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Nomenclature

A Material absorptivity
As Cross-sectional area of the laser spot (mm2)
DMax Maximum hole diameter (mm)
DMin Minimum hole diameter (mm)
Dent Entrance hole diameter (mm)
Dex Exit hole diameter (mm)
Dp Pulse duration (s)
Eabs Energy absorbed by the material (J)
Fl Focal length (mm)
Hc Hole circularity
P Applied laser power (W)
Pd Laser power density (W/mm2)
Pe Pulse energy (J)
Sd Spot diameter (mm)
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t Material thickness (mm)
θ Taper angle
∅ Beam divergence (angle)

1 Introduction

Aircraft engine components usually operate under elevated temperature (above
1000 °C) and high-pressure conditions (more than 1 MPa) [42]. Materials with
outstanding thermo-mechanical properties are required for effective performance
in such hot sections of an aeroengine. Superalloys are the ideal candidate for use in
aforesaid extreme operating conditions because of excellent corrosion andwear resis-
tance, and high creep strength properties [71]. Superalloys are majorly classified into
four categories, (Ni) nickel-based, (Ti) titanium-based, (Co) cobalt-based and (Fe)
iron-based alloys. A significant portion (70%) of superalloys is used by aerospace
industries and approximately 50% of the aerospace components are manufactured
using Ni-based superalloys [24]. The characteristics of high strength, excellent
thermal and fatigue resistivity enabled these alloys to be used in various applications,
such as aeroengine components, space shuttles, nuclear reactors and tooling.

Composite materials have become popular in a wide range of industries due to
their enhanced properties, including high strength to wear ratio, lower weight, and
better corrosion and high-temperature resistance. Metal matrix composites (MMCs)
are a comparatively new class of material structured by embedding high-strength
ceramic fibres into a tough metal matrix [38]. These composites have superior prop-
erties comparable to superalloys and are used in both commercial and industrial
applications especially in the aerospace sector [2, 35].

Conventional machining of these materials is challenging because of higher tool
wear and the low material removal rate [3, 60]. The significance of using non-
conventional machining processes (electrical discharge machining (EDM), laser
machining and water-jet machining) for superalloys and MMCs has been discussed
by Bains et al. [5] and Majumdar and Manna [47]. It is noted that non-conventional
machining processes produce high quality products with better surface characteris-
tics. Of all the available non-conventional machining processes, laser processing
is a fast and flexible machining process specifically when drilling of aerospace
components is considered [48].

There are different ways to drill a particular hole geometry. They can be divided
based upon drilling processes such as single-pulse, percussion and trepanning. For
a particular process, there is a range of parameters involved which control the mate-
rial removal, hole quality and manufacturing cost. Furthermore, there are different
factors which influence the laser drilling manufacturing cost. All of these aspects are
discussed in this chapter.
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2 Drilling in the Aerospace Industry

Advancements in aeroengine efficiency are associated with an enhancement of
exhaust gases and combustion temperatures in aircraft gas turbines [52]. Although
superalloys can sustain these elevated temperatures, supplementary cooling of
components is necessary for effective engine performance. This can be achieved
through drilling multiple cooling holes in hot-section components. Hole dimensions
as well as the number of holes vary in different components as shown in Table 1.

Different methods are available to drill these holes. These include electrochemical
machining (ECM), electrodischarge machining (EDM) and laser drilling. The latter
method has an advantage over ECM and EDM because of the following reasons [20,
21, 46, 54, 92]:

i. There is no direct contact with the material surface and therefore no tool wear
or breakage is involved.

ii. Proper design of the motion-control system and beam delivery facility enables
the achievement of high precision and repeatability.

iii. The laser beam can be focused precisely on the defined area, which allows
drilling of holes of various shapes and sizes.

iv. It is easy to program and automate the laser drilling process.
v. A wide range of materials can be operated on including composites, plastics,

silicon, rubber or metals.
vi. The process duration is shorter as compared to EDM and ECM techniques.
vii. Some of the laser machines are versatile and it is possible to perform multiple

functions using the same laser, such as welding or cutting.

However, there are some limitations of laser drilling which must be considered;
these are provided below [20, 21, 46, 54, 92].

i. High capital cost is needed to buy a laser drilling setup.
ii. Laser drilling is associated with some inherent defects, such as hole taper,

circularity, recast layer thickness (RLT), heat affected zone (HAZ), surface
roughness, spatter and microcracks.

iii. Appropriate laser safety precautions need to be implemented.

Table 1 Hole dimensions of gas turbine components [53]

Components Wall thickness
(mm)

Diameter (mm) Angle to the
surface (°)

Number of holes

Nozzle guide vane 1.0–4.0 0.3–1.0 15 25–200

Turbine blade 1.0–3.0 0.3–0.5 15 25–200

Baseplate 1.0 0.5–0.7 30–90 10,000

Afterburner 2.0–2.5 0.4 90 40,000

Cooling ring 4.0 0.78–0.84 79 4200

Seal ring 1.5 0.95–1.05 50 180
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iv. Optical setup needs regular maintenance.

Therefore, this chapter is focused on the laser drilling process taking into
consideration both cost and quality aspects.

3 Laser Drilling

Laser drilling is a non-traditional machining process, which is extensively used in
the aerospace industry for the machining of high strength and high-temperature
resistant metals and alloys. Recently, the application of laser drilling for producing
holes in aluminium matrix/silicon carbide reinforcement (Al/SiC) MMCs has been
reported by researchers [49, 51, 93]. This technique is preferable compared to other
manufacturing processes, especially in the drilling of aerospace components [52,
73]. It has been extensively adopted for producing cooling holes for aerospace gas
turbine components, in particular combustors, nozzle guide vanes and high-pressure
turbine blades [6].

In the laser drilling process, a high power laser beam is directed on the surface of
the workpiece, where the optical energy of the laser beam is thermalized and rapidly
heats the base material and converts it into its molten state as a result of thermal
diffusion. Some of the energy is lost due to scattering and reflection of the laser
beam. Depending on laser intensity material is removed in both the liquid and/or
vapour states. The process of hole formation during laser drilling is shown in Fig. 1.
If the laser intensity is high enough, the vaporisation will generate plasma and recoil
pressure which helps in the ejection of molten metal and results in the formation
of a hole cavity (Fig. 2a) [83]. To make the liquid metal removal more efficient
high pressure assist gas can be used, as presented in Fig. 2b. Kinetic energy of the
assist gas is used to expel liquid metal where the process doesn’t need to rely on
the vapour pressure. Assist gas pressure together with plasma and recoil pressures
control material expulsion in the laser drilling process [66, 82].

Different types of methods are available for the laser drilling operation, which
include single-pulse, percussion and trepan laser drilling. The following section
outlines the description of these methods.

4 Methods of Laser Drilling

Laser drilling can be performed using different methods and laser types. Depending
on the required applications, a particular method and laser are selected as indicated
in Fig. 3.
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Fig. 1 Hole formation physical mechanism in the laser drilling process [56]

Fig. 2 Schematic of the laser drilling process: a vapour driven melt expulsion, b assist gas melt
expulsion
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Fig. 3 Laser drilling methods and their application requirements

4.1 Single-Pulse Laser Drilling

Single-pulse laser drilling, also known as single-shot laser drilling is a simplemethod
of drilling holes. It involves the use of a single pulse with high energy to create a hole
throughout the material thickness. The maximum thickness of material that can be
drilled is limited by the pulse energy of the laser. The hole size and quality depend
on material thickness and spatial as well as temporal profiles of the laser beam [70].

Using this method, a large number of holes can be produced in a relatively short
amount of time. This depends on laser frequency and the speed of the motion system.
Single-pulse drilling is a better choice when productivity is the priority compared to
quality [79]. It is to be noted that above certain thickness very high pulse energy lasers
are requiredwhich are expensive, therefore thismethod is suitable for producingholes
in thin sheet materials.

4.2 Percussion Laser Drilling

Percussion laser drilling involves a series of laser pulses fired at a particular spot of
a material where each pulse generates a proportion of the hole. The productivity of
this process is a function of pulse energy (edge depth per pulse) and pulse frequency.

Better hole quality can be attainedwith percussion drillingwhich depends on laser
beam quality and its intensity profile; however, this process is slower in comparison
to single-pulse drilling and requires more energy to drill a hole [79].

4.3 Trepan Laser Drilling

Trepan laser drilling or trepanning is employed to drill large diameter holes. This
process begins by piercing a central hole into the material similar to percussion
drilling; the laser beam is then moved in a spiral configuration using a motion control
system to cut the required size hole. A significant benefit of thismethod is the delivery
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Fig. 4 Correlation between hole quality and drilling time for different laser drillingmethods. Source
Gautam and Pandey [25]

of good quality holes but it takes a more time compared to other methods [48].
Figure 4 shows hole quality and drilling time associated with various laser drilling
methods. It is evident that trepanning is the best choice when hole quality is the
priority. In trepanning, hole quality depends on the accuracy of the motion system
[55].

5 Performance Measures

Performance of the laser drilling process depends upon efficient removal of (molten)
material, hole quality and manufacturing cost. These performance measures are
described in the following sections.

5.1 Material Removal Volume

Material removal is a key feature of the machining process. Laser drilling process
involves the removal of molten material to produce a hole cavity. Material removal
volume (MRV) indicates the volume of material removed per unit time when it
is correlated with the process time, specified as mm3/s [79]. It helps the users to
calculate the speed of the drilling of any arbitrary hole by knowing the volume of
material needed to be removed per hole. It also defines the energy efficiency of the
process that is associated with the amount of material removed per unit joule of
energy, usually measured in mm3/J [23]. Energy consumption is also an important
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cost driver of the laser drilling process, therefore it is reasonable to achieve higher
MRV with lower energy consumption.

5.2 Hole Quality

Hole quality is of supreme concern in the aerospace industry. Several characteristics
are used to judge the quality of laser drilled holes i.e. geometrical features (hole
circularity, hole taper and surface roughness) and metallurgical features (microc-
racks, recast layer, spatter and heat affected zone) [25]. Detailed quality attributes
are provided in the following sections.

5.2.1 Hole Circularity

Hole circularity defines the roundness of a hole. It varieswith the deviation of the hole
diameter across the circumference of a drilled hole as shown in Fig. 5. It is always
important to increase hole circularity, which can be calculated by the following
relation (1). In single-pulse and percussion drilling, hole circularity depends on the
roundness of the laser spot and laser beam intensity profile. Whereas in trepanning
it is influenced by the accuracy of the motion system.

Hc = DMin

DMax
(1)

where:
Hc = Hole circularity.
DMin = Minimum hole diameter (mm).
DMax = Maximum hole diameter (mm).

Fig. 5 Measurement of hole
circularity
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Fig. 6 Schematic representation of a (positive) hole taper

5.2.2 Hole Taper

Taper formation is an inherent characteristic of laser material processing. It is an
important attribute which significantly influences drilled hole quality [4]. Near-zero
hole taper is always desirable specifically in aeroengine components where close
tolerances and high quality are strict requirements [7].

Hole taper angle is based on the entry and exit hole diameters of the drilled hole
and can be calculated using the following relation (2).

tan θ = Dent − Dex

2 × t
(2)

where:
θ = Taper angle.
Dent = Entrance hole diameter (mm).
Dex = Exit hole diameter (mm).
t = Material thickness (mm).
Taper angle can be positive or negative depending upon entrance and exit hole

diameters. Figure 6 shows the position of hole taper where the exit hole side is
smaller than the entry side (positive hole taper). The major cause of this drawback
is the diffraction of the laser beam inside the hole cavity.

5.2.3 Surface Roughness

Surface roughness is one of the important factors considered for quality evaluation
of laser drilled parts [86]. It refers to surface irregularities formed on the inner side
of the hole which is a product of recast layer. It also reflects the dynamics of the
liquid film prior to solidification and local reflectivity of the laser beam. It is usually
measured as the arithmetic mean of absolute values of the vertical deviations of the
actual surface from the ideal or nominal surface profile over the defined evaluation
length, as presented in Fig. 7. A small deviation presents a smooth surface and if
the deviation is large the surface obtained is rough. A smooth and uniform surface
is required to ensure smooth airflow and avoid turbulence specifically for turbine
blades [33]. Surface roughness is majorly influenced by laser intensity, laser power
and trepan speed [86, 88].
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Fig. 7 Average surface roughness (Ra) representation [91]

Fig. 8 Microcracks
formation around a drilled
hole (0.5 mm thick
yttria-stabilized zirconia)
[22]

5.2.4 Microcracks

Rapid drilling induces a high cooling rate in the material and in some cases may lead
to the formation of microcracks [25]. Microcracks normally arise when drilling is
performed in brittle or hard materials. The propagation of these cracks in operation
affects the fatigue life of components leading to failure [59]. Figure 8 indicates
microcracks formed on the laser drilled surface. Microcracks can be avoided by
minimising thermal input into the material.

5.2.5 Recast Layer

During the laser drilling operation, some of the melted material is not removed
appropriately and is re-solidified along the walls of the hole. This is known as a recast
layer [25]. This layer has contrasting properties compared to the parent material.
Sometimes, microcracks are also formed in the recast layer which adversely affect
the component’s integrity and its lifespan [59]. Therefore, recast layer formation
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Fig. 9 Recast layer in a
percussion drilled hole
(4 mm thick IN 718) [7]

must be avoided. Figure 9 shows the recast layer in a percussion drilled hole. For a
given material, recast layer depends on laser beam intensity. Higher the laser beam
intensity more efficient is the material removal which ultimately reduces the chances
of recast layer formation.

5.2.6 Spatter

Incomplete expulsion ofmeltedmaterial occasionally causes the scattering ofmolten
droplets around the edges of the hole, which later resolidify. These droplets get stuck
to the hole surface and are known as spatter [32]. It is an innate defect of the laser
drilling process and is not desirable especially for effusion cooling applications,
whereby the material surface is important for the efficiency and flow of the cooling
air [45]. Figure 10 depicts the spatter area formed near the edges of laser drilled holes
of a Nimonic sheet.

5.2.7 Heat Affected Zone

Laser drilling is a thermal process which involves the interaction of a laser beam
with the surface of the workpiece. Higher temperature is involved in the process
due to which the (mechanical, physical and chemical) properties of the workpiece
surrounding the interaction area are changed. This results in the creation of a distinct
zone known as a heat affected zone. The HAZ area is not melted, though lateral heat
conduction produces a significant change in the microstructure. The microstructure
interface clearly differentiates HAZ from the base material and the recast layer as
shown in Fig. 11. HAZ is directly linked to pulse duration and laser beam intensity.
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Fig. 10 SEM image of
spatter deposited over the
periphery of the holes
(2.05 mm thick Nimonic PK
33) [45]

Fig. 11 HAZ and recast layer in laser drilled hole (8.0 mm thick IN 718) [6]

Low pulse duration allows less time for the energy to dissipate into the material. On
the contrary, high laser beam intensity leads to efficient removal of molten material
and results in less contact time between the hot liquid and bare material.
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5.3 Manufacturing Cost

Manufacturing cost of a product plays an important role in its successful design and
production. It is used for making several types of decisions for product designing
and manufacturing. These decisions include:

• Material type to be utilised for the product
• Manufacturing process type to be used for the product
• Number of products to be manufactured
• Whether to buy or make the part/product
• Product design.

Product manufacturing cost is a major cost element of its selling price i.e. 40%
(shown in Fig. 12), which further consists of various elements: labour cost (direct
& indirect), material cost, equipment depreciation, energy and plant cost as illus-
trated in Fig. 13 [81]. It is important to estimate manufacturing cost as it assists the
manufacturing companies to evaluate their performance and effectiveness [16].

There are different ways of drilling and each of them has a different quality and
associated manufacturing cost which is essential to understand for the user. With
single-pulse drilling, manufacturing cost can be reduced but at the expense of hole
quality; on the other hand, trepanning gives good hole quality but the manufacturing
cost is higher. This shows that there is a trade-off between quality and manufacturing
cost. All these factors depend on the process parameters which are discussed in the
following sections.

Fig. 12 Product selling price cost elements [81]
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Fig. 13 Manufacturing costs elements [81]

6 Laser Drilling Process Parameters

Different parameters are involved in the practical implementation of the laser drilling
process. Yeo et al. [92] grouped these parameters into five main categories, as
shown in Fig. 14. Laser pulse parameters include pulse energy, pulse duration, pulse
frequency and the number of pulses. Environment conditions are the surrounding
temperature and humidity level. Material based parameters include material reflec-
tivity, thickness and type of material. Optical setup involves beam shape, intensity
profile, focal length and focal position of the laser beam. Assist gas based parameters
are gas pressure, nozzle design and the type of assist gas employed. The performance
and efficiency of the process depend on an appropriate selection of these parameters.

6.1 Pulse Energy and Pulse Duration

Pulse energy and pulse duration are the critical process parameters of laser drilling.
Pulse energy provides the energy to melt or vaporise a proportion of the mate-
rial. Pulse duration or pulse width determines the duration at which this energy is
applied as shown in Fig. 15. Depending on laser specifications, the ranges of pulse
duration and pulse energy can be varied and have a significant impact on the hole
characteristics [25].

Both of these parameters are interdependent (see Eq. 3) and define the laser peak
power that controls the rate at which pulse energy is applied into the material [48]. To
attain the same pulse energy with a short pulse width, higher peak power is required.
There is a significant impact of peak power on the material removal process. Higher
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Fig. 14 Classification of process parameters

Fig. 15 Laser pulse waveform



120 S. Sarfraz et al.

peak power with short pulse duration typically leads to rapidmelting and high vapour
pressure which subsequently accelerates liquid (molten metal) removal [79]. It has
been noted that drilling with high peak power significantly reduces hole taper [31,
57], recast layer thickness [6, 14, 61] and microcracks [59].

Peak power = Pulse energy

Pulse duration
= joule(J )

second(s)
= watt(W ) (3)

It is clear from Eq. (3) that peak power is directly proportional to pulse energy
and inversely proportional to pulse duration. High pulse energy helps to remove
the molten material outside the hole cavity and therefore reduces the RLT [14] and
microcracking [15]. On the other hand, hole taper increases with an increase in pulse
energy [12, 78]. Generally, long pulse duration produces large diameter and deeper
hole because of sufficient laser beam-workpiece interaction time [8], however, too
long pulse duration is not ideal for laser drilling as it produces a largeHAZ [57]. Short
pulse duration is found to produce a very small difference between entry hole and
exit hole diameters because of the high-power intense laser beam [12, 30] and also
reduces microcracking [15]. The abovementioned studies have revealed a significant
influence of pulse energy and pulse duration on drilled hole quality, therefore it is
important to select a suitable value for these parameters.

6.1.1 Single-Pulse Drilling

Single-pulse drilling employs one high-energy laser pulse to perform the drilling
operation. The laser pulse can be of a short pulse duration with high peak power
(Fig. 16a) or longpulse durationwith lowpeakpower (Fig. 16b), eachhas a significant
impact on hole characteristics. The combination of short pulse width with high peak
power is recommended as it improves repeatability of hole diameter [65] and hole
circularity [28, 65].

Fig. 16 Schematic representation of single-pulse drilling regimes: a higher peak power, b lower
peak power
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Fig. 17 Schematic representation of cumulative pulse energy—percussion drilling

6.1.2 Percussion

In case of percussion drilling, more than one number of pulses are involved therefore
the energy transferred to the material is calculated as cumulative pulse energy i.e. a
total sum of energy associated with each pulse, as shown in Fig. 17. Typically, the
cumulative pulse energy required to drill a hole is higher in comparison to single-
pulse drilling due to pulse off stage in percussion drilling which allows the molten
metal to solidify. Laser pulse off time depends on the duty cycle and pulse frequency.
This indicates that the number of pulses and pulse frequency are also important
parameters. These are explained in the following sections.

6.2 Number of Pulses

In laser drilling an increase in the number of pulses helps to remove material from
the bottom side of a hole, after the formation of through-hole, and consequently
produces lower hole taper [26, 29, 41, 64, 79]. Circularity of holes also improves
with higher number of pulses [34]. However, spatter volume can be minimised using
a smaller number of pulses [90].

6.3 Pulse Frequency

Pulse frequency controls the number of laser pulses fired per second. It also defines
the average power of the laser that can be calculated by using the following Eq. (4).

Average power = Pulse energy × Pulse f requency

= ( joule(J )) × 1/(second(s)) = watt(W ) (4)
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Hole quality is significantly influenced by the change in pulse frequency [63]. At
high pulse frequency, the time gap between consecutive pulses is short which reduces
the chances of heat loss due to convection and allows sufficient energy to enter into
the workpiece material [79]. Lower hole taper with less RLT can be obtained with
high pulse frequency [6, 12, 29, 57, 68]. On the contrary, HAZ increases with pulse
frequency [57]. High average power (frequency) lasers and high energy lasers are
expensive; therefore the type of process and laser used should be carefully selected.

6.4 Material Properties and Environment

Material properties have a considerable effect on laser drilling performance. The
(reflective) characteristics of a material surface directly influence the amount of
energy absorbed during the laser drilling operation. Reflectivity or absorptivity is
required to calculate the amount of energy absorbed by the material as indicated in
Eq. (5) [74]. Single-pulse drilling is more sensitive to material reflectivity, whereas
in percussion drilling there is a preheating effect and absorptivity increases with
subsequent pulses.

Eabs = A × P × Dp (5)

where:
Eabs = Energy absorbed by the material (J).
A = Material absorptivity (1 − Reflectivity).
P = Applied laser power (W).
Dp = Pulse duration (s).
In addition to this, the thermal conductivity of material also affects process effi-

ciency. It is obvious that materials with high thermal conductivity transfer heat
quickly throughout the workpiece instead of rapidly heating the targeted zone, there-
fore more time is needed to reach the melting state [84]. Material thickness is a
significant influencing factor related to the geometry and metallurgical features of
hole quality. Hole taper decreases with an increase in material thickness. On the
contrary, spatter and recast layer increase when thicker material is used [6].

Environmental factors including humidity, mist, dust, ambient temperature and
machine vibration also influence laser performance. Moreover, the surface of optical
elements should be cleaned and contain no oil vapour or dust particles as these
damage the optical system [75].

6.5 Beam Shape and Intensity Profile

The temporal profile of a laser beam defines the intensity distribution and material
removal capability of a laser pulse [92]. Gaussian beam profile is generally used in
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the laser drilling process as it provides a small focused spot and high laser beam
intensity which results in efficient removal of molten material [87]. Diameter and
roundness of a laser beam directly affect the dimensions of a hole. The size of a
hole is directly dependent on beam size. The smallest beam size of a particular laser
system is determined by its optics and the optical settings.

6.6 Focal Length and Focal Position

Focal length is the distance from the centre of the lens to the focal point (see Fig. 18).
Hole characteristics are greatly influenced by a change in focal length since this
directly effects the beam spot size that is related with the laser power density, as
shown in Eqs. (6) and (7) [1]. High power density is associated with shorter focal
length and therefore results in higher melt removal. On the other hand, the spatter
area increases with shorter focal length [43].

Sd = Fl × ∅ (6)

Pd = P

As
= 4P

π S2d
(7)

where:
Sd = (min) spot diameter (mm).
Fl = Focal length (mm).
∅ = Beam divergence (angle).
Pd = (max) Laser power density (W/mm2).
P = Applied laser power (W).
As = Cross-sectional area of the laser spot (mm2).
Focal position of a laser beam is divided into three categories based on its position

relative to the workpiece surface (see Fig. 19) [34]:

Fig. 18 Focus pattern of a laser beam
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Fig. 19 Schematic diagram showing the variation of focal position [27]

Zero: when the focal position of the laser beam is located exactly at the workpiece
surface
Positive: when the focal position of the laser beam is located above the workpiece
surface
Negative: when the focal position of the laser beam is located below theworkpiece
surface.

Focal position significantly affects the quality and geometry of a hole. Minimum
RLT was noticed by Marimuthu et al. [48] and Leigh et al. [41] when the focal
position of the laser beam was maintained exactly at the workpiece surface. The
circularity of holes has also been shown to increase with zero focal plane position
[34]. Shin and Mazumder [85] found a significant improvement in the values of hole
taper with zero focal plane position.

6.7 Assist Gas

In the laser drilling process, an assist gas is employed to facilitate the removal of
molten material and to blow out the recast layer and spatter which is deposited inside
and on the top of the hole cavity, respectively. Different types of assist gases are
utilised for the laser drilling operation. They are broadly classified as reactive gases
or inert gases. Reactive gases provide additional exothermic energy as a result of
chemical reaction between the molten metal and the gas and subsequently improve
drilling efficiency. Oxygen and compressed air are categorised as reactive gases [72].
On the other hand, inert gases only provide kinetic energy to evacuate the molten
material from the hole cavity without undergoing any chemical reaction. Nitrogen
and argon fall under this category. The quality of the drilled hole is significantly
affected by the type of assist gas employed [4]. Low et al. [44] observed lower
spatter thickness with weak bonding strength when using oxygen as the assist gas.
On the contrary, the drilling edge is oxidised which requires further cleaning [89].
Compressed air is the cheapest option but the disadvantages associated with this
gas are the formation of dross and an oxidised surface. Using inert gases (nitrogen
and argon), these oxidation scales can be avoided. Marimuthu et al. [49] compared
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the quality of laser drilled holes using different assist gases. A regular hole profile
with minimum RLT was obtained with argon and nitrogen compared to oxygen and
compressed air.

The gas pressure must be enough to overcome the surface tension holding the
liquid (molten) metal so that the liquid can be ejected. The value of gas pressure
influences hole quality. Higher gas pressure facilitates the removal ofmoltenmaterial
along the sidewalls and therefore results in less RLT [14, 48] and lower hole taper
[12]. On the other hand, excessive gas pressure is also not desirable as it results in
the formation of microcracks due to the phenomena of rapid solidification [14].

The nozzle design also affects hole quality. Biffi and Previtali [10] designed an
innovative nozzle and achieved a significant decrease in spatter compared to a stan-
dard nozzle. Low values of recast layer were reported by Khan et al. [39] when a
small nozzle diameter was used.

Proper control of these process parameters is necessary as they significantly influ-
ence performance of the process. Influence of laser drilling process parameters on
the selected performance measures is provided below.

7 Effect of Process Parameters on MRV

The laser drilling process is associatedwith the removal ofmoltenmaterial to produce
a particular hole geometry. Process efficiency depends on the volume of material
removed versus the amount of energy applied. Higher MRV is always desirable with
less energy input as it improves process efficiency. Additionally, MRV and process
duration define the productivity of the process where higher MRV with less process
duration is required for improved productivity.

There are various process parameters which influence MRV in laser drilling. This
section covers previous research work conducted by researchers to study MRV in
connection with the laser drilling process.

Low et al. [43] examined the laser drilling parameters influencing melt removal
during percussion drilling. They concluded that pulse width and peak power directly
influence MRV.

Fysikopoulos et al. [23] examined the impact of laser power and pulse frequency
on the energy efficiency of the laser drilling process. For energy efficiency, MRVwas
calculated against the energy applied. It was revealed that increase in laser power
and pulse frequency enhances process efficiency.

Panda et al. [68] selected oxygen as an assist gas and studied the variation inMRR.
It was found that higher gas flow rate increasesMRR. Goyal and Dubey [30] reported
that higher gas pressure provides sufficient drag force that facilitates in removing the
melt material. Wang et al. [89] analysed the effects of assist gas including oxygen
and argon on drilling efficiency. Improved efficiency was reported using oxygen as
an assist gas due to its combustible-supportability that generates excessive heat and
results in higher MRV.
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Sarfraz et al. [79] investigated the effects of laser drilling parameters on IN718
superalloy using three different laser drilling processes.Material removal rate (MRR)
was calculated using MRV and drilling time. The results showed that pulse width,
number of pulses and trepan speed are the most important parameters that influence
MRR.

Biscaia et al. [11] conducted experiments on nickel superalloy using trepan laser
drilling to explore the influence of process parameters on MRR. Results indicated
trepan speed as the significant parameter influencing MRR. Higher trepan speed
produced higher MRV with reduced drilling time.

An investigation was performed by Parthipan and Ilangkumaran [69] to examine
the material removal rate and surface roughness of laser drilled holes in Cu-Ni-Tib2
MMC. Response surface methodology (RSM) approach was used to describe the
relationship betweenmaterial removal rate and drilling parameters. Then the optimal
process parameters (pulse energy, laser power, gas pressure) were determined for
higher MRR and better surface roughness.

8 Effect of Process Parameters on Hole Quality

Different experimental studies have been performed by researchers to study the
impact of laser drilling process parameters on hole quality. These aim to enhance the
quality attributes of the laser drilled holes.

Taper control is the most important issue during the laser drilling process. High
value manufacturing industries dealing with aircraft engine components demand
holes without any taper. Different factors influence hole taper, the following studies
address the significant process parameters.

Bandyopadhyay et al. [7] investigated the hole taper of laser drilled holes produced
in titanium alloy and nickel superalloy sheets. Pulse duration, pulse energy and focal
position were found to be significant parameters affecting hole taper. Low levels of
pulse duration and pulse energy with zero focal position resulted in improvement of
hole taper. In another study, Bandyopadhyay et al. [6] found that increase in material
thickness caused improvement in hole taper.

Kacar et al. [37] observed the influence of pulse duration and peak power on hole
taper using alumina ceramic. An increase in pulse duration and peak power produced
an improvement in hole taper.

A studywas conducted byMishra andYadava [58] on laser drilling of IN718 sheet.
Results showed improvement in hole taper with an increase in pulse frequency. Bathe
and Padmanabham [9] reported the influence of laser drilling parameters using TBC
(thermal barrier coated) IN 718 as a substrate. Pulse duration produced a significant
impact on hole taper. Decreasing pulse duration produced a reduction in hole taper.

Goyal and Dubey [30] investigated the impact of laser drilling parameters on hole
taper of laser drilled IN 718 sheet. Hole taper was found to decrease with an increase
in trepan speed and pulse frequency. Similar findings were reported by Dhaker and
Pandey [18].
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Bahar et al. [4] showed the importance of laser power and laser frequency in
the laser drilling process. They reported that higher laser power and increased pulse
frequency help to improve hole taper. The study also revealed that comparing the
effect of compressed air, oxygen and nitrogen on hole taper, improved hole quality
was obtained with compressed air and nitrogen. Shin and Mazumder [85] stated that
hole taper can be improved when higher laser power is applied with lower trepan
speed and zero focal position.

Chatterjee et al. [12] explored studies on laser drilling of titanium alloy. Pulse
duration, pulse energy, pulse frequency and gas pressure were varied to observe their
effects on hole taper. They stated that increasing pulse frequency and gas pressure
resulted in improvement of hole taper. It was also discovered that hole taper was
increased by increasing pulse energy and pulsewidth. Chatterjee et al. [13] conducted
another studyon stainless steel (AISI 316). Similar resultswere found for thismaterial
except for gas pressure and pulse energy effects due to a difference in material
properties.

Sarfraz et al. [79] conducted experiments to investigate the impacts of pulse
energy, pulse frequency, number of pulses, pulse duration and trepan speed on hole
taper. Pulse duration and pulse energy produced the most significant effect on hole
taper.

Padhee et al. [67] examined the impact of number of pulses and pulse width on
the taper angle of drilled holes produced on (Al/SiC) MMC. Improvement in taper
angle was observed when lower number of pulses and lower pulse width was applied.
Moreover, the impact of concentration (wt%) of SiC particulates on hole taper was
studied. It was noted that higher concentration of SiC increases hole taper.

Marimuthu et al. [49] studied the characteristics of holes during laser drilling
of (Al/SiC) MMC. It was observed that less energy is required to drill holes with
acceptable quality in (Al/SiC) MMC in contrast to isotropic metals or alloys. In
another study, Marimuthu et al. [50] investigated the water jet guide (WJG) laser
drilling of the same material. WJG laser drilling produced better hole quality with
less taper, no recast layer and improved hole circularity compared to conventional
laser drilling.

9 Effect of Process Parameters on Manufacturing Cost

The laser drilling process depends on several process parameters that affect process
efficiency and product quality as described above. Sarfraz et al. [76, 78] specified
that these process parameters also influence manufacturing cost. These researchers
provided a cost breakdown structure of the laser drilling process and identified cost
drivers involved in the process. Detailed work has been reported by Sarfraz et al.
[80] depicting the laser drilling process parameters impact on manufacturing cost.
Pulse duration was reported as the most significant parameter affecting the drilling
cost followed by gas flow rate and pulse energy. However, the work was only limited
to the single-pulse drilling process.
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Besides the laser processing parameters, there are other factors involved which
contribute to the laser drilling manufacturing cost. These factors are discussed in the
following section.

10 Cost of Laser Drilling

Manufacturing cost estimation is essential for companies targeting to become
successful in the current competitive scenario. One of the important tasks of cost
estimation is to establish a work breakdown structure (WBS). The main purpose of a
WBS is to provide a uniform structure incorporating all the elements of the process
that will be specified by the cost estimate, where each element represents the cost
required to execute that process. When a WBS includes all the cost information, it
may serve directly as a cost breakdown structure [62]. The operating costs breakdown
structure of a laser drilling process is presented in Fig. 20.

Cost estimation requires an identification of cost drivers i.e. those factors which
significantly influence the cost. The total cost is changed with a small modification
to a single cost driver. It is possible to generate a comprehensive cost estimate for a
particular process only if all of its cost drivers are identified [62].

The main cost drivers relevant to the laser drilling process are provided in Table 2.
Equipment running cost, maintenance, material and labour costs are the key drivers
in laser drilling cost estimation. It was identified that equipment running cost further
consists of equipment depreciation, electrical (power) consumption, components
replacement, gas consumption, component handling and overhead costs. When all
cost drivers are finalised, a cost is allocated to each driver and the total process cost
can be calculated.

The selection of an appropriate laser source is also important as it affects the cost
efficiency of the process [19]. Nd:YAG and fibre lasers are the most commonly used
laser sources for drilling in the industry. A comparison between these two lasers is

Fig. 20 Cost breakdown structure
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Table 2 Cost drivers of the laser drilling process

Cost drivers Yeo et al. [92] Baisev and
Powell [8]

Ion [36] Dahotre and
Harimkar [17]

Sarfraz et al.
[77]

Equipment
running cost

Equipment
depreciation

Equipment
depreciation

Equipment
depreciation

Equipment
depreciation

Equipment
depreciation

Electrical
consumption

Electrical
consumption

Electrical
consumption

Electrical
(power)
consumption

Electrical
consumption

Replaceable
components
(lenses, flash
lamp, filters)

Replaceable
components
(lenses, laser
pumps)

Replaceable
components
(lenses, flash
lamps)

Replaceable
components
(lenses, flash
lamp, filters,
nozzle)

Gas
consumption

Gas
consumption

Gas
consumption

Component
handling

Component
handling

Component
handling

Overhead Overhead Overhead Overhead

Maintenance Equipment
maintenance

Equipment
maintenance

Equipment
maintenance

Material Material cost Material cost

Labour Labour
(operator)
cost

Labour (laser
operators and
engineers)
cost

Labour cost Labour cost

provided in Table 3. It is noted that the purchase cost of a fibre laser is higher than
Nd:YAGbut its running cost ismuch lower because of higher electrical efficiency and
longer operating life. Nd:YAG laser does require periodic maintenance and service
for the alignment, cleaning and replacement of optics, on the other hand, a fibre
laser is maintenance free. It is important to mention that these laser sources have
different beam quality, which ultimately affects hole quality and productivity [19,
40]. Therefore, it is important to evaluate the laser source being used for the drilling.

Table 3 Fibre laser and
Nd:YAG laser comparison

Fibre laser Nd:YAG laser

Laser capital cost Higher Lower

Laser operating cost Lower Higher

Electrical efficiency Higher Lower

Operating life Longer Shorter

Maintenance Low High
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11 Concluding Remarks and Future Perspectives

11.1 Conclusions

Laser drilling is a well-established technology exclusively in the aerospace sector,
where this process involves large volume production of holes. In this chapter,
single-shot, percussion and trepan laser drilling methods are discussed. Performance
measures of the laser drilling process includingmaterial removal volume, hole quality
attributes and manufacturing cost are explained.

Different laser drilling process parameters are extensively discussed, and the
existing literature depicting the attention of several authors towards this advanced
machining process is presented. The performance of the laser drilling process can
be enhanced when proper selection and control of process parameters are applied.
Furthermore, the cost factors of the laser drilling process are explained within this
chapter. It is observed that the laser source affects the cost efficiency of the drilling
process along with productivity and hole quality.

11.2 Future Research Trends

Because of their superior properties, metal matrix composites are potential candidate
materials for use in aeroengine components. However, limited documented knowl-
edge is available discussing the performance of laser drilling of MMCs. Exploring
the behaviour of MMCs against the applied laser drilling parameters is, therefore,
necessary to find out the best combination of process parameters for optimum hole
quality.

It is noted that the laser drilling process parameters have a substantial impact
on the manufacturing cost of the process. Therefore, there is a need to examine the
impact of process parameters on the manufacturing cost along with the economic
implications of the laser drilling process.

It is also specified that the product quality and the manufacturing cost are
interdependent and both depend on the applied process parameters. Consequently,
connecting the quality attributes with the manufacturing cost is a knowledge gap that
can be covered in a future study.

Different types of laser drilling methods are available to perform the drilling oper-
ation. From the available literature, it has been found that there is a lack of research
characterising laser drilling methods in terms of economic and quality perspectives.
Therefore, a model can be developed to provide a comprehensive understanding for
the designers and practitioners to select a suitable laser drilling technique for the
required cost and quality attributes.
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