
Chapter 9
Phytohormones as Fundamental Regulators
of Plant–Microbe Associations Under Stress
Conditions

Khushboo Choudhary, V. Vivekanand, and Nidhi Pareek

Abstract Stress conditions, be they abiotic or biotic, have detrimental impacts on
agricultural yields. They also slow down bioremediation and lead to changes in
ecosystems. These effects are primarily caused by rapid climate change due to
various different factors and activities. To adapt to climate change conditions, plants
have developed complex physiological and molecular mechanisms to prevent disas-
ter. Phytohormones produced by root-associated microbes are essential for plant
growth and also contribute to stimulation of plant tolerance of various stresses.
Hormones act either by activating secondary messengers or via phosphorylation
cascades involved in gene regulation. The roles of microbes under various types of
environmental stress can be appreciated with a particular focus on production of
phytohormones and their associations with host plants. Moreover, they also contrib-
ute to tolerance of biotic stresses such as pathogenic organisms via activation of
induced systemic resistance and systemic acquired resistance mechanisms in plants.
The combination of plants, plant growth–promoting microbes and phytohormones
represents a tripartite consortium to provide a suitable environment for the spread of
beneficial microbes, which, in turn, enhance plant growth. However, the association
of such microbes with plants for management of stresses in agricultural systems still
needs to be explored in greater depth.
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9.1 Introduction

Plant species throughout the world are greatly affected by biological stresses (both
biotic and abiotic) and by anthropogenic activities, preventing plants from reaching
their full capacity for growth and production (Ogbe et al. 2020). An important step in
plant defence is timely perception of stress conditions so they can be responded to
quickly and efficiently. After detection, the constitutive basal defence mechanisms
of plants lead to activation of complex signalling cascades that protect the plants
from different stresses (Pandey et al. 2017).

Plants have developed very complex immune systems that enable them, as
individual organisms, to tolerate not only individual stresses but also combinations
of stresses. In plants, biotic and abiotic stresses prompt a broad range of defence
responses at the molecular and cellular levels (Nejat and Mantri 2017). Better
understanding of various tolerance strategies to maintain agriculture productivity
by manipulation of environmental conditions can be helpful for exploiting the
maximum genetic potential of crops (Egamberdieva et al. 2017).

Phytohormones are important growth regulators in specific plant organs. They
have major effects on plant metabolism and play important roles in stress mitigation
(Kazan 2013; Egamberdieva et al. 2017). Under conditions of biotic and abiotic
stress, phytohormones control the allocation of resources to combat the most severe
stress and activate several signalling pathways to control the balance of plant growth
and defence responses (Yang et al. 2019). It is important to understand the similar-
ities and differences in phytohormone signalling in agriculture production.

Phytohormones are a group of small quantities of growth regulators and signal-
ling molecules, including abscisic acid (ABA), gibberellins (GAs), ethylene (ET),
cytokinins (CKs), jasmonic acid (JA), auxins (AUXs), brassinosteroids (BRs),
strigolactones (SLs) and salicylic acid (SA) (Kazan 2015). Some phytohor-
mones—such as salicylic acid, ethylene, abscisic acid and jasmonates—are known
for their positive roles in providing stress tolerance in plants (Pieterse et al. 2012).
Salicylic acid, ethylene, abscisic acid and jasmonates are involved in crosstalk of
auxins, gibberellin and cytokinin for regulation of plant defence response mecha-
nisms (Nishiyama et al. 2013). It is essential to understand the complex communi-
cation of crosstalk between phytohormones (Khan et al. 2020).

Plant growth–promoting microbes can play beneficial roles, protecting plants
from potential pathogens and providing adaptive benefits to plants, along with
improving growth, health and production. Microbiomes are composed of many
different types of microorganisms, viz. fungi, bacteria, archaea, protozoa and viruses
(Mueller and Sachs 2015). Microbes modulate hormones level in plant tissues, and
they have been found to have effects similar to those of exogenous phytohormone
applications (Shahzad et al. 2016).

This chapter, based on the available literature on the effects of phytohormones on
plant tolerance, seeks to improve understanding of microbial phytohormones and the
impacts of their interactions with plants by defining their effects on plant morpho-
logical and physiological properties. The focus here is on plant-associated microbes,

204 K. Choudhary et al.



their physiology, their diversity and their involvement in plant tolerance of biotic and
abiotic stresses.

9.2 Roles of Various Phytohormones in Plant Tolerance
of Stresses

Various phytohormones are involved in plant tolerance of different types of stress
(Tables 9.1 and 9.2; Figs. 9.1 and 9.2).

9.2.1 Cytokinins

Cytokinins are a very important group of phytohormones and are involved in many
activities in plant growth and development, such as shoot and root meristem activity,
regulation of organ size and development, shoot and root branching, and control of
leaf senescence (Cortleven et al. 2019). Under conditions of water stress, especially
in the grain-filling phase, it was observed that the ‘stay-green’ genotype has the
potential to exhibit increased tolerance (Egamberdieva et al. 2017). It was shown that
cytokinins enhanced tolerance of drought in transgenic cassava compared with that
in wild type plants. Genes involved in biosynthesis of cytokinins are overexpressed,
and their role in stress tolerance has been decoded (Zhang et al. 2010).

Exogenous application of cytokinins has been used to optimize internal cytokinin
concentrations. It has also been documented that heavy metals, such as zinc and lead,
severely inhibit seedling growth in chickpea through inhibition of gibberellic acid
(GA3) concentrations (Mohapatra et al. 2011). In one study, application of kinetin to
chickpea stimulated plant growth and development under salt stress, and in another
study, kinetin alleviated cadmium stress in eggplant by enhancing its antioxidant
potential (Egamberdieva et al. 2017).

High cytokinin levels in plants increase resistance to pathogens, including fungi,
bacteria and pest insects; the same is true of plant susceptibility to disease (Akhtar
et al. 2019). The role of cytokinins in interactions with insects has been known for
decades, and the discovery of cytokinin-mediated resistance to microbial pathogens
in Arabidopsis and tobacco has been extended to other species (Dowd et al. 2017;
Akhtar et al. 2019). There is experimental support for a possible dual role of fungi in
modulating host immunity and optimizing nutrient supply (Akhtar et al. 2019).
Similarly, bacteria cause cytokinin-induced resistance to bacterial pathogens in
Arabidopsis (Großkinsky et al. 2016).
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9.2.2 Auxins

Auxins are crucial phytohormones. They promote multiple growth and development
events, such as elongation, cell division and differentiation (Asgher et al. 2015).
Ljung (2013) described various modulations in synthesis transport metabolism and
activity of auxins after plant exposure to stresses.

Table 9.1 Phytohormone-producing microbes and their actions against stress conditions in plants

Microbes Stresses Plants Phytohormones References

Bacillus licheniformis Salinity
stress

Triticum
aestivum

Indole-3-acetic
acid

Singh and Jha
(2016)

Staphylococcus arlettae Chromium
(heavy
metal)
stress

Helianthus
annuus

Indole-3-acetic
acid, gibberellic
acid, salicylic acid

Qadir et al.
(2020)

Bacillus cereus, Bacillus
megaterium, Trichoderma
longibrachiatum,
Trichoderma simmonsii

Drought
and salt
stress

Glycine
max

Indole-3-acetic
acid

Bakhshandeh
et al. (2020)

Bacillus strains Salinity
stress

Pennisetum
glaucum

Indole-3-acetic
acid

Kushwaha
et al. (2020)

Porostereum spadiceum Salinity
stress

Glycine
max

Gibberellic acid Hamayun
et al. (2017)

Pseudomonas fluorescens Water
stress

Vitis
vinifera

Abscisic acid Salomon et al.
(2014)

Arthrobacter woluwensis Salinity
stress

Glycine
max

Abscisic acid,
gibberellic acid,
indole-3-acetic
acid, jasmonic acid

Khan et al.
(2019)

Micrococcus luteus Drought
stress

Zea mays Cytokinin Raza and Fai-
sal (2013)

Sinorhizobium meliloti Salinity
stress

Medicago
sativa

Indole-3-acetic
acid, cytokinin

Provorov
et al. (2016)

Serratia marcescens Salinity
stress

Zea mays Salicylic acid Lavania and
Nautiyal
(2013)

Gluconacetobacter
diazotrophicus

Drought
stress

Oryza
sativa

Indole-3-acetic
acid

Silva et al.
(2020)

Bacillus aryabhattai Heat stress Glycine
max

Indole-3-acetic
acid, abscisic acid,
gibberellic acid

Park et al.
(2017)

Enterobacter sp. Metal
stress

Hibiscus
cannabinus

Indole-3-acetic
acid

Chen et al.
(2017)

Rhizophagus irregularis Drought,
cold and
salinity
stress

Digitaria
eriantha

Jasmonic acid Pedranzani
et al. (2016)
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Auxins play important roles, directly or indirectly, in promoting heavy metal
tolerance. Heavy metals have a negative effect on biosynthesis of auxins (Hu et al.
2013). The toxic effect of lead on sunflower plant growth was minimized by addition
of a low concentration of auxin, which stimulated an increase in root volume, surface
area and diameter (Fässler et al. 2010).

Plants are exposed to many different microbes around them, with disease being
the exception rather than the rule for plants. The occurrence of disease is relatively
infrequent because plants are able to detect potential pathogens in their vicinity and
induce a basal host defence that prevents most environmental microbes from colo-
nizing them and causing disease (Kunkel and Harper 2018).

Auxins plays important roles in numerous plant–microbe associations. Several
plant-associated microbes—nitrogen-fixing symbionts, plant growth–promoting
rhizobacteria (PGPRs), pathogens etc.—produce auxin hormones (Yin et al.
2014). When grown in a culture medium, some plant pathogenic bacteria (such as
Pseudomonas savastanoi, Pantoea agglomerans, Dickeya sp. and Xanthomonas
campestris) produce auxins (McClerklin et al. 2018; Kunkel and Harper 2018).
Enhancement of the auxin stratum in contagious host tissue prompts a number of
different processes associated with pathogenesis, such as inhibition of host protec-
tion, epiphytic colonization, stimulation of host cell division and pathogen develop-
ment in plant tissue (Kazan and Lyons 2014). In many cases, the pathogen itself
produces auxin, and auxin can be seen as a virulence factor in this interaction.
However, in other interactions, the pathogen stimulates auxin accumulation or auxin

Table 9.2 Genetic delude of plant hormones from various transgenic plant origins and their roles
in stress tolerance by plants

Phytohormones
Associated
genes Function Function in plants References

Abscisic acid LOS5 Regulation of
abscisic acid
biosynthesis

Increased abscisic acid
levels in transgenic
Zea mays

Wani et al.
(2016)

Cytokinin CKX Cytokinin
inactivation

Drought resistance in
Arabidopsis thaliana

Werner et al.
(2010)

Ethylene ACC
synthase
gene

Catalysis of the
rate-limiting step in
ethylene
biosynthesis

Reduced ethylene
levels with good
drought resistance in
Zea mays

Habben et al.
(2014)

Indole-3-acetic
acid (auxin)

YUCCA6 Indole-3-acetic acid
biosynthesis

Drought resistance Ke et al.
(2015)

Brassinosteroids AtHSD1 Brassinosteroid
biosynthesis

Salinity resistance,
enhanced growth and
development

Tiwari et al.
(2020)

Abscisic acid NCED Abscisic acid bio-
synthesis for feed-
back control

Stomatal conductance,
enhanced drought
resistance

Wani et al.
(2016),
Estrada-Melo
et al. (2015)

ACC 1-aminocyclopropane-1-carboxylase
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Cytokinin

Gibberellic acid Auxin 

Abscisic acid

STRESS

Fig. 9.1 Mechanisms of microbial phytohormone–mediated plant stress tolerance. Various root-
associated microbes produce several phytohormones, which help plants to withstand stress by
enhancing their antioxidant potential

Fig. 9.2 Factors affecting plant-associated microorganisms
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signalling in the host, which has evolved to modulate host auxin biology through the
action of a viral factor (Kunkel and Harper 2018).

9.2.3 Abscisic Acid

Like other phytohormones, abscisic acid is known to play a crucial role in plants by
improving stress impedance and adaptation. It is a naturally occurring member of the
sesquiterpenoids, a group of major phytohormones involved in regulation of devel-
opment. Several reports have described the role of abscisic acid in integrating
signalling during stress exposure with subsequent control of downstream responses
(Wilkinson et al. 2012). Stress response gene regulation through abscisic acid pro-
motes and regulates signalling under abiotic stresses (Sah et al. 2016).

Abscisic acid has been described as controlling root development and water
content under drought stress conditions (Cutler et al. 2010). However, during stress,
a sudden increase in abscisic acid concentrations can cause growth retardation and
modulate tolerance responses to stress. Even so, there is information indicating a
useful effect of abscisic acid in countering the side effects of stresses, including cold
stress, chilling, salinity and drought stress (Egamberdieva et al. 2017).

Exogenous utilization of abscisic acid under drought stress conditions to promote
the activities of antioxidants to ameliorate stress passivity has been proposed as an
effective tool for stress mitigation (Bano et al. 2012). Exogenous application of
abscisic acid under drought stress conditions to improve carbon metabolism, stress
tolerance and protein transport was found to significantly affect the proteome of tea
plants (Zhou et al. 2014).

The major roles of abscisic acid in plant protection against pathogenic microbes
are multifaceted. Abscisic acid–induced stomatal closing by regulation of guard cell
ion flux in response to pathogenic attacks is important in preventing penetration of
bacterial pathogens through the foramen (Lu and Yao 2018). The main components
of abscisic acid–mediated stomatal function (immunity) are the serine protein kinase
Open Stomata 1 (OST1), the regulatory component of the abscisic acid receptor and
2C-type protein phosphatase (Lim et al. 2015). A flagellin peptide from Pseudomo-
nas syringae, a member of the pathogen-associated molecular patterns (PAMPs),
induced stomatal closure through stimulation of SLAC1/SLAH3 in guard cells in an
OST1-dependent manner (Chen et al. 2020). Su et al. (2017) reported that MKK4/5-
MPK3 is an interdependent function in the organic acid metabolism cascade that
mediates stomatal function (immunity) with abscisic acid.

9.2.4 Gibberellic Acid

Gibberellins are important plant development regulators and part of a large family of
tetracyclic diterpenoids, which play vital roles in aspects such as lateral shoot
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growth, seed dormancy and establishment of floral organs (Olszewski et al. 2002).
Khan et al. (2004) observed increased fruit production, leaflet development, and
potassium, nitrogen and phosphorus levels in tomatoes as a result of exogenous
application of gibberellic acid.

Gibberellic acid was found to trigger plant development under several different
types of abiotic stress, such as salinity, drought and cold (Ahmad 2010). Increased
plant water levels and reduced stomatal resistance were observed in gibberellic acid–
treated tomato plants grown in saline stress conditions. Gibberellic acid influenced
uptake and partitioning of ions in roots and shoots, promoting growth and
maintaining plant metabolism under ordinary and stress conditions (Maggio et al.
2010; Iqbal and Ashraf 2013). An increase in osmatic components was observed in
plants exposed to salt stress, and their content was further increased through gibber-
ellin acid treatment. Endogenous use of gibberellin influenced osmatic stress in
plants and preservation of tissue water content (Egamberdieva et al. 2017).

In Arabidopsis thaliana, gibberellic acid enhanced resistance to the bacteria
Pseudomonas syringae and conferred disease immunity to the fungus Alternaria
brassicola (Yimer et al. 2018). Softening during storage and development of
Alternaria black spot disease, caused by Alternaria alternata, are the main post-
harvest factors that reduce the storability and quality of Diospyros fruit. Pre-harvest
application of gibberellic acid significantly enhanced fruit storage, as evaluated
through fruit preservation and levels of Alternaria black spot (Maurer et al. 2019).

9.3 Plant-Associated Microbes

In the environment, vigorous and healthy plants live in association with various plant
microbes consisting of all types of microorganisms—including fungi,
archaebacteria, bacteria and protists—which create complex microbial consortia
and influence plant development, health and productivity (Hassani et al. 2018).
These microbes are present on the surfaces of leaves, sprouted seeds, roots and
fruits, or they live inside the plants (Hardoim et al. 2015). Plants have developed
their own adjustments to mitigate most stresses (abiotic and biotic) in their environ-
ments. They also depend on their associated microbes to help them survive and
protect themselves against microbial attacks (Turner et al. 2013).

The relationships between plants and their associated microbial communities are
not unidirectional; the host plants also provide novel metabolic capabilities for their
associated microbes, leading to adaptations to specialized niches that have either
positive, neutral, or variable impacts on plant health (Thrall et al. 2007). The
microorganisms that promote plant development are plant growth–promoting bac-
teria (PGPBs), ectomycorrhizal fungi, arbuscular mycorrhizal fungi and vesicular
arbuscular mycorrhizae, which live in association with plants and moderate levels of
phytohormones.
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9.3.1 Plant Growth–Promoting Bacteria

Plants are close allies with a numerous variety of bacteria, which play important
roles in their development, disease prevention and stress tolerance. A number of
beneficial bacterial strains, defined by Kloepper and Schroth (1981) as plant growth–
promoting bacteria, have been isolated from the phyllospheres, rhizospheres and
endospheres of a wide variety of plant types (Rilling et al. 2019). Some bacteria have
become intracellular endophytes that assist in plant–microbe co-development
(Bulgarelli et al. 2013). Among these bacterial taxa are PGPRs, which exert bene-
ficial effects on plants via indirect and direct mechanisms. Beneficial rhizobacteria
are used by plants to increase their water and nutrient uptake, and their biotic and
abiotic stress tolerance. Although many soil bacteria species have been studied to
encourage plant growth, the systems of processes by which bacteria perform their
beneficial activities are usually not easy to elucidate. The molecular bases of the
plant–bacteria interaction mechanisms accountable for physiological changes is now
starting to be identified, mainly through new ‘omics’ approaches (Backer et al.
2018).

9.3.1.1 Phytohormones Produced by Plant Growth–Promoting
Rhizobacteria

Phytohormones produced by PGPRs are key performers in regulating plant devel-
opment. They also act as molecular signals in response to environmental factors that
limit plant development or become lethal if otherwise uncontrolled (Fahad et al.
2015). Many rhizosphere bacteria species are able to secrete hormones for root
uptake or maintenance of hormone balance in plants to enhance growth and biotic
and abiotic stress responses (Backer et al. 2018).

PGPRs that produce auxins have been characterized through transcriptional
changes in hormones and have been found to enhance root biomass, confer protec-
tion, stimulate root lengthening and cell wall modification, reduce stomatal size and
induce expression of auxin-inhibiting genes that improve plant growth (Spaepen
et al. 2014; Ruzzi and Aroca 2015; Llorente et al. 2016). Rhizobacteria can produce
relatively large amounts of gibberellic acid, leading to improved plant shoot devel-
opment (Jha and Saraf 2015). Production of cytokinins by rhizobacteria can also lead
to increased root exudate production by plants, potentially increasing the numbers of
rhizobacteria associated with the plants (Backer et al. 2018). The hormone ethylene
plays a crucial role in plant stress tolerance (Nadeem et al. 2014). PGPRs produce
1-aminocyclopropane-1-carboxylase (ACC) deaminase, which decreases ethylene
output in plants (Vejan et al. 2016). Several studies have demonstrated increased
stress (biotic and abiotic) tolerance in plants inoculated with rhizobacteria that
produce ACC deaminase. This appears to occur when the rhizobacteria are able to
raise the level of ethylene to a sufficient level to reduce plant development, as has
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been shown with Camelina sativa (Ahemad and Kibret 2014; Pérez-Montaño et al.
2014; Ruzzi and Aroca 2015; Heydarian et al. 2016).

9.3.1.2 Enhancement of Plant Development by Plant Growth–
Promoting Rhizobacteria Under Stress Conditions

The mechanisms regulating stress tolerance in plants are convoluted and complex, as
plants are sessile organisms, which have no choice as to where they live (Wani et al.
2016). Development of biotic and abiotic stress tolerance in crop plants through
lineal breeding is a time-consuming and expensive procedure, and genetic engineer-
ing raises issues related to moral and social ethics.

The roles of beneficial microorganisms are now being exploited for stress man-
agement and development of climate change–tolerant agriculture (Backer et al.
2018). Bacillus amyloliquefaciens is a biological control agent, used against Rhi-
zoctonia solani, which enhances tolerance through increased defence mechanisms in
plants. Modulation of phytohormone signalling in colonized plants has revealed
sustained maintenance of elicitors, production of secondary metabolites and moder-
ation of the balance between reactive oxygen species (ROS) and ROS scavengers
(Srivastava et al. 2016). Enterobacter asburiae enhances resistance to viral disease
(tomato yellow leaf curl virus) by enhancing expression of defence-related genes and
antioxidant enzymes such as lyase, catalase, peroxidase and superoxide dismutase
(Li et al. 2016). Thus, by performing biocontrol functions, rhizobacteria defend
plants against pathogens by prompting biochemical and molecular defence
responses inside the plants (Lugtenberg and Kamilova 2009).

PGPRs can promote induced systemic resistance (ISR) in their host plants by
triggering expression of pathogenesis-related genes, mediated via phytohormone
signalling pathways and defence regulatory proteins, to arm plants against future
pathogen attacks (Pieterse et al. 2014). Pseudomonas putidaMTCC5279 was shown
to ameliorate drought stress in Cicer arietinum (chickpea) plants by regulating ROS
scavenging efficiency, membrane integrity and osmolyte (betaine, proline and gly-
cine) accumulation.

Stress tolerance is positively regulated by bacteria through differential expression
of genes involved in ethylene biosynthesis (ACO and ACS), stress response (LEA
and DHN (dehydrin)), ROS scavenging by antioxidant enzymes (CAT, APX, SOD
and GST), transcription activation (DREB1A (dehydration responsive element bind-
ing) and NAC1), salicylic acid (PR1) and jasmonate signalling (MYC2) (Tiwari et al.
2016).

Application of thuricin-17, produced by Bacillus thuringiensis NEB17, to Gly-
cine max (soybean) under drought conditions resulted in root modifications such as
greater root length and increased total N2 content, nodule biomass and root abscisic
acid content (Prudent et al. 2015).
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9.3.2 Arbuscular Mycorrhizal Fungi Associated with Plants

In natural ecosystems, growth of numerous plants in nutrient-poor soils is viable
because they form symbiotic associations with microorganisms for their mutual
benefit (Liao et al. 2018). Associations between arbuscular mycorrhizal fungi
(which belong to the Glomeromycotina subphylum) and more than 70% of land
plants, including the most economically important crops—such as potato, rice and
soybean—are considered to be some of the most prevalent and significant symbiotic
associations in nature (Brundrett and Tedersoo 2018).

Formation of intracellular fungal structures and the degree of fungal dispersal
inside plant roots are tuned dynamically by the plants, and this may prevent
excessive colonization and loss of carbon, thereby ensuring that both the plants
and the fungi continue to benefit from this association. To accomplish this regula-
tion, extensive transcriptional programming and cellular rearrangements are needed
in the plants, along with continuous signalling and exchange between the plants and
the fungi (Maclean et al. 2017). Later phases of arbuscular mycorrhizal interactions
are controlled by a variety of factors, together with nutrient exchange and phyto-
hormone activity (Gutjahr 2014; Lanfranco et al. 2018). Analysis of arbuscular
mycorrhizal symbiont regulation by phytohormones has revealed a complex pattern
of modifications in hormonal content or altered responses to hormones in mycorrhi-
zal plants and reciprocal effects of hormones on the symbiotic interaction (Pons et al.
2020). Phytohormones are known to be important signalling regulators, which
participate in all physiological processes in plants, including interactions between
the plants and microorganisms (Liao et al. 2018). There is growing evidence of the
important roles played by various phytohormones—such as strigolactones,
gibberellic acid, auxins, abscisic acid and brassinosteroids—which have been iden-
tified as positive controls of arbuscular mycorrhiza symbionts.

As phytohormone signalling in arbuscular mycorrhizal growth is a new research
area, many novel findings related to phytohormone regulation and potential interac-
tions during establishment of arbuscular mycorrhizal symbiosis have been published
in recent years (Liao et al. 2018). DELLA proteins are a small cluster of GRAS
transcriptional controls, which have been found to act as a central node in numerous
signalling pathways, including hormonal crosstalk during nodulation and arbuscular
mycorrhizal colonization.

9.3.2.1 Phytohormones Produced by Arbuscular Mycorrhizal Fungi

This chapter mainly discusses the following key aspects of the contributions of
phytohormones to arbuscular mycorrhizal symbiosis: investigation of plant mutants
affected by phytohormone synthesis or perception, and exogenous hormone treat-
ment of mycorrhizal plants (Pons et al. 2020). Studies of phytohormone perception
mutants have focused on the effects of phytohormones on plants. Both exogenous
treatment and phytohormone deficiency lead to modified hormonal content in
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colonized roots, which can affect either or both of the symbiosis partners. Despite
this, and because phytohormones are commonly perceived as plant signals, the
reported outcomes of these studies have usually concentrated only on the effects
on plants (Liao et al. 2018). Similarly, hormonal content changes measured in
mycorrhizal plants are usually attributed to hormonal metabolism changes in plant
cells. This interpretation overlooks the potential influence of the fungi on the
hormonal pool. However, many microbes can produce phytohormones, and this
could be the case with arbuscular mycorrhizal (AM) fungi (Kudoyarova et al. 2019).
Among the soil microbes associated with plants, fungi and PGPRs have been found
to produce several phytohormones (such as abscisic acid, auxin, gibberellic acid and
cytokinins) that can have growth-promoting effects (Hamayun et al. 2010; Kang
et al. 2012; Spaepen et al. 2014; Kudoyarova et al. 2019). In the fungal kingdom,
phytohormone production has been documented in both symbionts (such as mycor-
rhizal fungi) and pathogens (Chanclud and Morel 2016).

Ethylene is commonly produced by fungal species and in certain cases, the
biosynthesis pathways have been described (Splivallo et al. 2009). Ethylene-forming
enzyme (EFE), characterized in Penicillium digitatum and Fusarium oxysporum,
produces ethylene via two simultaneous reactions using L-arginine and
2-oxoglutarate as co-substrates (Pons et al. 2020). Both pathways differ from the
major one used for ethylene production in plants, which is a methionine- and light-
independent pathway involving ACC synthase and amino-cyclopropane-carboxylate
oxidase (ACO).

Considering that numerous plant-associated microbes produce phytohormones, it
is possible that arbuscular mycorrhizal fungi do so too, given that they have evolved
together with their host plants for more than 400 million years (Pons et al. 2020).
This possibility is not easy to study experimentally, because these fungi are obligate
biotrophs that can be isolated and cultured only for short periods, limiting the
availability of biological material for such study (Liao et al. 2018). There is indirect
evidence from previous studies that phytohormones may be present in some mycor-
rhizal fungi. Enzyme-linked immunosorbent assay (ELISA) tests have shown that
the spores and hyphal sheaths of Rhizophagus species may contain aglycone and
glycosylated abscisic acid, and indirect bioassays have indicated the presence of
gibberellin and cytokinin-like molecules (Pons et al. 2020). Genes encoding
CLAVATA3/Embryo Surrounding Region-Related (CLE) peptide hormone,
which positively modulates the symbiosis process, have been identified in arbuscular
mycorrhizal fungal genomes (Le Marquer et al. 2019).

9.3.2.2 Enhancement of Plant Development by Arbuscular Mycorrhizal
Fungi Under Stress Conditions

As microbial symbionts, arbuscular mycorrhizal fungi play important roles in the
plant micro-ecosystem. They are found on plant organs and inhabit internal plant
tissues in natural and managed ecosystems (Card et al. 2016). Arbuscular mycor-
rhizal fungi help their host plants to thrive in stressful conditions via complex
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processes in both the plants and the fungal species, increasing photosynthesis, other
gas exchange–related processes and water uptake. Numerous reports have described
how fungal symbiosis improves plant resistance to a variety of stresses, such as
extreme temperatures, disease, drought, salinity and metal contamination (Begum
et al. 2019).

Drought stress has various impacts on plant health, such as deficiency of water
supply to the roots, a reduction in the transpiration rate and stimulation of oxidative
stress (Impa et al. 2012; Hasanuzzaman et al. 2013). It also has deleterious impacts
on plant development and growth by affecting enzyme activity, nutrient assimilation
and ion uptake (Ahanger and Agarwal 2017; Ahanger et al. 2017). However, there is
strong evidence that arbuscular mycorrhizal fungi reduce drought stress in various
crops, including wheat, soybean, barley, strawberry, maize and onion (Mena-
Violante et al. 2006; Ruiz-Lozano et al. 2016; Yooyongwech et al. 2016; Moradtalab
et al. 2019). Plant tolerance of drought may be mainly due to the large volume of soil
that is accessible to the roots via the extended hyphae of the fungi (Gianinazzi et al.
2010; Orfanoudakis et al. 2010; Zhang et al. 2017). This symbiotic consortium is
known to modulate diverse physio-biochemical processes in plants, such as
enhanced osmotic adjustment, stomatal management through control of abscisic
acid metabolism and increases in proline and glutathione levels (Kubikova et al.
2001; Ruiz-Sánchez et al. 2010; Yooyongwech et al. 2013; Rani 2016). Onion
(Allium sativum) plants inoculated with arbuscular mycorrhizal fungi demonstrated
better development and growth traits, including a higher leaf area index and greater
fresh and dry biomass, under salinity stress conditions (Borde et al. 2010).

The strong impacts of arbuscular mycorrhizal fungi on plant development under
intensely stressful conditions are most likely due to the efficiency of these fungi in
optimizing morphological and physiological processes, thereby increasing the plant
biomass and uptake of vital nutrients such as P, Zn and Cu, and decreasing the toxic
effects of metals on the host plants (Kanwal et al. 2015; Miransari 2017).

Root colonization with arbuscular mycorrhizal fungi increases plant resistance to
soilborne pathogenic fungi (Wang et al. 2018). Arbuscular mycorrhizal fungi pro-
vide resistance to blackleg disease in Solanum tuberosum (potato), which is caused
by the pathogenic bacterial strain Pectobacterium carotovora subsp. atrosepticum
(Bagy et al. 2019), and bioprotective effects that help plants withstand both viral
diseases and soilborne fungal pathogens that cause wilting or root rot. Arbuscular
mycorrhizal symbiosis also stimulates host plant resistance to chewing insects, shoot
pathogens and nematodes. Various mechanisms such as regulation of plant toler-
ance, manipulation of induced systemic resistance and altered vector pressure are
involved in these interactions (Hao et al. 2019).

9.3.3 Ectomycorrhizal Fungi Associated with Plants

Ectomycorrhizal fungi belonging to the Basidiomycota and Ascomycota are the
major symbionts of many plants in numerous ecosystems worldwide (Smith and
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Read 2008; Tedersoo 2017). They clearly affect mineral nutrient uptake in their host
plants (angiosperms, shrubs and gymnosperms) and play roles in essential forest
ecosystem processes such as nutrient cycling, carbon sequestration and breakdown
of organic substances. They also help their host plants to tolerate abiotic stresses
(Read and Perez-Moreno 2003; Clemmensen et al. 2015; Shah et al. 2016; Mello and
Balestrini 2018).

Most ectomycorrhizal plants are completely dependent on their mycorrhizal
symbiosis and cannot complete their life cycle without this root association (Vlk
et al. 2020). Stimulation of root growth and development during ectomycorrhizal
fungus formation depends partially on changes in plant metabolism or susceptibility
to phytohormones, which are the chief regulators of plant responses to growth,
development and environmental factors (Garcia et al. 2015). Various
ectomycorrhizal fungi, including basidiomycetes and ascomycetes, can produce
phytohormones such as auxins, ethylene, jasmonate and gibberellic acid, thereby
improving the entire nutritional condition of the plants in response to numerous
different factors (Guerrero-Galán et al. 2019).

The expansion of the nutrient exchange surface provided through the mycelia of
ectomycorrhizal fungi is a crucial factor in increased absorption of mineral nutrients
and water by the host plants because the hyphae are potentially able to penetrate
nearby soil pores (Bogeat-Triboulot et al. 2004; Lehto and Zwiazek 2011). An
additional beneficial influence is improvement of the soil texture by the mycelia,
facilitating plant root formation (Rillig and Mummey 2006). All of these influences
boost growth, development and biomass accumulation by mycorrhizal plants, mak-
ing them stronger and better adapted to challenging environments than
nonmycorrhizal plants (Smith and Read 2008).

The evolutionary diversity of ectomycorrhizal fungi suggests that they may
perform various different functional roles in the physiology of the host. Little is
known about the precise mechanisms by which ectomycorrhizal fungi reduce the
impact of salinity on their host plants (Guerrero-Galán et al. 2019).

9.3.3.1 Phytohormones Produced by Ectomycorrhizal Fungi

Auxins are phytohormones that facilitate root colonization in ectomycorrhizal plants
(Vayssières et al. 2015). In addition, ectomycorrhizal fungi can induce plant ethyl-
ene and auxin signalling to encourage lateral root growth and root hair elongation
(Ditengou et al. 2000; Reboutier et al. 2002; Felten et al. 2009; Splivallo et al. 2009;
Vayssières et al. 2015).

Salicylic acid signalling plays a crucial role in plant defence mechanisms, acting
as an antagonist of ethylene and jasmonate signalling (Glazebrook 2005; Spoel and
Dong 2008; Pieterse et al. 2012). In addition, exogenous salicylic acid treatment
does not influence fungal colonization.

Ultimately, the crosstalk between gibberellic acid and jasmonate signalling reg-
ulates plant responses (Hou et al. 2010; Wild et al. 2012; Yang et al. 2012; Song
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et al. 2014). Initial reports have suggested that exogenous gibberellic acid prevents
hyphal development in various ectomycorrhizal species (Basso et al. 2020).

9.3.3.2 Enhancement of Plant Development by Ectomycorrhizal Fungi
Under Stress Conditions

Ectomycorrhizal fungi form symbiotic associations with plant roots and help to
promote growth and protect the plant from various biotic and abiotic stresses. The
association with ectomycorrhizal fungus symbionts has been suggested to be a major
factor in improved tolerance of woody plant species to salinity stress, decreasing
sodium uptake by photosynthetic organs (Guerrero-Galán et al. 2019).

Plants are more sensitive to increased concentrations of heavy metals in the
rhizosphere than microbes, but this may be at least partially due to evolutionary
selection of tolerant fungi (Gadd 2007; Amir et al. 2014). Ectomycorrhizal fungi are
able to alleviate stress caused by the presence of phytotoxic substances (Joner and
Leyval 2003; Amir et al. 2014). The efficiency of ectomycorrhizal fungi in
defending their host plants may be due to development of the hyphal sheath,
which reduces direct contact between the roots and the elements stored in the soil.

Mycorrhizal fungi exhibit mechanisms that preserve the host’s health under
drought stress. Ectomycorrhizal fungi induces expression of plant aquaporins in
drought conditions, which improve the host plants’ drought tolerance via regulation
of stomatal, root and shoot conductance, and thereby regulate transpiration in the
host plants (Lehto and Zwiazek 2011). Because of their extensive mycelial biomass
and development of rhizomorphs, ectomycorrhizal fungi are able to transport soil
water more proficiently and access moisture in the substratum (Egerton-Warburton
et al. 2003). Mycorrhizal plant seedlings tolerate drought stress better than
nonmycorrhizal seedlings (Augé 2001; Lehto and Zwiazek 2011).

The extent to which ectomycorrhizal trees control their photosynthesis depends
on the type of ectomycorrhiza they have. Waterlogging reduces the oxygen content
of the soil. Numerous wetland trees have developed mechanisms for transporting
oxygen to feeder roots.

9.4 Conclusion

Agricultural crops suffer various environmental stresses (biotic as well as abiotic
ones), which adversely affect their productivity. Scientific methods and high-
throughput technologies have made substantial contributions in addressing these
concerns but have met with limited success. There is substantial evidence that
application of exogenous phytohormones from microbial sources could be a crucial
tool for enhancing plant tolerance of both biotic and abiotic stresses, furnish poten-
tial practical usages under realignment or highest environmental conditions. The
beneficial impacts that microorganisms have on plants—such as plant growth
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stimulation, resistance of biotic stresses (pathogens) and tolerance of abiotic
stresses—are due to the efficiency of the microorganisms in producing various
phytohormones (including auxins, abscisic acid, cytokinins, gibberellic acid and
salicylic acid) in plant tissues. Moreover, plant-associated microorganisms have the
ability to regulate phytohormone levels and changes in plant tissues through bio-
chemical processes that limit the damaging impacts of abiotic stresses, such as
nutrient deficiency, drought, heavy metal contamination and salinity. The symbiotic
alliance of host plants with microorganisms (particularly fungi), including
ectomycorrhizal and arbuscular mycorrhizal fungi, provide distinct benefits for
plant species. Genetic interplay between plant hormones for enhanced tolerance
towards stress conditions presents substantial opportunities to help agricultural
systems adapt to climate change and enhance agricultural production.
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