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Abstract

Plants possess primary and secondary metabolites. Primary metabolites are
required to maintain their basic physiological processes, which also serve as
essential sources of nutrients for herbivores, whereas secondary metabolites
help to protect plants from herbivore damage. Phyto-antifeedants, a type of
secondary metabolite, are recorded from 43 families of plants, but stress has
been given in 4 families—Meliaceae, Asteraceae, Labiatae and Leguminosae.
Terpenes are classified depending on isoprene units. Terpenes are divided into
monoterpenes, sesquiterpenes, diterpenes and triterpenes, and many compounds
among these groups act as antifeedants. Flavonoids, alkaloids, steroids and
coumarins from plant sources could also act as antifeedants. The lepidopteran
larvae possess chemosensilla on the maxillary palp, and the test cells in the
sensillum act as deterrent. Some insects possess P450 detoxification enzymes in
the midgut to detoxify the antifeedants. One of the most commonly used
antifeedant is azadirachtin A from Azadirachta indica, which is applied against
ca. 400 insect species belonging to Blattodea, Coleoptera, Diptera, Dermaptera,
Ensifera, Homoptera, Heteroptera, Hymenoptera, Lepidoptera, Isoptera,
Phasmida, Thysanoptera and Siphonaptera. One of the best strategies to apply
an antifeedant is in water- or oil-based formulations. Latex may also be used to
apply antifeedants. At present 1000 antifeedants have been isolated from plants in
laboratory conditions, but the efficacies of antifeedants in the field are low due to
either habituation of insects towards antifeedants or variations in responses
among different insects. The major hindrance in developing phyto-antifeedants
is that they are not broad spectrum or they may not be effective in field conditions.
Therefore, basic research in combination with field trials of the isolated phyto-
antifeedants at different doses are necessary to get ecofriendly safe products for
insect pest management.

Keywords

Phytochemicals · Antifeedants · Pest control · Mode of action ·
Commercialization

Learning Objectives
1. Application of synthetic insecticides to control insect pests poses threat to human

health, nontarget organisms and the environment. Recently the European Union
prohibited the use of certain pesticides. Now the question is asked whether
phytochemicals as antifeedants can replace the synthetic pesticides.

2. Plants produce a diversity of compounds called secondary metabolites to cope
with the feeding damage caused by herbivorous insects. Since the early days,
humans are using plant extracts comprised of specific secondary metabolites to
modulate insect behaviour.

3. A number of secondary metabolites acting as antifeedants could be used for pest
management strategies, but commercial success of botanical pesticides using
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secondary metabolites is meagre except for plant extracted oils, pyrethrum
and neem.

4. An improved understanding of secondary metabolites acting as antifeedants to
insects is one of the major focuses in integrated pest management strategies in the
present scenario.

9.1 Introduction

The present century focuses on protecting crop plants from insect herbivores to
safeguard plants from herbivore feeding damage. Plants have evolved during Devo-
nian Period ca. 400 million years back, and since the beginning of plant evolution,
plants have evolved different compounds, which may deter from insect feeding.
Green plants produce carbohydrates by photosynthesis which are stored as sugars
and considered as primary energy source. A part of this energy is used to transform
nitrogen to amino acids. Sugars are also employed to build in cell walls. Primary
metabolites represent a greater part of plant biomass. The primary metabolites
mainly consist of carbohydrates, proteins and lipids, which are responsible for
basic physiological process of plants and serve as essential sources of nutrients for
herbivores. Depending on the primary metabolism, plants have an array of metabolic
pathways to generate diverse secondary plant substances. These secondary plant
substances do not possess a role in primary metabolism. As plants cannot move
during insect attack as well as do not possess adaptive immune system like
vertebrates during various infections, plants produce an array of diverse secondary
metabolites to protect them from herbivore damage. The secondary metabolites are
evolved during natural selection in plants in such a way that these compounds may
intervene the metabolism, neural transmission, development and reproduction of
insect herbivores. Besides production of secondary metabolites, plants have devel-
oped various morphological defensive mechanisms, such as impervious cuticles,
thorns, spikes, trichomes, etc. against insect herbivores.

Green plants produce a wide structural diversity of secondary metabolites, such as
terpenoids, phenolics, alkaloids, cyanogenic glycosides, glucosinolates, quinones,
amines, peptides, non-protein amino acids, organic acids, polyacetylenes and
peptides. A cursory review of literature documents that more than 100,000
compounds are on records (Wink 1988, 2003). These plants produced secondary
metabolites can act on different molecular targets at a particular time and frequently
in a synergistic manner (Wink 2008, 2015; Mason and Singer 2015). Therefore, the
mixtures of secondary metabolites vary between different organs and developmental
stages of a plant as well as within populations of a species.

Insects are one of the most important agents causing damage in agroecosystems.
The USA, EU, China and Brazil are the largest agricultural producers in the world,
and these four countries used 827 million, 831 million, 1.2 billion and 3.9 billion
pounds of pesticides in 2016, respectively. Despite application of insecticides, it is
estimated that 18–20% crop losses due to arthropod attack occur across the globe
and result in an estimated loss of more than a value of US$ 400 billion. In India, crop
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losses due to insect attack are estimated to be 15.7% at the present condition, and the
agriculture sector of India loses an estimated value of about US$ 36 billion. Food
plants throughout the world are affected by 10,000 insect species, 30,000 weed
species, 1000 nematode species and 100,000 diseases, which are due to the attack by
fungi, viruses, bacteria and other microorganisms. About 10% of the insect pests are
generally predicted to be major pests, and herbivorous insects are reported to cause
one-fifth of the world’s crop loss per annum. Four major and 26 minor crops are
responsible for ca. 95% of human sustenance, indicating that many of these crop
plants are cultivated for a long time, and thus, these crop plants provide food for a
vast array of insect species with a high degree of adaptation to the crop plants. It is
found that most of the insect species are specialist feeders—75% of temperate and
80% of tropical lepidopteran insect pests are monophagous or oligophagous.

Entomologists have been searching for safe and ecofriendly insect control
measures by underpinning the idea that in real world, many plants protect themselves
from insect attack by secreting unpalatable substances, and it is feasible to apply
such compounds as feeding or oviposition inhabitants to protect the crop plants. The
progress on this concept has been slow. The idea is that ‘suppressants’ inhibit insects
against biting activity, while ‘deterrents’ avert insects from further feeding. Gener-
ally most of the times, we are unable to understand the phase of feeding when it is
interrupted, and subsequently, many authors concomitantly employ ‘antifeedants’ as
well as ‘feeding deterrents’ for compounds present in plant tissues that inhibit or
avert insect feeding activity. In this context, the expression ‘rejectant’ could not be
used as it does not make a distinction between suppressants and deterrents. The word
‘repellent’ implicates an oriented movement from the source of stimulus (Dethier
et al. 1960). An ideal antifeedant would be nontoxic secondary metabolites, not
phytotoxic and nontoxic to human, animals, beneficial insects and organisms, as
well as suppresses the feeding activity of as many as insect pests, practically
applicable to a crop, and ultimately, low cost for commercial production as well as
high availability.

After reviewing crop yield losses by the herbivorous insects, it is interesting to
discuss about the origin of antifeedants in the perspective of plant origin, mode of
action, formulations and applications of phyto-antifeedants, including the drawbacks
and prospects on the use of phyto-antifeedants for insect pest control, which is an
essential step towards developing safe and economical as well as sustainable
methods of pest management programme for the food security and also for the
future. This chapter discusses about phyto-antifeedants, not about the derivative
antifeedants, which are prepared from antifeedants of plant origin.

9.2 Phyto-Antifeedants: Biochemical Diversity and Target
Insects

Antifeedants in plants differ to a great extent in their chemistry and are comprised of
inorganic compounds as well as secondary metabolites. The prospective of plant
taxa to show antifeedant activity of insects has been demonstrated to be definite to
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certain insect species as well as the effectiveness may be determined by their
genotype and ecological environment.

To date, the insect antifeedant activity has been recorded from 43 families of
plants, but more research has been performed in families Meliaceae (Fagoonee and
Lange 1981), Asteraceae (Zalkow et al. 1979; Rose et al. 1981), Labiatae (Miyase
et al. 1981) and Leguminosae (Bentley et al. 1984). Future researches are required to
search all potential local plants depending on visual as well as chemotaxonomic
basis, while simultaneously the industrial waste products of plants should be tested
since they may possess substantial amounts of inhibitory compounds or new
antifeedants arising due to processing (Jermy et al. 1981).

9.2.1 Terpenes

Terpenes, the largest class of compounds, consist of more than 30,000 compounds
and show a wide variety of structures comprising isoprene molecules. Each isoprene
molecule (isoprene unit) possesses five carbon atoms with double bonds. The carbon
skeleton of terpene is formed by an enzyme class, the terpene synthases, which
converts the acyclic prenyl diphosphates including squalene into an array of cyclic
and acyclic forms. The diversity of terpenes is due to the large number of various
terpene synthases, and at the same time, some terpene synthases create multiple
products. Terpenes are subdivided into acyclic or cyclic according to the structure.
Acyclic terpenes are linear, such as β-myrcene (monoterpene), while cyclic terpenes
are ring-like, such as p-cymene (monoterpene). Based on isoprene units, terpenes are
divided into monoterpene, sesquiterpene, diterpene and triterpene.

9.2.1.1 Monoterpenes
The simplest terpenes are known as monoterpenes, which are comprised of two
isoprene molecules. Monoterpenes (C-10 compounds) are highly volatile, which are
abundant in plants, and act as strong feeding deterrence as well as deterrent to
predators (Table 9.1 and Fig. 9.1).

9.2.1.2 Sesquiterpenes
Sesquiterpenes develop from farnesyl pyrophosphate (C15) containing three isoprene
units (C5) and present in plant essential oils. Sesquiterpenes consist of a large
diversity of cyclic compounds and non-cyclic farnesyl derivatives. The cyclic
sesquiterpenes consist of monocyclic, bicyclic and tricyclic compounds including
the sesquiterpene lactones. A list of sesquiterpenes (Table 9.2 and Fig. 9.2) and
sesquiterpene lactones (Table 9.3 and Fig. 9.3) acting as phyto-antifeedants were
presented below.

9.2.1.3 Diterpenes
These compounds are derived from C20 isoprenoid geranylgeranyl pyrophosphate,
which are heavy molecules with high boiling points. The diversity (structural and
functional) of diterpenes is attributed to the different functions of diterpene cyclases
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Table 9.1 A list of monoterpenes acting as phyto-antifeedants

Sl
No. Monoterpenes Test insect Origin References

1 Ipolamiide Locusta
migratoria

Stachytarpheta
mutabilis

Bernays and De Luca
(1981)

Schistocerca
gregaria

Spodoptera
littoralis

2 Catalpol + catalposide Poanes
hobomok

Catalpa
speciosa

Chang and Nakanishi
(1983)

3 Specionin Choristoneura
fumiferana

4 Xylomollin Spodoptera
exempta

Xylocarpus
moluccensis

Kubo and Nakanishi
(1977), Mabry et al.
(1977)

5 Verbenone Hylobius abietis Klepzig and Schlyter
(1999), Lindgren et al.
(1996)

Dendroctonus
ponderosae

Gillette et al. (2014)

Leptinotarsa
decemlineata

Ortiz de Elguea-
Culebras et al. (2017)

6 Carvone Hylobius abietis Essential oils of
many plants
and conifer
plants

Klepzig and Schlyter
(1999), Lindgren et al.
(1996), Schlyter et al.
(2004)

Hylobius pales Carum carvi,
Mentha spicata

Schlyter et al. (2004)

7 Thymol Spodoptera
litura

Thymus
vulgaris,
Origanum
vulgare

Hummelbrunner and
Isman (2001), Erler and
Tunc (2005), Kim et al.
(2010), Ortiz
de Elguea-Culebras
et al. (2017)

Ephestia
kuehniella

Tribolium
castaneum

Leptinotarsa
decemlineata

Myzus persicae Senecio
palmensis

González-Coloma et al.
(2002)Diuraphis noxia

Rhopalosiphum
padi

Metopolophium
dirhodum

Sitobion avenae

8 trans-Anethole Spodoptera
litura

Pimpinella
anisum

Hummelbrunner and
Isman (2001)

9 Limonene Spodoptera
litura

Chloroxylon
swietenia

Kiran et al. (2006)

(continued)
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Table 9.1 (continued)

Sl
No. Monoterpenes Test insect Origin References

Leptinotarsa
decemlineata

Khorram et al. (2011)

10 Carvacrol Ephestia
kuehniella

Ocimum
basilicum,
Eugenia
caryophyllus

Erler and Tunc (2005),
Kim et al. (2010),
Saroukolai et al. (2014),
Ortiz de Elguea-
Culebras et al. (2017)

Tribolium
castaneum

Leptinotarsa
decemlineata

11 γ-Terpinene Ephestia
kuehniella

Erler and Tunc (2005)

12 Terpinen-4-ol Ephestia
kuehniella

Erler and Tunc (2005)

Sitophilus
zeamais

Yildirim et al. (2013)

Leptinotarsa
decemlineata

Ortiz de Elguea-
Culebras et al. (2017)

13 α-Pinene Leptinotarsa
decemlineata

Rodilla et al. (2008),
Khorram et al. (2011)

Tribolium
castaneum

Kim et al. (2010)

14 β-Pinene Leptinotarsa
decemlineata

Rodilla et al. (2008)

15 Eucalyptol Leptinotarsa
decemlineata

Rodilla et al. (2008)

16 Myrcene Tribolium
castaneum

Kim et al. (2010)

Leptinotarsa
decemlineata

Khorram et al. (2011)

17 Terpinolene Myzus persicae Piper
hispidinervum

Andrés et al. (2017)

Choristoneura
fumiferana

Kumbasli and Bauce
(2013)

Tribolium
castaneum

Wang et al. (2009)

Sitophilus
zeamais

Wang et al. (2009)

18 Pyrethrins Bemisia tabaci,
Myzus persicae

Pyrethrum Prota et al. (2014)

19 Camphor Leptinotarsa
decemlineata

Ortiz de Elguea-
Culebras et al. (2017)

20 Linalool Tribolium
castaneum,
Rhyzopertha
dominica,
Sitophilus
oryzae

Lamiaceae,
Lauraceae

Kanda et al. (2017)

(continued)
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as well as chemical modification of enzymes. Table 9.4 presents a list of diterpenes
and the structure of some common diterpenes (Fig. 9.4) that act as phyto-
antifeedants.

9.2.1.4 Triterpenes
Triterpenoids represent the largest groups in nature possessing 30 carbon atoms
composed of 6 isoprene units. The extensive occurrence in plants is one of the main
reasons for considerable interest with more than 14,000 compounds identified
(Hamberger and Bak 2013). Triterpenoids are formed by cyclization of oxidized
squalene predecessors by oxidosqualene cyclases, forming over 100 various cyclical

Table 9.1 (continued)

Sl
No. Monoterpenes Test insect Origin References

21 Menthone Sitophilus
oryzae

Mentha
piperita

Rajkumar et al. (2019)

Tribolium
castaneum

22 Menthol Sitophilus
oryzae

Tribolium
castaneum

23 1,8-Cineole Leptinotarsa
decemlineata24 Fenchone

25 γ-Terpinene

Ipolamiide Catalpo Sl pecionin

α-Pinene Eucalyptol Fenchone

Fig. 9.1 Structure of some monoterpenes
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Table 9.2 A list of sesquiterpene acting as phyto-antifeedants

Sl
No. Sesquiterpenes Test insect Origin References

1 Shiromodioldiacetate Spodoptera
litura

Parabenzoin
trilobum

Wada et al. (1968)

2 Shiromodiolmonoacetate

3 Plagiochiline A Spodoptera
exempta

Plagiochila
fruticosa,
P. hattoriana,
P. ovalifolia
and P.
yokogurensis

Asakawa et al.
(1980)

4 Drimanes Myzus persicae Caprioli et al.
(1987), Gutiérrez
et al. (1997)

5 Bisabolanes Myzus persicae

6 Bisabolangelone Peridroma
saucia

Angelica
sylvestris

Nawrot et al.
(1991)

Mamestra
configurata

7 Bakkenolide-A Peridroma
saucia

Homogyne
alpina

Isman et al. (1989)

Coptotermes
fornosanus

Kreckova et al.
(1988)

8 Celangulin Spodoptera
exempta

Celastrus
angulatus

Wakabayashi et al.
(1988)

9 11β-Acetoxy-
5α-angeloyloxysilphinen-3-
one

Leptinotarsa
decemlineata

González-Coloma
et al. (1995, 1997)

10 11β,5α-Dihydroxysilphinen-
3-one

Leptinotarsa
decemlineata

11 11β-Acetoxy-
5α-isobutyryloxysilphinen-
3-one

Myzus persicae Senecio
palmensis

González-Coloma
et al. (2002)Diuraphis noxia

Rhopalosiphum
padi

Metopolophium
dirhodum

Sitobion avenae

12 Germacranolides Spodoptera
litura

Neurolaena
lobata

Passreiter and
Isman (1997)

13 Neurolenin A, B, C, D Spodoptera
litura14 Lobatin A

15 Lobatin B

16 Polygodial Bemisia tabaci Drimys
winteri

Prota et al. (2014)

Myzus persicae

Leptinotarsa
decemlineata

Spodoptera
littoralis

Kubo and Ganjian
(1981), Caprioli
et al. (1987),

(continued)
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triterpene scaffolds. These scaffolds are the initiators to create the wide diversity of
triterpenoids followed by wide-ranging diversification, particularly by oxygenation
and glycosylation (Cárdenas et al. 2019). On the other hand, the oxygenated terpenes
are called limonoids, which are characterized by a 4,4,8-trimethyl-17-furanylsteroid
skeleton. The first tetranotriterpenoid is limonin isolated from citrus, and the term
limonoid is originated from limonin. Limonoids are created by the deletion of four

Table 9.2 (continued)

Sl
No. Sesquiterpenes Test insect Origin References

Zapata et al.
(2009)

Spodoptera
exempta

Kubo and Ganjian
(1981), Caprioli
et al. (1987)

17 Drimane sesquiterpenoids Spodoptera
littoralis

Zapata et al.
(2009)18 Drimendiol

19 Isodrimeninol

20 Isotadeonal

21 Mansonone E Spodoptera
litura

Mansonia
gagei

Mongkol and
Chavasiri (2016)

22 Dehydrofukinone Myzus persicae Senecio
adenotrichius

Ruiz-Vásquez
et al. (2017)Spodoptera

littoralis

23 11-Hydroxyeremophila-6,9-
dien-8-one

Myzus persicae

24 Ligudicin A Myzus persicae

Spodoptera
littoralis

Bisabolangelone Lobatin B Polygodial Mansonone E

Dehydrofukinone Shiromodioldiacetate Bakkenolide-A

Fig. 9.2 Structure of some sesquiterpenes
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Table 9.3 A list of sesquiterpene lactones acting as phyto-antifeedants

Sl
No. Sesquiterpene lactones Test insect Origin References

1 Schkuhrin I Spodoptera
exempta

Schkuhria
pinnata

Pettei et al.
(1978)

Epilachna
varivestis

2 Schkuhrin II Spodoptera
exempta

Epilachna
varivestis

3 Vernodalin Spodoptera
exempta

Vernonia
amygdalina

Ganjian
et al. (1983)4 Vernodalol

5 11,13-Dihydrovernodalin Spodoptera
exempta

6 Alantolactone Sitophilus
granarius

Inula
helenium

Nawrot
et al. (1986)

Tribolium
confusum

Trogoderma
granarium

7 Britanine Sitophilus
granarius

Inula caspica

Tenebrio
molitor

Inula caspica Adekenov
et al. (2015)

8 Glaucolide-A Spodoptera
eridania

Vernonia
gigantea,
V. glauca

Mabry
et al. (1977)

Spodoptera
frugiperda

9 Parthenolide Spodoptera
litura

Neurolaena
lobata

Passreiter
and Isman
(1997)

10 Buddlein A

11 Neurolenin B

12 (1S,6R)-2,7(14),10-Bisabolatrien-1-ol-
4-one and (+)-7(14),10-bisaboladien-1-
ol-4-one

Locusta
migratoria

Cryptomeria
japonica

Kashiwagi
et al. (2007)

13 Cubebol and ferruginol Cryptomeria
japonica

Wu et al.
(2008)

14 Inuchinenolide С Tenebrio
molitor

Inula caspica Adekenov
et al. (2015)

15 Arglabin Artemisia
glabella

Adekenov
et al. (2015)

16 Bilobalide Hyphantria
cunea

Ginkgo
biloba

Pan et al.
(2016)

17 Eupatolide 13-O-β-d-glucopyranoside
(eupatolide-II)

Phyllotreta
striolata

Inula
salsoloides

Bai et al.
(2018)
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carbon atoms from the terminal chain of apotirucallane or apoeuphane skeleton and
changed to furan ring (Fang et al. 2011). The presence of limonoids is reported from
plant families (Meliaceae and Rutaceae and sometimes in Cneoraceae and
Simaroubaceae) of order Rutales (Roy and Saraf 2006). One-third of 300 limonoids
isolated from plants is from Azadirachta indica (neem) and Melia azedarach
(Chinaberry). Scientifically, the inhibitory feeding activity of neem tree was
described first. In 1952, Heinrich Schmutterer exhibited that the desert locust
[Schistocerca gregaria (Forskal)] refused to consume neem. David Morgan
(Butterworth and Morgan 1968) isolated the active ingredient azadirachtin from
the seeds of A. indica. Tables 9.5 and 9.6 present the lists of triterpenes and triterpene
limonoids, respectively, which act as phyto-antifeedants, and some common
structures of triterpenes are presented in Fig. 9.5.

9.2.2 Flavonoids

Flavonoids are compounds (1) consisting of derivatives of a phenyl-substituted
propylbenzene containing a C15 skeleton; (2) having a C16 skeleton, which contain
phenyl-substituted propylbenzene derivatives; and (3) flavonolignans containing
derivatives of phenyl-substituted propylbenzene compressed with C6-C3 lignan
precursors (Yonekura-Sakakibara et al. 2019). More than 9000 flavonoid
compounds are identified having C6-C3-C6 carbon framework containing the struc-
ture of chromane or chromene, such as flavans, flavones, flavonols and

Parthenolide Glaucolide-A (–)-Cubebol

Arglabin Bilobalide

Fig. 9.3 Structure of some sesquiterpene lactones
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Table 9.4 A list of diterpenes acting as phyto-antifeedants

Sl
No. Diterpene clerodanes Test insect Origin References

1 Tafricanin A, B Locusta migratoria Teucrium
africanum

Hanson et al.
(1982)

2 Clerodin (I) Spodoptera litura Caryopteris
divaricata,
Scutellaria
altissima

Hosozawa
et al. (1973,
1974)

Leptinotarsa
decemlineata

Caryopteris
divaricata,
Scutellaria
altissima

Bozov and
Georgieva
(2017)

3 Caryoptin (II) Spodoptera litura Caryopteris
divaricata

Hosozawa
et al. (1973,
1974)

4 Dihydroclerodin-I (V)

5 Dihydrocaryoptin (VI)

6 Clerodin hemiacetal (VII)

7 Caryoptin hemiacetal (VIII)

8 Caryoptinol (IX)

9 Dihydrocaryoptinol (X)

10 Ajugacumbins A, B, C, D Pareba vesta Ajuga
decumbens

Min et al.
(1989)

11 Jodrellin A, B Spodoptera
littoralis

Scutellaria
woronowii

Anderson
et al. (1989)

12 Ajugarin I Ajuga remota Simmonds
et al. (1989)Helicoverpa

armigera
Ajuga remota

13 6,19-Diacetylteumassilin Helicoverpa
armigera

Teucrium

14 Deacetyl ajugarin II Spodoptera
littoralis15 Teucjaponin B

16 12-Epl-teucvm

17 Rhodojaponin III Leptinotarsa
decemlineata

Rhododendron
molle

Klocke et al.
(1991)

Spodoptera
frugiperda

18 3,13E-clerodien-15-oic acid Reticulitermes
speratus

Detarium
microcarpum

Lajide et al.
(1995)19 4(18), 13E-clerodien-15-oic

acid

20 18-Oxo-3,13E-clerodien-15-
oic acid

21 2-Oxo-3,13E-clerodien-15-
oic acid

22 Ryanodol Spodoptera litura Persea indica González-
Coloma et al.
(1996)

23 Ryanodol 14-monoacetate Spodoptera litura Persea indica

24 Cinnzeylanol Spodoptera litura Persea indica

25 Cinnzeylanone Spodoptera litura Persea indica

(continued)
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Table 9.4 (continued)

Sl
No. Diterpene clerodanes Test insect Origin References

26 Epicinnzeylanol Spodoptera litura Persea indica

27 Tanabalin (¼12S-
acetoxyhautriwaic acid)

Pectinophora
gossypiella

Tanacetum
balsamita

Kubo et al.
(1996)

28 Ajugapitin Spodoptera
littoralis

Ajuga
chamaepitys,
Salvia lineata

Belles et al.
(1985)

29 Indicol Spodoptera litura Persea indica Fraga et al.
(1997)30 Vignaticol

31 Perseanol

32 14,15-
Dehydroajugareptansin

Spodoptera
littoralis

Ajuga reptans Bremner et al.
(1998)

33 Scutecyprol B Spodoptera
littoralis

Scutellaria
rubicunda

Bruno et al.
(1999)

Spodoptera
frugiperda

Mamestra
brassicae

Pieris brassicae

Helicoverpa
armigera

34 Isofruticolone Spodoptera
littoralis

Teucrium
fruticans

35 Clerodin Spodoptera
littoralis

Caryopteris
divaricata

Hosozawa
et al. (1974)

36 Caryoptin Spodoptera
littoralis

Henosepilachna
vigintioctopunctata

Govindachari
et al. (1999)

37 Dihydroclerodin-I Spodoptera
littoralis

Hosozawa
et al. (1974)38 Dihydrocaryoptin

39 Clerodin hemiacetal

40 Caryoptin hemiacetal

41 Sideroxol Spodoptera
frugiperda

Sideritis
akmanii,
S. rubriflora

Bondì et al.
(2000)

42 14,15-Dihydroajugapitin Ajuga iva

Spodoptera
littoralis

Ajuga iva43 Ivain IV

Spodoptera
frugiperda

44 Montanin D Spodoptera
littoralis

Teucrium
arduini

Bruno et al.
(2002)45 6β-Hydroxyteuscordin

46 Cis-cleroda-15,16-
dihydroxy-3,13(Z )-dien-18-
O-[β-D-galactopyranosil]-
peracetylester

Tenebrio molitor Baccharis
sagittalis

Cifuente et al.
(2002)

(continued)
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anthocyanidins (Anderson and Markham 2006). However, aurones, chalcones and
dihydrochalcones are also under flavonoids in a wide sense, but truly not in a limited
sense (Yonekura-Sakakibara et al. 2019). Table 9.7 presents a list of flavonoids,
which act as phyto-antifeedants (Fig. 9.6).

Table 9.4 (continued)

Sl
No. Diterpene clerodanes Test insect Origin References

47 Cis-cleroda-3,13(14)-dien-
15,16-olide-18-O-[β-D-
galactopyranosyl]-
peracetylester

48 Hastifolins A, B, C Spodoptera
littoralis

Scutellaria
hastifolia

Raccuglia
et al. (2010)

49 Clerodin Helicoverpa
armigera

Clerodendrum
infortunatum

Abbaszadeh
et al. (2014)50 15-Methoxy-14,15-

dihydroclerodin

51 15-Hydroxy-14,15-
dihyroclerodin

52 Ginkgolide Hyphantria cunea Ginkgo biloba Pan et al.
(2016)

53 Scutecyprin Leptinotarsa
decemlineata

Scutellaria
altissima

Bozov and
Georgieva
(2017)

54 11-Epi-scutecolumnin C

Clerodin Ajugarin I  Rhodojaponin III

Cinnzeylanone Montanin D   Ginkgolide-B

Fig. 9.4 Structure of some diterpenes
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Table 9.5 A list of triterpenes acting as phyto-antifeedants

Sl
No. Triterpene Test insect Origin References

1 Betulin Myzus
persicae

Betula species Schoonhoven
and Derksen-
Koppers (1976)

2 Harrisonin Eldana
saccharina

Harrisonia
abyssinica

Hassanali et al.
(1986)

Maruca
testulalis

3 Obacunone Eldana
saccharina

Maruca
testulalis

4 Salannin Epilachna
varivestis

Pieris
brassicae

Schwinger et al.
(1984), Kraus
et al. (1987)

5 Momordicine II Aulacophora
foveicollis

Momordica
charantia

Chandravadana
(1987)

A. nigripennis Abe and
Matsuda (2000)Epilachna

admirabilis

E. boisduvali

A. femoralis

6 3,7,23-Trihydroxycucurbita-
5,24-dien-19-al

Aulacophora
foveicollis

Chandravadana
(1987)

7 Betulinic acid Spodoptera
litura

Zizyphus
xylopyrus

Jagadeesh et al.
(1998)

8 Oleanolic acid Sitophilus
oryzae

Junellia
aspera

Pungitore et al.
(2005)

Heliothis zea Argandoña and
Faini (1993)

9 Asiatic acid Oxya
fuscovittata

Shorea
robusta

Sanjayan and
Partho (1993)

10 Salannin Spodoptera
litura

Neem oil Govindachari
et al. (1996)

Pericallia
ricini

Oxya
fuscovittata

11 Nimbin Spodoptera
litura

Pericallia
ricini

Oxya
fuscovittata

12 Deacetylnimbin Spodoptera
litura

(continued)
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Table 9.5 (continued)

Sl
No. Triterpene Test insect Origin References

Pericallia
ricini

Oxya
fuscovittata

13 Momordicine I Aulacophora
nigripennis

Momordica
charantia

Abe and
Matsuda (2000)

Epilachna
admirabilis

Epilachna
boisduvali

14 Methyl 6,11β-dihydroxy-
12α-(2-methylpropanoyloxy)-
3,7-dioxo-14β,15β-epoxy-1,5-
meliacadien-29-oate

Spodoptera
littoralis

Trichilia
pallida

Simmonds et al.
(2001)

Spodoptera
exigua

Heliothis
virescens

Helicoverpa
armigera

15 Betulinic acid Achaea
janata

Vitex negundo Chandramu
et al. (2003)16 Ursolic acid

17 Maslinic acid Sitophilus
oryzae

Junelia
aspera

Pungitore et al.
(2005)

18 Xylogranatins F, G, R Mythimna
separata

Xylocarpus
granatum

Wu et al. (2008)

19 Catunarosides A, B, C, D Plutella
xylostella

Catunaregam
spinosa

Gao et al.
(2011)20 Swartziatrioside

21 Araliasaponin V

22 Araliasaponin IV

23 Ginsenoside Pieris rapae Panax
ginseng

Zhang et al.
(2017)

24 Ginsenosides (Rg1, Re, Rf, Rb1,
Rg2, Rc, Rb2, Rb3 and Rd)

Plutella
xylostella

Yang et al.
(2018)

25 Ginsenosides Rb1, Rb2, Rc, Rd,
Re and Rg1 [Rb1, Rb2, Rc, Rd,
Rh2 and Rg3]

Ostrinia
furnacalis

Liu et al. (2020)

26 Ginsenosides Re, Rg1 and Rg2

27 Saponin CP4 Plutella
xylostella

Clematis
aethusifolia

Tian et al.
(2021)28 Clematoside S

29 3-O-β-D-ribopyranosyl-(1!3)-α-
L-rhamnopyranosyl-(1!2)-[β-D-
glucopyranosyl-(1!4)]-β-D-
xylopyranosyl hederagenin

30 Lupeol Corcyra
cephalonica

Hemidesmus
indicus

Pillai et al.
(2020)
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Table 9.6 A list of triterpene limonoids acting as phyto-antifeedants

Sl
No. Limonoids Test insect Origin References

1 Toonacilin, toonacilid Epilachna
varivestis

Toona ciliata Kraus et al. (1978)

2 Meliantriol Schistocerca
gregaria

Melia
azedarach

Kraus et al. (1981)

3 Limonin Spodoptera
frugiperda

Citrus,
grapefruit
seeds

Klocke and Kubo (1982)

Heliothis zea

4 Sendanin Heliothis zea Trichilia roku

5 7-Acetyltrichilin A Spodoptera
eridania

Nakatani et al. (1985a, b)

Epilachna
varivestis

Spodoptera
littoralis

6 Limonin Eldana
saccharina

Citrus,
grapefruit
seeds

Hassanali et al. (1986)

Maruca
testulalis

Chortstoneura
fumtferana

Alford and Bentley (1986)

Leptinotarsa
decemlineata

Alford et al. (1987)

Leptinotarsa
decemlineata

Mendel et al. (1991)

7 Azadirachtin Schistocerca
gregaria

Azadirachta
indica

Butterworth and Morgan
(1968), Mordue (Luntz)
and Nisbet (2000)

8 Obacunone Leptinotarsa
decemlineata

Grape fruit
seeds

Mendel et al. (1991)

9 Nomilin Mendel et al. (1991)

10 Sandoricin Spodoptera
frugiperda

Sandwicum
koetjape

Powell et al. (1991)

11 Cedrelone Peridroma
saucia,
Mamestra
configurata

Toona ciliata Koul and Isman (1992)

12 1-Deoxy-3-trigloyl-
11-
methoxymeliacarpinin

Spodoptera
exigua

Melia
azedarach

Nakatani et al. (1993)

13 Humilinolides A–D Tenebrio
molitor

Swietenia
humilis

Segura-Correa et al.
(1993)

14 Toosendanin Peridroma
saucia

Melia
toosendan,
M. azedarach

Chen et al. (1995)

15 Nimbolidins B, C, D,
E

Spodoptera
eridania

Melia
toosendan

Nakatani et al. (1996)

(continued)
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Table 9.6 (continued)

Sl
No. Limonoids Test insect Origin References

16 Salannin

17 Trichilins H, I, J, K
and L

Zhou et al. (1996)

18 Azedarachin A and
12-O-acetyl-
azedarachin B

19 Ichangensin Leptinotarsa
decemlineata

Citrus
molasses

Murray et al. (1999)

20 Melianoninol,
melianone

Pieris rapae Melia
azedarach

Wang et al. (1994)

21 Melianol, meliandiol

22 Meliantriol,
toosendanin

23 Trichilins B, D, H Spodoptera
exigua

Nakatani et al. (1994)

24 Lignanes Rhodnius
prolixus

Cabral et al. (1995)

25 Piscidinol B-F Spodoptera
exigua

Walsura
piscidia

Govindachari et al. (1996)

26 Azedarachin C Spodoptera
exigua

Melia
azedarach

Huang et al. (1995)

27 Azadirachtin Spodoptera
litura

Azadirachta
indica

Li et al. (1995)

28 Toosendanin Peridroma
saucia

Melia
toosendan

Xie et al. (1995)

29 Salannin, nimbin Spodoptera
litura

Melia
azedarach

Govindachari et al. (1996)

30 Ruageanins A, B Spodoptera
frugiperda

Ruafea
fglabra

Mootoo et al. (1996)

31 Azedarachin A,
salannin

Spodoptera
eridania

Melia
toosendan

Nakatani et al. (1996)

32 Nimbolidins C–E Spodoptera
eridania

Melia
toosendan

33 Trichilins K, L, I, J, H Spodoptera
eredania

Melia
toosendan

Zhou et al. (1996)

34 Azadirachtin Spodoptera
littoralis

Azadirachta
indica

Mordue (Luntz) and
Nisbet (2000)

Spodoptera
frugiperda

Heliothis
virescens

Helicoverpa
armigera

Pieris
brassicae

(continued)
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Table 9.6 (continued)

Sl
No. Limonoids Test insect Origin References

Epilachna
varivestis

Locusta
migratoria

Melanoplus
sanguinipes

35 Meliartenin Spodoptera
eridania

Melia
azedarach

Carpinella et al. (2002)

Epilachna
panuelata

Epilachna
paenulata

Melia
azedarach

Carpinella et al. (2003)

36 Dumsin Pectinophora
gossypiella

Croton
jatrophoides

Nihei et al. (2002)

Spodoptera
frugiperda

37 Zumsin Pectinophora
gossypiella

Spodoptera
frugiperda

38 Meliartenin Epilachna
paenulata

Melia
azedarach

Carpinella et al. (2003)

39 Musidunin Pectinophora
gossypiella

Croton
jatrophoides

Nihei et al. (2004, 2005,
2006)

Spodoptera
frugiperda

40 Musiduol Pectinophora
gossypiella

Spodoptera
frugiperda

41 Zumketol Pectinophora
gossypiella

Spodoptera
frugiperda

42 Zumsenin Pectinophora
gossypiella

Spodoptera
frugiperda

43 Zumsenol Pectinophora
gossypiella

Spodoptera
frugiperda

44 Dumnin Pectinophora
gossypiella

(continued)
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Table 9.6 (continued)

Sl
No. Limonoids Test insect Origin References

Spodoptera
frugiperda

45 Dumsenin Pectinophora
gossypiella

Spodoptera
frugiperda

46 Xylogranatins F, G
and R

Mythimna
separate

Xylocarpus
granatum

Wu et al. (2008)

47 2-Acetyl soymidin B Spodoptera
litura

Soymida
febrifuga

Yadav et al. (2014)

Achaea janata

48 Soymidin D Spodoptera
litura

Achaea janata

49 Soymidin E Spodoptera
litura

Achaea janata

50 Trichanolide F Spodoptera
litura

Trichilia
connaroides

Solipeta et al. (2020)

Azadirachtin Salannin Dumsin

Zumsenol Dumsenin Meliartenin

Fig. 9.5 Structure of some triterpenes
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9.2.3 Alkaloids

Alkaloid compounds (nitrogen incorporated into a heterocyclic ring) are naturally
occurring low-molecular-weight organic compounds. It was reported that
ca. 20–30% of all alkaloids arise in higher plants, mostly in dicotyledonous
angiosperms at concentrations of ca. 0.01% of the dry weight or more (Seigler
1998). These compounds could be stored in any part of the plant at different
concentrations; they are most often intense in the most nutritious tissues, such as
seed tissues (Bernays and Chapman 1994). It is reported that ca. 10% of plant species
produce alkaloids as secondary metabolites, and these compounds primarily help to
protect against herbivores as well as pathogens. Till date more than 16,000 alkaloids
have been identified (Murphy 2017). However, some of them act as phyto-
antifeedants (Table 9.8 and Fig. 9.7).

9.2.4 Steroids

Steroids possess the tetracyclic 1,2-cyclopentanoperhydrophenanthrene (5α- or 5-
β-gonane) carbon skeleton, normally having methyl substituents at C-10 and C-13
and an alkyl substituent (side chain) at C-17. An array of diverse steroid compounds
arises due to different oxidation states of carbons of its tetracyclic core and CH3

groups and the framework of the side chain. All steroids are derived from S-
squalene-2,3-epoxide (Gunaherath and Gunatilaka 2014). The major plant steroids
are phytosteroids, withanolides, brassinosteroids, phytoecdysteroids, and steroidal
alkaloids. Table 9.9 shows a list of steroids, which act as phyto-antifeedants
(Fig. 9.8).

Quercetin Isosakuranetin Genistein

Judaicin Isoxanthohumol Taxifolin

Fig. 9.6 Structure of some flavonoids
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Table 9.7 A list of flavonoids acting as phyto-antifeedants

Sl
No. Flavonoids Test insect Origin References

1 5-Hydroxy-
3,6,7,8,40-pentamethoxyflavone

Spodoptera
litura

Gnaphalium
affine

Morimoto
et al. (2000,
2003)2 5-Hydroxy-3,6,7,8-

tetramethoxyflavone

3 5,6-Dihydroxy-3,7-
dimethoxyflavone

4 4,40,60-Trihydroxy-
20-methoxychalcone

5 5-Hydroxy-
3,6,7,8,40-heptamethoxyflavone

6 5-Hydroxy-3,6,7,8-
tetramethoxyflavone

7 5,6-Dihydroxy-3,7-
dimethoxyflavone

8 Quercetin Coptotermes
formosanus

Bobgunnia
madagascariensis

Ohmura et al.
(2000)

Tribolium
castaneum

Adeyemi
et al. (2010)

9 Taxifolin Coptotermes
formosanus

Ohmura et al.
(2000)10 Naringenin

11 Isosakuranetin

12 Aromadendrin

13 Phloretin

14 Myricetin

15 Sakuranetin

16 Eriodictyol

17 Genistein Coptotermes
formosanus

Trifolium
pratense

Ohmura et al.
(2000)

Acyrthosiphon
pisum

Goławska
and Łukasik
(2012)

Hylastinus
obscurus

Quiroz et al.
(2017)

18 Formononetin Hylastinus
obscurus

19 Fisetin Coptotermes
formosanus

Ohmura et al.
(2000)20 Kaempferol

Sitophilus
oryzae

Calotropis
procera

Nenaah
(2013)

Rhyzopertha
dominica

Calotropis
procera

21 Catechin Coptotermes
formosanus

Ohmura et al.
(2000)22 Catechinic acid

23 Judaicin Helicoverpa
armigera

Cicer judaicum Simmonds
and

(continued)
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Table 9.7 (continued)

Sl
No. Flavonoids Test insect Origin References

Stevenson
(2001)

Spodoptera
litura

Spodoptera
frugiperda

24 Maackiain Helicoverpa
armigera

Spodoptera
litura

Spodoptera
frugiperda

25 Luteolin Acyrthosiphon
pisum

Goławska
and Łukasik
(2012)

26 3-O-Rutinosides of quercetin Sitophilus
oryzae

Calotropis
procera

Nenaah
(2013)

Rhyzopertha
dominica

27 3-O-Rutinosides
of isorhamnetin

Sitophilus
oryzae

Rhyzopertha
dominica

28 5-Hydroxy-3,7-
dimethoxyflavone-
40-O-β-glucopyranoside

Sitophilus
oryzae

Rhyzopertha
dominica

Calotropis
procera

Nenaah
(2013)

29 Tephroapollin-F Sitophilus
oryzae

Tephrosia
apollinea

Nenaah
(2014)

Rhyzopertha
dominica

Tribolium
castaneum

30 Isoxanthohumol Myzus
persicae

Stompor
et al. (2015)

31 Formononetin Hylastinus
obscurus

Quiroz et al.
(2017)
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Table 9.8 A list of alkaloids acting as phyto-antifeedants

Sl
No. Alkaloids Test insect Origin References

1 Isoboldine (I) Spodoptera litura Cocculus trilobus Munakata
(1975)Abraxas miranda

2 Wilforine Pieris rapae Maytenus rigida Monache
et al. (1984)Locusta migratoria

3 Pterocarpan Maruca testulalis Tephrosia
hildebrandtii

Lwande
et al. (1985)4 Hildecarpin

5 Vasicine Aulacophora
foveicollis

Adhatoda vasica Saxena
et al. (1986)

Epilachna
vigintioctopunctata

6 Vasicinol Aulacophora
foveicollis

Epilachna
vigintioctopunctata

7 Vasicinone Aulacophora
foveicollis

Epilachna
vigintioctopunctata

8 Tylophorine Spilosoma obliqua Tylophora
asthmatica

Tripathi
et al. (1990)

9 Dithyreanitrile Spodoptera
frugiperda

Dithyrea wislizenii Powell
et al. (1991)

Ostrinia nubilalis

10 30-Acetyltrachelanthamine Leptinotarsa
decemlineata

Heliotropium
floridum

Reina et al.
(1997)

11 Europine Spodoptera
littoralis

Reina et al.
(1995)

12 Cardiopetamine Spodoptera
littoralis

Delphinium
cardiopetalum

González-
Coloma
et al. (1998)13 15-Acetylcardiopetamine Leptinotarsa

decemlineata
Delphinium
cardiopetalum

14 Lycopsamine Leptinotarsa
decemlineata

Heliotropium
megalanthum

Reina et al.
(1998)

Spodoptera
littoralis

15 Berberine Hyphantria cunea Coptis japonica Park et al.
(2000)Agelastica

coerulea

16 Palmatine Hyphantria cunea

Agelastica
coerulea

17 Coptisine Hyphantria cunea

Agelastica
coerulea

(continued)

9 Phyto-Antifeedants 307



Table 9.8 (continued)

Sl
No. Alkaloids Test insect Origin References

18 Leptine Leptinotarsa
decemlineata

Solanum
chacoense

Rangarajan
et al. (2000)

19 Strychnine Spodoptera litura Neurolaena lobata Passreiter
and Isman
(1997)

Diabrotica
virgifera virgifera

Simmonds
(2003)

20 Matrine Coptotermes
formosanus

Sophora
flavescens

Mao and
Henderson
(2007)21 Oxymatrine Coptotermes

formosanus

22 Atropine Spodoptera litura Datura
stramonium,
Datura ferox,
Datura innoxia

González-
Coloma
et al. (2004)

Leptinotarsa
decemlineata

Datura
stramonium,
Datura ferox,
Datura innoxia

23 Atropine + Nicotine Lymantria dispar Datura
stramonium,
Datura ferox,
Datura innoxia

Shields
et al. (2008)

24 3-O-Acetyl-narcissidine Spodoptera
littoralis

Hippeastrum
puniceum

Santana
et al. (2008)

25 (+)-11β-Methoxy-10-
oxoerysotramidine

Erythrina
latissima

Cornelius
et al. (2009)

26 (+)-10,11-
Dioxoerysotramidine

27 (+)-Erysotrine

28 (+)-Erysotramidine

29 (+)-Erythraline

30 (+)-
11β-Hydroxyerysotramidine

31 Taxol Lymantria dispar Yew plant Hu et al.
(2011)

32 α-Chaconine Trogoderma
granarium

Solanum
tuberosum

Nenaah
(2011)

33 α-Solanine Trogoderma
granarium

Solanum
tuberosum

Nenaah
(2011)

34 (3β,7α)-Stigmast-5-ene-3,7-
diol

Leptinotarsa
decemlineata

Echium wildpretii Santana
et al. (2012)

35 (3β,7α)-7-Methoxystigmast-
5-en-3-ol

(continued)
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9.2.5 Coumarins

Coumarin compounds are in the family of benzopyrones (1,2-benzopyrones or 2H-
1-benzopyran-2-ones), which is a class of lactones containing a benzene ring fused
to α-pyrone ring (Matos et al. 2015). The name ‘coumarin’ is derived from the
French term of Tonka bean (coumarou), seeds of Dipteryx odorata (Coumarouna
odorata) (Fabaceae/Leguminosae), which was first isolated in 1820. A list of
coumarins is presented in Table 9.10. Figure 9.9 provides some structure of
coumarins.

Table 9.8 (continued)

Sl
No. Alkaloids Test insect Origin References

36 7-Demethoxytylophorine Plutella xylostella Cynanchum
komarovii

Guo et al.
(2014)37 6-Hydroxyl-2,3-dimethoxy

phenanthroindolizidine

38 Vasicine acetate Adhatoda vasica Paulraj
et al. (2014)39 2-Acetyl-benzylamine

40 Pubescensine Pieris rapae Aconitum
soongaricum var.
pubescens

Chen et al.
(2015)41 3-Deoxyaconitine

42 Aconitine

43 15-α-Hydroxyneoline
44 Taurenine

45 Bullatine B

46 Chasmanthinine Spodoptera exigua Aconitum
franchetii var.
villosulum

Zhang et al.
(2017)

47 Apetaldine A Spodoptera litura Aconitum
apetalum,
Aconitum
franchetii var.
villosulum

48 Apetaldine E Aconitum
apetalum,
Aconitum
franchetii var.
villosulum

49 Chasmaconitine Aconitum
apetalum,
Aconitum
franchetii var.
villosulum

50 Indaconitine Aconitum
apetalum,
Aconitum
franchetii var.
villosulum
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9.2.6 Other Compounds

Aglaroxin A isolated from the twigs with bark of Aglaia elaeagnoidea (syn.
A. roxburghiana) had potent antifeedant activity against the gram pod borer,
Helicoverpa armigera (Hübner) and Asian armyworm, Spodoptera litura
(Fabricius) (Lepidoptera: Noctuidae) (Koul et al. 2005).

Ononitol monohydrate, a class of glycoside, isolated from Cassia tora (Fabaceae)
leaves showed antifeedant activity against the third instar larvae of H. armigera and
S. litura (Baskar and Ignacimuthu 2012).

9.3 Phyto-Antifeedants: Mode of Action

The antifeedant effects of compounds on insects are generally measured by deter-
mining nutritional indices, such as consumption, digestion and growth rate of insects
after consuming the foods provided. However to measure accurate estimate of
nutritional indices, a series of control experiments with weighed quantity of food
would have to be provided to determine whether the compound of interest has
resulted in a reduction in food consumption.

In feeding inhibitory test of a compound, different methods have been employed,
such as spraying of the compound on natural food (leaf disks), incorporating it with
dried food (wheat flour for locusts) and adding it in artificial diets, which is palatable
(mostly with sucrose). For chewing insects, sucrose is mixed with agar or agar
cellulose substrates; filter paper or glass fibre disks have been employed, while an
artificial medium in parafilm sachets is used for sucking insects. For heteropteran
and lepidopteran larvae and coleopteran insects, antifeedants are provided in drink-
ing water sources.

Oxymatrin He ildecarpin

Tylophorin Be ullatine B

Fig. 9.7 Structure of some
alkaloids
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Table 9.9 A list of steroids acting as phyto-antifeedants

Sl
No. Steroids Test insect Origin References

1 Withanolide E Spodoptera
littoralis

Physalis peruviana,
Withania somnifera

Ascher et al.
(1980)

Epilachna
varivestis

Physalis peruviana,
Withania somnifera

2 Nicalbin A, B Epilachna
varivestis

Nicandra physalodes

3 4β-Hydroxywithanolide
E

Epilachna
varivestis

Physalis peruviana

4 Nic-1 (nicandrenone) Epilachna
varivestis

Nicandra physalodes

5 Azedarachol Agrotis
segetum

Melia azedarach Nakatani et al.
(1985b)

6 Conessine Spodoptera
litura

Holarrhena
antidysenterica

Thappa et al.
(1989)

Pieris
brassicae

Holarrhena
antidysenterica

7 Salpichrolide A, C, G Musca
domestica

Salpichroa origanifolia Mareggiani
et al. (2000)

8 Leptine I Leptinotarsa
decemlineata

Hollister et al.
(2001)9 Leptinines

10 Luciamin Schizaphis
graminum

Dayan et al.
(2009)

11 20-Hydroxyecdysone Phyllotreta
striolata

Ajuga nipponensis Xu et al.
(2009)

12 (3β,7α)-Stigmast-5-ene-
3,7-diol

Leptinotarsa
decemlineata

Echium wildpretii Santana et al.
(2012)

13 (3β,7α)-7-
Methoxystigmast-5-en-
3-ol

Leptinotarsa
decemlineata

Echium wildpretii

Withanolide E Conessine 20-hydroxy ecdysone

Fig. 9.8 Structure of some steroids
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Table 9.10 A list of coumarins acting as phyto-antifeedants

Sl
No. Coumarins Test insect Origin References

1 Xanthotoxin Spodoptera
litura

Umbelliferae Yajima and
Munakata
(1979)

Spodoptera
exigua

Berdegue et al.
(1997)

Trichoplusia
ni

Akhtar and
Isman (2004)

2 8-Methoxypsoralen Spodoptera
littoralis

Tetradium
daniellii

Stevenson et al.
(2003)

Heliothis
virescens

3 5-Methoxypsoralen Spodoptera
littoralis

Heliothis
virescens

Cryptotermes
brevis

Sbeghen-Loss
et al. (2011)

4 5,8-Dimethoxypsoralen Spodoptera
littoralis

Stevenson et al.
(2003)

Heliothis
virescens

5 5-Geranyloxypsoralen Spodoptera
littoralis

Heliothis
virescens

6 Xanthotoxin Trichoplusia
ni

Umbelliferae
plants

Akhtar and
Isman (2004)

7 3(200,200Dimethyl butenyl)
30-hydroxydihydrofuropsoralen

Spodoptera
littoralis

Ruta
chalepensis

Emam et al.
(2009)

8 Rutamine Spodoptera
littoralis

Ruta
chalepensis

9 5,7-Dimethoxycoumarin Cryptotermes
brevis

Total citrus
wax

Sbeghen-Loss
et al. (2011)

Xanthotoxin Rutamine 5,7-Dimethoxycoumarin

Fig. 9.9 Structure of some
coumarins
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In choice tests, the screening method is much sensitive. The peach aphid Myzus
persicae feeds on artificial foods containing different allelochemicals, whereas in a
choice experiment the aphids could not distinguish between the control without the
test allelochemicals and substance with allelochemicals. This study indicated that
experimental conditions would have to be chosen after careful considerations.
According to Ma (1977), the threshold value of Spodoptera exempta towards
warburganal was 1000 times higher when applied in sucrose-agar diet than
warburganal present in natural leaf surface (Kubo et al. 1976). These results
suggested that the compound mixed in agar caused the receptors to contact at
lower concentrations than that present in the leaf surface. Further, the increased
food intake may be due to poor nutritional value of agar (Dethier 1982).

Different methods have been applied by various researchers to describe
antifeedant effects, such as the effect of antifeedants in concentrations (ppm—

implicating a reduction in food intake by 50%) which reduce food intake by 50%,
while a group of researchers reported that the effect of antifeedants would be taken
into account when the compound of interest inhibited feeding of the insect pest
between 80% and 100%; antifeedants in the context of leaf surface area are not fed
by an insect (protective concentrations, PC) and the intensity of insect starvation
(starvation concentration, SC), i.e., the effective antifeedant concentration was not
taken into account when these values are below 95% level. Jermy et al. (1981) used a
log 2 concentration series to state antifeedant activity in effective threshold
concentrations. However, a number of reviews suggested that bioassays to observe
the antifeedant effect of an insect towards a compound will not be more than 6 h as
lower feeding for long-term test could cause post-ingestive toxicity rather than
behavioural basis.

9.3.1 Cognition of Antifeedants

Different mechanisms are used by various insects at the sensory level for the
cognition of antifeedants. Phytophagous insects possess taste cells to detect inedible
and/or toxic secondary metabolites of plant origin, and specialized receptors are
stimulated by the substances, or the activities of receptors are modified by tuning the
other compounds, and in this way insects adjust the sensory code (van Loon and
Schoonhoven 1999).

In lepidopteran larvae, the bitter-receptor (deterrent) taste cells possess four types
of chemosensilla—the lateral and medial styloconic sensilla, epipharyngeal sensilla
and gustatory sensilla, which are located on the maxillary palp. Each sensillum
possesses three to four taste cells. One of the taste cells in each sensillum acts as
deterrent. Overlapping molecular receptive ranges (MRRs) are present in some
bitter-receptor taste cells (van Loon and Schoonhoven 1999). A bitter-receptor
taste cell can respond to various secondary plant metabolites by the co-localization
of a set of signalling pathways, each with distinct MRRs, such as the bitter-receptor
taste cell located in the lateral styloconic sensillum of M. sexta and had at least two
signalling pathways: one pathway reacts to phenolic glycosides (salicin and helicin)
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and methylxanthines (caffeine, theophylline and theobromine), while the other
pathway reacts to aromatic nitro derivatives (aristolochic acids) (Glendinning and
Hills 1997). For example, caffeine—a deterrent to the monophagous larva of
Danaus plexippus—responds to all eight receptors located in the maxillary sensilla
styloconica. A number of literatures reveal that direct gated ion channels and G
protein-coupled receptors are involved in sugar signalling pathways for dipteran
taste cell (Murakami and Kijima 2000; Ishimoto et al. 2000; Dahanukar et al. 2001).

Phytophagous insects may employ post-ingestive response to detect toxic
compounds in food, e.g. the larvae of Spodoptera frugiperda (Lepidoptera:
Noctuidae) initially start feeding on foods containing indole-3-carbinol (a toxic
compound), which is present in cruciferous plants, but the larvae did not consume
after 2–3 min and become motionless (Glendinning and Slansky 1995). This obser-
vation suggests that indole-3-carbinol does not deter the larvae initially through
pre-ingestive (i.e. gustatory or olfactory) mechanism, and this compound deter the
larvae to feed through post-ingestive response. Similar results were recorded in the
case of M. sexta larvae. Larvae of M. sexta when provided with artificial diet mixed
with nicotine then they initially consumed rapidly, but they did not feed after
24–30 s, and subsequently, the larvae started to tremble aggressively. The above
fact is not an incident of pre-ingestive response but post-ingestive response of the
M. sexta larvae, which is proved by these four facts: (1) taste-mediated inhibitory
responses in the larvae generally onset more rapidly (in <6 s); (2) destroying the
gustatory and olfactory chemosensilla of larvae had no effect on the time course or
the nature of inhibitory response to the diet containing nicotine; (3) nicotine did not
stimulate the deterrent taste cells in the larvae (Glendinning 1996); and (4) the larvae
aggressively tremble when nicotine trespasses the central nervous system (Morris
1984).

9.3.2 Validating the Action of Inhibitory Response

Phytophagous insects tackle the inhibitory response of secondary metabolites by at
least three different mechanisms—two are performed by the taste system, while the
third is mediated by detoxication enzymes present in the midgut. It seems that these
three mechanisms are helpful to combat against a wide array of secondary plant
metabolites.

9.3.2.1 Carbohydrates Hide the Distasteful Taste of Secondary Plant
Metabolites

When inedible secondary plant metabolites are provided with carbohydrates (sugars
or sugar alcohols), then this mechanism is functional. The carbohydrates in the food
can override the inedible taste of some plant secondary metabolites, which causes the
inedible food to become edible or palatable food (Glendinning et al. 2000). The
peripheral taste system helps to detect the mechanism as several reports are avail-
able, which proved that carbohydrates inhibit the response mechanism of deterrent
taste cells (Blaney and Simmonds 1990; Shields and Mitchell, 1995a, b). Among the
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two possibilities, one is that carbohydrate-sensitive taste cell inhibits the activity of
deterrent taste cell present in the same chemosensillum, while in another possibility,
carbohydrates attach to the receptor molecules, resulting in the inhibition of the
response of the taste cells.

9.3.2.2 Longer Dietary Exposure Helps the Gustatory System
to Consume Nontoxic Unpalatable Substances

If phytophagous insects are provided a diet with nontoxic unpalatable substances,
then insects will repetitively check the diet, and after 12–48 h of tasting the diet,
insects will ultimately adapt their inhibitory response towards these substances. In
M. sexta, a diet containing caffeine has been provided for 24 h; then, the insect put an
end to inhibitory response towards caffeine. This mode of mechanism is mediated
peripherally as the prolonged exposure to the diet helps to desensitize all caffeine-
response taste cells towards caffeine. Similar results were obtained if salicin is
provided for 24 h, but this mechanism is performed centrally because of the absence
of desensitization of salicin-response taste cells. Both these results suggest that the
larvae of M. sexta employ peripheral and central gustatory mechanisms to adapt
nontoxic unpalatable substances.

9.3.2.3 Longer Dietary Exposure Towards Toxic and Unpalatable
Substances Causes Release of Detoxification Enzymes

It is common that phytophagous insects can overcome the inhibitory responses of
toxic plant secondary metabolites by inducing the detoxification enzymes present in
the midgut (Zangerl and Berenbaum 1993; Glendinning and Slansky 1995).

The larvae of M. sexta can overcome the neurotoxic effects caused by nicotine in
the diet. Initially for a period of 30 h, the larvae deter from feeding towards
ecologically relevant concentration of nicotine, but after that the midgut wall
produces a huge amount of P450 detoxification enzymes, which catabolize the
nicotine to excretal substance with less toxicity (Negherbon 1959; Morris 1983,
1984; Snyder et al. 1993, 1994). The above statement is supported by two reasons:
(1) feeding of low amount of nicotine in diet does not induce release of P450
detoxification enzymes (Snyder and Glendinning 1996), and (2) when nicotine-fed
larvae were provided piperonyl butoxide (PB) (an inhibitor of P450 detoxification
enzymes), it results in consumption of nicotine at a lower rate that is similar to that of
uninduced larvae.

9.4 Phyto-Antifeedant: Formulation

The use of natural antifeedants is growing in the world, and the choice of the ideal
formulation is dependent on a series of factors: type of antifeedants (natural or
synthetic), pharmaceutical forms (dust and spray), duration of action time (short or
long) and environment of exposure. The most used antifeedant is azadirachtin A
from A. indica. Other azadirachtin isomers are also reported to act as antifeedants,
but activity of azadirachtin A is higher than other isomers. This compound is
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effective against ca. 400 insect species belonging to Blattodea, Coleoptera, Diptera,
Dermaptera, Ensifera, Homoptera, Heteroptera, Hymenoptera, Lepidoptera,
Isoptera, Phasmida, Thysanoptera and Siphonaptera (Koul and Wahab 2004).

Liquid formulations of commercial neem-based insecticides—(1) Agroneem
(Ajay Bio-Tech, Pune, India), (2) Ecozin (AmVaC, Los Angeles, CA) and
(3) Neemix 4.5 (Certis, Columbia, MD)—and a neem seed extract formulation
containing 1036, 16,506, 471 and 223μg/ml azadirachtin, respectively, caused
lower feeding punctures by the gravid female boll weevils Anthonomus grandis
grandis Boheman on the treated cotton square compared to control treatments
(Showler et al. 2004). If the formulations are applied in outdoor environment 24 h
before weevils were in touch, a decrease of 46–60% feeding compared with controls
was recorded (Showler et al. 2004), indicating that repeated applications are needed
to get the best result. A significant reduction in the feeding activity of the diamond-
back moth, Plutella xylostella, larvae was recorded by feeding on Agroneem, Ecozin
and Neemix (Liang et al. 2003).

AgriDyne Technologies Inc. (ATI) has developed a formulation, Align™
(an emulsifiable concentrate containing 3% azadirachtin), which is diluted with
water before spraying to control insect pests of fruits and vegetables. The application
of Align™ resulted in a significant reduction in feeding activity of cabbage looper,
beet armyworm, diamondback moth, Colorado potato beetle, sweet potato whitefly,
grape leafhopper, green peach aphid and onion thrips. Further, AgriDyne has
formulated two neem-based insecticides, Azatin® EC and Turplex™, to control
insect pests of greenhouse and ornamental plants, respectively.

In India, several neem-based products are available, such as Azadit; Biosol;
Godrej; Achook [containing 2800 ppm of the compounds azadirachtin (aza)
(0.03%; 300 ppm), azadiradione, nimbocinol and epinimbocinol]; Field Marshal
(azadirachtin-enriched neem extract—water-miscible); neem-based emulsifiable
concentrate, dust, water dispersible powder and granule (25% WDP are effective
against H. armigera, S. obliqua and E. cnejus, while 5% dust are effective against
S. obliqua, and 3.5% and 10% granules on China clay against sorghum stem borer,
Chilo partellus); Neemhit prepared by Ayurvedic formula (effective against cotton,
sugarcane, peanut, soybean, sunflower, corn, pulses, rice, vegetables, fruit trees,
flowers and plantation crops according to manufacturer); Neem Oil Emulsion; Neem
Plus; Neem Top; Neemark (water-miscible concentrate containing 80% neem bio-
mass—give an emulsion on dilution with water); Neemasol; Neemgold; Neemguard;
etc. Further, four neem-based insecticides—Neemix® (0.25% EC at 20 mg
azadirachtin/litre), Ecozin® (3% EC at 20 mg azadirachtin/litre), Agroneem®

(0.15% EC at 4.8 mg azadirachtin/litre) and neem oil (0.25% EC azadirachtin at
20 mg azadirachtin/litre)—are effective antifeedants against the larvae of Pieris
brassicae (Hasan and Ansari 2011).

Zuleta-Castro et al. (2017) formulated the emulsion containing 0.76% p/p
ethanolic extract using A. indica cell culture extract, 0.72% 8-hydroxyquinoline,
1% anthraquinone and epichlorohydrin, 0.20% Tween 8 and 50/50 aqueous phase/
oil phase to control S. frugiperda insects, and the metabolite did not degrade in the
light, which causes death of the insect pests in the field.
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Neem seed extracts inhibited the feeding of rose aphid, Macrosiphum rosae (L.),
and chrysanthemum aphid, Macrosiphoniella sanborni (Gillette), and subsequently
resulted in a reduction in the aphid populations on host plants, while EC50 values
were 0.88% and 0.96% for M. rosae and M. sanborni, respectively (Koul 1999).

It is essential that antifeedants must have properties like insecticides, i.e., effec-
tive only against the target insect pest (compounds that are nontoxic against
mammals and nontarget mechanisms, such as beneficial insects), and they must
possess residual property, so that crops can be protected against insect pests through
its window of exposure. It is common problem of antifeedants that these compounds
had been suffering from higher interspecific variations in bioactivity; for example,
azadirachtin is an effective antifeedant against the desert locust (inhibiting feeding
by 50% at a 0.05 ppm concentration), but the migratory grasshopper (a pest of cereal
crops and rangeland grasses in North America) does not deter feeding at a concen-
tration of 1000 ppm (Champagne et al. 1989). Further, the EC50 values of
azadirachtin varied more than 30-fold between species; for example, the tobacco
cutworm (Spodoptera litura) is the most sensitive, and the black army cutworm
(Actebia fennica) is the least (Isman 1993).

González-Coloma et al. (2002) demonstrated that the antifeedant activities of
silphinene sesquiterpenes are species dependent, such as the cotton leaf worm
(S. littoralis), Colorado potato beetle (L. decemlineata) and five aphid species
(M. persicae, Diuraphis noxia, Rhopalosiphum padi, Metopolophium dirhodum
and Sitobion avenae). Several reports revealed that insects show habituation on
antifeedants though these compounds initially act as antifeedants on the insects;
for example, the larvae of tobacco cutworm initially did not feed on azadirachtin, but
the antifeedant activity of this compound becomes half after prolonged exposure of
the insect for 5 h (Bomford and Isman 1996). The antifeedant activity of toosendanin
is destroyed after 4.5 h. These observations suggest that the application of
antifeedants on plants might only protect the plant from insect pests during initial
attack, but after that the antifeedants become ineffective.

According to Isman (2002), the habituation was observed in the armyworm larvae
(P. unipuncta) when they were provided xanthotoxin or thymol alone, but larvae did
not show habituation when they were exposed to a blend of these two compounds. It
was also shown that the larvae of S. litura showed habituation on azadirachtin, but
the larvae did not become habituated when they were exposed to neem extract
containing the same amount of azadirachtin (Bomford and Isman 1996). In the
same way, the larvae showed habituation to toosendanin (95%), but they did not
show habituation to a blend of limonoids containing 60% toosendanin.

9.5 Phyto-Antifeedants: Potential Uses

The best method to apply an antifeedant is in water- or oil-based formulations like
the application of an insect pesticide. It is noted that the beneficial effects of
antifeedants are dependent on applying these compounds in more strategic ways.
Latex, a natural hydrocarbon polymer, is a nontoxic material, which is used in paints,

9 Phyto-Antifeedants 317



surface coatings, furniture, packaging, textiles, construction and pharmacy. Further,
pharmaceutical industries apply them to put together in controlled release drug
delivery systems to protect dosage forms from UV exposure and moisture (Shtykova
et al. 2008). Shtykova et al. (2008) used the latex dispersion Eudragit copolymer
(EC) to prepare the coatings on the antifeedants 2,6-di-tert-butyl-4-methylphenol
(BHT) and cisdihydropinidine (Alk), which were efficient to deter the feeding
activity on conifer bark by Hylobius abietis (pine insect) both in laboratory and in
fields. The applications of essential oils as antifeedants are not so fruitful because of
the degradation and volatilization of the active ingredients in essential oils. El
Asbahani et al. (2015) formulated essential oils as microspheres or microcapsules
to protect them from degradation. The ethanolic crude extract of Annona mucosa
Jacq. (ESAM) seeds contains a mixture of alkaloids, triglycerides and acetogenins,
which is a prospective source of insecticidal compounds against agricultural pests
(Ansante et al. 2015; Souza et al. 2017). Souza et al. (2019) demonstrated that the
combination of ESAM and acetogenin-based commercial bioinsecticide Anosom®

1 EC had marked antifeedant and growth inhibitory activities on the larvae of
H. armigera. Skuhrovec et al. (2020) prepared encapsulated formations of essential
oils using anise (Pimpinella anisum L. [Apiales: Apiaceae]) against one of the major
insect pests of potato, the Colorado potato beetle.

The strategy ‘stimulo-deterrent diversion’ (also called ‘push-pull strategy’)
employs ‘push’ intercrop and ‘pull’ edge crop to protect crops from insect pests by
promoting biocontrol agents. This strategy is applied to manage pea leaf weevils by
applying neem antifeedant (push) to keep away the insect pest and edge planting of
winter peas as trap crops (pull) to attract the insect pest (Smart et al. 1994).
Aggregation pheromone can be applied on the edge trap crop to increase the
attraction of insect pests. Clover can also be grown as trap crop instead of winter
pea (Cook et al. 2007). Neem-based antifeedants (push) can be applied in
stimulo-deterrent diversion strategy to control L. decemlineata by early boundary
planting of trap crop (potato as pull) to attract the insect pests and natural enemies of
the insect pests (Martel et al. 2005). The western flower thrips, Frankliniella
occidentalis, are one of the major insect pests of greenhouse-grown
chrysanthemums. The thrips were deterred from chrysanthemums by spraying the
antifeedant procured from the plant, Dorrigo pepper on the main crop, and
concentrating them onto trap plants (cv. ‘springtime’ of chrysanthemum is the
most attractive) (Bennison et al. 2002).

Another approach is the joint action of antifeedant and insect growth regulators
(IGRs) to control the insect pests (Griffiths et al. 1991). A blend of Ajuga spp. leaf
extract (antifeedant) and teflubenzuron (IGR) was effective against Phaedon
cochleariae (mustard beetle) and the larvae of Plutella xylostella feeding on mustard
plants. The antifeedant inhibited feeding of the insects, while insect growth regulator
did not inhibit feeding for the first 48 h of application, but caused the death of beetles
and larvae after 2 weeks (Griffiths et al. 1991). The joint action of antifeedant and
IGR is the application of antifeedant on the tender leaves of a plant and IGR on the
lower leaves of the same plant. Application of antifeedant caused the beetles to move
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on the lower parts of mustard plant, but when the insects were in contact with the
IGR on the lower leaves of the plant, it resulted in death of the insect pests.

9.6 Phyto-Antifeedants: Prospects for Commercial Use

Till date, in excess of 1000 compounds of plant origin as antifeedants have been
isolated and tested against a number of insect species, and more compounds are
being added as antifeedants in laboratory conditions (Koul 2005, 2008). At present,
the efficacies of the antifeedants in field conditions are very few due to variations in
responses among different insect pests and habituation of insect pests towards
antifeedants as well as quick degradation of the antifeedant compounds in the field
conditions. A major concern is that most of the commercial synthetic pesticides are
broad spectrum, and the antifeedants will be broad spectrum in characteristics like
synthetic pesticides. Most of the phyto-antifeedants act only on a limited number of
insect pests, and when these compounds are applied in the field, these antifeedant
compounds can act on specific insect pests, but, on the other hand, the antifeedant
compounds may not be effective, and other insects present in the field may be
attracted towards the crop plant, which ultimately lowers the crop production.
Further, the cost of developing a particular antifeedant for a specific pest is a big
question. This is the reason that only neem as antifeedants is commercially available
in the market.

Polygodial or methyl salicylate as antifeedants resulted in a reduction in aphid
populations, and subsequently, an increase in the production of winter wheat was
recorded in IARC Rothamsted. The reduction in aphid population after application
of polygodial is equal to that of application of pyrethroid insecticide cypermethrin
(Pickett et al. 1997). Another limonoid antifeedant, toosendanin, obtained from the
bark of the toosendan andM. azedarach has got much attention throughout the world
as a commercial biopesticide by the scientists (Chiu 1989; Isman 1994; Chen et al.
1995; Koul et al. 2002). Due to public awareness that botanical pesticides are safer
than synthetic ones, the applications of botanical pesticides are increasing through-
out the world. The production of biopesticides is estimated ca. 2% of the US $60
billion global pesticide market. However, microbial insecticides, such as products
from Bacillus thuringiensis, dominate among the biopesticides. At present, the
productions of biopesticides are increasing at a rate of 16% per annum, while the
synthetic pesticides are increasing at a rate of 5.5% per annum (Miresmailli and
Isman 2014). The use of some essential oils as biopesticides without regulatory
review by the US Environmental Protection Agency (EPA) provided in the list
[25 (b)] of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) has
paved the way to commercialize some essential oils. Further research on the effects
of antifeedants in the insect sensory systems and formulations of antifeedant
compounds in such a way that these compounds could not be degraded in the
environmental conditions as well as development of broad-spectrum antifeedant
compounds similar to that of synthetic pesticides are needed to get the most effective
results of phyto-antifeedants against insect pests in the crop fields.
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9.7 Conclusions

Application of antifeedants from plant parts helps us to utilize plant defense
mechanisms and subsequently, helps to reduce the use of synthetic pesticides. To
get the best results by using phyto-antifeedants, the following criteria should be
considered: categorization of the natural sources, maintenance of quality, adoption
of standardization strategies and modification of regulatory constraints; if these four
criteria are properly addressed, the phyto-antifeedants could be as competitive and
successful as the synthetic ones. Limonene at lower concentration acts as an
antifeedant, but this compound causes allergic reaction on the human skin at higher
concentration. Hence, basic research in combination with field trials of the isolated
phyto-antifeedant at different doses is necessary to get environment-friendly safe
products for insect pest control. However, most of the research on phyto-antifeedants
presents that crude plant extracts could act as antifeedant on a particular insect
species in the laboratory. This is the major drawback of basic research on phyto-
antifeedants, which should be avoided. It is better to identify the compound from
plant sources, which acts as insect antifeedant. If it is not possible to identify the
compound of interest, scientists should be in collaboration with farmers for applica-
tion of plant-based crude extracts for insect pest control in the field, which is more
valuable than that of laboratory studies. To obtain the best results of the application
of phyto-antifeedants, it is prerequisite that (1) proper technique should be adopted
to maintain the integrity of phytochemical mixtures; (2) development of broad-
spectrum phyto-antifeedants, which is similar to that of synthetic ones in action
and the production cost of phyto-antifeedants, would be lower than that of synthetic
ones; and (3) application of advanced technologies and delivery methods, such as
nanotechnology, and micro- and nano-encapsulation techniques may provide quali-
tative and quantitative release of phyto-antifeedants for insect pest control.

Points to Remember
• About 10% of the insect pests are major pests, and insect herbivores cause

one-fifth of the world’s crop loss per year throughout the globe.
• Four major and 26 minor crops are responsible for ca. 95% of human sustenance,

indicating that many of these crop plants are grown for a long time.
• Application of phyto-antifeedants helps us to make use of natural plant defense

mechanisms, which is essential to reduce the use of synthetic pesticides. How-
ever, it is prerequisite that phyto-antifeedants should have to be broad spectrum,
like the available synthetic compounds.

• Most of the phyto-antifeedants are from 43 families of plants. However, four
families—Meliaceae, Asteraceae, Labiatae and Leguminosae—are more
exploited for identification and extraction of compounds, which are acting as
insect antifeedants.

• The known phyto-antifeedants belong to groups, like various terpenes
(monoterpenes, sesquiterpenes, diterpenes and triterpenes), flavonoids, alkaloids,
coumarins, steroids, etc., and each species of insect may employ these
compounds in an idiosyncratic manner, so that the same compound may have
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altered fates in different species of insects, implicating that different mechanisms
are involved in antifeedant action.

• The four criteria—categorization of the natural sources, maintenance of quality,
adoption of standardization strategies and modification of regulatory
constraints—are necessary to obtain the best results of the application of phyto-
antifeedants.

• The formulation of antifeedant compounds including large-scale field trials would
help to encourage farmers to use natural antifeedants.

• Phyto-antifeedants can be combined with natural plant substances, such as
physiological toxins, to manipulate insect behaviour in integrated pest manage-
ment strategy.
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