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Abstract. This paper deals with the nonlinear bending response of function-
ally graded porous beams reinforced by graphene platelets (GPLs) with various
boundary conditions using the Ritz method. Based on the trigonometric shear
deformation beam theory and the von Kárman type of geometrical nonlinearity
strains, the system of nonlinear governing equations is derived using the minimum
total potential energy principle. This system of nonlinear equations is then solved
by the Newton–Raphson method. The comparison with the available published
results validates the obtained results. The effects of the porosity distribution pat-
terns, the porosity coefficient, the GPL reinforcements, the slenderness ratios and
the boundary conditions on the nonlinear deflection of the FGP porous beam are
also investigated.

Keywords: Porous beam · Nonlinear bending · Ritz method · Trigonometric
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1 Introduction

Functionally graded materials (FGMs) are a class of composites that are firstly invented
by Japanese scientists in 1984. FGMs are characterized by a continuous variation in both
composition andmaterial properties in one or more directions, thus eliminating interface
problems and diminishing the stress concentration that normally exists in conventional
laminated composites [1, 2].

Porous materials (metal foams) are a new class of FGMs characterized by low den-
sity, lightweight, good stiffness and excellent energy absorption, Porosities inside metal
foams can be distributed in different manners. Their mechanical properties are signifi-
cantly influenced by the amount of porosities and their pattern of distribution. To archive
desire material properties, graded non-uniform porosities are introduced to produce FG
metal foams which have been proved to have better structural response than the normal
uniform foams and are investigated by the increasing number of researchers [3–10].

Introducing nanofillers into porous materials is a practical way to strengthen their
mechanical properties and maintain their potential for lightweight structures simultane-
ously. The properties of suchmaterials can be significantly improvedwith the addition of
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nanofillers in the form of carbon nanotubes (CNTs) and graphene platelets (GPLs). Thus,
carbon nanotube reinforced beams and plates have been extensively studied to examine
their static and dynamic response [11–15]. Until now, static and dynamic analysis of
GPL reinforced structures is still at the beginning stage [16–20].

A nonlinear static analysis is required for any static application in which the stiff-
ness of the entire structure changes during the loading scenario. Many works focused
on nonlinear behaviours of beams and plates are reported in the existing literature. Feng
et al. [21] studies the nonlinear bending behavior of Timoshenko multi-layer polymer
nanocomposite beams reinforced with GPLs using Ritz method. Shen et al. [22] stud-
ied the large amplitude vibration of functionally graded graphene-reinforced composite
laminated plates resting on an elastic foundation and in thermal environments based
on a higher-order shear deformation plate theory and perturbation technique. Wu et al.
[12] analyzed nonlinear vibration of imperfect FG-CNTRC beams is based on the first-
order shear deformation beam theory and von Kármán geometric nonlinearity. Ke et al.
[15] investigated the nonlinear free vibration of FG nanocomposite beams reinforced by
single-walled carbon nanotubes (SWCNTs) based on Timoshenko beam theory. Barati
et al. [20] used a refined beammodel to investigate the post-buckling behavior of geomet-
rically imperfect porous beams reinforced with graphene platelets. Yas and Rahimi [23]
presented thermal buckling of FG porous nanocomposite beams subjected to a thermal
gradient using the generalized differential quadrature method.

This paper deals with the geometrically nonlinear bending analysis of functionally
graded porous beams reinforced by graphene platelets with various boundary conditions
using the Ritz method. GPLs are distributed in the thickness direction with uniform
and nonuniform patterns. Uniform, symmetric, and asymmetric distributions of porosity
have been considered. After conducting the validate example, the effects of the porosity
distribution patterns, the porosity coefficient, the GPL reinforcements, the slenderness
ratios and the boundary conditions on the nonlinear deflection of the FGP porous beam
are investigated in detail.

2 Material Properties

Consider a beam with thickness h, width b, and length L defined in the Cartesian coor-
dinate system (x, z) as shown in Fig. 1. The porosity distributes within the thickness
according to the symmetric, asymmetric and uniform laws below [24].

⎧
⎨

⎩

ψ(z) = cos(πz/h)
ψ(z) = cos

(
πz/2h + π

4

)

ψ(z) = ψ0

(1)

This porosity distribution leads to a variety of material properties as follows.
⎧
⎪⎨

⎪⎩

Ez = Ec[1 − e0ψ(z)]

Gz = Ez/[2(1 + νz)]

ρz = ρc[1 − emψ(z)]

(2)

Where Ec and ρc denote the Young modulus and the mass density of the material with-
out porosity, respectively; E′

1, E′
2 (ρ1, ρ2) denote the maximum, minimum Young’s
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Porosity distribution 1 Porosity distribution 2 Uniform distribution

Fig. 1. Porosity distribution: symmetric, asymmetric and uniform laws

modulus (mass density) without GPLs of the non-uniform porosity distribution and that
of the uniform law is denoted by E

′
; The porosity coefficient e0 and the mass density

coefficient em are defined by e0 = 1 − E′
2/E

′
1 and em = 1 − ρ2/ρ1.

Based on the relationship between the mechanical properties of closed-cell cellular
solids (3) that is fitted from statistical Gaussian Random Fields model [25],

Ez

Ec
=
[(

ρz

ρc
+ 0.121

)

/1.121

]2.3 (

0.15 <
ρz

ρc
< 1

)

(3)

the coefficient of mass density em is determined and presented by.

em = 1.121
[
1 − 2.3

√
1 − e0ψ(z)

]

ψ(z)
(4)

The coefficientψ0 will be determined assuming all the uniformand non-uniformporosity
beams have the same mass, that leads to:

ψ0 = 1

e0
− 1

e0

⎡

⎢
⎣

⎛

⎜
⎝

1

hρc

h/2∫

−h/2

ρzdz + 0.121

⎞

⎟
⎠/1.121

⎤

⎥
⎦

2.3

(5)

Poisson’s ratio νz can be obtained as [26]

νz = 0.221p′ + νc

(
0.342p′2 − 1.21p′ + 1

)
(6)

where νc denotes the Poisson’s ratio of pure matrix materials without pores and

p′ = 1 − ρz

ρ1
= 1.121

(
1 − 2.3

√
1 − e0ψ(z)

)
(7)

The GPLs disperse within the beam with the volume fraction VGPL varies functionally
graded along the z axis. Three different GPL dispersion patterns (8), denoted by A, B
and C, are considered for each porosity distribution and graphically presented in Fig. 2.

⎧
⎨

⎩

VGPL = si1[1 − cos(πz/h)] Pattern A
VGPL = si2[1 − cos(πz/2h + π/4)] Pattern B
VGPL = si3 Pattern C

(8)
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Where the maximum value
(
sij − i, j = 1, 2, 3

)
of the GPL volume fraction depends on

the porosity distribution and need to be determined via the relation between the weight
fractionWGPL of GPL nanofillers and its volume content.

WGPL

WGPL.ρm + ρGPL − WGPL.ρGPL

h/2∫

−h/2

ρz

ρc
dz =

h/2∫

−h/2

VGPL
ρz

ρc
dz (9)

GPL dispersion A GPL dispersion B GPL dispersion C

Fig. 2. GPL dispersion patterns

The effective Young’s modulusEc is determined by the Halpin-Tsai micromechanics
model [27–29] as

Ec = 3

8

(
1 + ξGPLL .ηGPLL .VGPL

1 − ηGPLL .VGPL

)

Em + 5

8

(
1 + ξGPLW .ηGPLW .VGPL

1 − ηGPLW .VGPL

)

Em (10)

in which ξGPLL = 2LGPL/tGPL, ξGPLW = 2wGPL/tGPL and Em is Young’s modulus of the
metal matrix; LGPL, tGPL and wGPL are the GPL’s average length, thickness and width;
ηGPLL , ηGPLW can be computed by

ηGPLL = EGPL−Em
EGPL+ξGPLL Em

ηGPLW = EGPL−Em
EGPL+ξGPLW Em

(11)

The mass density and Poisson’s ratio of the nanocomposite are given by the rule of the
mixture as

ρc = ρGPL · VGPL + ρmVm

νc = νGPL · VGPL + νmVm
(12)

inwhichρGPL, νGPL andVGPL (ρm , νm andVm = 1−VGPL) aremass density, Poisson’s
ratio, and volume fraction of GPLs (metals), respectively.
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3 Formulations

The displacement field of the beam is assumed having the trigonometric model [30]

u(x, z, t) = u0(x, t) − zw0,x + h
π
sin
(

πz
h

)
θx

w(x, z, t) = w0(x, t); (13)

where u0;w0 are the axial and transverse displacement components on the mid-plane
(z = 0) of the beam; θx is the mid-plan rotation of transverse normal.

The strains field from the kinematic equations incorporating nonlinear strain
components by von Karman’s assumptions are stated as follows

{
εxx = u0,x − zw0,xx + h

π
sin
(

πz
h

)
θx,x + 1

2w
2
0,x

γxz = cos
(

πz
h

)
θx

(14)

The stress components in the beam are determined from Hooke’s law.
{

σxx

σxz

}

=
(
C11 0
0 C66

){
εxx

γxz

}

(15)

where

C11 = Ez

1 − ν2z
C66 = Gz = Ez

2(1 + νz)
(16)

with νz is the Poisson’s ratio.
The elastic potential energy of the beam is determined by.

U = 1

2

∫

A

L∫

0

(σxxεxx + σxzγxz)dxdA (17)

Introducing (14) into (17) one obtains.

U = 1

2

∫

A

L∫

0

(σxxεxx + σxzγxz)dxdA = 1

2

L∫

0

⎛

⎜
⎜
⎝

Au20,x + Dw2
0,x + H∗θ2x,x + 0.25Aw4

0,x

+2Bu0,xw0,xx + 2B∗u0,xθx,x + Au0,xw
2
0,x

+2D∗w0,xxθx,x + Bw0,xxw
2
0,x + B∗θx,xw

2
0,x

⎞

⎟
⎟
⎠dx

+ 1

2

L∫

0

(
A∗θ2x

)
dx (18)

where the stiffness components are

(
A;B; D ;B∗; D∗; H∗) = bEz

∫ h
/

2−h/
2

[
1; −z; z2; h

π sin
(
πz
h

); hz
π sin

(
πz
h

); h2

π2 sin2
(
πz
h

)]
dz

A∗ = b
∫ h
/

2−h/
2
Gz cos2

(
πz
h

)
dz;

(19)
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The potential energy of external loads V is written as.

V = −b
∫ L

0
q0w0dx (20)

where q0 is the transverse distributed load applied at the top surface of the beam
(z = h/2). The total potential energy is defined by.

� = U + V (21)

4 Ritz Method

The Ritz method is based on the expansion of the displacement components in series of
algebraic functions that satisfy the boundary conditions [31].

u0(x, t) =
n∑

i=1

ciϕi; w0(x, t) =
n∑

j=1

djψj; θx =
n∑

k=1

ekφk (22)

ci, dj, ek are the unknown coefficients need to be determined and ϕi, ψj, φk are the
admissible functions that have the form of increased order polynomials.

ϕi = fu x
i−1; ψj = fw xj−1; φk = fθ x

k−1 (i, j, k = 1, 2, . . . , n) (23)

where n is the number of terms in the expansion and f∗ = xp∗(L − x)q∗ with p∗, q∗ are
the boundary condition representative coefficients as in Table 1 and (∗ = u,w, θ ).

Table 1. Value of the boundary condition representative coefficients (Clamped-C; Hinged-H;
Free-F)

BCs C-C H-H C-F C-H

pu 1 1 1 1

qu 1 1 0 0

pw 2 1 2 2

qw 2 1 0 1

pθ 1 0 1 1

qθ 1 0 0 0

Nonlinear governing equations of the bending beam are obtained using the principle
of minimum total potential energy. The stationary condition of the total potential energy
yields.

∂�

∂ci
= 0; ∂�

∂dj
= 0; ∂�

∂ek
= 0 (i, j, k = 1, ..., n) (24)

As the system of Eqs. (24) is nonlinear, it should be solved by an iterative algorithm,
such as the Newton-Raphson method that is used in this research.
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5 Numerical Results and Discussions

In this section, we firstly test the convergence and the validation of the numerical results.
Then, the effect of GPL dispersion patterns, weight fractions (wt.%), porosity coeffi-
cients, boundary conditions and slenderness ratios on the nonlinear bending behavior of
the functionally graded porous nanocomposite beam are also carried out. The material
properties and geometrical parameters of the GPLs and the copper metal matrix are
referred to [26] and are listed below:

wGPL = 1.5μm; LGPL = 2.5μm; tGPL = 1.5ηm; EGPL = 1.01TPa; ρGPL =
1602.5 kg/m3; νGPL = 0.186; Em = 130GPa; ρm = 8960 kg/m3; νm = 0.34.

In all analyses, dimensionless deflections and uniformly distributed loads are defined
as:

w = w

h
; q0 = 12 · q0 · L3

Eh3
(25)

a. Convergence test

This test aims at studying the convergence of the bending deflection when the number of
terms of the series expansion (n) increases. Table 2 shows the dimensionless deflection
of the beam with porosity distribution 1, GPLs dispersion pattern A, various boundary
conditions H-H, C-C, C-H, C-F, and under dimensionless load q0 = 100. It is obviously
observed that the results converge when the number of terms of the series expansion
from n = 9. Hence, this number will be used in all analyses below.

Table 2. Convergence of the maximum dimensionless deflection when the number of terms in
the expansion increases (L/h = 20; e0 = 0.5; WGPL = 1%)

N H − H C − C C − H C − F

2 1.7949617 1.3902453 1.5942035 8.13876650

4 1.8733061 1.4928277 1.6819245 9.98223780

6 1.8697857 1.5236849 1.7032373 10.2700112

7 1.8708479 1.5232990 1.7048970 10.3028099

8 1.8709485 1.5222694 1.7034279 10.3188111

9 1.8709256 1.5225556 1.7044578 10.3274922

10 1.8709243 1.5270215 1.7066475 10.3322133

11 1.8709295 1.5269125 1.7068624 10.3350252

b. Validation

The validation of the present results is performed by comparing with those of Zhang
[32]. In [32], the author studied the nonlinear bending of an aluminum beam with H-H,
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C-C boundary conditions, under a transverse uniform load by using the third-order shear
deformation theory and Ritz method. The material properties are E = 70 MPa, ν =
0.3; length-to-thick ratio L/h = 20.

Themaximum dimensionless deflectionswmax are presented in Table 3. An excellent
agreement is found and this confirms the reliability of the present approach.

Table 3. Comparison of maximum dimensionless deflection of the isotropic beam under various
boundary conditions (BCs.)

BCs Beam theories Dimensionless uniformly distributed load

q0.L
4/E/h4

1 8 30 80 120 200

H-H PSDBT [32] 0.1474 0.5980 1.053 1.515 1.748 2.086

Present 0.1474 0.5979 1.053 1.515 1.748 2.087

C-C PSDBT [32] 0.0321 0.2460 0.7042 1.221 1.475 1.837

Present 0.0321 0.2450 0.6972 1.221 1.468 1.835

iii. Effect of porous and GPL distribution laws

The porous beams reinforced by graphene platelets with L/h = 20 are subjected to
uniformly distributed load (q0 = 100) and various boundary conditions. TheGPLweight
fraction and the porosity coefficient areWPGL = 1% and e0 = 0.5. The combined effect
of porosity distribution laws and GPL dispersion patterns on maximum dimensionless
deflection are presented in Table 4.

Table 4. Maximum dimensionless deflection with various boundary conditions and different
combinations of porosity distribution law and GPLs dispersion pattern

L/h BCs Porosity distribution type q0 = 100

GPL dispersion pattern

A (sym.) B (asym.) C (uniform)

20 H-H 1 (sym.) 1.87084 1.81011 1.90367

2 (asym.) 1.81897 1.77270 1.85013

3 (uniform) 1.91155 1.84638 1.92413

C-C 1 (sym.) 1.52329 1.60475 1.59554

2 (asym.) 1.58860 1.64765 1.64506

3 (uniform) 1.59802 1.66172 1.65444

(continued)
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Table 4. (continued)

L/h BCs Porosity distribution type q0 = 100

GPL dispersion pattern

A (sym.) B (asym.) C (uniform)

C-H 1 (sym.) 1.70489 1.70541 1.75250

2 (asym.) 1.70431 1.70643 1.74336

3 (uniform) 1.75834 1.74970 1.78728

C-F 1 (sym.) 10.30280 10.52577 10.46521

2 (asym.) 10.46160 10.47703 10.52795

3 (uniform) 10.65099 10.75091 10.68225

Results indicate that in general, the combination of the GPL distribution patterns
and the porosity distribution laws produces different deflection values. Under differ-
ent boundary conditions, each porosity distribution law has specific GPL distribution
pattern to achieve maximum stiffness of beams. In most cases (C-C, C-F; CH bound-
ary conditions), the beams with symmetric GPL and porosity distribution possess high
flexural stiffness due to the high GPL concentration and less porosity near the top and
bottom surface. Hence, detailed investigation (unless otherwise specified) is performed
by assuming the symmetrical distribution for porosity and GPL in the beam.

iv. Effect of porosity coefficient

Consider a porous beam reinforced by graphene platelets with L/h = 20,
WPGL = 1%, subjected to various levels of uniformly distributed load q0 =
0; 25; 50; 75; 100; 125; 150; 175; 200. The maximum dimensionless deflections
of the beam for different values of porosity coefficients e0 = 0; 0.2; 0.4; 0.6; 0.8 are
tabulated in Table 5.

Table 5. Maximum dimensionless deflection under various level load and different values of
porosity coefficient.

BCs e0 q0

0 25 50 75 100 125 150 175 200

H-H 0.0 0 0.9665 1.2764 1.4878 1.6538 1.7928 1.9136 2.0212 2.1187

0.2 0 1.0139 1.3360 1.5559 1.7287 1.8734 1.9992 2.1113 2.2128

0.4 0 1.0703 1.4073 1.6375 1.8184 1.9700 2.1019 2.2193 2.3257

0.6 0 1.1400 1.4955 1.7386 1.9298 2.0901 2.2294 2.3536 2.4661

0.8 0 1.2315 1.6116 1.8718 2.0766 2.2483 2.3976 2.5307 2.6514

(continued)
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Table 5. (continued)

BCs e0 q0

0 25 50 75 100 125 150 175 200

C-C 0.0 0 0.5467 0.8876 1.1258 1.3113 1.4650 1.5974 1.7143 1.8195

0.2 0 0.5870 0.9439 1.1917 1.3845 1.5442 1.6818 1.8032 1.9125

0.4 0 0.6355 1.0111 1.2705 1.4720 1.6390 1.7828 1.9098 2.0240

0.6 0 0.6963 1.0949 1.3687 1.5812 1.7572 1.9087 2.0426 2.1630

0.8 0 0.7793 1.2080 1.5006 1.7276 1.9154 2.0772 2.2200 2.3485

C-H 0.0 0 0.7735 1.1007 1.3212 1.4927 1.6353 1.7586 1.8679 1.9665

0.2 0 0.8186 1.1586 1.3877 1.5660 1.7143 1.8425 1.9562 2.0588

0.4 0 0.8722 1.2276 1.4672 1.6537 1.8088 1.9430 2.0620 2.1694

0.6 0 0.9385 1.3131 1.5658 1.7626 1.9263 2.0679 2.1935 2.3077

0.8 0 1.0264 1.4265 1.6965 1.9068 2.0819 2.2334 2.3685 2.4930

C-F 0.0 0 5.1097 6.7102 7.8252 8.7093 9.4534 10.1021 10.6808 11.2055

0.2 0 5.4501 7.1531 8.3394 9.2798 10.0712 10.7609 11.3761 11.9339

0.4 0 5.8423 7.6627 8.9305 9.9352 10.7804 11.5169 12.1737 12.7691

0.6 0 6.3040 8.2615 9.6242 10.7035 11.6112 12.4019 13.1068 13.7458

0.8 0 6.8715 8.9950 10.4718 11.6405 12.6228 13.4781 14.2405 14.9314

a) H-H b) C-C

c) C-H d) C-F

Fig. 3. Effect of porosity coefficients on the maximum dimensionless deflection of the reinforced
porous beam
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The load-deflection curves for different values of porosity coefficients are presented
in Fig. 3. It can be observed that the maximum deflections increase nonlinearly as the
uniformly distributed loads increase for all values of porosity coefficients. Themaximum
deflections are bigger as the porosity coefficients increase, this is because the stiffness
of the beams decreases as the porosity coefficients increase.

e. Effect of GPL weight fraction
The same beam with abovementioned input geometric and loading data is con-
sidered. Maximum dimensionless deflection of the porous beam with porosity
coefficient e0 = 0.4 and different values of GPL weight fraction WPGL =
0%; 0.2%; 0.4%; 0.6%; 0.8% are tabulated in Table 6. Effects of GPL weight
fraction on maximum dimensionless deflection are illustrated by loads-deflection
curves in Fig. 4. Results show that as GPL volume fraction is increased, the stiffness
of the beams is significantly improved. This causes the deflection to decrease for all
boundary conditions of the beams.

Table 6. Maximum dimensionless deflection under various load levels and different values of
GPL weight fraction.

BCs WPGL q0

0 25 50 75 100 125 150 175 200

H-H 0.0 0 1.2375 1.6049 1.8577 2.0571 2.2246 2.3705 2.5006 2.6185

0.2 0 1.1864 1.5444 1.7903 1.9840 2.1467 2.2882 2.4144 2.5289

0.4 0 1.1425 1.4925 1.7324 1.9213 2.0797 2.2176 2.3405 2.4518

0.6 0 1.1041 1.4472 1.6819 1.8666 2.0214 2.1561 2.2761 2.3848

0.8 0 1.0703 1.4073 1.6375 1.8184 1.9701 2.1019 2.2193 2.3257

C-C 0.0 0 0.8489 1.2617 1.5407 1.7572 1.9369 2.0918 2.2290 2.3525

0.2 0 0.7812 1.1842 1.4576 1.6697 1.8456 1.9972 2.1312 2.2520

0.4 0 0.7246 1.1181 1.3865 1.5947 1.7673 1.9159 2.0473 2.1656

0.6 0 0.6767 1.0611 1.3247 1.5295 1.6991 1.8451 1.9742 2.0904

0.8 0 0.6355 1.0111 1.2705 1.4720 1.6390 1.7828 1.9098 2.0240

C-H 0.0 0 1.0623 1.4445 1.7035 1.9060 2.0750 2.2246 2.3583 2.4793

0.2 0 1.0038 1.3781 1.6312 1.8288 1.9936 2.1363 2.2662 2.3838

0.4 0 0.9538 1.3210 1.5691 1.7625 1.9236 2.0631 2.1872 2.3020

0.6 0 0.9104 1.2714 1.5149 1.7047 1.8626 1.9993 2.1205 2.2308

0.8 0 0.8722 1.2276 1.4672 1.6537 1.8088 1.9430 2.0620 2.1694

C-F 0.0 0 6.6034 8.5794 9.9566 11.0477 11.9656 12.7653 13.4786 14.1253

0.2 0 6.3624 8.2882 9.6302 10.6936 11.5882 12.3676 13.0627 13.6929

0.4 0 6.1611 8.0454 9.3583 10.3988 11.2740 12.0367 12.7168 13.3333

0.6 0 5.9899 7.8396 9.1281 10.1492 11.0083 11.7568 12.4243 13.0294

0.8 0 5.8423 7.6627 8.9305 9.9352 10.7805 11.5169 12.1737 12.7692
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a) H-H b) C-C

c) C-H d) C-F

Fig. 4. Effect of GPL weight fraction on maximum dimensionless deflection

f. Effect of the slenderness ratio

In this example, we consider a beamwith input parameters: e0 = 0.4,WPGL = 1%, sub-
jected to uniformly distributed load q0 = 100. Maximum dimensionless deflections of
the porous beamwith various values of slenderness ratioL/h = 5 ; 10 ; 20 ; 30 ; 40 ; 50
are shown in Table 7.

Table 7. Effect of slenderness ratio on the maximum dimensionless deflection.

BCs L/h

5 10 20 30 40 50

H-H 1.0855 1.4091 1.8184 2.1019 2.3258 2.5139

C-C 0.8609 1.0830 1.4720 1.7645 1.9981 2.1942

C-H 0.9734 1.2561 1.6537 1.9359 2.1593 2.3468

C-F 6.1399 7.7835 9.9352 11.4748 12.7085 13.7525

The effect of slenderness ratio on the maximum dimensionless deflection is depicted
in Fig. 5. It is clearly observed that the beam’s deflection augments nonlinearly when
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the slenderness ratio increases. This effect is the strongest for the cantilever beam (C-F)
and is demonstrated by the separate line of the C-F beam in Fig. 5.

Fig. 5. Effect of slenderness ratio on the maximum dimensionless deflection

6 Conclusions

In this paper, theRitzmethod is used to study the geometrically nonlinear bending behav-
ior of the metal foam beams reinforced by GPLs under various boundary conditions. The
validation examples are conducted and showed a good agreement with existing results in
a published article. Numerical results reveal that the porosity distribution law, porosity
coefficient, GPL distribution pattern, GPL weight fraction, and slenderness ration of the
beam and boundary conditions have great influences on the nonlinear bending response
of the beam. In addition, the effect of the porosity coefficient on the beam deflection is
more significant than that of the GPL weight fraction.
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