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Abstract. Dynamic analysis of a functionally graded sandwich (FGSW) beam
traversed by a moving mass is presented in the basis of a refined third-order shear
deformation theory. The beam consists of three layers, a homogeneous core and
two functionally graded skin layers with material properties varying in the thick-
ness direction by a power gradation law. Both Voigt and Mori-Tanaka microme-
chanical models are employed to evaluate the effective properties of the beam.
A finite element formulation, taking into account the effect of inertial, Coriolis
and centrifugal forces, is derived and used in combination with Newmark method
to compute dynamic response of the beam. The accuracy and efficiency of the
derived formulation are confirmed by comparing obtained results with the data of
Refs. [3, 4, 6, 11]. The effects of the material gradation, the moving mass speed
and the beam geometry on the dynamic behavior of the beam are studied in detail
and highlighted. The influence of the micromechanical model on the dynamic
response of the beam is also examined and discussed.

Keywords: FGSW beams · Refined third-order theory · Moving mass ·
Micromechanical model · Dynamic finite element analysis

1 Introduction

Sandwich structures are extensively used in different engineering applications such as
automotive, aerospace and defense industries because of their light weight and high
stiffness-to-weight ratio. With the development of manufacturing methods [1], function-
ally graded materials (FGMs), a new type of advanced composites initiated by Japanese
researchers inmid-1980 [2], can be incorporated in the sandwich construction to improve
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the performance of structural components. Functionally graded sandwich (FGSW) struc-
tures can be designed to have a smooth variation of material properties between layers,
which helps to eliminate the interface separation as often seen in the conventional sand-
wich structures. Many investigations on vibration analysis of FGSW structures have
been reported in the literature, contributions that are most relevant to the present work
are briefly discussed below.

Based on the modified Fourier series method, Su et al. [3] studied free vibration of
FGSW beams resting on a Pasternak foundation. Both Voigt andMori-Tanaka microme-
chanical models were used by the authors to evaluate the effective properties of the
beams. Vo et al. [4] presented free vibration and buckling analyses of FGSW beams
using a finite element formulatiion. The effect of thickness stretching was takien into
acount by Vo et al. [5] in bibration and buckling analyses of FGSW beams. Regarding
dynamic analysis of FGM beams under moving loads, the topic discussed herein, Khalili
et al. [6] employed the differential quadrature method to compute dynamic response of
Euler-Bernoulli beams under a moving mass. The Ritz method was used by Songsuwan
et al. [7] to investigate the effect of thickness gradation ofmaterial properties on vibration
of sandwich beams subjected a moving harmonic load. The influence of elastic founda-
tion on the dynamic behavior of the sandwich beams was taken into consideration by
the authors. Based on different shear deformation theories, Şimşek [8] studied vibration
of a FGM beam due to a moving mass. Şimşek and Kocaturk [9] used polynomials to
approximate the displacement field in dynamic analysis of FGM beams under a moving
force. The effect of longitudinal variation of the material properties on the dynamic
behaviour of FGM beams under two successive moving harmonic loads was considered
in [10]. The finite element method was used in [11, 12] to study dynamic response of
FGM under moving loads. Nonlinear dynamic analysis of a cracked beam on elastic
foundation subjected to a moving mass has been studied using the finite element method
[13].

In this paper, dynamic analysis of a functionally graded sandwich beam traversed
by a moving mass is presented on the basis of a third-order shear deformable finite
element formulation. The core of the beam is pure ceramic while its two skin layers are
power-law FGM. Equation of motion in term of the finite element analysis is derived and
solved by the Newmark method. Both Voigt and Mori-Tanaka micromechanical models
are employed to evaluate the effective properties of the beam. The effects of material
gradation, the moving mass speed and the beam geometry on the dynamic behavior of
the beam are examined in detail and highlighted.

2 Theoretical Formulations

2.1 The FGSW Beam Model

A simply supported FGSW beamwith length L, rectangular cross-section (b× h), under
a mass mc, moving with a constant speed v from left to right as shown in Fig. 1 is
considered. It is assumed that the mass mc is always in contact with the beam. The
beam consists of three layers, namely a ceramic core and two FGM layers. Denoting
z0, z1, z2, z3, in which z0 = −h/2, z3 = h/2, are the vertical coordinates of the bottom
surface, interfaces and top face, respectively.
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Fig. 1. The FGSW beam under a moving mass

The beam is formed from ceramic and metal whose volume fraction varies in the
thickness direction according to [4]

Vc =

⎧
⎪⎪⎨

⎪⎪⎩

(
z−z0
z1−z0

)n
for z ∈ [z0, z1]

1 for z ∈ [z1, z2](
z−z3
z2−z3

)n
for z ∈ [z2, z3]

(1)

and

Vm + Vc = 1, (2)

where Vc, Vm, respectively, are the volume fraction of ceramic and metal; n is the
power-law index, defining the variation of the constituents in the thickness direction.

Both Voigt and Mori-Tanaka micromechanical models are used herein in to evaluate
the effective properties of the beam. The effective property Pf (z) based on the Voigt’s
model resulted from Eqs. (1) and (2) is of the form

Pf (z) =

⎧
⎪⎪⎨

⎪⎪⎩

(Pc − Pm)
(

z−z0
z1−z0

)n + Pm for z ∈ [z0, z1]

Pc for z ∈ [z1, z2]

(Pc − Pm)
(

z−z3
z2−z3

)n + Pm for z ∈ [z2, z3]

(3)

where, Pc and Pm are the properties of ceramic and metal, respectively.
According to the Mori–Tanaka scheme, the effective Young’s modulus

(
Ef

)
and

Poisson’s ratio
(
vf

)
can be expressed as

Ef = 9Kf Gf

3Kf + Gf
, vf = 3Kf − 2Gf

6Kf + 2Gf
(4)

where Kf and Gf are, respectively, the effective local bulk modulus and shear modulus,
which can be calculated from themoduli and volume fraction of the constituent materials
as

Kf − Km

Kc − Km
= Vc

1 + Vm(Kc − Km)/(Km + 4Gm/3)
,
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Gf − Gm

Gc − Gm
= Vc

1 + Vm(Gc − Gm)/{Gm + Gm(9Km + 8Gm)/[6(Km + 2Gm)]} (5)

in which Kc, Gc and Km, Gm, respectively, are the local bulk modulus and the shear
modulus of the ceramic and metal and defined by following form

Kc = Ec

3(1 − 2μc)
, Gc = Ec

2(1 + μc)
, Km = Em

3(1 − 2μm)
, Gm = Em

2(1 + μm)
,

(6)

Noting that the effective mass density
(
ρf

)
is defined by Voigt model [3].

2.2 Mathematical Model

Based on a refined third-order shear deformation recently proposed by Shimpi [14], the
displacements in the x- and z-directions, respectively, are given by

u(x, z, t) = u0(x, t) − zwb,x + f (z)ws,x,

w(x, z, t) = wb(x, t) + ws(x, t) (7)

where

f (z) = z

[
1

4
− 5

3

( z

h

)2
]

(8)

In Eq. (7) u0(x, t) is the axial displacement of a point on the x-axis, wb(x, t) and
ws(x, t) are, respectively, bending and shear components of the transverse displacement;
t is the time variable.

The axial strain and shear strain resulted from Eq. (7) are of the form

εxx = u0,x − zwb,xx + f (z)ws,xx,

γzx = g(z)ws,x (9)

with g(z) = 5

[
1

4
−

( z

h

)2
]

(10)

Based on the Hooke’s law, the constitutive relation for the FGSW is as follows

σxx = E(z)εxx, τxz = G(z)γxz (11)

Where E(z) and G(z) are, respectively, the elastic modulus and shear modulus,
σxx, τxz are the axial stress and shear stress, respectively.

The strain energy of the beam (U ) is then given by

U = 1

2

L∫

0

∫

A

(σxxεxx + γzxτxz) dAdx, (12)
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where A = bh is the cross-sectional area.
From Eqs. (9) and (11), the strain energy can be written as

U = 1
2

L∫

0

[
A11u20,x − 2A12u0,xwb,xx + A22w2

b,xx + 2Ausu0,xws,xx

−2Abswb,xxws,xx + Assw2
s,xx + Ashw2

s,x

]
dx

(13)

In the Eq. (13) Aij are the beam rigidities, defined as

(A11,A12,A22) = ∫

A Ef
(
1, z, z2

)
dA = b

3∑

i=1

zi∫

zi−1

Ef
(
1, z, z2

)
dz

(Aus,Abs,Ass) = ∫

A
Ef

[
f (z), zf (z), f 2(z)

]
dA = b

3∑

i=1

zi∫

zi−1

Ef
[
f (z), zf (z), f 2(z)

]
dz

Ash = ∫

A
G(z)g(z) dA = b

3∑

i=1

zi∫

zi−1

G(z)g(z)dz

(14)

where E(z), G(z), are, respectively, the elastic modulus and shear modulus. With
the Mori-Tanaka scheme adopted for the effective moduli herein, the above rigidities
can be evaluated numerically.

The kinetic energy (T ) of the FGSW beam are then given by

T = 1

2

L∫

0

∫

V

ρ(z)
(
u̇2 + ẇ2

)
dAdx

= 1

2

L∫

0

{
I11[u̇20 + (ẇb + ẇs)

2] − 2I12u̇0ẇb,x + I22ẇ
2
b,x + 2Iusu̇0ẇs,x

− 2Ibsẇb,xẇs,x + Issẇ
2
s,x

}
dx (15)

with Iij are the mass moments, defined as

(I11, I12, I22) =
∫

A
ρf

(
1, z, z2

)
dA = b

3∑

i=1

zi∫

zi−1

ρf

(
1, z, z2

)
dz

(Ius, Ibs, Iss) =
∫

A
ρf

[
f (z), zf (z), f 2(z)

]
dA = b

3∑

i=1

zi∫

zi−1

ρf

[
f (z), zf (z), f 2(z)

]
dz

(16)

where ρf , is mass density. With the Voigt model used for ρf , explicit expressions for the
above mass moments can be easily obtained.
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Finally, the potential energy due to the moving mass is given by [11]

V = −
L∫

0

[(
mcg − mcẅ − 2mcvẇ,x − mcv

2w,xx

)
w − mcü0u0(x, t)

]
δ(x − vt)dx

(17)

where v is the velocity of the moving mass, g = 9, 81
(
m/s2

)
is the gravity acceler-

ation; mcü0 and mcẅ are, respectively, the axial and transverse inertia forces; 2mcvẇ,x

and 2mcv2w,xx are the Coriolis and centrifugal forces, respectively; δ(.) is the Dirac delta
function; x is the abscissa of the moving mass measured from the left end of the beam.

3 Finite Element for Mulation

Assuming the beam is divided into NE elements with length of l. The vector of nodal
displacements for a standard two-node beam element with ten degrees of freedom is
given by

d = {du0,dwb,dws}T (18)

where

du0 = {
u01 u02

}T
, dwb = {

wb1 wb,x1 wb2 wb,x2
}T

,

dws = {
ws1 ws,x1 ws2 ws,x2

}T
(19)

are, respectively, the vectors of the nodal axial, bending, and shear component of the
transverse displacements. A superscript “T ’ in Eq. (19) and hereafter is used to denote
the transpose of a vector or a matrix.

The axial displacement u0(x, t), bending component wb(x, t), and shear component
ws(x, t) of the transverse displacement are interpolated from their nodal values according
to

u0 = Nudu0, wb = Hwbdwb, ws = Hwsdws, (20)

where Nu, Hwb and Hws are matrices of shape functions with the following form

Nu = [N1 N2], Hwb = [
H1 H2 H3 H4

]
, Hws = [

H1 H2 H3 H4
]

(21)

with Ni (i = 1, 2) andHi (i = 1…4) is linear and Hermite functions, respectively. Based
on the interpolation scheme, one can write the strain energy in Eq. (13) in the forms

U = 1

2

NE∑

i=1

dTk d (22)

where k is the element stiffness matrix, which can be written in the sub-matrices as

k =
⎡

⎣
ku0u0 ku0wb ku0ws

kwbu0 kwbwb kwbws

kwsu0 kwswb kwsws

⎤

⎦ (23)
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In the above equation, ku0u0 , kwbwb and kwsws are, respectively, the element stiffness
matrices stemming from the axial stretching, bending, shear deformation, and they have
the forms

ku0u0 =
l∫

0

NT
u,xA11Nu,xdx; kwbwb =

l∫

0

HT
wb,xxA22Hwb,xxdx;

kwsws =
l∫

0

[H T
ws,xxAssHwb,xx + AshHT

wb,xHwb,x
]
dx (24)

andku0wb ,ku0ws , andkwbws are, respectively, the axial-bending, axial-shear, and bending-
shear coupling matrices with the following forms

ku0wb = −
l∫

0

NT
u,xA12Hwb,xxdx, ku0ws =

l∫

0

NT
u,xAusHws,xxdx,

kwbws = −
l∫

0

HT
b,xxAbsHws,xxdx (25)

Similarly, the kinetic energy (15) can be written in the form

T = 1

2

NE∑

i=1

˙dhbTm ḋ (26)

with the element mass matrix m can be written in sub-matricies as

m =
⎡

⎣
mu0u0 mu0wb mu0ws

mwbu0 mwbwb mwbws

mwsu0 mwswb mwsws

⎤

⎦ (27)

where

mu0u0 =
l∫

0

NT
u,xI11Nu,xdx; mwbwb =

l∫

0

(
HT

wb
I11Hwb + HT

wb,xI22Hwb,x

)
dx;

mwsws =
l∫

0

(
HT

ws
I11Hws + HT

wb,xIssHwb,x

)
dx

mu0wb = −
l∫

0

NT
u I12Hwb,xdx, mu0ws =

l∫

0

NT
u IusHws,xdx,

mwbws = −
l∫

0

(
HT

wb
I11Hws + HT

b,xIbsHws,x

)
dx (28)
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Finally, the potential energy in Eq. (17) can be writen as

V =
NE∑ (

d̈
T
mcd̈ + ḋ

T
ccḋ + dTkcd − dT fc

)
(29)

wheremc, cc and kc are, respectively, the element mass, damping and stiffness matrices
due to the effects of the inertia, Coriolis and the centrifugal forces of the moving mass;
fc is the time-dependent element nodal load vector generated by the moving mass. The
expressions for these matrices and vector are as follows

mc
10×10

= mc

⎡

⎣
NTN 0 0
0 HT

wbHwb HT
wbHws

0 HT
wsHwb HT

wsHws

⎤

⎦

xe

(30)

cc
10×10

= 2mcv

⎡

⎣
0 0 0
0 HT

wbHwb,x HT
wsHwb,x

0 HT
wsHwb,x HT

wsHws,x

⎤

⎦

xe

(31)

kc
10×10

= mcv
2

⎡

⎣
0 0 0
0 HT

wbHwb,xx HT
wsHwb,xx

0 HT
wsHwb,xx HT

wsHws,xx

⎤

⎦

xe

(32)

and

fc
10×1

= mcg
[
0 HT

wb H
T
ws

]T
xe

(33)

The notation [.]xe in Eqs. (30) to (33) mean that [.] is evaluated at xe - the current
abscissa of the moving mass with respect to the left node of the element. Noting that
except for the element under the moving mass, the element matricesmc, cc, and the the
force vector fc are zeros for all other elements.

The finite element equation for the dynamic analysis of the beam can be written in
the form

(M + Mc)D̈ + CcḊ + (K + Kc)D = F (34)

where D̈, Ḋ, and D are, respectively, accelerations, velocities, and the vectors of nodal
displacements.M, Mc, Cc, K, Kc, and F are the global matrices and vector obtained
by respectively assembling the matrices m, mc, cc, k, kc and fc over the elements.
Equation (34) can be solved by the direct integration Newmark method. The average
acceleration method which ensures the numerical instability method is adopted herein.

4 Numerical Results

Dynamic behaviour of the simply supported FGSWbeamunder amovingmass is numer-
ically investigated in this section. To this end, a beamwithwith (b× h)= (1× 1)m,made
from alumina (Al2O3) and aluminum (Al) with the following properties is considered
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• Ec = 380 GPA, ρc = 3960 kg/m3, νc = 0.3 for alumina (Al2O3).
• Em = 70 GPA, ρm = 2702 kg/m3, νm = 0.3 for aluminum (Al).

The following dimensionless parameters are used for dynamic magnification factor
(Dd), mass ratio (rm), normal stress (σ ∗

xx), shear stress
(
τ ∗
xz

)
as [6, 7]

Dd = max

(
w(L/2, t)

wst

)

; rm = m

ρcAL
; σ ∗

xx = σxx

σ0
, τ ∗

xz = τxz

σ0
(35)

where wst = mgL3/48EcI is the static deflection of a simply supported alumina beam
under a load mg acting at the mid-span; A = bh is the cross-sectional area of the beam;
and σ 0= mg/A. A uniform time step 	t = 	T/400 with 	T is the total time necessary
for the mass to cross the beam, is used for the Newmark procedure.

4.1 Accuracy and Convergence Studies

Before computing the dynamic response of the beam, the accuracy of the derived for-
mulation is needed to verify. To this end, Table 1 compares the fundamental frequency
μ = ωL2/h

√
ρm/Em of the FGSWbeamwithL/h= 10 obtained in the present workwith

that of Ref. [3] for various layer thickness ratios. Both Voigt model and Mori–Tanaka
scheme are considered. Very good agreement between the result of the present work
with that of Ref. [3] is noted from Table 1.

Table 1. Comparison of fundamental frequency parameter of FGSW beam with L/h = 10.

Voigt model Mori-Tanaka scheme

n Source (1-1-1) (1-2-1) (1-3-1) (1-4-1) (1-1-1) (1-2-1) (1-3-1) (1-4-1)

0 Ref. [3] 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988

Present 5.4009 5.4009 5.4009 5.4009 5.4009 5.4009 5.4009 5.4009

0.6 Ref. [3] 4.3706 4.5555 4.6894 4.7885 3.7388 4.0246 4.2394 4.4004

Present 4.3808 4.5635 4.6961 4.7942 3.7467 4.0314 4.2453 4.4056

1 Ref. [3] 4.0017 4.2539 4.4376 4.5734 3.4480 3.7782 4.0314 4.2220

Present 4.0076 4.2591 4.4423 4.5776 3.4542 3.7839 4.0366 4.2268

5 Ref. [3] 3.0937 3.4708 3.7728 4.0017 2.9387 3.3101 3.6263 3.8709

Present 3.0994 3.4759 3.7775 4.0061 2.9414 3.3101 3.6256 3.8702

Figure 2 compares the time histories for mid-span deflection of the FGSW beam
under a moving point force with v = 50 m/s of the present work with the result of
Songsuwan et al. [7]. Regardless of the layer thickness ration, the good agreement
between the present result with that of Ref. [7] is seen from Fig. 2. Noting that the
Timoshenko beam theory was used in combination with Ritz method was used in Ref.
[7] in computing the dynamic response of the beam.
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Table 2 shows the convergence of the derived formulation in evaluating dynamic
magnification factor of FGM beam under a moving mass, where the result of Ref. [6]
using the differential quadraturemethod is also given.As seen from table the convergence
of the present formulation is achieved by using 18 elements. The factor Dd of the beam
obtained in the present work is in good agreement with that of Ref. [6]. Noting that
the result in Table 2 was obtained for the beam made from alumina and steel with the
geometrical and material data given in [6]. Because of the above convergence, a mesh
of 18 elements is used in all computations reported below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normalized time, t*

w
(L

/2
,t

)/
w

st

Present work (1-0-1)

Songsuwan et al. (1-0-1)

Present work (2-1-1)
Songsuwan et al. (2-1-1)

Present work (2-2-1)

Songsuwan et al. (2-2-1)

Fig. 2. Comparison of time histories for mid-span deflection of FGSW beam under a moving
force (L/h = 10, n = 0.5, v = 50 m/s)

4.2 Parametric Study

In Fig. 3, the time histories for mid-span deflection of the (2-1-2) beam are depicted for
L/h = 20, n = 0.5, rm = 0.5 and various values of the moving mass speed. The result is
shown in the figure for both the Voigt model and Mori-Tanaka scheme. The maximum
midspan deflection in Fig. 3 is seen to be affected by the moving mass speed (v), and
it is larger when the beam under a higher moving mass speed. The dynamic deflection
obtained by the Voigt model is smaller than that using the Mori-Tanaka scheme.

To investigate the effect of the power-law index (n) and moving mass speed (v) on
the dynamic behavior of the beam, the dynamic magnification factor of symmetric and
non-symmetric beams are considered. Table 3 lists the values of the factor Dd of the
beam for various values of the speed v and the power-law index n. Table 3 shows that
the factor Dd increases with the increase of both the power-law index (n) and moving
mass speed (v). At a given moving mass speed v and index n, the factor Dd obtained
from Mori-Tanaka scheme is higher than that obtained from Voigt model. The effect of



Dynamic Analysis of a FGSW 311

Table 2. Convergence of the formulation in evaluating dynamic magnification factor of a FGM
beam.

v (m/s) n NE = 6 NE = 8 NE = 10 NE = 12 NE = 14 NE = 16 NE = 18 Ref. [6]

20 0.2 0.6280 0.6274 0.6281 0.6281 0.6281 0.6281 0.6281 0.6305

0.5 0.6942 0.6932 0.6935 0.6935 0.6936 0.6936 0.6936 0.6963

1 0.7357 0.7354 0.7353 0.7353 0.7353 0.7354 0.7354 0.7568

2 0.8035 0.8051 0.8053 0.8053 0.8054 0.8054 0.8054 0.8305

5 0.8813 0.8827 0.8829 0.8830 0.8831 0.8831 0.8832 0.8937

60 0.2 0.6266 0.6267 0.6266 0.6267 0.6267 0.6267 0.6267 0.6134

0.5 0.6989 0.6993 0.6995 0.6995 0.6995 0.6995 0.6995 0.7267

1 0.8172 0.8174 0.8177 0.8178 0.8180 0.8180 0.8180 0.8570

2 0.9261 0.9263 0.9263 0.9265 0.9265 0.9266 0.9266 0.9732

5 1.0561 1.0563 1.0563 1.0563 1.0563 1.0563 1.0563 1.0901

100 0.2 0.8714 0.8715 0.8717 0.8717 0.8717 0.8718 0.8717 0.8863

0.5 1.0110 1.0109 1.0109 1.0109 1.0109 1.0109 1.0109 1.0368

1 1.1412 1.1414 1.1414 1.1416 1.1416 1.1418 1.1418 1.1798

2 1.2559 1.2565 1.2569 1.2572 1.2572 1.2572 1.2571 1.3003

5 1.3905 1.3913 1.3916 1.3919 1.3918 1.3917 1.3919 1.4173

0 0.25 0.5 0.75 1
-2

-0.25

1.5

3.25

5

t/  T

w
(L

/2
,t

)/
w

st

0 0.25 0.5 0.75 1
-1

0

1

2

3

t/  T

w
(L

/2
,t

)/
w

st

v=20 m/s

v=60 m/s

v=100 m/s

v=20 m/s

v=60 m/s

v=100 m/s

(b) MT scheme(a) Voigt model

Fig. 3. Time histories for mid-span deflection of (2-1-2) beam for L/h = 20, n = 0.5, rm = 0.5.
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Table 3. Dymanic magnification factor of FGSW beam for L/h = 10, rm = 0.5.

Voigt model Mori-Tanaka scheme

v (m/s) n (2-2-1) (1-1-1) (2-1-1) (1-0-1) (2-2-1) (1-1-1) (2-1-1) (1-0-1)

20 0.5 1.5583 1.6413 1.6712 1.8817 2.0307 2.2340 2.2755 2.7700

1 1.9782 2.1400 2.1946 2.7164 2.5523 2.9093 2.9406 3.8243

2 2.5510 2.9213 2.9767 3.9626 3.0458 3.6484 3.6138 4.8626

5 3.2178 3.9485 3.8859 5.2790 3.5286 4.4022 4.2376 5.5128

40 0.5 1.6082 1.6885 1.7190 1.9163 2.0457 2.2526 2.2984 2.8604

1 2.0022 2.1471 2.1985 2.7784 2.6100 3.0318 3.0633 3.9439

2 2.5954 3.0274 3.0851 4.0912 3.1861 3.7876 3.7677 4.8123

5 3.3849 4.0624 4.0214 5.1851 3.6938 4.4296 4.3150 5.5472

60 0.5 1.6327 1.7028 1.7308 1.9043 2.0435 2.2946 2.3414 2.9526

1 1.9711 2.1706 2.2341 2.8521 2.6773 3.1418 3.1750 4.1946

2 2.6577 3.1300 3.1905 4.3478 3.3127 4.0150 3.9784 5.2789

5 3.5297 4.3340 4.2691 5.7238 3.8891 4.7986 4.6319 5.9655

80 0.5 1.6936 1.7899 1.8273 2.0730 2.2661 2.4736 2.5152 2.9678

1 2.1911 2.3896 2.4493 2.9421 2.7733 3.0913 3.1206 3.6982

2 2.7807 3.1157 3.1676 3.8532 3.2130 3.5974 3.5951 5.0492

5 3.3696 3.7885 3.7899 5.6129 3.5537 4.4031 4.1337 6.0476

100 0.5 1.7148 1.7870 1.8161 1.9921 2.0834 2.1964 2.2189 2.8557

1 2.0601 2.1809 2.2188 2.7185 2.5454 3.0835 3.1154 4.4435

2 2.5115 3.0497 3.1139 4.5933 3.2816 4.2022 4.1322 6.1320

5 3.5307 4.6222 4.4987 6.8095 4.0076 5.3647 5.0534 7.3117

the material parameter (n) can be seen more clearly from Fig. 4, where the variation of
the factor Dd of (2-1-2) beam with the the power-law index (n) is shown for L/h = 20,
rm = 0.5 and various values of moving mass speed (v).

Figure 5 illustrates the variation of the factor Dd of (2-1-2) beam with the moving
mass speed (v) for L/h = 20, rm = 0.5. The influence of the moving mass speed on the
factor Dd is clearly seen from the figures, and the factor Dd increases to a maximum
value after it undergoes a period of repeatedly increasing and decreasing.
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Fig. 5. Variation of dynamic magnification factor Dd of (2-1-2) beam with moving mass speed v
for L/h = 20 and rm = 0.5.

Figures 6 and 7 depict the thickness distribution of the normal and shear stresses of
the symmetric (1-1-1) and non-symmetric (2-2-1) beams for L/h = 20, rm = 0.5, and
v = 50 m/s, respectively. The stresses are are computed at the time when the moving
mass arrives at the mid-span. The increase of the power-index n leads to the increase of
the maximum tensile and compressive normal stresses of the symmetric beam (Fig. 6).
Some difference between the stresses of symmetric and non-symmetric beams can be
seen from the figures. The shear stress of both the symmetric and non-symmetric beams
increases by the increase of the power-index (n) as seen from Fig. 7.
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5 Conclusions

The dynamic analysis of a FGSW beam has been carried out in the basis of the refined
third-order shear deformabale finite element formulation. The beam consists of three
layers, a homogeneous core and two functionally graded skin layers with material prop-
erties varying in the thickness direction by a power gradation law. Both the Voigt and
Mori-Tanakamicromechanical models are employed to evaluate the effective properties.
The effect of material gradation, the moving mass speed, the beam layer thickness ratio
on the dynamic displacements and the stresses of the beam are discussed in detail. The
results show that the above-mentioned effects play a very important role on the dynamic
responses of the beam and it is believed that new results presented for dynamics of FGSW
beams under moving loads are of interest to the scientific and engineering community
in the area of FGM structures.
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