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Abstract. This report presents some experimental results of the effect of the
Coulomb friction on the resonant frequency of the two-mass system connected by
a nonlinear leaf spring. The experimental apparatus designed and built has an abil-
ity to vary the excitation frequency, the excitation force and friction force. Exper-
imental data show that the resonance frequency of the system tends to decrease
when increasing the friction force. The resonant frequency of the system can be
expressed as the functions depending both on the amplitude of excitation force and
on the Coulomb friction force. The experimental results serve as the basic premise
for the development of studies applied in self-movement structure operating under
different resistant environments.
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1 Introduction

The nonlinear oscillator consists of two masses connected by one spring is the basic
model used to theoretically study and applied to a variety of research fields, such as
vibrations, multi-body systems, structural dynamics and transportation… especially in
the operability of a self-moving mechanism (new locomotion system) [1–6]. Generally,
the mathematical model of the system contains two ordinary conjugate differential equa-
tions with cubic non-linearity. Some researchers have presented several techniques for
solving analytically a second order differential equation with various strong non-linear
characteristic. S.K. Lai and C.W. Lim [5] used an analytical approach developed for
non-linear free vibration of a conservative, two degrees of freedom mass-spring sys-
tem having linear and non-linear stiffness (with model in Fig. 1). Max–Min Approach
(MMA) is applied to obtain an approximate solution of three practical cases in terms
of a non-linear oscillation system [3]. Recently, many researchers based on two-mass
one-spring model developed the mobile devices employing vibration for motion, also
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called vibration-driven locomotion systems; such as designing, modeling and experi-
mental validation; dynamical analysis; optimal progression and motion control [7–13].
Figure 2 is the physical model of the system employing vibration for motion.

However, most of these studies have not yet evaluated the effect of friction on the
mechanical movement. In previously theoretical studies, the friction usually is not fully
considered. In fact, the self-moving models, such as biomedical applications of cap-
sule and rehabilitation robots in medical, pipe capsule robots… have to work in dif-
ferent environments, where the environmental resistance is different. Therefore, the
study of self-movement under different resistance conditions is very important. Recently,
Christoph Kossack et al. [14] reported frequency response function (FRF) determined
by either experiment or simulation for a dynamic oscillator with a sliding friction contact
(Coulomb friction). The results of this study have been just used for single degree of
freedom (SDOF) system, thus haven’t applied to capsule robots.

Fig. 1. Basic system of the two masses connected by
linear or non-linear spring [2, 3, 5]

Fig. 2. Physical model of the system

With vibration-driven locomotion systems based on two masses one spring, phe-
nomenon resonance plays an important role. When an oscillating force is applied at a
resonant frequency of a dynamical system, the systemwill oscillate at a higher amplitude
than when the same force is applied at the others, i.e. non-resonant frequencies. Math-
ematically, when a system operates at resonant frequency, there is a 90° phase between
the exciting force and the system’s response. Therefore, it’s possible to say that the force
is in phase with the speed response of the system. It means that the sense of the force
is the same as the sense of the motion [15, 16]. Consequently, the exciting force applies
permanently in the direction and does positive work-done on the system body. This can
enhance the effectively changing energy of the system.

This study uses the model of two masses connected by a nonlinear spring to evalu-
ate oscillation of mechanical system, specifically in terms of vibration resonance. The
research results are very significant in assessing the ability of vibration-driven system
under the different resistance conditions.

2 Design and Setup the Model of Apparatus

2.1 Design and Setup Experimental Apparatus

Design and prototype are two cornerstone aspects in studying vibration-driven loco-
motion systems. Generally, the design of vibration-driven locomotion systems is based
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on the mechanics of the interaction between the inertial mass and the system body. In
such system, the inertial mass is excited and controlled to periodically move inside the
system body, creating the inertial force when changing either its direction of motion,
or acceleration, or velocity. The locomotion thus can be generated with the presence of
inertial force inside and resistant force from surrounding environment.

Fig. 3. (a) The experimential diagram and (b) experimential apparatus

This experimental study uses an apparatus based on the model of two masses and a
non-linear leaf spring system, as shown in Fig. 2 and Fig. 3. A mini electro-dynamical
shaker (1) is placed on a slider of a commercial linear bearing guide (3), providing a
tiny friction force. An additional mass (2) was clamped on the shaker shaft. Generally,
a sinusoidal current applying to the shaker leads to relative linear oscillation of the
shaker shaft with the inertial mass added on, creates the excitation force Fe. This force
depends on the current supplied and can be adjusted the sinusoidal voltage supplying
to the amplifier. The moveable mass, combined by the addition mass and the shaker
shaft, is assigned as inertial massm1, playing the role of the internal mass of the capsule
robot. A non-contact position sensor (6), model Kaman KD-2306, was used to measure
the relative motion of the inertial mass and the shaker body, i.e. measuring X1–X2.
The movement of the shaker body was recognized by a linear variable displacement
transformer (LVDT), i.e. absolute distance X2. A carbon tube (4) is connected with the
shaker body by means of a flexible joint, avoiding any misalignment when moving. As
shown on Fig. 4(a), the carbon tube is able to slide between two aluminum pieces in the
form of a V-block (5). The two V-blocks are fixed on two electromagnets (7). The body
shaker, including the sensors LVDT and the carbon tube, was referred as the mass m2

of the mass-spring model. The total weight of additional mass and the shaker shaft was
considered as the inertial mass m1.

A set of tests was carried out to determine the stiffness of leaf spring connecting the
movable shaft with the shaker body. It is noted that the shaker bodywas fixed on the slider
during these tests. A string was attached to the shaker shaft and rode over a pulley while a
series of certain masses were hung on the other end of the string. The gravitational force
of the masses pulled the shaft moving forward. The displacement of the shaker shaft,
corresponding to each level of masses, was measured by using the non-contact position
sensor. A nonlinear curve fitted with the cubic function was then applied to determine
the relationship between the gravitational force and the movement. The experiment
tests revealed that the spring is a nonlinear spring with hard characteristics (the cubic
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term is positive). In addition, the damping coefficient, c was determined by logarithmic
decrement method.

2.2 Experimental Operation

Supplying a certain value of electrical current to the electromagnets provides a desired
clamping force on the tube and thus receiving a corresponding value of sliding friction.
The friction force was measured by pushing or pulling the body to move at a steady
speed Vs. Experimental data revealed that the friction force Ff depends on the applied
voltage V by fitted curve in the following relationship:

Ff = 1.52889 + 0.13591 ∗ e1.25642∗V (1)

This is configuration allows varying the friction force without changing the body
mass and thus can experimentally checkwith the locomotion capacity in different friction
levels. The signals from the sensors were captured by a data acquisition system (DAQ)
and then stored and analyzed.

Fig. 4. Varying the friction force: (a) apparatus structure and (b) the dependency of friction force
on supplied voltage

A supplementary experiment was implemented to determine the relationship of the
magnetic force and the supplied current. A load-cell was used as an obstacle resisting
the shaker movement and thus to measure the magnetic force induced. A DC voltage
was supplied to the shaker to generate the magnetic force. Varying the voltage, several
pairs of the current passing the shaker and the force were collected. Experimental data
revealed that the force is proportional to the current supplied to the shaker (see Nguyen
et al. 2017 [7] for detailed information of how to determine this relationship). In this
study, the amplitude of supplied current was setup with three values, as 0.5 A, 0.75 A
and 1.0 A, providing the magnitude of the exciting force, as 5.4 N, 8.1 N and 10.8 N,
respectively. During each experiment, these values were kept without changing. All of
the experimental parameters are summarized on Table 1.
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Table 1. Parameters of experiments.

Parameter Notation Value Unit

Internal mass m1 0.518 Kg

Body mass m2 1.818 Kg

Linear stiffness k1 2988.388 N/m

Cubic stiffness k2 52158700 N/m3

Damping c 8.893542 Ns/m

Friction force Ff 0; 3.56; 8.31; 16.63; and 28.5 N

Excitation force Fe 5.4; 8.1; and 10.8 N

Excitation frequency f exc [2–30]; swept by 1 Hz step in 2 s Hz

3 Results and Discussion

Theoretically, resonance occurs when the phase difference between the excitation force
Fe and the X1–X2 shift is 90 degrees. At that time, the excitation current is minimum and
the swept amplitude of oscillation X1–X2 is maximum. Figure 5 shows an experimental
data received by sweeping from 2 Hz to 30 Hz with 3.56 N of friction force and 5.4 N of
excitation force. The parameters included sweeping step as 1Hz and sweeping time as 3 s
each step. The experimental data was firstly conducted in time regime (right figure) then
changed into frequency regime (right figure). The maximum amplitude of oscillation
X1–X2 was revealed at 14 Hz. At this frequency, the excitation force is the smallest.
Others experimental data were carried out similarly by changing the excitation forces
and friction forces.

Fig. 5. Determining the experimental frequency resonance

Figure 6 is the experimental data showing the relationship of resonance frequency
and friction force at three levels of excitation force 5.4 N, 8.1 N and 10.8 N, respectively.
Firstly, as can be seen in all sub-plots, the amplitude relative displacement of the internal
mass and the shaker body increases when raising the excitation frequency to maximum,
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then decreases if continuously raising. The excitation frequency, where the relative dis-
placement reaches maximum value, is the resonant frequency. Secondly, at each level
of excitation force, when increasing the friction force, the resonance frequency tends to
decrease. Thirdly, without changing the level of resistant force, the resonance frequency
increases as the amplitude of excitation force Fe increases from 5.4 N to 10.8 N.

Theoretical studies of the dynamics of the mechanical system with linear springs
show that the natural frequency f n of this system can be determined by following:

fn = 1

2π

√
k1 ∗ (m1 + m2)

m1 ∗ m2
= 1

2π

√
2988.388 ∗ (0.518 + 1.818)

0.518 ∗ 1.818
= 13.703Hz

The results showed that the resonance frequency of the system was different from
the natural frequency f n. The causes of this difference may be from the nonlinearity of
the system, the friction force and damping applied to the system.

Fig. 6. The variation of resonance frequency under different friction force without changing the
exciting force, respectively: (a) Fe = 5.4 N; (b) Fe = 8.1 N; and (c) Fe = 10.8 N

Another view of relationship of resonance frequency and friction force is shown
on Fig. 7 to support the above mentioned ideas. The amplitude of oscillation of the
mechanical system at resonance increases with increasing the amplitude of excitation
force at all investigated resistance levelsFf . Besides,with the samevalue of the excitation
force, themagnitude of oscillation (i.e. amplitude ofX1–X2) at resonance decreaseswhen
increasing the resistant force Ff .

As shown on Fig. 8(a), the resonant frequency f res of the system at each amplitude
of excitation force can be represented by a quadratic polynomial function depending on
the Coulomb friction force as following:

fres = A + B ∗ Ff + C ∗ F2
f (2)

By fitting the plot data (Fig. 8(a)), the detailed expressions describe the relationship
between resonant frequency and friction force as following:

fres1 = 12.98197 − 0.38692 ∗ Ff + 0.01123 ∗ F2
f

fres2 = 13.98197 − 0.38692 ∗ Ff + 0.01123 ∗ F2
f (3)
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Fig. 7. The variation of resonant frequency under the same Coulomb friction when varying the
excitation force, respectively: (a) Ff = 3.56 N; (b) Ff = 16.63 N; and (c) Ff = 28.5 N

fres3 = 15.03625 − 0.32791 ∗ Ff + 0.00898 ∗ F2
f

Where f res1, f res2, f res3 were the resonant frequency of the system depending on
friction force at exctitation force as 5.4 N, 8.1 N and 10.8 N, respectively.

The experimental data also show that the coefficients of Eq. (2) depend on excitation
force, as shown on the Fig. 8(b). This relation can be expressed as following equations:

y = a + b ∗ Fe

A = 10.91864 + 0.38042 ∗ Fe

B = −0.45577 + 0.01093 ∗ Fe (4)

C = 0.01386 − 4.167 ∗ 10−4 ∗ Fe

Fig. 8. Fitted curves of the Frequency Response Function with the Coulomb friction force and
excitation force.
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4 Conclusion

The effects of the Coulomb friction on the resonant frequency of the two-mass system
connected by a nonlinear leaf spring were experimentally investigated by sweeping in
the range from 2 Hz to 30 Hz. Experimental data show that the resonant frequency of
the system seemed to decrease when increasing the resistant force. Under the different
friction, the resonant frequencies have been changed quite in comparing with the natu-
ral frequency of the system. The resonant frequency of the system can be expressed as
the functions depending both on the amplitude of excitation force and on the Coulomb
friction force. The experimental results serve as the basic premise for the develop-
ment of studies applied in self-movement structure operating under different resistant
environments.
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