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Abstract

Lignin is the most abundant polyphenolic aromatic biopolymer on Earth, which is
extremely recalcitrant toward biodegradation, owing to its heterogeneous struc-
ture and biochemical composition. Extensive research efforts have been made to
understand the polymeric structure of lignin in a better way and develop a simple,
cost-competitive, and eco-friendly method for its degradation. Over the past few
years, wood-rotting fungi, especially white-rot fungi have emerged as a crucial
group of microorganism capable of mineralizing lignin biopolymers more effi-
ciently. Such fungi have evolved to produce a unique set of extracellular oxida-
tive enzymes in different combinations. Further, they also produce enzymes in
multiple isoforms and isozymes that catalyze ligninolysis using radical mediated
oxidative reactions. The major ligninolytic enzymes include laccase, manganese
peroxidase, lignin peroxidase, and versatile peroxidase. The ligninolytic activities
of these enzymes can be enhanced by various natural and/or chemical redox
mediators as well as some other auxiliary enzymes (aryl-alcohol oxidase, glyoxal
oxidase, quinone reductases, aryl-alcohol dehydrogenases, and feruloyl esterase)
to facilitate lignin degradation process. These enzymes have attracted attention of
several researchers due to their broad substrate specificity, which make them
readily available for numerous biotechnological and industrial applications
including paper and pulp industry, food-feed and beverage industry, biofuel
industry, bioremediation of hazardous pollutants, and degradation of toxic textile
dye effluents. In this chapter, we appraise different ligninolytic fungi from Indian
subcontinent and the research findings by native microbiologists and
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biotechnologists on the fungal enzymatic systems. Finally, the biotechnological
and industrial applications of ligninolytic fungi and their enzyme arsenals are also
discussed.
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6.1 Introduction

The term “lignin” was derived from the Latin root “lignum,” which means wood
(Wong et al. 2020). It represents the second-most abundant renewable biopolymer
on this planet and one of the major components of plant cell wall, besides cellulose
and hemicellulose (Wang et al. 2019; Tao et al. 2020). The lignin polymer comprises
of random aromatic molecules with estimated global presence around 300 � 109

tons (Becker andWittmann 2019). It has been estimated that around 20� 109 tons of
lignin are produced annually by natural lignification processes (Li and Takkellapati
2018; Tribot et al. 2019). Lignin is an essential backbone of plant cell wall compris-
ing up to 15–40% of plant biomass (Zhu et al. 2020). The biological function of
lignin is to provide structural integrity in plant cell wall and resistance against
pathogens by preventing enzymatic hydrolysis of the structural polysaccharides
(cellulose and hemicellulose) (Mutuku et al. 2019; Vaahtera et al. 2019).
Structure-wise, lignin is an irregular three-dimensional heterogeneous biopolymer
of highly cross-linked aromatic alcoholic precursors (monolignols), which includes
coniferyl alcohol, p-coumaryl alcohol, and sinapyl alcohol (Sharma et al. 2007;
Ponnusamy et al. 2019; Liao et al. 2020). The oxidative coupling of the monolignols
results in the formation of lignin subunits, viz., p-hydroxyphenyl subunit (H),
guaiacyl subunit (G), and syringyl subunit (S), respectively (Vanholme et al.
2019). Although these subunits share the common feature of having basic
phenylpropanoid structure, they vary in the number of methoxy groups in their
aromatic rings (Sun et al. 2018; Lu et al. 2020). The H subunit is characterized by
non-substituted phenoxide moiety, while G and S units contain monomethoxy
phenoxide and dimethoxy phenoxide, respectively (Rinaldi et al. 2016; Gillet et al.
2017). Moreover, the ratio of these phenolic subunits varies among interspecies, as
well as within the tissues of the same plant (Campbell and Sederoff 1996; Barros
et al. 2015). Generally, softwood lignin is predominantly composed of G subunits
(up to 90%), whereas lignin in Gramineae or Poaceae family roughly contains equal
quantities of G, S, and H subunits (Lourenço and Pereira 2017). It has been shown
that lignin from hardwood constitutes equimolar mixture of G and S unit, along with
a small amount of H unit (Gellerstedt and Henriksson 2008; Sharma et al. 2020b).
Numerous structural studies have shown that the highly cross-linked lignin structure
is predominantly stabilized by various biological strong ether or ester linkages
including β-aryl ether (β-O-4), β-β, β-5, 5–5, 5-O-4, and β-1 couplings (Giummarella
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et al. 2019). Among these, β-O-4 bonds are the most frequent linkages formed during
lignifications and may account for 50% and 80% in softwood and hardwood,
respectively (Anderson et al. 2019; Zhu et al. 2019).

Not surprisingly, lignin is the most rebellious and recalcitrant structure among the
lignocellulosic tissues; it resists biochemical degradation and valorization (Renders
et al. 2017). The high structural complexity of lignin demands multiple biochemical
reactions to achieve its efficient degradation that may occur simultaneously (Chio
et al. 2019). These biochemical reactions include phenol oxidation, demethylations,
hydroxylation of benzylic methylene groups, fission of inter-monomeric linkages,
oxidation of benzyl alcohols to the corresponding aldehydes or ketones, side-chain
modifications, and cleavage of the aromatic ring (Sun et al. 2018), followed by the
breakdown of complex aliphatic metabolites (Mobley et al. 2018). Generally, one of
the most efficient ways of lignin valorization is the use of chemical and/or biological
treatment (Cao et al. 2018). However, in comparison to biological treatment, the
chemical tricks of lignin valorization demands high energy input and chemical
agents, thereby significantly increasing the capital cost and causing environmental
damage (Chen and Wan 2017). In this scenario, there is an increasing research
interest in biological treatments employing natural lignin degraders, including both
ligninolytic microorganisms and their enzymatic system, to break down the lignin
polymers (Janusz et al. 2017). Under favorable conditions, the lignin biodegradation
process is accomplished in two concomitant stages: (1) depolymerization of intact
lignin polymer and (2) mineralization of the heterogeneous aromatics unit (Ruiz-
Dueñas and Martínez 2009). A wide range of literature supports the efficient
degradation of native lignin by fungal cultures, whereas some reports have shown
the lignin degradation with bacterial cultures but with less efficiency (Bugg et al.
2011; de Gonzalo et al. 2016; Xu et al. 2018). Lignin is a macromolecule having
high molecular weight (more than 100 kDa), which is hard to be assimilated and
depolymerized inside the microbial cell; thus, the biological degradation is only
possible by the action of extracellular ligninolytic enzymes (Tolbert et al. 2014).
Generally, ligninolytic enzymes are divided into two major groups, namely, lignin-
degrading accessory enzymes and lignin-modifying enzymes (Hatakka 1994; Wong
2009). The unique ability of these oxidative enzymes to use various phenolic and
non-phenolic components of lignin as a substrate in the enzymatic reactions is also
exploited in several biotechnological applications (Eriksson 2000; Sharma and
Kuhad 2008). A considerable volume of literature is present on various biotechno-
logical and commercial applications of ligninolytic fungi and their enzymatic
systems including fuel (Saini et al. 2020b), agriculture, cosmetic and
pharmaceuticals (Mohit et al. 2020), food and feed (Sharma et al. 2012), brewery
and wine (Ghosh and Ghosh 2019), textiles and laundry (Manoharachary et al. 2005;
Singh et al. 2014a, b), and pulp and paper (Dwivedi et al. 2009) as well as in research
and development (Fig. 6.1). However, a cumulative study emphasizing detailed
mechanisms and various applications of ligninolytic fungi and their ligninolytic
machinery in Indian perspective is still scanty (Kuhad et al. 2007; Kuhar et al.
2007). Therefore, this book chapter aims to shed light on the diversity of ligninolytic
fungi in the Indian subcontinent and the occurrence of several lignin degrading
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enzymes. Further, the biotechnological applications of various ligninolytic enzymes
are also discussed.

6.2 Lignin-Degrading Fungi

Lignin is the main component of the middle lamella and widely distributed among
the secondary walls of the vascular plants (Barros et al. 2015). The mode of
polymerization makes it optically inactive, amorphous, and insoluble in water,
which is hard for microbes to penetrate and degrade it (Chen et al. 2012). However,
in due course of evolution, several microorganisms including bacteria,
actinobacteria, and fungi have evolved and adapted to oxidize and utilize lignin as
a complex carbon source for their survival and cellular metabolism (de Souza 2013).
Due to the unique lignin-degrading property, ligninolytic microorganisms are col-
lected and identified, and a few have been intensively studied by several researchers
in India (Sharma et al. 2005; Kuhar et al. 2007; Kumar et al. 2015a, b, 2019;
Rudakiya and Gupte 2019). The exact mechanism by which lignin is degraded by
microorganisms is still not yet unequivocally understood, but significant recent
advances have been made to gain insight into their genomes incorporating
modern-omics techniques (Sharma 2016; Shankar et al. 2019; Jain et al. 2019).
The ability of microbes to disintegrate lignin polymers efficiently is thought to be
attributed to their mycelial growth, which allows the organism to transport scarce
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Fig. 6.1 An overview of biotechnological and industrial applications of ligninolytic fungi and their
enzymatic system
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nutrients (Joutey et al. 2013). Over 100 species of the bacteria have been identified
possessing the ability of lignin degradation but generally cause limited fraction and
much slower degradation in comparison to ligninolytic fungi (Sharma and Kuhad
2009; Datta et al. 2017).

More than a million species of fungi are known to possess the lignin-degrading
ability, majorly belonging to the phylum Basidiomycota and Ascomycota (Sigoillot
et al. 2012). Further, they are grouped into brown-rot, soft-rot, and white-rot fungi
according to the characteristics of the wood residues and degraded lignin (Kapoor
et al. 2005; Kuhad et al. 2007). Soft-rot fungi generally cause incomplete and slow
degradation of lignin and preferentially attack the hardwoods than softwoods
(Hatakka and Hammel 2011). They belong to the largest division of the fungi,
Ascomycota, and account for over 60% of all the fungi on Earth, but a few have
been identified with lignin-degrading efficiency (Kang et al. 2019). It has been
shown that some species of soft-rot fungi can dissolve the secondary cell wall of
angiospermic wood and reduce the acid-insoluble Klason lignin content, eventually
leading to the formation of microscopic pits and discoloration of wood (Shary et al.
2007). Previous studies revealed that soft-rot fungi can also catalyze the oxidative
cleavage of Cα-Cβ and β-O-aryl linkages during lignin degradation (Kumar and
Chandra 2020). A very few soft-rot fungi with lignin-degrading ability have been
isolated from Indian continent, viz., Lecythophora hoffmannii (Bugos et al. 1988),
Chaetomium globosum (Popescu et al. 2011), Petrillidium boydii (Kuhad et al.
2007), Daldinia concentrica (Nnagadesi and Arya 2015), and Phialophora
mutabilis (Daniel and Nilsson 1988). On the other hand, brown-rot fungi selectively
attack the conifers and cause limited lignin degradation, employing the action of
nonspecific oxidants such as hydroxyl radicals (Arantes et al. 2012). Some species of
brown-rot fungi are able to demethylate the aromatic and nonaromatic lignin
moieties, consequently leading to ring splitting and chemical alteration in lignin
structure (Venkatesagowda and Dekker 2020). Among the representatives of brown-
rot lignin degraders of Indian origin, Lentinus lepideus, Gloeophyllum trabeum,
Fomitopsis pinicola, Pholiota adiposa, Poria placenta, and Tyromyces palustris
have been extensively studies (Goñi et al. 1993; Okeke et al. 1994; Wang et al.
2006). Unlike soft- and brown-rot fungi, white-rot fungi are the most intensively
studied and are also the most efficient lignin-degrading fungi (Hatakka 1994; Kuhad
et al. 2007; Kuhar et al. 2007). They predominately degrade lignin from deciduous
trees, and also degrade some coniferous wood trees (Hastrup et al. 2012). The
characteristic feature of white-rot fungi is the bleached appearance due to the
large-scale degradation of lignin from the decomposed substrate (Eriksson et al.
1990; Kuhad et al. 2007). Further, they can be identified by their mode of lignin
degradation and are grouped under two categories, namely, selective and nonselec-
tive delignifiers (Dashtban et al. 2010). The selective delignifiers predominantly
degrade the lignin polymer and barely affect the structural carbohydrates of the wood
material (Leonowicz et al. 1999), whereas the nonselective delignifiers synchro-
nously degrade all the structural components of the attacked woody biomass (Janusz
et al. 2017). More than 1000 species of lignin-degrading white-rot fungi have been
recorded in the past few decades; further, the number is increasing due to
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their various biotechnological and commercial applications (Maciel et al. 2010;
Yadav and Yadav 2015). Numerous white-rot fungi have been isolated from differ-
ent regions of India, for example, Coriolus versicolor, Ceriporiopsis subvermispora,
Coriolopsis caperata, Cyathus bulleri, Cyathus stercoreus, Daedalea flavida,
Ganoderma austral, G. lucidum, Neurospora crassa (discrete strains), Pleurotus
eryngii, Pleurotus florida, Pleurotus ostreatus, Phlebia brevispora, Phlebia radiata,
Phlebia subserialis, Pycnoporus sanguineus, Pycnoporus cinnabarinus,
Schizophyllum commune, Trametes ljubarskyi, Trametes hirsuta, and T. versicolor
(Sharma et al. 2005; Deswal et al. 2014; Sahu and Pramanik 2015; Kumar et al.
2015a, b, 2019; Meehnian and Jana 2016; Saha et al. 2016, 2017; Mustafa et al.
2016; Pamidipati and Ahmed 2017). Among these potent lignin degraders,
C. versicolor, T. versicolor, Phlebia radiata, Pleurotus spp., and Phanerochaete
chrysosporium have been extensively exploited for industrial applications world-
wide and are presented as model organisms for studying lignin degradation and
commercial applications, which are discussed in this book chapter. However, lignin
degradation employing fungal cultures occurs at a slower pace, thus requiring a long
incubation time (Schoenherr et al. 2017). Questions have been raised over industrial
applications of fungal strains due to increased capital costs, owing to a very long
degradation time (Madadi and Abbas 2017). To foil such challenges, crude or
purified ligninolytic enzymes have been introduced as a versatile lignin degradation
system in a relatively short incubation time (Mäkelä et al. 2017; Krumova et al.
2018; Kumar and Chandra 2020).

6.3 Lignin-Degrading Enzymes

Ligninolytic enzymes possess a critical role in the modification and degradation of
lignin biopolymers (Kumar and Chandra 2020). Structural rigidity along with
complex chemical composition of lignin mandates the ligninolytic microorganisms
to produce an array of extracellular oxidative enzymes for efficient degradation
(Kameshwar and Qin 2016; Ayeronfe et al. 2018). Broadly, these extracellular
oxidative machineries, which include laccase (EC 1.10.3.2), lignin peroxidases
(LiPs) [EC 1.11.1.14], manganese peroxidases (MnPs) [EC 1.11.1.13], and versatile
peroxidases (VPs) [EC 1.11.1.16], play a direct role in the lignin modification and
degradation (Krumova et al. 2018; Bilal and Iqbal 2020). Recently, a novel lignin-
degrading peroxidase, namely, dye-decolorizing peroxidase (DyP) [EC 1.11.1.19],
has been reported from several fungal cultures (Duan et al. 2018; Rajhans et al.
2020). In addition, several other ancillary enzymes have also been identified, such as
glyoxal oxidases (EC 1.2.3.15) (Daou and Faulds 2017), feruloyl esterase
(EC 3.1.1.73) (Andlar et al. 2018), alcohol oxidases (EC 1.1.3.13) (Carro et al.
2016), aryl-alcohol dehydrogenase (EC 1.1.1.90), and quinone reductase
(EC 1.6.5.5), which enhance peroxidase activities and facilitate lignin degradation
(Abdel-Hamid et al. 2013). Till date, numerous microbial communities including
bacteria (de Gonzalo et al. 2016), fungi, and actinobacteria (Priya et al. 2018) have
been reported for ligninolytic enzyme production (Kamimura et al. 2019). Among
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these, white-rot fungi, having the ability to produce several different classes of
oxidative enzymes, are always preferred for commercial scale production and
applications (Mäkelä et al. 2017; Debnath and Saha 2020).

6.3.1 Laccases: The Leading Industrial Biocatalyst

Fungal laccases are glycosylated multicopper polyphenol oxidases that catalyze the
degradation of lignin polymer through the reduction of oxygen molecule into water
and concomitant oxidation of the aromatic and nonaromatic units (Tk et al. 1968;
Thurston 1994; Sharma and Kuhad 2008). They are also known as benzenediol or
blue multicopper oxidases or oxygen oxidoreductases or p-diphenol oxidases, which
are superior to those of oxidoreductase class (Solomon et al. 1996). Yoshida was the
pioneer in reporting laccase from the latex of Japanese lacquer tree Rhus vernicifera
in 1883 (Yoshida 1883). Later, the presence of laccase was recorded in fungi by
Laborde in 1897 (Maciel et al. 2010). Since then, laccase activity has been reported
in higher plants, insects, few bacteria, and numerous fungal strains (Sharma et al.
2007; Sharma and Kuhad 2008, 2009; Senthivelan et al. 2016). Laccases are
predominantly distributed in the wood-rotting basidiomycetes including Cyathus
stercoreus, Cerrena maxima, Daedalea flavida, Daedalea quercina, Pleurotus
ostreatus, Pleurotus djamor, Lentinus squarrosulus, Lentinus tigrinus, Lentinula
edodes, Pycnoporus cinnabarinus, Phlebia brevispora, Trametes villosa,
T. versicolor, T. ochracea, Ganoderma lucidum, Trametes hirsuta, T. gallica,
T. maxima, and T. ljubarskyi (Arora and Rampal 2002, Sharma et al. 2005, Prasad
et al. 2005, Patel et al. 2009, Dhakar and Pandey 2013, Kumar et al. 2015a, b, Singha
and Panda 2015, Yadav 2018, Suman et al. 2018). However, some brown-rot fungi,
such as Postia placenta (Yelle et al. 2011), Fomitopsis sp. (Nidadavolu et al. 2013),
and Coniophora puteana (Shekher et al. 2011), and a few soft-rot fungi, including
Aspergillus nidulans (Sahay et al. 2020), Melanocarpus albomyces (Pundir et al.
2016), Neurospora crassa (Chaurasia et al. 2013), Trichoderma spp. (Sadhasivam
et al. 2010; Divya et al. 2014), Fusarium sp. (Chhaya and Gupte 2010), and
Penicillium chrysogenum (Nayanashree and Thippeswamy 2015; Senthivelan et al.
2019), were also reported as potent laccase producer. The majority of laccases
identified in wood-rotting fungi are extracellular glycoproteins; some reports have
also reported intracellular laccase in different fungal cultures (Rigling and Alfen
1993; Nagai et al. 2003). Mostly, fungi secrete several isoforms of laccase having
average molecular mass in the range between 38 and 150 kDa (Kumar et al. 2017b).
These isoenzymes emerge from the same or different genes, and their number
predominantly depends upon the source of enzyme (mycelia or fruiting body),
species, and growth conditions (Kumar et al. 2017b, 2019; Jain et al. 2019).

Fungal laccases are inducible metalloproteins and monomeric glycoproteins with
10–20% carbohydrate content (Copete et al. 2015). The high level of glycosylation
stabilizes the laccase structure and shelters them against thermal degradation
(Arregui et al. 2019). Molecular characterization of laccase isozymes has uncovered
that primary structure of enzyme constitutes 450–550 amino acid residues spaced in
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three successive domains, with a β-sheet topology (Dedeyan et al. 2000). The first
domain holds initial 150 amino acids; the second domain covers residues between
150 and 300, and the third domain extends between 300 and 500 amino acids
(Agrawal et al. 2018a). Generally, the presence of two strong disulfide bridges
confined between domains I and II sustain the enzyme structure (Schindl et al.
2019). Interestingly, earlier reports have also suggested the presence of the third
disulfide bridge between domains II and III (Sharma et al. 2016).

The catalytic site in all the laccase isozymes is highly conserved and requires four
copper (Cu) atoms arranged in two metallic active sites, which reduce the oxygen
into water molecule (Kumar and Chandra 2020). Among these, one Cu molecule
figures the substrates to be oxidized, owing to its redox potential, and the rest transfer
the electrons to O2 (Claus 2004). The four Cu molecules of laccases are distributed in
three redox sites, i.e., T1Cu, T2Cu, and T3Cu, which differ in their spectroscopic
and electronic paramagnetic properties (Chauhan et al. 2017). T1Cu (a type-I
copper) has the highest redox potential and is bound to one cysteine and two
histidine residues (Jones and Solomon 2015). T1Cu has a characteristic absorbance
around 600 nm, responsible for the greenish-blue color of purified laccase (Gunne
et al. 2014). Due to the absence of T1Cu, enzyme lacks its blue color and is therefore
deemed as “yellow” or “white” laccase (Mot et al. 2020). T2Cu also coordinated
with two histidine residues and is involved in the electron transfer (Gunne et al.
2014). On the other hand, T3Cu core are diamagnetic with strong absorption peak
near 330 nm and participates in the fixation and reduction of dioxygen (Sitarz et al.
2016). Additionally, T2Cu/T3Cu redox sites may also engage in the enzyme inhibi-
tion by interacting with anions such as fluoride or cyanide (Thurston 1994).

Fungal laccases are broadly grouped into three classes depending upon the redox
potential of the T1Cu: low (0.4–0.5 V), medium (0.5–0.6 V), and high (0.7–0.8 V)
(Zimbardi et al. 2016). Owing to their low redox potential, laccases generally oxidize
lignin model compounds having free phenolic groups such as mono-, di-, and
polyphenols, arylamines, aminophenols, diamines and aromatic amines, and anilines
(Sharma et al. 2016; Upadhyay et al. 2016). The oxidation reactions catalyzed by
laccases involve the loss of a single electron and formation of free phenoxy radicals
which can act as low molecular weight organic mediators for the enzymes (Shraddha
et al. 2011). These intermediate mediators remain unstable; therefore, they leave the
enzyme site and perform laccase-mediated oxidation or depolymerizing reactions
(Munk et al. 2018). However, non-phenolic compounds cannot be directly oxidized
by laccases due to their larger size or due to their relatively high redox potential
(Bourbonnais and Paice 1990). Nevertheless, in the presence of suitable chemical
mediators, laccases can also oxidize high redox potential non-phenolic model
substrates (Bourbonnais et al. 1995; Morozova et al. 2007). The addition of artificial
mediators (ABTS and HoBT) (Baiocco et al. 2003; Christopher et al. 2014) and
lignin-derived natural mediators (acetosyringone and methyl syringate) (Johannes
and Majcherczyk 2000) is a common practice employed in several biotechnological
and industrial applications, including biomass delignification and detoxification for
biofuel production, bioremediation of polluted soils, processing of food and
beverages, degradation of xenobiotics and heavy metals, treatment of effluents
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enriched with lignin derivatives, and degradation of hazardous textile dyes (Fig. 6.1)
(Rodríguez Couto and Toca Herrera 2006; Morozova et al. 2007).

6.3.2 Lignin Peroxidases: General Properties and Mechanism

Lignin peroxidases were originally discovered in the mid-1980s, from the nitrogen-
and carbon-limited medium of basidiomycetous fungus P. chrysosporium (Glenn
et al. 1983). After the discovery of LiPs from P. chrysosporium, several other
LiP-producing fungal cultures of Indian origin have been reported, for example,
Ganoderma lucidum, T. versicolor, Schizophyllum commune, Bjerkandera sp.,
Lentinus squarrosulus, Pycnoporus sanguineus, Phlebia floridensis, Phanerochaete
sordida, Phlebia tremellosa, and Phlebia radiata (Arora and Gill 2005; Bajwa and
Arora 2009; Sharma et al. 2011; Selvam et al. 2012; Tripathi et al. 2012; Kaur et al.
2016; Shaheen et al. 2017). They are produced in several isoforms with a molecular
mass ranging from 30 to 46 kDa (Vares et al. 1995). LiPs are heme-containing
glycoproteins that genuinely catalyze the oxidation of lignin, therefore generally
deemed as true ligninases with a high redox potential (Wang et al. 2018). In addition
to their high redox potential, LiPs generally have very low pH optima near
pH 3.0–4.5, which makes them superior to other classical peroxidases (Kersten
et al. 1990). They are recognized as a family of extracellular monomeric
glycosylated (up to 20–30%) enzymes having one ferric protoheme per molecule
(Falade et al. 2016). The chemical structure of LiP constitutes 343 amino acids along
with 370 water molecules, 4 carbohydrates, and 2 calcium ions (Choinowski et al.
1999). On the other hand, the globular structure of LiP is helicoidal in nature and
composed of eight major and eight minor α-helices and two antiparallel beta-sheets
organized into two domains at both sides of the heminic group (Hammel et al. 1994).
This arrangement not only inlaid the protein but also forms an active center cavity to
access the solvents via two small channels (Edwards et al. 1993; Bhaskar et al.
2006). The resulting heminic cavity constitutes 40 residues that bound the protein
via hydrogen linkages (Poulos 2014). Moreover, the heminic group is interrelated
with a water molecule and His amino acid that magnifies the redox potential of LiPs
(Piontek et al. 2001). Some studies have also revealed that the presence of a
tryptophan (Trp171) residue on the enzyme’s surface also pumps the redox potential
(Kamitsuji et al. 2005; Sáez-Jiménez et al. 2016).

Lignin peroxidases catalyze the monoelectronic and hydrogen peroxide (H2O2)-
dependent oxidation depolymerization of lignin compounds through a multistep
reaction (Falade et al. 2016). However, questions have been raised about the
sensitivity of extracellular LiPs in the presence of H2O2, which can partially inacti-
vate the activity of enzyme (Böckle et al. 1999). The addition of veratryl alcohol
(VA) to the reaction mixture is a common practice employed to improve the enzyme
production and stability (Alam et al. 2009; Falade et al. 2016). Some researchers
have conceptualized that VA not only shield the enzyme from the action of H2O2,
but also engage as a redox mediator between the enzyme and substrates which are
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unable to get inside the heme iron center (Koduri and Tien 1995; Huang et al. 2003;
Christian et al. 2005; Romero et al. 2019).

High redox potential enables LiPs to oxidize a wide variety of phenolic and
non-phenolic lignin compounds (MacDonald et al. 2016). LiPs catalyze the oxida-
tion of phenolic compounds more rapidly over non-phenolic units by removing one
electron and creating intermediate free radicals such as phenoxy radicals and veratryl
alcohol (Romero et al. 2019). Unlike classical peroxidases which can only act on
strongly activated aromatic substrates, LiPs can also oxidize the moderately
activated aromatic rings without involving the participation of redox mediators
(Plácido and Capareda 2015). LiPs are highly active on a variety of phenolic
(guaiacol, methoxybenzenes, vanillyl alcohol, syringic acid, and catechol) and
non-phenolic lignin compounds (diarylpropane, VA, and β-O-4 lignin dimers)
(Chan et al. 2020; Kumar and Chandra 2020). The oxidation of β-O-4 lignin dimer
involves the generation of radical cations followed by a variety of pathways,
including side-chain cleavage, demethylation, and phenol dimerization (Lange
et al. 2013). LiPs catalyze several oxidation processes of lignin polymers, such as
Cα-Cβ cleavage of the propyl side chains, phenol oxidation, oxidation of benzyl
alcohols into aldehydes or ketones, hydroxylation of benzylic methylene groups, and
ring cleavage of non-phenolic (aromatic) model compounds of lignin (Reddy et al.
2003; Mobley et al. 2018). LiPs also have great biotechnological potential and
industrial applications (Fig. 6.1) due to their high redox potentials and low substrate
specificity (Falade et al. 2016; Janusz et al. 2017; Chowdhary et al. 2020).

6.3.3 Manganese Peroxidases: Characteristics and Functions

Manganese peroxidases are extracellular heme-containing glycoproteins, secreted in
several isoforms in wood-degrading basidiomycete fungi, including white-rot fungi
(Dashtban et al. 2010). They are also termed as hydrogen-peroxide oxidoreductases,
representing the most common type of lignin-modifying peroxidases and deemed as
class II peroxidase (Morgenstern et al. 2008). Just after the discovery of LiP, MnP
was also reported from the batch culture of P. chrysosporium in 1984 (Rivela et al.
2000). The production of MnP has been recorded from many other fungal cultures
including Panus tigrinus, Trametes versicolor, Lenzites betulinus, G. lucidum,
Phanerochaete flavido-alba, Phanerochaete chrysosporium, Agaricus bisporus,
Pycnoporus sanguineus, Bjerkandera sp., Schizophyllum commune, Nematoloma
frowardii, and Phlebia sp. (Gill and Arora 2003; Nazareth and Sampy 2003;
Dhawan et al. 2005; Shanmugam et al. 2005; Padma and Sudha 2013; Pandey
et al. 2018; Rao et al. 2019).The molecular mass of the most purified MnPs is around
45 kDa, whereas the mass of crude enzymes ranges between 38 and 62.5 kDa
(Janusz et al. 2017). The globular structure of MnP comprises two domains with
ten major helixes, a minor helix around the heme ion center (Bhaskar et al. 2006).
Additionally, the active site of MnP is unique among peroxidases and comprises two
Ca2+ ions, histidine and arginine residues, and five disulfide bridges (Kumar and
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Chandra 2020). The chemical structure of MnP constitutes around 350 amino acid
residues, of these 43% are identical with LiP sequence (Plácido and Capareda 2015).

MnPs are unique among heme peroxidases that catalyze peroxide-dependent
oxidation of Mn2+ (primary reducing substrate) to Mn3+, which is then released in
the aqueous solution and remains quite unstable (Wong 2009). The stability of Mn3+

is instigated by chelation with simple organic acids such as malonate and oxalate,
thus producing diffusible oxidizing chelate-oxalate (Grąz and Jarosz-Wilkołazka
2011). Indeed, many fungal cultures have been reported to secrete such organic
acids along with MnP to stimulate the enzyme activity and Mn3+ stability (Martin
2002). The resulting Mn3+ chelator complex acts as a low molecular weight redox
mediator, which can diffuse into the substrate and oxidize a wide range of phenolic
substrates including amines, phenolic lignin substructures, phenols, phenolic lignin
model compounds, and reactive dyes (Reddy et al. 2003). The oxidation of phenolic
compounds is initiated by one-electron transfer to generate an intermediate phenoxy
radical, which further helps in the dissolution of the compounds (Padma and Sudha
2013; Wang et al. 2018).

The oxidation capability of Mn3+ chelator complex is only restricted to phenolic
lignin compounds (Datta et al. 2017). Unlike LiP, MnPs are not adequate for
oxidizing the more fractious non-phenolic substrates (Higuchi 2004). However, it
has been repeatedly theorized that MnP can impart the non-phenolic lignin
structures, incorporating small mediators such as thiyl or lipid radicals (Qin et al.
2017). Therefore, the oxidation of non-phenolic substrates demands the generation
of reactive radical species along with a second mediator (Higuchi 2004). Simple
organic acids such as oxalate and malonate are the most commonly known second
mediators to facilitate the production of reactive radical species including superox-
ide, carbon-centered radicals, lipid peroxyl, and formate radicals (Watanabe et al.
2001). The resulting reactive species are used by MnP as source of peroxides to
facilitate the decomposition of non-phenolic lignin compounds in the absence of
H2O2 (Pollegioni et al. 2015). Earlier studies have shown that, the strong MnP-lipid
complex can also catalyze the dissolution of Cα-Cβ and β-aryl ether bonds of a
non-phenolic lignin model (Urzúa et al. 1998; Ohashi et al. 2011).

6.3.4 Versatile Peroxidase: A Superior Lignin Degrader

Versatile peroxidases (VPs) are superior among the heme-containing ligninolytic
fungal peroxidases, which were first discovered in wood-rotting fungus Pleurotus
eryngii in 1996 (Sigoillot et al. 2012). Earlier, they were recognized as manganese
peroxidase, having oxidative properties for aromatic compounds (Ruiz-Dueñas et al.
2009). Later, they were certified as a new peroxidase type belonging to oxidoreduc-
tase family (Ravichandran and Sridhar 2016), having a molecular mass between
40 and 45 kDa in several isoforms (Salame et al. 2012). Versatile peroxidases are
majorly distributed among Pleurotus and Bjerkandera spp., such as P. eryngii, P.
pulmonarius, P. ostreatus, B. adusta, and B. fumosa (Verma and Madamwar 2002;
Tripathi et al. 2012; Pozdnyakova et al. 2018). Several other basidiomycetes,
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including Marasmiellus palmivorus, Physisporinus vitreus, Lentinus squarrosulus,
Dichomitus squalens, T. versicolor, and Ganoderma spp., have been also identified
as potent producers of VPs (Kuhad et al. 2007; Aarthi et al. 2018; Ravichandran
et al. 2019; Saikia et al. 2020).

Versatile peroxidases are attractive wild-type ligninolytic enzymes having char-
acteristic bifunctional oxidative capability and a broad spectrum substrate preference
(Camarero et al. 1999). The genomic studies have revealed that VPs share the
catalytic properties of both MnP and LiP and are capable of oxidizing Mn2+ to
Mn3+, as well as degradation of high redox potential non-phenolic lignin substrates
like MnP and LiP, respectively (Martı nez 2002; Pérez-Boada et al. 2005). Unlike
LiP and MnP, VPs are also competent in catalyzing the oxidation of complex lignin
structures such as hydroquinone and substituted phenol units without any mediator
(Ruiz-Dueñas et al. 2009). These hybrid peroxidases are also able to oxidize high
redox dye such as dye Reactive Black 5 in the presence of VA (Pérez-Boada et al.
2005). Previous studies suggested that hybrid molecular structure of VPs, which
provide multiple substrate binding sites along with their different pH optima (3.0 and
5.0), favors the degradation of these wide spectrum substrates (Ravichandran and
Sridhar 2016; Knop et al. 2016; Gonzalez-Perez et al. 2016). These unique
capabilities of versatile peroxidases have attracted lots of research attention and
make them a potent “green catalyst” for numerous industrial applications (Fig. 6.1).

6.3.5 Dye-Decolorizing Peroxidases

Dye-decolorizing peroxidases (DyPs) constitute a newly reported superfamily of
heme-containing peroxidases that do not show any phylogenetical homology with
former fungal peroxidases including LiPs, MnPs, and VPs (Colpa et al. 2014). DyPs
are bifunctional catalysts; besides their oxidative activity, they also possess addi-
tional hydrolytic activity (Singh and Eltis 2015). They were first identified in 1999
from fungus Bjerkandera adusta (formerly known as Geotrichum candidum) and
named after their ability to catalyze the transformation of a wide range of industrial
dye such as RB5, which are poorly converted by other peroxidases (Fernández-
Fueyo et al. 2015; Amara et al. 2018). DyPs have a molecular mass of 40–65 kDa
and are glycosylated up to 9–31% (Colpa et al. 2014). The molecular structure of
DyP contains two domains, α-helices and antiparallel β-sheets, and a heme cofactor
positioned in between the cavity of the two domains (Habib et al. 2019).

DyPs are important biocatalysts, which have attracted a great research interest due
to their potential applications in lignin degradation (Abdel-Hamid et al. 2013).
Compared with classical fungal peroxidases, DyPs work under much lower pH
conditions and have wide substrate specificity (Duan et al. 2018). They can oxidize
all typical substrates of other heme peroxidases including ABTS, anthraquinones,
adlerol, and carotenoids (Shrestha et al. 2017). Several studies have shown that DyPs
catalyze the oxidation of phenolic compounds, such as 2,6-dimethoxyphenol and
guaiacol (Kim and Shoda 1999; Ogola et al. 2009; Duan et al. 2018). On the other
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hand, some reports have emphasized the catalytic ability of DyPs to oxidize the
non-phenolic lignin model compounds including β-O-4 dimeric lignin, VA, and
Mn2+ (Liers et al. 2013). The ligninolytic activity of DyPs has been identified in very
few fungal cultures, such as Termitomyces albuminosus, Irpex lacteus, and
Auricularia auricula-judae (Salvachúa et al. 2013; Linde et al. 2014; Amara et al.
2018).

6.3.6 Accessory Enzymes for Lignin Degradation

In addition to these key ligninases, fungal ligninolytic machineries also include other
extracellular enzymes which may act as auxiliary enzymes in the lignin degradation
process (Andlar et al. 2018). These include hydrogen peroxide generating extracel-
lular oxidases, which produce H2O2 mandatory for other peroxidases to catalyze the
oxidative degradation of lignin-derived compounds (Falade et al. 2016; Datta et al.
2017). Examples include the aryl-alcohol oxidase secreted by various fungal
cultures, including Pleurotus eryngii, Pleurotus sajor-caju, Pleurotus ostreatus,
Bjerkandera adusta, and Geotrichum candidum (Ghosh et al. 1998, Singh
et al. 2010a, b, Tripathi et al. 2011, Kumar and Rapheal 2011), and glyoxal oxidase
found in few fungal cultures such as P. chrysosporium, Pycnoporus cinnabarinus,
and Myceliophthora thermophila (Sharma et al. 2013b; Ansari et al. 2016). More-
over, fungi also secrete dehydrogenases such as aryl-alcohol dehydrogenases and
quinone reductases, which are also involved in the degradation of lignin-derived
compounds (Mathieu et al. 2016). Interestingly, some studies have shown that
cellobiose dehydrogenase, which is a key member of cellulolytic system, also
portrays an effective role in lignin degradation in the presence of H2O2 and chelated
Fe ions (Temp and Eggert 1999; Harreither et al. 2009). However, the low produc-
tion titer of these enzymes and inefficient fermentation condition is still a major
obstacle that hampers the commercial scale production and application of these
auxiliary enzymes (Gutiérrez et al. 2000; Kadowaki et al. 2018; Liu and Wilkins
2020). Nevertheless, with the advancement of modern-omics techniques besides the
isolation of novel microbial strains capable of producing significant enzyme doses,
the applicability of these enzymes may emerge in the near future.

6.4 Biotechnological and Industrial Applications
of Ligninolytic Fungi and Enzymes

6.4.1 Biofuel Industry: Delignification and Detoxification

The conversion of lignocellulosic biomass to energy-enriched biofuels and value-
added products is mainly achieved by three steps: (1) delignification of lignocellu-
lose to release cellulose and hemicellulose fibers, (2) depolymerization of structural
carbohydrates to produce fermentable sugars, and (3) fermentation of liberated
sugars (Kumar et al. 2017a; Chandel et al. 2018). Biological treatments using
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ligninolytic fungi and their enzymes have appeared as a new alternative to replace
the physicochemical tricks (Sindhu et al. 2016; Ummalyma et al. 2019). In recent
years, these biological agents have been extensively exploited for delignification and
detoxification of lignocellulosic biomass prior to fermentation (Gupta et al. 2009;
Kapoor et al. 2015; Bagewadi et al. 2017; Chandel et al. 2019).

Delignification of lignocellulosic biomass using ligninolytic fungi/enzymes can
be categorized under four different methods: (a) fungal delignification, (b) enzymatic
delignification, (c) enzyme-mediator system, and (d) integrated biological treatment
(Wan and Li 2012, Singh et al. 2014a, b; Moreno et al. 2015). Fungal delignification
is generally achieved by directly growing the microorganisms on the targeted
biomass under a submerged or a solid-state condition (Chandel et al. 2015). How-
ever, the fungal pretreatment may result in loss of fermentable sugars and require a
long treatment time (up to 20–50 days) to achieve high delignification percentages
(Saha et al. 2017; Kainthola et al. 2019). The effectiveness of fungal pretreatment
has been improved by employing an active fungal consortium and integration of
fungal treatment with certain physical/chemical methods (Salvachúa et al. 2011;
Shirkavand et al. 2016; Meehnian et al. 2017). Additionally, the use of ligninolytic
enzymes with or without redox mediators has been accepted as an effective and
simpler method to achieve high delignification percentage, consequently addressing
the key limitations of fungal treatment (Table 6.1) (Gupta et al. 2009; Moilanen et al.
2014; Plácido and Capareda 2015; Saini et al. 2020b). For enzymatic delignification,
laccase isozymes with or without redox mediators are always preferred, followed by
MnP and LiP. The mixtures of ligninolytic enzymes have also been employed for
some delignification treatments that have shown improved lignin removal efficiency
in a short time (Heap et al. 2014; Kudanga and Le Roes-Hill 2014; Giacobbe et al.
2018).

In addition to delignification, enzymatic detoxification of biomass represents one
of the few promising biotechnological applications of ligninolytic enzymes in the
biofuel industry (Table 6.1) (Kapoor et al. 2015; Suman et al. 2018). The traditional
physical and chemical pretreatment processes produce toxic compounds such as
phenolic derivatives, furan, furfural, and weak acids (Gupta et al. 2009; Silveira et al.
2018; Saini et al. 2020a). Since these compounds strongly inhibit the cellulolytic
enzymes and fermentation process, they need to detoxify in order to enhance enzyme
and yeast performance (Tejirian and Xu 2011; Qin et al. 2016). Biological detoxifi-
cation using ligninolytic fungi/enzymes have been shown to reduce the concentra-
tion of inhibitory compounds (Fang et al. 2015; Moreno et al. 2015). The toxic
phenolic derivatives are predominantly detoxified by key ligninases (Rameshaiah
and Jagadish Reddy 2015). Previous studies have shown that aryl-alcohol oxidases
are capable of detoxifying furan derivatives such as 5-hydroxymethylfurfural and
polyunsaturated alcohols (Carro et al. 2015; Feldman et al. 2015). Besides positive
impacts such as high detoxification and delignification percentage, eco-friendly, and
low sugar losses, fungal and enzymatic treatments have certain drawbacks such as
high costs, low commercial availability, and long process duration (Ramarajan and
Manohar 2017; Wagner et al. 2018). Nevertheless, delignification and detoxification
capabilities of ligninolytic fungi/enzymes can be improved by using genomic and
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Table 6.1 Recent applications of ligninolytic fungi and their enzymes in biofuel sector carried out
by Indian mycologists

Culture
Substrate and
process

Experimental
condition Results References

Pleurotus florida,
Coriolopsis
caperata, and
Ganoderma sp.

Sugarcane
bagasse;
delignification

Delignified at 30 �C
for 15 days under
SSF condition at
25% (w/v) moisture
content

Reduced
7.91%,
5.48%, and
5.58% lignin,
respectively

Deswal et al.
(2014)

Coriolus
versicolor

Sorghum
bagasse;
delignification

Treated at 27.5 �C in
a mesh tray
bioreactor with 75%
relative humidity
under SSF condition

Reduced
46.09%
lignin after
20 days of
treatment

Mishra and
Jana (2019)

Daedalea flavida Cotton stalk;
delignification

Delignified at 28 �C
with 75% moisture
content under SSF
condition

Degrade
27.83%
lignin after
40 days of
incubation

Meehnian and
Jana (2016)

Lentinus
squarrosulus

Kans grass;
delignification

Treated at 35 �C
with 15% (w/v)
consistency and
3125 IU/g laccase

Removed
81.67%
lignin after
6 h

Rajak and
Banerjee
(2016)

Trametes
versicolor

Rice straw
and poplar
waste;
detoxification

Detoxified the
pretreated biomass
at 28 �C with 1.2 U/
ml laccase for 12 h

Reduced
76% and 94%
phenolic
inhibitors,
respectively

Kapoor et al.
(2015)

Trametes maxima Sugarcane
bagasse;
detoxification

Detoxification was
done with 0.1 U/ml
laccase at 32 �C

Removed
66% of
phenolics
derivatives
after 1.5 h

Suman et al.
(2018)

Lentinus
squarrosulus

Finger millet
and paddy
straw;
delignification

Treated with 25 IU/g
of enzyme at 60 �C
for 24 h

Reduced
17 and 11%
lignin from
straws,
respectively

Ravichandran
et al. (2019)

Pleurotus
ostreatus

Wheat straw
and banana
stem;
delignification

Delignified at 30 �C
with substrate to
moisture ratio of 1:4
(w/v) under SSF
condition

Degraded
40 and 29%
lignin content
after 32 days
of incubation

Thakur et al.
(2013)

Pleurotus
ostreatus,
P. chrysosporium,
and Ganoderma
lucidum

Rice straw;
delignification

Delignification was
done 30 �C with
70% relative
humidity for 35 days

Reduced
21.85%,
38.74%, and
17.81%
lignin content

Kainthola
et al. (2019)

Coriolus
versicolor

Sweet
sorghum
bagasse;
delignification

Treatment was done
at 27.5 �C with 70%
(w/v) humidity

Reduced
24.8% lignin
content after
20 days

Mishra and
Jana (2019)
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protein engineering approaches and appropriate interaction between different
enzymes to evolve a dominant lignin degradation system for biofuel industry.

6.4.2 Food, Feed, and Beverage Industry

The direct use of lignocellulosic biomass as ruminant animal feed exhibits one of the
oldest and most recent applications (Sharma et al. 2012). The abundance of poorly
digestive lignin polymer hampers the use of such biomass by rumen microbes,
thereby demanding lignin removal prior to feed application (Sheikh et al. 2018).
Enzymatic delignification of lignocellulosic biomass has received considerable
attention due to their efficiency in improving animal feed performance (Sridhar
et al. 2015; Ravichandran et al. 2019). A number of extracellular enzymes including
various cellulolytic, hemicellulolytic, and ligninolytic are extensively exploited for
animal feed industry (Sharma et al. 2005; Thammaiah et al. 2016). Among these,
ligninases have received much research interest due to their ability to enhance the
digestibility, to improve the nutritional value, and to reduce the excretion of nitrogen
and phosphorous (Table 6.2) (Kumar et al. 2015a, b; Chowdhary et al. 2019). Direct
solid-state fermentation of biomass by selective and nonselective lignin-degrading
white-rot fungi is also a very attractive alternative (Kuhad et al. 2013). Various
Indian origin white-rot fungi, such as B. adusta, P. chrysosporium, T. versicolor,
Fomes fomentarius, Cyathus sp., Phlebia rufa, Coriolus hirsutus, Irpex lacteus,
G. lucidum, G. applanatum, Dichomitus squalens, Pleurotus flabellatus,
P. ostreatus, P. tuber-regium, and Lentinus subnudus, have been studied for solid-
state bioconversion of lignocellulosic biomass to enhance animal feed properties
(Table 6.2) (Sharma et al. 2012, 2013a; Shrivastava et al. 2014; Raghuwanshi et al.
2014; Nayan et al. 2020). Solid-state fermentation of lignin-rich wheat straw with
selective lignin degraders into high-energy cattle feed usually termed as
“mycostraw” is a common practice to increase crude protein content and energy
constituents for ruminant feed (Shrivastava et al. 2011, 2012; Nayan et al. 2018).

The utility of various ligninases has been reported in the processing of certain
foods, feed, and beverages (Brijwani et al. 2010). Ligninases have been observed to
eliminate phenolics saccharides from the fruit juices and fermented alcoholic
beverages, which eventually reduce browning, haze formation, and turbidity
(Minussi et al. 2002; Mäkelä et al. 2017). Ligninases not only stabilize the fruit
juice and fermented alcohol beverages but also improve the color appearance, flavor,
aroma, and taste of such beverages (Gassara-Chatti et al. 2013; Lettera et al. 2016;
Ghosh and Ghosh 2019). Some previous studies have shown that LiPs and MnPs
have the potential to generate natural aromatic flavors in various food products (dos
Santos Barbosa et al. 2008, Kumar and Chandra 2020). Moreover, some white-rot
fungi can be used to convert agricultural lignocellulosic wastes directly to human
food, like edible fruit bodies of Lentinus, Pleurotus sajor-caju, Agaricus bisporus,
Cantharellus, and Volvariella (Goyal et al. 2006; Ahlawat and Tewari 2007; Kumari
et al. 2011; Thiribhuvanamala et al. 2012; Kumla et al. 2020).
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6.4.3 Paper and Pulp Industry: Biopulping, Biobleaching,
and Deinking

Separation of lignin from the cellulosic fibers is a necessary step required during
pulp and paper production from the woody substrates (Eugenio et al. 2019). Various
woody materials including bamboo, eucalyptus, and leftover agricultural biomass
have been exploited for paper manufacturing depending upon the type and quality of
the paper (Trotter 1990; Eriksson 1998; Bajpai 2018a). Pulping and bleaching of

Table 6.2 Ligninolytic fungi/enzymes application in food/feed/beverage industries explored in
India

Culture Feed/food/beverage Research finding References

Ganoderma
sp. and
Crinipellis sp.

Wheat straw Fungal treatment increased the feed
digestibility by degrading ether
extract, neutral detergent fiber
(NDF), and acid detergent fiber
content (ADF)

Sharma et al.
(2012)

Schizophyllum
commune

Paddy straw, finger
millet straw, wheat
straws, etc.

Laccase treatment significantly
reduced the indigestible NDF,
ADF, and acid detergent lignin
(ADL), consequently enhancing
the in vitro dry matter digestibility
(IVDMD)

Kumar et al.
(2015a, b)

Ceriporiopsis
subvermispora

Wheat straw Fungal treatment preferred NDF,
ADF, and ADL components and
increased the carbohydrates-to-
lignin ration (C/L ratio)

Nayan et al.
(2017)

Coriolus
versicolor and
Ganoderma
lucidum

Ragi straw Ligninolytic enzymes significantly
increased the protein content and
dry matter digestibility (5%) and
reduced the composition of lignin
derived compounds

Sridhar et al.
(2015)

Lentinus
squarrosulus

Paddy straw, finger
millet straw, little
millet straw, etc.

Enzymes treatment reduced the
NDF (2.6–4.2%) and ADL
(2.9–5.2%) content and
significantly increased the IVDMD
(14–32%)

Ravichandran
et al. (2019)

Ganoderma sp. Wheat straw Fungal treatment reduced the
indigestible lignin constituents and
increased the C/L ration (1.28–
fold) with high IVDMD (32.2%)

Raghuwanshi
et al. (2014)

Ganoderma
lucidum

Pomegranate,
lemon, and apple
juice

Enzyme treatment significant
reduced the toxic phenolics
compounds (79–85%) and
improved clarity, stability, and
quality of the fruit juice

Manavalan
et al. (2015)

Aspergillus
flavus

Apple juice Enzyme treatment brings a
reduction in phenolic, flavonoid,
and turbidity, which indicates the
suitability of the juice

Ghosh and
Ghosh (2019)
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these woody substrates are the two important steps required for paper production
(Bajpai 2018b). During pulping, the native substrates are subjected to different
mechanical and chemical methods to reduce the fibrous state (Hubbe et al. 2007).
Conventional and the present-day chemical methods involve consumption of enor-
mous amounts of chlorine, sulfite, or oxygen-based chemical oxidants, which
impose serious drawbacks to the natural environment (Leponiemi 2008; Liu et al.
2018). Besides environmental adverse effects, the chemical tricks are also cost-
intensive processes, generating low pulp yield between 40% and 50% (Ince et al.
2011). To overcome these obstacles, microbial or enzymatic systems capable of
delignifying woody material can be used (Bajpai 2018b). In this scenario, white-rot
fungi and their oxidative enzymes are potentially useful agents because they not only
diminish the energy and cost consumption but also improve the strength properties
and are environmentally friendly due to reduced effluent toxicity (Singh et al.
2010a, b, Singh and Singh 2014, Janusz et al. 2017). The biopulping of woody
material using white-rot fungi was first considered by Lawson and Still (1957) at
West Virginia Pulp and Paper Company Research Laboratory (Akhtar et al. 1997).
Since then, many white-rot fungi have been studied, and some of them were found to
be efficient biobleachers, viz., Bjerkandera spp., P. chrysosporium, Botrytis cinerea,
Polyporus ciliates, Phlebia radiata, Lentinus tigrinus, Stereum hirsutum, Stropharia
coronilla, and T. versicolor (Table 6.3) (Kuhad et al. 2007; Kuhar et al. 2007;
Saleem et al. 2018; Nathan et al. 2018; Chaurasia and Bhardwaj 2019; Sharma
et al. 2019) in pulping processes and pilot mill trials. Previous studies have shown
that ligninases such as laccase and LiP portray an important role in biopulping, but
direct evidences for LiP are not available (Vrsanska et al. 2016; Damián-Robles et al.
2017). It has been theorized that biopulping using fungi and ligninolytic enzymes
could save 30%–45% of the energy consumed in comparison to mechanical and
chemical processes (Falah et al. 2011; Giles et al. 2015; Chukwuma et al. 2020).

Pulping is followed by bleaching of kraft pulp, which demands huge amount of
chlorine and chlorine-derived chemicals, consequently leading to environmental
disturbance (Kaur et al. 2019). To overcome these drawbacks, enzymatic processes
have been envisaged to provide environmentally intact technology, and the use of
laccase and laccase-mediator system remains the choice of technology to achieve the
goals (Table 6.3) (Onysko 1993; Fillat and Roncero 2009; Singh et al. 2015, 2019).
Previous studies have shown that laccase-mediator system such as violuric acid,
ABTS, and HBT can enhance ISO brightness and reduce the kappa number
and yellowness effect of the kraft pulp (Pala et al. 2004; Lee et al. 2011; Chutani
and Sharma 2015; Tsatsis et al. 2017). Additionally, heme peroxidases such as MnP
and LiP are also seen to be competent in decolorizing the kraft pulp mill effluents
(Saraswathi and Saseetharan 2010; Chandra et al. 2018; Gaur et al. 2018). Although
over 70% of the world’s annual pulp is produced by chemical and mechanical
processes, a large financial investment has been made to improve the biobleaching
and biopulping processes using ligninolytic fungi and enzymes, which are likely to
be accepted in the near future.

Beside biopulping and biobleaching, decolorization of paper and pulp mill
effluents, and deinking of paper waste using ligninolytic enzymes to enhance the

156 S. Saini and K. K. Sharma



reusability of waste papers represent one of the few promising biotechnological
applications of ligninolytic fungi (Kuhad et al. 2010; Chutani and Sharma 2015;
Saini et al. 2020b; Chandranupap and Chandranupap 2020). Traditionally, deinking
was performed under high temperature conditions, employing various chemical
surfactants, which makes the process expensive and causes high environmental

Table 6.3 Ligninolytic fungi/enzymes from Indian subcontinent and their applications in paper
and pulp industry

Fungal culture Application Research finding References

Ganoderma sp.,
Trametes sp., and
Poria sp.

Biobleaching of
hard wood Kraft
pulp

All fungal cultures significantly
reduced the kappa number
(5–12%) and increased the
brightness of the pulp (30–45%)

Selvam and
Arungandhi
(2013)

Stereum ostrea and
Trametes
versicolor

Biobleaching of
Kraft pulp

Kappa number was reduced to
17% after fungal treatment;
addition of Mn2+ drastically
enhanced the pulp brightness

Seshikala
(2014)

Ganoderma
lucidum MDU-7

Deinking of paper
waste

Laccase-mediator system
significantly reduced the ink
particles (61%) and detoxified
the paper hydrolysates

Saini et al.
(2020b)

Nigrospora sp. and
Trametes sp.

Decolorization of
Kraft black liquor

Mixed fungal culture resulted in
maximum decolorization (73%)
and COD removal (71%)

Rajwar and
Rai (2015)

Pleurotus
ostreatus

Biobleaching of
mixed wood pulp

Addition of xylanases to the
culture extract of P. ostreatus
significantly improved the pulp
properties

Dwivedi et al.
(2009)

Trichoderma
harzianum

Biobleaching and
bioremediation of
paper industry
effluent

T. harzianum was evaluated for
ligninolytic activity; crude
enzyme extract was found
effective in biobleaching and
bioremediation

Sadhasivam
et al. (2010)

P. chrysosporium
and Pleurotus sp.

Detoxification of
paper industrial
effluents

Both fungal strains were found
to reduce the toxic chemicals
mutagens and COD of the paper
industrial effluents

Kulshreshtha
et al. (2012)

Peniophora sp. Deinking of paper
waste

Laccase treatment improved the
strength and brightness of
recycled pulp, 1.7-fold and 6%,
respectively

Shankar et al.
(2018)

Fusarium equiseti Biobleaching of
waste newspaper

Enzymatic bleaching with
laccase reduced the kappa
number and increased the
brightness (15%)

Nathan et al.
(2018)

Daedalea flavida,
Polyporus
hirsutus, and
Phellinus sp.

Bioremediation of
pulp and paper mill
effluents

Fungal cultures were shown to
decolorize the waste effluents
(62–66%) and reduce the COD
(38–42%)

Selvam et al.
(2011)

6 Ligninolytic Fungi from the Indian Subcontinent and Their Contribution to. . . 157



damage (Pala et al. 2004; Virk et al. 2013; Chutani and Sharma 2016; Biswas et al.
2019). Therefore, to tackle these challenges, enzymatic methods are envisaged and
proven to be economically feasible (Saxena and Chauhan 2017, Shankar et al. 2018,
Valls et al. 2019, Sharma et al. 2020a). Among all, laccase-mediator system has been
reported to be efficient in ink degradation and has been successfully scaled up to
large-scale applications (Table 6.3).

6.4.4 Transformation and Degradation of Textile Dye Effluents

Different type of dyes and pigments are extensively used in the textile industries; the
unadhered dye effluents from these industries are directly discharged to natural water
bodies without any treatment (Chequer et al. 2013). The coarse textile effluents
majorly constitute a large number of heavy metals such as Co, Cu, Cd, Mg, Fe, Cr,
Ni, Hg, and Mn, which are highly pernicious and carcinogenic in nature (Carmen
and Daniela 2012; Lellis et al. 2019). These unhealthy impurities have adverse
impacts on the water quality in terms of biological oxygen demand, total organic
carbon, chemical oxygen demand, pH, and color of the water resources (Tchounwou
et al. 2012; Ali et al. 2019). Based on the chemical structure, the textile dyes are
classified as anthraquinone, indigo, triarylmethane, phthalocyanine, and azo dyes;
among these, azo dyes are deemed harmful due to their excessive utilization and high
water solubility (Benkhaya et al. 2017, 2020; Ahlawat et al. 2019).

Traditionally, several attempts have been made to treat these hazardous effluents
using various physicochemical processes, viz., filtration, precipitation, adsorption,
coagulation, photolysis, and oxidation with H2O2 or ozone (Lee et al. 2006; Chutani
and Sharma 2015; Hayat et al. 2015; Saini et al. 2020b). Unfortunately, the
applications of these physicochemical methods are confined mainly due to excessive
need of additional environmental hazardous chemical additives, incomplete and
unsafe disposal of generated sludge, and high operating costs (Singh and Arora
2011; Pereira and Alves 2012; Jamee and Siddique 2019). In this context, biological
methods have been shown as novel alternatives with low-cost and environmentally
benign processes capable of degrading complete organic pollutants without involv-
ing the addition of other chemicals (Patel et al. 2013; Rajhans et al. 2020).

The biological degradation of hazardous textile dyes has been reported using
various microorganisms including fungi, bacteria, and actinomycetes, employing
single or complex microbial consortia (Singh et al. 2010a, b; Gao et al. 2018, Jamee
and Siddique 2019, Varjani et al. 2020). Some of the modern molecular modelling
and docking experiments have also been reported for the dye degradation potential
of laccases from bacterial and fungal sources (Singh et al. 2014a, b; Ahlawat et al.
2019, Vani et al. 2020). Among these, white-rot fungi have been shown as better dye
degraders over prokaryotes due non-specific nature of their extracellular ligninolytic
enzymes capable of degrading a wide range of dyes (Table 6.4) (Gahlout et al. 2013;
Patel et al. 2013; Srivastava et al. 2014). The degradation of textile dyes using a
white-rot fungus, P. chrysosporium, was first reported by Glenn and Gold in 1983
(Glenn et al. 1983). Subsequently, numerous white-rot fungi, including Bjerkandera
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Table 6.4 Applications of ligninolytic fungi/enzyme in bioremediation of organopollutants and
hazardous dye effluents

Fungal culture Pollutants Result and findings References

Ganoderma
lucidum

PAH
(phenanthrene and
pyrene)

High degradation of phenanthrene
(99.65%) and pyrene (99.58%)
was achieved after 30 days of
treatment at 27 �C

Agrawal et al.
(2018b)

Pleurotus
ostreatus

PAH (benzo
(a) pyrene)

Addition of non-ionic surfactant
(T-80) to the fungal treatment
enhanced the degradation of PAH
(1.18-fold)

Bhattacharya
et al. (2014)

Trametes
versicolor

Azo dyes and dye
industry effluents

Batch mode fungal treatment
removed 34.60% orange G,
98.27% Congo red, and 78.05%
Amido black 10B, and 98.43%
dye effluents

Selvam et al.
(2012)

Ganoderma
cupreum

Azo dyes (reactive
violet 1)

Degradation was increased by
adding nitrogen and carbon
source to the decolorization
medium

Gahlout et al.
(2013)

Coriolopsis
byrsina

PAH (pyrene) High degradation of pyrene
in vivo (96.1%) and in vitro
(51.85%) condition was achieved,
and final nontoxic compound
were identified

Agrawal and
Shahi (2017)

Phanerochaete
chrysosporium

Reactive textile
dye (yellow
MERL and red
ME4BL)

P. chrysosporium was found to
produce laccase and MnP VP to
catalyze the degradation of
reactive textile dyes

Koyani et al.
(2013)

P. flabellatus,
P. ostreatus, and
P. citrinopileatus

Azo dye (direct
red)

Decolorization of dye was
increased by adding 0.1% T-80,
and laccase, MnP, and LiP were
shown to catalyze the dye
degradation

Srivastava
et al. (2014)

Myceliophthora
vellerea

Textile dye
(reactive blue 220)

Fungal treatment using
immobilized packed-bed reactor
achieved 80% dye degradation
and 50% decolorization up to the
seventh cycle

Patel et al.
(2013)

Trametes hirsuta PAH (benzo
(a) pyrene and
phenanthrene)

Addition of rhamnolipid
enhanced the fungal degradation
efficiency (1.8-fold) and achieved
high degradation of phenanthrene
(91.26%) and benzo (a) pyrene
(87.72%)

Rathankumar
et al. (2020a)

P. ostreatus,
P. flabellatus,
P. florida, and
P. sajor-caju

Azo dye (direct
blue 14)

Up to 90% of dye degradation was
achieved after 6–12 days of
incubation, and all fungus culture
were shown to produce laccase
and MnP involved in dye
decolorization

Singh et al.
(2013)

(continued)
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adusta, Coriolus versicolor, Lentinus edodes, Lentinus polychrous, Lentinus
polychrous, Lenzites elegans, Laccaria fraternal, Hirschioporus larincinus, Funalia
trogii, Fomes lividus, Inonotus hispidus, Pleurotus ostreatus, Pleurotus eryngii,
Phlebia radiate, Phlebia tremellosa, Pycnoporus cinnabarinus, Sclerotium roysii,
T. versicolor, Trametes modesta, Trametes hirsute, and Thelephora sp., have been
shown to decolorize various dyestuffs (Table 6.4) (Selvam et al. 2003; Singh and
Pakshirajan 2010; Gulzar et al. 2020; Saha and Mukhopadhyay 2020; Singh et al.
2020; Munagapati et al. 2020; Vats and Mishra 2020; Zofair et al. 2020). Addition-
ally, soft-rot fungi such as Aspergillus flavus, Aspergillus terreus, Geotrichum
candidum, Trichoderma harzianum, Mucor spp., and Penicillium spp. have been
identified to degrade several textile dyes including acid red, bromophenol blue, and
Congo red (Ramya et al. 2007; Sadhasivam et al. 2010; Ranjusha et al. 2010; Kumar
et al. 2012; Saroj et al. 2014; Rajhans et al. 2020; Singh and Dwivedi 2020). Dye
degradation using white-rot fungi was largely attributed to LiP and MnP enzymes
(Jayasinghe et al. 2008). In recent years, laccase and novel DyP enzymes have also
gained a great research interest in relation to dye degradation (Lai et al. 2017; Yang
et al. 2019; Iark et al. 2019). The utilization of laccase in combination with mediators
and other auxiliary enzymes has been proved to be a valid alternative eco-friendly
method with less capital-cost investment (Table 6.4).

6.4.5 Bioremediation of Hazardous Pollutants

Throughout the past century, human activities have released many hazardous
organopollutants into the natural environment responsible for air, soil, and water
pollution (Rodríguez Couto and Toca Herrera 2006; Álvarez-Rogel et al. 2007; Li
et al. 2017). Some of these, including recalcitrant xenobiotic chemicals, pesticides,
trinitrotoluene, synthetic dyes, polycyclic aromatic hydrocarbons, organochlorines,
polychlorinated biphenyls, benzene, ethylbenzene, toluene, xylene, and munition
wastes, remain persistent in the environment, which are known to be cytotoxic,
carcinogenic, and mutagenic (McGuinness and Dowling 2009, Juwarkar et al. 2010,
Varsha and Chenna 2011). Scientists are working toward decreasing these toxic

Table 6.4 (continued)

Fungal culture Pollutants Result and findings References

Geotrichum
candidum

Azo dye (methyl
orange, Congo
red, and trypan
blue)

Significant degradation of azo was
reported; methyl orange (94%),
Congo red (85%), and trypan blue
(70%). DyP, LiP, and laccase
were identified to catalyze the
degradation

Rajhans et al.
(2020)

Ganoderma
lucidum

Pesticide (lindane) Pesticide degradation was found
higher (75.5%) under SmF
condition in comparison to SSF
condition (37.5%)

Kaur et al.
(2016)
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pollutants. The currently employed techniques are, however, either costly or time-
consuming and may accumulate other hazardous by-products. In this sense, the use
of white-rot fungi that produce ligninases is reported to be the most promising in
detoxification and degradation of toxic pollutants (Torres et al. 2003; Viswanath
et al. 2014; Deshmukh et al. 2016). Due to low substrate specificity of their oxidative
enzymes and structural similarities between lignin and organopollutants, fungi are
able to perform the breakdown of various recalcitrant effluents (Pointing 2001;
Pozdnyakova 2012; Upadhyay et al. 2016). The degradation of organopollutants
using white-rot fungi was first achieved by P. chrysosporium (Bumpus et al. 1985).
Since then, numerous white-rot fungi, such as Bjerkandera sp., Clavariopsis
aquatic, Cyathus bulleri, G. lucidum, Pleurotus sp., Polyporellus brumalis,
Phanerochaete sordida Schizophyllum commune, P. cinnabarinus, Pleurotus
pulmonarius, T. versicolor, Trametes trogii, Trametes hirsutus, Coriolopsis sp.,
and Phlebia sp., have been reported as potent degraders of various organopollutants
(Table 6.4) (Skariyachan et al. 2016, Bhattacharya et al. 2017, Vaseem et al. 2017,
Patil and Yadav 2018, Kumar et al. 2018, Navada and Kulal 2019, Chakraborty et al.
2019, Rathankumar et al. 2020b, Taha et al. 2020, Dhiman et al. 2020). Additionally,
ligninolytic enzymes including laccases, LiP, MnP, and VPs from these fungi have
also been successfully applied in the treatment of a wide range of toxic effluents
(Bhattacharya et al. 2009; Rao et al. 2010; Rathankumar et al. 2020a). Enzyme-
mediated degradation of organopollutants involves the polymerization of the
pollutants themselves or copolymerization with other nontoxic substrates to facilitate
their removal by means of filtration, sedimentation, or adsorption (Shen et al. 2011;
Falade et al. 2016; Pathak and Navneet 2017). However, the majority of degradation
studies have been conducted on artificially contaminated soils or on synthetic
medium spiked with organic pollutants (Table 6.4). Therefore, it is important to
investigate both fungal and enzyme performance under non-sterile conditions to
transfer the laboratory technology to the actual large-scale contaminated field sites.

6.5 Concluding Remarks

In the foregoing discussion, we have emphasized on the current state of knowledge
on lignin-degrading microorganisms, especially white-rot fungi. White-rot fungi
have drawn enormous research interest due to their ability to produce vast amounts
of extracellular oxidative ligninolytic enzymes. They are also selective lignin
degraders and are responsible for efficient deconstruction of woody or lignocellu-
losic substrates. Since the discovery of ligninolytic fungi, extensive research efforts
have been made on the isolation of novel ligninolytic microorganisms, characteriza-
tion of novel ligninolytic enzymes, and cloning of genes encoding enzymes from the
existing microbes. Currently, exploration of fungal proteome and secretome is an
effective tool to identify novel enzymes. It can also be used to study the succession,
interaction, and complementation between different ligninases involved in lignin
degradation pathways. Lignin degradation is thought to proceed via multistep
reactions involving an array of main oxidative ligninolytic enzymes in the first
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step and several other accessory enzymes to help and achieve the degradation in later
stages. However, the low specificity of ligninolytic enzymes engaged in the degra-
dation pathways of lignin makes it difficult to understand the whole processes.
Additionally, most of the lignin degradation pathway studies are carried out using
lignin model compounds; still, comprehensive study using native form of lignin
encountered by fungi/enzyme creating a natural environment in vitro is necessary.
Therefore, future research should be aimed at determining the role and cooperation
of enzyme consortia in lignin degradation, exploring the function of redox mediators
and auxiliary enzymes in the catalytic mechanism of the ligninases, and
reconstituting in vitro the actual environment for fungal/enzyme ligninolytic systems
for lignin degradation.

The practical use of ligninolytic fungi and their enzymes for biotechnological and
industrial applications holds a great potential. The advantages and disadvantages of
ligninolytic fungi/enzymes should be evaluated before attempting industrial scale
operations. Though biotechnological significance of these fungi/enzymes have
increased drastically, there are still some aspects to be investigated, particularly
process optimization and cost reduction. Both can be achieved by isolating native
fungal stains and enzymes that are best suited for wide substrate spectrum and
required narrow reaction conditions. Here genetic engineering such as protein
engineering and gene editing technologies can have an important role to play.
Searching for novel and native fungal strains and taking advantage of the enormous
microbial diversity of the Indian subcontinent can enhance the choice for the
customized industrial applications.
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