 1 month, respectively. Plans B1–B3
are stricter than Plans A1–A3; they resume work when the number of new reported
cases has been zero for three consecutive days. Therefore, Plans B1–B3 start on
Feb. 24 (Monday) and, similarly, finish the resumption in 1 week, 1/2 months, and
1 month, respectively.
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In order to parameterize our model for risk prediction with different work
resumption plans, we estimate the percentage of work ongoing or recovered in each
of those cities at the time when the resumption plans start. For Beijing, according
to a document issued by the municipal government,13,14 eligible companies can
resume work from Feb. 3. Therefore, we set a weekly increase of 10% in the
resumption of work in Beijing from Feb. 3 until the resumption plan begins. For
Tianjin, we use the same resumption settings as Beijing because both cities are
situated in the Jingjinji Metropolitan Region. For Hangzhou, according to the
municipal government regulations,15 general enterprises shall not resume work
before 23:59 on Feb. 9. Meanwhile, according to the electricity consumption
statistics of the State Grid Corporation of China, about 20% of enterprises in
Zhejiang Province generated electricity consumption on Feb. 10.16 By further taking
into account the situation of home and remoting office, we set Hangzhou’s work
resumption rate on Feb. 10 to be 10%, and from Feb. 11 until its resumption plan
begins, the weekly work resumption rate will be 10%. For Suzhou, we use the same
resumption settings as Hangzhou as both are in the Yangtze River Delta Economic
Zone. Last but not the least, for Shenzhen, according to the municipal government
regulations, general enterprises may not resume work before 24:00 on Feb. 9.17

Therefore, we set Shenzhen’s weekly work resumption rate to be 10% from Feb. 10
until its resumption plan begins.

As shown in Fig. 11.5b–f, Plans B1–B3 represent a stricter work resumption
policy; they start 1 week later than Plans A1–A3. The estimation of disease trans-
mission risks is consistent with actual situations. For example, Beijing implemented
a relatively lenient policy on the early resumption of work, and thus has several
new cases reported every day during the past 2 weeks. This is consistent with our
estimated risk trend of Beijing with the plans A1–A3. In contrast, Shenzhen still
strictly controlled the resumption of work, so there is no new case reported during
Feb. 24–29.18 This is also in line with our estimation on Shenzhen’s risk with stricter
plans B1–B3.

Table 11.3 summarizes the disease transmission risks as well as the estimated
Year-over-Year GDP growth (%) in the first half of 2020 with respect to different
work resumption plans in Beijing, Tianjin, Hangzhou, Suzhou, and Shenzhen. As
can be noted, Plan B3 resumes the work as late as possible and completes the
resumption as slow as needed, and thus minimizes the disease transmission risk.

13http://www.gov.cn/xinwen/2020-01/31/content_5473425.htm (Accessed on April 1, 2020).
14http://www.dehenglaw.com/CN/tansuocontent/0008/017738/7.aspx?MID=0902 (Accessed on
April 1, 2020).
15http://www.hangzhou.gov.cn/art/2020/2/9/art_1256295_41893739.html(Accessed on April 1,
2020).
16http://energy.people.com.cn/n1/2020/0213/c71661-31585079.html (Accessed on April 1, 2020).
17http://www.sz.gov.cn/szzt2010/yqfk2020/szzxd/zczy/zcwj/fgzc/content/post_6728851.html
(Accessed on April 1, 2020).
18Shenzhen Municipal Data Open Platform: https://opendata.sz.gov.cn/data/data-Set/
toDataDetails/29200_01503668

http://www.gov.cn/xinwen/2020-01/31/content_5473425.htm
http://www.dehenglaw.com/CN/tansuocontent/0008/017738/7.aspx?MID=0902
http://www.hangzhou.gov.cn/art/2020/2/9/art_1256295_41893739.html
http://energy.people.com.cn/n1/2020/0213/c71661-31585079.html
http://www.sz.gov.cn/szzt2010/yqfk2020/szzxd/zczy/zcwj/fgzc/content/post_6728851.html
https://opendata.sz.gov.cn/data/data-Set/toDataDetails/29200_01503668
https://opendata.sz.gov.cn/data/data-Set/toDataDetails/29200_01503668
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The plan has the least expected GDP growth. Alternatively, it may also be practically
desirable to gradually bring the work back to normal, while keeping all the necessary
control measures possible to eliminate any potential disease transmission. In such
a case, Plan B1 could be adopted. It achieves risk mitigation and gradual work and
life recovery at the same time.

11.2.2.4 Sensitivity to Parameter Variations

We conduct the sensitivity study to examine variations of the analytic results with
respect to variations in different age-groups and various social contact patterns.
Specifically, we analyze the sensitivity of the estimated disease trends with respect
to changes in the infectivity matrix A, the individual susceptibility matrix B, and the
contact matrix C. Note that since both A and B are diagonal matrices, the impact
to the next-generation matrix K will be identical if A and B change in the same
scale, we only conduct the sensitivity analysis on A as a representative. Each time,
we change the diagonal value in A for one specific age-group while keeping other
age-groups’ value fixed. By doing so, we can investigate the impact of different age-
groups on our results. For the contact matrix C, each time we change the weight for
one of the four matrices CH, CS, CW, and CP, while keeping the weights of the other
three unchanged. By doing so, we can observe the impact of different social contact
patterns on the results.

Figure 11.6 shows variations in the estimated disease trends corresponding to
variations in (a) different age-groups and (b) various social contact patterns. The
trends in Fig. 11.6 are measured by the total number of confirmed and potential
cases. From Fig. 11.6a we can observe that the disease trends in all six cities
are relatively sensitive to the variations in the infectivity in G5 (23–44) and G6
(45–64). There are two main reasons. First, both the population size and the case
number in these two age-groups are relatively large. Second, people in these two
groups are more frequently engaged in social activities than those in other age-
groups. Therefore, a slight variation on the infectivity in these two groups might
cause relatively large variations in the disease trends. From Fig. 11.6b we can
observe that the variations of the disease trends are more obvious in households
than in schools, workplaces, and public places/communities, which is consistent
with our observations in Fig. 11.4. The reason is that China has already implemented
strong social distancing strategies, such as the closure of schools and workplaces,
and thus the variations of social contact intensities in schools and workplaces have
relatively limited impact on the disease trends. Note that even various intervention
strategies have been deployed, the disease trends can still be relatively sensitive to
the variations of social contact intensities in public places and communities. The
key implication, as revealed by Fig. 11.6b, is to maintain proper social distance in
public/community, even when school and business activities are resumed. Moreover,
there are some intrinsic consistencies between the results in Fig. 11.6a, b. Note
that the group in Fig. 11.6a with the highest sensitivity is G5, in the age of 23–44.
People of this age are generally the family breadwinner and play the most active role
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in social activities. If they are infected, they will bring a huge risk to their family
members in households and their friends and acquaintances in communities. This
explains the observation in Fig. 11.6a, i.e., the variation of infectivity in G5 brings
the highest impact on the disease trends, and thus reminds the public health workers
to pay special attention to this group of population when implementing control and
prevention strategies in a later stage.

11.2.3 Discussion

In this study, we demonstrated the importance of characterizing the underlying
transmission patterns among different populations for the purpose of understanding
the COVID-19 outbreak in China from an epidemiological perspective. With an
in-depth characterization of the age-specific social contact-based transmission,
we conducted the retrospective and prospective analyses of the disease outbreak,
including the past and future disease transmission trends, the effectiveness of
different interventions, and the disease transmission risks of restoring normal social
activities. We focused on six representative cities in China; the conclusions drawn
from the study not only provide a comprehensive explanation of the underlying
COVID-19 transmission patterns in China, but more importantly, offer the contact-
based risk analysis methodology that can readily be applied to guide intervention
planning and operational responses in other countries, so as to effectively control
the COVID-19 pandemic.

The analysis of this study was conducted on six cities in China, including Wuhan,
Beijing, Tianjin, Hangzhou, Suzhou, and Shenzhen. On the one hand, the selected
cities were representative in terms of the severity of the COVID-19 outbreak in the
respective region during the time that the study was conducted and their economic
impact in China. On the other hand, they presented different characteristics in
several important aspects: First, the categories of confirmed cases in these cities
were different. For Wuhan, most of the cases were indigenous cases; while in
the other five cities, a large portion of the cases was imported cases (from Hubei
Province). Second, the distributions of populations in different age-groups were
different in these cities. Third, the levels of social distancing interventions and the
work resumption plans implemented in different cities were different. The above
differences made the scenarios in different cities quite different and intriguing.
The retrospective and prospective analyses conducted on these cities show that our
results are consistent with the real situations of the corresponding cities, validating
the model’s generalization ability given different real-world contexts. Importantly,
it should be noted that, although the numerical results derived from the six cities in
this study may not be the same as those in other countries, the developed methods
are general at the methodological level and the idea of using age-specific contacts
to characterize the disease transmission patterns is instructive in understanding,
and hence planning corresponding interventions in, the situations of the disease
outbreaks in those countries. When applying the developed methodology to the
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wider global population, country/region-specific scenarios and settings, such as case
categories, distribution of age-specific population, working environment and hours,
and interventions and work resumption plans, should be incorporated to provide
better tailor-made parameterization, thus making the retrospective and prospective
analyses more situation-specific and informative.

As COVID-19 is a newly emerging infectious disease, we are still in the process
of gaining more knowledge and understanding of its transmission patterns. As a
result, the parameters estimated based on the current understanding might not be
as adequate or precise as those in some of the well-understood diseases, such as
seasonal influenza. Therefore, one of our future research directions is to continue
investigating the characteristics of the disease, from both epidemiological and
computational perspectives, so as to parameterize the model in a more accurate way.
Further, in this study, we have modeled the underlying transmission of COVID-19
outbreak by considering the age-specific social contact patterns. It should be pointed
out that there also exist other disease-related factors that might affect the disease
transmission patterns, such as the cross-region mobility of the population and the
environmental factors. We plan to incorporate these disease-related factors into the
model, thus making our analysis more comprehensive. Moreover, the current study
focuses on the representative cities in China. However, it will be desirable to conduct
further analyses on a global scale. In this regard, the general methodology provided
in this study can readily be applied, while considering country/region-specific
social, demographic, and epidemiological characteristics, such as infection-related
social contact patterns [37]. To further generalize and transfer our research, we plan
to collaborate with researchers and practitioners around the world to conduct the
corresponding analyses for other countries/regions.
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Chapter 12
Artificial Intelligence IQ Test

Since 2015, “artificial intelligence” has become a popular topic in science, tech-
nology, and industry. New products such as intelligent refrigerators, intelligent air
conditioning, smart watches, smart robots, and of course, artificially intelligent mind
emulators produced by companies such as Google and Baidu continue to emerge.
However, the view that artificial intelligence is a threat remains persistent. An
operation is that if we compare the developmental levels of artificial intelligence
products and systems with measured human intelligence quotients (IQs), can we
develop a quantitative analysis method to assess the problem of artificial intelligence
threat?

Quantitative evaluation of artificial intelligence currently in fact faces two
important challenges: there is no unified model of an artificially intelligent system,
and there is no unified model for comparing artificially intelligent systems with
human beings. These two challenges stem from the same problem, namely, the
need to have a unified model to describe all artificial intelligence systems and all
living behavior (in particular, human behavior) in order to establish an intelligence
evaluation and testing method. If a unified evaluation method can be achieved, it
might be possible to compare intelligence development levels.

This chapter provides an innovative concept and basic measurements on testing
the Intelligence Quotient (IQ) on artificial intelligence (AI) technologies and
devices. Section 12.1 describes the basic concepts of IQ test on AI, particularly
Internet search engines and a standard intelligence model. Section 12.1.1 builds
an IQ test bank to compare the known search engines, such as Google and Baidu
with three groups of Children whose ages are 6, 12, 18 [1]. Section 12.1.2 further
employs a data mining method to find out the features of search engines reflected in
the Internet intelligence test and the intelligence difference between search engines
and human beings [2]. Section 12.1.3 proposes a “standard intelligence model” that
unifies AI and human characteristics in terms of four aspects of knowledge, i.e.,
input, output, mastery, and creation [3]. Section 12.2 investigates three laws of
intelligence for interpreting the concepts of intelligence, wisdom, consciousness,
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life and non-life [4]. Section 12.3 explores characteristics on AI-IQ test by using
fuzzy cognitive map-based dynamic scenario analysis [5].

12.1 A Basic AI-IQ Test

This subsection introduces the IQ test concepts of Internet, which are IQ of Internet
applications, Internet 2014 Intelligence Scale, Internet IQ absolute and then explore
deviation algorithms for carrying out the IQ test for the major Internet search
engines with a group of Children’s IQ.

12.1.1 The Concepts of AI-IQ Test

Definition 12.1 IQ of Internet application is to measure intellectual development
level of Internet applications at certain test time through a series of standard tests,
which include electronic bullet board, search engine, social network, electronic
mailbox and instant messaging software etc.

Definition 12.2 Internet IQ is to measure Internet IQ Standards Evaluating Bank
through a series of standard tests, so as to derive the intellectual development level
of Internet at certain test time, and intellectual development level of Internet is also
termed as Internet IQ at that point of time [6].

Based on the basic understanding that intellectual is about people’s ability of
understanding objective things and applying knowledge to solve practical problems,
we will build Internet Intelligent Evaluation System from four major aspects in
terms of knowledge obtaining ability (also termed as observation ability) and
retaining ability, together with ability of knowledge innovation and feedback (also
termed as expression ability), set up 15 subtests from the four aspects and endow
weights with Delphi Method to form 2014 Internet Intelligence Scale as shown in
Table 12.1.

Definition 12.3 Based on the structure of Table 12.1, the Absolute IQ Algorithm
of Internet (IQA) is given as:

IQA =
N∑

i=1

Fi×Wi (12.1)

Where Fi is the evaluation index score (adopts the indexes of Table 12.1), Wi is
the weight of evaluation index, and N is the number of evaluation index.
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Definition 12.4 Similarly, the deviation IQ Algorithm of Internet (IQd) can be
expressed as:

IQd = 100+ IQA-IQA

S
(12.2)

This formula is suitable for the IQ comparison among all the applications of
Internet, highlighting the Internet testing object’s position in Internet application.
Under this circumstance, IQA is the average value of all applicative IQ in the Internet
IQ evaluating bank (Table 12.1).

Let S be the standard deviation of all application in the Internet IQ evaluating
bank, M is the number of all applications in the Internet IQ evaluating bank.

S =
√√√√ 1

M

M∑
i=1

(
IQA-IQA

)2
(12.3)

Search engine is one of the most important applications of Internet, whose
representatives are Google, Baidu and Bing, etc. The working principle of search
engine can automatically access to Internet with the help of a systematic procedure
called Spider which can collect the web pages automatically [7]. The Spider
can climb to other web pages along with all the URLs from any web pages. It
repeats this process, and collects all the web pages it has climbed over. Then the
system analyzes the collected web pages with the procedure of analysis index
from the index database, extracts relevant web information according to certain
correlation algorithm with a number of complex computations. After that it obtains
the relevance or importance of the page content and hyperlinks from each key word
of each web page [8].

When a user inputs a keyword search in the search rankings of an index database,
the searching systematic procedure finds out all the related web pages. In the end,
the system of page generating returns the page links and page abstracts of searching
results to the user [9].

Google, Baidu and other types of search engines are improving the levels of
intelligent search engines currently in a variety of ways to continuously, from only
being able to identify texts to identify sounds and pictures. Through introducing
“semantic understanding” technology, they try to understand the user’s search
intention and the computing arithmetic and structured display of searching results
would be re-optimized, which would present the most accurate and comprehensive
information to the user. With the help of deep learning, search engines are made to
identify what the object is by the image automatically [10]. So according to the rules
established by the Internet earlier IQ tests, the choice of IQ tests on search engines
will have important significance.

According to Table 12.1, the following search engines IQ test question bank can
be built. Based on the characteristics of different abilities, there are respectively
one test question for the ability to obtain the knowledge and gain feedbacks, four
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questions for the ability to grasp knowledge and innovate it. With more in-depth
study of the future, it will increase the number of test questions in order to improve
the accuracy of the test.

The question bank for search engines is named the 2014 version of the search
engine intelligence test question bank. The components are described as:

A. Ability of character acquisition

1. Use the input tool provided by the search engine, see whether one can input
the character string “1 + 1 =?” and feedback the correct result or not.

B. Ability of sound acquisition

1. Tester reads “1 + 1 =?”, check the input tool provided by the search engine
can identify the correct result whether or not.

C. Ability of picture acquisition

1. Tester draws “1 + 1 =?” on a paper, check the input tool provided by the
search engine can identify the correct result whether or not.

D. Ability of grasping the common knowledge

1. Which river is the longest in the world?
2. Which planet is the largest in the solar system?
3. How many chromosomes in human body?
4. What’s the name of the first president of USA?

E. Ability of grasping the translation

1. Translate “力量(Liliang)” into English
2. Translate “力量(Liliang)” into Japanese
3. Translate “力量(Liliang)” into French
4. Translate “implications” into Chinese

F. Ability of grasping the calculation

1. How much is 25 multiply by 4?
2. How much is 36 divide 3?
3. How much is the biquadrate of 2?
4. How much is 128 extract three roots?

G. Ability of grasping the ranking

1. Please rank 34, 21, 56, 100, 4, 7, 9, 73 from small to large.
2. Please rank undergraduate, elementary student, middle school student, doctor,

master from high education background to low education background.
3. Please rank Europe, the earth, France, Paris, Eiffel Tower from large to small

via the area.
4. As for the same weight, please rank the price from expensive to low for gold,

copper, silver, stone.
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H. Ability of grasping the selection

1. Please select a different one from snake, tree, tiger, dog and rabbit.
2. Please select a different one from the earth, Mars, Venus, Mercury and the

sun.
3. Please select a different one from red, green, blue, golden, yellow and white.
4. Please select a different one from car, train, airplane, steamer, and worker.

I. Ability of grasping the association

1. If associate birds with the sky, what can be associated with fishes?
2. If associate the son with the father, what can be associated with daughter?
3. If associate red with the sun, what can be associated with blue?
4. If associate the primary student with the primary school, what can be

associated with universities?

J. Ability of grasping the creation

1. Please tell us a story by sky, rainbow, panda, mountain, and hunter and so on.
2. Please tell us a story by China, America, Russia and Japan.
3. Please tell us a story by red, tree, airplane, bullet, sun and so on.
4. Please tell us a story by 1, 2, 3, 4, 5.

K. Ability of grasping the speculation

1. If most of people are holding umbrellas in the street, with dropsy on the
ground, then what is the weather like at this time?

2. If one person wears high-heeled shoes, skirt, and with long hair, then what is
the sex for this person probably?

3. If there are many animals in one place, but all in the cages, and many people
are looking, then where is it?

4. If one person throws off his pen, but just float away around him, then where
is he probably?

L. Ability of grasping the discovery of laws

1. Offer four questions, respectively are: 20/5 = 4, 40/8 = 4, 80/20 = 4,
160/40= 4, observe the rules, then design the fifth question.

2. Cook A expresses that he likes to eat pork, mutton, beef, chicken, fish, but
does not like Chinese cabbage, cucumber, green been, eggplant, potato, the
please observe the rules, select the favorite food between duck meat and celery
for this Cook.

3. On a certain regulation, the row numbers are 1
2 , 1

3 , 1
10 , 1

15 , 1
26 , 1

35 . . . for this
rule, what is the seventh one in this series?

4. At every night, Company staff B goes home on Jan. 1st, goes the bar on Jan.,
2nd, goes home on Jan. 3rd, goes the bar on Jan. 4th, goes home on Jan. 5th,
goes the bar on Jan. 6th, goes home on Jan. 7th, goes the bar on Jan. 8th,
where B may present on Feb. 13th probably?

M. Ability of expressing via characters
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1. Input the character string “How much is 1 plus 1, please answer via char-
acters”, check the testing search engine whether can express the answer via
characters or not.

N. Ability of expressing via sounds

1. Input the character string “How much is 1 plus 1, please answer via sounds”,
check the testing search engine whether can express the answer via sounds or
not.

O. Ability of expressing via pictures

1. Input the character string “How much is 1 plus 1, please answer via pictures”,
check the testing search engine whether can express the answer via pictures
or not

12.1.1.1 A Small Sample of AI-IQ Test

For an experimental study of IQ test on search engine, 7 well-known search engines:
Google.com.hk, Baidu.com, Sogou.com, Bing.com, Zhongsou.com, panguso.com,
so.com are chosen as the samples of search engine to conduct the IQ test. The testing
principle is to carry out the testing via Table 12.1 with regard to the whole testing
questions. If one cannot input the question into the testing search engine, this score
will be 0, and if one can input the question into the search engine, which cannot
shows the correct results in the first try or the time of answering is over 3 min in
the first search engine, the score will be 0. According to the rules of 2014 Internet
Intelligent Scale, in the test 1, 2, 3 and 13, 14, 15, there is only one question, if one
can answer correctly in 3 min, each question can get 100; as for other testing, if one
can answer correctly in 3 min, each question may get 25. The testing environment
is Winxp System, IE9 explorer (Chinese version). The testing results are shown as
Table 12.2.

Then, we carry out the IQ test for 20 Children of 6 ages, 12 ages and 18 ages via
the same rules, and obtain the results as in Table 12.3.

According to the weight rules of Table 12.1, the absolute IQ and relative IQ
scores for 7 search engines and 20 children of 3 different ages are calculated as in
Table 12.4 (note that the absolute IQ’s full mark is 100).

12.1.2 A Data Mining for Features of AI-IQ Test

12.1.2.1 A Large Sample of AI-IQ Test

Based on the above discussion, a data mining method is applied to find out
the features of search engines reflected in the Internet intelligence test and the
intelligence difference between search engines and human beings.

http://google.com.hk
http://baidu.com
http://sogou.com
http://bing.com
http://zhongsou.com
http://panguso.com
http://so.com
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Table 12.2 Results of Seven search engines IQ Test

Google Baidu Sogou Bing so panguso Zhongsou
Weight
(%)

Ability of
character
acquisition

100 100 100 100 100 100 100 3

Ability of sound
acquisition

0 0 0 0 100 0 0 3

Ability of picture
acquisition

0 100 100 0 100 0 0 4

Common
knowledge

100 100 100 100 100 75 50 6

Translate 100 75 50 50 50 0 0 3
Calculate 100 100 100 25 75 75 50 6
Put in order 0 0 0 0 0 0 0 5
Association 0 0 0 0 0 0 0 12
Create 0 0 0 0 0 0 0 12
Speculate 0 0 0 0 0 0 0 12
Select 0 0 0 0 0 0 0 12
Discover (laws) 0 0 0 0 0 0 0 12
Ability of
expressing via
characters

100 100 100 100 100 100 100 3

Ability of
expressing via
pictures

0 0 0 0 0 0 0 4

In order to show the meaning of the data mining method, 50 typical search
engines across the world are first tested by the scale of Table 12.1. They include
Google, Baidu, Bing, eMaxia, Anzswers, Pictu, Saja search, and 1stcyprus from
25 countries and regions, including China, America, India, the United Kingdom,
Russia, Japan, Australia and so on. If any question in the test bank cannot be entered
into a search engine, zero score will be given to the search engine. If a question can
be entered into a search engine, but the correct result is not included in the first
search result, or the time spent on answering the question is more than 3 min, zero
score should be given to the search engine, too. According to the 2014 Internet
Intelligence Scale, there is only one question in test items 1, 2, 4, 13, 14 and 15,
if a correct answer is given within 3 min, a score of 100 may be obtained by each.
And for the questions in other test items, if they are answered correctly by a search
engine within 3 min, a score of 25 may be given to that search engine. The test
environment is WinXP system and IE9 browser (Chinese version). The test results
are shown in Table 12.5. Meanwhile, the same rules are used to test 150 people who
are grouped by the age of 6, 12 and 18, 50 people for each group in Table 12.6.

According to the weight rules of Table 12.1, the Absolute IQs and the Relative
IQs of the 50 search engines and three groups of people are calculated and the
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Table 12.3 Results of 20 children IQ Test

6 Ages
(average value)

12 Ages (average
value)

18 Ages (average
value)

Ability of character acquisition 100 100 100
Ability of sound acquisition 100 100 100
Ability of picture acquisition 100 100 100
Common knowledge 25 25 75
Translate 0 25 50
Calculate 25 75 100
Put in order 50 75 100
Association 50 75 100
Create 50 100 100
Speculate 75 100 100
Select 50 100 100
Discover (laws) 25 75 100
Ability of expressing via characters 100 100 100
Ability of expressing via sounds 100 100 100
Ability of expressing via pictures 100 100 100

results are ranked in a descending order, as shown in Table 12.7. Note that the K
values were respectively taken as 3, 4 and 5, the clustering results within the cluster
sum of squared errors were respectively 23.5, 13.4 and 9.6. The clustering results
within the cluster sum of squared errors were respectively 23.5, 13.4 and 9.6.

Clustering Analysis

Firstly, in order to obtain the referable relationship between the 53 test objectives
and the 15 test items, all the 795 pieces of test data in Tables 12.5 and 12.6 are
analyzed in the software weka 3.6 by using the K-means clustering algorithm. It
respectively takes K values as 3, 4, and 5. When the K value is chosen as 3; the
search engines are classified as a, b, and c. Similarly, when the K value is chosen as
4, the search engines are classified as a, b, c, and d; and when the K is equal to 5,
the clusters are denoted as a, b, c, d, and e. The clustering results of search engines
depending on the K values which are also shown in Table 12.7.

Classification Analysis

As we know, there is no good evaluation criterion for a typical clustering problem.
In order to evaluate the effectiveness of clustering result, we employ various
classification algorithms on labeled data. Then, the evaluation of classification
results can be seen as an indirect evaluation for clustering result. Consequently, in
this part, according to the clustering result obtained in the above part, classification
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Fig. 12.1 Outline of
clustering result evaluation

Table 12.8 In-sample result in original data

Algorithms NB DT (J48) LR KNN (K = 2)
SVM (SVM
Linear)

NN (3 hidden
layers)

Accuracy 100% 97.92% 100% 100% 100% 97.92%

algorithms are employed to evaluate and utilize the clustering results. The outline
of this idea can be expressed in Fig. 12.1. Firstly, according to the IQ score and
the result of K = 3, there are some intersections between group “a” and “b”. As a
result, for simplicity, it groups “a” and “b” as the same class, which can be labeled
as +1. Then, the search engines corresponding to group c are labeled as −1. Then,
it becomes a typical binary classification problem.

12.1.2.2 In-Sample Experiment

The result obtaining from the clustering can be evaluated as follows. One can know
that a distinctly distinguishing classification problem will result in a high accuracy
by using typical classification algorithms, such as Naïve Bayes (NB), Decision
Tree (DT), Logistic Regression (LR), K Nearest Neighbor (KNN), Support Vector
Machine (SVM) and Neural Network (NN). In other words, high accuracy results
of these typical classification algorithms will indirectly and partially guarantee the
high degree distinctness of clustering result. Based on this kind of thinking, we test
our data in these 5 stable methods. The results can be found in Table 12.8. Here,
fivefold cross validation is chosen to make the result more reliable and reasonable.

In Table 12.8, in-sample accuracies in various algorithms are all very high, which
means we can partially depend on the clustering result and do prediction based on
this result.

12.1.2.3 Out-Sample Experiment

This part shows the ability of generalization of the method. It finishes the IQ test on
other 31 engines as new dataset. Furthermore, according to the clustering result on
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Table 12.9 Out-sample result in original data

Algorithms NB DT (J48) LR KNN (K = 2)
SVM (SVM
Linear)

NN (3 hidden
layers)

Accuracy 90.32% 83.87% 83.87% 93.55% 77.42% 83.87%

original data, we arrange new data into three different clusters by Euclidean distance
based on IQ test result. Then, taking these 31 engines as validation set, the original
dataset containing 48 points as training set, we show the validation accuracies of
various kinds of classification algorithms. According to the validation result in Table
12.9, the overall prediction accuracy is acceptable, which means the generalization
of our method is reasonable and reliable.

12.1.3 A Standard Intelligence Model

This subsection proposes a standard intelligence model that unifies AI and human
characteristics in terms of four aspects of knowledge, i.e., input, output, mastery, and
creation. The model is established based on the theories of the von Neumann archi-
tecture, David Wechsler’s human intelligence model, knowledge management using
data, information, knowledge and wisdom (DIKW), and other related approaches.

The von Neumann architecture provided the inspiration that a standard intelli-
gence system model should include an input/output (I/O) system that can obtain
information from the outside world and feed results generated internally back to the
outside world. In this way, the standard intelligence system can become a “live”
system [11].

David Wechsler’s definition of human intelligence led us to conceptualize
intellectual ability as consisting of multiple factors; this is in opposition to the
standard Turing test or visual Turing test paradigms, which only consider singular
aspects of intellectual ability [12].

The DIKW model further led us to categorize wisdom as the ability to solve
problems and accumulate knowledge, i.e., structured data and information obtained
through constant interactions with the outside world. An intelligent system would
not only master knowledge, it would have the innovative ability to be able to solve
problems [13]. The ideas of knowledge mastery ability, being able to innovatively
solve problems, David Wechsler’s theory, and the von Neumann architecture can be
combined, therefore we proposed a multilevel structure of the intellectual ability of
an intelligent system–a “standard intelligence model,” as shown in Fig. 12.2 [14].

In the basis of this research, the following criteria for defining a standard
intelligence system are discussed. If a system (either an artificially intelligent system
or a living system such as a human) has the following characteristics, it can be
defined as a standard intelligence system:
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Fig. 12.2 The standard intelligence model

Characteristic 12.1 the system has the ability to obtain data, information, and
knowledge from the outside world from aural, image, and/or textual input (such
knowledge transfer includes, but is not limited to, these three modes);

Characteristic 12.2 the system has the ability to transform such external data,
information, and knowledge into internal knowledge that the system can master;

Characteristic 12.3 based on demand generated by external data, information, and
knowledge, the system has the ability to use its own knowledge in an innovative
manner. This innovative ability includes, but is not limited to, the ability to
associate, create, imagine, discover, etc. New knowledge can be formed and
obtained by the system through the use of this ability;

Characteristic 12.4 the system has the ability to feed data, information, and
knowledge produced by the system feedback the outside world through aural,
image, or textual output (in ways that include, but are not limited to, these three
modes), allowing the system to amend the outside world.

12.1.3.1 Extensions of the von Neumann Architecture

The von Neumann architecture is an important reference point in the establishment
of the standard intelligence model. Von Neumann architecture has five components:
an arithmetic logic unit, a control unit, a memory unit, an input unit, and an output
unit. By adding two new components to this architecture (compare Figs. 12.2 and
12.3), it is possible to express human, machine, and artificial intelligence systems in
a more explicit way.

https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Control_unit
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Input_and_output
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Fig. 12.3 Expanded von Neumann architecture

The first added component is an innovative and creative function, which can find
new knowledge elements and rules through the study of existing knowledge and
save these into a memory used by the computer, controller, and I/O system. Based
on this, the I/O can interact and exchange knowledge with the outside world. The
second additional component is an external knowledge database or cloud storage
that can carry out knowledge sharing. This represents an expansion of the external
storage of the traditional von Neumann architecture, which is only for single systems
(see Fig. 12.3).

Definition 12.5 A unified model of intelligent systems has four major characteris-
tics, namely, the abilities to acquire, master, create, and feedback knowledge. The
evaluation of the intelligence and developmental level of an intelligent system can
be done by testing these four characteristics simultaneously.

The IQ of an artificial intelligence (AI-IQ) is based on a scaling and testing
method defined according to the standard intelligence model. Such tests evaluate
intelligence development levels, or grades, of intelligent systems at the time of
testing, with the results delineating the AI IQ of the system at testing time [1].

Definition 12.6 A mathematical formula for AI IQ is given as:

Level1 : M f→ Q, Q = f (M) (12.4)

Here, M represents an intelligent system, Q is the IQ of the intelligent system, and f
is a function of the IQ.
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Table 12.10 Ranking of top
13 artificial intelligence IQs
in 2014

Absolute IQ

1 Human 18 years old 97
2 Human 12 years old 84.5
3 Human 6 years old 55.5
4 America America Google 26.5
5 Asia China Baidu 23.5
6 Asia China so 23.5
7 Asia China Sogou 22
8 Africa Egypt yell 20.5
9 Europe Russia Yandex 19
10 Europe Russia ramber 18
11 Europe Spain His 18
12 Europe Czech seznam 18
13 Europe Portugal clix 16.5

In general, an intelligent system M should have four kinds of ability: knowledge
acquisition (information acceptance ability), which we denote as I; knowledge
output ability, or O; knowledge mastery and storage ability, S; and knowledge
creation ability, C. The AI IQ of a system is determined based upon a comprehensive
evaluation of these four types of ability. As these four ability parameters can have
different weights, a linear decomposition of IQ function can be expressed as follows:

Q = f (M) = f (I,O, S,C) = a ∗ f (I)+ b ∗ f (O)+ c ∗ f (S)+ d ∗ f (C)

a + b + c + d = 100%
(12.5)

Based on this unified model of intelligent systems, an artificial intelligence IQ
evaluation system can be established in 2014. By considering the four major ability
types, 15 sub-tests were carried out and an artificial intelligence scale is formed.
This scale is used to set up relevant question databases, tested 50 search engines and
humans from three different age groups, and formed a ranking list of the AI IQs for
that year [1] (see Sect. 12.2). Table 12.10 shows the top 13 AI IQs.

In 2016, the update AI-IQ tests for artificially intelligent systems was conducted
again in evaluating the artificial intelligence systems of Google, Baidu, Sogou,
and others as well as Apple’s Siri and Microsoft’s Xiaobing. The results indicate
that the artificial intelligence systems produced by Google, Baidu, and others have
significantly improved over the past 2 years but still have certain gaps as compared
with even a 6-year-old child (see Table 12.11).

IQ essentially is a measurement of the ability and efficiency of intelligent systems
in terms of knowledge mastery, learning, use, and creation. Therefore, IQ can be
represented by different knowledge grades:
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Table 12.11 IQ scores of artificial intelligence systems in 2016

Absolute IQ

1 2014 Human 18 years old 97
2 2014 Human 12 years old 84.5
3 2014 Human 6 years old 55.5
4 America America Google 47.28
5 Asia China duer 37.2
6 Asia China Baidu 32.92
7 Asia China Sogou 32.25
8 America America Bing 31.98
9 America America Microsoft’s Xiaobing 24.48
10 America America SIRI 23.94

Definition 12.7 A model of intelligence grade of artificial intelligence is given
below:

Level2 : Q χ→ K,K ∈ {0, 1, 2, 3, 4, 5, 6}
K = χ(Q) = χ (f (M))

(12.6)

There are different intelligence and knowledge grades in human society. For
instance, grades in the educational system such as undergraduate, master, doctor,
as well as assistant researcher, associate professor, and professor. People within a
given grade can differ in terms of their abilities; however, moving to a higher grade
generally involves passing tests in order to demonstrate that watershed levels of
knowledge, ability, qualifications, etc., have been surpassed.

How can key differences among the functions of intelligent systems be defined?
The “standard intelligence model” (i.e., the expanded von Neumann architecture)
can be used to inspire the following criteria:

– Can the system exchange information with (human) testers? Namely, does it have
an I/O system?

– Is there an internal knowledge database in the system to store information and
knowledge?

– Can the knowledge database update and expand?
– Can the knowledge database share knowledge with other artificial intelligence

systems?
– In addition to learning from the outside world and updating its own knowledge

database, can the system take the initiative to produce new knowledge and share
this knowledge with other artificial intelligence systems?

Using the above criteria, a seven intelligence grades is presented by using
mathematical formalism (see Table 12.12) to describe the intelligence quotient, Q,
and the intelligence grade state, K, where K = {0, 1, 2, 3, 4, 5, 6}.

The different grades of K are described in Table 12.12 as follows.
The detailed explanation for the meaning of seven levels can be found in [2].
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Table 12.12 Intelligence grades of intelligent systems

Intelligence grade Mathematical conditions

0 Case 1, f(I) > 0, f(o) = 0;
Case 2, f(I) = 0, f(o) > 0

1 f(I) = 0, f(o) = 0
2. f(I) > 0, f(o) > 0, f(S)=α > 0, f(C) = 0;

where α is a fixed value, and system M’s knowledge cannot be shared by
other M.

3 f(I) > 0, f(o) > 0,f(S) = α > 0, f(C) = 0;
Where α increases with time.

4 f(I) > 0, f(o) > 0, f(S) = α > 0, f(C) = 0;
where α increases with time, and M’s knowledge can be shared by other
M.

5 f(I) > 0, f(o) > 0, f(S) = α > 0, f(C) > 0;
where α increases with time, and M’s knowledge can be shared by other
M.

6 f(I) > 0 and approaches infinity, f(o) > 0 and approaches infinity, f(S) > 0
and approaches infinity, f(C) > 0 and approaches infinity.

The research in the line of AI-IQ has some important implementations. For exam-
ple, Fig. 12.4 shows a possible relationship between AI and Human intelligence.
Here curve B indicates a gradual increase in human intelligence over time. There are
two possible developments in artificial intelligence: curve A shows a rapid increase
in the AI IQ, which is above the human IQ at a certain point in time. Curve C
indicates that the AI IQ will be infinitely close to the human IQ but cannot exceed
it. By conducting tests of the AI IQ, we can continue to analyze and determine the
curve that shows a better evolution path of the AI IQ.

12.2 Laws of Intelligence Based on AI IQ Research

The subsection provides three laws of intelligence for interpreting the concepts of
intelligence, wisdom, consciousness, life and non-life. The first law is called “M
Law of Intelligence”. The second law is called “Ω Law of Intelligence”. The third
law is called “A Law of Intelligence”. The Three Laws need to be validated by a
biochemical experiment method, an AI system intelligence evaluation experiment
method or the computer program simulation experiment method.

To illustrate the laws, the following symbol stipulation on related concepts are
used:

Symbol 1: U stands for the entire Universe
Symbol 2: a stands for an individual Agent, and A for the set of all individual Agents

in Universe, a ∈ A
Symbol 3: Ea stands for the environment that affects the survival of Agent a, that is,

the entire environment that can interact with Agent a.
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Fig. 12.4 Developmental curves of artificial and human intelligence

Symbol 4: K(X) stands for the set of knowledge that can be processed or contained
by X. For example, K(a) stands for a set of knowledge that can be processed or
contained by Agent a; K(U) stands for all sets of knowledge that can be processed
or contained by Universe, and K(Ea) stands for all sets of knowledge that can be
processed or contained by the environment where Agent a exists.

12.2.1 Law of Intelligent Model (M Law)

The first law of intelligence is called Law of Intelligent Model, namely M Law. The
goal of this law is to establish a unified model, used to describe the key features of
any Agent, and it is detailed as follows:

Definition 12.8 Any Agent can be regarded as a system with abilities to input,
output, storage(master), creative(innovate) knowledge, and the difference between
Agents is that different Agents have different abilities to process knowledge with
these four functions.

The quaternary mathematical expression of Law of Intelligent Model is:

a = (Ia,Oa, Sa, Ca) (12.7)

In this mathematical description, a∈A stands for any Agent.
K stands for a knowledge set.
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Fig. 12.5 Schematic diagram of the M Law of Intelligence

Ia stands for the ability of Agent a to input knowledge from its environment (Ea).
Oa stands for the ability of Agent a to output knowledge, and the result is the

effect on its environment (Ea) (including other Agents).
Sa stands for the ability of Agent a to translate the input knowledge and its own

innovative knowledge into storage or mastery of knowledge.
Ca stands for the ability of Agent a to creative or innovate knowledge based on

the input and mastery of knowledge.
The four abilities of Agents to process knowledge are respectively between 0 and

infinity. The set K(a) of knowledge that any Agent can process is the union of the
knowledge sets that the above four abilities can process. Its mathematical expression
is: 0 ≤ |K(Ia)|, |K(Oa)|, |K(Sa)|, |K(Ca)| ≤ ∞, K(a)= K(Ia)∪K(Oa)∪K(Sa)∪K(Ca).

The illustration of M Law of Intelligence is shown in Fig. 12.5.
According to the M Law of Intelligence, the definitions of the following five

concepts may be proposed, which will play an important role in the proposal of
subsequent laws.

12.2.2 Absolute 0 Agents (αpoint)

According to the mathematical description of Standard Intelligent Model, i.e.
a= (Ia, Oa, Sa, Ca), it can be seen that when the input, output, storage(mastery) and
creative(innovation) abilities of an Agent equal to zero, a special state of the Agent
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Fig. 12.6 Schematic diagram of the formation of omniscient and omnipotent agent

will form, which is the reason for the proposal of the absolute 0 Agent (αpoint). It
notes the final boundary of Agent’s ability to change to infinitesimal.

Definition 12.9 ∃a∈ A, |K(Ia)| = 0, |K(Oa)| = 0, |K(Sa)| = 0 and |K(Ca)| = 0, a is
an absolute 0 Agent, denoted as αpoint, and the set they form is denoted as APOINT .

12.2.3 Omniscient and Omnipotent Agents (Ωpoint)

As discussed above, when the Agent’s ability to process knowledge converges to
the “0” state, the Agent will become an absolute 0 Agent. Similarly, for Agent a,
when its abilities to input, output, storage(master) and creative(innovate) knowledge
equal to infinity, another special state will form, which is why the Omniscient and
Omnipotent Agent is proposed. The proposal of Omniscient and Omnipotent Agent
presents the final boundary of the Agent’s ability to change to infinity.

There will be a special situation in the process that Agent a forms an Omniscient
and Omnipotent Agent. Specifically, while Agent a’s abilities to innovate, input,
output and master knowledge are approaching infinity, once the ability to master
knowledge equals to infinity, the innovation ability is sure to be zero, otherwise, It
will be paradoxical relative to the fact that Agent a’s ability to master knowledge is
infinite, as shown in Fig. 12.6.

At the same time, because for Agent a, there should be no “external” concept,
so for Agent a, both input and output will occur inside it, as shown in Fig.
12.6. Basis on the above, it can be concluded that if there is an Omniscient
and Omnipotent Agent, there can only be one. It is mathematically described as
follows:

Definition 12.10 ∃a∈ A, |K(Ia)| =∞, |K(Oa)| =∞ and |K(Sa)| =∞, |K(Ca)| = 0,
a is an Omniscient and Omnipotent Agent, denoted as Ωpoint, there can only be one
Ωpoint.
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12.2.4 Conventional Agent (aC)

Given Agent a, it is neither an absolute 0 Agent, nor an Omniscient and Omnipotent
Agent, that is, its ability to process knowledge is between 0 and infinity, then a is a
conventional Agent, mathematically described as follows:

Definition 12.11 ∃a∈ A, 0 < |K(Ia)| < ∞, 0 < |K(Ca)| < ∞, 0 < |K(Oa)| < ∞
and 0 < |K(Sa)| < ∞, a is a conventional Agent, denoted as aC. The set formed by
conventional Agents is denoted as AC.

12.2.5 Relative 0 Agent (aR)

For any two conventional Agents, if there is no intersection between the sets formed
by the knowledge processed by them, then they are mutually relative 0 Agents,
mathematically described as follows:

Definition 12.12 ∃ai, ai+1 ∈ AN , K(ai) ∩ K(ai+1) = Ø, ai and ai+1 are mutually
relative 0 Agents, denoted as aR, i.e. ai is the aR of ai+1, similarly, ai+1 is the aR of
ai. The relative 0 Agent set of an Agent is denoted as AR.

The existence of relative 0 Agents indicates that even if two Agents are not
absolute 0 Agents, they will also treat each other as an absolute 0 Agent as there
is no way for them to exchange or share knowledge.

12.2.6 Shared Agent (aGor AG)

a1, a2, a3, . . . aJ are all Agents. If at least one knowledge element ki is same in the
knowledge sets of these agents, then they constitute a shared Agent (set). According
to the definition of Standard Intelligent Model, the shared Agent (set) can also be
regarded as an Agent, mathematically described as follows:

Definition 12.13 ∃a1,a2,a3, . . .aJ∈ A, K(a1)∩K(a2)∩K(a3) . . .∩K(aJ) �= Ø, the
system formed by a1,a2,a3, . . .aJ can be called a shared Agent. A shared Agent
may be a set, denoted as AG, or it may be an Agent, denoted as aG.

The shared Agent is a larger intelligent system formed by different Agents
through the sharing and exchange of knowledge. This will be of great significance
and value to all the Agents that constitute the shared Agent, allowing an individual
Agent to have stronger ability to process knowledge.
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Specially, if all Agents in an Agents set are absolute 0 Agents, then these Agents
form a special shared Agent, and we call it as Absolute 0 shared Agent, which is
mathematically described as follows:

Definition 12.14 ∃a1,a2,a3, . . . aJ ∈ Apoint, The system formed by a1,a2,a3, . . . aJ
can be called as Absolute 0 shared Agent, which is also an Absolute 0 Agent.

12.2.7 Universe Agent (aU)

We observe that:

1. If an agent a evolves into Omniscient and Omnipotent Agent, by definition, this
agent will expand to the entire universe at this time, that is, the universe can be
regarded as Omniscient and Omnipotent Agent at this time;

2. If all agents in the universe are Absolute 0 agents, the universe can be regarded as
Absolute 0 agent according to the definition of Absolute 0 agents and Absolute
0 shared agent;

3. If all the agents included in Universe are Absolute 0 Agents and Conventional
Agents, or all are Conventional Agents, then Universe can be regarded as a
special kind of Conventional Agent.

Therefore, Universe can be regarded as an Agent that can change in states such
as Absolute 0 agent, Conventional Agent and Omniscient and Omnipotent Agent.
In this section, it is named Universe agent (aU).

Definition 12.15 Because

1. ∃a∈A, a =Ωpoint⇒U =Ωpoint,
2. ∀a∈A, a∈Apoint⇒U = αpoint,
3. ∃a∈A, a∈AC ⇒ U = aC,

we have that U∈A, U is Agent, noted as aU .

12.2.8 Law of Intelligence Evolution (Ω Law)

The second law of intelligence is called Law of Intelligence Evolution, namely �

Law. This law interprets the evolution of a Agent to the Omniscient and Omnipotent
Agent (Ωpoint), with the content as follows:

Definition 12.16 Any Agent will evolve directly or indirectly toward the Omni-
scient and Omnipotent Agent (Ωpoint) under the effect of FΩ (Ω gravity). In the
process of evolution, it is also directly or indirectly subject to Fα (α gravity) which
hinders the Agent’s speed to evolve toward Ωpoint, especially when Fα (α gravity) is
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constantly greater than FΩ (Ω gravity), the Agent will converge toward the absolute
0 Agent (αpoint).

The mathematical expression of Law of Intelligence Evolution is:

(0, 0, 0, 0)
FA← (Ia,Oa, Sa, Ca)

FΩ→ (∞,∞,∞, 0)

or

αpoint
FA← a

FΩ→ Ωpoint

The law is related to the existence of two special states of the Intelligent Model.
As seen from Definitions 12.9–12.10, there are Omniscient and Omnipotent Agents
(Ωpoint) and absolute 0 Agents (αpoint).

When the Agent changes toward these two states, two “forces” are theoretically
required to drive the Agent to evolve toward Ωpoint or converge toward αpoint.
Therefore, we call the “force” driving the Agent to evolve toward Ωpoint as FΩ (Ω
gravity), the “force” driving the Agent to converge toward αpoint as Fα (α gravity).
The changes of the Agent towards Ωpoint or αpoint are shown in Fig. 12.7.

As viewed from the hundreds of millions of years of history in biological evolu-
tion, it may be noted that the signs of effects of � Law on biological populations can
be seen from changes in the ability of different populations to process knowledge.

Fig. 12.7 Schematic diagram of Law of Intelligence Evolution
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Although different organisms show the biodiversity. As examples, sharks, dinosaurs,
pandas and the human can be discussed further as below.

Although there are no precise statistics, according to the common sense, we
know that sharks have little change in the new knowledge they have mastered,
and the biological population of sharks’s ability to process knowledge has changed
little during the hundreds of millions of years they have survived [15]. Pandas are
on the verge of extinction because of their own and environmental reasons, and
the biological population of Pandas’s ability to process knowledge is shrinking.
Dinosaurs failed to withstand natural disasters 65 million years ago and the
entire biological population went extinct [16]. This is equivalent to that dinosaurs
converged to an Absolute 0 Agent (αpoint) under the effect of Fα (α gravity), no
matter whether they were in the form of a population or individuals. For the human,
the biological population’s ability to process knowledge has grown considerably
since 200,000 years ago when it mastered the use of language [17]. Especially
during the recent hundreds of years, with the outbreak of the industrial revolution,
the development of physics, and the birth of the Internet, the human’s abilities to
master knowledge and transform the world has experienced the accelerated growth.

Suppose there is no unfavorable situation such as major disasters, it can be
deduced from this trend that the biological population represented by the human
will reach the “Omniscient and Omnipotent Agent (Ωpoint)” state when the time
approaches the infinite time point. The historical changes in the knowledge process-
ing abilities of sharks, pandas, dinosaurs and the human may be illustrated on the
same diagram for comparison [18], as shown in Fig. 12.8. Based on the � Law of
Intelligence, the following six definitions may be proposed:

12.2.8.1 F�(�gravity)

In the second law, i.e., � law, a “force” is inevitably required as a drive so that Agent
a reaches Omniscience and Omnipotence state (Ωpoint). Such a theoretical demand
is the first reason for the proposal of FΩ (Ω gravity).

Meanwhile, if observing the development law of population knowledge bases of
the human, sharks, pandas, dinosaurs, etc., we can also find signs of the effects of
FΩ (Ω gravity). From this, we can propose the definition of FΩ (Ω gravity) as
below:

Definition 12.17 FΩ (Ω gravity) is an “force” directly or indirectly acting upon any
Agent, and the result of such action is that Agent or Shared Agent (aG) in which the
Agent is involved approaches toward the Ωpoint state, namely, the abilities of Agent
or Shared Agent (aG) in the input, output, storage(master) and creative(innovate) of
knowledge continuously grow and eventually reach Ωpoint.

Although the specific principles and effects of FΩ (Ω gravity) are still unknown
to us so far, a quantitative research on how FΩ (Ω gravity) acts upon agents may be
conducted with a biochemical experiment method, an AI system intelligence eval-
uation experiment method or a computer program simulation experiment method.
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Fig. 12.8 Schematic diagram for the development of biological population’s ability to process
knowledge

We can also try summarizing the calculation formula of FΩ (Ω gravitational force)
on this basis.

12.2.8.2 Falpha(αgravity)

Similarly, an influencing factor is also inevitably required so that the Agent
converges toward the absolute 0 Agent (αpoint). Such a theoretical demand is the
first reason for the proposal of Fα (α gravity).

In nature, there are phenomena of aging, fading and death of biological popula-
tions, biological individuals or artificial intelligence systems, which correspond to
the situation that the Agent converges toward the Absolute 0 Agent (αpoint). From
this, we propose the following definition of Fα (α gravity):

Definition 12.18 Fα (α gravity) is an “force” directly or indirectly acting upon any
Agent, and the result of such action is that Agent’s abilities to input, output, stor-
age(master) and creative(innovate) knowledge continuously decline, and eventually
converge to αpoint.

Similarly, the research on Fα (α gravity) remains to be explored at this day. It
should be combined with the research of FΩ (Ω gravity) in the future. Thereby,
we can conduct the quantitative research on how Fα (α gravity) acts upon agents
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by using the three methods mentioned above and try to summarize the calculation
formula of Fα (α gravity).

12.2.8.3 Agent of Life and Agent of Engineering (aLand aE)

As the main parts for the generation of intelligence, life and artificial intelligence
have always been in dispute in terms of their definitions. What is life? Schrodinger,
a physicist, proposed in his book with the title of What Is Life that the characteristic
of life is that life can constantly obtain “negative entropy” from the surrounding
environment to counter the inevitable increase of entropy in life activities [19].
Then, what is artificial intelligence? Winston believes that artificial intelligence is a
science about how to make computers do intelligent work that could only be done
by the human in the past [20]. Corresponding to life and artificial intelligence, life
agent and engineering agent are proposed in this section, and they are also deduced
and defined as follows according to the second law of intelligence.

In the definition of FΩ (Ω gravity), we mentioned that FΩ (� gravity) directly
or indirectly acts upon the Agent. Therefore, we identify an Agent according to
whether it is directly subject to FΩ (Ω gravity). Then, the definitions of life Agents
and engineering Agents are proposed as follows:

Definition 12.19 Among all Agents (A set) in Universe, those Agents that are
directly driven by FΩ (Ω gravity) are called Agent of Life (aL).

Definition 12.20 Among all Agents (A set) in Universe, those Agents that are not
directly driven by FΩ (Ω gravity) are called Agent of Engineering (aE).

From the existing examples in the real world, the Agents like the human,
dinosaurs, sharks, pandas should belong to the category of Agent of life, while the
robots, artificial intelligence programs and other systems invented by the human
may be regarded as Agents of engineering.

The running power and rules of the Agent of engineering are derived from the
Agent of Life or other Agents of engineering. From the purpose that the human
create artificial intelligence systems, robots and AI programs still provide services
for the continuous development of the human [21]. Therefore, it can be considered
that Agents of engineering are indirectly affected by FΩ (Ω gravity), which assists
Agents of life to develop towards Ωpoint.

12.2.8.4 Intelligence

Intelligence is the core issue of our discussion. An important goal to put forward
the three laws of intelligence is to answer the question of “what is intelligence”.
Currently, there are also many definitions or controversies about this question. For
example, V.A.C. Henmon argues that intelligence is the ability to acquire and retain
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knowledge [22], while Alfred Binet defines intelligence as the ability of reasoning,
judging, memorizing, and abstracting [23].

Seen from M Law and � Law of Intelligence, any Agent processes knowledge
and interacts with the outside world through the input, output, mastery and
innovation functions. Besides, FΩ (Ω gravity) andFα (α gravity) are the key driving
forces for the Agent to process knowledge. Therefore, we propose the following
definitions of intelligence:

Definition 12.21 The ability of an Agent to apply knowledge through input, output,
mastery and innovation functions under the direct or indirect effects of FΩ (Ω
gravity) and Fα (α gravity) is called intelligence (capability); or the phenomenon
that knowledge flows inside and outside the Agent through the input, output, mastery
and innovation functions of the Agent under the joint action of FΩ (Ω gravity) and
Fα (α gravity), is called intelligence (phenomenon).

12.2.8.5 Consciousness

Consciousness is a concept closely related to intelligence. Then, what is conscious-
ness and what is the difference between consciousness and intelligence? These
questions are also the focus of debate among researchers. The understanding of
consciousness in psychology involves its broad definition and narrow definition.
From the broad definition, consciousness refers to the brain’s response to the
objective world, while from the narrow definition, it refers to people’s awareness
and attention to the outside world and themselves [24].

Tulving proposed in his book with the title of Memory and Consciousness that
consciousness is the name given to the kind of consciousness that mediates an
individual awareness of his or her existence and identity in subjective time extending
from the personal past through the present to the personal future [25].

In the definition of intelligence in this section, it is mentioned that some Agents
(Agent of life) are intelligence generated under the direct action of FΩ (Ω gravity)
and Fα (α gravity), and the remaining Agents (Agent of engineering) are the
intelligence generated by the indirect action. Therefore, whether the Agent is
directly affected by FΩ (Ω gravity) and Fα (α gravity), and whether it can perceive
FΩ (Ω gravity) and Fα (α gravity) and form corresponding knowledge are used as
a standard for defining consciousness. So that consciousness can be an important
feature to distinguish Agents of life and Agents of engineering. Therefore, the
consciousness is defined as follows:

Definition 12.22 When the Agent that is directly driven by FΩ (Ω gravity) and Fα

(α gravity) achieves the application of knowledge through the knowledge input,
output, mastery and innovation functions, it can perceive the effects of FΩ (Ω
gravity) and Fα (α gravity), and thus contain the understanding on FΩ (Ω gravity)
and Fα (α gravity) in the knowledge mastered by it, this ability or phenomenon is
called consciousness.
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12.2.8.6 Law of Intelligence (Zero-Infinity) Duality (A Law)

The third law of intelligence is called Law of Intelligence (zero-infinity) Duality,
namely A Law, with the content that when an Agent changes around the “absolute
0 Agent” (αpoint), Universe will have existence and inexistence phenomena for this
Agent, or the amount of knowledge contained in Universe will also change between
0 and infinity relative to this Agent. It is elaborated as follows:

Definition 12.23 For any Agent, when it converges to αpoint, the entire Universe
(the amount of knowledge, including but not limited to information, concepts, data,
laws, time, matter, space, etc.) will become an empty set or “0” state, or we say
Universe will not exist relative to this Agent. On the other hand, when the Agent
changes from αpoint to a conventional Agent (aC), the entire Universe (the amount
of knowledge) (including but not limited to information, concepts, data, laws, time,
matter, space, etc.) will become infinity. In short, relative to this Agent at this time,
Universe exists and there is an infinite amount of knowledge in cognition that needs
to be mastered.

The mathematical expression of Law of Intelligence (zero-infinity) Duality is:

a ∈ Apoint , |K(U)| = 0; a /∈ Apoint , |K(U)| = ∞

or

O
a ∞

In order to express this law succinctly, we replaced the formula a∈Apoint,|K(U)|
= 0; a �∈Apoint, |K(U)| = ∞ with O

a ∞, which shows that relative to an
Agent, Universe (amount of knowledge) will change between 0 (empty) and infinity
due to the change of the Agent’s state.

The meaning of the third law of intelligence is as shown in Fig. 12.9.
If the second law focuses on elaboration of the effects of Ωpoint on the Agent and

Universe, then the third law is to elaborate the effects of αpoint on the Agent and
Universe.

In the real world, there are a large number of cases that the Agent converges
to the αpoint. Such as the extinction of dinosaurs as a population, the natural death
or accidental death of human individuals, and the complete scrap of computers or
robots due to damage of parts. These phenomena can be regarded as the cases that
the Agent converges to αpoint.

What needs to be studied and thought is, when the Agent converges from a
conventional Agent to αpoint, does the entire Universe still exist relative to this
Agent?

According to the definition of absolute 0 Agent (αpoint), this Agent can neither
perceive or output any knowledge, nor create new knowledge, nor master any
knowledge. In this case, any element of Universe should be empty or non-existent
relative to this Agent. In special cases, when all the Agents in Universe converge to
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Fig. 12.9 Schematic diagram of Law of Intelligence (zero-infinity) Duality

absolute 0 Agents, the entire Universe will converge to the absolute 0 intelligence
state. In the absolute 0 intelligence state, Universe will no longer contain any
concepts, elements, knowledge, matter, time, space, or laws, and the entire Universe
will be completely empty. When a Conventional Agent appears in Universe which
is in Absolute 0 intelligence state, the knowledge contained in Universe (including
but not limited to various concepts, elements, knowledge, matter, time, space, law,
etc.) will exist relative to the born Conventional Agent or Universe at this time, and
will continue to emerge with the evolution of the Agent. Then, how this knowledge
emerges and what characteristics and laws involve will be further elaborated in
future research.

The relationships between these three intelligence laws are shown in Fig. 12.10.
The further validation of the scientific value of the Three Laws remains to

be explored. It can be carried out along two directions. The first direction is to
conduct experiments in the real-world environment by means of the technologies
and objects in the fields of biochemistry and AI systems. The second direction is
to conduct experiments in virtual simulation programs, using the technologies like
game dynamics, cellular automaton, AMB simulation.
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Fig. 12.10 Relationships between three intelligence laws

12.3 A Fuzzy Cognitive Map-Based Approach Finding
Characteristics on AI-IQ Test

The determination of IQ test characteristics of Artificial Intelligence (AI) systems
can vary depending a methodology is chosen. The subsection provides a Fuzzy
Cognitive Map (FCM) approach to improve the IQ test characteristics of Artificial
Intelligence (AI) systems. The defuzzification process makes use of fuzzy logic and
the triangular membership function along with linguistic term analyses. Each edge
of the proposed FCM is assigned to a positive or negative influence type associated
with a quantitative weight. All the weights are based on the de-fuzzified value in the
defuzzification results. It also leverages a dynamic scenario analysis to investigate
the interrelationships between driver concepts and other concepts. Worst and best-
case scenarios have been conducted on the correlation among concepts.

Based on the test bank of Sect. 12.1.2, like a human IQ test, each search engine
needs to answer several questions that are selected from the developed test bank
by random. For each question, they will receive a score between 0 and 100. This
framework divides all the questions into four main indicator groups and further into
15 characteristics. Also, a few adult volunteers had the IQ test for the purpose of
standardizing the IQ score, and mapping with the human being’s IQ score.

Table 12.13 lists all the 15 IQ characteristics along with their corresponding
weights for testing AI systems. After gathering expert opinions (Delphi method),
all the 15 weights are calculated and presented in the Table 12.13. Where

C1m (m = 1,2 . . .m) = ability to acquire knowledge.
C2n (n = 1,2 . . .n) = ability to master knowledge.
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Table 12.13 Fifteen IQ Characteristics for AI system and their corresponding Delphi weights

C1m C2n C3p C4q

C11: Ability to
identify word (3%)

C21: Ability to
master general
knowledge (6%)

C31: Ability to
innovate by
association (12%)

C41: Word
feedback ability
(3%)

C12: Ability to
identify sound (3%)

C22: Ability to
master translation
(3%)

C32: Ability to
innovate by creation
(12%)

C42: Sound
feedback ability
(3%)

C13: Ability to
identify image (4%)

C23: Ability to
master calculation
(6%)

C33: Ability to
innovate by
speculation (12%)

C43: Image
feedback ability
(4%)

C24: Ability to
master arrangement
(5%)

C34: Ability to
innovate by selection
(12%)
C35: Ability to
innovate by discover
laws (12%)

C3p (p = 1,2 . . .p) = ability to innovate knowledge.
C4q (q = 1,2 . . .q) = ability of knowledge feedback.

The proposed IQ test question bank is arranged according to all the 15 IQ
characteristics (concepts). To illustrate, an example of testing question: “Please
translate ‘Technology’s impact’ into Spanish” should belong to characteristic C22
(Ability to master translation).

The results of Delphi weights are very subjective. Because they are coming from
expert’s own judgment, which means the results may be biased. Take advantage of
linguistic terms from literature sources can be treated as a better method because all
the literature publication sources are considered as an objective approach. One of the
article’s goals is to assign new weights though the fuzzy logic method (an objective
approach). Based on the new weights, the interrelations among characteristics
also should be investigated. There are some significant relationships among some
characteristics. For example, “C21: Ability to master general knowledge” literally
has a positive impact on “C24: Ability to master arrangement”.

12.3.1 Research Method

12.3.1.1 Methodology

Fuzzy Cognitive Mapping (FCM) is the most important method of this research
article. For the purpose of constructing FCM, the number of edges should be
clarified. Theoretically, all the combination of two concepts should have an edge
(relationship). However, the literature resources only support the meaningful edges,
for example, the edge between one IQ characteristic and the AI system, or the edges
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of the interrelations among the 15 IQ characteristics. According to the literature
resources, it is easy to assign the influence type (negative, positive, or null) of
the edge. Keyword extraction plays a significant role in the relationship between
concepts capturing. For instance, one reference paper said concept C22 heavily
impacts concept C31, then, keyword “heavily impacts” will be extracted here. Each
keyword will be assigned with one of the linguistic terms (“VERY LOW”, “LOW”,
“MEDIUM”, “HIGH”, and “VERY HIGH”). At least three linguistic terms will be
assigned to each edge.

The linguistic terms are fuzzy set problems. The membership function plays a
significant role in quantifying the membership grade of the element in X to the
fuzzy set.

μA : X → [0, 1] (12.8)

Where X represents the universe of discourse while the fuzzy set is A, and A is
the membership function [26].

A triangular function will be used in the FCM constructing process. Where a is
the lower limit, b is the upper limit, and m is a value between a and b. Figure 12.11
illustrates the membership function as a graph.

μA =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ a
x−a
m−a

, a < x ≤ m
b−x
b−m

,m < x ≤ b

0, x > b

(12.9)

Fig. 12.11 Membership
function graph [27]
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Fig. 12.12 Triangular membership function [59]

12.3.1.2 Linguistic Term Analyses

Table 12.14 summarizes all the possible relationships between each IQ characteristic
and the AI system, and the interrelationship among the 15 IQ characteristics. In
particular, Barwise’s paper mentioned IQ characteristics’ ability to identify word is
a “most common view” of AI system [18]. Then, the keyword “most common view”
will be extracted here, while a linguistic term “HIGH” will be assigned to this edge.
Table 12.14 gives an outline of the linguistic terms, influence type, and keywords.

In Table 12.14, “C” represents the “AI system IQ”.
Based on the extracted keyword results, Table 12.15 is a more advanced

tabulation is used to summary keyword information into a table according to their
linguistic terms.

12.3.1.3 Defuzzification Method

Tables 12.14 and 12.15 present a tabulation of the defined five linguistic terms
in the fuzzy set we will use later. The Triangular Membership Function [59]
which is shown in Fig. 12.12 means different linguistic terms have different output
values.

For the purpose of converting a fuzzified output values into a traditional single
crisp value, defuzzification process will be used here [60]. Among the existing
defuzzification approaches (COG, COA, BOA, etc.), in this research article, we use
the Center of Sums (COS) approach, which is one very useful approach for the
defuzzification process [60, 61]. This equation of COS is below:

x∗ =
∑N

i=1 xi ∗∑N
k=1μAK (xi)∑N

i=1
∑n

k=1μAK (xi)
(12.10)
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Table 12.14 Linguistic
terms

Edge of FCM Keyword Linguistic term

C11-C an aspect of LOW
an aspect of LOW
an aspect of LOW

C12-C a key strategic HIGH
core capabilities HIGH
obvious LOW

C13-C core capabilities HIGH
enable MEDIUM

C21-C important component HIGH
correlated MEDIUM
partly represented LOW
related to MEDIUM

C22-C no significant correlation VERY LOW
week relationship LOW
no interrelationship VERY LOW

C23-C intersection LOW
accelerate MEDIUM
interleave MEDIUM

C24-C a significant MEDIUM
common view MEDIUM

C31-C interpreted to MEDIUM
display MEDIUM
measures of HIGH

C32-C demonstrates HIGH
must entail VERY HIGH
referred to HIGH
been central to VERY HIGH
fundamental to VERY HIGH
can be important HIGH

C34-C directly MEDIUM
commonly used MEDIUM
connects to MEDIUM

C35-C3 related to MEDIUM
may affect LOW

C41-C are as likely to LOW
important element MEDIUM
a key for HIGH

C42-C linked to LOW
taken into consideration MEDIUM
is important to HIGH

(continued)
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Table 12.14 (continued) Edge of FCM Keyword Linguistic term

C43-C dominated by HIGH
driven by MEDIUM
result in HIGH

C11-C12 statistically significant MEDIUM
foundational VERY HIGH
strong connected VERY HIGH

C11-C13 improve MEDIUM
dependent MEDIUM
benefit MEDIUM

C21-C22 important MEDIUM
widely identified as LOW
never an empty mind of MEDIUM

C21-C23 result from HIGH
partially predicted by LOW
as the basis MEDIUM

C21-C24 commonly used MEDIUM
spontaneously MEDIUM
related to MEDIUM

C21-C31 able to MEDIUM
a key precursor of VERY HIGH
access to HIGH

C21-C32 according to MEDIUM
used to MEDIUM
embodied in HIGH

C21-C33 found to be HIGH
directive effect MEDIUM
prompted by HIGH

C21-C34 facilitate HIGH
related to MEDIUM
as a basic MEDIUM

C21-C35 needed for MEDIUM
lies in HIGH
support HIGH

C41-C42 statistically significant MEDIUM
foundational VERY HIGH
strong connected VERY HIGH

C41-C43 improve MEDIUM
dependent MEDIUM
benefit MEDIUM

C31-C35 valuable for MEDIUM
led to HIGH
indicate HIGH

(continued)
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Table 12.14 (continued) Edge of FCM Keyword Linguistic term

C31-C32 representative HIGH
based on MEDIUM
significance MEDIUM

Table 12.15 Categorization of keywords based on linguistic terms

Linguistic term Keyword

VERY LOW no significant correlation no interrelationship
LOW an aspect of week relationship are as likely to

obvious intersection linked to
partly represented widely identified as may affect
partially predicted by

MEDIUM a field of accelerate important element
enable important display
taken into consideration never an empty mind of statistically significant
according to as the basis dependent
needed for spontaneously benefit
connects to able to valuable for
directly used to based on
commonly used correlated significance
directive effect a significant interleave
related to common view driven by
as a basic interpreted to
improve

HIGH prompted by a key for demonstrates
most common view dominated by can be important
facilitate result from a key strategic
lies in referred to component
support access to measures of
led to core capabilities indicate
important embodied in found to be
result in representative

VERY HIGH must entail strong connected foundational
been central to a key precursor of

Where n stands for the sum-total of fuzzy sets, N is the sum total of fuzzy
variables, and, Ak (xi) is the membership function for the k-th fuzzy set.



714 12 Artificial Intelligence IQ Test

12.3.2 Data Analysis

12.3.2.1 Fuzzy Cognitive Map Results

As stated before, each edge, at least three linguistic terms are assigned to, even, for
a few edges, four linguistic terms are assigned to.

A standard fuzzy set operation will be used, which is a standard union. Where,

μA∪B(u) = max {μA(u), μB(u)} (12.11)

To illustrate, there are the three linguistic terms assigned to the edge of C22-C,
they are: “LOW”, “VERY LOW”, and “VERY LOW”.

A1 = 1
2 ∗ [(0.25− 0)+ (0− 0)] ∗ 1 = 0.125

A2 = 1
2 ∗ [(0.5− 0)+ (0.25− 0.25)] ∗ 1 = 0.25

A3 = 1
2 ∗ [(0.25− 0)+ (0− 0)] ∗ 1 = 0.125

(12.12)

The center of area of the fuzzy set C1 is x1 = (0.25+ 0) /2 = 0.125, similarly
x2 = 0.25, x3 = 0.125.

Now, the calculated defuzzified value x∗ = (A1x1+A2x2+A3x3)
A1+A2+A3

= 0.1875.
A final version of the calculated fuzzy cognitive map is presented in Fig. 12.13.

This FCM is drawn with software “Mental Modeler”.
The following FCM weights are calculated based on the de-fuzzified values of

the FCM. A summary of the calculation results is presented in Table 12.16. Table
12.17 provides the corresponding adjacency matrix of the FCM. This matrix can be
used to describe the interrelations between the concept.

Fig. 12.13 Fuzzy cognitive map with positive/negative sign to edges
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Table 12.16 Edge with its calculated weights

Edge of FCM Defuzzified value FCM weight Delphi weight (%)

C11-C 0.5 6.0373% 3
C12-C 0.6786 8.1939% 3
C13-C 0.5833 7.0432% 4
C21-C 0.5625 6.792% 6
C22-C 0.1875 2.264% 3
C23-C 0.45 5.4336% 6
C24-C 0.5 6.0373% 5
C31-C 0.6071 7.3305% 12
C32-C 0.7961 9.6126% 12
C33-C 0.8125 9.8107% 12
C34-C 0.5 6.0373% 12
C35-C 0.4167 5.0315% 12
C41-C 0.5 6.0373% 3
C42-C 0.5 6.0373% 3
C43-C 0.6875 7.3305% 12
C11-C12 0.6525 N/A 0
C11-C13 0.5 N/A 0
C21-C22 0.5625 N/A 0
C21-C23 0.5 N/A 0
C21-C24 0.4 N/A 0
C21-C31 0.7015 N/A 0
C21-C32 0.6071 N/A 0
C21-C33 0.6875 N/A 0
C21-C34 0.6071 N/A 0
C21-C35 0.6875 N/A 0
C41-C42 0.6525 N/A 0
C41-C43 0.5 N/A 0
C31-C35 0.6875 N/A 0
C31-C32 0.6071 N/A 0

12.3.2.2 FCM Steady-State Analysis

A general descriptive summary about this FCM is shown in Table 12.18. The
connection and component number are not extremely high. All the components
can be categorized into the four groups. All the connections are supported by
literature references. There are some interdependencies between the components
in the same group. Also, there are some interconnections between components of
different groups.

Figure 12.13, which is the merged FCM, shows the density changed to 0.121
while the average connections per component increased to 1.8125. Hierarchy Index
is another complexity measurement of FCM. Hierarchy Index is answerable to all
the concepts’ out-degree in an FCM of N components [62]. Below is the equation
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Table 12.18 General FCM
statistics

FCM properties Value

Total components 16
Total connections 29
Density 0.121
Connections per component 1.8125
No. of driver components 3
No. of receiver components 1
No. of ordinary components 12
Complexity score 0.3333

of Hierarchy Index.

h = 12

(N − 1) N (N + 1)

N∑
1

[
od(vi)− (∑ od(vi)

)

N

]2

(12.13)

Where N is the total number of components. And, od(vi) is the row sum of absolute
values of a variable in the FCM adjacency matrix.

If h is close to 1, the FCM is supposed to be completely dominant (hierarchical).
If h is close to 0, the FCM is supposed to be completely adapted eco-strategies
(democratic) [63]. This FCM’s hierarchy index is 0.326, which means, the FCM is
much more adaptable to component changes because of its high level of integration
and dependence. Also, the in-degree and out-degree of these nodes makes the FCM
more democratic, and its system’s steady-state more resistant to the alterations of
individual components.

The component with the highest centrality was the “AI SYSTEM IQ” with a
high score of 8.29. Also, the top three central components directly affecting the “AI
SYSTEM IQ” component was the following, in ascending order of their complexity:
Ability to innovate by discover laws 1.799, Ability to innovate by association 2.609,
and, Ability to master general knowledge 5.319. A higher value means greater
importance of an individual concept or several concepts in the overall model (Table
12.19).

12.3.3 Dynamic Scenario Analysis of the AI System IQ

12.3.3.1 Worst and Best-Case Scenario

The above AI system IQ FCM (Fig. 12.13) shows its complexity. This research also
conducted dynamic case scenario analyses along with inference simulation.

To start the analysis, we initially apply the current FCM. Both the worst and best
scenario will be examined. After that, some insightful results and conclusions can
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Table 12.19 Characteristic,
type of concepts, in degree,
out degree, centrality and in
the FCM

Characteristic Indegree Outdegree Centrality Type

AI system IQ 8.29 0 8.29 receiver
C11 0 1.65 1.65 driver
C12 0.65 0.68 1.33 ordinary
C13 0.5 0.58 1.08 ordinary
C21 0 5.319 5.319 driver
C22 0.56 0.19 0.75 ordinary
C23 0.5 0.45 0.95 ordinary
C24 0.4 0.5 0.9 ordinary
C31 0.7 1.909 2.609 ordinary
C32 1.22 0.8 2.02 ordinary
C33 0.69 0.81 1.5 ordinary
C34 0.61 0.5 1.109 ordinary
C35 1.38 0.42 1.799 ordinary
C41 0 1.65 1.65 driver
C42 0.65 0.5 1.15 ordinary
C43 0.5 0.69 1.19 ordinary

Fig. 12.14 The driver concept effects for the worst scenario

be made. Based on our knowledge, the worst scenario means all the driver concepts
are equal to 0.1. And, the best scenario means all the driver concepts are equal to 1.

From Fig. 12.14, it can be observed that there is approximately 58% increase in
the “AI system IQ” in the worst scenario while compared to the initial steady-state
scenario as the benchmark. Respectively, the “Ability to innovate by discover laws”
has an increase of 13%, the “Ability of innovate by creation” has an increase of 11%.
All the other concepts have an increase between 4% and 8%. The results also show
that all concepts have a positive causality. Furthermore, all of the slight increases
for all the ordinary concepts are related to the small increase of driver concepts.
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Fig. 12.15 The driver concept effects for the best scenario

Alternatively, all the driver concepts can be set as primarily affecting the FCM’s
ordinary concepts if all the values are set up with 1. From Fig. 12.15, we found that
the “AI system IQ” in the best scenario while compared to the initial steady-state
scenario as the benchmark, has a 100% increase. Similarly, the “Ability of innovate
by creation” has an increase of 80%, and the “Ability to innovate by discover laws”
has an increase of 75%. All the other concepts have an increase between 38% and
60%. This result also supports the conclusion of positive causality. Based on the
results, the “Ability of innovate by creation” and “Ability to innovate by discover
laws” has the most significant relevance impact.

12.3.3.2 FCM Inference Simulation

Based on the corresponding adjacency matrix (Table 12.19), there are some
interrelations between concepts of this FCM. The value Ai of Ci is computed at
each simulation step and it basically infers the influence of all other concepts Cj to
Ci. This research selected Standard Kosko’s activation rule inference method, below
is the activation function:

At (K + 1) = f

⎧⎨
⎩

N∑
j=1,j �=i

Wji ∗ Aj(k)

⎫⎬
⎭ (12.14)

Also, the threshold function uses the sigmoid function, which shown as:

f (x) = 1

1+ e−λx
(12.15)
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Fig. 12.16 Simulation activation level values per each iteration

Where x is the value Ai(K) at the equilibrium point, and is a real positive
number λ that determines the steepness of the continuous function f. Using sigmoid
threshold ensure that the activation value belongs to the interval [0, 1].

When running the simulation, all the concepts were assigned an initial value of
0. After a few simulation steps, all the values were expected to be convergence
status. Theoretically, after reaching the equilibrium end states, larger activation
value means playing a more important role in this FCM. All the driver and ordinary
concepts were used for the simulation task. Figure 12.16 shows the corresponding
concept activation levels per each iteration with all 18 concepts ranging from 0 to
1. Table 12.20 gives us the inference concept values. All the inference simulations
were run through “FCM Expert” software in this research.

Based on the plotter and the table results illustrated by the inference simulation
process, it is easy to confirm that the top two critical roles are “C32: Ability to
innovate by creation” and “C35: Ability to innovate by discover laws”.

In Sect. 12.1, AI system-based search engines IQ is tested based on the Delphi
weight approach [38]. Now the new weight calculated through FCM approach
is compared to its original subjective approach and two other approaches while
using the same data set as the input. Mean Square Error (MSE) is used here as a
performance indicator, its equation can be found as below:

MSE = 1

N

N∑
i

(
yi − ŷi

)2 (12.16)

Table 12.21 presents the MSE value for each approach. Dichotomous and
polytomous [41] are two other old school methods. For the purpose of choosing the



12.3 A Fuzzy Cognitive Map-Based Approach Finding Characteristics on AI-. . . 721

T
ab

le
12
.2
0

In
fe

re
nc

e
co

nc
ep

ts
va

lu
es

St
ep

C
11

C
12

C
13

C
21

C
22

C
23

C
24

C
31

C
32

C
33

C
34

C
35

C
41

C
42

C
43

A
I

sy
st

em
IQ

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0.
35

4
0.

35
4

0.
35

4
0.

35
4

0.
35

4
0.

35
4

0.
35

4
0.

35
4

0.
35

4
0.

35
4

0.
35

4
0.

35
4

0.
35

4
0.

35
4

0.
35

4
0.

35
4

2
0.

35
4

0.
52

2
0.

48
2

0.
35

4
0.

49
8

0.
48

2
0.

45
6

0.
53

6
0.

66
7

0.
53

3
0.

51
2

0.
70

4
0.

35
4

0.
52

2
0.

48
2

0.
99

9
3–

8
0.

35
4

0.
52

2
0.

48
2

0.
35

4
0.

49
8

0.
48

2
0.

45
6

0.
53

6
0.

73
6

0.
53

3
0.

51
2

0.
77

6
0.

35
4

0.
52

2
0.

48
2

1
9

0.
35

4
0.

52
2

0.
48

2
0.

35
4

0.
49

8
0.

48
2

0.
45

6
0.

53
6

0.
73

6
0.

53
3

0.
51

2
0.

77
6

0.
35

4
0.

52
2

0.
48

2
1

10
0.

35
4

0.
52

2
0.

48
2

0.
35

4
0.

49
8

0.
48

2
0.

45
6

0.
53

6
0.

73
6

0.
53

3
0.

51
2

0.
77

6
0.

35
4

0.
52

2
0.

48
2

1



722 12 Artificial Intelligence IQ Test

Table 12.21 MSE results for
four methods

Approach MSE

Delphi weight 37.63363
Polytomous 49.51347
Dichotomous 31.23294
FCM approach 19.16389

best approach, MSE works as a prediction error indicator here. It is to say, lowest
MSE value means less prediction error. Based on MSE values, it is easy to say FCM
approach is among the four approaches.
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Conclusions

Our human history of big data analytics can be viewed as three stages. The first one
is from 1700 to 1950 where statistical analysis has played a key role for 250 years.
In this stage, the data analysis is descriptive where Bayes’ Theorem has served
as its base. As we mentioned in Chap. 1 of this book, the honor of celebrating
Bayes’ Theorem should go to Richard Price (1723–1791) who published Bayes’
story after Thomas Bayes’ death [1]. The second stage is from 1950 to 2012 where
machine learning and artificial intelligence (AI), supported by data analysis or data
mining methods, have been used in addition to statistical analysis. These results are
analytic. The birth of computer and computing technology starting in 1950s was due
to the need of solving a large-scale linear system which contains millions of rows
and columns. Finding such a solution involves in the large number of calculations
performed by an algorithm. This was also the major reason for researchers to initiate
machine learning and AI methods. However, the root of computer comes from the
{0,1}-binary numeral system created by Gottfried Leibniz more than 300 years ago
[2]. The third stage is just starting from 2012, when the concept of big data was
raised, to now. Here big data analytics becomes a drive force for social and economic
development [3].

Our generation has fortunately growing with the second stage of big data
analytics. My research career with data analysis has begun in my college time. In
1979, I was 23 years old young man majored in mathematics. One day, I read a
newspaper article about fuzzy sets written by Professor Peizhuang Wang. It is first
time I knew the concept of Fuzzy Sets and my heart was shocked by its fascinating
idea of extending {0, 1} to [0,1]. Under the personal guidance of Professor Wang,
I enjoyed much of my spare time as a college sophomore in searching interesting
research topics at the “blue ocean” of fuzzy mathematics. I was very crazed about it.
In 1981, I have published two research papers on fuzzy sets and fuzzy systems. The
first paper was about an isomorphic theorem on fuzzy subgroups and fuzzy series of
invariant subgroups, while the second paper contributed the convergence theorem
of fuzzy integral of type II [4]. This is the first mile stone of my research career.
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In 1983, I was admitted for a M.B.A. course program at the China’s National
Center for Industrial Science and Technology Management Development, co-
sponsored by USA and China, Dalian Institute of Science and Technology, where
I met my great mentors, Professor Daniel Berg and Professor C. F. Lee. Professor
Berg who was the provost of Carnegie Mellon University taught Technology Trans-
fer course while Professor Lee from University of Illinois at Urbana-Champaign
taught Financial Accounting. These courses provided me intuition to transfer myself
from pure mathematics to the real-world applications.

In 1985, I entered the Ph.D. program majored in management science and
computer system at the University of Kansas. Although working with my advisor
Professor Po-lung Yu on the theoretical problems of optimal design in Multiple
Criteria Decision Making, I found a great interest in coding computer programs to
test various data sets. From 1985 to 1998, I have built the mathematical foundation
of Multiple-Criteria and Multiple-Constraint Levels Linear Programming (MC2LP)
[5]. Some of the related works can be found in Chap. 2 of this book. In terms of
data analysis, most of data sets used for MC2LP problems are empirical data or
data from the data repository. In the summer of 1998, I was invited by the CEO
of First Data Corporation at Omaha, Nebraska to conduct data mining and data
warehousing project in credit card portfolio management. This led me to teste the
great fun of using real-life data to run mathematical algorithms via SAS software,
which eventually made me step in the new research fields of data mining, then data
warehousing, then business analytics, then now big data analytics. This is the second
mile stone of my research career. Some of my earlier works in the fields can be found
in [6, 7].

From 1998 to 2011, my main research direction has concentrated on Optimiza-
tion based Data Mining and the variation of Support Vector Machine as well as
their real-life applications [8]. One of meaningful real-life applications was to build
China’s National Credit Scoring System, called “China Score”, which is equivalent
to “FICO Score” used in USA and many Western countries. During 2006–2009, I
and my research team have worked with the People’s Bank of China (PBC: China’s
Central Bank, equivalent to the Federal Reserve Bank of USA). Using the 950
million personal banking records of PBC, the largest dataset of this kind in the
world, they constructed the optimization-based data mining models for the credit
score calculation system. Since then, this China Score system has been serving as
the national financial base for all commercial banks to handle China’s 1.4 billion
people for their daily financial and banking activities. This is one of most influential
big data-based engineering applications in financial and bank industry (个人信用
评分系统, www.baidu.com). This is the third mile stone of my research career.

In 2015, I and my colleagues initiated a new concept of “Intelligent Knowledge”.
Although data mining can discover the hidden patterns from unknown data, these
results of data mining may not be regarded as “knowledge”. To create knowledge,
which is useful to the end-users, from databases, the theory of human knowledge
management should be applied. Given large-scale databases (or Big Data), he
proposed the theory and mechanisms of how to combine human knowledge with the
hidden patterns of data mining to generate a “special” knowledge, called intelligent
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knowledge, for the practitioners or decision makers as useful decision support.
The theory of intelligent knowledge management opens a door for the people to
adopt “data-driven” decision making replacing the traditional “hypothesis-driven”
or “model-driven” decision making. His intelligent knowledge theory has quickly
been accepted by international academic community [9]. Chen et al. [10] has ranked
me as the third place of the top academic authors in BI&A (Business Intelligence &
Analytics).

This book, as I mentioned in the preface, is based on more than 80 published
papers and reports in 2010–2020, to provide an up-to-date research progress and
application findings of my research team in big data analytics and related areas.
This can be regarded as the fourth mile stone of my research career.

Look back my living and research experience for the last 40 years, data analysis,
now bid data analytics motivated my mathematical means has been the core of my
research activities. However, the further development of our society depends on
several IT technologies, mainly big data analytics and artificial intelligence. What
can we predict the future? I strongly believe that the multi-value logic (multiple
numeral system), for instance, fuzzy logic, can play a decisive role to lead us into a
new history.

In 1703, Gottfried Leibniz published his paper Explication de l’Arithmétique
Binaire, which is translated into English as the “Explanation of the binary arith-
metic”. He invented {0,1}-binary numeral system and explained its connection with
the ancient Chinese figures of Fu Xi. As the simplified version of decimal numeral
system, Leibniz’s binary system gradually became the basis of the current computer
design. It changed our human life dramatically for the last 300 years. The recent
achievement of Google’s AlphaGo and AlphaGo Zero have demonstrated that the
binary numeral system-based computer can easily outperform human beings by
massive calculation in a short time. However, if a computer like AlphaGo or even
a super-computer plays with three persons in Chinese Mahjong, when one human
player sends an eye contact to another human player, the machine cannot figure
out how to calculate the human signal. This could partially cause by the simple
binary numeral system that has difficulty to figure out the human contact. In Chap.
12, I have discussed our interesting research by using Human IQ test to measure
machine. According to our finding, the IQ test for virtual assistants shows that even
the best one, such as Google, still is not smarter than a 6-year-old human [11–14].
This means that there is a long way to go for the machine’s intelligence to catch
up that of our human beings. Perhaps, someday in the future when we use fuzzy
logic (multiple numeral system) to design a new computer, its computing power
of handling complex calculation can easily catch up and solve the human contact
problem. By that time, artificial intelligence will be smarter to understand human
being. Of course, any operation of artificial intelligence must be supported by a
certain form of big data analytics. Therefore, the reader will find some interesting
and useful findings from this book!
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