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Abstract The transmission of COVID-19 and its stability are formulated in this
chapter. In the susceptible class, pre-quarantine technique is implemented for the
individuals who have come from the disease prone areas. Similarly, in the infected
compartment post-quarantine technique is implemented. As per the principle of
mathematical epidemiology, the rate of change of each compartment is expressed in
the form of ordinary differential equations (ODEs). The differential equations are
nonlinear in nature which are associated with the disease parameters, namely rate
of natural death, death due to COVID-19, immigrant’s influx, spread, and recovery.
The basic reproduction number is found mathematically which is useful to address
the local and global stability. Fourth-order Runge–Kutta numerical technique is used
to solve the ODEs. The trend of spread and stability of disease are visualized in
the graphs with the help of MATLAB software. The stability analysis at disease-
free state and endemic state is discussed. The global stability is explained on the
basis of Lyapunov function. Routh–Hurwitz theorem is applied for the behavior of
eigenvalues to discuss the disease-free equilibrium. Our investigation shows that the
disease will be stable for a long run due to the quarantine process.
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I Infected population.
QH Home isolation population, i.e., pre-quarantine class.
Q1 Quarantine populations in hospitals, i.e., post-quarantine class.
R Recovered population.
β Rate of infection from infective class to susceptible class.
θ Rate at which the susceptible population goes to home isolation.
ω Probability at which the home isolation population becomes susceptible.
p Probability at which the infected population goes to hospital quarantine for

treatment.
γ Rate at which the population becomes recovered after hospitalities.
d1 Natural death rate.
d2 Rate of death due to COVID-19.
d3 Rate of death due to preexisting diseases that are vulnerable to COVID-19.
R0 Basic reproduction number of pre-quarantine class.
R0H Basic reproduction number after hospitalities.

1 Introduction

The infectious diseases due to different viruses aremore harmful, quickly spread, and
uncontrolled than the infectious diseases due to other microorganisms. Human being
has been mostly affected by these diseases. The information from different sources
witnessed that these diseases were originated from birds, animals, men, and changing
climates, etc. Most of these diseases are seasonal in the remote areas, hilly areas, and
unhygienic environment in the underdeveloped countries of the African continent but
in December 2019, the present pandemic disease COVID-19 was detected in China
(Wuhan city). The disease spread all over the world by the end of March 2020 and
severely affected many developed countries like USA, Italy, France, Spain, England,
Germany, and Belgium. As per WHO’s (WORLD HEALTH ORGANIZATION) [1]
report from December 31th, 2019, to May 7th, 2020, the disease has spread over 212
countries and 2 international conveyances with number of confirmed cases is more
than 38 lakhs, at least 2.6 lakhs death and more than 13 lakhs recovered persons
have been reported around the world. The disease shows the sign of enhancing body
temperature, sneezing, itching of throat, and difficulty in breathing in most of the
cases; also in some cases, headache and diarrhea are reported. COVID-19 spreads
due to social contact, sneezing openly, and cough of infected individuals. On average
of 5–6 days is the latency period; however, it can take up to 14 days. The time period
of recovery from the COVID-19 is nearly about 2 weeks in case of mild cases, but
it takes up to 3–6 weeks in case of critical patients. COVID-19 affects the people of
different age groups; however, the older people and people with preexisting diseases
like asthma, heart problem, kidney disease, and hypertension are appeared to bemore
vulnerable. Presently, the disease is not resistant to any vaccine ormedicine. Based on
the patient’s clinical conditions, some prescribed antibiotics are given to the patients
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and ICU or ventilator is used for treatment as per the guideline of WHO. Many
persons are cured or recovered from the disease. The disease can be stabilized through
home quarantine, washing hands with soap several times about 20 s, sanitization, not
touching the face, eyes, ear, andwearingmask. So, it is a big challenge for researchers
of different fields including the mathematicians to investigate, analyze, and interpret
the available data including the model parameters to ascertain the cause, effect, and
control of the disease. Mathematical models embedded with the rate of transmission,
recovery rate, rate of quarantine, and death rate with stability analysis will be helpful
for the researchers of other fields to investigate in a realistic way. Before beginning
the study of a new problem, it is required to acquaint with the background of other
infectious disease and research development of current pandemic disease COVID-
19. Therefore, after reviewing, analyzing, and interpreting many past and present
research articles on the epidemiology, we have cited the following limited numbers
of research articles in this paper due to the paucity of article length.

Trawicki [2] has discussed the vaccination of newborn, temporary immunity,
vital dynamics having unequal rate of birth, and death with help of SEIRS epidemic
modeling. Also both local and global stability analyses are performed. The model
has not included the quarantine class. Lu et al. [3] have explained predator–prey
model using nonlinear perturbationmethod to investigate the SIS and SIQR epidemic
models. Lyapunov function is established for stability analysis using an ergodic
stationary point. Analysis of stability in biological system using differential equa-
tions is presented by Bastin [4]. Bin et al. [5] had modeled the disease that demon-
strates the intervention of post-lockdown which mitigates COVID-19. Xu et al. [6]
have explained the evolution of the disease in China and obtained the risk of human
transmission bymodeling its spike protein. Pederson et al. [7] have explained how the
undetected patients quantify the number of infected cases and effort of containment
to control the disease in Italy. Li et al. [8] have proposed COVID-19 mathematical
model on the transmission of the disease and suggested the controlling measure that
can die out the disease. Xia et al. [9] have proved the local stability using the delayed
SEIQ epidemic model. Juhen et al. [10] examined the transmission of the disease
fromDecember 2019 to January 2020 inWuhan and suggested the effectivemeasures
to stabilize the disease. Rothe et al. [11] have shown how the asymptomatic contact
individuals of Germany have transmitted the disease and impact of severity on infec-
tion. Zhang et al. [12] have studied the SEIQRmathematical model and explained the
stability analysis. Zhang et al. [13] have studied the different mathematical models of
influenza viruses and discussed their stability analysis using vaccination. Lan et al.
[14] studied the SIQR model with stochastic persistence of diseases using Markov
semigroup theory. Erdem et al. [15] have observed the oscillatory behavior of SIQR
model with imperfect quarantine that resembles the stability of the disease in South
Korea and China. Ma et al. [16] have used the comparison principle to discuss the
global stability of SIR model. Rao et al. [17] explored the individual mobility of
the disease using the SEIVR model. They have explained that the disease is trans-
mitted indirectly through the environment. Their numerical simulation exhibits global
stability and equilibrium. Malik et al. [18] have proposed a fractional-order system
of the disease for finding parameters using numerical method. They found that the
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result agrees with real data. Zhang et al. [19] have searched hidden parameters that
impact the resurgence of SARS-COV-2 pandemic due to the removal of lockdown
and other social measures. Baba et al. [20] have presented a model for the stability
of disease outbreaks using optimal control function. They established the Lyapunov
function for global stability which shows the disease reduces drastically. Oliveria
et al. [21] have conducted the study of disease in the city of TeraSanya, Brazil. They
used descriptive bibliometric process to ascertain the scientific production through
bibliometric analysis on new COVID-19. Savas et al. [22] have compared the esti-
mated and real cases of COVID-19. They also calculated death cases for 45 days in
Turkey. Their mathematical model suggested that the estimation accuracy was 90%
and 66% for 30 days and 45 days of COVID-19 death, respectively. Gracia et al. [23]
have studied the dynamics of coronavirus in the advanced and emerging country to
forecast economic growth. They found the economic growth is expected to recover
for the long term. Rauta et al. [24] have investigated the SIQRS model to study the
transmission of disease and the impact of isolation. They found the disease can be
controlled for a long run due to quarantine. Paul et al. [25] have investigated COVID-
19 using simple population dynamics based on incidence–fitness relationships. They
found the corona case peaked to the top using the concept of geometry. Murray [26]
has forecasted the effect of death during the transmission of the disease in the first
phase in USA and European economic areas in hospitals. He interpreted that the load
on the health system in the USA was beyond the current capacity. He claimed that
to mitigate the overload in hospital system and to prevent the death, it is required to
enhance the medical facilities.

The literature survey reveals that mathematical modeling of the transmission
of COVID-19 due to coronavirus is inadequate and has many limitations. Many
researchers have investigated different epidemic models on COVID-19 but ignored
some important parameters. So the research done till date is insufficient for this
emerging pandemic disease. A few studies have been reported about the double quar-
antine effect using limited parameters but the stability analysis is hardly discussed.
Therefore, themodel developed in this research paper to investigate the pre- and post-
quarantine effect on the transmission and stability of COVID-19 is new. The novelty
of the proposed model in this chapter is original, and the discussion of both local and
global stabilities will explore the new dimensions in the study of COVID-19.

2 Mathematical Model

Let S(t), I(t),Qh(t),Q1(t), andR(t) are five disjoint classes whose union is total popu-
lation N over the time t. The rate at which the average number of sufficient contacts
by a single infected person per day from infected compartment (I) to susceptible
compartment (S) is β. So the mean number of susceptible those who got infected by
an infected individual is βS. Thus, the whole infected class is βSI which is called
incidence (mass action law). The immigrants, newborn, and suspected individuals
having travel history are kept in home quarantine class Qh at rate ‘θ ’ for 14 days.
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Therefore, the mean rate of home quarantine class is 1
θ
. The probability of recovery

due toQh is taken as ‘ω’ that enters into susceptible class, and probability of showing
symptoms of COVID-19 in Qh is (1 − ω) that enters into infected compartment.
Again, the probability of infected showing mild symptoms to be kept in government
quarantine Q1 for another 14 days during the treatment is taken as ‘p’ and the prob-
ability of recovered as (1 − p). Let ‘γ ’ is the recovery rate from post-quarantine
class to recovery class. The natural mortality rate in each class is given by d1 with
an average life time is 1

d1
. The disease-induced death rate in infected class I and

post-quarantine class Q1 are taken at the rate d2 and d3, respectively. Thus, the rate
of mortality due to disease induced and natural reason in infected compartment is
(d1 + d2) with average mortality rate is 1

d1+d2
. Similarly, the average mortality rate

of post-quarantine class Q1 is 1
d1+d3

. It is assumed that everyone has equal chance of
infection. Every compartment is dynamic in nature with respect to time. Based on
these assumptions, the flow diagram and modeling of COVID-19 are given in Fig. 1.

The net flow of quantity that enters into each compartment is taken as positive and
exit from each compartment is taken as negative. Thus, as per Kermack–McKendrick
model [27–29] the size of each class can be expressed in terms of the following
differential equations

dS

dt
= A + ωQH − (βSI + d1S + θ S)

dQH

dt
= θ S − (1 − ω + ω + d1)QH = θ S − (1 + d1)QH

dI

dt
= βSI + (1 − ω)QH − (p + d1 + d2 + (1 − p))I

= βSI + (1 − ω)QH − (d1 + d2 + 1)I

dQ1

dt
= pI − (d1 + d3 + γ )Q1

Fig. 1 Schematic diagram of the model
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dR

dt
= (1 − p)I + γ Q1 − d1R (1)

With initial conditions S(0) > 0, QH (0) > 0, I (0) > 0, Q1(0) > 0, R(0) > 0.
Since these systems of nonlinear differential equations are not in standard forms to
solve analytically, so fourth-order Runge–Kutta numericalmethod is used for solving
them with help of MATLAB software. Simulated results are interpreted graphically
with detailed discussions.

2.1 Model Analysis

In epidemiology, the basic reproduction number (Ro) is an important indicator that
denotes the contagiousness of infectious agents. It is the average number ofmaximum
contacts by an infected individual to the whole susceptible class during the infection
period. Therefore, Ro = number of new cases arising per day from one infective ×
average days of infection. It is a threshold quantity. When a number of infectious is
entered into a population, then the number of infected individuals in population will
either decrease to zero or increase to a peak. These threshold conditions are char-
acterized by the basic reproductive number in epidemiology. With initial infective
is small and initial susceptible is large so that βS > 1, then I increase to a peak and
S decrease eventually. In this case, Ro > 1, i.e., the disease spread for longer time
leads to epidemic and the system is said to be unstable. When Ro < 1, i.e., infected
replaces itself with less than one new infective, then the disease will extinct and the
system is said to be stable. If Ro = 1, then an infected person produces only one new
case of the diseases, so disease will not grow significantly but the disease persists. It
is the critical value of the threshold quantity. So, the analysis and interpretation of
R0 are important for the study of COVID-19 and due to adoption of two quarantine
process (pre- and post-quarantine) in this paper, we derived two basic reproduction
numbers from the model.

The region in which solutions for the model are uniformly bounded is defined as
� ∈ R5+ = {(S, QH , I, Q1, R) ∈ R5+, S ≥ 0, QH ≥ 0, I ≥ 0, Q1 ≥ 0, R ≥ 0. The
interactive functions of system (1) are continuously differentiable, so the solution of
the system (1) exist and unique. The uniform boundedness of solutions for the system
(1) having nonnegative initial conditions is discussed using different theorems.

Theorem 1 Solutions of the system (1) which are defined in R5+are uniformly
bounded.

Proof Let S(t), QH(t), I (t), Q1(t), and R(t) be any solution of system (1) having
nonnegative initial condition S(0), QH(0), I (0), Q1(0) and R(0).

Therefore, N (t) = S(t) + QH(t) + I (t) + Q1(t) + R(t).
Then, dN

dt = dS
dt + dQH

dt + dI
dt + dQ1

dt + dR
dt so, dN

dt = A − d1N − d2 I − d3Q1.
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In the dearth of any infection, N becomes A
d1
, i.e., as t → ∞, then N → A

d1
.

Hence, the solution of the system (1) is well posed and confined in the region � ={
(S, QH, I, Q1, R) ∈ R5+: N ≤ A

d1

}
.

2.2 Calculation of R0 from SI Q1R Model

The SI Q1R compartmental equations are

dS

dt
= A + ωQH − (βSI + d1S + θ S)

dI

dt
= βSI + (1 − ω)QH − (d1 + d2 + 1)

dQ1

dt
= P I − (d1 + d3 + γ )Q1

dR

dt
= (1 − P)I + γ Q1 − d1R (2)

This model is also positive and closed invariant.
R0 = the largest positive eigenvalue of the matrix FV−1, where F is called

infection matrix and V is called transformation matrix between the compartments.
Linearization of Eq. (2) by taking two classes I and Q1, we have

R0 = βS0
(d1 + d2 + 1)

2.3 Stability Analysis for SI Q1R Model

For steady state of Eq. (2), we take

A + ωQH − (βSI + d1S + θ S) = 0

βSI + (1 − ω)QH − (d1 + d2 + 1)I = 0

P I − (d1 + d3 + γ )Q1 = 0

(1 − P)I + γ Q1 − d1R = 0 (3)

There are two equilibrium points, which can be obtained from Eq. (3).
Equilibrium point for disease-free state = (S0, 0, 0, 0).
Equilibrium point for endemic state = (

S∗, I ∗, Q∗
1, R

∗).
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Theorem 2 If R0 < 1, then the system at disease-free equilibrium of (3)is stable;
otherwise, it is unstable when R0 > 1.

Proof Linearization of model at equilibrium point for disease-free state in (3),

JDFE(S0, 0, 0, 0) =

⎛
⎜⎜⎝

−(d1 + θ) −βS0 0 0
0 βS0 − (d1 + d2 + 1) 0 0
0 P −(d1 + d3 + γ ) 0
0 (1 − P) γ −d1

⎞
⎟⎟⎠

By calculating the eigenvalues, we have

λ1 = −(d1 + θ)

λ2 = −(d1 + d3 + γ )

λ3 = −d1
λ4 = βS0 − (d1 + d2 + 1)

For βS0
d1+d2+1 < 1, i.e., R0 < 1 so the eigenvalues are negative.

Hence, the equilibrium is asymptotically stable locally for the disease-free state
as per Routh–Hurwitz principle of stability.

Theorem 3 The system at endemic equilibrium point
(
S∗, I ∗, Q∗

1, R
∗)of (3) is

locally stable when R0 > 1.

Proof At the endemic equilibrium point

JEE
(
S∗, I∗, Q∗

1, R∗) =

⎛
⎜⎜⎜⎝

−(
β I∗ + d1 + θ

) −βS∗ 0 0

β I∗ βS∗ − (d1 + d2 + 1) 0 0

0 P −(d1 + d3 + γ ) 0

0 (1 − P) γ −d1

⎞
⎟⎟⎟⎠

The eigenvalues are

λ1 = −(d1 + d3 + γ )

λ2 = −d1

Remaining eigenvalues can be derived from the equation aλ2+bλ+c = 0, where

a = (
β I ∗ + 2d1 + d2 + 1 + θ − βS∗) > 0

b = (
d1 + d2 + 1 − βS∗)(β I ∗ + d1 + θ

)
> 0

Since a > 0, b > 0, we have ab > 0 Hence, by Routh–Hurwitz condition the
system is stable.

Theorem 4 The diseases-free equilibrium E0 =
(

A
μ
, 0, 0

)
of (3) is globally

asymptotically stable if R0 < 1.
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Proof Consider a Lyapunov function.

Z = I

dZ

dt
= dI

dt
= βSI − (d1 + d2 + 1)

= −(1 + d1 + d2)I

(
1 − βS

1 + d1 + d2

)

= −(1 + d1 + d2)I (1 − R0)

If R0 < 1 then dZ
dt1

< 1. It is observed that dZ
dt1

= 0 if I = 0.
Therefore, equilibrium of disease-free state is asymptotically stable globally for

R0 < 1 as per LaSalle Lyapunov theory.

2.4 Calculation of Basic Reproduction Number
from SQH I Q1R Model

R0H for SQH I Q1R is calculated as;

R0H = βS0(1 − ω)

(ω + d1)(d1 + d2 + 1)
= R0(1 − ω)

(ω + d1)

Success or failure of COVID-19 virus attack depends on basic reproduction
number R0H. If R0H ≥ 1 the COVID-19-based epidemic will carry on, i.e., the
disease becomes endemic, but, if R0H < 1, then COVID-19-based epidemic will die
out; i.e., the infected population will slowly become zero.

2.5 Stability Analysis for SQH I Q1R Model

The disease-free equilibrium point of systems of Eq. (1) is (S0, 0, 0, 0), and the
equilibrium for endemic state is as follows:

S∗ = (1 − ω)A + ω(1 − R0)I ∗

(1 − ω)(d1 + β I ∗ + θ)

Q∗
H = (1 − R0)I ∗

(1 − ω)

Q∗
1 = P I ∗

(d1 + d3 + γ )
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R∗ =
[
(1 − P)(d1 + d3 + γ ) + γ P

]
I ∗

(d1 + d3 + γ )

Theorem 5 The system is locally stable if R0H < 1, and it is unstable if R0H > 1at
diseases-free equilibrium point (S0, 0, 0, 0)of the system of Eq. (1).

Proof Linearization of the system of differential Eq. (1) and the characteristic
equation is

JDFE = (S0, 0, 0, 0) =

⎛
⎜⎜⎜⎝

−(d1 + θ) ω −βS0 0

θ −(1 + d1) 0 0

0 (1 − ω) βS0 − (d1 + d2 + 1) 0

0 0 P −(d1 + d3 + γ )

⎞
⎟⎟⎟⎠

One of the roots of the characteristic equation is λ1 = −(d1 + d3 + γ ).
Other three roots are obtained from the equation λ3 + Aλ2 + Bλ +C = 0 where

A = 3d1 + d2 + γ + θ + 1

B = (d1 + θ)(d1 + 1) + (γ + d3 + d1)(θ + d1)

+ (γ + d3 + d1)(1 + d1 + d2)(1 − R0) − ωθ

C = (1 + d1)(d1 + d3 + γ )(d1 + θ)

− ωPβS0 − ωθ(d1 + d3 + γ )

Since AB > C , so by Routh–Hurwitz condition for stability, it is locally stable.

Theorem 6 At the endemic equilibrium point �∗(S∗, Q∗
H, I ∗, Q∗

1, R
∗),the system

is locally stable when R0H > 1.

Proof At the endemic equilibrium, �∗(S∗, Q∗
H, I ∗, Q∗

1, R
∗), the Jacobian matrix is

JEE = (
S∗, Q∗

H , I∗, Q∗
1, R∗)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−(
β I∗ + d1 + θ

)
ω −βS∗ 0 0

θ −(1 + d1) 0 0 0

β I∗ (1 − ω) βS∗ − (d1 + d2 + 1) 0 0

0 0 P −(d1 + d3 + γ ) 0

0 0 (1 − P) γ −d1

⎞
⎟⎟⎟⎟⎟⎟⎠

Here the two eigenvalues are

λ1 = −d1
λ2 = −(d1 + d3 + γ )

And other three eigenvalues are determined from the equations λ3+a1λ2+a2λ+
a3 = 0, where

a1 = 3d1 + d2 + γ + θ + 1 + β I ∗
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a2 = (
d1 + β I ∗ + θ

)(
d1 + d2 + 1 − βS∗) + (

d1 + β I ∗ + θ
)
(1 + d1)

+ (1 + d1)
(
d1 + d2 + 1 − βS∗) + β2S∗ I ∗ − ωθ

a3 = ωθ(1 + d1 + d2)(R0 − 1) + (
d1 + β I ∗ + θ

)
(
1 + d1 + d2 − βS∗)(d1 + 1) − (1 + d1)β

2S∗ I ∗ + βS∗(1 − ω)

Since a1a2 − a3 > 0, hence by Routh–Hurwitz condition, the system is locally
stable for endemic equilibrium.

2.6 Analysis of Global Stability at Endemic Equilibrium

Endemic equilibrium points with death due to infection satisfy the system (1) for
SQH I Q1R model. The analysis for global stability can be dealt through geometric
approaches. According to the approach, if the differential equation dx

dt = f (x),
x(t) = x0 for the mapping f : φ ⊂ Rn → Rn , where ϕ is an open connected set,
then the equilibrium point x ∈ φ which agree the following conditions.

1. φ is simply connected.
2. ∃ is a compact absorbing subset K ∈ φ.

3. x is the only equilibrium point in φ that is globally stable if it satis-
fies the Bendixson criteria q2 = lim supn→∞ supx0∈K q < 0, where q =∫ t
0 ψ(Z(x(s, x0)))ds and Z = M f M−1 + M ∂ J

∂x M
−1,M is matrix-valued func-

tion which satisfy the condition Z = M f M−1 + M ∂ J
∂x M

−1 ≤ 0 on K . Further,

the fourth-order second compounded Jacobian matrix is J [2] = ∂ f [2]

∂x .

Theorem 7 The system is globally stable at unique endemic equilibrium points
�∗(S∗, I ∗, Q∗

H, Q∗
1

)
in the interior of �∗, when R0 > 1.

Proof From the system of Eq. (1), the Jacobian matrix, leaving the recovered
population is

J =

⎛
⎜⎜⎝

−(d1 + β I + θ) −βS ω 0
β I βS − (d1 + d2 + 1) (1 − ω) 0
θ 0 −(1 + d1) 0
0 P 0 −(d1 + d3 + γ )

⎞
⎟⎟⎠

Again,

J [2] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

βS − (2d1 + d2 + 1 + θ + β I ) (1 − ω) 0

0 −(2d1 + β I + θ + 1) 0

P 0 −(d1 + β I + θ + d2 + d3 + γ )

−θ β I 0

0 0 β I

0 0 θ
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−ω 0 0

−βS 0 0

0 ω

βS − (2d1 + d2 + 2) −βS 0

P βS − (2d1 + d2 + 1 + γ + d3) (1 − ω)

−P 0 −(d1 + d2 + d3 + γ + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where J [2] is the second compound additive Jacobian matrix.
To get the matrix Z in Bendixson criteria, the diagonal matrix M is defined as.

M = diag
(
1, I

QH
, I
QH

, I
QH

, I
QH

, I
QH

)
and vector field f of the system is defined as

M f M
−1 = diag

(
0,

(
I

QH

)

f

I

QH
,

(
I

QH

)

f

I

QH
,

(
I

QH

)

f

I

QH
,

(
I

QH

)

f

I

QH
,

(
I

QH

)

f

I

QH

)

Hence, we obtain the block matrix Z = M f M−1+MJ [2]M =
(
Z11Z12

Z21Z22

)
where

Z11 = βS − (2d1 + d2 + 1 + θ + β I )

Z12 =
(

(1 − ω)
QH
I

0 − ω
QH
I

0 0

)

Z21 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

P I
QH

−θ I
QH
0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

Z22 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(−(2d1 + β I + θ + 1) + X) 0 −βS

0 (−(d1 + β I + θ + d2 + d3 + γ ) + X) 0

β I 0 (βS − (2d1 + d2 + 2) + X)

0 β I P

0 θ −P

0 0

−βS ω

0 0

(βS − (2d1 + d2 + d3 + 1 + γ ) + X) (1 − ω)

0 (−(d1 + d2 + γ + d3 + 1) + X)

⎞
⎟⎟⎟⎟⎟⎟⎠

where X = I ′
I − Q′

H
QH

.
The Lozinski measure of matrix Z is estimated as ψ(Z) ≤ sup {g1, g2}, where

g1, g2 are defined as

g1 = ψ(Z11) + |Z12| = βS − (2d1 + d2 + 1 + θ + β I ) + (1 − ω)
QH

I
≤ I ′

I

g2 = ψ(Z22) + |Z21| = (βS − (2d1 + d2 + 2) + X) + P
I

QH
≤ I ′

I
− d1

So,ψ(Z) ≤ sup {g1, g2} ≤ I /

I − d1. Hence,
∫ t
0 ψ(Z)dt < log I (t) − d1t .
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Finally, we have q2 = ∫t
0 ψ(Z)dt

t <
log I (t)

t − d1 < 0, for all absorbing set �

is bounded. Thus as per Li and Muldowney [30], Bendixson criteria is satisfied at
endemic equilibrium for global stability.

3 Discussion of the Result

Ourmodel is based on two unique approaches: Firstly, it is based on pre-quarantine of
suspected immigrants and individuals having travel history. Secondly, the approach
is based on post-quarantine of infected individuals. Two basic reproduction numbers
R0 and R0H are derived. These two basic reproduction numbers collectively give
the overall disease outbreak. The numerical simulation of the available data rele-
vant to COVID-19 obtained from different sources is validated with analytical
results with the help of MATLAB. The nonlinear ODEs are solved with the help
of Runge–Kutta fourth-order numerical method. Graphical interpretation of numer-
ical results is thoroughly discussed using different parameters. It is found that
the interpretation of data agrees with the current phenomena of COVID-19 and
results of existing literature. As per the relevant data of COVID-19 available from
different sources (Govt. Websites of different countries, Media, WHO, etc.), we
have assumed the whole population as one unit and the initial conditions are set as
S(0) = 0.82, QH(0) = 0.03, I (0) = 0.12, Q1(0) = 0.02, R(0) = 0.01. The graphs
are plotted by taking the appropriate values of different parameters associated with
the model that are indicated in each figure.

Figures 2 and 3 represent the behavior of all compartments for R0 < 1 and
R0 > 1, respectively when A = 0. Figure 2 indicates the disease-free equilibrium
because susceptible class does not tend to zero level. Figure 3 indicates endemic
equilibrium because the susceptible class tends to zero level. Due to the adoption of
pre- and post-quarantine processes, the infection decreases that indicates the decline
of infected line in both diagrams. Prior to the whole population being infected, the
disease dies out that indicates the recovered line is higher but not approaches to zero.
As infected individuals are isolated through quarantine, the disease does not spread.

Figures 4 and 5 interpret the effect of influx of newborn and immigrants
(i.e. A �= 0) on all compartments for R0 < 1 and R0 > 1, respectively. Because
of the continuous influx of immigrants and newborns in susceptible class and due to
double quarantine effect, the infective class approaches to zero level. So, the disease
is stable after some days.

The phase diagram of susceptible verses infective is shown in Figs. 6 and 7
for A = 0 and A �= 0, respectively. When S increased, infection reached to a
peak but then decreased because of double quarantine effect and proper health care.
The declined trend of infective graph indicates that the disease is toward the stable
condition due to the enhanced recovery rate.

Figures 8 and 9 exhibit the phase portrait graph of infective verses recovery class.
Due to pre-quarantine of susceptible class, entry of immigrants, newborn cases,
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Fig. 2 A = 0, R0 = 0.98, R0h = 0.17, θ = 1
14 , γ = 1

14 , p = 0.47, d3 = 0.002

Fig. 3 A = 0, R0 = 1.6, R0h = 0.87, θ = 1
14 , γ = 1

21 , p = 0.59, d3 = 0.002
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Fig. 4 A = 0.02, R0 = 0.41, R0h = 0.75, θ = 1
14 , γ = 1

14 , p = 0.49, d3 = 0

Fig. 5 A = 0.02, R0 = 1.9, R0h = 2.3, θ = 1
14 , γ = 1

14 , p = 0.7, d3 = 0.002
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Fig. 6 A = 0, R0 = 1.4, R0h = 1.7, θ = 1
14 , γ = 1

21 , p = 0.59, d3 = 0.002

Fig. 7 A = 0.01, R0 = 1.3, R0h = 1.3, θ = 1
14 , γ = 1

21 , p = 0.53, d3 = 0.002
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Fig. 8 A = 0, R0 = 0.41, R0h = 0.75, θ = 1
14 , γ = 1

14 , p = 0.49, d3 = 0

Fig. 9 A = 0.02, R0 = 0.41, R0h = 0.75, θ = 1
14 , γ = 1

14 , p = 0.49, d3 = 0



54 J. Behera et al.

Fig. 10 A = 0, R0 = 0.41, R0h = 0.75, θ = 1
14 , γ = 1

14 , p = 0.49, d3 = 0

and post-quarantine of infective class, the recovered population enhanced first but
decreased after certain period of time. So the growing number of invectives leads to
an endemic in the absence of quarantine.

The phase diagram of quarantine verses infective is shown in Figs. 10 and 11 for
R0 < 1 when A = 0 and A �= 0, respectively. With the increase of invectives in the
quarantine class, the post-quarantine class increased initially and then decreased due
to either the stability of disease or recovery of maximum number of individuals.

4 Conclusion

The research designed in this chapter is based on the formulation of the spread and
control of the coronavirus disease-19. Here, a model is developed to investigate the
effects of double quarantine process on the stability analysis.We conducted a detailed
analysis of this model, devised the methodology, reviewed, analyzed, and discussed
the result both analytically and numerically. Eigenvalues are derived from Jacobian
matrix and equilibrium points (disease-free and endemic) are obtained. Analysis for
both local and global stabilities is carried out with the help of existing theorems. The
analytical and numerical results are well in agreement that validates the data. The
graphical interpretation explores the real findings of the investigation. The finding
of the investigation done in this paper indicates that the disease will be stable locally
asymptotically for R0 < 1. The finding of our research supports the speculations of
the disease that would persist in human world for long term. Moreover, if the double
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Fig. 11 A = 0.02, R0 = 0.41, R0h = 0.75, θ = 1
14 , γ = 1

14 , p = 0.49, d3 = 0

quarantine process at both susceptible and infected levels is effectively implemented
and social distancing is strictly maintained with lockdown or containment, then the
disease will be globally stable in a long term for R0 > 1. More realistic models
with detailed data or parameters like immunity, age structure, saturated incidence,
and exposed compartment may be employed in future investigation to explore the
analysis of COVID-19 outbreak.
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