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Abstract Fungi constitute an important group of organisms that possess beneficial
as well as negative traits against plants and animals. Association of fungi with plants
is mostly saprotrophic and involves in decomposition. However, a multitude of
fungal species are widely recognized as plant pathogens owing to many diseases
in crops like potato, paddy, wheat, maize, pulses, oil-yielding plants, floricultural
crops, horticultural crops, plantation crops, and so on. Over 70% percent of plant
disease is due to fungal pathogens, and they are usually parasitic and exhibit disease
symptoms. Biotrophic fungal pathogens exhibit long-term establishment by
obtaining nutrients from live host tissues via specialized cells “haustoria” that
develop inside the host. Necrotrophic pathogens fetch nutrients from the dead host
tissues by killing the tissues with toxins or enzymes, whereas biotrophs have a
narrow host range. However, necrotrophs are generalists with a wide host range or
specialized with a narrow host range for their survival. Recent advances in molecular
biology and sequencing platforms enable the exploration of diverse plant pathogenic
fungi associated with crop plants. This chapter intends to summarize the diversity of
plant pathogenic fungi on selected agriculturally important crops. It includes the
detailed comprehension of plant disease concepts, classification of plant pathogenic
fungi based on their lifestyle, fungal diseases of historical records, major fungal
diseases of crop plants (rice, maize, and vegetables), and global perspectives of
major pathogenic genera.
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6.1 Introduction

India is known for diverse agro-climatic zones such as tropical, subtropical, and
temperate climates ranging from average to high in temperature, humidity, and
rainfall. Thus, the Indian subcontinent is the home to rich flora and fauna in the
world. India ranks second in the output of fruits, vegetables, cereals, pulses, oilseeds,
fiber crops, sugarcane, spices, and ornamentals (Anonymous 2009). About 40% of
the geographical area of the Indian subcontinent is utilized for agriculture, thus
playing a crucial role in comprehensive socioeconomic development. India is a
major producer of several crops; the major crops could be placed in four different
categories:

1. Food grains (maize, millets, pulses, rice, and wheat)
2. Cash crops (fiber-yielding crops, cotton and jute; sugar-yielding crops, sugarcane

and tobacco; oilseeds, soybean, castor, sesame, and others)
3. Plantations (coffee, coconut, rubber, and tea)
4. Horticultural crops (fruits and vegetables)

Even though India is producing a large number of agricultural products, it
succumbs to substantial loss of production due to diseases caused by various biotic
factors. These include diseases caused by bacteria, fungi, insect pests, nematodes,
phytoplasma, viroids, viruses, and others. The extent of losses caused by such
biological agents differs from crops as well as seasons. As per the data released by
the Parliament on Agriculture and Farmers Welfare, loss of crop production up to
15–20% is due to diseases. Thus, India raises agricultural production to ensure food
security and nutrition for the teeming population. A total of 68% net loss of global
agricultural production is due to various pests and diseases (microbial diseases, 16%;
animals and pests, 18%; weeds, 34%; pathogenic fungi, 70–80%) (Oerke 2006).

The overall loss of yield occurs by various pests, diseases, and weeds during
growth and post-harvest are of paramount significance for raise in loss up to
10–30%. The economic loss could be up to 15.4 billion US$. The average crop
loss (20%) by pests and diseases was up to 1.4 billion US$ (Kumar and Gupta 2012).
The current situation is further worsening due to the appearance of new diseases,
pathotypes, and variants (pathovars) of pathogens, as they can adapt in varying
climates. The extent of losses incurring due to pests and diseases is higher than the
extent of production via innovative programs (Kumar and Saxena 2009). Agricul-
tural loss due to plant diseases may also be attributed to other direct or indirect
economic failures by various factors: (1) reduced quality as well as quantity of crop
production; (2) increased cost of production; (3) threat on animal health and envi-
ronment; (4) limiting the type of crops/varieties grown; (5) loss of natural resources;
and (6) less remunerative alternatives (Kumar 2014).

Fungi are well known for agricultural diseases; being eukaryotes, fungi are
capable to fetch nutrients externally and absorb them through their cell walls. The
majority of fungi reproduce via spores and possess thallus constituting microscopic
tubular hyphae. Fungi as heterotrophs obtain carbon and energy through live
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organisms or detritus. Nutrition derivation by fungi from living hosts is referred to as
biotrophs, while nutrition from dead plants or animals is called as saprotrophs. The
process of infecting a living host and killing host cells for nutrition purposes are
referred to as necrotrophs. However, organisms conventionally classified as king-
dom “fungi” are divided into three unrelated groups such as true fungi (eumycota),
the oomycetes, and the slime molds. As per the classification proposed by
Alexopoulos et al. (1997) and subsequent literature, there are four major groups of
true fungi, viz., Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota
(Webster and Weber 2007). Members having different cell wall compositions and
flagellated zoospores are placed under Oomycota. Recent inferences suggest the
addition of Glomeromycota as a phylum, under Zygomycota, which is known to
develop an association with the roots of most of the plant species as arbuscular
mycorrhizae. To date, it is unclear how many species of fungi exist globally. A
conservative estimate based on the angiosperm/fungus ratio will be between 2.2 and
3.8 million species, and so far only 3.7–6.4% of fungi were recorded (Hawksworth
and Lücking 2017). This chapter addresses the diversity of plant pathogenic fungi in
crops with major emphasis on diverse symptoms, diverse groups of pathogenic
fungi, diversity among the individual groups, and current developments in the
evaluation of the diversity of plant pathogenic fungi in crop plants.

6.2 Concepts of Plant Disease

Plants make up the majority of the earth’s living environment and provide necessary
nutrition to humans as well as animals. Plants convert energy from sunlight into
stored exploitable chemical energy, viz., carbohydrates, proteins, and lipids. Ani-
mals depend on plant substances for their survival (Agrios 2005). Plant growth is
dependent on soil providing adequate moisture and nutrients and sufficient light
reaching leaves, and temperature remains within the normal range. Sickness in plants
leads to poor growth as well as poor production. The agents that cause infection in
plants include bacteria, fungi, nematodes, protozoa, and viruses. Plants are also
known to suffer from the competition with other plants (weeds) and also damages
caused by insects.

Fungal plant pathogens cause a wide array of diseases in major crops globally and
cause substantial loss of yield (Anderson et al. 2004; Strange and Scott 2005;
Rossman et al. 2014). Many phytopathogenic fungi have devastating threats in the
history of agriculture. So far, ancient knowledge recognized as major of rust
infection in crops and also the smuts infecting monocot crops such as barley
(Ustilago hordei), wheat (Ustilago tritici), and maize (Ustilago maydis). A histori-
cally known threatened fungal plant pathogen is Claviceps purpurea (ergot of rye,
barley, oats, and wheat). The sclerotia of C. purpurea are known to have a broad
range of toxic alkaloids and replace kernels in the heads of crops, thereby causing
contamination of harvested grains and flours.
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6.3 Diversity Based on Lifestyle

Fungal pathogens are collectively referred to as those that derive nutrients from
plants and induce a negative impact on plants’ health. Some pathogens completely
depend on their host (as obligate parasites), and some others as facultative exist in
close association with the hosts to compete with its life cycle (phenology). The
facultative pathogens are capable to prosper in varied environments; thus, they are
capable to cause diseases in several hosts successfully. The traditional classification
of plant pathogens (necrotrophs, biotrophs, and hemibiotrophs) differentiates fungi
based on their lifestyle and the strategies of dependence on host. The recent reports
suggest that such division is less stringent than previously realized; however, such
categorization defines basic denominators as those that are common to all in each
class and simplifies the lifestyle of pathogens.

Plant pathogenic fungi are ubiquitous and exhibit varied lifestyles. Many of them
display a range of lifestyles from biotrophy through necrotrophy and ultimately to
saprotrophy. Biotrophism is dependent on host plant, whereas hemibiotrophs shift
from the initial biotrophic phase to the necrotrophic phase. The necrotrophic life
cycle involves the active killing of host cells by secretion of cell wall-degrading
phytotoxins and enzymes. The biotrophic fungi develop a close relationship with the
host by haustorium, a specialized structure for assimilation of nutrition. It is pro-
posed that biotrophy could essentially modulate plant defense mechanisms. There-
fore, biotrophs adopt diverse strategies to counter the host plant defenses (De Silva
et al. 2016). Specific examples of biotrophic fungi as well as oomycetes and other
lifestyles are presented in Table 6.1. The discussion proceeds on plant pathogenic
fungi under three subheadings based on their lifestyles (biotrophs, necrotrophs, and
hemibiotrophs).

6.3.1 Biotrophs

Biotrophic fungi are those dependent on a narrow range of hosts for deriving
nutrition from host’s living cells leading to the damage of host tissue. They produce
structures such as haustoria and appressoria to penetrate and acquire nutrients from
the host (De Silva et al. 2016). Plant pathogenic fungi adapted to biotrophic mode of
lifestyle are either obligate or non-obligate parasites. The powdery mildews
(Ascomycota) and rusts (Basidiomycota) are the best representatives of obligate
biotrophs causing diseases on various economically important crops like cereals,
millets, vegetables, and horticultural crops. The downy mildews and white rusts
(except white rust on Chrysanthemum) are also obligate biotrophs that belonged to
Oomycota (protozoa) (Schulze-Lefert and Panstruga 2003).

The obligate biotrophs like rusts and powdery mildews have developed their
lifestyle to match with the phenology of the hosts to complete the life cycle.
Specifically, rusts possess five varied spore stages (aeciospores, pycniospores,
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Table 6.1 Examples of fungi with different lifestyles (including oomycetes)

Lifestyle Fungal pathogen Host Reference

Biotrophs Rusts: Oliver and Ipcho (2004),
Meinhardt et al. (2014)Puccinia arachidis Groundnut

Puccinia graminis Wheat

Puccinia horiana Chrysanthemum

Uromyces
appendiculatus

Cowpea

U. fabae Common beans

Smuts: Mendgen and Hahn (2002),
Latijnhouwers et al. (2003)Sphacelotheca sorghi Sorghum

Ustilago maydis Corn/maize

Ustilaginoidea virens Rice

Powdery mildews: Oliver and Ipcho (2004),
Delaye et al. (2013)Blumeria graminis Barley

Erysiphe
cichoracearum

Cucurbits

Leveillula taurica Chili and
tomato

Podosphaera
oxyacanthae

–

Podosphaera xanthii Brinjal

Sphaerotheca mors-
uvae

Gooseberry

Sphaerotheca pannosa Rose

Biotrophic
oomycetes

Albugo candida Crucifers Latijnhouwers et al. (2003),
Figueiredo et al. (2015)Peronospora parasitica –

Plasmopara viticola Grapes

Hemibiotrophs Colletotrichum
destructivum

– Damm et al. (2014)

C. lindemuthianum Common bean Mendgen and Hahn (2002)

Fusarium oxysporum – Krola et al. (2015)

Gibberella zeae Maize/corn Kabbage et al. (2015)

Magnaporthe oryzae Rice Oliver and Ipcho (2004),
Kankanala et al. (2007),
Kabbage et al. (2015)

Moniliophthora roreri – Meinhardt et al. (2014)

Mycosphaerella
graminicola

– Spanu (2012)

Hemibiotrophic
oomycetes

Phytophthora capsici,
Phytophthora sp., and
Pythium sp.

Potato, tomato,
beans, and
vegetables

Meadows (2011)

Necrotrophs Alternaria brassicicola Crucifers Spanu (2012), Pandey et al.
(2016)Botrytis cinerea Fruit crops

Leptosphaeria
maculans

–

Sclerotinia sclerotiorum Cabbage
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urediniospores, teliospores, and basidiospores) developed in specialized fruit bodies
(aecidium, pycnium, uredenium, telium, and basidium); thus, they are capable to
infect alternate hosts to complete the life cycle. But not all rusts have such mecha-
nisms of completion of life cycles (Petersen 1974). Rust diseases are due to members
of basidiomycetes of the order Pucciniales (earlier considered under the order
Uredinales) (Duplessis et al. 2011). Usually, the urediniospores (dikaryotic) germi-
nate on the leaf surface (on primary host) and produce penetration plug or hausto-
rium, which invades the mesophyll tissue through stomata. The haustoria further
differentiate to form sub-stomatal vesicles to develop the hyphae within the host
tissue. On the contrary, the powdery mildews are caused by filamentous ascomyce-
tous fungi (haploids) belonging to the order Erysiphales. The germination of conidia
of these fungi occurs on the leaf surface, and appressoria helps in the penetration of
the epidermal tissues (Spanu et al. 2010; Hückelhoven and Panstruga 2011). Fol-
lowing the penetration from the surface, the rusts cross the wall of mesophyll, and
powdery mildews cross the wall of the epidermis and differentiate into haustoria,
which are exclusive infection erections that help to survive inside the host tissues
through the acquisition of nutrients. Usually, the haustoria are formed behind the
plant cell wall without disrupting the cell membrane, and they push and invaginate
the cell membrane establishing a maintainable “cell within cell” complex (Heath and
Skalamera 1997). Once the fungi establish inside the host tissues, the haustoria
secrete a broad varied array of transporters to derive the nutrition from the host
(surrounding the living tissues where the obligate pathogen entered) into the haus-
torium which, in turn, nourishes the fungi to successfully colonize the tissues and
extends its territory inside the host (Struck 2015; Voegele and Mendgen 2011;
Voegele et al. 2001). They also synthesize effector molecules to suppress the host
defense and keep the cells alive (Kemen et al. 2005, 2013; Petre et al. 2016). The
obligate biotrophic fungi fully depend on their host for energy, and they are aptly
designated as obligate parasites or energy parasites (Schulze-Lefert and Panstruga
2003).

Non-obligate biotrophs are capable to survive as true biotrophs in living tissues/
host and capable to grow and survive without the presence of a host. The ergot
disease caused by Claviceps purpurea acts as a true biotroph in the host, and it can
also be grown in axenic culture (Tudzynski and Scheffer 2004). These non-obligate
biotrophic fungal pathogens are taxonomically diversified throughout a wide range
of genera, and important ones are the smuts belonging to the order Ustilaginales
(Basidiomycota) and certain species in Claviceps (Ascomycota, Clavicipitaceae). In
ergot disease, the wind-borne ascospores germinate on the pistil surface during
anthesis and penetrate through the stigmatic hairs and colonize the ovarian tissue
and launch a specific and persisting host-pathogen interface. A mycelial stroma
develops in the ovary with the production of mass of conidiospores, and they exude
sugar-rich fluid from the phloem sap. Sclerotia (overwintering structures) are formed
after 10–15 days of post-infection. Claviceps purpurea does not produce classical
haustoria and intracellular hyphae; instead, this fungus is completely covered by the
host plasma membrane (Tudzynski and Tenberge 2003). The smut pathogen in
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maize U. maydis stands out among other smuts due to its acquiescence to molecular
genetic manipulation and its small genome size (Brefort et al. 2009).

6.3.2 Necrotrophs

The necrotrophic fungi are those which feed on dead plant tissues (by killing the
healthy tissues). However, there are two terminologies such as true necrotrophs and
secondary necrotrophs. The true necrotrophs attack and kill the healthy plants, while
the secondary necrotrophs are saprophytic but may occasionally infect the plants that
have been previously weakened (Doehlemann et al. 2017). The basic definition of
necrotrophy is “the mode of infection in which the pathogen kills the tissue before
colonization” (Oliver and Solomon 2010; Doehlemann et al. 2017). This statement
contradicts the fact since the initial contact of the pathogen is with a living tissue.
There are two early stages following the first contact of the pathogen with the host.
To survive, the pathogen needs to subvert the host defense and generate a necrotic
zone where the pathogen can survive from the host defense spread the necrosis
around the initial zone (Doehlemann et al. 2017). There will be initial and late
reactions in biotrophic fungi which exist in two-phase strategy “survive or die,” but
the early stage has no direct fight with the host (defense), but it follows easy/simple
“sneaking in” strategy, and further stages necessitate close contact with the living
host, hence resulting in continuous conflict with the host defense. In biotrophic
fungal pathogens, they observe a “survive or die” strategy at the first meeting with
the plant defense. Further, biotrophs prosper to keep the host tissue alive, and host
defense strategy at this stage is a morbid in the form of a hypersensitive response
(HR), and the pathogen strategy is deterrence of this response (Doehlemann et al.
2017). The necrotrophic pathogens have to deal with the plant defense during the
first contact and overcome the initiation of infection. Thus, the initial phase of
necrotrophic fungi uses an array of effector molecules to cope with and operate
the host defense during infection (Choquer et al. 2007). The true necrotrophic
pathogens include several species that belong to diverse genera. It is convenient to
divide all necrotrophic pathogens into narrow-host-range and broad-host-range
species (Mengiste 2012). The host specificity of necrotrophs is due to the synthesis
of host-specific toxins (HST); these pathogenicity factors are crucial for compatible
host. For example, T-toxin (Cochliobolus heterostrophus), HSTs (Pyrenophora
tritici-repentis and Parastagonospora nodorum), and HSTs from Cochliobolus
sp. include HC-toxin (Cochliobolus carbonum), victorin (Cochliobolus victoriae),
and ToxA toxins and specify the host range in spot and blotch diseases (Faris et al.
2010). These HSTs which interact with a specific gene from a host (similar to that of
“Avr” or “effector proteins”) interact with resistance proteins (R proteins). The HSTs
are regarded as effectors as they share many of the characters of the avirulence gene.
The HSTs share many characteristics with avirulence gene products similar to
primary virulence function, they are specifically recognized by the host resistance
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counterparts, and they can be recognized by the immune system of plant as virulence
factors.

The broad-host-range necrotrophs lack HSTs and may attack several host plants
across the families. The best-represented broad-host-range necrotrophs is Botrytis
cinerea, which is closely related to Sclerotinia sclerotiorum. Both of them have
more than 300–500 host plants, and each causes severe economic losses pre- and
post-harvest annual crop worldwide (Bolton et al. 2006; Williamson et al. 2007).
The melanized sclerotia have a crucial role in germination (vegetatively or
carpogenically) as well as production of apothecia to release ascospores
(Doehlemann et al. 2017). The genetic basis of resistance against broad-host-range
necrotrophic pathogens is more complex and typically quantitative (Oliver and
Solomon 2010; Mengiste 2012). This is in contrast to R-gene-mediated resistance
or HST-blocking genes, which provide complete resistance. For this reason, it is
difficult to control broad-host-range necrotrophic pathogens, which might partially
explain their growing economic importance.

Originally, the necrotrophy was inferred as toxin-assisted maceration of the tissue
of host, and several studies showed the use of hydrolytic enzymes by necrotrophic
pathogens (Smith 1900; Cole 1956). However, the recent literature and develop-
ments reveal that these enzymes do not function alone and they might have addi-
tional roles other than sheer hydrolysis of plant polymers. The large set of genes
coding for cell wall-degrading and other hydrolytic enzymes present in the genomes
of necrotrophic fungi support this strategy (Soanes et al. 2008; Amselem et al. 2011).
The high redundancy of many of these enzymes (which is unusual in fungi) supports
necrotrophic fungi. Recent transcriptome and secretome studies revealed that horde
of these enzymes are produced and secreted at different stages of the infection
(González et al. 2016; Kim et al. 2016; McCotter et al. 2016).

6.3.3 Hemibiotrophs

Hemibiotrophic pathogens are those that have combined biotrophic and necrotrophic
lifestyles. Their life cycle has an initial biotrophic phase followed by the
necrotrophic phase (Oliver and Ipcho 2004; Divon and Fluhr 2006). Hemibiotrophs
are defined as species that have a flexible length of initial biotrophic stage before
switching over to necrotrophy (Perfect et al. 1998; O’Connell et al. 2012; Yi and
Valent 2013). This definition involves an initial true biotrophic phase mediated by
special biotrophic organs. In the beginning, fungal pathogens secrete effectors to
suppress the plant defense, and later (at the end of the brief biotrophic stage), the
fungus undergoes a substantial developmental change that facilitates the transition
from a biotrophic to a necrotrophic mode.

Two examples that fit very well as hemibiotrophic lifestyle are the rice blast
fungusM. oryzae and species under the genus Colletotrichum (Yi and Valent 2013).
Upon penetration into the sub-epidermal or epidermal cells, they develop specialized
hyphae that establish close contact with the host and invaginate the host cell
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membrane, leading to true (temporary) biotrophic interphase. The true biotrophic
phase may last from one to several days and then switches to the necrotrophic mode.
This transition differentiates new types of hyphae, secretions (enzymes and toxins),
and delivery of specialized effectors.

Colletotrichum and Magnaporthe are important plant pathogenic fungi, which
could be cultured and amenable to genetic manipulations owing to their conven-
tional hemibiotrophic mode of lifestyle. Other fungi that follow a hemibiotrophic
mode of lifestyle include Fusarium, Mycosphaerella, Verticillium, and many others
(Fradin and Thomma 2006; Churchill 2011; Goodwin et al. 2011; Ma et al. 2013;
Ploetz 2015). The most common feature of these species is a latent stage that varies
in length, but in most instances, they do not differentiate into the typical biotrophic
specialized organs and do not form a close contact with the host cell, but remain in
the apoplastic or intracellular sphere. However, the pathogenic lifestyle of these
species includes symptomless, quiescent, latent, or endophytic stages, but they do
not meet the criteria of hemibiotrophy as defined above and therefore should not be
treated in the same fashion. To support, a list of representative fungi showing
different lifestyles are given in Table 6.1 along with diseases caused by those
fungi exhibiting different lifestyles (rusts, powdery mildews, Choanephora species,
sooty bolds, and others) in Fig. 6.1.

6.4 Historically Known Major Fungal Diseases

Phytopathogenic fungi have caused devastating diseases on various crop plants
throughout the history of agriculture. The Theophrastus botanical studies contrib-
uted for the first time a relevant scientific explanation to the knowledge on plant
disease. So far, ancient knowledge recognized is rust infection in crops and also the
smuts infecting monocot crops such as barley, wheat, and/or maize by Ustilago
hordei, U. tritici, and U. maydis, respectively. Similarly, the rusts were also tradi-
tionally recognized as serious threats in agriculture. A fungal plant pathogen with
vast agrarian and cultural influence in human history was Claviceps purpurea
(associated with ergot of rye, barley, oats, and wheat). The sclerotia of
C. purpurea are known to possess a broad range of toxic alkaloids and replace
kernels in the heads of crops and thereby contaminate the harvested grains. Further,
there are numerous epidemics of the plant diseases affected human life by causing
diseases such as “devil’s curse” or “holy fire” (Agrios 2005).

In the history of plant pathology, the development of fungal diseases left bitter
experiences on human life and was responsible for a large number of deaths.
Important catastrophic events include (1) the Irish famine by Phytophthora
infestans, which caused late blight of potato (1840–1845); (2) the Ceylon rust caused
by Hemileia vastatrix which destroyed the coffee plantations in Sri Lanka; and
(3) the Bengal famine contributed by Helminthosporium oryzae in rice. The impact
caused by the occurrence of late blight of potato was the reason to initiate a new
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Fig. 6.1 Representative images of fungal diseases which explicate different mode of lifestyles:
biotrophic lifestyle and groundnut rust (Puccinia arachidis) (a, b); rust on Pongamia tree
(Ravenelia sp.) (c, d); powdery mildew of cucurbits (e–g); powdery mildew on cowpea (h); bud
rot of okra by Choanephora sp. (i, j); dieback of sandalwood (k, l); and sooty mold on sandalwood
(m)
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discipline, the “plant pathology.” The following sections briefly discuss the three
diseases which left their bitter impressions in the human history.

6.4.1 Phytophthora Infestans

Phytophthora infestans, the causative fungus of late blight of potato (Irish famine),
occurs on many varieties of Solanaceae crops (potato, brinjal, tomato, and many
other hosts) around the world. The genus Phytophthora placed under Oomycota has
been a causative agent for diseases like blights, wilting, damping-off, chlorosis, root
rot, and the rotting plant organs. The late blight of potato in the field is presented in
Fig. 6.2. Although several species of Phytophthora are identified in different hosts
causing different diseases, P. infestans find a place in the history for its infamous
Irish potato famine in the 1840s (Fry 2008). At present, P. infestans, besides
infecting potato, causes severe damage to other important Solanaceae crops like
tomato (Solanum lycopersicum), brinjal (Solanum melongena), chili (Capsicum
annuum), and many other vegetable crops.

The genus Phytophthora is capable to cause destructive and epiphytic diseases
like blights, foot rots, wilts, cankers, seedling blights, damping-off, gummosis, and
various rots in field and storage conditions. Therefore, it has the implicit role of a
virulent pathogen owing to its capacity of zoosporangia to germinate by liberating
zoospores as well as by germ tube. Diversity of Phytophthora spp. associated with
crops is presented in Table 6.2 along with their hosts and other details. It is evident
from the recent studies the existence of a complex nature or diverse population
among the species Phytophthora or altogether a new species is present in the current
agro-ecosystem, which needs to be deciphered by advanced molecular tools.
Recently, Scanu et al. (2015) reported the occurrence of nine species of
Phytophthora on the decline of Mediterranean maquis vegetation (a scrubland
vegetation of the Mediterranean region) using multi-locus barcoding and
phylogenomic analysis of the population. Thus, advanced molecular tools play a
crucial role in deciphering the hidden diversity of Phytophthora (morphologically
difficult to differentiate many of these species) and revealed for the first time the
involvement of highly invasive pathogen with a wide host range P. cinnamomi and
several species of Phytophthora (Scanu et al. 2015). The subsequent conventional
and sequence analysis (ITS and Cox1 gene regions) revealed association of multiple
Phytophthora spp. with two new species (Jung et al. 2011). Based on the morpho-
logical characters and molecular sequence analysis, the isolates were identified as
P. asparagi, P. bilorbang, P. cryptogea, P. cinnamomi, P. gonapodyides,
P. melonis, P. syringae, and the two new species (P. crassamura and
P. ornamentata).

The genus Phytophthora is diversified, and variations are observed on mating
types. The mating types vary from country to country and between the hosts.
Different management strategies have been developed due to unsuccessful attempts
of eradication. Even after 172 years of famine, the problem persists. Further, the
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Fig. 6.2 Phytophthora blight observed in potato and tomato from Karnataka: field view of potato
(a); leaf blight caused due to P. infestans (b–e); severe late blight affected tomato field view from
Mysore region, Karnataka (f, g); and blight symptoms on individual leaves showing presence of
sporangiospores on lower leaf surface of tomato (h–j)
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Table 6.2 Diversity of Phytophthora species associated with diseases of crops

Phytophthora
species Crop plants and their disease Reference

P. alni Collar rot of alder Hansen (2015)

P. boehmeriae Wide host range (forest tree pathogen) and cotton Elena and
Paplomatas (1998)

P. cactorum Rhododendron Yang et al. (2018)

P. cambivora Ink disease on chest nut Vannini and
Vettraino (2011)

P. capsici Bell pepper, chili, eggplant, and tomato Granke et al.
(2012)

P. cinnamomi Dieback of Eucalyptus Hansen (2015)

P. citricola Citrus orchards Jung and Burgess
(2009)

P. citrophthora Citrus Jung and Burgess
(2009)

P. colocasiae Black pepper and Piper betel Shrestha et al.
(2017)

P. cryptogea Several floricultural crops Ampuero et al.
(2008)

P. erythroseptica Potato (pink rot) Jiang et al. (2019)

P. europea European oak Vettraino et al.
(2005)

P. fragariae Raspberry Koprivica et al.
(2009)

P. fragariae rubi Root rot of red raspberry Koprivica et al.
(2009)

P. ilicis Holly (ilicis leaf blight and spots) Scanu et al. (2014)

P. infestans Brinjal (eggplant), chili, potato, and tomato Dey et al. (2018)

P. inundata Tree pathogen Brasier et al.
(2003)

P. kernoviae European beach and Rhododendron Brasier et al.
(2005)

P. lateralis Cedar root disease Hansen (2015)

P. medicaginis Root rot of alfalfa and chickpea Vandemark and
Barker (2003)

P. melonis Fruit rot of cucurbits Guharoy et al.
(2006)

P. nemorosa Foliar and bole pathogen of various evergreen hard-
wood trees

Hansen et al.
(2003)

P. nicotianae Citrus, pepper, Piper betel, and tobacco Meng et al. (2014)

P. palmivora Bud rot of palms, fruit rot (or koleroga) of coconut and
areca nut

Carella et al.
(2018)

P. parasitica Eggplant and tomato Meng et al. (2014)

P. pinifolia Radiata pine Hansen (2015)

P. plurivora

(continued)
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mystery surrounding the Irish famine was resolved by Yoshida et al. (2013). Until
the 1970s, there was very low diversity of P. infestans confined only to Mexico and
the USA. But, it later dominated the globe for a period of 150 years. However,
Yoshida et al. (2013) concluded that the nineteenth-century epidemic was due to the
HERB-1 unique genotype which persisted over 150 years. The HERB-1 genotype
was distinct from modern strains, but closely related to the US-1 genotype that was
replaced outside the Mexico in the twentieth century. It was proposed that HERB-1
and US-1 could have emerged from metapopulation established in the early 1800s
outside of epicenter (Yoshida et al. 2013). This scenario holds good for many species
of Phytophthora, which are causing devastating diseases in horticultural, floricul-
tural, and other vegetable crops.

6.4.2 Hemileia vastatrix

One of the historical examples of disease is the coffee rust (or Ceylon coffee rust)
caused by Hemileia vastatrix. Until the 1870s, Sri Lanka was one of the world’s
greatest coffee producers. This dramatically changed after H. vastatrix reached
Ceylon in 1875. From 1870 to 1885, coffee production drastically dropped to
95%, the fungus destroyed the coffee plantations, and now Sri Lanka is known
mainly for tea. Even today, the coffee rust is a significant threat to coffee productions
with recent outbreaks in Central and South American regions (Avelino et al. 2015).
The coffee leaf rust threat by H. vastatrix is one of the major diseases occurring in
coffee plantations affecting commercial coffee species Coffea arabica (arabica
coffee) and Coffea canephora (robusta coffee). This rust caused multiple outbreaks
in several coffee-growing regions resulting in heavy loss of yield. The new races are
constantly evolving as evidenced by the presence of fungus in plants that were
previously resistant (Mahadevakumar and Sridhar 2020).

H. vastatrix is a hemicyclic fungus, and its source of inoculum is by the
urediniosporic life cycle. The disease appears as chlorotic spots initially (can be

Table 6.2 (continued)

Phytophthora
species Crop plants and their disease Reference

Infecting roots of: Acer platanoides, Aesculus
hippocastanum, Alnus glutinosa, Fagus sylvatica,
Quercus robur, Tilia spp., and conifer species

Jung and Burgess
(2009)

P. psis Causes root rot in: Cicer arietinum (chickpea) and Lens
culinaris (lentil), Lathyrus spp. (pea), Pisum sativum;
Vicia faba, V. sativa (garden vetch), and
V. benghalensis (purple vetch)

Heyman et al.
(2013)

P. ramorum Sudden oak death and Phytophthora ramorum blight
(also infects members of Ericaceae, Fagaceae, Larix,
and others)

Elliott et al. (2009),
Hansen (2015)
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visualized through naked eyes), followed by the development of differentiation of
suprastomatal, bouquet-shaped, and orange-colored uredinia (Fig. 6.3). The disease
has resulted in 35% loss of yield and caused polyetic epidemiological impact.
AlthoughH. vastatrix is the only fungus causing rust on coffee, there exists variation
in population structure and genotype composition, which plays an important role in
determining the virulence of the isolate/pathogen at different ecological and envi-
ronmental conditions (Talhnihas et al. 2017). Despite exhibiting low genetic poly-
morphism, the large genomes ofH. vastatrix (c797 Mbp) cover up great pathological
diversity (>50 physiological races). The gene expression studies conducted, which
suggested the activation of signaling pathways for the production of putative effec-
tors, suggest the plant-fungus dialogue starts as early as the germ tube stage, which
provides clues for the identification of avr genes (Talhnihas et al. 2017).

6.4.3 Helminthosporium oryzae

Pathogenic fungi associated with rice are important historically and economically as
the diseases caused by them lead to severe economic loss as well as an acute shortage
of staple food. Historically, the rice brown spot disease is very important as it
witnessed famine in two instances. The first famine was during 1769–1770, and
the second was during 1943 (called the great Bengal famine). The 1943 famine
resulted in mortality of more than two million people due to 10–58% seedling
mortality. The diseases are associated with all stages of growth and development
of rice (from seedbed to harvest and post-harvest).

6.5 Global Perspectives of Major Fungal Diseases

The main sources of staple food for the majority of the globe include maize, rice, and
wheat. These crops are not only serving as staple diets for humans but also used as
livestock feeds, thus indirectly contributing toward the production of meat, dairy,
and other animal-derived products. Soya bean is the fourth important crop, which is
grown primarily as feed for livestock. The trade-in four crops constitute a major
share of food system of 7% (rice), 12% (maize), 19% (wheat), and 30% (soya beans)
being traded internationally between 1995 and 2010 (Dowlah 2015). All these four
crops are susceptible to fungal infections. In a recent review, Fisher et al. (2012)
detailed the major fungal pathogens of each species responsible for the reduction in
yield.

The rice blast (Magnaporthe oryzae) is a widely distributed disease, potentially
found wherever rice is grown (Fig. 6.2). This blast can cause up to 10–35% loss
depending on crop variety and environmental conditions (Talbot 2003). Infection in
wheat is associated with the stem rust Puccinia graminis (and other Puccinia spp.),
and Puccinia tritici cause crop loss up to 70% (Leonard and Szabo 2005). The
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Fig. 6.3 Coffee rust disease caused by Hemileia vastatrix: field view of the coffee plantation from
Balehonnur region, Karnataka (a); individual leaves showing rust pustules in adaxial and abaxial
surfaces (b, c); and immature and mature rust pustules due to colonization of H. vastatrix (d, e)
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resistant wheat cultivars developed in the past decades have shown good control;
however, an emergence of a new virulent strain was seen in Uganda during 1999
(UG99 or TTKSK) (Singh et al. 2011). The major fungal pathogen associated with
maize is corn smut by Ustilago maydis, a causative agent of galling and other
damages. It is native to the central and southern Americas and spread over to most
of the maize-growing areas and caused a 20% loss of crop (Brefort et al. 2009). The
soya bean is known for attack by the rust Phakopsora pachyrhizi, which causes up to
70% of the loss. It is originated in Asia and spread over to most areas where soya
bean is grown. Besides soya bean, the rust also attacks other plants of the family
Fabaceae, which can serve as a reservoir of agricultural infections (Hartman et al.
2011).

6.5.1 Diversity of Fungal Diseases of Rice

Rice (Oryza sativa) is indeed life for most people in Asia, and scarcity in production
and availability could lead to a severe food crisis. Considering the significance of
rice globally and also in human life history, the United Nations celebrated the year
2004 as the International Year of Rice. Rice has been recognized as an important
crop globally, and it is the main source of energy for the majority of the world’s
population. It is a staple food for people living in the rural and urban areas of humid
and sub-humid Asia responsible for 30–50% of agricultural production (Hossain and
Fischer 1995). Rice provides national food security and generates employment and
income for the low-income groups. However, its production is influenced by various
diseases by fungi, bacteria, viruses, and others. The following sections provide
diverse fungal diseases associated with rice in major rice-growing countries.

The Bengal famine in 1942 was in part attributed to brown spot disease in rice
(Padmanabhan 1973). The rice blast epidemics in the 1970s in Korea led to a major
food crisis (Ou 1985) due to loss of yield up to 10–50 billion US$. Thus, minimizing
or managing the disease epidemics and reduction of loss are crucial in sustained rice
production. To achieve this goal, it is important to understand the extent of damage
brought about by the fungal diseases and to identify shifting disease problems
associated with technological advances.

Figure 6.4 presents a comprehensive picture of fungal disease associated with rice
in major rice-growing countries. In a nutshell, the major five fungal diseases posed a
challenge to world food security. These diseases include (1) rice blast caused by
Magnaporthe oryzae; (2) sheath blight and sheath rot caused by Rhizoctonia solani;
and (3) bacterial blight and viral disease tungro. However, the brown spot disease by
Helminthosporium oryzae is also one of the historically important diseases caused
by significant loss of production in the past as well as present. If suitable manage-
ment practices are not followed, the world has to face a shortage in rice production
leading to jeopardy in food security. The post-harvest diseases of rice are also
playing a significant role and lead to decline in production due to fungal infestation
during storage.
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In the process of increasing the rice production, rice seeds appear to be vulnerable
to infection by many pathogens. The sheath rot complex and grain discoloration is an
important problem faced by the rice growers. This syndrome involves a character-
istic browning discoloration or rotting of the flag leaf sheath and discoloration of the
grain. The syndrome is widespread in tropical Asia since the introduction of modern

Fig. 6.4 Major fungal diseases recorded from principal rice-growing countries
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semi-dwarf and photoperiod-insensitive rice cultivars. It is more prevalent in the
rainy season than in the dry season. In the literature, the causal agent of sheath rot is
always associated with Sarocladium oryzae. However, many reports projected that
sheath rot is a complex problem caused by bacteria as well as fungi. Sheath rot and
seed discoloration pathogen includes several fluorescent and non-fluorescent pseu-
domonads: Pseudomonas glumae (syn. Burkholderia glumae), P. fuscovaginae, and
other non-pathogenic bacteria (Cottyn et al. 1996a, b). Similarly, along with S.
oryzae and others pathogens viz., Bipolaris oryzae and Fusarium spp. were also
isolated from discolored seeds showed the frequency of S. oryzae was lower than
10% (Lee et al. 1986).

The false smut caused by Ustilaginoidea virens has long been considered a minor
problem in the global rice production. But, reports of severe damage caused by this
disease in tropical and temperate regions in Africa, Asia, and America appear to be
increasing in recent years. This disease was recently reviewed by Biswas (2001);
however, the reduction in yield associated with false smut remains unclear. Simi-
larly, the epidemiology of the disease in association with modern rice production is
not well understood. A few reports showed that the high incidence and severity of
false smut are correlated with an increase in some parameters involved in modern
rice production systems.

6.5.2 Diversity of Fungal Diseases of Maize

Maize is an important cereal crop cultivated globally, and the USA is a major
producer fulfilling nearly 35% of the global demand. The USA has the highest
productivity (>9.6 tons/ha), and it is twice the global average (4.92 tons/ha). In
India, the average maize production is around 2.43 tons/ha. The maize is the third
most important food crop in India after rice and wheat. According to an estimate, its
production was 22.23 metric tons (2012–2013) mainly during Kharif season, which
occupies 80% of the area under cultivation. Maize contributes nearly 9% of the
national food production in India. Maize serves as a staple food for humans and
livestock and also as a basic raw material for several industrial products (alcoholic
beverages, cosmetics, film, food sweeteners, gum, oil, package protein, paper
industries, pharmaceuticals, starch, and textile).

Maize is affected by various diseases caused by bacteria, fungi, rusts, smuts, root
rots, and ear rots leading to a severe reduction in the yield as well as quality. There
are more than 25 fungal diseases that cause significant economic loss in the produc-
tion of maize. The stalk rot of maize is a major threat in terms of crop loss and seed
quality. Important fungal diseases of maize include root disease, foliar diseases, stalk
rots, kernel rots, and ear rots. Along with the pathogenic fungi in maize, the
secondary metabolites (mainly toxins) produced by these fungi cause major threat
to human and livestock health. The major fungal diseases associated with maize at
various stages of its growth and development are presented in Fig. 6.5.
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The earliest report of maize disease is that of head smut caused by Sphacelotheca
reiliana recorded by Cooke (1876). Butler (1918) wrote that this disease was severe
in the Kashmir, Himalayas, and other regions of India. In southwest Rajasthan, this
disease appears sporadically, and the incidence became as high as 50% in certain
fields cultivated by the tribals. In 1893, Watt in his classic book Dictionary of the
Economic Products of India stated that “It is well known that smut and rust which do

Fig. 6.5 Major fungal diseases associated with maize in principal maize-growing countries
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so much damage in other parts of the world, also occur in India,” which signifies that
smut and rust diseases have appeared on corn long back. Later, Butler (1918)
recorded maize diseases:

1. Downy mildew caused by Peronosclerospora philippinensis
2. Common smut caused by Ustilago maydis
3. Head smut caused by Sphacelotheca reiliana
4. Common rust caused by Puccinia sorghi
5. Turcicum leaf blight caused by Exserohilum turcicum (Dharanendraswamy 2020)

The stalk rot caused by Fusarium spp. is a devastating infection affecting global
maize-growing regions. It is a complex disease caused by several fungal pathogens,
and it varies from region to region and comprehensively reduces the crop yield by
interfering absorption and translocation of water and nutrients leading to premature
death (Shan et al. 2017). This serious disease (root and stalk) was first reported from
the USA by Pammel (1914) and in India by Arya and Jain (1964) for the first time
from Rajasthan. The stalk rot of maize causes premature wilting or drying of plant
and finally lodging. The typical symptoms observed during the early phase are
premature drying of bottom leaves, eventually leading to death. The diseased stalks
lose firmness, and the interior cells of the stalk dissolve (Fig. 6.6). The microscopic
observations of stalks suggested softening and reddish coloration, and the pith
appeared to be soft, disintegrating, and becoming light-brown to reddish. The
infection of stalk was seen up to three inter-nodal regions from the stem-soil
interface as reported by Dharanendraswamy et al. (2019a, b, 2020a, b).

Although Fusarium verticillioides is the major causative agent of stalk rot, there
are several fusaria that cause stalk rots: F. acuminatum, F. avenaceum,
F. merismoides, F. nivale, F. subglutinans (F. semitectum), F. roseum, F. solani,
and F. sulphurcum (Rintelen 1965; Kommedahal et al. 1972; Dorn et al. 2009; Nur-
Ain-Izzati et al. 2011). However, in India, only F. moniliforme and F. semitectum are
the causative agents of stalk rot of maize (Lal and Dwivedi 1983; Khokhar et al.
2013, 2014). Recently, association of F. equiseti and Lasiodiplodia
pseudotheobromae with post-flowering stalk rot of maize was also reported by
Dharanendraswamy et al. (2020a, b).

6.5.3 Diversity of Fungal Diseases of Vegetables

Vegetables are an important source of regular diet, and India produces a significant
quantity of vegetables annually. The fungal diseases associated with the vegetables
are also causing significant loss of food leading to severe economic loss. A list of
common fungal diseases associated with vegetables is provided in Table 6.3. Fungi
damage the hosts by killing cells and causing plant stress. The fungal infection can
be through infected seeds, soil, crop debris, nearby crops, and weeds. Some of the
fungal diseases that occur on different vegetables include anthracnose and rots
caused by various species of Colletotrichum, Botrytis, downy mildews, Fusarium,
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Fig. 6.6 (a–j) Stalk rot of maize: It is one of the complex diseases caused by several fungal species

122 S. Mahadevakumar and K. R. Sridhar



powdery mildews, rusts, Rhizoctonia, Sclerotinia, Sclerotium, Phytophthora, and
others. Some of the other diseases which are specific to a particular crop include
clubroot (Plasmodiophora brassicae) in brassicas, leaf blight (Alternaria sp.) in
carrots, and red root complex in beans (Gibberella sp.). Some fungi that cause highly
prevalent foliar diseases include downy mildews, powdery mildews, and white
blister. Similarly, soil-borne diseases like clubroot and other diseases are caused
by the species of Fusarium, Pythium, Rhizoctonia, Sclerotinia, and Sclerotium.

The following sections deal with the diversity of fungal diseases associated with a
few vegetable crops (cowpea, common bean, brinjal, and tomato) cultivated in
Karnataka state, southern India. Cowpea is an important pulses crop and is the
livelihood of millions of people in the tropics (Quin 1997). The crop provides
food and animal feed and strengthens the economy of the rural population. There
are new emerging diseases due to fungi and fungi-like organisms being increasingly
reported in many regions (Farr and Rossman 2018). The new fungal diseases on
cowpea caused by various fungal pathogens are becoming the major constraints to
the cowpea production. Recently, various workers have reported the occurrence of
root rot and dry root rot disease caused by F. equiseti (Li et al. 2018), F. oxysporum
(Shrestha et al. 2016a), and F. proliferatum (Shrestha et al. 2016b) from the USA;
target leaf spot disease caused by Corynespora cassiicola from China (Li et al.
2014); and leaf spot disease caused by Pestalotiopsis sp. (Mahadevakumar and
Janardhana 2014) and Dactuliophora sp. (Mahadevakumar and Janardhana 2012)
and collar rot caused by Aplosporella hesperidica (Deepika et al. 2020) from India.

In recent past, common bean (Phaseolus vulgaris) production is limited due to
various plant diseases caused by bacteria, fungi, viruses, phytoplasma, and other
biotic factors. Studies have been carried out throughout the world on the fungal
diseases of common bean and other leguminous plants. Stem rot (Sclerotium rolfsii),
root rot (Pythium and Rhizoctonia solani), charcoal rot (Macrophomina phaseolina),
wilt (Fusarium oxysporum), southern blight and leaf spot (S. rolfsii, Alternaria),
powdery mildew (Erysiphe polygoni), ashy stem blight (M. phaseolina), rust
(Uromyces phaseoli), anthracnose (Colletotrichum lindemuthianum), and many
more fungal diseases have been recorded on bean (Hagedorn and Inglis 1986;
Abawi and Pastor Corrales 1990; Allen et al. 1996; Mahadevakumar et al.
2015a, b, c). Fusarium also causes different diseases in beans like root rot, wilt,
decline and damping-off, and so on. Cramer et al. (1996) characterized the Fusarium
isolates causing wilt disease in and around the central plains of the USA, while
Roman-Aviles et al. (2003) described the root rot of common beans caused by the
Fusarium solani in Michigan. The common bean decline is also reported to be
caused by F. solani, F. oxysporum, F. sambucinum, R. solani, and Pythium
debaryanum (Saremi et al. 2011). The fungal diseases of common bean in subterra-
nean regions are Aphanomyces root rot, black root rot, Fusarium root rot, Fusarium
yellows (wilt), Phymatotrichum root rot, Pythium root rot, Rhizoctonia root rot, and
southern blight and stem rot. Similarly, the fungal diseases of aerial parts include
Alternaria leaf and pod spot, angular leaf spot, anthracnose, Ascochyta leaf spot,
ashy stem blight, Cercospora leaf spot, Chaetoseptoria leaf spot, Diaporthe pod
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Table 6.3 Some of the common fungal diseases associated with vegetable crops

Disease Causal organism Crops affected Symptoms

Anthracnose Colletotrichum spp. Wide range of crops:
cereals, fruits,
oil-yielding crops,
pulses, and vegetables

Typical symptoms
begin with sunken and
water-soaked spots
appearing on leaves,
stems, and/or fruit

Black root rot Beans, cucurbits, let-
tuce, and other vegeta-
ble crops

Blackening of roots;
stunted plants

Botrytis rots—for
example, gray mold

Botrytis cinerea Beans, brassicas, capsi-
cum, celery, cucumber,
lettuce, and tomato

Softening of plant tis-
sues in the presence of
gray fungal growth

Charcoal rot Macrophomina
phaseolina

>500 host range reports –

Club root Plasmodiophora
brassicae

Members of
Brassicaceae (cabbage,
cauliflower, radish, and
others)

Plants are yellow and
stunted and may wilt in
hotter parts of the day;
large malformed club
roots

Damping-off Aphanomyces,
Fusarium, Pythium,
Phytophthora, and
Rhizoctonia

Many vegetable crops:
beans, beetroot,
brassicas, carrots, cori-
ander, cucurbits, egg-
plant, leafy vegetables,
spring onions, and
tomato

Young seedlings have
necrotic stems or roots;
seedlings die or show a
reduction in growth

Downy mildews Obligate parasites
are host-specific
except for a few
species having a
wide host range

Cucurbits, grapes, hor-
ticultural crops, maize,
onions, pearl millet,
rose, sorghum, and
vegetables

Yellowish leaf spots
and streaks then turn
into brown

Fusarium wilts and
rots

Various species of
Fusarium
(F. oxysporum and
F. solani are
frequent)

Wide host range: Beans,
brassicas, carrots,
cucurbits, herbs,
onions, peas, potato,
spring onions, and
tomato

Causes severe root and
crown rots or wilt dis-
eases by attacking
roots and basal stems

Powdery mildews
(some species are
restricted to particu-
lar crops or crop
families)

Obligate parasites
are host-specific
except for a few
species having a
wide host range

Wide host range and
very common espe-
cially in greenhouse
crops: cucurbits and
vegetable crops

Small, white, powdery
patches on most
aboveground surfaces;
usually observed first
on undersides of leaves
but eventually cover
both surfaces

Pythium rots Pythium
aphanidermatum
and other species

A wide range of vege-
table crops and horti-
cultural crops

Usually infects at the
early seedling stages
and kills the seedlings
or may infect at any

(continued)
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blight, downy mildew, Entyloma leaf smut, gray leaf spot, scab, rust, web blight,
powdery mildew, and others (Schwartz et al. 2005).

Brinjal (Solanum melongena) is another essential vegetable crop cultivated in
tropics and subtropics and grown extensively in China, India, Bangladesh, Pakistan,
and the Philippines. It is also cultivated in America, Europe, and other parts of Asia.
In India, brinjal is one of the most important vegetable crops (Zeven and Zhukovsky
1975; Rashid 1976; Sekara et al. 2007). It is susceptible to various biotic and abiotic
stresses during its growth and development. Along with biotic stress, fungal

Table 6.3 (continued)

Disease Causal organism Crops affected Symptoms

stage of its growth and
development

Rhizoctonia rots Rhizoctonia solani Wide host range: Beans,
beets, brassicas, capsi-
cum, carrots, cucurbits,
lettuce, peas, potato,
and tomato

Range of symptoms
depending on the crop
being grown, but can
affect fruits, roots,
leaves, stems, and
tubers; plants wilt and
may collapse and die

Rust diseases Obligate biotrophic
organism in some
cases exhibits host
specificity

Coffee, cowpea,
groundnut, maize, sor-
ghum, soybean, wheat,
yard long bean, and
others

Small, red, or reddish-
brown pustules that
form on the underside
of the leaves and
sometimes on the pods
as well

Sclerotinia rots Sclerotinia
sclerotiorum and
Sclerotinia minor

Most vegetable crops,
pulses, and cereals

Water-soaked rotting
of stems, leaves, and
sometimes fruit;
followed by a fluffy,
white, and cottony
fungal growth, which
contain hard black
pebble-like sclerotia

Sclerotium rots Sclerotium rolfsii
and S. cepivorum

S. rolfsii has a wide host
range (>500 hosts are
reported); S. cepivorum
affects only onions,
garlic, and related
Allium (leeks, shallots,
and spring onions)

S. rolfsii affects lower
stem and root causing
rots; coarse threads of
white fungal growth
surround the diseased
areas; S. cepivorum
produce yellowing and
wilting and fluffy fun-
gal growth containing
black sclerotia forms at
the bases of bulbs

White blister/white
rust

Albugo candida Members of
Brassicaceae (cabbage,
cauliflower, radish, and
others)

Produces white blisters
and swellings on
leaves of affected
plants
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pathogen infections such as leaf blight and fruit rot (Phomopsis vexans), damping-
off (Pythium aphanidermatum), wilt (Verticillium dahliae), leaf spots (Alternaria
melongenae and Cercospora melongenae), and root rot (Sclerotinia sclerotiorum)
are associated with brinjal (Shivaprakasam and Soumini 1974; Iqbal et al. 2003).
Fruit rot and leaf blight caused by Phomopsis vexans are major threats decreasing
yield as well as market value (20–30%) (Beura et al. 2008; Pandey 2010). Diseases
caused by Phomopsis vexans have been reported from Assam, Jammu, Karnataka,
and Pantnagar (Srinivasa et al. 2005; Thippeswamy et al. 2005; Akhtar and Chaube
2006; Muneeshwar et al. 2011; Das and Sarma 2012; Jayaramaiah and Janardhana
2011; Mahadevakumar 2016; Mahadevakumar and Janardhana 2016c;
Mahadevakumar et al. 2017).

6.6 Top Ten Fungal Diseases

Emerging infectious diseases caused by plant pathogens could lead to unexpected
and serious epidemics. Farmers spend billions of dollars on disease management
without adequate technical support; thus, the disease devastates natural ecosystems
and causes habitat loss (Bellard et al. 2012). Yield loss causes hunger and starvation
especially in underdeveloped countries, due to limited access to disease control,
which causes annual losses of common major crops up to 30–50%. In some years,
the losses are much severe, and the results were catastrophic for those who exten-
sively depend only on the food crop (Flood 2010). The major food disease outbreaks
have caused devastating famines and mass migrations of population throughout the
history.

In 2012, a team of scientists surveyed to gather information on the most influen-
tial fungal pathogen or top ten fungal pathogens (Dean et al. 2012). These fungal
pathogens were considered very important from the scientific and economic point of
view. Accordingly, among the top ten most important fungal pathogens, M. oryzae
stands as the topmost fungal pathogen causing blast disease in Oryza sativa.
Table 6.4 lists rice blast pathogen, and most of the serious plant pathogens come
across in many crop plants including vegetables, cereals, millets, horticultural crops,
forest trees, and other economically important plant species. The genus Botrytis
having more than 200 hosts causing significant economic damage is considered in
the second position; Puccinia sp. causing wheat rust, a serious disease in major
wheat-growing regions, is in the third position; and Fusarium spp. associated with
more than 500 plant species causing diseases (in the field and post-harvest condi-
tions) occupied the fourth and fifth positions in the list of pathogens. Fusarium
oxysporum and Blumeria graminis occupied the sixth and seventh positions as the
most important fungal pathogens in the world, respectively. Members of basidio-
mycetes including smut (U. maydis causing corn smut disease) and rust (M. lini)
associated with flax rust were placed in the ninth and tenth positions, respectively.
The genus Colletotrichum has occupied the eighth position and was well known to
cause many diseases (anthracnose, blights, dieback, and others) in various crop
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plants. However, among Colletotrichum, there are over 1000 species; most of them
are regarded as pathogenic, and some of them are also endophytes. It has been
widely considered as a model fungus to study the lifestyle behavior of
hemibiotrophs. Although the list provides the most significant fungal pathogens,
there are several serious plant pathogens, which play a pivotal role in agricultural
production, and those that are not included in the list are Phytophthora spp. (late
blight and damping-off), Sclerotium rolfsii (southern blight and foot rot), Puccinia
arachidis (groundnut rust), downy mildew diseases, Rhizoctonia solani (damping-
off), Phakopsora pachyrhizi (Asian soybean rust), and Diaporthe spp. (associated
with many economically important crop plants causing a wide range of disease).
Further, it necessitates that this top ten list of fungal pathogens needs revision
periodically to focus on control measures of diseases.

6.7 Diversity of Major Disease-Causing Fungal Genera

6.7.1 Colletotrichum

The genus Colletotrichum has a wide number of species affecting economically
important crops. This genus primarily occurs abundantly in tropical and subtropical
regions, but there are some important/novel species causing diseases in crops grown
in temperate regions too. Diseases caused by Colletotrichum species lead to severe
loss of production of various agricultural commodities in the field as well as post-
harvest stages (Dean et al. 2012).

In temperate regions, fruit productions of high-value crops like strawberry,
mango, citrus, avocado, banana, and others are severely affected. In Africa, species
of Colletotrichum are known to cause devastating disease of coffee berries, which

Table 6.4 Major fungal diseases in the world (top ten fungal pathogens)

Top
ten Fungal pathogen Disease Host

1 Magnaporthe oryzae Blast disease Oryza sativa

2 Botrytis cinerea Fruit rot and gray mold >200 host species

3 Puccinia spp. Rust on wheat Triticum aestivum

4 Fusarium graminearum Head blight Zea mays

5 Fusarium oxysporum Vascular wilt Wide host range

6 Blumeria graminis Powdery mildew Hordeum vulgare

7 Mycosphaerella
graminicola

Septoria leaf blotch Triticum aestivum

8 Colletotrichum species Anthracnose, fruit rots, and
dieback

>500 host species

9 Ustilago maydis Corn smut Zea mays

10 Melampsora lini Flax rust Linum
usitatissimum
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also causes significant economic loss to cereal growers, and also affect the important
crops like maize, sugarcane, and sorghum. In the top ten fungal pathogens of the
world, the genus Colletotrichum is voted to the eighth rank based on the perceived
scientific and economic importance (Canon et al. 2012; Dean et al. 2012).
Colletotrichum often cause anthracnose and other diseases which include red rot
disease sugarcane, coffee berry disease, crown rot of strawberry, and banana and
brown blotch of cowpea (Lenné 2002; Canon et al. 2012). Further, many
Colletotrichum spp. are latent plant pathogens, and some of them are recorded as
endophytes and saprobes, and they can switch to a pathogenic lifestyle when host
plants are subjected to stress conditions or during post-harvest storage (Crous et al.
2016). The germinating conidia develop the appressorium through which the infec-
tion initiates by penetrating the cuticle of fresh tissues or occasionally through the
epidermal cells via hyphal structures (Bailey and Jeger 1992; Deising et al. 2000).

The typical symptoms of anthracnose by Colletotrichum include the development
of necrotic lesions on leaves, stems, flowers and fruits, and crown, and it also causes
stem rots, seedling blight, and so on (Waller et al. 2002; Agrios 2005). The disease
symptoms associated with Colletotrichum recorded from Karnataka have been
represented in Fig. 6.7. Many species are seed-borne, dwell in soil saprobically on
dead plant debris, and may spread disease through conidial dispersal by water splash
as well as air transmission of ascospores from the sexual morph (Nicholson and
Moraes 1980).

The genus Colletotrichum is a major threat among pathogenic fungi as it can
thrive on a wide host range in warmer and humid environments and present globally
(Ford et al. 2004; Shenoy et al. 2007; Damm et al. 2009; Diao et al. 2014; He et al.
2016; De-Silva et al. 2017). The anthracnose in several vegetables, fruits, and other
crops is associated with Colletotrichum infections (Hyde et al. 2009). In pepper,
tomato, potato, cabbage, and papaya, anthracnose is a destructive disease responsi-
ble for significant yield loss (Than et al. 2008; Hyde et al. 2009; Liu et al. 2016; He
et al. 2016; Torres-Calzada et al. 2018). In India, this pathogen has been reported in
chili, tomato, and garlic (Saxena et al. 2014; Saini et al. 2017; Salunkhe et al. 2018).
Identification of Colletotrichum spp. is solely relied on morphological characteristics
(Sutton 1992). Some of the species of Colletotrichum exhibit conidial overlapping;
thus, molecular identification tools are being employed recently (Sherriff et al. 1995;
Hyde et al. 2009; Canon et al. 2012; He et al. 2016). The important crop plants
affected by Colletotrichum anthracnose are presented in Table 6.5 and Fig. 6.7.

6.7.2 Diaporthe

The genus Diaporthe belongs to Diaporthaceae under Sphaeropsidales of
mitosporic fungi. It is typified by Diaporthe eres, an asexual form referred to as
Phomopsis (Dissanayake et al. 2017a, b; Senanayake et al. 2017). The nomenclature
is considered for genus name Diaporthe over Phomopsis based on the priority of
publication (Rossman et al. 2014). Earlier, the identification of various Diaporthe
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Fig. 6.7 Anthracnose disease caused by various species of Colletotrichum: eggplant fruit rot (a);
caused by C. parasitica on eggplant fruits (b, c); on C. capsici (d, e); on bell pepper caused by
C. capsici (f); on Polianthes tuberosa caused by C. truncatum (g–i); and on beans caused by
C. lindemuthianum (j, k)
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Table 6.5 Diversity of Colletotrichum spp. associated with agriculturally important crops

Host Disease Causal organism Reference

Apple Fruit rot C. acutatum, C. fioriniae,
C. fructicola,
C. gloeosporioides, C. karstii,
C. nymphaeae, C. siamense,
and C. theobromicola

Velho et al. (2015), Munir
et al. (2016), Park et al.
(2018)

Banana Anthracnose C. gloeosporioides, C. karstii,
C. musae, C. paxtonii,
C. scovillei, C. siamense,
C. tropicale, and
C. theobromicola

Vieira et al. (2017), Zhou
et al. (2017)

Bell pepper Anthracnose and
fruit rot

C. brevisporum, C. fructicola,
C. scovillei, C. siamense,
C. sichuanensis, and
C. truncatum

Ramdial and Rampersad
(2015)

Brinjal C. fioriniae Xu et al. (2018)

Butter fruit/
avocado
(Persea
americana)

Anthracnose C. alienum, C. boninense,
C. fructicola,
C. gloeosporioides, and
C. karstii

Giblin et al. (2018),
Kimaru et al. (2018)

Chickpea
(Cicer
arietinum)

C. dematium and C. truncatum Nene et al. (2012),
Mahmodi et al. (2013)

Chili (Cap-
sicum
annum)

Anthracnose, fruit
rot, and stem blight

C. cairnsense, C. cliviae,
C. gloeosporioides,
C. queenslandicum,
C. siamense, C. simmondsii,
and C. truncatum (capsici)

Than et al. (2008), Saxena
et al. (2014), De-Silva
et al. (2017), Saini et al.
(2017)

Citrus Anthracnose, post-
bloom fruit drop,
and stem-end rot
on fruit

C. boninense, C. catinaense,
C. gloeosporioides,
C. helleniense, C. hystricis,
C. karstii, C. limonicola, and
C. novae-zelandiae

Guarnaccia et al. (2017)

Coffee
(Coffea
arabica and
C. robusta)

C. acutatum, C. asianum,
C. boninense, C. capsici,
C. fragariae, C. fructicola,
C. gloeosporioides,
C. kahawae subsp. kahawae,
and C. siamense

Prihastuti et al. (2009),
Nguyen et al. (2010),
Canon et al. (2012), Silva
et al. (2012)

Cotton
(Gossypium
hirsutum)

Anthracnose C. gossypii var.
cephalosporioides

Moreno-Moran and
Burbano-Figueroa (2016)

Cowpea – C. gloeosporioides and
C. lindemuthianum

Mango Anthracnose C. asianum, C. cliviicola,
C. cordylinicola,
C. endophytica, C. fructicola,
C. gigasporum,
C. gloeosporioides, C. karstii,

Mo et al. (2018), Li et al.
(2019)

(continued)
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species was based on morphological characteristics and also on host details
(Brayford 1990; Rehner and Uecker 1994). With the advancement in sequencing
platforms, the species diversity associated with a particular crop plant was discarded,
and identity and assignment of species were considered over by multi-locus
barcoding including internal transcribed spacer ribosomal DNA (ITS-rDNA), elon-
gation factor-1a (EF-1α), β-tubulin, partial histone H3 (HIS), and calmodulin (CAL)
of DNA sequences along with morphological characteristics (Udayanga et al. 2011;
Gomes et al. 2013; Gao et al. 2017; Guarnaccia et al. 2018; Yang et al. 2018). In the
recent studies on systematics, pathology, and environmental microbiology/ecology
(endophytes), Diaporthe is primarily based on the usage of multi-locus approach,
and it helped to resolve the species boundaries of Diaporthe/Phomopsis genus

Table 6.5 (continued)

Host Disease Causal organism Reference

C. liaoningense, C. musae,
C. scovillei, C. siamense, and
C. tropicale

Mung bean – C. acutatum,
C. lindemuthianum, and
C. truncatum

Shen et al. (2010),
Roopadevi and Jamadar
(2015)

Murraya
koenigii

Anthracnose and
leaf spot

C. gloeosporioides, C. karstii,
C. siamense, and
C. simmondsii

Padman and Janardhana
(2012), Guarnaccia et al.
(2017)

Papaya Anthracnose C. acutatum, C. capsici,
C. gloeosporioides, and
C. truncatum

Torres-Calzada et al.
(2013)

Pigeon pea
(Cajanus
cajan)

– C. truncatum Khan and Singh (1975)

Pomegranate – C. acutatum, C. fioriniae,
C. gloeosporioides,
C. nymphaeae, C. simmondsii,
C. theobromicola, and
C. siamense

Jayalakshmi et al. (2015),
Xavier et al. (2019)

Pyrus
species

Anthracnose and
leaf blight

C. aenigma, C. citricola,
C. conoides, C. fioriniae,
C. fructicola,
C. gloeosporioides,
C. jinshuiense, C. karstii,
C. plurivorum, C. pyrifolia,
C. siamense, and C. wuxiense

Fu et al. (2019)

Tomato Anthracnose C. acutatum, C. coccodes,
C. dematium, and
C. gloeosporioides

Dillard (1989), Byrne
et al. (1997), Sanogo et al.
(1997), LeBoeuf (2007)

Tuberose
(Polianthes
tuberosa)

Anthracnose C. truncatum Mahadevakumar et al.
(2019)
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(Udayanga et al. 2011, 2014a, b; Gao et al. 2017; Marin-Felix et al. 2019). Various
species under the genus Diaporthe have been reported as endophytes (e.g., in a large
number of medicinal plants), many of them are pathogenic causing severe damage to
crops (leaf blight and fruit rot of eggplant; dieback of citrus), and some of the species
are also regarded as saprobic on a wide range of hosts worldwide (Mahadevakumar
et al. 2014, 2017; Liu et al. 2015; Hyde et al. 2016; Marin-Felix et al. 2019).
Common diseases are dieback in forest trees (Yang et al. 2018); leaf and pod blights
and seed decay in soybean (Udayanga et al. 2015); leaf spots in tea (Guarnaccia and
Crous 2017); melanose, stem-end rot, and gummosis in Citrus spp. (Mondal et al.
2007; Udayanga et al. 2014a; Mahadevakumar et al. 2014; Guarnaccia and Crous
2017, 2018); and stem canker in sunflower (Muntañola-Cvetković et al. 1981;
Thompson et al. 2011).

Phomopsis cane and leaf spot caused by Diaporthe species on the grapevine is
one of the most complex grapevine trunk diseases worldwide (Úrbez-Torres et al.
2013; Dissanayake et al. 2015; Guarnaccia et al. 2018). The symptoms include
breakage of shoots, stunting, dieback, loss of vigor, reduced bunch set, and fruit
rot (Pine 1958, 1959; Pscheidt and Pearson 1989; Pearson and Goheen 1994; Wilcox
et al. 2015). On the infected stem, brown to black necrotic irregular lesions could be
seen. Once the clusters are infected, rachis necrosis and brown and shriveled berries
during harvest time could be seen (Pearson and Goheen 1994). More than one
Diaporthe species is frequently reported as causative agents from one geographical
region (Dissanayake et al. 2015; Guarnaccia et al. 2018). Earlier, grapevine trunk
disease was known to be caused by Phomopsis viticola, but the current knowledge
on trunk diseases gives a different picture. Advancement in the field of molecular
biology and techniques (sequencing platforms) revealed the occurrence of high
diversity of pathogenic Diaporthe species associated with grapevine.

There are about 33 Diaporthe spp. known to cause dieback in grape-producing
countries (Table 6.6) (Mostert et al. 2001; Van Niekerk et al. 2005; Udayanga et al.
2011, 2014a, b; White et al. 2011; Baumgartner et al. 2013; Úrbez-Torres et al. 2013;
Hyde et al. 2014; Dissanayake et al. 2015; Guarnaccia et al. 2018; Lesuthu et al.
2019). All these species are associated with one disease; they differ in their symp-
toms, aggressiveness, and virulence, which differs from region to region and the
variety of grape. In general, D. ampelina has a long history as the most common and
severe pathogenic species together with D. amygdali (Mostert et al. 2001; Van
Niekerk et al. 2005). Diaporthe perjuncta and D. ampelina cause cane bleaching
(Kajitani and Kanematsu 2000; Mostert et al. 2001; Van Niekerk et al. 2005;
Rawnsley et al. 2006). In South Africa, D. ampelina, D. nebulae, and D. novem
have been reported to be most virulent species associated with grapevines. Further,
D. eres was reported as a weak to moderate pathogen in many regions (Kaliterna
et al. 2012; Baumgartner et al. 2013). In China, so far, four Diaporthe spp. are
reported to cause grapevine dieback disease (D. eres, D. hongkongensis,
D. phaseolorum, and D. sojae) (Dissanayake et al. 2015). These results specify the
intricacy and high species richness of Diaporthe associated with the grapevines
(Lesuthu et al. 2019).
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6.7.3 Sclerotium rolfsii

Sclerotium rolfsii (or Athelia rolfsii) is a potent fungal pathogen causing diseases on
a wide variety of plants including cereals, vegetables, fruits, ornamentals, and turfs at

Table 6.6 Diversity of Diaporthe spp. associated with grapevine trunk disease

Host Diaporthe species Reference

Grapes (Vitis vinifera):
Associated with grapevine
dieback

D. eres Manawasinghe et al. (2019)

D. gulyae

D. hubeiensis

D. pescicola

D. sojae

D. unshiuensis

D. vinifera

Grapes: Grapevine swell-
ing arm

D. ambigua Dissanayake et al. (2017a, b)

D. ampelina Úrbez-Torres et al. (2013), Lawrence et al.
(2015)

D. amygdali Gomes et al. (2013), Guarnaccia et al. (2018)

D. australafricana Gomes et al. (2013)

D. baccae Guarnaccia et al. (2018)

D. bohemiae

D. celeris

D. chamaeropis Lawrence et al. (2015)

D. cytosporella Lawrence et al. (2015), Dissanayake et al.
(2017a, b), Guarnaccia et al. (2018), Farr and
Rossman (2019)

D. eres

D. foeniculina

D. helianthi

D. hispaniae Dissanayake et al. (2017a, b)

D. hongkongensis

D. hungariae Guarnaccia et al. (2018)

D. kyushuensis Kajitani and Kanematsu (2000)

D. nebulae Lesuthu et al. (2019)

D. neotheicola Úrbez-Torres et al. (2013)

D. nobilis Lawrence et al. (2015), Dissanayake et al.
(2017a, b)

D. novem Lawrence et al. (2015)

D. perjuncta Mostert et al. (2001)

D. perniciosa Stoykow and Denchev (2006)

D. phaseolorum Dissanayake et al. (2017a, b)

D. rudis Guarnaccia et al. (2018)

D. serafiniae Lesuthu et al. (2019)

D. sojae Dissanayake et al. (2017a, b)

Cane and leaf spot Phomopsis
viticola

Pscheidt and Pearson (1989)
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various stages of growth (Aycock 1966; Punja 1985; Smith et al. 1989; Mullen
2001). This pathogen is known to persist in the soil for 2–3 years and capable to
cause infection when the new crop comes up (Smith et al. 1989). The disease has
been named as southern blight or southern stem blight. The pathogen is known to
cause infection in all stages of plant tissues although it is known to generally infect
the lower part of the stem at the soil-air interface (Mullen 2001). This pathogen is
also known to attack seedlings, herbaceous plants, woody plants, fleshy roots, bulbs,
and fruits (Mullen 2001). The most important crop plants associated with southern
blight and leaf spot diseases include southern blight of common bean (Phaseolus
vulgaris), leaf spot of Indian jasmine (Jasminum multiflorum), boll rot of cotton
(Gossypium hirsutum), fruit rot of pumpkin (Cucurbita maxima), and southern blight
of wild coffee (Psychotria nervosa) (Mahadevakumar et al. 2015a, b, c;
Mahadevakumar and Janardhana 2014, 2016a, b; Mahadevakumar et al. 2018).

6.8 Diversity of Emerging Fungal Pathogens
in Agro-Ecosystem

The global increase in virulent infectious diseases of natural populations and man-
aged landscapes are mainly due to unprecedented fungal diseases leading to severe
economic loss and threat to food security (Fisher et al. 2012). The plant pathogens
could enter agricultural ecosystems by several mechanisms like host tracking, host
jumps, hybridization, and horizontal gene transfer. Agro-ecosystem is defined as
“the ecosystem that develops on farmed land, which includes both the crop species
and its associated micro- and macro-organisms” (Stukenbrock and McDonald 2008).
A long timescale is necessary for the development of complex biochemical machin-
ery of pathogen attack and plant defense in pathogen-plant interactions, but the
agriculture is fairly recent, and domestication faces the severity of acclimatized
pathogens (Balter 2007; Stukenbrock and McDonald 2008). The development of
new crop cultivars and agricultural practices has resulted in the emergence of new
pathogens causing significant variation population of pathogens preexisting on the
wild ancestors of the cultivated crops. The new agro-ecosystem provided a denser
and genetically more uniform host population that enabled the pathogen transmis-
sion compared to the natural habitats (Stukenbrock and McDonald 2008).

The introduction of plants or pathogens into new environments could result in
novel host-pathogen interactions, where pathogens cause severe damage in native
host populations. For example, the introduction of the potato late blight pathogen
Phytophthora infestans into Ireland in the mid-nineteenth century caused the Irish
potato famine (Goodwin et al. 1994), and the movement of the wheat stripe rust
pathogen Puccinia striiformis f. sp. graminis into the USA long ago caused severe
economic losses (Carleton 1915). The host and the pathogen coevolved during the
process of host domestication and the development of the agro-ecosystem specific to
the host crop. During domestication, the selection and cultivation of desired host
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genotypes simultaneously select pathogen genotypes that are adapted to the selected
individuals in a specific agro-ecosystem (Stukenbrock and McDonald 2008). How-
ever, nowadays, a greater number of new disease reports indicate either new or
crossing the host barrier or crossing the geographic location and becoming more
serious constraints to modern agriculture. Even though the western countries have
adopted different strategies to oversee the emergence of new diseases (along with
fungi, viruses, bacterial diseases, and others), new diseases are emerging. India is yet
to adopt modern diagnostic techniques for disease diagnosis and to suggest solutions
or management strategies. As a result, a wide range of new outbreaks are unnoticed
or not recorded so far, or the existing host-pathogen system needs to be explored at
the genetic level. This strategy supports breeding programs to develop new cultivars,
hybrids, or varieties for improved and sustained agricultural production.

The most neglected part of understanding the fungal diseases and their impact on
human life is storage diseases. Every agricultural product consumed directly or after
harvest will be subjected for storage depending on the type of produce. The storage
fungi produce diverse secondary metabolites, which are toxic to the human being as
well as livestock. Once the stored agricultural produce is affected by storage fungi,
they will be unfit for consumption. In vegetables, the moisture content favors the
development of various molds that cause damage. In Fig. 6.8, some of the common
storage fungi are presented which include association of Aspergillus on cucumber;
Rhizopus on jackfruit; Alternaria on apple; and Colletotrichum on watermelons,
mango, and others.

6.9 Perspectives and Future Outlook

Production of sufficient food with assured quality and quantity remains of para-
mount importance for the sustenance of quality life. Inadvertent introduction of
pathogenic fungi has adverse consequences on the cultivated crops throughout the
world. The economic concussions by such introductions result in loss of yield,
increased cost of cultivation, and disease control. Fungi being a unique group of
organisms that have the potential of earning billion-dollar profit as the source of a
wonder drug have also incurred a billion-dollar loss to a nation by their virulence.
Diverse pathogenic fungi are the sole reason for more than 80% of crop loss in the
Indian subcontinent. The plant pathogens also play a crucial role in regulating host
populations in the geographic and ecological setup of a natural ecosystem. As a
result, they can distress the availability of food sources to other living systems
(Lindahl and Grace 2015). The majority of diverse microbial pathogens exhibit a
high genetic variability due to narrow generation time, maximum population size,
and rapid adaptability to various environmental conditions (Alberts et al. 2002;
Lindahl and Grace 2015). Therefore, it is necessary to understand the plant patho-
gens at the genetic and population level to develop sustainable management prac-
tices in agriculture.
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To combat the diseases caused by fungal plant pathogens globally, it is crucial to
confirm whether the same species/genotypes are present in other countries, as each
species/genotype can possess varied attack patterns and responses to fungicides as
well as climatological conditions. It is also necessary to follow what are their host
ranges and mating strategies to relate to different disease control mechanisms. The
movement of agricultural and forestry produce is inextricably cross-linked between
geographic regions, and in turn, it becomes a global concern. Knowledge on which
pathogen occurs and its attack on crop facilitates to enhance the yield and reduce the
economic loss. Systematic and extensive research on emerging diseases has not been
attempted especially in India on various crop plants. In terms of intensive plant
material exchange and climate change, result in new pathogens needs stringent
quarantine measures. Future plant disease management should aim at improving
the food safety for a growing population with scope for simultaneous attempts to
conserve the ecosystem integrity. Insights into the alternate food crops, traditionally
important plant resources, and collateral hosts are vital to control the impact of
pathogens. The diversity of fungal pathogens associated with a crop provides
necessary strategies to adapt for biological control methods to manage diseases.

Fig. 6.8 Fungal diseases associated with fruits and vegetables (storage/post-harvest): Aspergillus
rot of cucurbits (storage fungal disease) (a); soft rot of jackfruit (Rhizopus sp.) (b); apple fruit rot
(storage/post-harvest disease) (c, d); fruit rot of watermelon (Colletotrichum sp.) (e, f); and on
mango fruits (Colletotrichum sp.) (f–h)
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Caution should be exercised to follow up on the diversity of new and emerging fungi
detrimental to crop production and food preservation to fulfill the needs of the
teeming population.
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