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Abstract. Based on the convolution neural network (CNN) technology, and the
use of video monitoring equipment, an intelligent safety monitoring system for
nuclear power plant is designed and developed, to realize the continuous moni-
toring of regional fire situation and whether the personnel wearing safety helmet
or not. This paper introduces the framework of the system, the principle of con-
volution neural network and the feature recognition strategy, and describes the
process of system training data acquisition and model training in detail. The 6-
month continuous measurement in nuclear power plant shows that this system
is stable, accurate and timely, and can effectively improve the efficiency of field
monitoring.
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1 Introduction

At present, more than 30 countries in the world have nuclear power plants, and the
nuclear power accounts for more than 15% of the total power generation. China has
47 operating nuclear power units, 15 nuclear power units under construction, and 18
nuclear fuel cycle facilities. The total number of nuclear power units ranks the second
in the world, and the number of units under construction ranks the first in the world.
Nuclear power has become an important part of China’s energy structure.

Safety is the most important basis of nuclear power development. According to
the statistical result, more than 90% of all kinds of accidents in nuclear power plants
are caused by unsafe state of objects and unsafe behaviors of people. And the highest
proportion of unsafe behaviors is un-wearing safety helmet, which often leads to serious
injury or death accidents. Among various accidents of nuclear power plant, the frequency
of fire accidents is much higher than that of nuclear accidents. According to the statistical
result of American Electric Power Research Institute, the frequency of nuclear power
plant fires is about 0.14/ (plant year).

This paper proposes an intelligent safety monitoring system for nuclear power plant
based on the convolution neural network technology and video monitoring equipment,
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to realize the continuous monitoring of regional fire situation and whether personnel
wearing safety helmet or not, which can be helpful for the safe and stable operation of
nuclear power plant.

2 System Framework Design

2.1 A Subsection Sample

Based on the image analysis and convolution neural network technology, using the mon-
itoring equipment installed in the nuclear power plant and according to the background
system analysis results, the intelligent safety monitoring system for nuclear power plant
can monitor continuously the fire situation and the wearing of safety helmet in the mon-
itoring area, so as to ensure the safe and stable operation of the nuclear power plant.
The intelligent security monitoring system is mainly composed of front end equipment,
video storage and forwarding equipment, alarm processing and displaying equipment
and linkage control equipment. The specific system framework is shown in Fig. 1.

Fig. 1. Framework of the intelligent safety monitoring system

Front end equipment: including camera, video coding equipment, accessories and
other equipment, mainly used for video signal acquisition.

Video storage and forwarding equipment: including network switch, video storage
device and other equipment, used for video storage and forwarding.

Alarm processing and displaying equipment: including video analysis server, client
server, display, alarm output and other equipment. The server connects with the video
storage device through ethernet, extracts the video signal, analyzes the status of personnel
wearing helmet and fire situation in the area in real time, then outputs the alarm signal.
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Linkage controller: used to realize the whole alarm linkage control function of
nuclear power plant through receiving the system alarm signal.

By using the convolutional neural network, and integrating the computer vision
technology and deep learning technology, the system analyzes, locates, identifies and
tracks the image sequence of the camera without human intervention. Then on this basis
the data are analyzed to realize the timely acquisition, response and processing of specific
conditions, and to monitor the status of personnel wearing helmet and fire situation in
the area.

3 System Technical Principles

3.1 Convolution Neural Network

The convolution neural network is a multi-layer neural network using back-propagation
algorithm for feature training, and its core is the convolution layer. Compared with other
intelligent neural networks, it avoids the complex feature extraction process, reduces
the complexity of network model, and is widely used in artificial intelligence [1], text
processing, image recognition and other aspects. The basic convolution neural network
is usually composed of convolution layer, pooling layer and fully connected layer.

Features extracted by the convolutional neural network can be divided into three
levels: low level, middle level and high level. The low level layer is used for extracting
low-level features; middle level layer is used for extracting middle-level features; and
high-level layer is used for extracting high-level features [2]. The basic structure of the
convolution neural network is shown in Fig. 2.

Fig. 2. Basic structure of the convolutional neural network

The convolution layer is used for extracting the features of input data. It contains
multiple convolution kernels, and is the core of the convolutional neural network [3].
The input data is extracted and compressed repeatedly by convolution kernel, and the
high-level feature of the data is finally obtained, which can be used for recognition,
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analysis and processing. Its mathematical expression is shown in formula (1).

c(x, y) = f

(
N−1∑
n=0

M−1∑
m=0

ωn,mu(x + n, y + m) + b

)
(1)

In formula (1), f (x) is the activation function, ωn,m is the corresponding weight of
convolution kernel, N and M are the size of convolution kernel, u is the upper output
feature, and b is the offset value.

In the development process, the activation function f (x) uses the linear rectification
unit (Rectified Linear Unit, ReLU), which is the nonlinear function, and its mathematical
expression is shown in formula (2).

ϕ = max

(
0,

∑
i

ωiαi

)
(2)

In formula (2): ϕ is the output of ReLU, and ωi is the i-layer weighted, αi is i-layer
input.

The system trains the convolutional neural network to extract target features through
preprocessing image data set, and detects image features combining with DARKENT
network model, and trains various image feature extraction under the support of multi
GPU based on Yolo v3 [4].

After feature extraction in the convolution layer, the output feature maps will be
transferred to pooling layer for feature selection and information filtering. The pooling
process is shown in Fig. 3. The initial characteristic sample size is 20 × 20, and the
sampling window size is 10 × 10. After repeated sampling, the final sampling is 2 × 2.
The data dimension is reduced by down sampling, but the feature statistical attributes
can still reflect the image characteristics, and can effectively avoid the problem of over
fitting.

a) Convolved feature b) Pooled feature

Fig. 3. The pooling process.

3.2 Realization of Feature Recognition

Based on the multiscale strategy, the DARKENT network structure uses three feature
maps (13 × 13, 26 × 26, 52 × 52) to predict smoke, flame and helmet wearing. Three
frames are predicted for each grid cell. The tensor dimension of the final output is
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N×N×[3× (4+ 1+ 80)]. WhereN is the length and width of the feature map, 3 is the
three predicted borders, 4 is the tx, ty, tw, th, 1 is the confidence level of the predicted
borders, and 80 is the number of categories. The 9 anchor sizes on coco dataset are
(10 × 13), (16 × 30), (33 × 23), (30 × 61), (62 × 45), (59 × 119), (116 × 90), (156 ×
198), (373 × 326).

There are three branch outputs predict all kinds of features in yolov3, the feature
map of output is 13× 13, 26× 26, 52× 52, and each feature graph uses three anchors.

(1) The 13 × 13 feature map uses (116 × 90), (156 × 198), (373 × 326).
(2) The 26 × 26 feature map uses (30 × 61), (62 × 45), (59 × 119).
(3) The 52 × 52 feature map uses (10 × 13), (16 × 30) and (33 × 23).

In yolov3, there are six anchors, which are (10, 14), (23, 27), (37, 58), (81, 82),
(135169), (344319). Finally, the yolov3-tiny has two branches for prediction, and the
size of feature map is 13 × 13 and 26 × 26. Each feature map uses three anchors for
prediction.

4 Data Acquisition and Model Training

The intelligent safetymonitoring systemmainlymonitors the two status offire andhelmet
wearing, so it is necessary to collect data samples for these two states respectively [5].

4.1 A Subsection Sample

According to the results of hazard analysis of nuclear power plant, different fire pictures
are selected as data sets from three aspects of combustible type, scale size and smoke
type. And the types of combustible materials can be divided into: gasoline, diesel oil,
lubricating oil, natural gas (simulating hydrogen explosion), wooden pile, tire, cable
electrical, etc. The scale size can be divided into: small size (first level sensitivity),
medium size (second level sensitivity), large size (third level sensitivity). The smoke
type can be divided into: thin smoke, white smoke, black smoke, smoke under low
illumination, etc. 100,000 images including smoke or flame were collected, and 50,000
images of which were used as training data set together with 5,000 other interference
images, and the remaining 50,000 images were used as test data set.

The images of all training data sets and test data sets are preprocessed, and then the
convolution neural network is used for training and learning. Each image in the dataset
contains the corresponding classification label. An example of a dataset sample is shown
in Fig. 4.

4.2 Safety Helmet Wearing Data Set

Safety helmet can be divided into general safety helmet, electric safety helmet, antistatic
helmet, cold helmet and helmet with goggles. Combined with the field application in
nuclear power plant, the samples of universal safety helmet and safety helmet with
goggles are mainly collected. Taking all kinds of safety helmets distributed in a nuclear
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a) White smoke picture                           b) Flame picture

c) Black smoke and flame picture                   d) Large fire picure

Fig. 4. Example of flame and smoke sample.

power plant in recent five years as the basic samples, about 20,000 frames of monitoring
video stream are intercepted, and about 30,000 pictures of safety helmet wearing are
collected through the Internet to form the basic sample data set; then the samples are
classified according to the size of the pictures and the complexity of the background [6].
In the basic sample data set, 30,000 images were randomly selected and 1,000 other hat
interference images were collected as the training data set, and the remaining 20,000
images were used as the test data set. An example of a dataset sample is shown in Fig. 5.

4.3 Model Training

After the training data set is obtained, the data set is trained by deep learning network
model, and the training process can be observed and analyzed by visual tools, which is
the change trend of loss function in the training process [7], and 200,000 iterations have
been carried out in the training process of various monitoring items. The training results
are shown in Fig. 6.

In the safety helmet monitoring, when reaching 120,000 iterations, the loss tends to
be stable. In the fire monitoring, after 160,000 iterations, the loss tends to be stable, and
the training process basically meets the expectation. By increasing the number of GPUs,
the parallel operation can greatly shorten the training time.
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a) Single safety helmet                     b) Multiple safety helmets

c) Safety helmet with goggles              d) Some safety helmet in different colors

Fig. 5. Examples of safety helmet.

Fig. 6. Convergence of loss function of model.
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5 System Test

5.1 Simulation Test

The fire test set and helmet test set are used to test and analyze the system, and the
detection accuracy of the two monitoring items is calculated [8].

δ = 1− ρ + σ

N
× 100% (3)

In formula (2): δ is the accuracy rate; ρ is the number of wrong inspection; σ is the
number of missed inspection; N is the number of test samples.

Taking the intersection over union (IOU) of predicted bounding box and ground
truth bounding box as the matching basis [9], the result matching method is shown in
Table 1.

Table 1. Matching method

Right detection Error detection(ρ) Missed detection(σ)

IOU > 0.8 The match was detected in the model,
but the test set was not identified

The test set was identified, but no
match (IOU > 0.8) was detected in
the model

In the fire model test, 50000 samples are used as the test data set, and the detection
accuracy rate reaches 92.73%; in the safety helmet model test, 20000 samples are used
as the test data set, and the detection accuracy rate reaches 94.27%.

5.2 Field Test

The actual fire monitoring experiments under different environments are carried out, and
the experimental data are shown in Table 2.

Table 2. Experimental data of fire identification

Classification Number of
experiments

Number of
successful
identification

Accuracy Identification
duration

Indoor flame 50 50 100% 513 s

Indoor smoke 50 50 100% 1128 s

Outdoor flame 50 50 100% 711 s

Indoor smoke 50 50 100% 1330 s
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Fig. 7. Pictures of fire test

The fire monitoring field test status is shown in Fig. 7.
The safety helmet wearing monitoring experiments under different environments are

carried out, and the experimental data are shown in Table 3.

Table 3. Experimental data of safety helmet identification

Classification Number of
experiments

Number of
successful
identification

Accuracy Identification
duration

Indoor 100 100 100% 6–21 s

Outdoor 100 100 100% 5–13 s

The safety helmet wearing status field test status is shown in Fig. 8.

Fig. 8. Pictures of safety helmet test

Through the simulation experiment and field measurement, the system has a good
monitoring effect on far and near distance, indoor and outdoor flame, smoke and safety
helmet under different conditions. The recognition accuracy and timeliness of the system
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fully meet the practical requirements. After testing, the intelligent safety monitoring
system was deployed on site in a nuclear power plant and continuously monitored for
6 months. The system was stable in operation, and found once grade 0 fire accident
and 3 times of un-wearing safety helmet. At the same time, it can effectively ensure the
operation safety of nuclear power plant.

6 Conclusion

The intelligent safety monitoring system based on the convolution neural network can
realize 24-h continuous monitoring of fire risk and the status of safety helmet wearing,
by using existing camera equipment in the nuclear power plant. The field application
results show that this system runs stably, monitors accurately and responds timely, which
can improve the monitoring efficiency and be helpful for the stable operation of nuclear
power plant. And this system can also be used in other special places, and provides new
ideas for development of the other monitoring system.
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