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Abstract. In this paper, the optimal design of sandwich beams with a function-
ally graded (FG) porous core and functionally graded faces is freshly addressed
by using meta-heuristics. The layer thickness, porosity distribution of the core,
and material volume fraction of the face sheets are simultaneously optimized to
maximize the fundamental frequency. The work studies the efficiency of some
popular meta-heuristics, including genetic algorithm (GA), differential evolution
(DE), particle swarm optimization (PSO), teaching-learning-based optimization
(TLBO), Jaya algorithm, and an adaptive DE algorithm (ANDE), in solving this
complicated optimization problem. Moreover, the influence of the beam theo-
ries on the optimal design is investigated. Beams with different configurations
are examined. It is concluded that the fundamental frequency of the FG sandwich
porous beamcanbemaximized effectively.Among the consideredmeta-heuristics,
ANDE and Jaya appear to be superior to the other algorithms in terms of efficiency
and stability. Numerical results further show that the optimal design is affected by
the beam theory used, particularly for the thick beam.

Keywords: Functionally graded sandwich porous beams · Maximum
fundamental frequency · Optimization · Meta-heuristics

1 Introduction

FG porous materials are known as recently advanced materials, in which the properties
of thematerials are characterized by the distribution of porosity in themicrostructure. FG
porous materials offer a light-weight design with advanced performances for engineers.
Thus, structures using FG porous materials have attracted several research works (e.g.,
[1–4]).

On the other hand, sandwich structures are used widely in various engineering
fields, such as structural engineering, mechanical engineering, marine engineering, and
aerospace engineering, due to their light-weight and high strength performance. The
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major drawback of these structures is the discontinuity of material properties between
the layers, which may cause de-bonding when the structure is subjected to impact load-
ings [5]. FG materials, therefore, have been introduced to sandwich structures to form a
new kind of structure named Functionally Graded Sandwich (FGS) structure [6]. With
their continuous and smooth variation of the properties, FG materials help to reduce
the de-bonding in sandwich structures. Commonly, there exist two main types of FGS
structures: the first one has an FG core and two homogeneous face sheets; the second
one has a homogeneous core and two FG face sheets [5]. Recently, a new type of FGS
structures, where an FG porous core is sandwiched between two FG face layers, has
been studied [7, 8].

It is well known that the performance of an FGS structure is dependent on the prop-
erties of the constituent materials as well as the material distribution. To obtain optimal
performance, the structure should be designed through an optimization procedure. Sev-
eral works have been carried out for the optimization of FGS structures, which are
reviewed in Ref. [5]. However, there is no work done for the optimal design of the FGS
structures with FG porous core and two FG face sheets.

In this paper, the optimal design of a functionally graded sandwich porous (FG-
SWP) beam is freshly addressed. The studied beam has an FG porous core sandwiched
between two FG face sheets. The material distribution of the face sheets, the porosity
distribution, and the layer thickness of the FG-SWP beam are tailored to maximize the
fundamental natural frequency. Different beam theories are adopted to analyze the free
vibration behavior of the beam. For this purpose, the frequency of the beam is obtained by
a general analytical solution developed by Hung and Truong [7]. Due to the complexity
of this highly non-linear optimization problem that is not easy to solve using conven-
tional gradient-based optimization techniques, various meta-heuristics are implemented
to derive the optimal design. The efficiency of the considered meta-heuristics, as well
as the influence of the beam theories on the obtained beam design, is studied through
numerical examples of slender and thick beams.

2 Frequency Maximization for FG-SWP Beams

2.1 Design Problem

Consider an FG-SWP beam with three layers as shown in Fig. 1 [7]. The beam has two
FG layer faces and an FG porous core. The beam is numbered by the thickness ratio of
the layers from the bottom (z = h1 = −h/2) to the top (z = h4 = +h/2). For example,
the 1-1-1 beam presents a beam that has an equal layer thickness.

The Young’s modulus and the mass density of the layers are assumed to vary in
thickness direction as per the following laws:

E(3)(z) = (Ec − Em)

(
z − h4
h3 − h4

)p
+ Em ; ρ(3)(z) = (ρc − ρm)

(
z − h4
h3 − h4

)p
+ ρm with z ∈ [h3, h4]

E(2)(z) = Em

[
1 − e0 cos

(
πz

h3 − h2

)]
; ρ(2)(z) = ρm

[
1 − em cos

(
πz

h3 − h2

)]
with z ∈ [h2, h3]

E(1)(z) = (Ec − Em)

(
z − h1
h2 − h1

)p
+ Em ; ρ(1)(z) = (ρc − ρm)

(
z − h1
h2 − h1

)p
+ ρm with z ∈ [h1, h2]

(1)
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Fig. 1. Layout of FG-SWP beam [7]

where E(z), ρ(z) are, respectively, the effective Young’s modulus and mass density;
Em, ρm and Ec, ρc are, respectively, Young’s modulus and mass density of metal and
ceramic; e0, em represent the coefficients of porosity for Young’s modulus and mass
density, respectively. The relationship between e0, em is given by Chen et al. [9]:

em = 1 − √
1 − e0 (2)

The beam is to be designed so that the fundamental frequency is maximized. For
this purpose, the material distribution and the thickness of each layer are tailored by an
optimization procedure. The optimal design problem is defined as:

Maximize ω̄(p, e0, t1, t2, t3) = ω
L2

h

√
ρm

Em

s.t.

pmin ≤ p ≤ pmax,

e0min ≤ e0 ≤ e0max,

0 ≤ t1, t2, t3

(3)

where ω̄ is the normalized fundamental frequency; t1, t2, t3 are, respectively, the thick-
ness ratios of the bottom, the core, and the top layers; pmin, pmax are the lower and upper
limits of the distribution exponent p; e0min, e0max are the lower and upper limits of the
porosity coefficient. In this study, the design variables p and e0 are continuous, while the
thickness ratios are integers. Thus, the design problem is a mixed integer optimization
problem.

The objective function of the optimization problem requires the free vibration solu-
tion of the FG-SWP beam. In this study, a general analytical solution based on various
beam theories is established to analyze the beam, which is presented in the following.

2.2 Analytical Solution for Natural Frequency

For analyzing the fundamental frequency of the FG-SWP beam, the analytical solution
developed by Hung and Truong [7] is adopted in this study, and briefly presented as
follows.
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First, the displacement field is described as:

u(x, z, t) = u0(x, t) − z
∂w0

∂x
+ f (z)θx w(x, z, t) = w0(x, t); (4)

where u0,w0 are the mid-surface displacements in the x and z directions, respectively; θx
is the rotation of the mid-surface transverse normal; f (z) is the shape function depending
on the beam theories as given in Table 1.

Table 1. The shape functions of different beam theories

Beam theory f (z)

Euler–Bernoulli beam theory (CBT) 0

Timoshenko beam theory (TMT) z

Third-order beam theory (TBT) [10] z
(
1 − 4

3
z2

h2

)

Sinusoidal beam theory (SBT) [11] h
π sin

(
πz
h

)
Hyperbolic beam theory (HBT) [12] z cosh

(
1
2

)
− h sinh

( z
h

)

Exponential beam theory (EBT) [13] z exp−2
( z
h

)2

The strains are determined from the following relations:

εxx = ∂u

∂x
= ∂u0

∂x
− z

∂2w0

∂x2
+ f (z)

∂θx

∂x
γxz = ∂u

∂z
+ ∂w

∂x
= f

′
(z)θx (5)

The stresses in each i-th layer are computed by the Hooke’s law as follows; with a
constant poisson’s ratio ν

{
σxx

σxz

}i

=
(
E(z) 0
0 ksE(z)

2(1+ν)

)i{
εxx

γxz

}i

(6)

where ks is the shear correction factor, and ks = 5/6 for Timoshenko beam theory,
otherwise ks = 1.

Applying Hamilton’s principle, the equations of free vibration motion become

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Nxx

∂x
= I0ü0 − I1

∂ẅ0

∂x
+ I3θ̈x

∂2Mxx

∂2x
= −I1

∂ ü0
∂x

+ I2
∂2ẅ0

∂2x
− I4

∂θ̈x

∂x
− I0ẅ0

∂Fxx

∂x
− Hxz = I3ü0 − I4

(
∂ẅ0

∂x

)
+ I5θ̈x

(7)

where the terms in Eq. (7) are defined by:



Optimal Design of Functionally Graded Sandwich Porous Beams 233

Nxx =
∫
A

σxxdA ; Mxx = −
∫
A

zσxxdA ; Fxx =
∫
A

σxxf (z)dA;

Hxz =
∫
A

σxz
∂f (z)

∂z
dA

I0 =
∫
A

ρ(z)dA ; I1 =
∫
A

zρ(z)dA ; I2 =
∫
A

z2ρ(z)dA

I3 =
∫
A

f (z)ρ(z)dA; I4 =
∫
A

zf (z)ρ(z)dA ; I5 =
∫
A

f (z)2ρ(z)dA (8)

Considering the simply supported condition for the beam, the Navier’s solution has
the following form with α = mπ/L

u0 =
∞∑
m=1

um cos(αx) cos(ωt); w0 =
∞∑
m=1

wm sin(αx) cos(ωt); θx =
∞∑
m=1

um cos(αx) cos(ωt) (9)

Taking into account each term of Eq. (9) as a free vibration mode shape, and
introducing it into Eqs. (4–7) yield the eigenvalue equations as

[(
Aα2

)
um −

(
Bα3

)
wm +

(
Cα2

)
θm

]
− ω2[I0um − I1αwm + I3θm] = 0[

−
(
Bα3

)
um +

(
Dα4

)
wm −

(
Fα3

)
θm

]
− ω2

[
−I1αum +

(
I0 + I2α

2
)
wm − I5αθm

]
= 0[(

Cα2
)
um −

(
Fα3

)
wm + (H1 + G1α)θm

]
− ω2[I3um − I4αwm + I5θm

] = 0 (10)

where ω is the natural frequency, and

(A,B,C,D,F,G1) =
∫ h/2

−h/2
E(z)(1, z, f , z2, zf , f 2)dz;

H1 =
∫ h/2

−h/2

ksE(z)

2(1 + ν)

(
f ′)2dz (11)

3 Implemented Metaheuristics

3.1 Parameter Setting

In this study, different meta-heuristics are implemented to solve the optimal design
problem of FG-SWP beam, including differential evolution (DE) [14], genetic algorithm
(GA), particle swarm optimization (PSO) [15], teaching-learning-based optimization
(TLBO) [16], Jaya [17], and adaptive differential evolution (ANDE) [18]. Details of
these optimization techniques can be found in the respective literature. The codes of
DE, PSO, TLBO, Jaya, and ANDE are implemented by the first author in MATLAB,
whereas the built-in function for GA in MATLAB is utilized. All methods use the same
population size of 30. The other control parameters for each method are chosen for good
performance of the respective method, and they are given as follows:
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– DE and ANDE: The scaling factor and crossover rate are 0.7 and 0.9, respectively.
– GA: Multi-point crossover is adopted. The crossover probability is 0.8, and the
mutation probability is 0.2.

– PSO: The inertia weight of 0.6, cognitive learning rate of 1.0, and social learning rate
of 1.0 are used.

– TLBO and Jaya: No parameter setting.

The stopping criterion is |fmean/fbest − 1| ≤ 10−6, with fmean, fbest are themean value
and the best value of the objective function in the population. This stopping criterion,
suggested by Ho et al. [19], appears to be reasonable for the investigated numerical
example in this study to obtain stable optimal results. The initial population is randomly
generated from the search space. To obtain statistical results for comparison, eachmethod
is conducted 20 times with a maximum of 100 generations.

3.2 Constraint Handling

3.2.1 Bound Constraints

The bound constraints are handled by a simple method given in Ref. [20] as follows.
During the evolution of a meta-heuristic, if a newly generated variable xnewkj violates the
bound bj, its value will be recalculated by:

xnewkj = xoldkj + bj

2
(12)

where xnewkj is the value of the j-th design variable of the k-th solution in the new popula-

tion; xoldkj is the value of the j-th design variable of the k-th solution in the old population;
bj is the violated bound.

3.2.2 Integer Variable

In the numerical example, the rounding technique is used to transform a decimal value
of the thickness ratio into an integer value.

4 Numerical Results

The FG-SWP beam examined is composed of two materials, aluminum and ceramic,
with the properties given in Table 2. Two beam configurations are considered, a slender
beam with a height of 5 cm (L/h = 20) and a thick beam with a height of 20 cm (L/h =
5). The thickness ratio limits are: 0 ≤ t1, t2, t3 ≤ 10.

4.1 Comparison Among Meta-heuristics

Table 3 lists the optimization results obtained for the TBT slender beam by the imple-
mented meta-heuristics. The results include the optimal design, the best value, the mean
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Table 2. Material properties of the FG-SWP beam

L Em, ρm Ec, ρc ν pmin, pmax e0min, e0max

1m 70 GPa, 2702 kg/m3 380 GPa, 3960 kg/m3 0.3 0, 10 0, 0.5

value, the worst value, and the standard deviation of the optimized fundamental fre-
quency. The average number of objective function evaluations (FE) and the number of
successful runs (NoS) by each algorithm are also given in Table 3. It is noted that the
table presents the normalized thickness ratios for comparison purpose. It is seen that all
meta-heuristics derive the same optimal solution. Furthermore, except PSO, all meta-
heuristics can produce stable results over 20 runs. PSO has 3 runs that fail to obtain the
optimal solution. In terms of the required FE, ANDE is the best optimizer, and TLBO
is the worst one. The optimization results for the TBT thick beam are given in Table
4. ANDE, again, requires the smallest FE, and TLBO needs the largest FE. PSO is the
most unstable algorithm with only 15 successful runs for the thick beam.

Figure 2 depicts the average convergence history of the objective function for the
considered meta-heuristics. It can be seen that PSO has the highest convergence speed
in early iterations; however, it is greedy and also causes premature convergence, i.e.,
obtaining local optimum. ANDE, on the other hand, is faster than DE, GA, TLBO, and
as fast as Jaya.

Table 3. Optimization results of the TBT slender beam by different meta-heuristics

L/h = 20 ANDE DE GA PSO TLBO Jaya

p 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

e0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

t1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

t2 1.2500 1.2500 1.2500 1.2500 1.2500 1.2500

t3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ω̄best 5.8051 5.8051 5.8051 5.8051 5.8051 5.8051

ω̄mean 5.8051 5.8051 5.8051 5.8032 5.8051 5.8051

ω̄worst 5.8051 5.8051 5.8048 5.7662 5.8051 5.8051

std 1.5017e-06 1.0734e-06 7.8634e-05 0.0087 3.3955e-10 4.4842e-09

FE 893 2553 2749 1161 4452 1627

NoS 20 20 20 17 20 20

To further explore the effectiveness ofANDE, different settings of control parameters
are examined, where the scaling factor F is 0.4 and 0.7, and the crossover rate CR is
0.7 and 0.9. Figure 3 compares the convergences of DE and ANDE corresponding to
different parameter combinations to optimize theTBT slender beam. It is seen fromFig. 3
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Table 4. Optimization results of the TBT thick beam by different meta-heuristics

L/h = 5 ANDE DE GA PSO TLBO Jaya

p 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

e0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

t1 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

t2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

t3 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

ω̄best 5.2551 5.2551 5.2551 5.2551 5.2551 5.2551

ω̄mean 5.2551 5.2551 5.2551 5.2533 5.2551 5.2551

ω̄worst 5.2550 5.2550 5.2550 5.2208 5.2551 5.2551

std 5.6443e-07 9.7490e-07 1.3256e-06 0.0077 1.5796e-10 5.8166e-09

FE 988 2523 2515 1.243 3756 1416

NoS 20 20 19 15 20 20
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Fig. 2. Optimization history of the FG-SWP beam by different meta-heuristics

that the parameter combination with F = 0.7 and CR = 0.9 gives the best performance
of both DE and ANDE in terms of convergence and stability. These parameter values
are therefore applied for DE and ANDE in all the numerical investigations.
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Fig. 3. Convergence of DE (a) and ANDE (b) for different parameter settings

4.2 Comparison Among Beam Theories

Since ANDE requires the smallest number of function evaluations, it is further utilized
to optimize the FG-SWP beam with different beam theories. The optimization results
for the slender and thick beams corresponding to different beam theories are shown
in Tables 5 and 6, respectively. For the slender beam in Table 5, the results by high-
order shear deformation theories (TBT, SBT, HBT, EBT) are the same. However, the
thickness ratio of the beam layers obtained by high-order shear deformation theories
differs from that obtained by classical beam theory (CBT) and the Timoshenko beam
theory (TMT). This can be explained by the effect of the shear deformation on the
fundamental frequency of the FG-SWP beam. For the thick beam, the effect of shear
deformation is so significant that the optimal thickness ratio of the beam layers obtained
by the different beam theories is not identical, as seen from Table 6 i.e., the optimal
result depends on the theory used.

Table 5. Optimization results of the TBT slender beam by different beam theories

L/h = 20 CBT TMT TBT SBT HBT EBT

P 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

e0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

t1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

t2 1.3333 1.3333 1.2500 1.2500 1.2500 1.2500

t3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ω̄best 5.8505 5.8224 5.8051 5.8023 5.8054 5.7992
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Table 6. Optimization results of the TBT thick beam by different beam theories

L/h = 5 CBT TMT TBT SBT HBT EBT

P 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

e0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

t1 1.0000 1.0000 2.0000 2.2500 1.8000 2.5000

t2 1.3333 1.0000 1.0000 1.0000 1.0000 1.0000

t3 1.0000 1.0000 2.0000 2.2500 1.8000 2.5000

ω̄best 5.7456 5.3779 5.2551 5.2421 5.2563 5.2304

5 Conclusion

The optimal design of the functionally graded sandwich porous (FG-SWP) beam is
addressed for the first time in this paper. The study investigates the effectiveness of dif-
ferent meta-heuristics in tailoring the material distribution, as well as the layer thickness
for maximizing the fundamental frequency of the beam. It is shown that the implemented
meta-heuristics, including GA, DE, PSO, TLBO, Jaya, and ANDE, can derive the opti-
mal design for different configurations of the FG-SWP beam effectively. Among the
considered meta-heuristics, ANDE appears to be the best algorithm in terms of com-
putational cost. In terms of convergence rate, PSO is the fastest algorithm but easily
trapped in local minima, while both ANDE and Jaya outperform the remaining algo-
rithms. Moreover, different beam theories are considered for the optimal design of the
FG-SWP beam. It is revealed that the optimal design of the FG-SWP beam is influenced
by the shear deformation theory applied in calculating the frequency, particularly for the
thick beam.
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