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Abstract In the last couple of decades, advancement in the genomic sciences
coupled with computational framework has robustly accelerated the deeper under-
standing of the microbial diversity. The arrival of next-generation sequencing (NGS)
technologies among researchers around the globe has facilitated the vast growth of
public genomes as well as metagenomes. This progressive development in genome
sequencing and environmental metagenomics has enabled the researcher to fully
characterize the whole microbial community with detailed functional pathway
mappings and enzymes discovery. Therefore, as an attempt, in the present chapter,
we have described the role of NGS technologies for the assessment of microbial
community coupled with bioinformatic analysis tools in soil fertility and their role in
improved crop production. Furthermore, this present chapter also entails the funda-
mental basis and planning strategy for designing experiments as well as an analysis
framework for their robust output for mankind applications.

Keywords NGS · Biochemical pathway · Metagenome · Microbial diversity ·
Targeted amplicon

14.1 Introduction

Since the beginning of domestication, food production for life survival is mainly
performed by green plants through various agricultural process. Such productivity
has been improved with the help of a biotechnological process with improved food
quality and quantity (Béné et al. 2016; Jovel et al. 2016). The rapid and enlarged
food feeding requirements of agricultural industries have affected the environments,
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which is reflected by the warming condition for being environment-friendly with
harmless yields along with the stability of involved resources (Gebbers and
Adamchuk 2010).

Plants are surrounded by various microorganism which efficiently enriches the
enhanced cell quantity rather than individually by plants. Among such microorgan-
isms, the majority of them survive on the rhizosphere or nearby to plant root
surrounding areas (Sharma et al. 2021). The useful microbiota of the rhizosphere
has been found to be mediating plant growth as well as improve mineral availability
(Lakshmanan et al. 2014). Although, anthropogenic actions and activities influences
the soil-residing microorganisms habitat and changes their abundance,
co-occurrence dynamics, biochemical pathways, and other functional contents
(Mehta et al. 2021a).

The wide application of high-throughput genomics technologies enables various
researchers to find the host-pathogen interaction, effect of pesticides and herbicides,
and cellulolytic, xenobiotic degrading enzymes and pathways through genome
mapping and their potential through molecular gene expression and correlational
investigation (Keegan et al. 2016; Anamika et al. 2019; Mehta et al. 2019a; Reddy
and Dubey 2021). Such progresses in molecular biology and high-throughput
applications have led to the expansion of advanced automated analytic software
(Lu et al. 2014). The massive advancements in genomics technologies have brought
rapid developments to our understanding of cellular biology, phylogenetic relation-
ship, microbial environments, and biochemical pathways in microbes as well as their
host plants (Sahil et al. 2021; Rajput et al. 2021; Mehta et al. 2021b; Bharti et al.
2021; Mehta et al. 2019b; Reddy et al. 2019; Reddy and Dubey 2021) and are
progressively unlocking new understandings and uses toward clinical care and
personalized medicine (Loman and Pallen 2015; Pareek et al. 2011). Additionally,
the scientific community has developed various novel tools, packages, and algo-
rithms to process and explain the genomic data, datasets management, simple
software layout, usage, and most importantly privacy of the tremendous data
(Vincent et al. 2017; Anamika et al. 2019; Mehta et al. 2019a; Reddy
2019; Kumar et al. 2021).

14.2 Approaches for Soil Microbial Community
Assessment

14.2.1 Overview of Microbial Diversity Methods

Since the onset of the twenty-first century, the research regarding microbial diversity
was based on techniques like Denaturing Gradient Gel Electrophoresis (DGGE) and
Terminal-Restriction Fragment Length Polymorphism (T-RFLP) (Mohanty et al.
2007; Ramakrishnan et al. 2001). The former technique works by using a gradient of
denaturing strength on microbial DNA samples (PCR-amplified) along either the
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horizontal or vertical axis of a polyacrylamide gel followed by electrophoresis
(Bo et al. 2020; Leite et al. 2012). While progressing through the gel, the DNA
samples at different gel points get separated based on their melting domains, GC
clamp, and Tm resulting in a banding pattern of single-stranded branches. In the
latter technique, the difference in microbial DNA sequences is detected by a unique
blotting pattern generated by using RFLP probes that hybridize specifically with
restriction endonucleases-digested different lengths of fragments (Liu et al. 1997).
However, with the advent of the sequencing boom, various researchers switched to
sequencing-based analysis of microbial diversity. The advantages included low-cost,
low rate of errors, high efficiency, high reliability, and time-to-time update. The
microbial community structure assessment with various methods is schematically
depicted in Fig. 14.1. In the twenty-first century, the majority of researchers are
utilizing the molecular methods and depend heavily on next-generation sequencing
as compared to the other approaches. NGS provides robust and detailed deep
insights of community structure and underlying functional features with significantly
reduced labor, time, and cost.

14.2.2 Quantitative Real-Time PCR

Through the literature survey, it has been observed that techniques like DGGE and
T-RFLP are only used for qualitative analysis of microbial communities as they
reveal the qualitative dynamics diagram among microbial communities (bacteria,
archaea, and yeast). However, these techniques cannot be used as a quantitative
method (Kanagawa 2003; Neilson et al. 2013). As the name describes, quantitative

Fig. 14.1 Schematic diagram illustrating the workflow of microbial community structure assess-
ment methodology. Note: The green color box indicates the final output through the various process
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real-time PCR (qPCR) is a simple PCR-based technique that first amplifies and then
quantifies a targeted DNA enabling the users to quantify absolute as well as a relative
number of gene copies from a complex DNA sample to reflect the relative abundance
of the microbes (Ashajyothi et al. 2020; Bhardwaj et al. 2020). As a result, this
technique is extensively applied for quantitative analysis of microbial composition in
various ecological habitats such as soil (Franke-Whittle et al. 2015; Ashajyothi et al.
2020), forest soil (Bhardwaj et al. 2020), and rumen (Pitta et al. 2014; Singh et al.
2015a).

14.2.3 Isolation, Library Preparation, and Sequencing

In case of eukaryotic microbes, for example, the isolated fungus is characterized by
the internal transcriber region using ITS-4 and ITS-5 markers to confirm the fungus
genus, species, and purity of the isolate. Once the fungus is confirmed, genomic
DNA (gDNA) is isolated from the pure fungus and further used for library prepa-
ration. Generally, each NGS sample processing known as library preparation starts
with the shearing/fragmentation/tagmentation of gDNA into desired fragments and
followed by end repair. After the end repair, each sample is usually subjected to
multiplexing through adapter and barcode/index ligation reaction, referred as
sequencing libraries. The prepared library is subjected to the quality and quantity
check to make sure prepared libraries are suitable for sequencing. As samples are
barcoded, the various samples cab be pooled together through normalization, and
then equimolar pooling is carried out. Next, a pooled library is placed for clonal
amplification through emulsion PCR (emPCR, in 454 GS FLX and Ion Torrent) and
bridge amplification (cluster generation, in Illumina). In 454 GS FLX and Ion
Torrent, after emPCR, sample is processed for recovery and enrichment
(Fig. 14.2). The finally enriched sample was loaded in a chip and then placed in a
machine for sequencing. Whereas in the Illumina platform, the sequencing
is followed immediately after the step of cluster generation/cluster amplification.
Each machine-generated sequenced sample is stored in the form of nucleotides fastq
files, which is a standard output format (Barriuso et al. 2011; Endrullat et al. 2016).

14.2.4 Brief Summary of Sequencing by Reversible
Termination

In the year 2006, the instrument Illumina Genome Analyzer (SOLEXA) was
launched based on sequencing by reversible termination technology. In this tech-
nology, the subjected study material was prepared through random fragmentation,
which was followed by the ligation of oligonucleotide adaptors and indexes, referred
as prepared libraries which would be subjected to sequencing in the machine. The
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extensive details of library amplification and sequencing are described further
(Adessi et al. 2000; Fedurco et al. 2006; Ju et al. 2006). This technology offers the
following two distinct kinds of library preparation, while both kind of libraries are
sequenced on compatible Illumina sequencing machine in a default sequencing
chemistry.

• Paired-end library preparation:

– The paired-end (PE) sequencing libraries are prepared using instrument com-
patible library preparation kit.

– The insert size of the PE sequencing libraries is usually in range of
~300–550 bp.

– Each sequencing library will be individually indexed/barcoded for
sequencing.

– Mostly used by researchers for sequencing genomes and metagenomes.

• Mate Pair library preparation:

– Preparation of Mate Pair library with a jumping distance of 3 and 8 KB
average insert size.

– Each sequencing library will be individually indexed/barcoded for
sequencing.

– Usually used for genome gap finish and polishing.

Fig. 14.2 Simple workflow of next-generation sequencing library preparation and sequencing
protocol
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14.2.5 Third-Generation Sequencing Technology

The third-generation sequencer comprises of DNA sequencing without applying the
PCR extension, as extension introduces a bias in sequenced base, and the existence
of high GC content influences both depth and coverage. The key advantage of this
technology is the longer reads with an average length of 5000–10,000 bases. In this
sequencing, single-molecule real-time (SMRT) technology-based first commercial
instrument was PacBio Sequel released by Pacific Biosciences and mechanism
described here (Eid et al. 2009). The sequenced data (base) output of the PacBio
RS II instrument is 0.5–1 billion bases in a single SMRT cell with a higher error rate
(10–15%). Another third-generation instrument is the MinIon instrument marketed
by Oxford Nanopore Technology in the year of 2014. Specifically, in this sequenc-
ing technology, the sample is subjected to a nano-sized pore through electrophoresis,
using electrolytic solutions with a fixed electric field. As the template passes through
the nanopore, a change in current occurs, and the resultant magnitude is recorded.
Compared to PacBio, MinIon instrument is smaller in size and less cost-effective.
However, the obtained bases (sequences) display a correctness of near about 88%
(Laszlo et al. 2014).

14.3 NGS Reads Processing

Initially in all kind of NGS-based studies, the quality screening and filtration of
generated poor bases and reads is a prerequisite. The schematic workflow of NGS
reads processing illustrated in Fig. 14.3. The quality passed reads subjected to
various kinds of analyses such as whole-genome assembly, metagenome, meta-
transcriptome, variant calling, and gene expression. In general, for the targeted
amplicon sequencing driven taxonomic classification involves the quality passed
reads clustering, operational taxonomic unit (OTU) picking, and then OTUs taxo-
nomic classification. On the other hand, targeted amplicon, whole metagenome, and
meta-transcriptome approach utilize the reads alignment against the reference data-
base, followed to taxonomic and functional annotation. Whole metagenome and
meta-transcriptome classification using de novo assembly provide much more
detailed insights of studied samples with significantly increased cost and computa-
tion time. Taxonomic classification provides the insights of phylogenetic classifica-
tion, alpha diversity (number of OTUs, Species richness, Chao1, Shannon index, and
Simpson index), beta diversity such as principal coordinate analyses (PCoA), and
taxa abundance (number of specific phyla or genera count or percentage). The reads
functional classification provides the descriptive insights of underlying metabolic
machinery categories obtained against a specific database. A database such as
KEGG pathways depicts the classified reads into various biological pathways such
as starch and sucrose metabolism, sulfur, propionate, butyrate, and methanogenesis
(Anamika et al. 2019). Database CAZymes provide the reads with a property of
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cellulose, pectin, and hemicellulose degradation, which offers the metagenomic
study could provide the genomic details with great importance for industrial
applications.

14.3.1 Generated Read Quality Filtration

Initially, the raw NGS files are processed for the filtering criteria, that is, any read
with base quality score Q < 20 is filtered, then following to read trimming from 50

end and 30 end, if required. The machine-generated raw reads are filtered for the
removal of poor bases and reads to obtain high-quality cleaned data. Few quality
filtration tools are Trimmomatic, Cutadapt, Trim Galore, PRINSEQ, etc. (Del
Fabbro et al. 2013; Pfeifer 2017).

Fig. 14.3 Schematic workflow of NGS raw reads for taxonomic classification and function
annotation
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14.3.2 De Novo Assembly of Sequenced Reads Microbial
Communities

The quality passed reads are utilized for metagenome assembly, which describes the
various steps together as input of fragmented large number of short DNA reads, and
placing them back in overlapping fashion generates the original DNA sequence. The
word de novo means starting from the beginning. Assemblies can be produced which
have fewer gaps, less or no misassemblies, and fewer errors by tweaking the input
parameters. The usually used tools for sequenced genome assembly are based on the
command-line interface (CLI). Among that, meta-Velvet, Meta-IDBA,
MetaSPAdes, and MEGAHIt are widely used. Such assembler algorithm, input
data format, and requirements are presented in Table 14.1. This step is performed
to optimize the generated assemblies by combining overlapping contigs and intro-
ducing appropriate gaps. Some of the scaffolding tools are SSPACE, PBJelly,
gapCLoser, etc. More descriptive comparisons are provided here (Vollmers et al.
2017; Ayling et al. 2019).

14.3.3 Analysis of Microbial Diversity

Determination of microbial community in studied ecosystem samples provides the
composition of the microbial diversity and composition under the influence of
environmental factors and their co-occurrence. To find the community composition,
there are various tools available among the scientific community to achieve their
objectives. Among that, majority were read alignment against reference database-
based annotation such as MG-RAST, MEGAN, EBI-Metagenome, QIIME, and
RDP. The further advancement in annotation methodology, approaches such as
k-mer, composition, and alignment-free tools, becomes available (Table 14.2).
These tools enabled the scientific community to analyze the microbiota associated

Table 14.1 List of some tools available for metagenome assembly currently used by researchers

Assembler Algorithm
Assembly
method

Standard
input

Read
length Output format Availability

MetaMOSS de Bruijn mul-
tiple Kmer

Denovo fastq,
fasta

Arbitrary fasta Open source

MetaSPAdes De Bruijn
graphs

Denovo fastq,
fasta

Arbitrary fasta Open source

MEGAHIT de Bruijn graph Denovo fastq,
fasta

Arbitrary fasta Open source

Meta-Velvet de Bruijn graph Denovo fastq Arbitrary fasta Open source

Meta-IBDA de Bruijn graph Denovo fastq Arbitrary fasta Open source

Ray Meta de Bruijn graph Denovo fastq Arbitrary fasta Open source

PRICE Hybrid Denovo fastq Arbitrary fasta Open source
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with dormancy and sporulation, stress response genes, acetogenesis,
methanogenesis, carbohydrate, protein metabolism, antibiotic, metal ion resistance
genes, and aromatic compound metabolism (Roumpeka et al. 2017; Tamames et al.
2019).

Additionally, tools are also available that automates the matched reads were
post-processed to find the community structure such as MG-RAST and
EBI-Metagenomics including simple statistical graphical plots (Table 14.2). How-
ever, alignment/sequence matching against the reference sequence requires high
computation power as the number of reads and length increases, which makes
quite challenging and time-consuming tasks such as BLAST+. Meanwhile, method-
ological advancements, such as k-mer and composition-based binning, facilitated the
robust way analysis in limited time. In the k-mer approach, reads are converted into a
small subset of 6 bases, 11 bases, and/or 22 bases called k-mers of similar sequences.
The generated read k-mer composition is then compared to a reference database, and
hits are counted to a known organism. For such a task, there are numerous tools
available like Kraken, k-SALM, Kaiju, Klark, and the Ray Meta (Table 14.2).
Additionally, various web servers are now available for automated whole genome

Table 14.2 List of tools employed for 16S rRNA and whole shotgun metagenome data analysis

Available tools Input Output Availability

For 16S rRNA, 18S rRNA, and fungal ITS

QIIME 1, 2 sff, fasta, fastq biom, txt CLI

MOTHUR sff, fasta, fastq biom, txt CLI

RDP fasta, fastq txt CLI, web server

MG-RAST fasta, fastq txt Web server

MEGAN 5, 6 txt, xml, sam txt GUI

EBI metagenome fastq biom, txt Web server

MGX fasta, fastq txt GUI

Hybrid_Denovo fastq biom, txt CLI

For shotgun/whole metagenome

KAAS fasta .txt, html CLI, web server

MG-RAST fasta, fastq txt Web server

MEGAN 5, 6 txt, xml, sam txt GUI

InterProScan fasta txt Web server, CLI

dbCAN fasta txt Web server, CLI

RapSearch fastq txt CLI

Diamond fastq txt, sam CLI

BLAST+ fasta txt, sam Web server, CLI

EBI metagenome fasta, fastq biom, txt Web server

Kaiju fasta, fastq txt CLI, web server

Kraken fasta, fastq txt CLI

k-Salm fastq txt, sam CLI

CLARK fasta, fastq txt CLI

14 Methods of Assessments of Microbial Diversity and Their Functional Role in. . . 301



such as RAST, GenSAS, and metagenome annotation for taxonomic and functional
annotations such as MG-RAST, EBI-Metagenome, and GALAXY (Roumpeka
et al. 2017; Tamames et al. 2019).

14.3.4 Classification of Microbial Diversity
with Bioinformatic Tools

14.3.4.1 MG-RAST

Out of all tools, Metagenomics Rapid Annotation using Subsystem Technology
(MG-RAST) is the most popular, structured-web server for the analysis of microbial
communities abundance at a taxonomic and functional level with graphical result
visualization (Keegan et al. 2016). MG-RAST consists of various integrated tools
and databases to determine the taxonomic and functional classification of NGS raw
datasets. It takes the NGS raw input in form of single-end or pair-end sequencing
reads and followed by quality processing. Quality passed reads were then automat-
ically submitted for taxonomic and function analysis. After analysis, the user/
researcher can visualize and download the entire result against the various databases.
For the functional classification of metagenomes, MG-RAST offers various data-
bases such as subsystem, COG, NOG, and KEGG. These all are hierarchical (up to
level 4) type databases that enable the researcher to comprehensively determine the
functional roles of sequences obtained from metagenomes. Further KEGG databases
extensively provide the mapping of metagenomic sequences to the biochemical
pathways such as sulfur metabolism, acetogenesis, methanogenesis, propionic acid
metabolism, and starch and sucrose metabolism. The various kinds of visualization
are bar, stacked, rarefaction, principal component analysis (PCoA), network, and
pathways map.

14.3.4.2 MEGAN

MEtaGenome Analyzer (MEGAN) is a comprehensive locally installation-based
stand-alone tool for microbial communities’ abundance taxonomic and function
analysis. The MEGAN primary requirement is that the sequences should be homol-
ogy aligned against the database. The aligned sequences are imported/subjected as
input to MEGAN and then parsed to taxonomic and functional profiles. In MEGAN,
similar to MG-RAST, a researcher can map sequences against subsystem, COG,
NOG, and KEGG databases; MEGAN also provides various kinds of visualization
and biochemical pathway mappings. MEGAN taxonomic and functional classifica-
tion can be visualized at various hierarchical levels along with significant statistical
values (Huson et al. 2007).
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14.3.4.3 QIIME

Quantitative Insights Into Microbial Ecology (QIIME) version 2.0 is a comprehen-
sive tool for the targeted amplicon taxonomic classification and abundance estima-
tion. It is a stand-alone, pipeline nature which consists of various integrated tools
such as OTU picking, OTU classification, OTU rarefication, alpha and beta diversity
estimation, statistical analysis, and OTU network-based co-occurrence determina-
tion. QIIME accepts barcoded, non-barcoded, and single, pair-end raw and quality
passed reads. Using this tool, the researcher can classify efficiently amplicon reads
such as 16S rRNA and 18S rRNA, fungal ITS, and functional marker-based com-
munity classification such as pmoA. QIIME also provides integrated rarefaction and
statistical graph visualization (Bolyen et al. 2019).

14.3.4.4 MGnify

MGnify is a part of ENA (European Nucleotide Archive) infrastructure and a web
server for the analysis of microbial communities’ abundance at a taxonomic and
functional level with graphical result visualization. For analyzing reads using this
tool, the user is required to first deposit the raw read to the ENA database as per the
standard of Genome Standard Consortium (GSC). EBI-metagenome enables the
researcher to determine the targeted amplicon and whole metagenome taxonomic
profile against 16S rRNA and 18S rRNA database, whereas functional classification
is performed using gene ontology (GO) approach in a three main broad category,
e.g., biological process, molecular function, and cellular component. The EBI
graphical visualization includes a bar plot, pie chart, and PCoA plot (Mitchell
et al. 2020).

14.3.5 Analysis of Microbial Community Metabolic Potential

The standard metagenome functional annotation pipeline is illustrated in Fig. 14.3,
which consists of gene scanning (gene prediction), aligning against the reference
sequence, taxonomy, function, and metabolic pathway assignment. The progressive
advancement in genomes and metagenomes sequencing has led the development of
numerous bioinformatics software for the prediction of genes and gene models.
Further, as bioinformatic knowledgebase advanced, it offered to the development of
various automated whole genome and metagenome data-based microbial genome
binning and functional annotation, while requiring high computation resources
(Roumpeka et al. 2017; Vincent et al. 2017). Lately, these developments have
even opened up the possibility of “microbiome gene modifications” using
CRISPR/Cas technology that will boom the genome editing of higher eukaryotes,
especially host plants (Mehta et al. 2020; Dilawari et al. 2021).
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Generally, the NGS machines from shotgun metagenome generate the read length
from 50 to 600 base. Among that, majority were ranged from 300 to 600 bases,
depending on the sequencing platform and chemistry. These short reads are assem-
bled into longer sequences called contigs in a process called assembly. The assembly
of short sequences becomes more important when the objective is to find the
functional gene and metabolic pathways (Vollmers et al. 2017; Mitchell et al.
2020). Because, earlier, the input DNA is randomly fragmented into short fragments
and then sequenced which used to result in a very poor quality of reads which
contains a very high number of poor base quality scores. However, using the third
generation, the read length is increased to more than 10 K bases, as well as poor base
calling. Hence, a combination of both generation sequencers is more reliable for full-
length functional gene discovery in genomes and metagenomes. At the current time,
numerous tools are available for genomics and metagenomic data analysis. These
tools mainly vary from algorithms and code language. Other variations include
hardware requirements, user interface, installations, and user-interface (Roumpeka
et al. 2017; Vollmers et al. 2017).

For the genome and metagenome functional annotation tools details, algorithm,
input data type, and dependencies are given in Table 14.3. In the alignment

Table 14.3 List of software used for gene identification and prediction in genomes and
metagenomes

Tools Input Single/paired-end Output format Availability Suitability

Reference based

BLAST+ fasta,fastq Both txt, sam, xml Open source Genome,
metagenome

InterProScan fasta Single txt, xml Open source Genome,
metagenome

DIAMOND fasta,fastq Both txt, sam, xml Open source Genome,
metagenome

Usearch fasta,fastq Both standard Open source Metagenome

RAPSearch fasta,fastq Both standard Open source Genome
metagenome

PALADIN fasta,fastq Both standard Open source Metagenome

GhostX fasta Single txt, html Open source Genome
metagenome

Blast2GO fasta,fastq Single txt, xml License Genome

Ab-initio gene prediction

Meta-GeneMark Fasta,fatsq Single txt Open source Metagenome

GLIMMER fasta Single txt Open source Genome

GLIMMER -MG Fasta,fatsq Single txt Open source Metagenome

AUGUSTUS fasta Single txt, gff Open source Genome

FragGeneScan fasta,fastq Single, paired txt Open source Metagenome

GeneMark fasta Single txt, gff Open source Genome

ORF finder fasta Single txt Open source Genome

Prodigal fasta Single txt, gff Open source Genome
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approach, the quality passed reads are matched against reference databases such as
NCBI nr and NCBI RefSeq databases using sequence similarity search tools such as
DIAMOND, PALADIN, RAPSearch, VSEARCH, and BLAST+. The blast search
utilizes the alignment of query sequences against the previously known reference
sequence and classifies the sequence to their affiliation to taxonomy and function.
InterProScan performs the identification of protein family, conserved domains, and
superfamilies in the query sequence (Yadav et al. 2020).

14.4 Application of NGS Technology to Assess Microbial
Diversity with Soil Fertility

Earth planet soil is the fundamental site for maintaining the ecological process and
equilibrium maintenance. Soil provides the primary site for crop production, vege-
tation, life survival, biological, various hydrological, and economical processes.
Among the biological process, microorganism plays various essential role such as
mineralization, nutrient recycle, and maintenance of soil health. Hence, the protec-
tion of soil health for prolonged fertility in the agricultural system is highly impor-
tant. Doran and Zeiss (2000) described health as the potential of soil functionality
within an ecosystem and land use borders for sustainable biological productivity,
improvement of environmental quality, and enhancement of animal and plant health.
In agricultural practice, the microorganism ecosystem is generally balance-altering
and dynamics of the microbial community.

It is generally achieved in the agricultural ecosystem through microbes-plant
interaction and forms the important phenomenon of soil ecosystems (Bélanger and
Avis 2002). In the landscape system, microbes are abundantly distributed in soil,
which consists of useful and harmful communities. The plant root-adhered soil
bacteria significantly contribute to the enhancement of soil property and release of
phosphatase, dehydrogenase, mineralization, and various self-defense molecules
such as secondary metabolites (Haas and Keel 2003) and stabilization of soil
characteristics (Miller and Jastrow 2000). The microorganism-mediated soil fertility
improvement involved (1) nitrogen fixation, (2) phosphate solubilization,
(3) siderophore production, and (4) phytohormone production.

14.4.1 Microbial Community Diversity and Composition

The profile and function of soil microbes are connected with variable plants via litter
quality, biomass production, root exudates, and root-shoot carbon allocation
(Porazinska et al. 2003; Potthoff et al. 2006). Plant-derived alteration in litter inputs
affects the microbial diversity and functionality (Habekost et al. 2008; Strecker et al.
2016). Lange et al. (2014) reported that species richness is the fundamental basis of
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soil microbial community biomass, whereas the ratio of fungi to bacteria was
positively affected by active group richness of plants and the existence of legumes.
Also, the richness of plant species effect on soil microbial biomass was facilitated
through nitrogen inputs and its concentration (Eisenhauer et al. 2010; Bessler et al.
2012).

The descriptive determination of plant microbiota interaction provides not only
the remarkable supports for plant biology but additionally the identification and
characterization of biochemical machinery for their potential application in biotech-
nological uses. For example, it can be utilized for improving plant health and growth,
development of disease resistance, and various other resistance such as salt, biotic,
and abiotic resistance variety development. Further development in the genomic
studies facilitated the identification of various biological and biochemical function
like virulence (Reddy et al. 2014), resistance against antibiotics and metals (Reddy
and Dubey 2019), and energy production through detritus material (Yadav et al.
2020), core microbiome (Kumar et al. 2021) which play a significant role in the
agriculture sector (Rialch et al. 2019, Sahu et al. 2020). Thus, detailed information
on microbial community and functional ability of soil and rhizospheric microbiota
facilitates the manipulation of environmental situations (Alisoltani et al. 2019).

The robust development in high-throughput sequencing technology and the
release of vast organism species, strain genomes, and metagenomic studies exten-
sively facilitated the deeper understanding of biochemical pathways (Loman and
Pallen 2015; Singh et al. 2015b; Reddy et al. 2019). The technologies available in
the twenty-first century have tremendous potential for the illustration/depiction of
the taxonomic profile of microbial communities along with the determination of
function metabolic pathways. However, the determination of such a taxonomic and
functional profile is a tedious process for the microbiologist and hence requires
strong computational skills as it consists of pipelines of distinct integrated tools.
Although function and metabolic potential determination of microbial communities
through metagenome and metatranscriptome are highly suitable for researchers as it
provides vast information about the specific function-associated microbial commu-
nities (Singh et al. 2015b; Reddy et al. 2019; Reddy 2019).

14.4.2 Application of High-Throughput Sequencing on Soil
Fertility

As per the glossary of Soil Science Society of America (SSSA), the soil can be
formally defined as complex unconsolidated mixtures of minerals, organic matter,
air, water, and countless (non) decayed organisms on the immediate earth’s surface
(Soil Science Society of America 2020). It forms the “vital skin of the earth” as it
supports the earth’s life web that consists of plants, animals, humans, and microbes.
Since the beginning of civilization, soil fertility seems to sustain the plant’s growth
and agricultural yield (Sharma et al. 2021). It has been reported to be affected by
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both genetic (parent material and related-characteristics) and environmental factors
(climate, time, landscape, amendments, and macro-, and microorganisms) (Davies
et al. 2019; Lisuma et al. 2020). In the present times of modern agriculture, the
maintenance of soil fertility is typically required which is achieved by following soil
evaluation and conservation practices. One such method is to use the metagenome
sequencing for analyzing the soil fertility for various geographical areas. This has
been already done significantly by various researchers as sequencing integrated soil
fertility management around the globe over the last decade.

One of the very conclusive observations on establishing the role of sequencing in
understanding microbial diversity in soil and correlating it with soil fertility was
reported by Xue et al. (2011). In their study, they summarized the effect of consec-
utive years of mono-cropping on microbial populations and diversity. Furthermore,
they introduced the advantages of 454 GS-FLX pyrosequencing high-sequencing
method for the analysis of microbial populations and diversity. By using
pyrosequencing in 146 different soil samples across the globe, Bates et al. (2011)
observed consistent correlation among the soil C:N ratio with an abundance of two
archaeal members. In the very next year, Hiiesalu et al. (2012) directly compared the
multi-time point grassland plant richness below the soil surface by using accurate
454 sequencing of the chloroplast trnL(UAA) and related the variations in microbial
composition to the fertility of the soil. Gigliotti and group observed the effect of
organic addition amendments to the soils results in enhancement of nutrients as well
as organic matter, C sequestration, and changes in microbial activity and biodiversity
structure (Gigliotti et al. 2013). Furthermore, the use of pyrosequencing revealed that
bacterial phyla and fungi species are related to the organic matter turnover in soil. In
another study report, the effect of biochar use on re-wiring composition and function
of microbes residing in fertile agricultural soils using 16S rRNA tag sequences
showed significant differences in the composition of microbial community and the
correlation patterns (Nielsen et al. 2014).

By using 454 pyrosequencing, Franke-Whittle and colleagues revealed the
significant differences in microbial communities (fungi and bacteria) between
replant and fallow soils. Furthermore, they urged to reveal the functional role of
associated genera with soil fertility (Franke-Whittle et al. 2015). By employing the
pyrosequencing of ITS2 amplicons, Sterkenburg and group observed significant
changes in the composition of fungal communities related to plant nutrition and
decomposition along a soil fertility gradient in a boreal forest. Through their
experiment, they revealed the composition significantly varies at the levels of
species, genera, as well as orders. Further, they revealed that ascomycetes fungi
were dominant in less fertile forests, while the fungi related to basidiomycetes were
highly abundant in more fertile forests, hummus, and litter (Sterkenburg et al. 2015).
In a similar manner, the direct impact of fertilization on the composition of below-
ground arbuscular mycorrhizal (AM) fungi along the gradient of soil fertility was
studied by Liu et al. (2015). They revealed the fertilizer application caused remark-
able changes in the genus richness of AM fungi and over-dispersion statistically
when fertilizers were applied at higher treatments (Liu et al. 2015).
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As per the various experiments, it has been an established fact that soil pH apart
from climatic conditions and management practices also regulated the soil fertility as
well as impacted the diversity of below-ground communities. This was further
supported by the findings by Jeanbille et al. (2016), who characterized the significant
differences in bacterial communities enriched with acidic (nutrient-poor) and alka-
line soils. Li et al. (2017) highlighted the role of C/N- and C/P-based shifts occurring
in succession, composition, and diversity (alpha and beta) of microbial communities
along a soil fertility gradient in paddy cultivation (Li et al. 2017). Tu et al. (2018)
evaluated the significant effect of fertilizer application on the soil bacteria richness
and role related to fertility assessed through 16S rRNA sequencing in dragon tree
plantations (Tu et al. 2018). Recently, Burke and group characterized the responses
and quantified a high degree of fungal communities in the beech-maple forest.
Furthermore, they inferred the fungal taxa strongly associated with P-availability
(Burke et al. 2019). More recently, Guo et al. (2020) evidenced the complexity of
fungal assemblage in the soil directly correlates with soil fertility gradient by
collecting various soil samples from tea plantations and sequencing them further
with the Illumina MiSeq platform. In another study, Lisuma et al. (2020) reported
work on tobacco plants grown in different Tanzanian landscape soils and cropping
patterns linked the changes in rhizospheric bacterial composition with the soil
fertility using 16S rRNA sequencing. Furthermore, they inferred the tobacco’s
rhizospheric bacterial diversity influences the solubilities of various macronutrients
such as phosphorous, potassium, sulfur, as well as fix total N in the soil.

14.4.3 Role of High-Throughput Sequencing on Microbial
Diversity and Crop Productivity

Ever since their origin millions of years ago, plants have existed in contact with
microbes. Among the multitude of host functions that microbes control are nutrient
uptake, protection, and phenology (Friesen et al. 2011). The identified microbial
composition associated with plant root and their manipulation can be utilized for
significantly boosting the quality of crop production by using beneficial
microbiomes in agricultural systems (Bakker et al. 2012; Mueller and Sachs
2015). After studies to demonstrate that rhizobium nodules are colonized and the
nitrogen fixed for their plant hosts, the Department of Agriculture (USA) advised
inoculation of legume crops (Schneider 1892).

The plant microbiome’s normal ecological roles leading to plant development,
growth, and survival against biotic and abiotic stresses are well recorded (Turner
et al. 2013; Müller and Ruppel 2014; Mehta et al. 2021a). Because of their close
plant associations, the endophytic microbiome is believed to affect plant growth and
production more specifically than epiphytic microbiomes. NGS-based metagenomic
analysis is currently widely used to analyze plant endophytic microbiomes, contrib-
uting to an increased understanding of the profiles and roles of microbiomes. The
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endophytic microbiome co-operating plant is now considered a new source of
bio-inoculants to improve agricultural productivity. In recent decades, the plants
are being inoculated with individual microbes to facilitate growth, nitrogen and
phosphorus absorption (Afzal and Bano 2008), drought tolerance (Eke et al. 2019),
and resistance to disease (Ashajyothi et al. 2020). However, this initiative was
mostly centered almost on an individual strains of microbial species with occurrence
of variable performance, which is usually due to the difficulty and habitat settings of
experimental site or inoculation place. It is in general requirement for the under-
standing and administration of the diversified beneficial microbial consortia in
cultivation sites to improve soil fertility and enhance support for plant growth.
Several initiatives have been taken in the recent past for the above purpose (Reid
and Greene 2013; Gilbert et al. 2014; Alivisatos et al. 2015; Stulberg et al. 2016;
APS 2016). Because, identification of the “core microbiome” will help to identify
plant-associated microbes that should be prioritized for further research and decep-
tive experiments (Bulgarelli et al. 2012; Lundberg et al. 2012; Sahu et al. 2020).
Plant microbiota is highly diverse, yet not all of these microbes play functionally
important roles in their host’s biology. Defining the core microbiome enables
researchers to filter out transient associations and refine the focus on stable taxa
with a greater likelihood of influencing host phenotype. In comparison to the very
profound sequence of a few plant microbiomes, NGS-based surveys of large num-
bers of microbiomes of the same plant species from different environments will help
in higher progress against that target and follow-up selective cultivation of the
candidate core microbiome.

14.5 Conclusion

In the present chapter, we have summarized the various approaches for the charac-
terization of soil microbial community and their function. Furthermore, the involve-
ment of various NGS technology and computational tools for the classification of
raw reads has been also covered. The functional classification approach potentially
offers the determination of various biochemical pathways and mining of enzymes for
uses in industrial applications. The detailed information of the soil community offers
the design of policy for manipulating soil microbes, enhancing fertility sustainably,
and increasing chances of providing better crop productivity with increased eco-
nomical values to the farmers, society, and whole mankind. Keeping this point in a
long way to the future, the NGS-based assessment will facilitate the development of
a sustainable management system for soil fertility and disease prevention.
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