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Abstract. The article proposes a high-order time finite element method
based on the well-posed variation formulation that is equivalent to the
conventional strong form of governing equations in structural dynamics.
Three cases related to the term “high-order” include: the time finite ele-
ment that is analogous to the spatial second-order beam element; the
p-power of the time-to-go (T − t) in the formulation of “stiffness” matrix
and “nodal force” vector; and the combination of both of them. In each
case, the element “stiffness” matrix and “nodal force” vector are estab-
lished and shown in details with notes on practical implementations.
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1 Introduction

Dynamic response of a structure to an external excitation is of great concern in
practical analysis and design. When dealing with a dynamic problem, usually the
finite element method or a modal superposition approach is used to spatially dis-
cretize the structure, hence to reduce the problem to a set of ordinary differential
equations in time that can be solved with one of many time stepping approaches
[1,2]. This kind of procedure is widely used in practice and fairly well under-
stood. Generally, for solving a set of ordinary differential equations in time, there
are mainly two classes of direct time integration methods: explicit and implicit.
Implicit methods (such as ones in β-Newmark family, Houbolt’s method, and
Runge-Kutta method) possess unconditional stability, but may require much
more computations than that needed for an explicit method. On the other hand,
explicit methods are conditionally stable. When coupled with the conventional
finite element (FE) computation, the step size in any explicit method depends
on the FE spatial mesh size and thus requires more computational effort. For
both implicit and explicit methods, a priori error analysis is often not easily
available, since they are all derived in the spirit of finite difference. A review of
implicit and explicit ones can be found in [3–5], just to name a few.
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A different approach for dealing with dynamic problem, being less popular
than the methods mentioned above, is to use of the time (or temporal) finite
element method (TFEM). The time finite element (TFE) formulation has sev-
eral potential advantages as it can be applicable to both energy equation, and
directly to the equations of motion. It is the straightforward derivation of higher
order approximations in time. A key advantage of time finite element method,
and the one often overlooked in its past applications, is the ease in which the
sensitivity of the transient response with respect to various design parameters
can be obtained. Usually, the TFEM approximation yields an accuracy superior
to that of more conventional time stepping schemes at same computational cost
[6]. Furthermore, the formulation is easy and convenient for computer imple-
mentation. The pioneer approaches, based on Hamilton’s Law of varying action,
can date back to the research of Argyris and Scharpf, who employed Hermite
cubic interpolation polynomials (akin to the beam finite element) to express the
response over each time finite element [7]. The method, based on the Hamilton’s
principle, was applied to a single-degree-of-freedom system but no numerical
examples were considered. Fried [8] applied this approach to study the transient
response of a damped system and transient heat conduction in a slab. Fried
used a step by step approach to avoid storing and working with large matrices.
Zienkiewicz and Parekh [9] used a time finite element approach to solve heat
conduction problems. The formulation was based on Galerkin procedure over
a time interval. In [10], Hulbert also employed the time-discontinuous Galerkin
method and incorporates stabilizing terms having least-squares form. A general
convergence theorem can be proved in a norm stronger than the energy norm.
French and Peterson [11] proposed a time-continuous finite element method by
transforming the second-order differential equations into first-order ones. Some
other researchers have presented the variational formulation by allowing the TFE
solution to be discontinuous at the end of each time element interval. Tang and
Sun [12] introduced a unified TFE framework for the numerical discretization
of ordinary differential equations based on TFE methods. In [6], Park used a
bi-linear formulation for developing the time finite element method to obtain
transient responses of both linear, nonlinear, damped and undamped systems.
The sensitivity of the response with respect to various design parameters was also
established. Results for both the transient response and its sensitivity to system
parameters, when compared to a previously available approach that employs
a multi-step method, are excellent. Recently, Wang and Zhong [13] proposed
a time continuous Galerkin finite element method for structural dynamics. Its
convergence property was proved through an a priori error analysis.

To the best of our knowledge, the time finite elements already available until
now are just of the first-order kind under the view of time discretization. Thus the
authors will propose in this article some developments of high-order time finite
elements based on the well-posed variational formulation. Three cases related to
the term “high-order” include: the time finite element that is analogous to the
spatial second-order beam element; the p-power of the time-to-go (T − t) in the
formulation of “stiffness” matrix and “nodal force” vector; and the combination
of both of them. The rest of the article is as follows. In Sect. 2, variational
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formulation for structural dynamics is presented, followed by the first-order time
finite element in Sect. 3. In Sect. 4, we propose high-order time finite elements
in the above mentioned three cases. A numerical example is shown in Sect. 5,
to illustrate the use of proposed high-order time finite elements in solving an
SDOF dynamic problem. The article finalize with conclusions in Sect. 6.

2 Variational Formulation for Structural Dynamics

Consider a structure having n degrees of freedom in the time interval LT = ]0, T [.
The mass matrix M ∈ R

n×n, and stiffness matrix K ∈ R
n×n are, generally,

symmetric and positive definite. The damping matrix C ∈ R
n×n is, generally,

symmetric non-negative definite. The structure is subjected to initial conditions
u0 and u̇0, in addition to an external load F ∈ L2 (LT ), where L2 (LT ) is denoted
for the Hilbert space on the time interval LT . The governing equations with the
unknown u is

L u ≡ Mü + Cu̇ + Ku = F, u (0) = u0, u̇ (0) = u̇0 (1)

Denote H2 (LT ) as the Sobolev space of order two. We introduce the two spaces
as follows

H2
0p (LT ) =

{
u ∈ H2 (LT ) : u (0) = u0, u̇ (0) = u̇0

}
(2)

H2
00 (LT ) =

{
u ∈ H2 (LT ) : u (0) = 0, u̇ (0) = 0

}
(3)

Also, an energy norm ‖v‖E : H2 (LT ) �→ R of a vector v is defined as

‖v‖2E =
∫ T

0

(
1
2
v̇TMv̇ +

1
2
vTKv

)
dt (4)

The following two theorems were proved in [13].

Theorem 1 (Variational formulation for structural dynamics). The strong form
of structural dynamics in the above equation is equivalent to the following for-
mulation: find u ∈ H2

0p (LT ) such that

B (u,v) = � (v) , ∀v ∈ H2
00 (LT ) (5)

where

B (u,v) =

∫ T

0

∫ s

0
v̇T (Mü+Cu̇+Ku) dt ds =

∫ T

0
(T − t) v̇T (Mü+Cu̇+Ku) dt (6)

� (v) =

∫ T

0

∫ s

0
v̇TF dtds =

∫ T

0
(T − t) v̇TF dt (7)

Theorem 2 (Solution estimation). The following estimate for solution from the
variational formulation

‖u‖E ≤ C (‖F‖0 + |u0| + |u̇0|) (8)

holds, where C denotes a positive constant (independent of mesh size or time
step size), ‖·‖0 is the usual norm of L2 (LT ) and |·| is defined as the usual length
of a vector.
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3 First-Order Time Finite Element

Let the interval [0, T ] be divided into a finite number N of non-overlap sub-
intervals each of which has the length of Ti. Denote H2

0p,τ (LT ) and H2
00,τ (LT ) as

the finite dimensional sub-spaces of H2
0p (LT ) and H2

00 (LT ), respectively. Usually,
H2

0p,τ (LT ) and H2
00,τ (LT ) are assumed to be of polynomial forms in each ele-

ment with degree p ≥ 2. Then, the time (Galerkin) finite element formulation is
established by referring to the variational formulation (5): find uτ ∈ H2

0p,τ (LT )
such that

B (uτ ,vτ ) = � (vτ ) , ∀vτ ∈ H2
00,τ (LT ) (9)

Well-posedness of the time FEM (9) is directly implicated in Theorem 1 and 2.
Generally, in structural dynamics, we consider both displacement and veloc-

ity responses, and moreover, uτ ∈ H2 (LT ). Thus, the Hermitian interpolation
functions are suitable for establishing the time finite element. In [13], the first-
order time finite element was obtained using Hermitian interpolation of degree
p = 3, that is, for the ith element

uτ = H1ub + H2
Ti

2
u̇b + H3ue + H4

Ti

2
u̇e = Hq, τ ∈ [0, Ti] (10)

where ub, u̇b and ue, u̇e are, respectively, nodal (displacement and velocity)
responses at the beginning and at the end of the time interval [0, Ti] of that
element. Vector q collects all the nodal responses in element i. The Hermitian
interpolation functions - the shape functions - are as usual given as follows

H1(ξ) =
1
4
(1 − ξ)2(2 + ξ) H2(ξ) =

1
4
(1 + ξ)(1 − ξ)2 (11)

H3(ξ) =
1
4
(1 + ξ)2(2 − ξ) H4(ξ) = −1

4
(1 + ξ)2(1 − ξ) (12)

where ξ = (−1 + 2τ/Ti) ∈ [−1, 1]. Then, element stiffness matrix K and nodal
element load vector f are obtained as follows

K =
∫ Ti

0

(T − t) ḢT
(
MḦ + CḢ + KH

)
dt (13)

f =
∫ Ti

0

(T − t) ḢTFdt (14)

Now, by usual assembly process as seen in conventional finite element method,
a set of algebraic equations is established. Also, the initial displacement and
velocity are taken into account and entered to the formulation as the boundary
conditions of the problem. After these steps, the nodal displacement and velocity
at each instant of time can be obtained by solving

Ksysqsys = fsys (15)

It is noteworthy that the global stiffness matrix Ksys is a block diagonal matrix
and therefore, Eq. (15) can be efficiently solved by several usual algorithms,
including the parallel method [13].
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4 High-Order Time Finite Elements

In this section, we propose three high-order time finite elements. The first one,
denoted as 2-order b-TFE, is a direct extension of the first-order time finite ele-
ment above, and adapted analogously to the second-order beam element with
three equidistant nodes (see Fig. 1). Normally, the finite elements of order larger
than two are not commonly used in practice since they might destroy the simple
philosophy of the finite element method. In stimulating the concept of second-
order beam element in conventional method, the following Hermitian interpola-
tion functions are chosen as

H1(ξ) = 1− 23ξ2 + 66ξ3 − 68ξ4 + 24ξ5 H2(ξ) =
(
ξ − 6ξ2 + 13ξ3 − 12ξ4 + 4ξ5

)
Ti (16)

H3(ξ) = 16ξ2 − 32ξ3 + 16ξ4 H4(ξ) =
(−8ξ2 + 32ξ3 − 40ξ4 + 16ξ5

)
Ti (17)

H5(ξ) = 7ξ2 − 34ξ3 + 52ξ4 − 24ξ5 H6(ξ) =
(−ξ2 + 5ξ3 − 8ξ4 + 4ξ5

)
Ti (18)

where ξ = τ/Ti ∈ [0, 1], and Ti is the “length” of the ith element. The three
nodes in this element might not be equidistantly located. However, under prac-
tical view, the use of elements having non-equidistantly located nodes are not
common. Also, we could otherwise use hierarchical functions as interpolation
ones. However, if the isoparametric element is intended, then the ξ-t relation-
ship is complex enough so that the advantage of using hierarchical polynomials
in saving computational efforts might be lost.

With the element nodal responses qT =
[
uT

b u̇T
b uT

m u̇T
m uT

e u̇T
e

]
, the

response uτ for the ith element can be interpolated from the above Hermitian
functions. The formula for the matrix H in Eq. (10) varies case by case, since
it depends on the number of degrees of freedom. For example, if the system is
single-degree-of-freedom, then matrix H in Eq. (10) is defined as

H =
[
H1 H2 H3 H4 H5 H6

]
(19)

meanwhile if the system has n degree-of-freedom, then

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H1

H1

. . .
H1

︸ ︷︷ ︸
diag. matrix of sizen

H2

H2

. . .
H2

︸ ︷︷ ︸
diag. matrix of sizen

· · ·
H6

H6

. . .
H6

︸ ︷︷ ︸
diag. matrix of sizen

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(20)

Now, we follow Eqs. (13) and (14) for all time elements in the temporal mesh.
In these equations, the time derivatives of H are given as

Ḣ =
1
Ti

dH
dξ

, Ḧ =
1

T 2
i

d2H
dξ2

(21)

The explicit formulae for the resulting element “stiffness” matrix and element
“equivalent force” vector also vary case by case, since they are functions of the
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Fig. 1. (a) Conventional (spatial) three-node beam finite element; and (b) Correspond-
ing three-node time finite element

M, C, and K matrices obtained from spatial discretization as well. We observe
here that a large intermediate manipulations of matrices for the element matrices
(stiffness matrix and equivalent force vector) should be conducted. However, in
practical implementation, we can take the advantage of sparsity in matrix H in
these computations. In addition, these computations are prepared just once. For
an n-DOF system, the resulting element time “stiffness” matrix is 6n × 6n, and
that of “equivalent force” vector is 6n × 1.

When all element matrices are already determined, the global stiffness matrix
and global equivalent force vector can be found by usual assembling procedure
as in conventional finite element method.

The second time finite element, denoted as p-TFE, is based on the following
observations. As we can see from Theorem 1, Eq. (5) is simply posed to be the
residual L u − F weighted by a time dependent function (T − t) v̇, which is a
product of the time-to-go (T − t) and the test on-going velocity v̇. It raises to
the idea that another time dependent function can be used as the weight. This
idea is also supported by the fact (see proof at the Appendix)

∫ T

0

∫ s1

0

· · ·
∫ sp

0︸ ︷︷ ︸
p folds

fdt dsp . . . ds1 =
∫ T

0

(T − t)p
f (t) dt (22)

Thus, Eq. (5) in Theorem 1 holds with the bi-linear form B : H2 (LT ) ×
H2 (LT ) �→ R and linear functional � : H2 (LT ) �→ R expressed as below

B (u,v) =
∫ T

0

∫ s1

0

· · ·
∫ sp

0︸ ︷︷ ︸
p folds

v̇T (Mü + Cu̇ + Ku) dt dsp . . . ds1 (23)

=
∫ T

0

(T − t)p v̇T (Mü + Cu̇ + Ku) dt (24)



High-Order Time Finite Element Method 143

� (v) =
∫ T

0

∫ s1

0

· · ·
∫ sp

0︸ ︷︷ ︸
p folds

v̇T f dt ds =
∫ T

0

(T − t)p v̇T f dt (25)

Supported by this, as before, we have the element “stiffness” matrix and the
element “equivalent force” vector where the time-to-go (T − t) is raised to the
power of p as follows

K =
∫ Ti

0

(T − t)p ḢT
(
MḦ + CḢ + KH

)
dt (26)

f =
∫ Ti

0

(T − t)p ḢTFdt (27)

We see that, in this formulation, the specific types of “shape” functions will
give different variants of the element matrices. For the second type of time finite
element proposed in this article, the common Hermitian interpolation polyno-
mials of degree 3 are used. For SDOF system n = 1, the element “stiffness”
matrix is shown in the Appendices section. When the six “shape” functions in
Eqs. (16)–(18) are used, then we have the third type of time finite element,
which is a combination of the second-order beam analogous element and the
“p-power of the time-to-go” element. This type of element is denoted as bp-TFE
for later reference. It is too lengthy to show the formulas of element “stiffness”
matrix and “equivalent force” vector here. Instead, MATLAB code to obtain
these quantities are given in the Appendices section.

5 Numerical Example

In this section, we will illustrate the use of proposed high-order TFEs in solv-
ing an undamped single-degree-of-freedom (SDOF) dynamic problem. Out of
the accuracy aspect, we will not explore all other aspects of numerical perfor-
mance of the proposed method through this very example. For comparison, the
problem is also solved by Newmark-β method - the most popular numerical inte-
gration method for transient structural dynamics - with three different sets of
parameters (γ, β), namely (1/2, 0), (1/2, 1/6), and (1/2, 1/4). The most accurate
results obtained by using Newmark-β methods with these sets of parameters are
shown in Table 1 and Table 2. The results offered by [13] are also taken into the
comparison of accuracy.

The statement of the problem is as follows. Given a SDOF system having
the mass of m = 1, the stiffness of k = π2/4, and there is no damping c = 0.
The system is at rest when it is suddenly enforced by a pulse force f(t) given
below

f (t) =

{
1, 0 < t < 1
0, t ≥ 1
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The exact displacement and velocity responses of the system are found to be

u (t) =

{
4 (1 − cos πt/2) /π2, 0 < t < 1
4 (sin πt/2 − cos πt/2) /π2, t ≥ 1

and

u̇ (t) =

{
2 (sinπt/2) /π, 0 < t < 1
2 (cos πt/2 + sinπt/2) /π, t ≥ 1

The responses over the time interval [0, T ] are considered, where T = 12 s.
The time interval [0, T ] is uniformly divided into N elements such that mesh size
is τ = T/N . Five different mesh sizes are considered, namely τ = 1; 1/2; 1/4; 1/8;
and 1/16. For each mesh size, to quantify specifically the accuracy, discrete max-
norm errors, defined as maximum of absolute point-wise errors at all time nodes
are computed and listed in Table 1 for displacement responses and in Table 2 for
velocity responses.

Table 1. Discrete max-norm error in displacement with the use of Newmark (γ, β)
method; first-order TFEs, high-order p-TFEs, and high-order bp-TFEs

Mesh size τ 1 1/2 1/4 1/8 1/16

Newmark (γ, β) 6.8035 · 10−1 2.0725 · 10−1 5.6488 · 10−2 1.4457 · 10−2 3.6345 · 10−3

1st-order TFEs [13] 5.5966 · 10−3 5.6461 · 10−4 6.0392 · 10−5 1.0574 · 10−5 2.3831 · 10−6

p-TFEs p = 0 1.7453 · 10−2 4.2177 · 10−3 1.0449 · 10−3 2.6062 · 10−4 6.5117 · 10−5

p = 2 6.3392 · 10−3 4.8783 · 10−4 5.3554 · 10−5 1.0934 · 10−5 2.6293 · 10−6

p = 3 7.4930 · 10−3 5.6636 · 10−4 5.2995 · 10−5 4.3692 · 10−6 3.3646 · 10−7

bp-TFEs p = −1 1.3646 · 10−4 7.5843 · 10−6 4.8081 · 10−7 2.9627 · 10−8 1.8455 · 10−9

p = 0 1.7552 · 10−4 1.0379 · 10−5 6.4020 · 10−7 3.9883 · 10−8 2.4914 · 10−9

p = 1 6.3564 · 10−4 3.7165 · 10−5 2.2662 · 10−6 1.4023 · 10−7 8.7608 · 10−9

p = 2 1.7412 · 10−3 9.9408 · 10−5 5.9858 · 10−6 3.6814 · 10−7 2.2857 · 10−8

p = 3 4.6406 · 10−3 2.6035 · 10−4 1.6075 · 10−5 9.8146 · 10−7 6.0857 · 10−8

Table 2. Discrete max-norm error in velocity with the use of Newmark (γ, β) method;
first-order TFEs, high-order p-TFEs, and high-order bp-TFEs

Mesh size τ 1 1/2 1/4 1/8 1/16

Newmark (γ, β) 1.0997 · 100 3.4703 · 10−1 9.7632 · 10−2 2.5006 · 10−2 6.2638 · 10−3

1st-order TFEs [13] 4.3783 · 10−2 1.0041 · 10−2 2.4368 · 10−3 6.0898 · 10−4 1.5183 · 10−4

p-TFEs p = 0 8.5147 · 10−2 2.0884 · 10−2 5.3131 · 10−3 1.3232 · 10−3 3.3096 · 10−4

p = 2 6.1716 · 10−2 1.0608 · 10−2 2.6661 · 10−3 6.5878 · 10−4 1.6481 · 10−4

p = 3 1.0299 · 10−1 1.3080 · 10−2 2.5550 · 10−3 6.3140 · 10−4 1.5739 · 10−4

bp-TFEs p = −1 4.5059 · 10−4 3.1248 · 10−5 1, 9402 · 10−6 1.2238 · 10−7 7.6559 · 10−9

p = 0 8.2538 · 10−4 5.0875 · 10−5 3.2486 · 10−6 2.0238 · 10−7 1.2658 · 10−8

p = 1 1.7616 · 10−3 1.0278 · 10−4 6.2780 · 10−6 3.9268 · 10−7 2.4459 · 10−8

p = 2 4.1561 · 10−2 2.3697 · 10−4 1.4289 · 10−5 8.8230 · 10−7 5.4853 · 10−8

p = 3 1.0311 · 10−2 5.7400 · 10−4 3.5423 · 10−5 2.1650 · 10−6 1.3393 · 10−7
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The b-TFEs are the special case of bp-TFEs when p = 1. Comparing the
results offered by [13] with ones obtained by using b-TFEs, we can see that
for all mesh sizes considered, the b-TFEs give much more accurate results. The
smaller the mesh size is, the higher magnitude order of accuracy can be observed.
There is also an interesting observation. Although the cases when p = −1 or
p = 0 are not supported by strictly mathematical arguments, the numerical
results obtained in these two cases with bp-TFEs are still more accurate than
that obtained with bp-TFEs when p ∈ N, p ≥ 1.

For the p-TFEs, the results are somewhat disappointing and unpredictable.
Although there are some cases that p-TFEs can defeat the first-order TFEs (for
example, when p = 3 and the mesh size τ = 1/8 or 1/16), the overall performance
of p-TFEs is worse, compared with the first-order TFEs, in many other cases
with different values of p and τ . Moreover, different from the case of using bp-
TFEs, the trial of using p-TFEs with p = −1 failed, since the obtained matrix
is close to singular.

6 Conclusions

The equation obtained from the well-posed variational statement for structural
dynamics can be regarded as the governing equation in weighted residual meth-
ods, where the weight function is a time-dependent one. Based on this obser-
vation, several high-order time finite elements have been proposed in this work,
namely the 2-order b-TFE, the p-TFE, and the combined 2-order pb-TFE. The
expressions for the element “stiffness” matrix and “equivalent force” vector were
shown in details with notes on practical implementation. The performance of
high-order TFEs, such as stability, accuracy and convergence, compared to pre-
vious methods are being under investigation and will be presented in the next
article. It is believed that TFEM with these high-order type of element would
be effective tool for structural dynamic analysis.

Acknowledgment. This research is funded by National University of Civil Engineer-
ing (NUCE) under grant number 31-2020/KHXD-TD.

APPENDICES

1 The Proof of Equations (24) and (25)

∫ T

0

∫ s1

0
· · ·

∫ sp

0︸ ︷︷ ︸
p folds

fdt dsp . . . ds1 = −
∫ T

0

d (T − s1)

ds1

⎛
⎜⎜⎜⎜⎜⎝

∫ s1

0
· · ·

∫ sp

0︸ ︷︷ ︸
p folds

fdt dsp . . . ds2

⎞
⎟⎟⎟⎟⎟⎠

ds1

= −

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(T − s1)

∫ s1

0
· · ·

∫ sp

0︸ ︷︷ ︸
p folds

fdt dsp . . . ds2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣∣∣

T

s1=0

+

∫ T

0
(T − s1)

d

⎛
⎜⎜⎜⎜⎜⎝

∫ s1

0
· · ·

∫ sp

0︸ ︷︷ ︸
p folds

fdt dsp . . . ds2

⎞
⎟⎟⎟⎟⎟⎠

ds1
ds1
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=

∫ T

0
(T − s1)

d

⎛
⎜⎜⎜⎜⎜⎝

∫ s1

0
· · ·

∫ sp

0︸ ︷︷ ︸
p folds

fdt dsp . . . ds2

⎞
⎟⎟⎟⎟⎟⎠

ds1
ds1 =

∫ T

0
(T − s1)

∫ s2

0
· · ·

∫ sp

0︸ ︷︷ ︸
(p−1) folds

fdsp . . . ds2ds1

=

∫ T

0

∫ s2

0
· · ·

∫ sp

0︸ ︷︷ ︸
(p−1) folds

(T − t) fdt dsp . . . ds2 = · · · =
∫ T

0
(T − t)

p
f (t) dt

The rest of the proof is straightforward.

2 Element “Stiffness” Matrix of p-TFE for SDOF System

We observe that the “equivalent force” vector also has the term T p, thus in
practical implementation, we can cancel this term out from both sides. The
following results are obtained from symbolic computation in MATLAB, with
the common term T p−2 in both sides of Eq. (15) canceled out.

f1 (p) = 1/
(
p3 + 9p2 + 26p + 24

)

f2 (p) = 1/
(
p3 + 12p2 + 47p + 60

)

f3 (p) = 1/
(
p3 + 15p2 + 74p + 120

)

f4 (p) = 1/
(
p4 + 10p3 + 35p2 + 50p + 24

)

f5 (p) = 1/
(
p4 + 14p3 + 71p2 + 154p + 120

)

f6 (p) = 1/
(
p4 + 18p3 + 119p2 + 342p + 360

)

f7 (p) = 1/
(
p5 + 15p4 + 85p3 + 225p2 + 274p + 120

)

f8 (p) = 1/
(
p5 + 18p4 + 121p3 + 372p2 + 508p + 240

)

f9 (p) = 1/
(
p5 + 20p4 + 155p3 + 580p2 + 1044p + 720

)

hm = 2

⎡
⎢⎢⎣

18pf1 12 (p + 1)Tf1 −18pf1 6 (p − 2)Tf1

−3
(
p2 + 2p + 4

)
Tf1 − (

2p2 + 5p + 6
)

T 2f1 3
(
p2 + 2p + 4

)
Tf1 − (

p2 + p + 6
)

T 2f1

−18pf1 −12 (p + 1)Tf1 18pf1 −6 (p − 2)Tf1

6
(
p2 + 2

)
Tf4 2

(
2p2 + 2p + 3

)
T 2f4 −6

(
p2 + 2

)
Tf4 2

(
p2 − 2p + 3

)
T 2f4

⎤
⎥⎥⎦

hc = T

⎡
⎢⎢⎣

72f2 −6 (p − 1)Tf2 −72f2 12 (2p + 1)Tf5

−6 (p − 1)Tf2
(
p2 + 3p + 8

)
T 2f2 6 (p − 1)Tf2 −2

(
p2 + 2

)
T 2f5

−72f2 6 (p − 1)Tf2 72f2 −12 (2p + 1)Tf5

12 (2p + 1)Tf5 −2
(
p2 + 2

)
T 2f5 −12 (2p + 1)Tf5 8

(
p2 + 2

)
T 2f7

⎤
⎥⎥⎦

hk = T
2

⎡
⎢⎢⎣

−6 (p + 10) f3 −12Tf3 −36 (3p + 10) f9 36Tf6(
p2 + 10p + 12

)
Tf3 pT 2f3 6

(
p2 − 12

)
Tf9 −2 (p − 3)T 2f6

6 (p + 10) f3 12Tf3 36 (3p + 10) f9 −36Tf6

−2
(
p2 + 12p + 18

)
Tf6 −2 (2p + 3)T 2f6 −12 (3p − 2)Tf8 12pT 2f9

⎤
⎥⎥⎦

K = mhm + chc + khk
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3 MATLAB Code for Obtaining “Stiffness” Matrix
of bp-TFE for SDOF Systems

syms xi p T m c k tb Ti

assume (p > 0);

assume (Ti > 0);

H1(xi) = 24 * xi^5 - 68 * xi^4 + 66 * xi^3 - 23 * xi^2 + 1;

H2(xi) = (4 * xi^5 - 12 * xi^4 + 13 * xi^3 - 6 * xi^2 + xi) * Ti;

H3(xi) = 16 * xi^4 - 32 * xi^3 + 16 * xi^2;

H4(xi) = (16 * xi^5 - 40 * xi^4 + 32 * xi^3 - 8 * xi^2) * Ti;

H5(xi) = -24 * xi^5 + 52 * xi^4 - 34 * xi^3 + 7 * xi^2;

H6(xi) = (4 * xi^5 - 8 * xi^4 + 5 * xi^3 - xi^2) * Ti;

H(xi) = [H1(xi) H2(xi) H3(xi) H4(xi) H5(xi) H6(xi)];

Hd(xi) = diff(H(xi),xi);

Hdd(xi) = diff(H(xi),xi,2);

h_m = 1/Ti^2 * int((T-tb-xi * Ti)^p.*transpose(Hd(xi)) * Hdd(xi), xi,0,1);

h_c = 1/Ti * int((T-tb-xi * Ti)^p.*transpose(Hd(xi)) * Hd(xi), xi,0,1);

h_k = int((T-tb-xi * Ti)^p.*transpose(Hd(xi)) * H(xi), xi,0,1);

K = m * h_m + c * h_c + k * h_k
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