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Abstract

The ever-growing planet population will reach 10 billion in 2050 according to
estimates. The current agricultural and food system demonstrates every day a
little more its inability to feed this population adequately. More than 10.7% of the
current world population suffers from chronic undernourishment. The soaring
world population has resulted in multiple environmental damages: the destruction
of forests, overconsumption of water reserves, extensive use of pollutants, soil
degradation, etc. However, a majority (72%) of the worldwide food is cultivated
and gathered by 2.5 million smallholder producers on small family farms (<1 ha).
Agroecology offers concrete solutions to climate breakdown and contributes to
the preservation of natural resources essential for sustainable agricultural produc-
tion. The soil support for agriculture can be well managed by adopting cultivation
techniques, associated with plant cover of the soil (green manures, alley or mixed
cropping with agroforestry species) and vigorous biological activity, by limiting
or eliminating chemical fertilizer use, prioritizing local inputs and recycling of
farm by-products (manure, compost, bio-char, crop waste, household waste),
maintaining inherent fertility of soil, conserving soil biodiversity, and enhancing
plant nutrient availability.
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Abbreviations

ADG Aide au Développement Gembloux
AFOP Agropastoral and Fishing Training Programme
AMF Arbuscular Mycorrhizal Fungi
CEFRA Centre de d’Enseignement, de Formation et de Recherche en

Agroécologie
CEFREPADE Centre Francophone de Recherche Partenariale sur

l’Assainissement, les Déchets et l’Environnement
CIRAD The French Agricultural Research Centre for International

Development
ELD Economics of Land Degradation
FAO Food and Agricultural Organization
FNRS National Fund for Scientific Research
GESCOD Grand Est Solidarités et Coopérations pour le Développement
IFOAM International Federation of Organic Agriculture Movements
IPBES Intergovernmental Science-Policy Platform on Biodiversity and

Ecosystem Services
IPM Integrated Pest Management
IRAD Institute of Agricultural Research for Development
ISSAEER Institut Supérieur des Sciences Agronomiques, de

L’Environnement et de l’Entrepreneuriat Rural
N Nitrogen
NGO Nongovernmental organization
OC Organic carbon
OM Organic matter
P Phosphorus
PGPR Plant growth-promoting rhizobacteria
SOCLA Latin American Scientific Society of Agroecology
UN United Nations
UNCCD United Nations Conventions to Combat Desertification

9.1 Introduction

In 2100, the world population intended to attain 11.2 billion. However, more people
(9 million) are dying of hunger each year than from AIDS, malaria, and tuberculosis
altogether (UN 2018). One child (under 15 years old) dies every 5 s from hunger or
related causes in 2017 (Sidhu 2020). The tremendous increase in food productivity
during the past 50 years has decreased the frequency of acutely hungry people in the
world. But, this agricultural system has shown many limits, among which excessive
specialization and the tendency to gigantism. We can also note the explosion in the
use of energy-consuming inputs and equipment and the decrease in the efficiency of
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the use of chemical inputs. For example, there has been stagnation in cereals (winter
wheat, barley, oats, durum wheat), sunflower (Helianthus spp.), and vine yields in
France since the late 1990s (Schauberger et al. 2018).

The substantial gains in the production of conventional farming have been also
accompanied by high environmental costs/problems, which have affected the health
of soils and ecosystems (FAO 2015; Kumar et al. 2020). Thus, 12 million hectares
(i.e., 23 per minute) of agricultural land are damaged broadly to soil deterioration
each year which represents over half (52%) of fertile soils food producers in the
world (UNCCD 2015), with 78% of overall deteriorated soil localized in earthly
ecosystems other than arid areas (UN 2012). Land degradation affects 1.9 billion
hectares. It is costing each year between 6.3 and 10.6 trillion US dollars taken as a
whole (ELD 2015). Twenty-four billion tons of fertile land is irreversibly laved or
carried away (3.4 tons for each person on the earth) each year because of the erosion
of the world’s cultivated land (Young et al. 2015). Thus, soil deterioration has
diminished the productivity of 23% of the worldwide land surface, and up to US
$577 billion in annual cultivated plants of the world are at riskiness from pollinator
loss (Brondizio et al. 2019; Díaz et al. 2019).

Soil degradation is a worldwide problem which is currently receiving a lot of
attention (Xie et al. 2020; Khan et al. 2021a, b). However, the agribusiness model
remains the model mostly taught in schools and universities and widely promoted by
research centers, most producer organizations, and technical services. Smallholder
farmers remain the leading providers of food (72%) but paradoxically are the first to
suffer from poverty and hunger. It is therefore essential to refocus our agricultural
model, particularly on peasant women to sustainably feed the populations (ADG
2016). The current challenge for agricultural policy is to combine sufficient food
production for a growing community ensuring environmental restoration (FAO
2015; Banerjee et al. 2020, 2021; Raj et al. 2020). By preserving soil health,
agroecology, which regenerates the functioning of ecosystems, is an effective
strategy for achieving food security (FAO 2015; Jhariya et al. 2019a, b, 2021;
Meena et al. 2020a, b, c).

By mastering and laboring with the interactions between land, crops, beasts,
human being, and the environment in farming systems, agroecology integrates
manifold dimensions of the agricultural system, enclosing ecological rehabilitation,
political and social steadiness, and economical sustainability. This chapter expands
the principles of agroecology, soil conservation through the management of soil
composition, cultural techniques and fertilization, the constraints to adoption of
agroecology, agroecology versus conventional agriculture, agroecology towards
soil management and sustainability, policy and legal framework, and future roadmap
of agroecology for agricultural soil management
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Table 9.1 Definition of agroecology

Definition of agroecology Reference

The implementation of ecological tenets to agriculture Altieri (1983a)

“The application of ecological science to the study, design and
management of sustainable agroecosystems”

Gliessman (1997)

An interdisciplinary process that involves a redefinition of scientific
and social boundaries, which constitutes an important intellectual
defiance for agricultural research

Buttel (2003)

The integrative investigation of the ecology of all food systems,
including ecological, economic, and social aspects

Francis et al. (2003)

It is defined neither exclusively by scientific disciplines, social
movements, nor by practices

Wezel et al. (2009)

An intrinsically transdisciplinary practice, as it binds the organization
and operating of agroecosystems and fills the ditch between various
disciplines as good as between theory and practice

Caporali (2011)

New agricultural template that could allegedly conciliate the economic
and environmental defiance in food production

Schaller (2013)

For Pierre Rabhi, it is more than a simple agronomic option; it is linked
to a deep dimension of respect for life and places the human being in
his responsibility towards the living; it is both an ethics of life and
agricultural practice

Lion et al. (2009),
ADG (2016)

The study, application, and defense of concepts, principles, and
methods aimed at the establishment of agroecosystems and sustainable
food systems from the point of view productive, environmental, social,
cultural, and economic

Gliessman (1997),
ADG (2016)

The development of agricultural techniques to safeguard the
environment and to favor the utilization of ecological theory to
promote “eco-friendly” means to make food

Saj et al. (2017)

A scientific search on coming ensuring the holistic investigation of
agroecosystems and agricultural commodities systems

CIDSE (2018)

One of a family of varied methods sharing a usual feature in that they
involve the ecological roles of farming systems to assure long-lasting
production

CIRAD (2018)

A scientific discipline, an ensemble of processes, and a societal
movement

FAO (2018)

The science and method of implementing ecological notions, tenets,
and acquaintance to the investigation, designing, and management of
sustainable agroecosystems

IPBES (2018)

An alternative template for promoting farming systems founded on
every farm being a consolidated ecosystem, in which plants and
animals interact to generate suitable provisos for cultivation

Lund University
(2018)

The investigation of the ecology of earthly farming systems Nature (2018)

An interdisciplinary merger of agronomy, agriculture, scientific
ecology, economics, and social sciences

Youmatter (2020)
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9.2 Agroecological Concept

Agroecology is a concept defined in various ways (Table 9.1). Agroecology
combines practices such as ecological farming, regenerative farming, and certain
features of permaculture and thus competes with sustainable development
(Youmatter 2020). With the ambition of producing knowledge and methods that
make agriculture more sustainable, agroecology concentrates on the whole farming
system to go beyond the scale of the plot. Indeed, it focuses on the analysis of
agroecosystems and their sustainability (Stassart et al. 2012; Raj et al. 2021).
Therefore, a whole of agricultural practices are aimed towards imitating nature in
its field. As a science, it investigates how various constituents of the agroecosystem
interact. As a whole of operations, it searches long-lasting agricultural systems
optimizing and hold steady yields. As a social movement, it prosecutes multifunc-
tional purposes for agriculture, encourages societal justness, feeds identity and
culture, and reinforces the economic viability of peasant zones (FAO 2018).

Based on traditional peasant practices, agroecology links several alternatives such
as organic farming, permaculture, and natural farming, without being reduced to
it. These practices being drawn mainly from the traditional knowledge of the
agricultural populations allow agroecology to spread quickly through communities
and small family farms. The application of ecological principles to these ancestral
techniques is, therefore, the basis of agroecological practices (Altieri and Nicholls
2014; Meena et al. 2020a).

Agroecology was first used by Bensin 1928, a Russian agronomist, who used it to
designate “gentle” agronomic techniques in cash crops. The meaning and scope of
the term have evolved. At first, it was considered as a scientific discipline linked to
agricultural production, which combines ecology and agronomy. Currently, it is
defined as a whole of process, a scientific discipline, and a movement (ADG 2016).

The practices are very diverse. In tropical zones, they include fertility manage-
ment, soil (and water) conservation, pest control, water management, management
of crops on the farm, livestock, etc. In the 1980s, agroecology appeared as an
ensemble of agricultural activities. Traditional farming systems in developing
countries are beginning to be recognized for their benefits in the management of
natural resources. Peasants from the south are capable of combining traditional
knowledge and know-how and innovation and sometimes helped by international
cooperation or the scientific community. They develop and adopt specific
techniques, thus gradually generating a set of agroecological practices,
demonstrating that the solutions also come “from below.”

As a scientific discipline, the field of study of agroecology has evolved consider-
ably. It went from managing the plot to the ecology as well as agroecosystems
management and the organization/structure of the food production system (three
dimensions). In response to the green revolution, ecological movements were born
in the 1960s and 1970s. It is a mixed discipline, at the crossroads of natural, social,
and economic sciences which is today an alternative scientific referent. Indeed,
agroecology entered into university courses in the USA in 1981 (Berkeley) and
more generally from 2000, in Brazil (Santa Catarina in 2000), Belgium (University
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Libre of Brussels in 2008), etc. Research groups like SOCLA (in 2007) in Latin
America and FNRS (in 2009) in Belgium have shown their interest in this science
(Altieri 1983b; ADG 2016).

The first agroecological social movements, in the south (particularly in Latin
America) and the north (especially in the United States) appeared in the 1980s. It
began in Mexico and Central America in the 1980s with associations (NGOs: World
Neighbors, CLADES) and scientists (Bunch, Altieri) close to peasants and natives. It
was presented as an alternative to industrial agriculture with high levels of chemical
inputs. In Latin America, it is adopted by Via Campesina (food sovereignty, peasant
agriculture, and agroecology), the network of producer actors and sympathetic
organizations (Prolinnova), etc. (De Schutter 2011).

Based on the existing literature, Migliorini and Wezel (2017) summarized the
principles of agroecology, as shown in Figs. 9.1 and 9.2. The success of novel
farming systems depends on the application of the tenets of agroecology (Nicholls
et al. 2016), making reference to the popularization of practices and serves ecology,
enclosing land, water, air, and biological diversity dimensions. Thus, the straightfor-
ward implementation of a set of practices is not sufficient. Stassart et al. (2012) and
Dumont et al. (2016) also append three socioeconomic tenets (Fig. 9.2) to the other
tenets more linked to production and ecology.

Regarding the principles of agroecology for animal production systems, Dumont
et al. (2013) complete the above tenets in Fig. 9.2. They can be summarized in two
tenets: (a) adopting a management process aimed at improving animal health and
(b) strengthening diversity in animal farming to enhance their resilience.

General tenets
of agroecology

Strenghten the «immune system» of agricultural
farming via improvement of functional biological
diversity, inborn foes, competitors, by developing
suitable environments Afford the most suitable

soil conditions for crops
growth by managing
OM and by enhancing
soil biological activity

Improve the recycling of
biomass, for optimizing
OM decomposition and
nutrient cycling over
time

Diversity species and genetical materials
in the agricultural ecosystem during time 
and space at the farm and scenery level

Enhance beneficial biological
interactions and synergies
among the components of
agrobiodiversity by
promoting key ecological
processes and services

Minimize losses of energy, water,
nutriments and genetical materials via
improving preservation and
restoration of land, water supplies and
agrobiodiversity

Fig. 9.1 General principles of agroecology (source: Migliorini and Wezel 2017)

272 N. C. Temegne et al.



9.3 Agroecology and Soil Characterization

Soil is the substrate that nourishes and supports growing plants. It is composed of
25% air, 25% water, 50% solid components (by volume), and 0%, 17%, and 83%
(by weight), respectively (Parker 2009). Soil is essentially a nonrenewable resource
because the formation processes are prolonged while the degradation processes can
be very rapid. It is a fusion between the mineral (clays) and organic (humus) with an
average ratio of 16/1 by volume and 40/1 by weight. The living constitutes 0.15 to
0.2% of the soil (by weight). Soil contains 80% of the living organisms (by weight)
on earth. The living organic components of the soil include the fauna (between 2.5
and 5 t ha�1) consisting of earthworms, fungi, bacteria, nematodes, springtails,
termites, and plants consisting mainly of roots and algae.

Soil microorganisms perform several ecosystem services and functions in the soil.

Adopting
management

practices
aiming to 
improve

animal health

Decreasing
the inputs
needed for
production

Principles for
animal

production &

Decreasing
pollution by
optimising

the metabolic
functionning
of farming
systems

Preserving
biological

diversity by
adapting

management
practices

Enhancing
diversity

within animal
production

systems for a
better

resilience

Recognise the
value of a
diversity of

knowlege and
know-how

socio-
economic
principles

Create
collective

knowledge
and coping

ability

Foster
farmer’

independence
from the
market

Fig. 9.2 Socioeconomic principles of agroecology and principles for animal production systems
(source: Migliorini and Wezel 2017)
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9.3.1 Soil Structuring Function

It is made through the development of stable aggregates, a macro- and a micro-
porosity. Roots, mycelial hyphae, vertebrates, and invertebrates burrowing create
numerous galleries in the soil resulting in high porosity of the surface layer of the soil
(Huera-Lucero et al. 2020). AMFs secrete a glycoprotein (glomalin) which promotes
aggregation (Vlček and Pohanka 2020). This substance cements clay particles and
organic debris giving macroaggregates. Fungi and saprophytic bacteria produce
exo-polysaccharides (Costa et al. 2018). Earthworms ensure the formation of the
clay-humic complex. They come up every night to get litter and then they leave their
droppings on the soil surface (formation of turricules). They continuously brew deep
clay-rich soil with surface soil rich in humus. These earthworms consume the
equivalent of their weight of soil per day (Misra et al. 2003). Termites are responsi-
ble for the creation of fecal pellets very resistant to the elements of the climate, which
explains the high permeability of the oxysol from tropical rain forests. They feed on
lignified plants and undecomposed wood. Their gut contains flagellated protozoa
that digest cellulose and bacteria that digest lignin (Ali et al. 2019).

9.3.2 Nutrient Recycling Function

Bacteria oxidize NH4
+ ions (Nitrobacter) and sulfur and ensure the chelation of trace

elements (Fe, Al, etc.). The root systems of plants associated with mycorrhizae also
participate in this recycling process through the networks (hyphae + roots) that they
develop in the plant rhizosphere (Temegne et al. 2018, 2019; Giovannini et al. 2020).

9.3.3 Function of Decomposition, Mineralization, or Humidification
of Soil Organic Matter

Many soil organisms feed on different trophic levels which abet to the intricacy of
food dealings, and this conducts to effective recycling of organic matter and a net
release of nutrients.

The grinding is mainly done by first- and second-order consumers. It accelerates
the decomposition of residues because it blends fungi and bacteria with the residuals
by increasing the zone colonizable by decomposers. The mesofauna (mites, spring-
tail, termites, and enchytreid worms) and the macrofauna (woodlice, millipedes,
beetles, ants, earthworms, snails, and slugs) abet in the grinding and recycling of
organic residuals. They also drop off in the soil fecal pellets of 50–200 μm in
diameter which are a prime substrate for decomposers (rich in energy and N)
(Brussaard and Kooistra 2013). Earthworms also mix the upper mineral strata of
the land with surface residuals (bioturbation phenomenon) and create pores and
conduits allowing the passage of water and roots. Nematodes and small epigree
earthworms eat the finer fractions as well as the excrement of other species.
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Thysanoure, springtails, mites, myriapods, earthworms, and protoures eliminate
dead roots, ensure porosity of the soil deep in the soil, and allow root respiration.

Saprophytic bacteria (first-order consumers) produce many exoenzymes
(dehydrogenases, proteases, and cellulases) which allow them to degrade dead
organic matter and draw their energy from a wide range of carbon products (Shalaby
2011). Numerous heterotrophic bacteria ease wrench changes of diverse nutrients
other than carbon (N, P, S, K, Mg) in their cycles. They enhance and structure by
generating exopolysaccharides and other metabolites that help to stick the particles
together (Costa et al. 2018).

Fungi (first-order consumers) also produce many exoenzymes that break down
dead organic matter. They are the primary agents for the decomposition of organic
matter in exposed lands (saprophytes). They are the only organisms on earth, apart
from a few bacteria in the rumen of cattle and the intestine of termites that can break
down lignin from plants (the main source of humus). Fungi help to stabilize soil
aggregates via their filamentous hyphae (Lehmann et al. 2020).

Actinobacteria (first consumers), less competitive than bacteria and fungi in
breaking down fresh organic matter, continue to decompose the organic matter
started by fungal and bacterial microflora (Matei et al. 2020). Thermophiles have a
significant function in the manufacturing of compost. Between 50 and 75% of the
strains secrete antibiotics which prepare ecological niches for fungi in composting
(Carrasco and Preston 2020).

Browsers and shredders (first-order consumers, second-order predators) feed on
bacteria, Actinobacteria, and soil fungi. They therefore carry out grazing. They can
also consume organic matter. They feed on N-rich bacteria and reject great quantities
of inorganic N and have a very important role in the recycling of mineral elements.
They consist of protozoa which swallow up their prey; bacteria that enter and
multiply in larger bacteria; nematodes that sweep or suck bacteria from the surface
of the roots or minerals and suck the inside of the fungus with a stylus; and micro-
arthropods (mites and springtails).

Micro-arthropods (second-order consumers) achieve fragmentation and
restructuring physics of organic matter by chewing. This process leads to the
aggregation of minerals followed by an increase of the soil surface components,
which favors the bacterial activity and a more advanced decomposition of the
residues (Culliney 2013).

The “grazing” nematodes (second-order consumers) are very beneficial in
edaphic ecosystems. They help to control the size and structure of populations of
bacteria and fungi (Ferris et al. 2004; Blanc et al. 2006). They help to speed up the
recycling of nutrients.

Consumers of third-order and more (nematodes and arthropods) are the predators
of different species of spiders, beetles, and ants (SWCS 2000; Menta and Remelli
2020). They can help to regulate populations of major pests.
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9.3.4 Function of Facilitating the Removal of Water and Nutrients

Mycorrhizae (ecto- and endo-mychorizes) release the phosphate ions fixed by the
clay-humic complex. They improve the water supply of plants through their hyphae
which will draw water from the depths of the soil (Tsoata et al. 2015).

9.3.5 Atmospheric Nitrogen Fixation Function

Several soil microorganisms, free or symbiotic, have the ability to fix atmospheric N
and allocate it to crops (Table 9.2).

9.3.6 Function of Protection of Plants Against the Invasion
of Root Pests

Microorganisms protect plants by competing in the space in the soil. AMF creates a
protective sleeve against pathogens. Beneficial nematodes compete with herbivorous
nematodes. They produce the antibiotics that control Pithium sp. and Pseudomonas
sp. For example, there is emission by the roots of corn in the event of insect attacks
of molecules attracting entomophagous nematodes (Degenhardt et al. 2009).

The major component of soil OM is organic carbon (OC). It has a pivotal role in
crop production and is the most useful single signpost of soil quality (Ngome et al.
2011a; Soil Carbon Initiative 2011). OM is a wrench element in the land, monitoring
several fundamental functions (Jones et al. 2011; Kumar et al. 2020a). OC enhances
the physical characteristics of land which raise the degree to which it can soak up
rainfall and hold water, making it disposable for afterwards plant use, reduce
leaching, and enhance microbial biomass activity and biodiversity of soil. The loss
of OM in lands is caused by erosion and the raised rate of mineralization of OC in
arable lands (Krasilnikov et al. 2015). Low OC level in soils leads to more crop
susceptibility to disease (Altieri and Nicholls 2003; Stone et al. 2004).

Cultivation techniques have an impact on soil characteristics (Fig. 9.3). Tillage
practices can be classified into three types of action: depth of fragmentation, soil
turnover, and soil organic matter blending (Labreuche et al. 2007).

Tillage or plowing is a deep working operation (between 15 and 40 cm) with
turning of the soil and blending of its horizons (Labreuche et al. 2007). It distributes
basal dressing and amendments throughout the topsoil, controls weeds and regrowth,
buries crop residues, loosens surface layers, and improves drainage (drying) of wet
or drained soils. It can also be used to destroy intermediate crops (Daniel and
Galardon 2008).

Pseudo-tillage or pseudo-labor is a deep working operation (between 15 and
40 cm) with the blending of horizons without turning over. The absence of inversion
results in some plant debris and unburied weeds on the surface (Daniel and Galardon
2008). The presence of surface residues sharply limits erosion which provides
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Table 9.2 Atmospheric nitrogen fixation function of soil microorganisms (compiled from
Kitamura et al. 2011; Munk et al. 2011; Yang et al. 2016; Zeng et al. 2017; Bhowmik and Das
2018; Troost et al. 2019; Contador et al. 2020; Giraldo-Silva et al. 2020; Inomura et al. 2020;
Mahmud et al. 2020; Robledo et al. 2020; Silva et al. 2020)

Types Hosts/traits Examples

Free Aerobic Phototrophs Cyanobacteria: Nostoc spp.,
Anabaena spp., Calothrix spp.,
Tolypothrix spp., etc.

Heterotrophs Aeschynomene spp., Azoarcus spp.,
Azospirillum brasilense, Azospirillum
lipoferum, Azotobacter vinelandii,
Beijerinckia indica; Herbaspirillum
seropedicae, Klebsiella pneumonia,
K. oxytoca, Pseudomonas putida, etc.

Anaerobic Phototrophs Chromatium vinosum, Rhodobacter
capsulata, Rhodospirillum rubrum,
etc.

Heterotrophs Clostridium, Azotobactor,
C. pasteurianum, Desulfovibrio
vulgaris, Desulfotomaculum spp.,
Methanobacterium spp., Pseudomonas
stutzeri, etc.

Symbiotic Leguminous With root nodules Allorhizobium sp., Azorhizobium sp.,
Bradyrhizobium elkanii, B. japonicum,
Ensifer meliloti,Mesorhizobium ciceri,
M. lot., Rhizobium etli,
R. leguminosarum, R. lupine,
R. meliloti, R. phaseoli, R. trifolii, R.
tropici, Sinorhizobium fredii,
S. meliloti, etc.

With stem nodules
(Sesbania)

Azorhizobium caulinodans, etc.

Cereal Rice (Oryza sativa
L.), sugar canes
(Saccharum spp.)

Azotobacter, Clostridia,
Gluconacetobacter diazotrophicus,
etc.

Others crops Sweet potato
(Ipomoea batatas
L.), storage tubers

Azospirillum sp., Bradyrhizobium spp.,
etc.

Actinorhizal
symbiosis

Casuarina spp. Frankia sp., Parasponia sp., etc.

Cyanobacterial
symbiosis

Azolla Anabaena azollae, etc.

Cycas Anabaena cycadeae, etc.

Lichens Nostoc sp., etc.

Mosses and
liverworts

Nostoc sp., etc.
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protection to the land (reducing the effect of raindrops) and the presence of more
stable aggregates.

For the decompaction, the work of the soil is deep without turning, nor mixing.
Like plowing, it is done at a depth of between 15 and 40 cm. This operation
restructures the soil by fragmenting and lifting it. Many farmers talk about loosening
or cracking, but in fact, loosening also induces soil fragmentation (Labreuche et al.
2008).

For shallow tillage, the tillage is between 0 and 8 (15) cm deep. It includes a
mixture of crop residues in the volume worked but without reversal. There are
several types of surface work, depending on the objectives sought: stubble cultiva-
tion, resumption of plowing, preparation of the seedbed, mechanical weeding, etc.
(Labreuche et al. 2007).

Direct seeding (no tillage) is the sowing or planting of a crop without tillage. We
can have three variables:

– Direct sowing without any work, i.e., no rotary hoe passing over the sowing line;
the seeds are placed in the soil just after the opening disc(s); frequent cases for
cereals

– Strip tillage, i.e., the passage of a rotary hoe on flat land, on a sowing strip 10 cm
wide and a few centimeters deep just in front of the sowing organ; reasonably
common case for weed crops

– Ridge tillage, i.e., identical to strip tillage but on hilly terrain; potato plantations
and weed crops (Labreuche et al. 2007)

This minimum work results in the maintenance on the surface of almost all the
crop residues and organic inputs. This technique reduces costs and time. It saves a lot
of energy. The aim is to limit vertical disturbances to the ground as much as possible
and to maximize the coverage by residues with minimum working technique (Daniel

Itinerary with
tillage

Itinerary with
pseudo-tillage

Itinerary with
decompaction

Shallow
tillage

Fragmentation

0 mixingShallow mixingDeep mixing

Non-inversionInversion

15-40 cm15-40 cm15-40 cm

Direct
seeding

Fig. 9.3 Cultivation techniques (modified by: Daniel and Galardon 2008; Labreuche et al. 2008)
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and Galardon 2008). But, this technique requires more technicality and observation
because the most “simplified” implementations are the most demanding ones
(Labreuche et al. 2014).

The characteristics of the soil have a significant influence on the effectiveness of
the farming techniques adopted. In terms of soil texture, it is on clay soils that the
efficacy of no-till cultivation techniques to limit erosion is most convincing (Rhoton
et al. 2002). On sandy soils, their effectiveness seems lower (Quinton and Catt 2004)
while on loamy soils, the results are very variable and depend mostly on other
parameters such as soil cover. No-till farming techniques are useful in combating
soil loss on clay soil. The effectiveness of direct seeding compared to plowing on
limiting runoff is more convincing on clay soil than on loamy clay soil (77% less
runoff volume with clay soil and 17% less volume runoff with loamy clay soil)
(Rhoton et al. 2002). As for erosion, it is reduced to zero with direct seeding on both
types of soil.

Structural stability is lower in conventional systems on all soils. However, with an
augmentation of the clay content of soils, the differences between plowing and
non-plowing become blurred. The less the soil is worked in-depth, the more the
structural stability of the surface increases. This increase in structural stability results
from the concentration of OM in the surface horizon and the increase in content in
this horizon (Labreuche et al. 2007). It is the accumulation of OM on the surface by
no-till farming techniques that improves the stability of aggregates. This accumula-
tion phenomenon is directly reversible on first deep tillage or plowing (Rhoton et al.
2002). Thus, the use of occasional plowing cancels any accumulation effect on the
soft soils. On clay soil, it is the high clay content which gives higher structural
stability. The OM effect on the balance of aggregates is not very sensitive
(Le Bissonnais and Arrouays 1997).

The stock of organic N in the soil is higher for direct seeding than for plowing
whatever the horizon of the soil is considered (Mikha and Rice 2004; Wright and
Hons 2005a, b).

9.4 Problems of Soil Environment

The cumulative mean loss of production during the post-World War II period caused
by human-provoked land deterioration has been esteemed at 7.9% in Africa whereas
it was 25% and 36.8% at Central America in accordance with ISRIC estimation
(Krasilnikov et al. 2015). Each minute, 23 ha of land is lost to land degradation
(12 million ha year�1) (Rossi 2020). Twenty-four percent (350 lakh km2) of the soil
has deteriorated which is raising the proportion of 50–100 lakh ha year�1 (Vasu et al.
2020). The mean richness of indigenous species is most considered as land-based
habitats have dropped by at least 20%, mainly since 1900 (Brondizio et al. 2019). So,
several environmental constraints such as acidification, alkalinity, climate change,
desertification, compaction, drought, erosion, nutrient deficiency, salinity, pollution,
waterlogging, etc. affect the soil and reduce the area of soil available for agriculture.
Most of them are caused by the intensification of food production (Altieri and
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Nicholls 2015). However, to feed the growing world population, it is necessary to
implement strategies to produce on these soils (Raj et al. 2019a, b).

Acidification implies the shedding of basic cations (e.g., Ca, Mg, K, Na) by
leaching and their substitution with acidic compounds, primarily soluble complexes
of Al and Fe, and Mn sometimes. It thus leads to aluminum, ferric, and manganese
toxicity (Chérif et al. 2009; Mapiemfu-Lamaré et al. 2012; Tekeu et al. 2015).
Acidification is constantly followed by a diminution in the land’s ability to neutralize
acid and a process of an irrevocable nature excluded during very long periods
(Krasilnikov et al. 2015). An augmentation in pH and acid neutralization capacity
associated with higher concentrations of basic cations, in turn, would enhance the
potentialities for biological recuperation. But, given the retard in the land’s reply to
the diminutions in acid deposition, it will likely take several decenniums for the
impacted zones to recuperate wholly (Krasilnikov et al. 2015). Soil acidity is
generated by climate, acidic parent material supplying Al and Si ions, NH4

fertilizers, OM breaking down, abduction of nutrients via harvesting of high yielding
plant, and weak tampon ability from little clay and OM and Al2SiO5 minerals
(Getachew et al. 2019).

Climate change is presumably to influence land grade and generate soil degrada-
tion by modifications in land water content (Wong et al. 2011; García-Ruiz et al.
2011; Khan et al. 2020a, b). It aggravates land deterioration, especially in low-lying
coastal regions, river deltas, drylands, and permafrost regions. Climate change, land-
use change, and land-use intensification have abetted to desertification and land
deterioration (IPCC 2019). Across the North and the Centre of Europe, evapotrans-
piration raised through approximately 0.3 mm day�1, which has the potential to
exhaust the generally suitable land water reservoir and restrict crop growth. More
recurrent and drastic droughts can conduct to a reduction in plant cover leading to the
start of erosion and desertification (Jones et al. 2011). But, the precise effects of
climate change on land deterioration are still unclear (Kovats et al. 2014).

Desertification is soil deterioration in arid, semiarid, and dry subhumid regions,
generally recognized as drylands, arising from several elements, encompassing
human actions and fluctuations of climate (UNCCD 1994; Mirzabaev et al. 2019).
The range and loudness of desertification have risen in certain arid regions for the
past few decades. Arid soils presently extend over about 47% worldwide and are
residence of about 39% of the worldwide population (3 billion people). Desertifica-
tion hotspots, as distinguished by a decrease in flora production in the space
separating the 1980s and 2000s, expanded to nearly 10% of drylands influencing
620 million people in 2015 (Mirzabaev et al. 2019). According to Prince and
Podwojewski (2020), desertification results in the following:

• Gulley erosion due to loss of soil cover engendered by overgrazing
• Sheet erosion exhibiting roots and slaying trees
• Forest defacement and deforestation
• Wildfire which generates biomass loss, nutrient losses via volatilization, quick-

ened erosion, forming of water repulsive surfaces inclined to water runoff and
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erosion, and rising CO2 release and is occasionally accompanied by invasions of
alien species

• Soil compaction alongside cattle paths particularly where they assemble to drink,
diminished precipitation permeation, and raising runoff, which, in turn, can
generate erosion

• Habitat loss that imperils indigenous species
• Dust storms and loss of topsoil engendered by bare soil in farms, particularly

extensive, motorized, dryland agriculture
• Salt efflorescence generates by over-irrigation
• Unmonitored populations of savage animals that pasture and nibble helpful flora
• Bush encroachment, frequently assigned to overgrazing in dryland, modifications

in fire regimes, land surrender, and CO2 rise
• Alien species establishing
• Reduction of biological diversity engendered by habitat loss
• Overgrazing by livestock causing erosion and loss of soil C.

Human and nonhuman provoked land salinity is being an important worldwide
menace to farming around. This salinization happens in watered and pluvial farming
areas with the most important rates in the arid and semiarid ecosystems. Human and
nonhuman induced land salinity is becoming an important worldwide menace to
farming. The nonhuman-provoked land salinity are salts initially present into parent
materials, mineralized floor and surface waters as well as wind-blown depots
(Vargas et al. 2018). Poor irrigation and the utilization of extremely mineralized
irrigation water impact approximately 3.8 million ha in Europe (Masters et al. 2005;
Krasilnikov et al. 2015). Salinization has a severe effect on land functions like its
capacity to proceed as a tampon and filter versus pollutants. Its involvement in the
water and N cycles and its ecosystem services favor the healthiness of the environ-
ment and biological diversity (Vargas et al. 2018). Land salinization affects the
agricultural production by entraining disturbances to the processes of N uptake and
crop growing. The reduction of biological activity of lands is combined with the
diminution of food provided by land microflora requisite for ecosystem functioning.
The surrender of arable lands is linked with a high risk for land and environmental
health and important ecological stress. An augmentation in land salinity further
damages land ecosystem services and reduces incomes for farmers and smallholders.
The loss of original vegetation and forests is the final result of the salinization of arid
agricultural soils (Vargas et al. 2018). To maintain or colonize saline soils, it is
recommended:

• To select and use salt-tolerant plants
• Promote the salt-tolerant pastures where livestock can help in the management

and restoration of soil
• Enhance the land for growth of substitute less salt-tolerant crops
• Employ a surplus of water to rinse off salts from the land (flushing)
• Optimize the irrigation and drain management
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• Make the mulching, alone or with amendments, it usually conserves yield with
satisfying outcomes diminishing salinity

• Add biological land conditioners, it raises yield while diminishing salinity and
can proceed better in association with other land amendments

• Reduce tillage, it lessens salinity and rises productivity
• Realize phytoremediation, it augments productivity but does not ensure positive

impacts on land salinity
• Advise rotation systems
• Utilize the trees and shrubs with the ability to efficaciously proceed as bio-drains

in saline (Clarke et al. 2002; Masters et al. 2005; Jhariya et al. 2018a, b; Cuevas
et al. 2019).

Most hopeful for salinity is an association of amendments, conditioners, and
mulching, whereas implementing rising and maintaining cover plants or rotation.
Most auspicious for productivity is phytoremediation and biological conditioners
whereas maintain cover crops or/and rotation (Cuevas et al. 2019).

Soil degradation and water deficiency are narrowly associated. Healthy soil has a
natural ability to conserve and filter water, but this ability is lost when soil has
deteriorated. Likewise, land-use modifications, like the conversion of wetlands and
forests to other soil uses, disturb the water cycle and hydrological roles. Inversely,
water scarcity and droughts may hasten the processes of soil deterioration
(EU 2019), for example, caused by weak irrigation management and drainage and
modified hydrology, leading to weaker grade lands.

9.5 Agroecology and Soil Conservation

Well-managed soils by smallholder farmers contribute to all four aspects of food
security: availability, by providing the nutrients needed for plant growth
(Dagnachew et al. 2020); access, by enhancing the income of family farms across
more reliable crops; stability, by preserving water to allow plants to be grown almost
year-round; and use, by gathering healthy and nutritious food on healthy soils (FAO
2015). Soil conservation in agroecology must promote soil protection through
various techniques limiting the negative impact of harmful human intervention on
the inherent structure of the soil and that of raindrops, sun, and wind. It recommends
the maintenance of diversified and permanent vegetation cover, the use of mechani-
cal or crop anti-erosion measures, and the limitation or elimination of tillage and
pesticides (ADG 2016).

Soil erosion rates are higher in Asia, Africa, and South America agroecosystems
(30–40 t ha�1 year�1) than in the USA and Europe (17 t ha�1year�1) at the landscape
level (Barrow 1991; Taddese 2001). The estimation shows that ten million ha of
cropland are lost each year due to erosion (Faeth and Crosson 1994; Pimentel and
Burgess 2013). The soil surfaces covered by crop biomass, the appropriate tillage,
and the installation of natural anti-erosion devices (based on coconut fiber for
example) contribute to fight effectively against erosion and to protect the soil.
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High vegetation and bedding on the soil surface, whether or not linked to the use
of no-till cultivation techniques, decrease the surface degradation of the soil, limit
the formation and extension of a crust, and reduce the speed of diffuse runoff and
water erosion (Fig. 9.4). Vegetation, therefore, helps to control runoff (Kwaad et al.
1998). Indeed, including natural and seminatural landscape components, using green
manure, setting up cover crops, and relying on agroforestry are agroecological
practices that contribute to soil conservation (Wezel et al. 2014; Hatt et al. 2016;
Nuemsi et al. 2018). Cover crops and mulch supply nutrients to the soil. Leguminous
cover crops also abet to the fixation of nitrates in the soil, the fight against weeds, the
preservation of soil structure, and the conservation of humidity in the dry season or
arid regions (Ngome et al. 2011b). The vegetation cover improves the porosity of the
land surface. Indeed, residues kept in the upper layer of the land provide food for
earthworms which rise to the surface to seize it, thus creating a natural porosity. This
increased porosity makes it easier for rainwater to infiltrate, reducing runoff and
erosion (Schubetzer et al. 2007). Trees, when growing among annual crops, not only
change the microclimate but maintain and improve soil fertility, since their roots
transport nutrients from profound land layers and make them disposable to annual
plants to through their litter. This litter feeds the complex nourishing tissue of the
soil. Besides, some trees enrich the soil with N and their ability to fix this element in
the air (ADG 2016). For adequate soil cover, a threshold cover rate of the soil surface
of 25–40% should be exceeded. In the absence of soil cover, the effectiveness of
no-till farming techniques seems controversial (Kwaad et al. 1998; Heddadj et al.
2005). But, under certain conditions, no-till cultivation techniques favor the presence
of plants or cover residues compared to a plowed system. In rotations with a lot of
cereals, no-tillage increases the percentage of residues on 0–5 cm compared to
plowing (Tebrügge and Düring 1999).

Land conservation is influenced by the type of tillage it undergoes (Fig. 9.5).
Today, tillage is known as a powerful driver of the composition of microbial
communities across its effect on land features (Souza et al. 2013; Degrune et al.

Fig. 9.4 Influence of vegetation on the relative rate of erosion (data source: ADG 2016)
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2017). Several authors agree that tillage, whether deep or shallow, is a threat to soils
and leads to their degradation (Säle et al. 2015; Novara et al. 2019) and advocates
adequate tillage (no-tillage, no turning of the soil). Tillage and secondary tillage tend
to make land uniform and decrease the single microenvironments where microbial
communities can live (Sengupta and Dick 2015). In no-tillage system, low soil
disruption and the presence of surface residue create favorable conditions for the
development of biodiversity in the soil (Daniel and Galardon 2008; Meena et al.
2020b).

But, Degrune et al. (2019) emphasize that, even if agroecological systems can
favor the presence of profitable microorganisms and decrease the pressure of
pathogens (Table 9.3), we cannot ultimately predict whether it will enhance agricul-
tural productivity or other ecosystem services. There is yet sparsely proof that
agricultural system favors greater microbial diversity which raises the output of
agroecosystem by insuring more ecosystem roles and making it less susceptible to
uttermost calamities. It emerges from the synthesis of several experimental results
made by Labreuche et al. (2007) that in the absence of cover, the effectiveness of
no-till farming techniques is much more controversial. Many authors agree that the
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Fig. 9.5 Effect of cultivation techniques on soil conservation (source: Greenotec Asbl)
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use of cultivation techniques without plowing limits the formation of rills and gullies
(Labreuche et al. 2007).

Unlike plowing, which tends to dilute OM in the worked horizon, no plowing
concentrates OM in the surface layers. In fact, in the tests of the Arvalis Institute
carried out in Boigneville from 1970 to 1998, the rate of OM was 3.6% on the
surface in direct sowing whereas it was only 2% for plowing. Overall, the no-till
system tends to decrease the soil porosity. Studies carried out at the Kerguéhennec
experimental station, and the Boigneville station has shown a reduction in porosity
of 5–10% in the unworked layers (Daniel and Galardon 2008). But, the work of
Schubetzer et al. (2007) revealed that no-till cultivation techniques do not contribute
to soil compaction for two main reasons: (1) this reduction in porosity remains
generally limited; (2) no-till cultivation techniques favor specific mechanisms creat-
ing porosity and stabilizing the structural state which can help to reverse this trend.

According to the years, within the same experimental context, there is substantial
variability in the rate of effectiveness of the same modality of cultural technique
without plowing. The difference between the 2 years is 66% on average (Quinton
and Catt 2004; Heddadj et al. 2005; Labreuche et al. 2007). The impact of practice
can even be reversed from year to year. The test by Kwaad et al. (1998) in the
Netherlands shows that for a given year, direct sowing and strip-till limit runoff on
grain corn monoculture compared to plowing (�27% and �19%, respectively),
while in the following year, they run more than the control mode (+15% and
+50%). These differences can be linked to the variability even of the climatic
years or to the crops in place at the time of the test (Quinton and Catt 2004;
Rhoton et al. 2002).

The use of biopesticides in agroecology instead of the chemical pesticides
commonly used in conventional agriculture contributes to the preservation of land
biodiversity and therefore to land preservation. For example, the weight of
earthworms is twice as high and their numbers three times higher in agroecology
farming (Mader et al. 2002). Table 9.4 summarizes some biopesticides or potential
biopesticides used in agroecology or organic farming in Central Africa.

Table 9.3 Abundance and activity of earthworms according to the tillage (adapted from Tebrügge
and Düring 1999; Arvalis Institut du Végétal)

Tillage
practices

Number of
organisms (m�2)

Tube volume
(cm3 m�2)

Biomass
(g m�2)

Rejection of earthworms
(kg m2 year�1)

Tillage 25 18 98 1.4

Pseudo-tillage 36 45 240 3.5

Decompaction 32 41 218 3.3

Shallow tillage 45 51 270 3.9

Direct seeding
(no-tillage)

153 147 1100 11.1
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Table 9.4 Some biopesticides (or potential biopesticides) used in Central Africa for sustainable
agricultural production

Biopesticides Type Pathogen agents Host plant Source

Acorus calamus
(L.) oil

Plant Prostephanus
truncatus

Corn (Zea mays L.) Schmidt
and
Streloke
(1994)

Bacillus
thuringiensis

Bacteria Andrector
ruficornis

Potato (Solanum
tuberosum L.)

Ambang
et al.
(2002)

Pseudomonas
sp. (P. fluorescens,
P. putida) and
Glomus deserticola

Bacteria, fungi Pythium
aphanidermatum

Cowpea (Vigna
unguiculata (L.)
Walp)

Nwaga
et al.
(2007)

Thevetia peruviana
(Pers.) K. Schum

Plant Cercospora
arachidicola

Groundnut
(Arachis hypogaea
L.)

Ambang
et al.
(2011)

Trichoderma
asperellum

Fungi Pythium
myriotylum

Cocoyam
(Xanthosoma
sagittifolium (L.)
Schott)

Mbarga
et al.
(2012)

Thevetia peruviana
(Pers.) K. Schum

Plant Phytophthora
megakarya

Cocoa (Theobroma
cacao L.)

Ngoh
Dooh
et al.
(2014)

Streptomyces
cameroonensis
sp. nov.

Actinobacteria Phytophthora
megakarya

Cocoa (Theobroma
cacao L.)

Boudjeko
et al.
(2017)

Trichoderma
asperellum

Fungi Phytophthora
megakarya

Cocoa (Theobroma
cacao L.)

Tchameni
et al.
(2017)

Thevetia peruviana
K.

Plant Phytophthora
infestans and
insects

Potato (Solanum
tuberosum L.)

Dida
Lontsi
et al.
(2019)

Trichoderma
harzianum and
T. aureoviride

Fungi Phytophthora
colocasiae

Taro (Colocasia
esculenta (L.)
Schott.)

Ntah et al.
(2018)

Streptomyces spp.
(S. albulus,
S. albus,
S. gandoceansis)

Actinobacteria Pythium
myriotylum

Cocoyam
(Xanthosoma
sagittifolium (L.)
Schott)

Djuidje
et al.
(2019)

Eagle fern
(Pteridium
aquilinum (L.)
Kuhn) and Ricin
(Ricinus communis
L.)

Plant Fungi and
insects

Lettuce (Lactuca
sativa L.), African
nightshades
(Solanum nigrum
L.), and radish
(Raphanus sativus
L.)

Mala et al.
(2019)

(continued)
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9.6 Fertilization in Agroecology

The principles of land fertility management in agroecology are founded on:

• Maintaining the natural fertility of the land and the soil life through a raise in soil
microbial activity to a high quantity of OMwhich is continuously decreasing (less
than 2%)

• Minimizing external inputs by limiting considerably the use of synthetic, chemi-
cal, and harmful products to the environment, which promotes soil health (Altieri
and Nicholls 2014).

• Prioritizing local inputs and the recycling of farm by-products (manure, compost,
biochar, crop waste household waste) as the primary source of inputs

• Fertilization without external input is done using N-fixing species and trees. The
most widely used nitrogen fixers are:
– Symbiotic and heterotrophic bacteria like Allorhizobium sp., Azorhizobium

sp., Bradyrhizobium sp., Mesorhizobium sp., Rhizobium sp., Sinorhizobium
sp. (Kamtchoum et al. 2019; Mahmud et al. 2020) found in leguminous (pulses
crops), Frankia (Actinobacteria) found in filao trees (Casuarina spp.)
(Carrasco and Preston 2020)

– Symbiotic and phototrophic bacteria (Azolla sp.)
– Associative and heterotrophic bacteria (Azospirillum sp.) (Bhowmik and Das

2018). They can colonize many (~100) plant species
– Nonsymbiotic and heterotrophic bacteria such as Azotobacter (Bhowmik and

Das 2018), Bacillus subtilis (Efremova et al. 2020), etc.

Table 9.4 (continued)

Biopesticides Type Pathogen agents Host plant Source

Trichoderma
sp. (T. asperellum,
T. koningiopsis,
T. erinaceum,
T. gamsii,
T. afroharzianum,
and T. harzianum)

Fungi Fusarium
oxysporum,
F. solani,
Macrophomina
phaseolina, and
Pythium ultimum

Common bean
(Phaseolus lunatus
L.)

Boat et al.
(2020)

Dry tobacco
(Nicotiana tabacum
L.), garlic cloves
(Allium sativum L.),
onion (Allium cepa
L.), chili fruits
(Capsicum annuum
L.), neem
(Azadirachta indica
A. Juss.) leaves and
seeds, etc.

Plant Bacteria, fungi,
and insects

Okra (Abelmoschus
esculentus (L.)
Moench), lettuce
(Lactuca sativa L.),
onion (Allium cepa
L.), eggplant
(Solanum
melongena L.), and
celery (Apium
graveolens L.).

Kacou-
Amondji
(2020)
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– Nonsymbiotic and phototrophic bacteria as Cyanobacteria (green-blue algae)
– The best-known phosphorus solubilizers species are:
– Symbiotic fungi (mycorrhizae) as Rhizophagus sp., Acaulospora sp.,

Gigaspora sp., Scutellospora sp., etc. (Ngakou et al. 2012; Temegne et al.
2017, 2019; Agnolucci et al. 2019). AMF communities were influenced by the
type of fertilization (Mbogne et al. 2015; Säle et al. 2015)

– Nonsymbiotic fungi like Aspergillus sp., Penicillium sp., etc.
– Nonsymbiotic and heterotrophic bacteria as Bacillus pseudomonas (Bhowmik

and Das 2018) Fertilization with input is done by adding humus, organic/
mineral elements that can be assimilated more or less quickly and
microorganisms. Manure, conventional compost, earthworm humus (lombri- or
vermicompost), residues from various agro-industries, shredded greenwood
branches (fragmented branch wood), biochar, brush compost, fresh (green
manure, tree leaves), and dry plant debris (straw in particular) are used as
substantial amendments in fertilization in agroecology (Temgoua et al. 2014;
Njukeng et al. 2017; Sharma et al. 2017; Billa et al. 2018). They are applied by
incorporation into the top layer of the land and as a land cover with an anti-
erosion and sun protection effect (but the loss of mineral elements, especially N).

The fertilization can also be carried out by the contribution of liquid manures like
Supermagro, Biol, various decoctions, and purines (nettle, excrement, urine, com-
post, legumes, aromatic plants, ripe fruit) (Favorito et al. 2019). It is also made by
adding Bokashi, natural lime or rock powders (Van Straaten 2006), growth
activators, microbial inoculators, or microorganisms through all the amendments.
Bokashi is an organic fertilizer based on animal fertilizer, to which straw, ash, and
molasses are added. Liquid mountain microorganism and Biol is a liquid biofertilizer
composed of different plants and manure (ADG 2016). The technique of Sachi also
used in agroecology consists in gathering animals during a long period (e.g.,
3 months), on the plot which will be cultivated to fertilize it (ADG 2016).

Figure 9.6 gives the practical indications for better use of OM. The dark green
color indicates a richness in N of the soil and excellent enrichment power (type A or
B). The yellowish color, on the other hand, underlines poverty in N as well as a poor
enrichment quality (type C or D) of the soil. It is important to underline that the
leaves with rapid decomposition have low lignin content (type A or C). The odor is
also an indicator of soil quality. Indeed, an astringent smell refers to a high richness
in phenols (type B or D).

9.7 Constraints to the Adoption of Agroecology

The low OM content of the soil and the imbalance of ecosystems are among the
major ecological constraints of agroecology. Also, low biodiversity and the disap-
pearance of natural enemies due to the excessive use of pesticides, aggressive
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irrigation techniques (skate or flood irrigation), inadequate tillage practices,
overgrazing, and monocultures make the soil increasingly fragile.

Adoption of agroecology is generally weak because of many technical reasons
(Tittonell et al. 2012). The technical constraints of agroecology are:

• The availability of inputs (N source for humus production, seeds/plantlets for
agroforestry and cover crops, water) at the local level

• The availability of equipment/tools to make and apply fertilizers (sprayer, storage
of preparations (cans))

• The transport of raw materials (for compost, manure, etc., the grinder)
• The availability of labor
• The absence/insufficiency of technical knowledge
• The drop-in yield during the transition period

The scarceness of natural enemies owing to the abuse of the use of pesticides by
neighboring producers who still practice conventional agriculture is also an obstacle
to the adoption of agroecological practices by an ecological producer. Indeed, this
producer cannot implement specific agroecological techniques since it is limited by
the depletion of the ecosystem (ADG 2016).

Agroecology is a labor-intensive agriculture. The migration of young people and
humans to cocoa and coffee enterprises and the mines associated with peak
workloads makes the availability of labor difficult. This labor necessary for the
manufacture and application of organic manure and for the control of weeds is
essential only during the transition phase when a temporary fall in yields takes place
(ADG 2016).

The additional cost of labor for weeding and manufacturing inputs, as well as the
unattractive price (little or no differential compared to conventional), is the main
economic constraint hampering the development of agroecology. The length of the

N>25% NoYes
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Fig. 9.6 Guide for use of organic matter (source: ADG 2016)
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transition period from conventional farming to agroecological practices is also an
essential factor to take into account in raising awareness. Indeed, the drop-in yield is
almost inevitable, and the duration of the transition can be extended. It varies
according to the previous crop, the past practices, the state of fertility, degradation
or health of the plots, the presence or absence of hedges and trees, topography, etc.,
with recovery being more or less rapid, but not always total. The length of the
transition period can hurt the economy of producers and, therefore, their ability to
provide for their families. This period is nevertheless essential for the soil to regain
its balance, biodiversity, and natural fertility (ADG 2016).

Many people still think today that agroecology is an archaic form of agriculture.
Moreover, pressure from agro-industrial companies and the chemical sector does not
contribute to the development of this research field. The attractiveness of exogenous
and higher workloads is also part of the sociocultural constraints that make difficult
the adoption of agroecological practices. Also, agroecology has often been
vulgarized as a whole, without appropriate tailoring to local conditions (Tittonell
et al. 2012). Resistance is also psychological. The producers prefer the slight comfort
of a conventional system which is not perfect but because they have mastered the
workings. Many of them do not have scientific proof of the profitability of agroeco-
logical methods. Nevertheless, studies have shown that the yield was equal or even
higher than that of traditional methods in the developing nations. The yield losses
observed in temperate regions do not exceed 20% (ADG 2016). The lack of
popularization of the results is one of the main constraints to adoption. Scientists
share hardly their acquired beyond universities and research facilities. Communica-
tion with the media and decision-makers is not easy, which restricts the effect of this
study (Anderson et al. 2020; DeLonge et al. 2020).

The change of political regime can be an important constraint since politics is not
fixed. So, the legalization of agroecological laws and practices by the public
authorities is not a guarantee of its sustainability (Murguia Gonzalez et al. 2020).
Agroecology is generally considered non-priority by politicians who see it as small-
scale agriculture practiced in marginal areas with few resources available for
research and few trained and even fewer experienced technicians. Indeed, knowl-
edge and practices are still very empirical, which leads to its denigration or disinter-
est. The absence or insufficiency of vulgarization of experience and training of
farmers is also an essential constraint to the adoption of agroecology. Indeed, the
subject is still poorly documented, and few scientific programs have lingered on the
subject for lack of funding or interest (ADG 2016). Achieving results is dependent
on substantial public funding, more specifically those that support the human aspect
of the movement. They could accompany a conversion towards this movement and
its associated benefits (DeLonge et al. 2020). Training is all the more complex as the
agroecological solutions are local and specific to each context. This specificity is also
an asset by promoting local environmental know-how and potential (ADG 2016).
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9.8 Potential Solutions

Some possible solutions to address constraints to the adoption of agroecology are set
out in Table 9.5.

9.9 Agroecology Versus Conventional Agriculture

Agroecology is a holistic way of farming that is less harmful to the environment as
well as a natural method of food production with several economic, social, and
environmental benefits (Crowder and Reganold 2015; Boeraeve et al. 2020). The
primary aim of conventional agriculture is based on the use of synthesized chemicals
and fertilizers to increase the productivity of a given or more plants, characteristi-
cally genetically modified in other to satisfy the ever-growing population. This
technique necessitates a considerable quantity of chemicals and energy and tends
to affect the natural surroundings, damages land quality, and destroys biodiversity
(Savci 2012; Hooper 2016). However, to compare these two agricultural systems,
several points need to be considered, i.e., production, biological diversity, land
composition, erosion, water use, energy use, greenhouse gas emissions, and effect
on health and environment (Table 9.6).

Conventional agriculture is carried out to fulfill the population in terms of yield
since the demand in calorie- and meat-intensive regimes is estimated to double
human food requests by 2050 (Mueller et al. 2012). Globally, agroecological
approaches produces lower (19–41%) than conventional yield but this is dependent

Table 9.5 Potential solution for agroecological constraints (FAO 2015; ADG 2016; DeLonge
et al. 2020; Murguia Gonzalez et al. 2020)

Level Potential solutions

Ecological
viewpoint

It will be needful to start the conversion with plots that are still biologically
alive and to remineralize the soil by using rock powders

Economic level Establishing a form of “labor” credit and designing and developing markets,
if possible, more profitable niche markets are possible

Political level • Increase knowledge

• Form communal technicians

• Reduce the distance between places of innovation (research, universities,
etc.) and the places where they are applied

• Set up a program to stake on the expertise

• Advocating for increased capacity in agroecological research is issues to
be explored

Technical level • Facilitating access to inputs by creating farmers’ enterprises or
microenterprises to manufacture inputs (rock powder, seedlings and seeds,
biofertilizers, phytosanitary prevention/control products, etc.)

• Considering the human dimension of knowledge and preexisting
agricultural practices

• Paying a subsidy to the transition period by creating a conversion
assistance fund
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Table 9.6 Agroecology versus conventional agriculture

Characteristics
Conventionnel
agriculture

Agroecology
system References

Soil Biodiversity � + Degrune et al. (2019)

Root length
infected by
AMF

� + (40%) Mader et al. (2002)

AMF spore
abundance
and species
diversity

� + Oehl et al. (2004),
Verbruggen et al.
(2010)

Biomass,
abundance of
earthworm

� + (1.3 to 3.2
times)

Mader et al. (2002)

Biological
activities

� + Peano et al. (2020)

Nutrients � + Marinari et al. (2006)

Quality � + Delate et al. (2013),
Magdoff (2018)

Water use High quantity
of water for
irrigation

Organic soil
retains much
more water

West et al. (2014),
Altieri et al. (2015),
Mekonnen and
Hoekstra (2016)

Aggregate
stability,
respiration
rates

� + Boeraeve et al. (2020)

Erosion and
degradation

+ � Gomiero et al. (2011)

Production Cropping
system

Monocultures Temporal and
spatial
diversification
of crops

Lorenz and Lal (2014),
Castellano et al. (2015),
Rahman et al. (2020)

Fertilizers Chemical Organic,
biological

Altieri and Nicholls
(2014), Mahmud et al.
(2020)

Energy to
produce

+ � Herrero et al. (2016)

Pesticides and
chemical
inputs

+ � Pfiffner and Luka
(2003)
Barrios et al. (2012)

Pest
abundance

+ � Boeraeve et al. (2020)

Cost of labor � + Andriamampianina
et al. (2018)

Yield + � (19–41%) Kremen and Miles
(2012),
Andriamampianina
et al. (2018), Jouan et al.
(2020)

(continued)
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on crop types and farming systems (Kremen and Miles 2012; Andriamampianina
et al. 2018; Boeraeve et al. 2020). Even though common agriculture is renowned for
its high returns, many environmental benefits are attached to agroecological
approaches of farming (Crowder and Reganold 2015; Jouan et al. 2020). In some
cases, organic agriculture has demonstrated higher yield in drought conditions and
more water retention. For example, in the farming trial carried out at The Rodale
Institute for 21 years (Moyer 2013), Pimentel et al. (2005) observed that in 1999,
throughout the severe drought, the organic animal farming gave meaningfully higher
yield (1511 kg ha�1) of Zea mays than the conventional (1100 kg ha�1) or organic
legume (412 kg ha�1). Besides some exceptions, agroecology generates economic
value added (+10 to 110%) on farms in Europe (van der Ploeg 2020).

Agricultural health and performance are highly dependent on biodiversity. The
higher the biodiversity, the more crops are naturally immune to pests and diseases
without any chemical input advocated by conventional agriculture (Gomiero et al.
2011). Beyond 426 million kilograms of pesticides are being used each year with
just 10% of that achieving the intended goal; this could be substantially diminished if
conventional agriculture were to move to sustainable options (Sustainable Lafayette
2013). Crops in agroecological systems depend on biodiversity as it is crucial in
enhancing ecological cycles. Organic farming is more abundant in nutritional
elements and organisms than common farming with an increased level of biological
activity (bacteria, fungi, springtails, mites, and earthworms), because of its versatil-
ity on plant rotations, diminished spreading of nutriments, and the prohibition on
pesticides (Haas et al. 2001; Gomiero et al. 2011; Peano et al. 2020).

Agroecological systems are directly associated with better soil quality (Delate
et al. 2013; Magdoff 2018). Sound soil ecology is observed since it promotes
biodiversity, unlike monoculture, as is prescribed in conventional agriculture.
Increased levels of total and OC, total N, and soluble OC are noticed in all the
organic land (Wang et al. 2012). This is mainly due to the depth of the food web and
quantity of biomass in the systems. The study carried out for 7 years in Italy
concluded that the ecological approach exhibited meaningfully improved land
nutritional and microbiological status, through an augmented level of total N,
NO3

�, and accessible P and a raised microbial biomass content and enzymatic
activities (Marinari et al. 2006). Due to the global rising of agricultural production
and soil becoming less disposable for plant growth, soil management is essential for

Table 9.6 (continued)

Characteristics
Conventionnel
agriculture

Agroecology
system References

Prices of
products

� + (34%) Andriamampianina
et al. (2018)

Economic
value added

� + (10–110%) van der Ploeg (2020)

Environment Pollution
(water, soil,
air, etc.)

+ � Herrero et al. (2016)
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the existing farms. Long-lasting techniques practiced like no-tillage system, agro-
forestry, and IPM help to improve the quality of the soil. Trees planted on agricul-
tural soil aid to alleviate many of the adverse effects in agriculture, like modifying
the quality of land, water, and air, preserving biological diversity, diminishing inputs
by natural regulation of pests and more efficacious cycling of nutriment, and
changing regional and worldwide climates (Barrios et al. 2012; Lorenz and Lal
2014).

Land erosion occurs due to nutrient loss, run-off, salinity, and drought (Issaka and
Ashraf 2017). Land erosion is a menace to the growth of agriculture, particularly
under uttermost climatic calamities like droughts (Gomiero et al. 2011). Agroeco-
logical agriculture improves the land composition and precludes land erosion caused
by the more considerable quantity of crop material and biomass found in the land.
Common agriculture, however, handles land instead of adapting to it. Lands using
organic farming exhibited<75% land damage confronted to the maximum tolerance
value in the area (the utmost rate of land erosion which can happen without
jeopardizing sustainable plant productivity or environmental quality �11.2 t ha�1

year�1). In contrast, in conventional land, the utmost tolerance value observed
showed a percentage of three-time land loss (Gomiero et al. 2011). Confronted to
the agroecological system, traditional plants are inefficacious at sustaining the
wholeness of arable soils. Usual farming is, whereof, incapable to satisfy the
requests of the increasing populations without ingurgitating an extensive quantity
of soil and nonrenewable resources (Holt-Giménez et al. 2012).

Water is a renewable resource that can encounter the requirements of our present
population. Water must be used efficiently because it is scarce (Mekonnen and
Hoekstra 2016). Approximately 70% of water in the world is used in the agricultural
sector (West et al. 2014). Cumulative demand for freshwater is pressurizing world-
wide stocks. To preserve this resource, a dire renovation of methods to save water,
peculiarly in agriculture, has to be developed. The richness of flora and fauna in
sustainable agriculture causes organic land to characteristically hold much more
water compared to that of conventional land. This augmented retention rate allows
agroecological farming to generate better returns than conventional for water defi-
ciency (Altieri et al. 2015). Nearly, 20–40% in the water holding capacity of organic
farming lands when compared to conventional farming lands was recorded in heavy
loess lands in a temperate climate in Switzerland. Thus, one of the main reasons for
higher output in organic plants is believed to be caused by the higher water-holding
capacity of the lands under ecological management (Gomiero et al. 2011).

The use of natural processes for inputs and nutrient recycling is advocated by
agroecological systems to abolish the use of nonrenewable resources. The conven-
tional system involves a significant quantity of energy to generate, prepare, and
transport food (De Ponti et al. 2012). The fossil fuel-based industrial agriculture
abets to greenhouse gas emissions in many ways:

• Directly by the fuel burned by farm machinery, in food processing and in
transporting the mean ounce of food over a thousand miles “from farm to fork”
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• Indirectly by the production of its synthetic inputs, such as N fertilizers from N
and natural gas

• Finally by the breakdown of soil OM into CO2 (through large-scale tillage and
excessive synthetic inputs), which is liberated into the atmosphere as a green-
house gas (Herrero et al. 2016)

Besides, large-scale industrial livestock farming releases massive amounts of
methane (CH4) (Eckard et al. 2010; Knapp et al. 2014). Energy effectiveness is
vital to food production as it can diminish the mission of greenhouse gases and costs.
About 5% of emissions of CO2 resulting from the influence of human beings is
generated by agricultural actions (Gomiero et al. 2011; Balogh 2020). The 10–12%
of total worldwide emissions of greenhouse gases (5.1–6.1 Gt CO2 eq. year�1 in
2005) relates from the influence of human beings, accounting for almost all the
anthropogenic CH4. One- to two-thirds of all N2O emissions resulting from the
influence of human beings is caused by agricultural actions (Gomiero et al. 2011;
Balogh 2020). Therefore, agroecology can reduce this tendency than conventional
agriculture. Due to land composition, conventional agriculture is ineffectual at
catching C, steady production, and energy utilization to sustain the plants. Lots of
machinery, pesticides, irrigation, processing, and transportation reveals that for each
calorie arriving at the table, ten calories or energy has been spent. C can be
stockpiled in land by the soil OM and by above the ground biomass via methods
like using rotations combined to cover plants and green manures to raise soil organic
material, agroforestry, and conservation-tillage agriculture (Castellano et al. 2015;
Rahman et al. 2020).

Agroecology limits the usage of pesticides which is advocated in conventional
agriculture. Agrochemical industries informed farmers on the profit they would
make by using agrochemicals on vast scale monoculture. But, pesticides have
been pointed out to have severe negative impacts on the farm farmers and consumers
of the farm products (Calvert et al. 2008; Páyan-Renteria et al. 2012; Damalas and
Koutroubas 2016). Also, they have negative effects on both the aquatic and terres-
trial ecosystems (Sánchez-Bayo 2011; Stehle and Schulz 2015; Chagnon et al.
2015). Agroecology discourages the total eradication of pests because it will also
wipe out the natural predators that are needed to keep the pests in check in a healthy
ecosystem. So, agroecology tends to enrich the soil by using manure and tilled in
plant residue that is using OM to maintain the biological cycle (Ge et al. 2011). The
higher nutritional value such as vitamin and mineral content of crops produced from
agroecological systems has been reported when compared to conventional agricul-
ture (Rembialkowska 2007; Barański et al. 2014). Again, agroecological products
have been reported to have high sugar content and have a superior structure and high
metabolic integrity which makes them last longer (Bourn and Prescott 2002; Shafie
and Rennie 2012; Yu et al. 2018). Agroecology can raise agricultural yield in ways
that are economically, environmentally, and socially viable (Crowder and Reganold
2015).
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9.10 Agroecology Towards Soil Management and Sustainability

The global level of soil degradation observed is leading to the need of managing soils
in ways that maintain and improve soil resources to continue providing food, fiber,
and freshwater, achieving significant inputs to energy and climate sustainability and
aiding in preserving biological diversity and the whole safeguard of ecosystem
goods and services (Koch et al. 2012, 2013). Soil management requires a whole
method concentrated on how the soil and plants are managed, instead of an output
approach that concentrates predominantly on delivering chemical solutions to nutri-
ent and pest problems. The health and fertility of soils are essential to sustainable
agriculture. If this ability is lost, then indicators like the waning in fertility, loss of
species in soil biota, soil erosion, and changes in the water holding capacity can be
detected (Veresoglou et al. 2015; Kay 2018). Soil health or quality is defined as the
capability of the land to sustain the production and ecosystem services (Kibblewhite
et al. 2008), while soil fertility is the availability of nutrients in the ground (Troeh
and Thompson 2005). On the one hand, a healthy land is typified by the availability
of nutrients, suitable structure, low level of salinity and toxic elements, and high
resilience to harmful events (drought and flooding), resists degradation (e.g., erosion
and compaction), supplies appropriate aeration and rapid water infiltration, and
accepts, holds, and liberates water to crops and groundwater. On the other hand,
soil richness is the balance of critical nutrients. Agroecology fosters the improve-
ment and maintenance of physical, chemical, and biological features of the land
through a set of sophisticated interrelated practices.

Primarily, the choice of plants favors the expansion of beneficial microorganisms
(Hartmann et al. 2009). Microorganisms principally reside in the land rhizosphere.
They quicken plant growth by various mechanisms such as boost nutrient procure-
ment, defense versus pathogens, and modulation of phytohormone synthesis. AMF
forms a significant cluster which favors plant growth, hence the sustainability of
agroecosystem (Yang et al. 2014; Moreira et al. 2020). The land characteristics and
land management practice applied improve their growth and efficiency in crop yield
(Gianinazzi et al. 2010). The use of biofertilizers consists of applying living
microorganisms to seed, crop surfaces, or land and has been reported to improve
the availability of nutrients (Bhavikatti 2020). Conventionally managed agricultural
lands tender to be low in AMF diversity; this has been assigned to the harmful
influences of fertilization, fungicides, land cultivations, and weakness of host diver-
sity. It has been indicated that low-input, conservation, and organic farming may
improve AMF richness confronted to conventional farming (Mahmood and Rizvi
2010; Schneider et al. 2015). Some research has reported about the crop growth,
raised productivity, and uptake of N and other components by inoculation with AMF
(Ortas 2012; Pellegrino et al. 2011) and PGPR inoculation (Singh et al. 2011). Also,
organic fertilizers like compost and manure increase the general soil richness,
enhance the soil biological activity, and increase soil mineralization (Steenwerth
and Belina 2008; Tao et al. 2015). The soil respiration rates, movement, and
inoculum of native AMF from plots with permanent plant cover are generally higher
than those from plots with shallow tillage. Maintaining permanent crop cover seems
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to be a better alternative than working the surface soil as a land management practice
to conserve the biological fertility of the land (Turrini et al. 2017). Land content of
OM and land microbial activity may impact the quantity of soil-borne pathogens and
the resistance of plants to them. Some studies have revealed that organic land
amendments like compost may improve the elimination of soil pathogens (Chen
and Jiang 2014). OM supplies nutriments and energy to sustain various land
microbial communities which rivaled with pathogens and impede their growth.
Compost and various organic amendments equally have high quantities of
microorganisms which can improve the diversity. Plants grown with high OM
content and various active microorganism communities usually exhibit tolerance
to maladies (Altieri and Nicholls 2003). Therefore, methods of agroecology like
natural and little-input system may raise soil OM and improve microbial features
(Ge et al. 2011).

Kirkby et al. (2014) stated that crop rotation could be used to enhance the nutrient
availability of soils, thereby favoring plant growth. For instance, including legume
species in the rotation permits the fixation of atmospheric N2 and makes available a
source of facilely absorbable N for the next planting season. Soil conservation and
protection can be optimized by introducing cover crops which also improves the
carbon content in the soil; decreased leaching, via the immobilization of N predomi-
nantly on freely drained, lighter lands; and promotes land steadiness (Dogliotti et al.
2004; Guzmán et al. 2019). Richardson et al. (2009) showed that about 40% of the
assimilated microbial C occurs at root systems. Therefore, adding cover plants in the
rotation is a hypothetically good idea (Wu et al. 2010; Kirkby et al. 2014). Further-
more, practicing rotation may alleviate NO3

�leaching and enhance the effectiveness
of nutrient use (Larsen 2019; Bai et al. 2020). Celette et al. (2008) reported that in
temperate climates, they may also increase water infiltration over the winter period
and raise water availability for the next plants. Other cropping practices like
intercropping and relieve intercropping have proven to be effective in increasing
soil health. For example, root exudates of some leguminous plants can enhance land
P availability, solubilizing land organic P, also enhancing organic fertilization
(Li et al. 2005; Darch et al. 2018). This system also enhances the land physical
structure and land fertility (Darch et al. 2018). Interestingly, soil penetration and
compaction resistance are weaker in these systems, and amelioration in structural
steadiness is observed (Carof et al. 2007). The use of soil cover in an intercropping
system reduces soil crusting and erosion (Le Bissonnais et al. 2004; Liu et al. 2017).
Numerous studies have shown raised microorganism diversity, enzyme activities,
and more excellent steadiness in alley cropping farming which were due to
alterations in litter amount and quality and root exudates (Udawatta et al. 2008;
Lacombe et al. 2009).

In agroforestry farming, nutriments are taken up and stopped from inferior land
levels by tree roots and sent back to the land via falling of leaves (Rigueiro-
Rodrígues et al. 2009). Thevathasan and Gordon (2004) concluded that in an
agroforestry farming, fall of leaf from 6-year-old poplars ensued in mean land
NO3

� production rates in the head-to-head crop alley up to twice that confronted
to lands situated 8–15 m from the tree row, and N liberate from the litter of poplar
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leaf was equal to 7 kg N ha�1 year�1. Also, trees of red alder in the silvopastoral test
farm at Henfaes near Bangor were considered to evaluate the possibility for increas-
ing and sustaining land fertility, and the outcome revealed that the degree of N fixing
was projected at 31 kg ha�1 year�1 in the silvopasture treatment with densities of
400 tree stems ha�1 and the entire quantity of N that might hypothetically be
appended to the land as an outcome of dead leaf, root, and nodule decomposition
was assessed at approximately 41 kg ha�1 year�1 (Teklehaimanot and Mmolotsi
2007). Roots and trunks of trees also play a role as physical barricades to diminish
the flow of water on the surface and sediment (Udawatta et al. 2008).

Excepting lowland OM content, land compaction is due principally to high
machinery traffic, especially tillage and intense animal treading in humid land
conditions which is an important problem in modern agriculture (Hamza and
Anderson 2005; Hobbs et al. 2008). The main goal of reduced or no tillage is to
lessen soil disturbance and conserve OM at the top of the land surface or in the first
few centimeters. Diminished CO2 emissions, energy use and erosion, or raised land
fertility and land biota activity/diversity have been mentioned as advantages for
no-till or reduced tillage approaches (Gadermaier et al. 2011; Karlen et al. 2013).
Mäder et al. (2012) obtained an increase in yields with reduced tillage for corn,
winter, wheat, and grass-clover mixes while Berner et al. (2008) showed returns
below organic conditions were 97% than the ones beneath common tillage. Also,
land OC and microbial biomass were improved. Berner et al. (2008) again
confronted that diminished tillage with traditional tillage in wheat and spelt plants
during 3 years was capable to show an augmentation in land OM by 7.4% in the
0–10 cm land horizon. Also, they showed an up to 70% higher richness of endogeic,
horizontally burrowing adult earthworms below shallow tillage, confronted to com-
mon tillage which raised land porosity, and thus enhanced water and root penetration
into the land (Peigné et al. 2009).

Newer agroecological practices and approaches such as drip irrigation give an
increased potential to restrict water inputs, to enhance the effectiveness of water use,
and to improve satisfaction in time and space for the plant water request. It has also
been found to limit the risk of soil salinization (Sun et al. 2012). Combining this
irrigation technique and cover plants is beneficial and feasible by appending the
cover crop rows between plants to decrease evaporation from bare land, increase
land OM, decrease soil erosion, and if leguminous species are utilized increase N
concentration (Lopes et al. 2011). Conclusively, protection versus wind and land
erosion and surface water pollution is achieved by the integration, or reintegration, of
unadulterated or seminatural landscape components like hedges and plant strips,
either in or around the farm (Baudry and Jouin 2003; Wu et al. 2010). Besides, they
usually ensure biological diversity preservation in soils.
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9.11 Compost Manufacturing Unit, Dschang, Cameroon: A
Case Study

The manufacture of inputs being one of the stages which makes agroecological
systems difficult, the city of Dschang has managed to combine sanitation of the town
and manufacture of compost. Indeed, Dschang is one of the most important cities in
the west region of Cameroon. It is not only an agricultural production zone but a
university municipality with nearly 220,000 inhabitants. Like the main Cameroonian
metropolises (Yaounde and Douala), Dschang faces a significant challenge that of
the management of household waste with an annual production of 40,000 tons, i.e.,
around 108 tons day�1 (CEFREPADE 2016). The city, which has only two com-
paction bins and two trucks for the collection of waste throughout the city, is
experiencing enormous technical difficulties in removing only 20% of the deposit
and bringing it back to the municipal controlled landfill. Thus, the collection rate
decreased from 40% in 2007 to 10% in 2011. Furthermore, the waste produced is
composed of around 80% of biodegradable materials with high humidity (65%)
which makes their combustion difficult, however with a good C/N ratio (�40)
favorable for composting. It is in this context that a composting project initiated in
2010 by the nongovernmental organization (NGO) ERA-Cameroon to meet a need
for organic amendment and improvement of the sanitation of the city of Dschang
(Temgoua et al. 2014). This project was carried out by the NGO ERA-Cameroon in
partnership with the Francophone Center for Partnership Research on Sanitation,
Waste and the Environment (CEFREPADE). The relay was taken in 2014 by
Africompost program (2017) and Gevalor (2020) to ensure continuity.

The first composting unit in Dschang was installed in the Ngui District and the
second later in the Siteu District. Ngui’s unit covers an area of 3000 m2. It is made up
of a waste reception and weighing area; a sorting table; a composting area (heap
fermentation and maturation area); a sieving and bagging area; an 81 m2 drying and
storage shed; and a 1000 m2 experimental field (Temgoua et al. 2014). The working
equipment consists of a sieve (12 mm), wheelbarrows, tarpaulins, buckets, forks,
shovels, rakes, and machetes.

Household waste is collected using 120 kg carriers (handcrafted) and trucks in
around 800 households in the city (Temgoua et al. 2014). When the waste arrives at
the site (Fig. 9.7a), it undergoes a manual sorting operation (Fig. 9.7b). Then the
biodegradable materials are put in heaps of 2–5 m3 while the non-fermentable return
to the landfill (Vermande et al. 2012). The technique used here is heap composting.
During the process, the temperature is read daily in each pile with a metal probe
thermometer. The turning is done at a frequency of once a week during the first
month, then once every 2 weeks (Fig. 9.7c).

The heap is watered when the need arises, due to the presence of mold on top of
the waste. During the first week of composting, the temperatures in the heaps reach
70 �C and begin to drop after 10 days. Mature compost is obtained on the platform
after 90 days. Since the start of the project, compost production has continued to
increase on the site through the support of Africompost and Gevalor, who ensure the
continuity of the project.
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Some production data recorded during the project:

• From June 2013 to June 2014, 935.53 tons of waste was treated, to produce 1384
bags of compost of 50 kg each, or 69.2 tons.

• In 2016, 1750 tons of waste was processed to produce and market 136 tons of
fertilizer.

• In 2018, 2,817.44 tons of waste was processed, for 402.2 tons of fertilizer. The
forecast for 2019 is 6000 tons of waste managed to produce 600 tons of fertilizer.
This objective was achieved through the production of the Ngui unit and the
second composting unit located in the Siteu District.

To ensure the grade of the final product, at the end of the procedure, the compost
is dried and sieved, and samples are taken and analyzed at the soil laboratory of
IRAD in Yaounde. Thus, the total OM; total N, P, K, Ca, and Mg; as well as the
heavy metals (Cd, Zn, Pb, Cu, Ni, Se) are determined. The results showed that the
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Fig. 9.7 Composting process. (a) Waste supply, (b) sorting of waste and piling up, (c) turning
heaps, (d) pile of compost under shelter, (e) compost dry sieved. Source: (a)–(c) (Ngnikam 2013);
(d) and (e) (author’s picture)
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compost produced in the city of Dschang contains heavy metals (Cd, Zn, Pb, Cu)
with relatively high contents but which remains below the limit values of French and
Swiss standards, except for Cd, Cr, and Se. The OM rate is 20% dry matter, the total
N content equal to 11 g kg�1, and the C/N ratio 10.26 (Temgoua et al. 2014). Today,
the center is working on optimizing the manual sorting of waste to improve the
quality of the compost.

After the drying and sieving operation, the compost is weighed and packaged in
50 kg bags stored in the hangar ready for sale (Fig. 9.8). The price of a bag is set at
2000 FCFA ($1 US ~615 FCFA) and a ton at 35,000 FCFA. The period of high
demand for compost was identified during the main cropping season in the locality.
This leads to large volumes of compost sales from mid-January to the end of
February (crop sowing period) (Vermande et al. 2012). Although the demand is
sometimes higher than the supply from the Ngui unit, promotions are sometimes
launched to increase farmers’ awareness of the use of compost and avoid long
storage periods. A plot highlighting the effect of compost use on the production of
vegetables is visible next to the composting site (Fig. 9.9).

The project is not yet achieving its objectives because of many constraints
encountered at several levels of the chain.

• At the collection level, the primary obstacle is technical, because of the break-
down of trucks from the municipality; there is a reduction in the volume of
incoming waste and saturation of the waste disposal site.

• In terms of marketing, the delivery of compost to farmers is often limited by the
availability of transport means.

• Finally, the site has no water point, and this makes the work more difficult for the
workers.

In Cameroon, the composting remains in an embryonic state despite its proven
advantages in waste recovery and agriculture. Several composting projects in major
cities in Cameroon have failed due to investment costs and the lack of political will

A B

Fig. 9.8 Compost marketing. (a) Compost weighing and packaging, (b) compost marketing poster
in Dschang. Source: (a) (Ngnikam 2013; CEFREPADE), (b) sinotables.com
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on the part of the competent authorities. Very tiny composting units are identified in
private homes, but these do not have a real follow-up of the process. The Dschang
composting platform remains one of the few that continues to operate to this day
because it benefits from the support of a Partnership Agreement between the Nantes
City of France and the Dschang City Council with the help of Africompost and
Gevalor. Monitoring of the production chain is ensured from waste collection to the
use of compost in the fields through product quality analyzes. The quantity of
compost produced in Dschang remains insufficient to meet the demand of farmers.
However, its quality continues to be improved by optimizing sorting to reduce the
heavy metal contents. Cameroon does not have regulations on the quality of com-
post. Therefore, French and Swiss standards are those which are applied.

9.12 ISSAEER: A Case Study

Although agroecology is an ancestral practice in Africa, its entry into universities as
a discipline was there later than in the west. ISSAEER with the support of its partners
(CEFRA, AFOP, GESCOD), in its prospective, believes in agroecology as a relevant
futuristic trend. It integrates agroecological practices in the training of future
agropastoral entrepreneurs and the recycling and supervision of producers in the
locality of Sa’a. Indeed, the institute has delimited a mini agroecological route within
it for the training of students and as a demonstration plot for visitors. Figure 9.10
shows the students in the implementation of some agroecological practices. For
example, the town’s hilltop relief leads to the establishment of devices to combat
erosion. Limiting the use of chemical pesticides resulted in a rich diversity of insects,
which favor the production of good quality honey. Within its campus, it organizes
workshops on agroecology and capacity building for the CEFRA team working at

Fig. 9.9 Demonstration plot with cabbage located next to the composting site (source: Scidev.net)
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ISSAEER. The main difficulty currently facing the structure is the lack or insuffi-
ciency of funds/grants. Several of the institute’s projects are seeking funding for
implementation.

9.13 Policy and Legal Framework

A specialized database on various lawful structures, practices, strategies, and
programs on agroecology in various nations exists at the FAO level. It is called
AgroecologyLex. This database created in coordination with FAOLEX is the largest
database on agriculture and renewable natural resources policies and legislation in
the world. It is regularly updated. The information provided by AgroecologyLex
allows users to have the full text of the document as well as a detailed summary of
the content, focused mainly on the specific goal and objectives, institutional
frameworks, and primary forms of support, to support transitions from conventional
agriculture to agroecological approaches (FAO 2020).

Monteduro et al. (2015) stated that it was necessary to embrace a transdisciplinary
oncoming to multifunctional husbandry to include the paradigm of agroecology into
lawful regulations. They emphasized that this does not need an extraordinary law

Fig. 9.10 Some agroecological practices within the ISSAEER. (a) Establishment of crop beds by
students under the supervision of experts from CEFRA and Alsace. (b) Arrangements of the space
subject to a double slope (U-shaped ridges). (c) Ecological beekeeping practices—CEFRA. Source:
ISSAEER
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which aims hierarchically to integrate and unsettle current lawful areas, instead of
calling for the creation of a trans-law. The trans-law gradually works to coordinate
inter-legalities between the various lawful fields, while preserving their indepen-
dence and by underlining their mutual historical origins.

Poyyamoli (2017) wrote that by encouraging farmers to adopt resource conser-
vation technologies, the government has a substantial part to play. Among the areas
of government intervention, he cited a few:

• Advance national policies and legal frameworks to encourage agroecological
production, including the adoption of IPM. This may include adopting a national
definition of agroecological production and a policy statement in support of
measures to facilitate the transition to agroecological output.

• Relaunch public research in agroecology and extension programs adapted as per
the requirement and situation of smallholder producers, their organization, and
their connections.

• Promote convergence and collaboration between the ministers of agriculture,
livestock, fisheries, environment, and forests.

• Establish a general ecological fertilization policy to support and promote all the
components of ecological fertilization that the government must undergo for
achieving sustainability. It should launch a green fertilization mission with
sufficient financial expenditure to restore and maintain soil health.

• Public procurement of organic products should be encouraged, including the
presentation of natural products at important public events.

In 2018, the FAO, in partnership with IFOAM—Organics International and the
Future Policy Award of the World Future Council, worked to highlight legal and
policy frameworks. These latter create environments conducive to the implementa-
tion of agroecological approaches, to help realize the plans of the 2030 Agenda for
Sustainable Development and several long-lasting developing purposes (Da Silva
2018). These lawful and policy frames help protect the lives and livelihoods of
smallholders and family growers and guarantee long-lasting and including systems
of food production. These also perform sustainable agricultural practices that facili-
tate preserve and improve the natural resource base and build the ability to accom-
modate global warming, as well as contribute to dimming (Da Silva 2018).

9.14 Future Roadmap of Agroecology for Agricultural Soil
Management

Two challenges remain to be taken up for the development of agroecology,
according to De Schutter (2011). These are the increase in cultivated areas and the
creation of a favorable environment for farmers. It establishes different principles
capable of promoting the agroecological transition that governments should con-
sider. These principles are nevertheless to be applied with the flexibility to be tested
and reassessed according to local circumstances (environment, climate, soil
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condition, etc.). They must also be developed in collaboration with the beneficiaries
of this development. Priority should also be given to public goods by popularizing
knowledge, building storage facilities, rural infrastructure, facilitating access to
resources (insurance against climate risks, education, support for farmers’
organizations, and cooperatives). These investments can, in the long run, be much
more sustainable than simple private goods provided to farmers/growers, when they
are informed and thought out. Automating women through specific mechanisms to
encourage their participation in the construction of knowledge and organizing
markets (use of packaging, processing, marketing, value chains, bringing farmers
together in cooperatives, etc.) to protect farmers against fluctuating prices and
dumping are objectives to be achieved to ensure adoption of agroecological practices
by all (De Schutter 2011).

Society must, therefore, not only be attentive to the action of agriculture on the
environment but, equally, make sure to encourage it to strengthen these interactions,
which means:

• The restoration of the natural agronomic functions of cultivated ecosystems
• Combating soil erosion and preserving its fertility
• Diminution in the consumption of energy, water, chemical inputs
• The use of biological interactions, ecosystem services, and potentials offered by

natural resources (biodiversity, photosynthesis, etc.) while maintaining their
capacity for renewal from a qualitative and quantitative point of view (Claveirole
2016)

9.15 Conclusion

Agroecology is a scientific discipline with enormous potential and the ability to lead
the transition to a more inclusive, sustainable model of society based on more robust
and more united social ties by relocating the economy. It embodies a credible,
efficient, and human alternative while fully participating in the objectives of food
sovereignty. It offers a real social transformation project that does justice to the
proletariat of the countries of the south as the first food suppliers in the world through
better management of agricultural soils. Agroecology improves soil fertility, biodi-
versity, and productivity, while reducing dependence on energy-intensive inputs.
However, most agroecological techniques have, so far, a feeble integration in
nowadays farming for various reasons, one being that it is described as labor-
intensive. In order to satisfy the increasing request for and press on soil and water
resources, it will be required to not only expand but implement eco-friendly,
eco-specific, and system reposed land management techniques. Research and other
support services will require to be reoriented to assist farmers better comprehend
agroecology farming and perform suitable choices for land management. To nourish
an increasing earth inhabitant, we need practices that supply smug feeding while
preserving the environment especially the soil and that guarantee economic viability
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for peasants. For this reason, practices of agroecology can and should play a vital
function.
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