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Abstract

Plants are the main dietary resource of micronutrients essential for humans. But
staple food crops on which people of poor and developing countries feed, do not
contain sufficient micronutrient metals and thus results in poor growth, mental
disorders and increased mortality of human consumers. Knowledge on mecha-
nism of micronutrient uptake by plant roots, their accumulation in subcellular
compartments, long-distance transport in vascular tissues, allocation to economic
sinks of crop plant, etc. is, thus, of utmost importance in the biofortification
programmes, implemented for nutrient enrichment of plant foods. The present
chapter gives an insight on various physiological aspects regulating micronutrient
absorption in crop plants. Despite the role of edaphic factors controlling micro-
nutrient availability in soil solution, biological activity of root organs is also
determinant of micronutrient metal uptake from rhizosphere. The charged nature
of essential micronutrients, which are mostly divalent cations, needs sophisticated
transporters for their delivery to respective sinks. Further to achieve metal
homeostasis and to reduce their toxicity, root to shoot and shoot to root signalling
is in concordance with metal chelators and transporters, which have been
discussed in detail in present chapter. Finally, future research avenues have
been discussed which can be targeted to enhance the efficacy of crop
biofortification.
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1 Introduction

Plants are one of the fascinating sessile natural creatures that make aerobic life
possible on planet earth. They possess unique property of preparing organic food
from simpler inorganic substances, i.e. autotrophic nutrition. The inorganic nutrients
which plants use to maintain their proper growth and development are classified in
two types:

1. Macronutrients: These mineral nutrients are present in higher concentrations
(i.e. >100 mg/kg DW) in plant parts.

2. Micronutrients: These mineral nutrients are present in low concentrations
(i.e. <100 mg/kg DW) in plant parts.

Out of the 14 essential nutrient elements required for maintaining vegetative and
reproductive growth of plants, 8 mineral elements (i.e. boron, chlorine, manganese,
iron, nickel, copper, zinc and molybdenum) are micronutrients. These
micronutrients are involved in primary and secondary metabolism of plant as
enzyme cofactors, osmolytes, redox carriers in organic metabolites, signal trans-
ducing messengers, structural components of cell walls/membranes, regulators of
hormone biosynthesis in addition to role in energy production and defence. The
specific role of each of the micronutrients is enlisted in Table 20.1. In addition to
essential elements, several other elements (such as selenium (Se), iodine (I), silicon,
etc.) have been reported in specific plant taxa at low concentrations (i.e. <100 mg/kg
DW). But such elements are not critical to all plants (Kaur et al. 2016). So, these are
considered in category of beneficial elements instead of concentration similar to
micronutrients. The present chapter will also briefly discuss two of such beneficial
elements Se and I, which are well known in biofortification programmes for their
crucial importance to humans.

1.1 Essentiality of Micronutrients for Plants and Animals

Plants are dietary resource for all 25 essential nutrients required for human growth.
But low micronutrient density in edible crops is a serious global concern from the
last two decades. Consumption of such low micronutrient food products leads to
deficiency disorders in large fraction of humans consuming them. About two third of
the world population suffers from ‘micronutrient malnutrition’ especially iron
(Fe) and zinc (Zn) (White and Broadley 2009; Stein 2010). Despite of Fe/Zn, their
deficiency leads to impaired physical activity, stunted growth, mental retardness and
pregnancy issues (stillbirths and child deaths) (Stein et al. 2005). Fe deficiency (FeD)
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mainly results in anaemia while Zn deficiency (ZnD) often leads to diarrhoea and
pneumonia in infants and adults. Zn deficiency also leads to hypogonadism, immune
dysfunction, DNA damage and cancer development (Gibson 2006; Prasad 2009).
Thus, ‘hidden hunger’ caused due to micronutrient deficiency is one of the serious
global issues. This problem is aggravated in developing countries where cereal-
based products are main staple foods that contain antinutritional substances (such as
phytate, tannic acid) and possessed low micronutrient density and bioavailability.
More than two billion of world population suffers from micronutrient deficiency
with approximately 0.8 million deaths are reported annually. In addition to FeD and
ZnD, deficiency of Se (SeD) and I also associated with severe health consequences;
with about 15 and 30% of world population lacks these nutrients. Iodine deficiency
(ID) impairs thyroxin production causing goitre, irreversible mental retardation
(autism), reproductive dysfunction and cretinism under severe deficiency (de Benoist
et al. 2008). SeD leads to dermatitis, hair loss and garlicky breath, male infertility
and increased incidence of cancers, respiratory failure, myocardial infarction and
renal failure under severe selenosis (Fordyce 2013). These dietary mineral intakes
are of extreme importance to pregnant women, where deficiency of any above
micronutrients (Fe, Zn, I and Se) can lead to irreversible brain damage, permanent
foetal developmental disorders and cognitive decline in developing foetus (Fordyce
2013; World Health Organization 2007).

1.2 Micronutrients Involved in Biofortification Programmes
for Crop Improvement

Almost one in three people worldwide suffers from micronutrient malnutrition
(FAO, TIFAD, WFP 2015). Thus, to sustain good health and development, of
individuals having limited access to diverse diets, various interventions such as
supplementation, industrial food fortification, etc. have been put forward. But
among them, the most promising and cost-effective approach is biofortification.
This biological process of nutrient enrichment utilizes tools of conventional plant
breeding, agronomic management methods and techniques of transgenics to enhance
micronutrient density of staple food crops. Due to crucial importance of Fe, Zn, Se
and I for human growth and their widespread deficiency, these four nutrients are of
main focus in biofortification. The international programme of Harvest Plus
addresses a substantial number of researches on biofortification to develop
biofortified iron crops, zinc crops, iodine crops, vitamin A crops, etc. in cereals
(wheat, rice, maize, barley, pearl millet), pulses (soybeans, common bean, lupines)
vegetables (cassava, orange sweet potato, carrot, cauliflower, potato, tomato) and
fruits (papaya, banana, etc.) (Bouis and Saltzman 2017). The two main approaches
used in biofortification are genetic biofortification and agronomic biofortification.
The genetic biofortification (GB) enhances plant’s own inherent potential
(genetic potential) of nutrient acquisition from soil. The rich gene pool of wild
germplasm provides candidate genomic segments for introgression in cultivated
varieties in genetic biofortification to enhance root uptake of micronutrients, their
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remobilization to edible sinks and even to maintain metal homeostasis. But if soil is
itself nutrient poor, in that case soil and foliar application of nutrient fertilizers is
used for nutrient enrichment of crops grown as in case of agronomic biofortification.
This approach is also a shotgun approach in those crops where loss/lack of natural
wild diversity occurs.

2 Soil as Reservoir of Micronutrients

It is well known that soil is the main reservoir of mineral elements, for crop plants.
The widespread deficiencies of micronutrients in cultivated soils limit not only
micronutrients concentration in crop produced but also affected crop yields. Various
edaphic factors contribute significantly towards nutrient concentrations in rhizo-
sphere where plant roots communicate with soil environment to favour mineral
absorption even under nutrient-deficient conditions (Fig. 20.1). Some of them are
given below.

2.1 Factors Affecting Availability of Micronutrients in Soil
Solution

2.1.1 Soil Formation

As soil is formed from weathering of rocks, the rocks (e.g. igneous rocks) rich in
micronutrients will lead to formation of soils with high concentration of
micronutrients. Further, the process of soil formation from parent rock material is
another factor which influences micronutrient contents of soil. The non-uniform
distribution of micronutrients in different geographical zones is due to differences in
parent rock materials and processes that lead to formation of soil. The soil formed
after weathering has higher concentration of micronutrients than parent rock due to
low mobility of these divalent cations.

2.2 Soil Moisture and Texture

Soil moisture and texture affects micronutrient concentration in soil solution through
diffusion/mass flow. Coarse-textured sandy soils exhibit enhanced leaching of
available micronutrients more than dry loam soils.

23 Soil pH

Another determining factor which affects nutrient solubility in soil solution is soil
pH. High pH in alkaline/saline soil favours formation of less available micronutrient
(particularly Zn, Mn, Fe, etc.) organic complexes and results in their deficiency. In
contrast, acidic pH results in decreased adsorption of cationic nutrients to cation
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exchange sites of soil constituents (such as clay mineral, metal oxides) and makes
them available in soil solution. A unit increase in soil pH is found to decline Zn
availability by 30- to 45-fold at a pH range of 5.5-7.5. Tight adsorption of Fe** or
Zn** as metal oxides, phosphates or carbonates also makes these micronutrients
unavailable in rhizosphere for uptake by roots.

24 Soil Organic Matter

Organic matter is the source of numerous soluble organic compounds which regulate
microbial activity in rhizosphere. The wide diversity of microorganisms in soil is
responsible for release of various organic acids, chelator compounds, etc. that
favours free release of micronutrient cations in soil solution.

2.5 Others

In addition to above, redox potential of soil, the presence of similar charged toxic
divalent cations (such as Pb>*, Cd**, As**, Hg>"), microbiota, etc. also alter miner-
alization and hence phytoavailability of micronutrients in rhizosphere.

3 Absorption of Micronutrients by Plant as Biological
System: Uptake, Transport and Sequestration

In order to enrich food crops with tools of biofortification, there is a need of deep
understanding of the micronutrient acquisition, their xylem and phloem transport,
sequestration and translocation to edible plant sinks. As most of the essential
micronutrients belong to category of heavy metals, there should be a tight regulation
in their uptake and metabolism by plant system; otherwise, these will lead to
oxidative stress and will be toxic to cellular machinery. Plants maintain metal
homeostasis from cellular level to whole plant level in hierarchy through specialized
transporters, chelating ligands and sequestration of toxic metal ions in intercellular
compartments. These will be discussed in detail below:

3.1 Roots-Organs Mediating Nutrient Uptake from Rhizosphere

Plant roots are specialized organs which mediate nutrient absorption from soil
solution. The unicellular hairs present on root epidermis perform dual function in
nutrient acquisition i.e. (1) enhancing phytoavailability of micronutrients in rhizo-
sphere and (2) subsequent transport of micronutrients through transporters/channel
proteins to inner root cells for xylem loading. Roots are not just static organs in
rhizosphere; their continuous activity such as release of exudates and mucilage in
soil prevents damage to growing apical meristem and allow tight binding of lateral
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roots to soil substratum. The activity of root hair cell plasma membrane (RCPM) H*-
ATPase mediates extracellular acidification in rhizosphere which helps in active
uptake of charged micronutrients by declining soil pH. The release of organic acids
(such as citric acid, tannic acid, oxalic acid, tartaric acid) in mucilage and exudates of
damaged root cap cells also increase solubility of micronutrients by maintaining low
soil pH.

The soluble metal cations enter in cytosolic compartment of root hair cell either
through transporters/channel proteins. This metal ion uptake can be passive
(i.e. along the concentration gradient from higher metal ion concentration in soil
solution towards low concentration present in root hair cell) or active (against the
concentration gradient) depending upon metabolic essentiality of that metal ion. It is
very important to mention here that a wide diversity in uptake mechanism exists
among plants for the different metal cations and even for same metal atom with
different available forms. For example, Fe existed in Fe** form with predominance
of Fe’* in rhizosphere. But plant iron transporters allow uptake of Fe** ion. Thus,
two specialized mechanisms existed in higher plants to mediate Fe uptake:

1. Strategy I: Reduction of Fe**in to Fe**by ferric-chelate reductase (Robinson et al.
1999) encoded by FRO gene family. Such reduction mechanism is found in
non-graminaceous monocots and dicot plants. These Fe** ions are then entered
in root cell through iron transporters.

2. Strategy II: Release of phytosiderophores (metal chelators) such as mugineic
acids, avenic acid, distichonic acid, etc. to bind with Fe** followed by uptake of
Fe (IT)-ligand chelating complex by specific yellow stripe 1 (YS1) or YS1-like
(YSL) transporters. A wide range of phytosiderophores are secreted from cereal
family (graminaceous monocots) which play crucial role in metal uptake under
Fe/Zn deficiency. Further, amounts of these phytosiderophores released in rhizo-
sphere, determine the tolerance of particular plant species to soils with limited Fe
or Zn phytoavailability. For example, roots of barley and wheat secrete large
amounts of mugineic acid compounds (MAs) than rice and, thus, confer enhanced
tolerance to Fe-limiting soils. Moreover, barley root secretes a range of
MA species including mugineic acid (MA), 3-epihydroxymugineic acid,
3-epihydroxy-2'-deoxymugineic acid and 2'-deoxymugineic acid (DMA) than
DMA alone by bread wheat, thus, increased tolerance potential of barley to
Fe-limited environments (Romheld and Marschner 1990).

3. Combination of both strategy I and strategy II as occur in rice.

3.2 Root Uptake of Mineral Nutrients Zn, Se and |

Zn is mainly absorbed in Zn** form. Absorption of this divalent cation by root hair
cell interior would cause depolarization of plasma membrane and will reduce its
further transport. Thus, to maintain 7Zn>* influx, RCPM H*-ATPase cause efflux of
H*, resulting in hyperpolarization of RCPM which acts as driving force for Zn
uptake by plant roots. Zn** ions are mainly transported through specific ZIP family
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transporters. However, Zn-chelating complexes formed due to binding of metal
chelators (such as MAs, nicotianamine, histidine, etc.) with Zn Z*ions, are
transported through specific YSL transporters in cytoplasmic interior of root cell.
In contrast to Zn>* and Fe?*, Se and I are absorbed as anions. Natural Se exists in
various forms as selenate (SeO,>"), selenite (Se0;>7), selenide (Se”), element Se
(Seo) and organoselenium compounds (selenocysteine (Se Cys) and seleno-
methionine (Se Met)) in rhizosphere. But plant roots are able to take up only
selenate, selenite, SeCys and Se Met from soil solution. Out of all phytoavailable
forms, SeO427 is absorbed readily from soil solution than SeO327. Predominance of
Se form in soil solution depends upon concentration, pH of soil, redox potential,
organic matter, presence of other nutrients particularly sulphur, iron oxides, etc.
(Sors et al. 2005). Generally, SeO42_ is mainly present in alkaline soils, while well-
drained acidic to neutral soils contain SeOs;” . Due to the presence of negative
charge on root cell membrane, SeO,*~ and organoselenium compounds are
absorbed actively through H*/anion symporter, anion channels and amino acid
transporters present on RCPM. The sulphate transporters (both high- and
low-affinity transporter) present on RCPM mediate SeO,*  uptake in addition to
sulphate. This active uptake involves cotransport of three protons for each SeO,*~
ion. However, organoselenium compounds are transported through amino acid
transporters similar to cysteine and methionine. Selenite is found to be transported
passively through phosphate transporters (Li et al. 2008).

The beneficial nutrient iodine is taken up both in inorganic forms as iodide (I")
and iodate (I037) and organic iodine by plant roots. Till date no iodine transporters
have been discovered in plants. But it has been reported that roots cells have iodate
reductase/specific nitrate reductases which convert IO;™ in to I anion, due to high
solubility of iodide than iodate. I™ anions are effectively absorbed by plant roots
(Whitehead 1973) but are susceptible to leaching. These I anions are taken up
through chloride channels and further loaded in to xylem through specific anion
channels (Blasco et al. 2008; Caffagni et al. 2011; Roberts 2006). Thus, energized
transport of micronutrients along with Se and I is under tight metabolic control of
transporter proteins. Plants also exhibits an inherent potential to cope the micronu-
trient deficiency through various mechanisms such as (a) oriented root growth and
enhanced lateral branching (b) increased root exudation (c) overexpression of
specific high-/low-affinity root membrane transporters (d) release of specific
micronutrients from subcellular stores (e) remobilization of micronutrient from
senescing tissue, etc. to fulfil the demands for plant growth and metabolism.

33 Apoplastic and Symplastic Routes in Radial Transport
of Nutrients

Micronutrients once acquired by root hair cells can traverse through symplastic
(intracellular) or apoplastic (extracellular) pathway for their loading in to xylem
(Fig. 20.1). However, suberin deposits on endodermis (i.e. Casparian strips) is the
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major barrier to apoplastic transport. This water impermeable layer allows only
symplastic transport of charged nutrients from cortex to endodermis. But after this
check barrier, nutrient transport can again be apoplastic/symplastic to xylem. The
radial transport of nutrients towards root stele increases nutrient concentration in
subsequent inner tissue layers due to decreased radii. In this specialized transport,
micronutrient sequestration also takes place in different subcellular compartments.
Due to charged nature of micronutrients (especially Fe, Zn, Mn, Ni, etc.), these
divalent metal cations bind to low molecular weight chelators for facilitating their
symplastic transport and intracellular sequestration. A large number of molecules
such as organic acids (e.g. citrate, malate), histidine, phytate, mugineic acid,
nicotianamine, etc. have been implicated as important cellular ligands for cytosolic
and vacuolar sequestration of Zn, Fe, Cd, Ni, etc. (Haydon and Cobbett 2007a; Ma
et al. 2005). Such metal ligands not only help in maintenance of cellular homeostasis
but also contribute to metal translocation towards storage sinks. Once loaded in
xylem, these micronutrients reach to aerial shoots under the influence of transpira-
tion pull and mass flow. The whole process of nutrient uptake and subsequent
transport to shoot is dependent upon developmental stage and environmental factors
which regulate expression of genetic components mediating nutrient absorption.

After reaching to aerial leaves, xylem unloading and phloem loading of nutrient
initiates which is crucial for root to shoot and shoot to root mineral cycling. In
phloem tissue, transfer cells play a crucial role in energized loading of micronutrients
and thus channelizes them to developing sinks for accumulation. Further, for metal
accumulation in aerial tissues, a wide variation of cellular ligands exists in different
species for same metal cation. For example, T. caerulescens utilizes citric acid, while
A. halleri utilizes malic acid for Zn storage in vacuole (Kupper et al. 2004; Ma et al.
2005). Zn-His complex is generally formed to chelate free Zn>* ions in cytosol
(Kupper et al. 2004).

In case of beneficial elements such as iodine, xylem transport predominates over
phloem transport (Weng et al. 2008) resulting in its less accumulation in sink tissues
with undeveloped xylem. Absorption of Se is similar to sulphate, where enzymes of
sulphur assimilation pathway convert SeO4> in to Se Cys in chloroplast which is
then further converted in Se Met in cell cytosol. However, in Se hyperaccumulators,
selenocysteine is converted into non-protein amino acids like Se-methyl
selenocysteine, y-glutamyl-Se-methylselenocysteine and selenocystathionine for
Se detoxification (White 2018).

34 Transporters and Channel Proteins Involved in Micronutrient
Transport

The selective uptake of micronutrients from rhizosphere, their subsequent loading in
xylem, storage in intracellular compartments and further translocation to seed/grain
sinks in a plant system is only possible due to the presence of specialized membrane
transporters which facilitate movement of transition metal ion/micronutrients both
intracellularly and intercellularly. Such transporter proteins can be either substrate
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specific or may bind to different metal cations with differential affinity. But one thing
is sure that the presence of membrane transporters allows selective inflow-outflow of
the charged micronutrients. A large number of transporter proteins families such as
ZIP family, HMA family, MFS family, MTP family, YSL family, VIT family, CAX
family, etc. have been discovered which are involved in regulation of micronutrients
(Fe, Zn, Mn, Co, etc.) transport, their accumulation and detoxification under excess,
to maintain metal homeostasis (Table 20.2). A few of them are discussed in detail
here.

3.5 ZR- and IRT-Like Proteins (ZIP) Family

This transporter family gets its name from the first members identified, i.e. zinc-
regulated transporter (ZRT) in yeast and iron-regulated transporter (IRT) like
proteins identified in A. thaliana which mediate influx of Zn** and Fe* ions in to
the cytoplasm. Apart from these micronutrients, some of ZIP transporters have also
been shown to transport Mn>*, Cu?** and Cd>* ions. Most of the members of this
family are present either on cell plasma membrane for micronutrient uptake or on
integral membranes of intracellular compartments such tonoplast, endoplasmic
reticulum, etc. for nutrient translocation to various plant organs (Ajeesh Krishna
et al. 2020). Topological studies reveal that ZIP proteins have characteristic eight
transmembrane domains (TMD) with their N- and C-termini towards extracellular
space. These transporter proteins vary in length from 309 to 476 amino acids. This
difference in length of ZIP proteins is due to varied length of potential metal binding
domain between TMD III and IV (Guerinot 2000). The conserved sequence present
in TMD IV of ZIP members contains histidine residues which play a crucial role in
metal transport.

Various orthologs of ZIP proteins have been identified in many crop species such
as 12 in barley (Tiong et al. 2014), 14 in wheat (Evens et al. 2017), 17 in rice (Chen
et al. 2008) and 23 in common bean (Astudillo et al. 2013). These orthologs differ in
their cellular localization, tissue-specific expression, substrate specificity and cata-
Iytic potential of metal transport. Among the 15 ZIP family members of Arabidopsis
(Milner et al. 2013), AtIRT1 is the most well studied for Fe uptake and transport.
Recently, Milner et al. (2013) characterized functional ability of 11 At ZIPs in metal
transport and revealed involvement of AtZIP1 and AtZIP2 in root to shoot translo-
cation of Zn and Mn. Out of 11 transporters, 6 (ZIP1, ZIP2, ZIP3, ZIP7, ZIP11 and
ZIP12) members complement Zn transport, six (ZIP1, ZIP2, ZIP5-7 and ZIP9)
mediate Mn, and one (ZIP7) complements Fe transport in yeast mutants. Further,
the role of ZAP1 transcriptional factors in transcriptional and post-transcriptional
regulation of ZRT1 and ZRT2 has been demonstrated in yeast (Zhao et al. 1998).
These transcription factors bind to a zinc-responsive element (ZRE) present in
promoter region of ZRT genes to control their expression.

The presence of such zinc deficiency response elements (ZDREs) has also been
reported in plant ZIP family such as AtZIP1, AtZIP3, AtZIP4, AtZIPS, AtZIP9 and
AtZIP10 (Assuncao et al. 2010) where binding of bZIP (basic leucine zipper
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domain) transcription factors, i.e. bZIP19 and bZIP23, enhances the expression of
ZIP members under Zn deficiency. But how these bZIP transcription factors sense
low cellular Zn** concentration is still to be elucidated. Regarding their functioning,
Assuncao et al. (2013) suggested that Zn>* ion binds to cysteine-histidine-rich motif
of bZIP transcription factor dimers under normal cellular Zn conditions and causes
its inactivation. But under low Zn, active bZIP dimer binds to ZDRE motif of ZIPs
promoter and results in their increased transcription for enhancing Zn uptake. In
addition to Zn, many ZIP members also transport other divalent metal cations (such
as Cd**, Cu*", etc.) which are toxic to plants (Tan et al. 2020). Recently,
overexpression of OsZIP1 in transgenic rice was found to reduce Zn, Cu and Cd
accumulation under excess metal (Liu et al. 2019). Thus tight regulation of ZIP
members is essential to maintain metal homeostasis.

3.6 Heavy Metal ATPases (HMA) Family

The members of HMA family mediate heavy metal transport across the biological
membranes by utilizing ATP as energy source. This family is also known as P;g-
ATPase family. Depending upon their metal specificity, HMA family is divided in
two subgroups: (1) a Cu/silver (Ag) group and (2) a Zn/Co/Cd/lead (Pb) group
(Takahashi et al. 2012). HMAs are basically efflux transporters that are ubiquitously
present in archaea, prokaryotes and eukaryotes including plants. These transporters
play a key role in transition metal detoxification. Plant HMA proteins have basic
structure of eight transmembrane helices (TM) with their N- and C-terminal ends
towards cytosol. There is the presence of two cytoplasmic loops, i.e. one small
between TM 4 and TMS5 and other large between TM 6 and TM7. Each member of
HMA protein possesses three functionally important domains which are conserved
across all P-type ATPases, i.e. cytoplasmic actuator (A) domain located in smaller
loop, phosphorylation (P) domain and nucleotide (N) domain present in large
cytoplasmic loop responsible for ATP binding. In addition, a specific CPx motif
present in TM 6 of all P;g-ATPase, is involved in metal translocation. Some putative
metal-binding domains (MBD) are present in the N- or C-terminal regions of HMA
proteins (Williams and Mills 2005; Arguello et al. 2007). The MBD of N-terminus
contains a highly conserved CxxC residue in HMA domain which controls turnover
rate of P;g-ATPase. The presence of histidine- and cysteine-rich region occurs in
MBD of C-terminus which plays a role in metal selectivity of this transporter protein
(Lutsenko et al. 2003; Mandal and Arguello 2003).

The members of HMA family are highly diverse in terms of their tissue distribu-
tion, subcellular localization, metal specificity and regulation. For instance,
Arabidopsis contains eight HMA transporters (AtHMA1-8), in which AtHMA1-4
carry out transport of transition metals Zn>*, Cd**, etc. (Mills et al. 2005; Eren and
Arguello 2004). AtHMAS5-8 belongs to subgroup II and is involved in delivery of
Cu to chloroplast proteins of thylakoid lumen and stroma.

AtHMA?2 and AtHMAA4 express in vascular tissues of root, stem and leaves and
mediate long-distance transport of Zn. Expression of AtHMA3 on tonoplast results
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in sequestration of Zn%*, Co?*, Cd** and Pb** ions for detoxification. AtHMAL is
involved in detoxification of excess Zn in chloroplast (Kim et al. 2009). The HMA2
homologues are highly conserved in Poaceae as both OsHMAZ2 in rice and
HvHMAZ? in barley are functionally similar in carrying root to shoot transport of
Zn and Cd (Mills et al. 2012). So, understanding of regulatory networks controlling
HMA transporters will provide opportunities to enhance micronutrient levels in
biofortified crop with minimized risk of toxic metals in edible sinks.

3.7 Major Facilitator Superfamily (MFS)

This superfamily consists of large group of secondary active membrane transporter
proteins that utilize electrochemical potential of proton transport as driving force to
carry out import or export of small organic molecules including transition metals
Zn** and Fe**. Most of the MFS proteins contain 12—14 transmembrane o-helices
with a large, cytoplasmic loop between TMD6 and TMD7. A conserved MFS
domain is also found between TMD2 and TMD3. The MFS members are ubiqui-
tously present in all living organisms, but in plants ferroportin, drug-H"* antiporter-1
(DHA1) and uncharacterized TET families have been discovered till date as metal
transporters. A wide functional diversity and substrate specificity of these MFS
transporters reveal their physiological significance in plants (Nino Gonzalez et al.
2019). The ferroportin family of A. thaliana includes member IREG1, IREG2 and
IREG3 which are involved in efflux of Fe** across membrane (Morrissey et al.
2009). Members of DHA-1 family such as ZIF1 (zinc-induced facilitator 1) and
ZIF-like 1(ZIFL1) confer increased tolerance to Zn by sequestering Zn>*or Zn
chelates in vacuole (Haydon and Cobbett 2007a, b).

In addition to above, some MFS transporters are involved in root uptake and
phloem transport of divalent micronutrients (Zn>*, Fe** Mn®* and Cu**)-NA/MAs
complexes. TOM family, i.e. transporter of mugineic acid family phytosiderophores,
is one such example from MFS, which is involved in efflux of DMA to cell exterior.
Once released, DMA binds to metal cations (particularly Fe**) in soil solution and
helps in its internal in planta transport. TOMI in rice mediates Fe acquisition from
rhizosphere. Another homologue TOM?2 facilitates metal transport through plant
body. TOM2 mediates efflux of DMA in apoplasm which chelates not only Fe** but
also Zn>* and Cu®*. This functionality of TOM?2 is demonstrated to enhance metal
translocations to sinks under normal plant growth (Nozoye et al. 2015). In addition
to TOM family, a recently characterized ENA1 (efflux transporter of NA) transporter
maintains Fe homeostasis in rice. ENA1 is found to maintain intracellular trafficking
of NA-metal complex for vacuolar detoxification of Fe (Nozoye et al. 2019).
Another class of phenolics efflux zero 1 and 2 (PEZ1 and PEZ2) transporter proteins
in MFS mediates efflux of protocatechuic acid. They are reported to contribute in
long-distance transport of iron through root xylem (Ishimaru et al. 2011; Bashir et al.
2011).
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3.8 Metal Tolerance Proteins (MTPs) Family

As their name suggests, these transporter proteins are involved in tolerance to
micronutrient metals accumulated at toxic levels. Plant MTPs are also known as
cation diffusion facilitator (CDF) family. Their main function is efflux of metal
cations out of cytosol either in subcellular compartments or to extracellular space.
Thus, the role of MTP members in heavy metal homeostasis, its detoxification and
hyperaccumulation has been discovered so far in plants (Ricachenevsky et al. 2013).
Among them, AtMTP1 and AtMTP3 are the most functionally characterized vacuo-
lar transporters. They preferentially transport Zn>* but also transport Ni**, Mn**,
Co”*, Cd** and Fe** with varied affinity (Arrivault et al. 2006). Structurally plant
MTPs possess six TMDs with their N- and C-termini towards cytosol. A conserved
CDF signature exists between TMD 2 and 3 (Gustin et al. 2011). A histidine-rich
cytoplasmic loop is also present between TMD 4 and 5. This cytoplasmic loop acts
as metal sensor to determine its cytoplasmic levels and determines metal selectivity.
MTPs function as H"-metal cation antiporters with broader substrate affinity. These
proteins are generally specified as Zn-CDFs, Fe/Zn CDFs and Mn-CDFs
phylogenetically based upon substrate metal ion. But they are also able to transport
other heavy metal divalent cations (Montanini et al. 2007). Anuradha et al. (2012)
confirmed an increase in expression of OsMTP1 on exposure to metals such as Fe,
Cu, Cd, Zn, etc. which accelerated metal accumulation in grain sinks.

3.9 CAX and VIT Family

Vacuolar sequestration of micronutrients is one of the mechanisms to maintain
micronutrient homeostasis in cytosol and for their precise allocation to desired
sinks. To fulfil this function, efflux transporters of CAX (cation exchanger) family
and VIT (vacuolar iron transporter) family are present on tonoplast.

3.9.1 CAX Family
CAX are cation/H* antiporters which belong to Ca®*/cation antiporter (CaCA)
superfamily (Shigaki and Hirschi 2006). Phylogenetically, CAXs are grouped into
three types with plant CAXs belong to category of Type I. Type I CAXs are further
divided in two distinct groups—Type IA and Type IB. CAX proteins are encoded by
a multigene family and have a structural characteristic of 11 TMDs (Shigaki et al.
2006). The TMDs are divided in three components as TMDI1, TMD2-6 and
TMD7-11. Among them, TMD1 contains a highly variant nine-amino-acid region
which regulates metal cation specificity during transport. Both components
TMD2-6 and TMD7-11 are thought to be formed with ancient duplication event.
A highly conserved cation-binding region is present between TMD 2 and 3 and
TMD7 and 8.

The presence of an N-terminal auto-inhibitory domain has also been detected in a
range of plant CAXs. Numerous CAXs have been functionally characterized in
Arabidopsis, barley, tomato and rice (Edmond et al. 2009; Kamiya et al. 2006). In
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Arabidopsis, AtCAX2 and AtCAX4 are involved in Cd**, Mn** and Zn>* detoxifi-
cation under heavy metal stress, while AtCAXS5 (ortholog of AtCAX2) regulates
only Mn** transport (Korenkov et al. 2007; Zhang et al. 2011) under metal excess.
Thus, a wide diversity is present among CAX orthologs for their functional
characteristics and broad substrate specificity which alters regulatory mechanism
of intracellular sequestration in vacuole.

3.9.2 VIT Family

VIT proteins mediate transport of ferrous ions into vacuoles and thus regulate Fe
homeostasis in plants. These transporter proteins exhibit high homology to CCC-1
(Ca**-cross-complementer) protein of yeast that catalyses intracellular storage of Fe
in vacuoles. The first member of VIT family identified in planta is AtVIT1 which is
involved in Fe loading in seed. Various VIT-1like protein (VTL) transporters have
been identified in Arabidopsis, rice, wheat, tulip, etc. which exhibit strong selectivity
for Fe>* but are also able to transport other metal cations, i.e. Zn>* and Mn** (Kim
et al. 2006; Gollhofer et al. 2014; Eroglu et al. 2017; Zhang et al. 2012; Sharma et al.
2020; Connorton et al. 2017; Momonoi et al. 2009). Differential tissue expressions
of these VIT and VTL transporters in plants allow capturing of excess cytoplasmic
Fe in vacuolar compartments of different sinks. While AtVIT1 has high expression
in provascular tissues of wild-type embryo (Kim et al. 2006), OsVIT1 and OsVIT2
are expressed in flag leaves and regulate partitioning of Fe and Zn in developing
grain (Zhang et al. 2012). Due to key role of VIT in Fe distribution of cereal grains,
they can act as a potential target in genetic biofortification.

Structurally VIT transporter is a dimeric protein where each monomer consists of
5-TMD and a cytoplasmic MBD (Kato et al. 2019). The respective N-and C-termini
of transporter protein are located towards cytoplasm and lumen of vacuole. The
MBD of VIT transporter constitutes 3-helical bundles which allow capturing of
cytoplasmic Fe®* ions from chelating molecule. The ion translocating pathway of
transporter protein is present at dimer interface with the presence of conserved
methionine and carboxylate residues that facilitate efficient transport of Fe to
vacuole. Further, transmembrane kinks due to the presence of proline and glycine
residues on TMDI and 2 are highly conserved among CCCI1/VIT1 family
transporters (Kato et al. 2019).

3.10 Natural Resistance-Associated Macrophages Protein
(NRAMP) Family

NRAMP family is a diverse class of integral membrane proteins with members
present in bacteria, fungi, animals and plants. They function in both inter- and
intracellular trafficking of a wide range of divalent metal ions such as Fe**, Zn**,
Mn?*, Cd**, Co?*, Cu**, Ni**, Ca®* and Pb** (Gunshin et al. 1997). Studies on
mouse Nramp2 revealed structural similarity of NRAMP protein with Slc 11.
NRAMP protein contains 10-12 TMD with a twofold inverted symmetry like
LeuT superfamily (Frickey and Lupas 2004). Further, the conserved hydrophobic
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core of 10TMD is divided into two direct repeats with TMD1-5 helix repeats have
inverted topologies (Cellier 2012; Czachorowski et al. 2009). The presence of
Nramp-specific polar residues within TMD1 and TMD6 has also been reported in
phylogenetic studies (Gu and Vander Velden 2002; Courville et al. 2008). In higher
plants, NRAMPs play an essential role in metal homeostasis. The first plant NRAMP
member is identified in Arabidopsis, i.e. AINRAMPI function as high-affinity Mn*
transporter, and plays an essential role in Fe homeostasis in planta (Curie et al. 2000;
Cailliatte et al. 2010). Functional homologs of NRAMP genes have been identified
in Arabidopsis (At NRAMP 1-6), rice (OsNRAMP 1-7), common bean
(Pv NRAMP 1-7) on organellar membrane and cell membrane, which are responsi-
ble for translocation of divalent metal ions to various sinks (Thomine et al. 2000;
Belouchi et al. 1997; Ishida et al. 2018). But some members such as Nratl and EIN2
are involved in AI** transport and ethylene signal transduction (Lu et al. 2018;
Alonso et al. 1999).

3.11 OPT/YSL Family

Oligopeptide transporters (OPT) are novel family of transporters which are involved
in transport of amino acids and oligopeptides (tri-penta peptides). In addition to
peptide substrates, a subfamily of OPT, i.e. yellow stripe 1-like (YSL), mediates
transport of metal complexes with peptides/amino acids across cellular membrane.
Basically, YSL functions as proton-coupled symporter of metal-chelate complex.
Their differential selectivity for metal substrates is dependent on extracellular loop
between TMD6 and 7 (Harada et al. 2007).

The first member identified of YSL/OPT family is ZmYS1, mutation of which
causes yellow stripes on maize leaves. These yellow stripes signify interveinal
chlorosis which is resulting from defective Fe uptake, from which the family gets
its name (Curie et al. 2001). Studies on ZmYS1 reveal function of this transporter in
transport of Fe-phytosiderophore complexes from root cell exterior to cytoplasmic
interior and further its symplastic loading to vasculature. Other metal cations such as
Zn**, Cu®* and Ni**, etc. are also transported by ZmYS1. Multiple YSL genes or
their putative homologs have been identified in plants with 18 members in rice
(Koike et al. 2004), 8 in Arabidopsis (DiDonato Jr et al. 2004), 5 in peanut (Xiong
et al. 2013) and 67 in wheat (Kumar et al. 2019) which mediate transport Fe?*-NA/
Fe**-MAs or other metal chelates to various tissues and have a key role in metal
homeostasis. Among them, AtOPT3, AtYSL1 and AtYSL3. OsYSL2, TcOPT3, etc.
are known to be involved in phloem loading of Fe, Zn and other mimic metal cations
in sink tissues (such as young leaves, developing fruits and seeds) for their accumu-
lation (Zhai et al. 2014; Waters et al. 2006; Chu et al. 2010; Ishimaru et al. 2010; Hu
et al. 2012). In addition to the above, other transporter families such as plant
cadmium resistance, multidrug and toxic compound extrusion family, etc. have
also been reported to regulate metal ion flux in plants.
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3.12 Sequestration and Accumulation of Micronutrients
in Vacuolar Compartments

The unique ionome composition of different cell types in each plant organ (i.e. root,
shoot, leaf, flower, etc.) suggests that cell-specific accumulation and tissue
distributions of metal nutrients are under strict regulation to maintain metal homeo-
stasis. It is thought that such regulation contributes to distinct physiology of particu-
lar cell type. In this regard, the subcellular organelle vacuole is central for
sequestration of metal cations, resulting in maintenance of their plasmatic concen-
tration and further detoxification. This property of vacuolar compartments, to act as
metal store house, is necessary for optimum cellular functioning. The compartmen-
talization of essential micronutrients/heavy metal cations in vacuoles depends upon
the functioning of tonoplast transporters and vacuolar pumps (i.e. members of VIT,
CAX and NRAMP family). Hyperaccumulators such as Arabidopsis halleri, Thlaspi
caerulescens, Dichapetalum gelonioides, etc. are found to accumulate high
concentrations of Zn**, Ni**, Cd**, etc. in root vacuoles just like
non-hyperaccumulators, but they differ in metal accumulation by aerial shoots
which is significantly higher in hyperaccumulator species due to increased expres-
sion of HMA proteins controlling long-distance vascular transport of micronutrient
metals.

Sequestration of micronutrient metal ions in leaf vacuoles is one of the tolerance
mechanisms to favour hyperaccumulation and detoxification in metal
hyperaccumulators. This also maintains nutrient supply in desired sinks at the time
of need. Despite of NA, MAs, histidine and organic acids (such as citrate, malate,
etc.) form chelating complexes with heavy metal micronutrients in subcellular
compartments including vacuole. In addition, cysteine-rich protein entities,
phytochelatins (PCs) and metallothioneins (MTs) are best characterized for their
metal-binding properties in plants. Despite of ubiquitous presence of MTs in animal
and plants, they share a common feature of heavy metal homeostasis with PCs. MTs
are gene-encoded low-molecular-weight peptides with a high percentage (20-30%)
of cysteine residues responsible for metal binding. In contrast, PCs are enzymatically
synthesized peptides having general formula y-(glutamic acid-cysteine), where
n = 2-11 with great affinity for heavy metal ions (Shukla et al. 2016). The sulfhydryl
group of cysteine moieties in PCs and MTs reacts with free metal ions in cell
cytoplasm and form low-molecular-weight complexes. These PC-metal/MT-metal
ion complexes are then transported to vacuolar compartments for their
detoxification.

4 Journey of Micronutrients to Seed (Grain) Sinks:
Long-Distance Phloem Transport of Micronutrients

The charged nature of micronutrient metal ions results in their specialized vascular
transport from root to shoot and then from shoot to other vegetative/reproductive
sinks. There is transition in a form of micronutrients absorbed, during the long-
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distance transport from root xylem to leaf phloem of minor veins, which affects their
mobility in phloem. In contrast to predominance of divalent cationic or metal-
organic acid form of micronutrients in xylem sap (pH ~ 5.5), they are generally
present in bound chelated form as metal NA, metal-DMA/phytosiderophores in
phloem sap (pH ~ 7.3-8.5) to avoid their precipitation during delivery to sink
tissues. It is well known that phloem is the main translocating tissue which supplies
sugars and mineral nutrients to developing plant sinks irrespective of their location.
However, the loading of micronutrients in phloem at site of source (i.e. leaf meso-
phyll/xylem vessel at minor veins) can be apoplastic or symplastic depending upon
the activity of associated companion cell. There can be a direct loading of metal
cations from xylem into phloem parenchyma in minor veins due to their close
proximity. Transfer cells in phloem mediate such apoplastic loading of
micronutrients. The invaginated wall growths and numerous membrane transporters
on transfer cells favour greater nutrient fluxes (Sondergaard et al. 2004). The
presence of membrane H*-ATPase further boosts up secondary active transport of
nutrients in apoplastic loaders. Another route is the symplastic loading of metal
chelates (metal NA, metal-DMA/phytosiderophores, metal PCs) from mesophyll
cells into intermediary cells of sieve element complex via plasmodesmatal
connections.

Mutation studies and researches on metal tolerance mechanism of
hyperaccumulators revealed that nonproteinogenic amino acid NA is most favoured
organic ligand for several micronutrient metals in phloem. NA is also found to form
stable complexes with Mn>*, Fe**, Co**, Zn**, Ni** and Cu®* in vitro (Anderegg
and Ripperger 1989). Overexpression of NA biosynthetic genes, i.e. nicotianamine
synthase (NAS) in soybean (Nozoye et al. 2014), sweet potato (Nozoye et al. 2017),
tobacco (Kim et al. 2005), rice (Masuda et al. 2009; Lee et al. 2011), etc. through
transgenics, has been found to increase the Fe and Zn concentration of leaves and
respective sink organs (i.e. root in sweet potato and seeds in rice and soybean). These
investigations also support the role of NA in shoot to root signalling of iron and its
remobilization from mature to developing tissues. But NA is the sole player in metal
translocation; this assumption has been negated with discovery of OsYSL15 in rice
which performs dual function of phloem translocation of Fe> *-DMA in addition to
its rhizospheric uptake (Inoue et al. 2009). So other metal ligands such as DMA,
histidine and phytochelatins have also been associated in phloem translocation of
micronutrients.

In plants, the immature organs act as sinks during their early growth and depend
upon source for organic and inorganic nutrition. During a particular growth stage,
there can be more than one sink for the source leaves, so the allocation/partitioning
of nutrients to diverse sinks decides their accumulation in desired sinks under such
situation. Thus, in food crops where grains or seeds are economic sinks, total nutrient
concentrations in phloem and its distribution towards developing grains are of equal
importance. But if the whole shoots are to be consumed as human or animal food,
then the total micronutrient contents of shoot matter the most than nutrient
allocation. Nutrient remobilization from mature leaves to developing sinks during
senescence also boosts the supply of micronutrients. The role of some senescence-
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responsive genes in micronutrient loading of seeds has also demonstrated. One such
example is NAM genes in wheat whose reduced expression was found to decline
nutrient partitioning to grain and lowered grain Fe and Zn contents (Waters et al.
2009).

Another key molecular player in micronutrient transport to the sinks (grains/
leaves) is YSL transporter family. As mentioned earlier, YSL transporters are
involved in transport of metal chelates especially NA-metal complex. YSLs of
Arabidopsis, particularly AtYSL1 and AtYSL3, are involved in delivery of Fe, Zn,
Cu and Mn to reproductive organs. Mutations in these YSL genes cause impaired
vascular transport of metal micronutrients during senescence and thus limit metal
accumulation in seed. Similarly, YSL ortholog in rice OsYSL2 mediates phloem
transport of Fe and Mn in aerial shoots and metal loading in seeds (Ishimaru et al.
2010). Thus, better understanding on regulation of such metal transporters in long-
distance micronutrient signalling will help in bioengineering of staple crops with
high micronutrient density.

5 Future Scenario: The Way Ahead

Although recent tools of molecular breeding are continuously harnessing genetic
diversity of wild germplasm to enhance micronutrient density of food crops, there is
a need to find cell-specific and developmental-stage-specific regulators controlling
the metal-oriented circuits to maintain homeostasis. The complex interactions of
these essential micronutrients with toxic mimic cations (such as Pb, Cd, Hg, etc.) and
other macronutrients (N, P, S, etc.) need to be explored more in order to enhance
metal absorption in edible sinks. Inclusion of modern system biology and omics
approaches in biofortification studies will be able to enhance our understanding on
mechanism of root to shoot signalling with better regulation of metal loading in seed
sinks. Understanding transcriptional and post-transcriptional regulation of genes
encoding transporter proteins can be another promising research avenue which
will help us to increase uptake and translocation micronutrients in seed. In addition
to the above, novel senescence-associated genes should be identified to facilitate
metal remobilization towards developing sinks.
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