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1 Introduction

Thematerials used for aerospace, transportation, and underwater applications should
have the properties like low weight, high wear, and corrosion resistances, high
impact strength etc. These properties are not exhibited by existing monolithic mate-
rials/alloys or ceramics [4]. To overcome these shortcomings, the already existed
monolithic material is being substituted by composite material. The composite mate-
rials are developed to combine favorable properties of different materials. Because of
the superior qualities, the replacement of conventional monolithic materials and their
alloys with composites, extend their applications in automobile, defense, marine,
sports and recreation industries [20, 22].

In metal matrix composite (MMC) is the combination of two or more materials,
in which one is a matrix and other is reinforcement in which the matrix used is gener-
ally a lighter metal, which supports the reinforced particles within the composites.
The metals used as the matrix in MMCs are light metals like aluminium, titanium,
magnesium, zinc and their alloys [3, 16]. However, copper, nickel, lead, iron, tung-
sten are also used as the matrix in some particular applications [4, 17, 28]. Also,
the cobalt and Co–Ni alloys are used as a matrix material in the areas, where the
materials are subjected to high temperature [4, 28].
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The reinforcement, when added in matrix, improves its several properties (like
hardness, strength etc.) and prevents its deformation. Thismaterial has its own partic-
ularmicrostructure,morphology, chemistry, physical andmechanical properties, cost
and shapes and on the behalf of these characteristics, reinforcement is selected for
particular matrix [4].

The single ceramic reinforced composites, sometime exhibit some negative effects
also. These effects include the reduction in machinability, fracture toughness, wear
resistance etc. in some specific weight reduction applications like cylinder blocks
and liners, pistons, connecting rods, brake drums etc. [24]. These types of difficulties
can be eliminated by using aluminium matrix based hybrid MMCs. The composites
having three or more constituent particles present in it is known as hybrid metal
matrix composites (HMMC). In such type of composite materials, at least two rein-
forced materials are used. The HMMCs possess higher strength/weight ratio, higher
toughness, less sensitive to temperature changes, improved wettability as well as
machinability etc. Due to this reason, HMMCs possess many applications in the
field of aerospace and automobile components [18].

Out of the available matrix materials, aluminium is generally used as matrix mate-
rial because of lower costs, easy availability, lower density, higher strength/weight
ratio, highly resistant to corrosion and lower processing temperature requirement [4,
6]. In last one-two decades, the use of Al/SiC composites has been increased rapidly,
particularly for automotive, recreation and aerospace applications as Aluminium
exhibits lower density, lower coefficient of thermal expansion, higher strength/weight
ratio, higher wear resistance etc.

The introduction of SiC enhances wear resistance, hardness value and tensile
strength, but with the higher percentage of SiC, the machinability (ductility) and
toughness resistance of the MMCs reduces [1, 19]. However, machinability of such
materials can be improved by using additional reinforcement (like Graphite) along
with SiC [26].

Among the available fabrication process, liquid state stirs casting is simplest one,
and most effectively used in the fabrication of aluminium matrix composites. In this
technique, the reinforcement(s) (ceramics, agro wastes or industrial wastes) is/are
mixed with liquid matrix metal and stirred mechanically under controlled condition
[4].

Grey relation analysis is an effective tool to solve multi performance parameters
in many applications. Yih-Fong and Fu-Chen [13] optimized turning of tool steel
to obtain the best set of input conditions for optimal vales of surface roughness
and dimensional accuracy. GRA also successfully applied by the researchers in the
optimization of various input conditions such as optimization of electric discharge
machining process [9], chemical polishing [5, 8], for evaluation of tool conditions
in turning, drilling [23].

In this experimental study, an attempt has been made to introduce chromium
particles with SiC in the grain structure of Al–Si alloy and to evaluate its affect
on the machining behaviour of novel composites. The composites are fabricated
through conventional stir casting. The turning on standard samples, as prescribed by
Taguchi’s L27 array, has been conducted using conventional Lathe machine and the
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machining performance in form of material removal rate, surface roughness and tool
wear rate is evaluated. The Taguchi analysis followed by grey relation analysis has
been performed and multiple responses optimization has been discussed to improve
the machining integrity of novel composites.

2 Materials and Method

Al–Si alloy based composites, reinforced with 10 wt% SiC and (0–3 wt%) Cr, are
formulated through stir casting method. The stir casting setup used for composite
formulation is shown in Fig. 1.

TheAl–Si alloy cleaned using acetone, weighed and cut in desire amount, charged
in electric furnace and melted at 730 ± 20 °C for around 90 min under the argon
gas environment. SiC (10 wt%) and Cr (0–3 wt% in steps of 1.5) are preheated to
600 ± 5 °C before introducing in the melt to remove any moisture contents. The
slurry is then stirred continuously with electric motor integrated graphite rotor an
average speed of 400 rpm for 8–10 min. 1 wt% of magnesium is also mixed in
the slurry to enhance the wettability among the ingredients [12, 21]. the semi-solid
mixture is then poured in steel mould and allowed to solidify. The specimens used
for experimentation are having dimensions Ф 30 mm × 100 mm.

Fig. 1 Illustration of stir casting process
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Table 1 Input and response parameters

S. No. Input parameters Symbol Variations Responses Symbol

1 Cutting speed A 60, 90, 120
(m/min)

Surface roughness
(μm)

Ra

2 Feed rate B 0.10, 0.14, 0.18
(mm/rev)

Material removal rate
(mm3/min)

MRR

3 Depth of cut C 0.45, 0.60, 0.75
(mm)

Tool wear rate
(mg/min)

TWR

4 Coating thickness D 5, 8, 14 (μm)

5 Weight % of Cr. E 0, 1.5, 3 (wt%)

The tools, chosen for this study, are multiple coated (with a varying coating
thickness of TiN/Al2O3/TiCN/TiN), carbide inserts with an ISO designation
CNMG120408-SU.

The design of experiments used for turning is Taguchi method. This method is
effectively used in the optimization of multiple input parameters in many appli-
cations. A Taguchi coupled grey relation analysis is also carried out to optimize
the multiple response parameters. As a result of the literature survey, five input
parameters viz. cutting speed, feed rate, depth of cut, tool coating thickness and
weight percentage of chromium are selected. Three output parameters include mate-
rial removal rate, surface roughness and tool wear rate. A conventional HMT LB-17
lathe centre having 7.5 kW power is and for turning each run is performed on 30 mm
sample length under dry condition.

Table 1 shows the input parameters with their levels and response parameters.
Standard orthogonal Array L27 (3ˆ5) is selected for turning. A rough cut is carried
out to remove the rust and irregular surface.

A Japan-made Mitutoyo roughness tester (J:400 Model) is used (sampling speed-
0.25 mm/s) to measure Ra value at three different lsocations and their average is
calculated. Before and after each run, the diameter of the specimen and weight of the
carbide insert is measured using standard measuring devices. The time consumed
in each run is recorded using a stopwatch. The MRR in the form of total volume
removed perminute and TWR in the form ofweight loss perminute is calculated. The
experimental set up of input parameters and experimental outcomes corresponding
to their signal to noise ratios are shown in Table 2. The S/N ratio analysis is carried
out corresponding to all responses to analyze the experimental data. It is desired that
the machining surface should have maximum surface finishing and material removal
rate along with minimum tool wear.
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3 Results and Discussion

It is desired that the machining surface should have the maximum surface finishing
and material removal rate along with minimum tool wear. The objective of this study
is to maximize the material removal rate and minimize surface roughness and tool
wear rate.

3.1 Taguchi Analysis

So as per the terminology of Taguchi method, “larger is better” type response has
been employed for material removal rate and “lower is the better” type response has
been employed for surface roughness and tool wear rate. Themathematical equations
used for these types of responses are shown in Eqs. 1 and 2.

For larger is better (Maximize):

S

N
= −10 log

1

n

n∑

i=1

1

Y 2
i

(1)

For smaller is better (Minimize):

S

N
= −10 log

1

n

n∑

i=1

Y 2
i (2)

where Yi is the individual measured response parameters and n indicates the number
of trials replicated. The signal to noise ratio should be high for an optimal solution.

The signal to noise ratios for material removal rate, surface roughness and tool
wear rate at different levels of input parameters is calculated and plotted as shown
in Figs. 2, 3 and 4.

The influence of speed, feed, DoC, coating thickness and per cent weightage of Cr
on the material removal rate, surface roughness and tool wear rate can be explored as
per the trend of curves. From figures, it is observed that larger cutting speed and feed
results in an increase in material removal rate and surface quality, but with the loss of
tool life. It is also considered that the presence of Cr contents causes deterioration of
surface quality and reduces tool life. Also, the increase in coating thickness produces
a positive effect on the surface quality as well as tool life.

ANOVA for all output parameters is shown in Tables 3, 4 and 5, which are
indicating the significant parameters for the corresponding response.

The confirmation experiments, as per sets of best conditions obtained from
Taguchi’s analysis, are conducted for all responses individually and presented in
Table 6.
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Table 3 ANOVA table for material removal rate

Source DF Adj SS Adj MS F-value P-value

Cutting speed (m/min)* 1 105,869,681 105,869,681 7.96 0.010

Feed rate (mm/rev)* 1 151,358,077 151,358,077 11.39 0.003

Depth of cut (mm) 1 2,584,909 2,584,909 0.19 0.664

Coating thickness (μm) 1 307,592 307,592 0.02 0.881

Cr% 1 3782 3782 0.00 0.987

Error 21 279,169,750 13,293,798

Total 26 539,293,790

*Significant factors

Table 4 ANOVA table for surface roughness

Source DF Adj SS Adj MS F-value P-value

Cutting speed (m/min)* 1 0.80222 0.802222 42.20 0.000

Feed rate (mm/rev)* 1 0.79801 0.798006 41.97 0.000

Depth of cut (mm) 1 0.03556 0.035556 1.87 0.186

Coating thickness (μm) 1 0.00447 0.004471 0.24 0.633

Cr%* 1 0.26402 0.264022 13.89 0.001

Error 21 0.39924 0.019012

Total 26 2.30352

*Significant factors

Table 5 ANOVA table for tool wear rate

Source DF Adj SS Adj MS F-value P-value

Cutting speed (m/min)* 1 1.69045 1.69045 71.09 0.000

Feed rate (mm/rev)* 1 1.13014 1.13014 47.53 0.000

Depth of cut (mm) 1 0.00179 0.00179 0.08 0.787

Coating thickness (μm) 1 0.08633 0.08633 3.63 0.071

Cr%* 1 0.83920 0.83920 35.29 0.000

Error 21 0.49935 0.02378

Total 26 4.24726

*Significant factors

Table 6 Taguchi’s optimized
input parameters for MRR,
Ra and TWR

S. No. Best setting of input
parameters

Output
parameters

Optimized
values

1 A3B3C3D2E1 MRR 20792.45
mm3/min

2 A3B3C3D3E1 Ra 0.32 (μm)

3 A1B1C2D3E1 TWR 0.13953
(mg/min)
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3.2 Grey Relation Analysis

In Taguchi analysis, a different set of conditions for input parameters are obtained
for each response and it is complicated to choose the common set of input parame-
ters for optimal values of all response characteristics. Under such circumstances, the
multiple response optimizations may be the best solution. The grey relational anal-
ysis is one of the best techniques to solve these types of problems [12]. In recent 3–4
decades,this method is extensively used for solving the complex inter-relationships
among the multiple output parameters. The steps involved, normalizing the results of
experiments between 0 and 1 using Eqs. 3 and 4, deviating the sequence as per Eq. 5,
calculating the grey relation coefficient (GRC) from normalized data (Eq. 6), calcu-
lating overall grey relation grades (GRG) with the help of Eq. 7 and converting the
multi-response parameters into the optimization of single GRG [12, 25]. Normalized
experimental results corresponding to large-is-better can be obtained as

Yi j = xi j − min xi j
max xi j − min xi j

(3)

Normalized experimental results corresponding to small-is-better can be obtained
as

Yi j = max xi j − xi j
max xi j − min yi j

(4)

The normalized results can be deviated by calculating the difference between the
absolute values of maxYij and Yij. Thus the deviated sequence values (Δij) can be
obtained as

�i j = ∣∣max Yi j − Yi j
∣∣ (5)

The grey relation coefficient (ξ ij) can be calculated as follows

ξi j = min�i j − � max�i j

�i j − � max�i j
(6)

where Ѱ is the distinguished coefficient and it varies as 0 ≤ Ѱ ≤ 1. It is usually kept
as 0.5.

Grey relation grades (γ) can be obtained as:

γ = 1

n

∑
ξi j (7)

where n represents number of output parameters and ξ represents GRC. The analysis
is performed; results are calculated and represented in Table 7.
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Table 8 Analysis of variance for grey relation grades

Source DF Adj SS Adj MS F-value P-value % Contribution

Cutting speed (m/min)* 1 0.010900 0.010900 8.43 0.008 10.96

Feed rate (mm/rev)* 1 0.016976 0.016976 13.13 0.002 17.07

Depth of cut (mm) 1 0.002212 0.002212 1.71 0.205 2.22

Coating thickness (μm) 1 0.003670 0.003670 2.84 0.107 3.69

Wt% of Chromium* 1 0.038544 0.038544 29.82 0.000 38.76

Error 21 0.027147 0.001293 27.30

Total 26 0.099449

S = 0.0359546, R-sq = 72.70%, R-sq(adj) = 66.20%
*Significant parameter

Now, from the orthogonal design of experiments, the influence of input parameters
on grey relation grades GRG can be obtained with an objective of large -is-better
type response. The ANOVA analysis for grey relation grades is shown in Table 8. It
is also noted that the significant parameters for maximized GRG are cutting speed,
feed rate and weightage of chromium contents.

The significant level for each input parameter can be estimated to obtain the
optimal value of GRG from Table 9. Also as per delta value, all input parameters
may be ranked. The GRG graph for the level of input parameters for turning is shown
in Fig. 5. The main objective of this analysis is to obtain a large value of GRG, which
means better are, the response parameters.

ANOVA Table illustrates that Feed rate; cutting speed and weight percentage of
Cr contents are significant parameters which are influencing the material removal
rate, tool wear rate and surface quality of the composites. Also, Cr.% contributes
most significantly in the optimization of response characteristics, followed by feed
rate and cutting speed, however, least contribution of the depth of cut and coating
thickness is obtained.

Table 9 Response table for grey relation grades

Level Cuttin speed
(m/min)

Feed rate
(mm/rev)

Depth of cut
(mm)

Coating thickness
(μm)

Cr.%

1 0.5629 0.5561109 0.5904883 0.5742146 0.6358794*

2 0.584875 0.5861959 0.6010348* 0.5833993 0.5806285

3 0.612091* 0.6175311* 0.5683148 0.602224* 0.54333

Delta 0.0492 0.0614202 0.03272 0.0280094 0.0925493

Rank 3 2 4 5 1

*Significant Level
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Fig. 5 Main effects plot for grey relation grades

3.3 Non Linear Regression Model for Grey Relation
Coefficient

The non-linear regression equation (Eq. 8) indicates that how grey relation grade
depends upon the input parameters

GRD = 0.4679 + 0.000820*A + 0.768*B

− 0.0739*C + 0.00312*D − 0.03085*E (8)

The residual plot of GRG received throughout regression evaluation is presented
in Fig. 6.

The normal probability plot is having a straight line with the residuals centered
nearer to the straight line. In residual versus fits plot, the residuals appear to be
randomly scattered around zero and most of the elements are based on the common
outfitted value and the residuals are minimal. The histogram of the residuals suggests
the distribution of the residuals for all observations that are skewed towards the left
and the bell-shaped curve is formed. Residuals versus order graph plot may also be
notably precious in a designed experiment wherein the runsshould not randomize.
The residuals in the plot are scattered around the centre line.

4 Confirmation Experiments

The confirmation experiments are performed for optimizing the response parameters
by using the optimized parameters in multiple objective optimizations. Base upon
optimal values of response parameters, the predicted value of grey relation grade
(γPredicted) is estimated as per Eq. 9.
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γPr edicted = γmean +
q∑

i=1

(γi − γmean) (9)

where

γmean = Mean value of grey relation grades (γmean = 0.58661; Table 7).
γi = Mean of grey relation grades at the optimal level.
q = Number of significant input parameters. (q = 3; Table 8).

γmean = Mean value of grey relation grades (γmean = 0.58661; Table 7).
γi = Mean of grey relation grades at the optimal level.
q = Number of significant input parameters. (q = 3; Table 8).

It is also observed from Table 10 that the experimental value of grey relation
grade differ by 2.52% only from the predicted value, means experimental results are
validated.

5 Conclusions and Future Perspective

Taguchi analysis followed by a grey relation grade obtained from Taguchi coupled
grey relation analysis has been used for the turning of novel Al-10SiC-(0-3)Cr
composites with multiple objective optimization of response parameters including
material removal rate, surface roughness and tool wear rate. As per results obtained,
the following conclusion can be drawn:
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Table 10 Results of responses using initial and optimal parameters

Initial input parameters Optimum input parameters

Predicted Experimental

Setting level V3F3A1T2C1 V3F3A2T3C1 V3F3A2T3C1

Surface roughness (μm) 0.34 0.39

Material removal rate
(mm3/min)

8743.62 15,674.32

Tool wear rate (mg/min) 0.914 0.917

Grey relation grade 0.65905 0.69228 0.71021

Improvement in GRG = 0.05116

1. According to ANOVA test the cutting speed, feed rate and chromium contents
aremost significant parameters for effecting the surface roughness and toolwear.
Speed and feed rate has significant affect onmaterial removal rate, whereas other
input parameters are insignificant. Best set of conditions for material removal
rate, surface roughness and tool wear rate are A3B3C3D2E1, A3B3C3D3E1 and
A1B1C2D3E1 respectively.

2. The Taguchi coupled grey relation analysis suggests a single optimal set of input
parameters as A3B3C2D3E1 i.e. cutting speed 120 m/min, feed rate 0.18, depth
of cut of 0.60, coating thickness on carbide insert 14 μmwith 0% weightage of
chromium contents for all responses.

3. The result of confirmation test indicates that increase in grey relation grade
from the set of initial cutting condition to optimal conditions is 0.05116, means
the multiple responses of AMCs turning such as material removal rate, surface
roughness and tool wear rate is improved together by using grey relation anal-
ysis. Also the predicted grey relation grade differs from experimental gray
relation grade by 2.52% only and thus the experimental results are validated.

Future Scope

• Another fabrication route like powder metallurgy can be used to develop same
composite.

• Composite of reinforcing phase may be change to develop different composites.
• Nano size particles may be used instead of micro size particles.

Acknowledgements The authors would like to thank IKG Punjab Technical University,
Kapurthala, Punjab, India for providing an opportunity to do this research work.

Conflict of Interest
The authors declare no conflict of interest.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial,
or not-for-profit sectors.



Influence of Reinforcement Contents and Turning Parameters … 49

Annexure

Control Log of Experiments

Cutting seed
(m/min)

Feed rate (mm/rev) Depth of cut (mm) Coating thickness
(μm)

Wt% of Cr

1 1 1 1 1

1 1 2 2 2

1 1 3 3 3

1 2 1 2 2

1 2 2 3 3

1 2 3 1 1

1 3 1 3 3

1 3 2 1 1

1 3 3 2 2

2 1 1 2 3

2 1 2 3 1

2 1 3 1 2

2 2 1 3 1

2 2 2 1 2

2 2 3 2 3

2 3 1 1 2

2 3 2 2 3

2 3 3 3 1

3 1 1 3 2

3 1 2 1 3

3 1 3 2 1

3 2 1 1 3

3 2 2 2 1

3 2 3 3 2

3 3 1 2 1

3 3 2 3 2

3 3 3 1 3
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