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Preface

The book has selected some of my academic papers in English, which fall into four parts:
information technique, aeronautical engineering, strategy issue of development and PhD thesis. The
Chinese Section has been published separately by Zhejiang University Press.

Over the past six decades, I studied theoretical physics (undergraduate) , mechanical vibration,
information technique, aeronautical system engineering and strategy issue of development
successively. My lifelong academic career separates into the following four phases.

In the 1960s and 1970s, I dedicated myself to vibration, impact and mechanical failure research
upon graduation and delivered a few papers. What could be found at the moment were only some
summaries and work reports with ordinary quality. A couple of papers are taken in the aeronautical
engineering part of the book as a record of the work completed in that period.

In the 1980s, I studied at Cambridge University mainly focusing on the information technique,
such as signal processing, digital circuit and advanced algorithm, and published a number of papers
at home and abroad. Though part of them was lost, dozens of papers are incorporated in the
information technique part of the book.

In the 1990s, 1 was engaged in civil aircraft system engineering, airborne system engineering
and avionics system. A portion of papers written during this period of time are added in the
aeronautical engineering part of the book.

In the past decade, 1 was involved in strategy issue of development and presided over the
implementation of national projects: “Large Aircraft” and “ Aeroengine & Gas Turbine”. Apart from
that, I also headed the research on construction of a conservation-minded society, building an emerging
industry system and promotion of R&D globalization. Considering the length of these project
reports, only a few excerpts are included in the strategy issue of development part of the book.

Owing to my limited abilities, mistakes would inevitably exist in the papers and your corrections
and suggestions are mostly welcome and appreciated.

In the end, I'd like to extend my gratitude to editors in Zhejiang University Press for their hard
work. They've devoted considerable time and energy to resetting or retyping those papers that lack
the electronic versions, especially the figures and equations that call for recharting. And hereby 1
also express my deep appreciation to all those who participate in the publication of the book for their

sweat and effort.

ZHANG Yanzhong
Dec. 2018
West Lake. Hangzhou



Introduction

Mr. ZHANG Yanzhong was born in the County of Sanyuan, Shaanxi Province of China in
1940. It is a cultural ancient county with more than 1,500 years’ history. A small river running from
west to east divides the county into northern and southern parts, which are connected by an ancient
stone bridge named Loong Bridge (the Bridge of Dragon). Born in a doctors’ family at the northern
town near the bridge, ZHANG regards three bridges as the landmarks of his life. He was born near
the Loong Bridge in the Sanyuan County, studied in Cambridge of England, and has been dedicated to
Chinas’ commercial aircraft assembly line near the Zhu Bridge (the Bridge of Congratulation) in
Pudong, Shanghai. Both his grandfather and father were famous doctors. ZHANG received very
good family education since childhood. He won the first place among thousands of primary school
graduates in the examination of the whole county and then went to secondary school. Later with
distinction, he was admitted to the Department of Physics, Northwest University.

Mr. ZHANG graduated from university and entered China’s aviation industry in 1962, engaging
in vibration, shock and fault diagnosis research. He was in charge of developing the first set of large
acceleration calibration system of China, which solved the calibration problem of accelerometers.
During the 1970s, he took the lead in the research of aircraft fault diagnosis in China, and removed
the vibration fault from dozens of imported aircraft.

Mr. ZHANG was admitted to University of Cambridge in 1980, then, entered Trinity College
of Cambridge as a postgraduate the following year. At that time, the Master of Trinity College was
the Nobel Prize winner, Sir A. L. Hodgkin, and ZHANG's tutor was Dr. M. D. Cowley. Mr.
ZHANG studied in the Department of Engineering, Information Engineering Division, under the
guidance of his supervisor, Prof. P.J. W. Rayner. He devoted himself to the research on digital
signal processing, digital circuits and digital systems. Mr. ZHANG has been a diligent scholar. In
the laboratory, library of Cambridge and Cambridge Riverside left his footprints almost everywhere.
His papers on information technique were published on Cambridge journals and other renowned
international periodicals. In 1984, he completed his PhD thesis titled “Digital Signal Processing
System with Finite State Machine Realization”. After passing the oral examination, he received his
PhD degree and returned to China the same year. Cambridge, where he lived longer than anywhere
else except China, left him an unforgettable memory. In 1989, he met with Sir M. F. Atiyah,
famous mathematician, the new Master of Trinity College, while attending an international
conference in Britain. In 2009, on the 800th anniversary of Cambridge University, Prof. ZHANG
and his wife were invited back to their alma mater to attend the university celebration.

In 1985, Dr. ZHANG entered the headquarters of China Aviation Industries, and took charge

of aeronautical engineering, including development of commercial aircraft, helicopters and airborne
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equipment systems, as well as the fundamental research of aviation. He established the Aviation
Science Foundation, the Aviation Scholarship, and proposed to build the Aviation Key Laboratory to
strengthen the crucial technology research. Dr. ZHANG led the development of various aircraft,
helicopters and airborne systems, and most importantly, directed the implementation of two national
projects of “Large Aircraft” and “Aeroengine &. Gasturbine”. Also he hosted crucial work of C919
and other large aircraft, including the argumentation of the research on project approval, technical
reviews in different stages. and technical reviews for the first flight, to ensure their first flight
successfully. His footprints have been scattered over a hundred of institutions in the aviation
industry of China, and meanwhile, hundreds of papers on aviation have been published home and
abroad.

Prof. ZHANG was elected as an academician of the Chinese Academy of Engineering (CAE) in
2001. Later the focus of his research has moved to strategy issues of development, such as the
construction of a conservation-minded society, the promotion of R&D globalization, the establish-
ment of aviation power, etc.

Having been devoted to China’s aviation industry for nearly six decades, Academician ZHANG
Yanzhong with his academic career and works, to a large extent, is a reflection of the main course of

China’s aviation industry since its establishment for the past seven decades (1951—2021).
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Fast DFT Algorithm with [N—1]/2
Multiplications

Zhang Yanzhong

Ministry of Aero-Space Industry

A fast algorithm is proposed for recursively computing the DFTs of prime length. Only
(N—1)/2 real multiplications are required to compute all N frequency components in terms of
permuting the input data. The multiplication in recursive computation is replaced by shifting.
Complexity of the algorithm is studied. A factor 7 is introduced and presented. When the ratio of
multiplier’s period T, to adder’s period T, is greater than the factor y (i.e. T,,/T,>>»), the new
algorithm is faster than FFT. The necessary condition and error of the algorithm are studied. The
signal-to-noise ratio for different length N is presented. A high accuracy scheme is proposed for

improving the SNR about 20~30 dB.

1. Introduction

Discrete Fourier Transformation (DFT) is a central operation in digital signal processing. It can
transform a signal from time domain to frequency domain and vice versa. DFT is widely used to
analyse and estimate spectrum of signals, to design and implement finite impulse response digital
filters, and to compute convolution and correction functions, etc.

The direct evaluation of an N-point DFT needs about 4 N? real multiplications and additions.
Thus. for reasonably large value of N, direct evaluation of DFTs requires an inordinate amount of
computations. In 1965, Cooley and Tukey"" proposed Fast Fourier Transformation (FFT) algorithm
which requires about 2Nlog, N real multiplications for computing the DFT of length N = 2M,
Recently, the Prime Factor Algorithm (PFA), Winograd Fourier Transform Algorithm (WEFTA),
etc were proposed. These algorithms need about 0(N) multiplications. On the other hand, FFT
and the other fast DFT algorithm have to use a large number of Fourier coefficients in the systems.
This increases the size of memory and the complexity of hardware.

The new algorithm with only single coefficient and (N—1)/2 real multiplications is introduced
in the next Section. Its complexity and accuracy are discussed and a high accuracy scheme is

presented in subsequent Sections.

% Published in Chinese Journal of Aeronautics, Vol. 3,No. 2,May 1990:131-139.
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2. Principle of Fast Recursive DFTs

Consider a DFT of length N

N—

1
X)) = 2 x(W¥ (@YD)
a=0
k=0,1,++,(N—1D)
WN:eifzw/N

If the transform length N = P prime, then the DFT may be computed by the following
[5-6]

recursive form
Vi) =WZhy, (n—1) +u, (n) (2)
v (0) =u, (0)
k=1,2,+-,(P—1) n=0,1,++,(P—1)
where
w,(P—1—n)=xnk 'D)p) (3)
is a permutation of input sequences;
D is any one of the integers (1<CD<CP);
k' is an inverse element of £ in GF(P);
k 'k=1 mod P.
The DFT output is as follows:

P—1
X)) = Yz
n=>0
X(k) = y,(P—1)
]3:172’°"’(P*1) (4)

The recursive Equation (2) may be viewed as a first order IIR digital filter with a complex
coefficient. Its z-transform function is as follows:

1

The above equation can be written as the following real form:

_1—cos@nD/P)z ' —jsin(2xD/P)z !
1—2cos(2xD/P)z ' +2*

The above equation may be considered as a second order IIR digital filter with real coefficients as

H(z)

(6)

shown in Fig. 1.

In order to compute a frequency output, the section within the dotted line in Fig. 1 has to do
(P—1) real multiplications with the constant 2cos(2xD/P), and the section beyond the dotted line
only needs to do two real multiplications for computing the real frequency component Xy (k) and
imaginary frequency component X; (k). Since the recursive coefficient 2cos(2xD/P) is independent
of the frequency index %k, only one coefficient can be used to compute all P frequency components in
terms of permuting the input sequences.

Because the figure D in the recursive coefficient 2cos(2xD/P) can be any one of the integer set [ 1,
2.+, (P—1)],the proper choice of D may make the coefficient cos(2xD/P) have the approximate form of
+2 "5 then the multiplication with the constant 2cos (2zxD/P) in the recursive loop can be replaced by

4
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shifting (m—1) steps. Shift is much faster than conventional multiplication. This algorithm may possess a
very high speed. For example, for a 31-point DFT, if D=9 then cos(2rD/31)=—0. 250653~~—2" *; one
shift can be used to replace the multiplication with the constant 2cos(2xD/31) in the recursive loop. Some

coefficients with the form £2 " are shown in Table 1.

Table 1 Coefficients and errors of FRDFTs

P D cos(2xD/P) + 27 error+¢

3 1 —0. 500000 —27! 0.0000X 27!
5 1 0. 309017 2° 0.9443X2"

7 2 —0. 222521 —27¢ 0.8793 X277
11 3 —0. 142315 —27! —0.5541X2°
13 3 0.120537 27 —0.5713Xx2°7
17 5 —0.237663 —27¢ —0.7572X27°
19 4 0. 245485 2°¢ —0.5779 X2 7
23 6 —0.068242 —27! —0.7350Xx277
29 7 0.054139 27! —0.5351Xx2°°
31 9 —0.250653 —27¢ —0.6682x2""
37 10 —0.127018 —27 —0.5166x2" ¢
41 10 0. 038303 27° 0.9027 X277
43 9 0.252933 272 0.7509 X278
47 12 —0.033415 —27° —0.5542X2°¢
53 13 0.029633 277 —0.8277 X2
59 15 —0.026621 —27° 0.5926 X2 7
61 14 0.128398 27! 0.8700x27%
67 14 0. 255043 272 0.6455X277
71 17 0.066323 27! 0.9787 X278
73 19 —0.064508 -2 —0.5142Xx2 ¢
79 19 0. 059615 2! —0.7385x2°8
83 21 —0.018924 —27° —0.8446X27°
89 24 —0.123232 —27 0.9054 X277
97 24 0.016193 27" 0.5817 X2
101 25 0.015552 276 —0.5996x2 "

3. Complexity of Algorithm

As shown in Fig. 1.to compute a pair of frequency components X; (k) and X,; (k). (P—1)

5
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recursive operations within the dotted line are needed, i.e. . (2P—3) additions and (P—1) (m—1)
shifts are required. Because the multiplication with cos (2xD/P) beyond the dotted line for
computing Xy (k) can also be replaced by shifting m steps. only one multiplication with sin(2xD/P)
is required to compute an X;(k). An extra real addition is needed to compute the Xy (k). To sum
up, (2P—2) real additions and one real multiplication are required for computing a pair of frequency
components X; (k) and X; (k). For a real input, the DFT output has the following conjugate

relationshipt™ .

X(P—k)=X" (/e>,/e=1,2,---,(P2_1) N
N — ; X (k
u n): ;@ N | -@ (k)
E : ; o 2mD
: yap, L] >
; ZCOS(L’; ) :
i + : X,(k)
| O ! x
P = ~sin (222,
: i el
e <]
i 1l ’

Fig. 1 Second recursive form of DFTs

So only half of the frequency components are needed to calculate. The total real addition
number A and multiplication number M for computing all P frequency components (including (P—1) real
additions for computing X(0) in Eq. (4))are

A=QP—2)(P—1)/2+(P+1)=P(P—1)
M=(P—1)/2

For complex input, as shown in Fig. 2, two parallel filters are architectured. Only 2(P—1) real

additions are increased for combining the two filter operations. The total amounts of real calculations for

the new algorithm are as follows:

A=P(P—1)+2(P—1)=P*+P—2 (8)
_P—1
M—i2 D)
(1) H(z)
u.(n) H(2)

a=—cos(2kwDIP)
h==sin(2kw D/P)
II(z)=1/(1+2az"+a™)

Fig.2 Scheme of complex FRDFT
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The real addition number Ay and real multiplication number M; for radix 2 FFT algorithm® are
Ar=3Nlog, N—2N+2 10)

M, =2Nlog, N—4N+4 an

It is obvious that the multiplication number of FRDFT is less than that of FFT, but the addition
number of FRDFT is more than that of FFT for long transform length. The actual speed of the new
algorithm depends on the multiplier’s and adder’s period. In general, if the word length is B bits,
then the multiplier’s period T,, is B times of the adder’s period T,. Shifting is the fastest one among
three operations. Ignore the shifting time, compare the computing time between FFT and FRDFT

algorithms,and a criterion factor 7 is introduced by
P?+3P—4—3log, P

7 2Plog, P—9(P—1)/2 (12
If the period ratio T, /T, is greater than the criterion factor 7, i.e.
T,
T>ﬁ (13)

a

then the new algorithm FRDFT is faster than FFT. Some criterion factor 5 are shown in Table 2.

Table 2 Criterion factors n

P 3 5 7 11 13 17 19 23 29 31 37 43

i 0.00 0.22 0.57 1.15 1. 41 1.90 2.13 2.58 3.22 3.42 4.02 4.59

P 47 53 59 61 67 71 73 79 83 89 97 101

i 4.96 5.50 6.03 6.21 6.72 7.06 7.22 7.72 8. 04 8.53 9.16 9.49

It is shown in Table 2 that the FRDFT algorithm is efficient for short transform length.

4. Accuracy and S/M Ratio of Algorithm

Because #=27" is used to replace the coefficient cos(2xD/P) in the recursive operations, some
phase and amplitude errors are introduced in the DFT output. If the amplitude error of the

coefficient is

d=cos(2xD/P)—2"" (14)
Let ¢, and ¢ be ideal phase and actual phase respectively; then
27D 2
500:%:D60v50% (15)
@=rcos (2 ”7)=¢0+A50 (16)

where Ag is phase difference.

From the above two equations, it follows that

0= rcos(g,) —cos(g, T Ag) ~sing, A 17
The phase difference is
_ 0
Bp= singyg (18

The phase difference between two adjacent frequency components is
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V— (19)
sing,
The maximum phase difference for the Pth frequency component is
Dsing,

In order to satisfy the prime condition of the transform length, the maximum phase difference
must be
PAG, <6, 2D
From Eqgs. (15), (20) and (21), the necessary condition for the FRDFT algorithm of prime
length is as follows:
2nDsing, _ 2xD
pr Y p

To evaluate the amplitude accuracy of FRDFT algorithm, the recursive section within the

0K (22)

dotted line in Fig. 1 can be expressed as a second order all-pole IIR filter as follows:

wn)=kwn—1) —wn—2)+tu,(n) (23)
k=2 "V =k + Ak
k, =2cos<2;D> JAR=20

Here,only the amplitude error caused by the coefficient error is considered. Let
wn) =w, (n) +An)
wn—1)=w,(n—1)+An—1)

wn—2)=w,(n—2)+A(n—2) (24)
where A(n) is amplitude error signal;w, (n) is determined by the following {ree-error equation:
w, () =kow, (n—1) —w, (n—2) +u, (n) (25)

Replace Eqgs. (24) and (25) into Eq. (23), and neglect the second order obtained by miniterm

Ak ¥ A(n—1), and a linear difference equation for determining the amplitude error is obtained by

A=k, An—1) —An—2) + Akw, (n—1) (26)
The z2-transform of the above equation is
Al2)(1—Fkyz ' 27 =Akw, (2)z™! 27)
Alz) Akz !
wo(2) 1—kyz 14272
ko =2cosg, (28)

This is a 2nd order IIR filter with 2 poles and single zero. The RMS output of this filter under
a unity input is the RMS error of FRDFT amplitudes. In order to estimate the noise value, the

impulse response of the above error equation is presented as follows:

sin(ng;,)
h(n) = Ak 20 (29)
singy
Assume the noise signal is uncorrected. The output power of the error equation for unity input is
2

e L A
- = El | hi(n) |* (30)

n=

c

From the above two equations, it follows that

PN &, PAR
—~= 3 Ising, "=

22
w sin” @y =

2sin” ¢, (S
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Considering Ak=28, the S/N ratio is obtained by

S/Ah=101ogm<§;gg?><d3)

_ 2xD
®o 2

For example, for 31-point FRDFT,when D=9, the coefficient error $=0. 6682 X2 ', The noise

caused by the coefficient error is 45 dB. The S/N ratio of some coefficients are shown in Table 3.

(32)

Table 3 S/N ratio of some coefficients

P D +2" S/N@dB)
3 1 —27! co
5 1 27t 14
7 2 27t 19
11 3 —27 22
13 3 —27° 32
17 5 273 17
19 4 —27 30
23 6 27 28
29 7 —27! 23
31 9 27t 45
37 10 —27 35
41 10 27° 24
43 9 27t 31
47 12 —27° 32
53 13 —27° 29
59 15 —27° 26
61 14 273 28
67 14 27t 24
71 17 27! 27
73 19 —27! 32
79 19 27! 29
83 21 -2 27
89 24 —27° 32
97 24 278 42
101 25 278 59
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5. High Accuracy Implementation

Table 3 shows that the accuracy and S/N ratio of many coefficients are not very high. For
requirement of high precision application, the accuracy of coefficients should be improved. One of
the improved schemes is to use a sum of two binary integers to approximate the coefficient
cos (2xD/P), i.e. let

cos(2rD/P)==+2 "+2"" (33)

Because there are a lot of m and n combinations, the accuracy of approximate coefficients can be

greatly improved. For example, for a 43-point DFT, let D=10; then

2D
43

cos( )=2"7—27°—0.9940 X 27"

Its S/N ratio is 89 dB.

The multiplication of the coefficient(£2 " £ 2 ") with data can be implemented in terms of
two shift registers and an adder as shown in Fig. 3. One of registers shifts (#—1) steps; another
shifts (m—1) steps; the results are added. The recursive multiplication in this scheme is replaced by
two shifts and an addition. Its speed is a little lower than that of the simple scheme. However, its
accuracy is very high; the S/N ratio increases about 20~30 dB. These high accuracy coefficients and

their S/N ratios are shown in Table 4.

—  (n-Dshift [

Output

Tnput
O Adder >0

—|  (m-D)shilt —

Fig. 3 High accuracy scheme

Table 4 High accuracy coefficients and SNR

P D +2 427" errors ¢ SNR(dB)
3 1 —27! 0 oo
5 1 274271 —0.8916x2"°¢ 39
7 2 2714271 —0.7732Xx27° 44
11 3 —2 =2 —0.8652Xx2 " 42
13 3 —273—=2"8 —0.5704 X2 51
17 5 273 —27° —0.7586x27" 41
19 4 —27t—278 —0.6229x27" 48

(To be continued)

10
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Table 4
P D +2 k2 errors ¢ SNR(dB)
23 6 27t—278 —0.9401x27° 38
29 7 —2 =27 —0.6995x2 " 51
31 9 27t—271 —0.6728x2" " 58
37 10 —27% =277 —0.5300x2"" 65
41 10 —27t—=27°" 0.6589 X2 " 45
43 9 273 —=27°F —0.9940Xx 2" 89
47 12 273 =277 —0.8677 X2 " 54
53 13 —27%—27° 0.6891x2 ! 49
59 15 278 =27 0.7125Xx2° " 61
61 14 —273—=278 —0.5201x2°" 45
67 14 275 =277 —0.6650x2" "7 84
71 17 271427 —0.8309x2 " 64
73 19 27t—27° —0.9604x2 " 64
79 19 —275—278 —0.7187x2 " 47
83 21 276—278 0.6217Xx2° " 42
89 24 —27 54277 0.5764 X2 " 61
97 24 2 0421 0.6536x2 " 59
101 25 2 b—21 —0.7965X 2! 75

6. Conclusion

A Fast Recursive DFT algorithm has been proposed in this paper. The advantages of FRDFT
are that it has a very simple structure and needs only (N—1)/2 real multiplications for computing all
N frequency components. The study of complexity shows that if the ratio of the multiplier’s period
T, to the adder’s period T, is greater than the criterion factor 7( T,,,/Tu>17) , FRDFT is faster than
FFT. The new algorithm is efficient for a short transform length. A long DFT can be factored into
two or more short transforms with relative prime length. These short transforms can be calculated
by using FRDFT algorithm. The combination operations of those short transforms need no extra
twiddle factor multiplications. The necessary condition and S/N ratio of the algorithm are

presented. A high accuracy scheme is proposed. It can increase 20~30 dB in SNR.
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Fast DFT Algorithm Using Subgroup
Convolutions

Zhang Yan-zhong and Rayner, P.J. W.

Department of Engineering, University of Cambridge, U. K.

A method is presented for converting a DFT of length (" —1) into several subgroup circular
convolutions of length M or divisor M. This decomposition leads to efficient methods for computing
the DFT.

1. Introduction

The computation of the Discrete Fourier Transform (DFT) of N points

N—1

2(K) = Ya(n) w* K =0,1,,N—1 (1. D

n=

is an important operation in digital signal processing. In 1965 Cooley and Tukey'!! proposed the Fast
Fourier Transform (FFT) when N(=2") is highly composite. In 1968 Rader™® showed that the
DFT. when its length N = p is a prime, can be represented as a circular convolution of length
(p—1) by rearranging the data. Later Rader® and Winograd™ showed that DFT’s of length N— »",
where p is prime, can be converted into one convolution of length p* ' (p—1), two convolutions of length

M=1 convolutions of

pM 1 (p—1), four convolutions of length p™*(p—1),++, terminating with p
length (p—1).

The computation of small N convolutions with minimum number of multiplications has been
reported by Winograd™. Agarwal and Cooley'® showed that a one-dimensional circular convolution,
whose length is the product of relatively prime integers. can be converted in a multi-dimensional
circular convolution. The long sequence DFT may be computed by the Winograd nested algorithm'™
or prime factor algorithm" that requires less multiplications than FFT algorithm.

these algorithms require the computation of different length circular convolutions. The different
circular convolution lengths lead to a rather complex program structure.

In this paper it is shown that DFT’s of length (" —1) may be converted in several subgroup

circular convolutions of length M or divisor of M. Most of these convolutions for the DFT have the

same length which can give considerable program simplification.
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The cyclic subgroup properties of Ring Z(p™—1) are introduced in section 2. In section 3, it is

shown that any DFT of length (»—1) may be computed in terms of subgroup circular convolutions.

2. Cyclic Subgroup Properties of Ring Z(p™ —1)

It is well known that all the non zero elements of GF(p") may be separated into a number of
subsets of length M or divisor of M. For example. the non zero elements of GF (2') may be

separated into the following subsets.

a a a a
11 7 14 13
a a a a
6 12 9 3
a a a a
5 10
a a

where a is a primitive element of GF(2"),q" =1.
The above subsets may be obtained by computing the power of a modulo 15. The powers of a

are the elements of Ring Z(15).

2.1 When N=p"—1 is a prime

The non zero elements of Z(N) may be represented as m subsets of length M as follows:

po pl [)2 pM—l
gp’ gp' gpt e gp™! mod N (2.1
gm*lp() g,m*lpl g_m*lp'l gm*lpM*l
where
m=@<;ﬁ‘”—1>/1\4=NA;1 (2.2)

()-Euler function g is a unity root of order m, where m is the least integer such that g =1 mod N.
Since N=p"—1 is a prime, Z(N) is a prime, Z(N) is a field, and there exists a primitive element 8
such that
Y =p""=1 mod N (2.3
Let
g=p"N /m=p" 2. D
then g is a unity root of order m on Z(N).
For example, Ring Z; ,
N=2"—1=31, m=Q(31)/5=6
The unity root of order 6 is g =26. From eqn. (2. 1), the non-zero elements of Z; may be
separated into 6 subsets of length 5 as follows
1 2 4 8 16
26 21 11 22 13
25 19 7 14 28
50 29 27 23 15 M4
5 10 20 9 18

6 12 24 17 3
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2.2 N=p"—1 is not a prime

There are @ (N) elements that are prime to N in Z(N). These @ (N) elements may be

represented as m; Subsets of length M as follows:

P’ p' P’ pM
gp’ gp' gp’ gpM! mod N (2.5)
gml*lp() g_ml*lpl g,ml*lpz g_ml*lpf\/lfl

where m;, =0 (N)/M, g is a unity root of order m,.

The remaining N—Q(N) elements that are not prime to N may be represented as m, subsets.

gip’ @bt og@pt e giph
g0 b &Pt v gpt P mod N (2.6)
u, P &u, P &, Pt Gy P

where

d; is equal to M or divisor of M;

g, is the factor of N or the product of the factors;

m= m, + m, is the total number of subsets and equal to the total number of irreducible
polynomials in GF(p"). For example,

N=2'—1=15
O15)=03) OB)=8 m; =0O(15)/4=2

117=1 mod 15 is a unity root of order 2, from eqn. (2.5), the 8 elements that are prime to 15 may

be separated into 2 subsets of length 4 as follows.

1 2 4 8
mod 15
11 7 14 13
From eqn. (2.6) the remaining 6 elements may be divided into 2 subsets of length 4 and 2
respectively.
3 6 12
mod 15
5 10

3. DFT of Length N=(p"—1), with N Prime, Using Subgroup Convolution

From eqn. (1.1) the DFT of length N=p»"—1 may be written as follows
N—1
x(0)= > x(n)
n=0

() =x(10)+2(k) k=1,2,,N—1 (3.1

where

N-1

(W)= r(mw”  w=e 2N (3.2)

n=1

When N=p"—1 is prime eqn. (3. 2) may be converted into circular convolutions.
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3.1 N=p"—1is prime, i.e., N is a prime Mersenne number

For example, N=3,7.31,127,8191, etc.

From eqn. (2. 1), n and k£ in eqn. (3. 2) may be written as:

n=0,1,,(m—1)

n;=0,1,,(M—1)

ki=0.,1,,(m—1)

ky=0,1,,(M—1)

where m=¢(n)/M g is a unity root of order m., Using eqn. (3. 3). eqn. (3. 2) may be expressed

nl 4 n2

n:(m,ng):g P
(3.3)
k:(kl 9k2>:gk1p“

as follows

m—1 M—1

Ty k) = D0 D 2l om )@ (3.4)

ny =0y =0
where k&, =0,1,+,(m—1); k,=0,1,+,(M—1). eqn. (3. 4) may be considered as a 2-D circular
convolutions of length M. For example.

N=2—1=7 is prime

M=¢(7)/3=2 M=3
Since 6°=1 mod 7, 6 is a unity root of order 2, From eqn. (2. 1) the two subsets are as follows

1 2 4 6 5 3

Rearranging the order in accordance with the above subsets eqn. (3. 2), may be written matrix

from. as;:
(1) w' W w W W W (1)
;( 2) W w w w w W x(2)
x(4) N w' w' W W wt W IREICY
6| | @ W w w w'| |26
2(5) w W w W w w x(3)
x(3) w  w W w' w W x(3)

where w=e /7,
There above may be computed in terms of the circular convolutions.
The regular structure of the decomposition can lead to appreciable advantages in terms of

programming complexity and computation speed for large N.

3.2 Reordering the rows and columns

The order may be rearranged from the following equation
gp'ag'pgpt g pt (3.5)
where {7} is a permutation of 0,1,2,++,(m—1) .
If m=¢(p"—1)/M can be factored into several prime factors, say,
M=, * My st s (3.6)

then the permutation {i} may be determined by the Chinese Remainder Theorem.
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Step 1
Determine the permutation {i}.
Let j=0,1,2,+-,Gn—1) and
(Gisjosesj)=( mod m,., j mod my.+*+, j mod m,) (3.7)
then, the permutation {i} may be obtained from lexicographic ordering of (j,.j,, . j,) by the

Chinese Remainder Theorem(3)
i = > NM, (3.8)
k=1

where MkZA%(Nk,Mk)Zl mod m, k=1.,2,,s
k

Step 2
And a unity root g of order m, as in eqn. (2. 4) the generating element of the subsets is
as follows
g’ iis a permutation of (0,1,+.m—1) (3.9
Step 3

Determine the order of rows and columns in terms of eqn. (3.5). For example,
N=2"—1=31 is prime
7'n:¢(31)/5:6:3><2,m1:3,)712:2

Step 1

Determine permutation {7}.

Let j=0,1,2,3.4,5. From eqn. (3.7),

(j1+72)=00,0),(1.,1),(2,0).,(0,1),(1,0).(2,1)

The permutation {i} may be obtained from the lexicographic order of (j,,j,) by the Chinese

Remainder Theorem as follows:
{1)=10,3,4,1,2,5}

Step 2

Find a unity root of order 6.

Since 3 is a primitive root of GF(31), say 3* =1 mod 31, so 26=23" mod 31 is a unity root of
order 6.

26°=1 mod 31
From eqn. (3.9), the generating elements of subsets are as follows:
{g}=12.30,5,26,25.6}

Step 3

Compute the orders of rows and columns. From eqn. (3.5), the orders of the rows and columns
of the matrix are as follows:

71,2,4,8,]6,30,29,27,23,15,5,10,20,9,18,
n726,21,11,22,13,25,19,7,14,28,6,12,24,17,3

Then, the matrix may be written as follows:
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A B C D E F

B A D C F E

C D E F A B

w=

D C F E B A

E F A B C D

F E B A D C

where

u)l w2 w1 uys uylﬁ uvso w29 T/UZ7 uyzs wls
wZ w/l wS le 'Z,U] w29 ’LU27 wZS w]5 .LUS()
A — wl ws u}lﬁ w wZ B — w27 wZ'ﬁ 15 w%() wz‘)
wg le u’l w w/l w23 15 ZUSU w29 27
w] 6 “LUI wz u}-t u)g wl 5 wSO w25) u)27 wlo’
wS w]O ZUZO w9 wlg wZG 21 wl] w_Z ’Z,Ulj
10 wZO wr) u'lg wﬁ le u'll 22 wl'ﬁ UJZG
(:: uyZO w9 wlS w8 u)lo D: 11 wZZ uj13 wZG w21
wq 7,U18 w5 10 wZO w22 wlS wZG u}?l wll
Ujm w‘3 w 0 u}zo wg ule w26 wZI wll wZZ
w2‘3 19 w7 wl'l u'ZS wﬁ wlZ wZ’l wl7 w%
wl9 u’7 14 wZS wZS u)ll w24 wl7 uy:i wG
E: w7 wl~1 u}ZS 25 19 F: wZ-L w17 w’ w() u}l?
wll u’_S w23 UJ]() w7 wlT wi wG u,l_ 24
w28 w 5 wl‘) w7 wl4 w3 wﬁ wlZ "UUZ{ 17

The transform can be computed in terms of the circular convolutions shown above.

4. N=P"—1 is Not a Prime

There are $(N) elements that are prime to N on Ring Zy. Eqn. (3.2) may be expressed in the
two cases; (k. N)=1 and (£, N)>1.

x(k) = il(ﬂ)w"k (kN> >1 (4.1
-
(k) = D) xmw" + D) 2w (k,N) =1 (4.2)
=1 =1
Since (£, N)=1 and (n,N)=1 in eqn. (4. 3) from eqn. (2.5). n and k& may be expressed as
n="(ny ,n,) =g" p"” (4.3)
k= (ky k) =g" p"”* 4. D
where 7, .,k =0,1,2,,(m—1)
Ny ky=0,1,2,+,(M—1)
m1:¢(N)/M
g is a unity root of order m, , say
g“r=1 mod N

Using eqn. (4. 4), eqn. (4. 3) may be written as follows:
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w1 v
. k ko, +n,
x5 Chywky) = 2 () w™ = 2 21‘(771 sy )t e (4.5)
(n,N) =1 711:0712:0

(ks N) =1
ky=0,1s,Cmy—1), ky=0,1,-,(M—1)
Eqn. (4.5) may be considered as a 2-D circular convolution.
Since (k,N)=1, and (n, N)>1 in eqn. (4. 2), from eqn. (2. 6) and (2.5), n and k may be
expressed as
n=0,1,,(my,—1)
n,=0,1,,(d—1)
b=y —ghp oD (1.6)
ky=0,1,+,(M—1)

Using eqn. (4. 6), eqn. (4. 2) may be written as follows:

n2

n==Cn sn,)=g" p

mz*l d—1
J— nl k1 ks tn,
x5 Cky sky) = 2 r(n)w™ = 2 21(711 snp) X (wf & PP ) 4.7)
(nsN) =1 1”:0”2:4)

(k,N) =1

k1:0917"'7(7711_1)7k2:051"“’(M_l)
Eqn. (4. 7) may be considered as (m, Xm,) circular convolutions.
Since (k,N)>1 in eqn. (4. 1), from eqn. (2. 6) k& may be expressed as follows:

E= (k) oky) =g p* i 0e b G ) (4.8)
kZZOale'."(d*];)

n in eqn. (4. 1) may be separated into 2 subsets as follows:

7 A N)=1
n=y{ , p 4.9
n  (n .N)>1

From eqn. (2.5) and (2.6). n" and #” may be written as follows
, ( ’ /) , , 77/120919"'3(7711*1) (4 10)
n =, .n,)=g" p" .
P TEnp Wy =0,1,, (M—1)
” /7 ” / 4 n//lzo’l"”’(n/l?_l)
n=m,.n,)=g"1p": . 4.1
7’12:0’19"'7(6171)

Using eqn. (4.8),(4.10) and (4.11), eqn. (4. 1) may be written as follows:

N-1 =l v
_ ay ky kgt
Il(klykg) - Z I(I’Z)U,r”kzzx(n/l’n/z)x (wé’l[{llii 3)
n=0 ny =0y =0
(kN> > 1 (4.12)
my—1 44
Wk ki
3 S a Gl ) K e
W =0y =0

k]zosly'"a(nlgil)’k2:0,1’"'a(d71)
Eqn. (4.11) may be considered as (m; X m,) circular convolutions of length M. Eqn. (4. 12)
may be considered as m3 circular convolutions.

For example,

N=2'"—1=15=3X5 is not a prime.
From eqn. (3. 2) it follows

_ o k=0,1,-,14

- — nk

x(k) = ”; c(n)w R
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Rearrange the order as follows
1,2,4,8,11.7,14,13,6,12,9,3,5,10

The above equation may be written as a matrix form

1 2 4 8 11 7 14 13 6 12 9 3 5 10

(1) w  ow w W w w  w' w w  w’ W w w w (1)
() ' w wt w W w' w® w! w? @ w  w w® W 2(2)
() @ W w w w” w® w! w W @ w w? w  w ()
x ( 8 ) ZUS uyl wz w1 w13 ‘ZL‘H w7 wl1 uy3 wG wlz wg u}lo ws T ( 8 )
‘T( 11 ) wl] “(,U7 u}]4 w]S w] w2 “LU4 wS u}(} u}]? wf) w3 w5 u,'lo ‘T( 1 1 )
x ( 7 ) w7 wlrl wl3 ‘LUl 1 w2 wz wg wl wlz w9 uﬁ wl() w5 w5 T ( /7 )
(1D ] v »w” W' w W W w W W W W w? W w!| [x(1d)
z(13)] |w"” w" @ w W W W w W W w? w w? w | [x2(13)
x(6) w w? w W w w? w W W W w W 1 1 x(6)
2(12) ] |w”? w w W w? W w W w? W w W 1 1 x(12)
1(9) 7,09 uyS ws w12 wl w3 wG wlz uyf) w3 wG wlZ 1 1 .T(g)
x(3) w® ,weﬁ ,wl 2 w’® w® w(s wl 2 wl w® ,ws wl 2 w’® 1 1 x(3)
x(5) w® w!° w’ w!? w® ' w® w!° 1 1 1 1 ' w® x(5)
x(10) w'® w’ w® @’ W w’ w? w’ 1 1 1 1 w® w? x(10)

5. Conclusions

It has been proved that any DFT of length N=(p"—1), where p is prime, may be converted
into several subgroup circular convolutions of length M or divisor of M. The length M circular may
be computed by Winograd algorithm'™. Most circular convolutions for this DFT have the same

length, which allows a more simple realisation than the algorithms of Rader'* and Winograd""”.
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Minimisation of Reed-Muller Polynomials
with Fixed Polarity

Y.Z. Zhang and P. J. W. Rayner, M. A., Ph. D.

Department of Engineering, University of Cambridge, U. K.

Abstract: An efficient algorithm for minimisation of Reed-Muller polynomials with fixed
polarities is presented. The common terms of multiple-output polynomials are considered by applying a
number of logical operations on their coefficients. The minimisation of the polynomials over extension
Galois fields GF(2™) is considered. The average number of field multiplications for mapping a set of
coefficients is reduced to less than M « 2 %,

Keywords: polynomials; logic; algorithms; Reed-Muller polynomials

1. Introduction

The advantage of using a Reed-Muller polynomial for realisation of a switching function is that it may
be more economical than the conventional Boolean function realisation, either in the number of gates or in
the number of gate interconnections'’. Furthermore, the exclusive-OR realisation of switching functions can
be easily tested® . The main problem of realising modulo-2 expansions is how to minimise the number of
product terms in the representation. This problem has long been, and still is, an open one. With the advent
of LLSI and VLSI techniques, the development of RM polynomial minimisation algorithms is becoming
important in synthesising a function using cellular logic array.

Many authors"”’ have been concerned with the minimisation of RM polynomials. Saluja and
Ong" proposed an exhaustive algorithm to compute all the fixed-polarity modulo-2 expressions by
matrix multiplication. This algorithm needs 2" matrix multiplications and (2" —1) permutations of
function output vectors.

Mukhopadhyay and Schmitz'"' gave the polarity functions of RM polynomial coefficients. The
best polarity for the minimum RM polynomial can be obtained by finding the maximum clique of the
polarity-compatibility graph. This graph possesses very large numbers of vertices in most applications.
Robinson and Yeh"? proposed a local minimisation procedure for mixed-polarity RM polynomials
using the minimisation polynomial coefficients with fixed polarities, but it does not guarantee global

minimisation. Recently, based on Wu, Chen and Hurst’s work™™, an efficient computer

*  Published in IEE Proceedings. Pt. E Vol. 131, No. 5, Sept. 1984 176-186.
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method for single-output exclusive-OR logic design has been developed by Besslich™. This work is
not concerned with multiple-output functions and does not deal with the minimisation of extension
field RM polynomials.

In Section 2, an efficient algorithm is presented for the minimisation of single-output RM
polynomials with fixed polarities. In Section 3, the minimisation of multi-output RM polynomials,
by considering the effect of common terms, is developed. The minimisation of RM polynomials over

extension Galois fields is proposed in Section 4.

2. Efficient Algorithm for Minimisation of Single-Output Functions

Any switching function of n variables may be represented as a Reed-Muller polynomial with

fixed polarity as follows:

*

f(xgsay s yx,1) :ao@al.;o @ag;‘l@agp;‘o«;l@“'@a,«;o;jl e, @D)
where
@ denotes modulo-2 addition
a,€(0,1) i=0,1,2,+-,2"—1
x; represents either complemented z; for polarity 1 or uncomplemented x;, for polarity 0; but
not both
r=2"—1
If one knows all the possible function outputs f,, f1. . f,» then the coefficients of the above
polynomial may be obtained"'" by
A=S,F (2)
where
A= C(agsa;»++a,)!
F=Cfosfrasf ) W for fo=/f(0,0,++,0), f,=f(0,0,-+-,1), etc.
S is a Reed-Muller transform matrix, recursively defined by
S.1 0 1o

S, =
S.1 S, 11

(3

1

or
S, =S XS, X+ XS, 4
where X) denotes the Kronecker product.
For example, the RM polynomial of three variables with positive polarity (x,, x,, x,) may be
written as
flay a1 s20) =ay@Pa) xoPa, x, Pas xo 21 Pa, 2, Pas 2o, Pagx1 2, Pa; 202,

Its coefficients may be obtained by
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a, 1 £0,0,0)
a, 1] i £0.0,1)
N R R B £0.1,0)

1L A0.1.1)
a| [T 00 0f1 £1,0.0)
a| |11 0 0F1 1 AL0.1)
a, 1 0 1 0 i 1 0 1 £1.1,0)
a, L1 11 11 1] g1,1,1)

It is obvious that the above matrix possesses 3° ‘ones’ and it needs 3°— 2° =19 modulo-2

additions to compute a set of coefficients. However, the matrix may be factored into the Kronecker

product form as follows:

Only 3 % 2% modulo-2 additions are required to compute a set of coefficients for this algorithm,
which is called the Fast Reed-Muller Transform (FRMT) algorithm.

For the case of n variables, n * 2" ' modulo-2 additions are required to obtain a set of
coefficients from its output function vector. There exist 2" different polarities for n variables. The
minimisation of RM polynomials is the process of finding the polarity from 2" possible polarities,
such that the polynomial possesses the minimum number of modulo-2 additions.

Saluja and Ong™ proposed that the function output vector for a new polarity is a permutation of
another polarity function output vector. All 2" sets of polynomial coefficients may be obtained in
terms of multiplying the successive modified output vectors by a RM transform matrix. One or more
among them are minimum. If the FRMT algorithm is used, then the total number of modulo-2
additions for this exhaustive algorithm is

2" %% 2" (5
It will now be shown that a set of polynomial coefficients with a new polarity may be obtained
directly from another set of polynomial coefficients, without permuting the output function vectors

and computing eqn. (2). We begin with the adjacent polarity polynomials. The polarity of (Zyysvees

*

Tyt ,;0) is said to be adjacent to the polarity of (;,,,] AR ,;k Lo y) s as only one variable x, has
different polarity between the two sets of variables.
Theorem 1

The coefficients of a RM polynomial with n variables may be obtained directly from the
coefficients of its adjacent polarity polynomial, in terms of the map with 2" ' modulo-2 additions.
There exist n adjacent polarity maps for a n variable polynomial.
Proof
From eqn. (1), the RM polynomial with n variables may be rewritten as

* ok *

ok ox #* * * x o "
f(fo STy 8t 1) :ao.,m,oo@ao,n-.olIo@ao.---,lofl@%.---,111011@'“@al,m.n»fofl [ VO | (6)
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This may be separated into two parts, according to whether it contains x, or not, as follows:
f(l'o s L1 8"t s Xy ):fo () s25 500 s Ly—1 )®1'<)f1 ()20 5002, 1) D)

where

#

s #* *
fo(l'lvl'z LR o 1):ao.~-~,<>o®ao 1011® @al 1119, ey (8)
#* #

# # 3
fl(l'l’l‘z ’...7111*1):610.“'.01@“0 1111@ @Cll llrlf’7? e y—1

If one changed the polarity of x, into x,, and used the relation

xo=1@x, (9
then eqn. (7) may be Changed into
f/(;'o a;71 s, ) = f 0 (11 719 [ 9.;,1 1)®;0f1 (;,‘1 a;Z [ 7-;'71 ) (10)
where
f/o (1*‘1 9-;'2 [ 9;"41 )= (aofm.()o@ao .01 )®(ao 10@610 o1l >;'1 (11)

@"'@(al 10@“1 11)11T29 eI y—1

Note that f,(x, .25+ .2,-1) is not changed.

Here, [ (xg,x1s°+ s, 1) is the adjacent polarity polynomial of f(z¢,x1s**sx, 1), and can be

represented by

*

f (xosxystsx, 1) =a o.m.m@a 0.,~~.o11'o@a 0. 1011®a 0. 11101"1 (12)
, Tk ox *
@@a Lo 1L 9% s X1
. . . ~ * * * .
Comparing eqns. (10), (11) and (12), the coefficient of /' (1 x5 s+ s, 1) is

A ool T Ao o2l

a/,rr oy 20 — Qg yeee 20 @a,m' eyl
where (XX,+:+,X) denotes(00,++,00) s (00, ¢+=y 1) oo, (11,+++,1).

This is the map of RM polynomial coefficients from the polarity (,;o ,;‘1 R ---,;',, 1) into the

(13)

polarity (;o I v}nfl ). The map needs 2" ' modulo-2 additions.
Similarly, the polarity of x;, may be changed so there are n adjacent polarity maps for =

variables. For example, the coefficients of three-variable RM polynomials can be mapped from the

polarity (z,2120) into the polarity (2221 o) by the following adjacent polarity map:

a,(1) 11 af0)
a(l) 1 i a,(0)
a(1) 1o ax0)
a()| 1 a{0)
a()| T a,(0)
a1) o a{0)
al(l) i I 1| ]af0)
a(1) 1| |af0)

where

a; (1) denotes the coefficient with the polarity (;rZ;'l ;0)

a;(0) denotes the coefficient with polarity (29x120)i=0,1,00+.7

Similarly, the coefficients with polarities (x, 11;?0) and (;21110) can be mapped from the
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coefficient with the polarity (Z22120) by the following adjacent maps, respectively:

a,(2) 1 1 : a,(0)
a,(2) 1 L a,(0)
a.(2) 1 a,(0)
a(2) | _ 1| a,(0)
a,(2) i | a,(0)
a,(2) I 1| |a.(0)
af2) ! 1| |al0)
a(2) L||a0)
and
a(®| | o a(0)
a(4) 1 A a,(0)
a.(4) 1 1 a0
a(4)| 1| 1| |a,(0)
a(4) T a.(0)
ay(4) L a,(0)
a(4) i 1] |al0)
a,(4) L||a0)

where a;(2) and a;(4) denote,respectively,the coefficients of polarities (;'2 ;'1;'0) and (;'2;‘1;'0),f0r
1=0,1,-,7.

There exist 3 adjacent polarity maps for 3-variable RM polynomials. Each map needs 4 modulo-2
additions.

If all the polarities of n variables are rearranged according to Gray codes, then each polarity is
adjacent to the next one, as the Gray code is a reflective code, i. e. in changing from one value to the
next increment only one bit is changed at a time. Therefore, all 2" sets of the RM polynomial
coefficients may be mapped by adjacent polarity maps based on Gray-code ordering. An efficient
algorithm for exhaustive search of the minimum polynomial coefficients can be obtained by (2" —1)
adjacent polarity maps.

For example, all the possible polarity coefficients of a 3-variable RM polynomial may be
obtained in terms of 7 adjacent polarity maps. according to the following Gray code ordering:

000 001 011 010 110 111 101 100

Lol Ty XX Ty LT Tl Lo XX Xg XX Xy TpX1Xg  TaXp T
This efficient algorithm may be represented by the flow graph in Fig. 1.

In Fig. 1, it is shown that 7 * 2°=28 modulo-2 additions are required to compute 7 sets of the
polarity coefficients, and that the first set of the coefficient may be obtained from its output function
vector by the FRMT algorithm, which needs 12 modulo-2 additions. The total number of modulo-2
additions for computing all the polynomial coefficients is 40. For the case of n variables, (2" —1)2" !
modulo-2 additions are required to compute (2" —1) sets of the polynomial polarity coefficients. n *
2" ' modulo-2 additions are required to compute the first set of coefficients by the FRMT algorithm.
The total number of modulo-2 additions for computing all the polynomial coefficients is

2"+n—1) = 2! (14)

One or more among the polynomials are minimum. If only the minimal set of coefficients are
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required, then one can use the ‘in place” algorithm, and only 2" memory locations are required.

000 001 011 010 110 1 101 100
a4y x5, X, EEES XE X, T, T, RN
G {_\al\[lj f\"mn J\"m:'\ r\“mm AUF"'\ r\('lll,‘» Ty
=D ® G > G

Fig.1 Flow graph of the algorithm for a single function

From eqns. (5) and (14), the amount of modulo-2 additions for this efficient algorithm is n/(1 -+
(n—1)2"") times less than that of the FRMT algorithm. The comparison of the two algorithms is
shown in Table 1.

Table 1 Comparison of the two algorithms

Number of @( * 2" 1)
Variable number n Times
New FRMT
2 5 8 1. 600
3 10 24 2.400
4 19 64 3. 368
5 36 160 4. 444
6 69 384 5. 565
7 134 896 6. 686
8 263 2048 7.787
9 520 4608 8.861
10 1033 10240 9.912
12 4107 49152 11.967
16 65551 1048576 15. 996
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3. Minimisation of Multiple-Output Functions

The minimum polarity of a single-output function can be obtained by the efficient algorithm
proposed in Section 2. The minimum number w(j) of exclusive-OR gates which are required to
realise the function is determined by the nonzero coefficient number of the polynomial at the
minimum polarity (j).

For the case of m-output functions, it is very obvious that the minimum polarity for one of the
output functions is not likely to be optimum for the whole m-output function, as the polarity j that
makes the exclusive-OR gate number w, (j) of the ith function minimum cannot guarantee to make

the total number of exclusive-OR gates for all the m functions minimum. Furthermore, the polarity

m—1

j which makes the sum w = ) w,;(j) minimum is also unlikely to be optimum for all m-output
=0

functions, because. some product terms will be common to a number of the output functions. One
common term among s-output polynomials may be realised in terms of only one exclusive-OR gate.,
and (s—1) exclusive-OR gates may be saved. Hence the optimum polarity for m-output functions
should be searched with regard to all possible common terms.
For example, the truth table of a 3-output function is shown in Table 2. The coefficients of the
polynomials with polarity (000) may be computed from eqn. (2), and are also shown in Table 2.
Therefore, the 3-output polynomials with polarity (000) are as follows:
fo=x1Prix Pr,Pxyx, xs
f1=2Prix,Drox, Dryx, 2,
f,=1Px,Pzyx,;Pxox, s

Table 2 Example of 3-output functions

Input Output Polynomial coeff.

X2 X1 Lo 1 fi fo Ci b; a;
0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 1 1 0 1 1
0 1 1 0 0 0 0 1 1
1 0 0 1 0 1 0 0 1
1 0 1 1 1 1 1 1 0
1 1 0 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1

Using the algorithm in Section 2, the coefficients of 3 polynomials for all possible polarities may
be directly mapped from the coefficients A(0), B(0) and C(0). The flow graph is shown in Fig. 2.

In Fig. 2, w’; denotes the number of nonzero coefficients of the ith polynomial, f;. referred to
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000 001 011 010 110 111 101 100
XX, ¥, XEE XXy, XXX, XXX, XY, Xy,
I | 0 ) 1 1 0

N R S = . 5t
) 0 0o /A L~ 0
& 0_— o0 //A_—"i 11

0 0 1 L0
o L—1_ 0o "¢ 0o~ S1_—"1

e 0 A o/ 0 Dtz 0
e 1" 1Y [t
w4 3 3 3 4 3 7 4
w2 4 2 1 2 4 5 2

b q 1 0 g ) |

be L 00 0 S
b, 0 1 & [ )] 1 5l 0
b, 1// }1/': ol ] J/fl
w', 4 5 4 5 4 4 7 4
W, 3 3 3 2 3 &) 3
a, 0 0 0 1 0 0 | |

a, O/T) /_T/I' @ 0 /p ; Y

a 1 0o~ 1 A |

a, 1/:1 % MO 0 0

—
=]

r\
=
-
° B u."—‘é«&
o wn \nkvrc e Yy — ¥ — Y
¥
i

Fig.2  Flow graph for multiple-output functions

as the weight of the ith polynomial, and w, denotes the number of exclusive-OR gates for realisation
of the ith polynomial. Since
1Df=f (15)

the constant term of polynomials may be realised by means of a NOT gate at the output instead of an
exclusive-OR gate in circuits. Hence, the number of exclusive-OR gates for realisation of the ith
polynomial is as follows:

w,=w, —a, —1 (16)
where

a, € (0, 1) is the constant term of the ith polynomial

m—1

w = » w, represents the total number of exclusive-OR gates for realisation of m-output
=0

functions.
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Here, w, w;. and w’ are all functions of polarities j(; =0, 1,+-+,2"—1). One or more polarities
may make w minimum. Fig. 2 shows that the sum w has the minimum value 7 when the polarity is
(100) or (110). The output polynomials with input polarity (100) are

fo=x:Dx, Doz 22

fi=x20@Dx, Do x: Doz

fo=xox, Dy T Pz, 2, 2
Seven exclusive-OR gates are required to realise the 3 output functions. But this is not minimum,
because (o, Dxoxias) is the common term between the functions /) and f,. One exclusive-OR
gate may be commonly used by the functions f, and f,, and another exclusive-OR gate can be saved.
Only 6 exclusive-OR gates are needed to realise these 3-output functions.

Is this an optimum realisation for the example? It is unlikely to be optimum, as the number of

2
common terms may be greater in the other polarity polynomials. Althoughw = ) w; is not minimum
=0

for that polarity, the final required number of exclusive-OR gates with regard to the common terms
is possibly less than that of the polarity (100). For example, the polarity (011) has w=9>7, but
the polynomials are
fo=x0Pxox1Dxox: Dz 22 PDxoxs
fimxProx,Pror,Prox, 2,
fr=2@Pxi 2, Pxox, 25

where (x, @ x,x,) is the common term for 3-output polynomials, 4 exclusive-OR gates may be
saved, and as (Px,x1) is the common term of the functions f, and f1, one exclusive-OR gate may
be saved. Only 9 — (4 + 1) = 4 exclusive-OR gates are required to realise the 3 polynomials.
Although w for the polarity (011) is larger than that for the polarity (100), the polarity (011) needs
less exclusive-OR gates as a result of the common terms.

From the above example, the optimum polarity of m-output functions should be searched by
considering the common terms. Theorem 2 will give a method for determining the common terms
among the multiple-output polynomials.

Before giving the theorem some definitions are introduced.

De finition 1

The function consisting of the common terms among s functions is called a °s-common

function’. For example, the 3-common function of the above example is
forr =20 Pxy 2, Do 1 22
The coefficients of common functions may be directly obtained by logical AND operations among the

s function coefficients:
A=A NA N NA; an
where
A, j,....; denotes the coefficient vector of the s-=common function
A Ay A

;are the coefficient vectors of the output functions ji,j;, =+, j, . respectively

A denotes logical AND operations
For the above example of polarity (011), the coefficient of the 3-common polynomial is
A=A NA AN A, = (01000011)°
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Let w ., denote the weight of the s-common function; then the number w) of exclusive-OR

A Tpdg el
gates may be obtained from eqn. (16). For the above example of the polarity (011), we have
U«'/olz =3
Wiy = 2

Because A; .A; .:+.A, are functions of the polarity. so the number w),

i, . of exclusive-OR gates

of the common function is also a function of the polarity. The number of s-common functions among

m output functions is

C, for s=2,3,.m (18)
The total number of common functions among m output functions is
GO =2 — (m+ D) (19

For the above example, the common function numbers for 3 and 2 polynomials are C; =1 and C;=3,
respectively. The total number of common functions among 3-output functions is 2° — (3+1) =4,
To avoid the repeated counting of common exclusive-OR gates in different common functions,
the residue function is introduced.
De finition 2
The residue function of a function f; is the subfunction which consists of the terms of without

(w ; —1) common exclusive-OR terms of the s-common function, where i=j,,j,,**./.,.

iyt
For the above example, the 3-common function is
Jouz :;o @;112 @EO;l Xy

The 3 residue functions may be

ﬁn :;0 @;O;l ®;1 T2

=2, Pxox,

fglz :;o
The coefficients of residue functions may be obtained by modulo-2 additions of the coefficients of the
function f;.the s-common function f; ; ....; and the remainder term C,, as follows:

AP =ADA, ... DC (20)

where
(Pdenotes modulo-2 addition
A, is the coefficient vector of f;
A

C, is a column vector, with a single ‘one’ remaining from A

ji,.. is the coefficient vector of the s-common function f; ; ...;

s

Jyigseed, and all other elements in C,
at zero.

In the above example, the remainder term is C, = (01000000)*. The existence of C, means that
one of the common function terms is remained in the residue functions. In the above example, the
common term x, is remained in the residue functions f3'2, /" and f5'2. It is named the ‘remainder
term’.

As the common function possesses w; ;,....; terms, so C, has wj ; ..., forms. For the example,

if we let C;=(00000001)*, then the remainder term will be x,x, 2., and the residue functions will be

‘8]2 :;o @;o Xy @;0;1 Xy
f(IHZ :;o;1 ®;o;1 Xy

12 — .
Y =x.x 2,
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It is obvious that the choice of the remainder term and the form of C, does not change the weight and
number of exclusive-OR gates of the residue functions. Therefore, any term of the s-common
function may be the remainder term. However, the remainder term of the s-common function must
not be the remainder term of the (s—1)-common function, i. e.
C,#C, 2D
If C,=C, ,, then C,DC, ,=0,and the incorrect common gates may be introduced.
For the above example. if is the 3-remainder term, then 7, must not be the 2-remainder term:
the 2-remainder term should be x,x;.
After the common function is produced, the output function should be substituted by its residue
function for further operations. The coefficient A; is substituted by A" in memory after A, ; ....,; is produced.
For an example of a 4-output function, if the output functions are f,, f,» f> and f;, then the
4-common function fo,; is
Avis=Ac NALNA, NA,
The 4-residue function is
A=A DA DC, (1=0,1,2,3)
The 3-common function {,,, is
Ag, =AY AAY A ALY
The residue function is
A=A DA,,DC, (=0,1,2)
But the 3-common function f,; is
A=A NAY? NALY
Here, A" and AY'? are substituted for A{¥ and ALY,
The residue functions are therefore
Al :A?M@Alzs @C;
A :Agm@Alz.‘%@C;
AP =AY @AIZB @Cg
Here A" and AS” were substituted by A} and AY? in the first two equations, and C,% C,. This
substitution may be easily realised by an ‘in place’ algorithm.
After giving the definition and the algorithm for finding common and residue functions, the

number of gates which may be saved is given by the following theorem.

Theorem 2
The number of exclusive-OR gates that may be saved for m-output functions is as follows:
N.=(m—Dw"™ +(m—2)w™" "+ + 2w +w? (22)
where

N, denotes the number of gates that may be saved

w" is the number of common gates of m output functions

W =W ) T Wol ey T T Wis 1) »and denotes the number of common gates

of C! ,and the (m—1)-common functions

m—1

w?® = Y w,, denotes the gate number of all the 3-common functions
i#jFEk
w” = Yw,; denotes the gate number of all the 2-common functions

i#j
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Corollary 1

The total number of exclusive-OR gates for the realisation of m-output functions with regard to

the common terms is

N = i:u —N, (23)

where

N... denotes the required total number of exclusive-OR gates

w; is the number of ExOR gates for individual realisation of each single function f;

N, is the number of ExOR gates that may be saved by common terms

As w; and N, are functions of the polarities, so N 1s also a function of polarities. The
optimum polarity may be obtained by finding the minimum N,.

The optimum polarity and the number of ExOR gates for m-output functions may be obtained

by the algorithm shown in Fig. 3.

compute the total sum of @ gates for individual realis-
ation of each polynomial without considering the
common lerms

.

compulte the m common and residue [unctions; count
the total number of m common gates; renew the poly-
nomial coefficients

¥

compute the %, sets ol the (m—1) common and
residue functions; count the total number of (n—1)
common gates; renew the polynomial coefficients

¥

m- 2

compute 7 ° sets ofthe 2 common and residue
functions; count the total number of 2 common gates

compute the total number of @ gates that may be saved
by all common gates based on theorem 2

compute the total number of @ gates which are
required by all polynomials with regard to all common
terms lor all polarities: search the optimum polarity that
makes N, minimum

Fig. 3 flow chart of the minimisation algorithm

Step 1

" of the m functions:

Compute the common gate number w
(1) compute the m-common function coefficient Ag..,,_; based on eqn. (17) in terms of logical

AND operations;
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(i) count the number of common gates w ;

(ii1) choose C, s compute m residue function coefficients A{™ (i =0,1, -+, m — 1) based on
eqn. (20) in terms of modulo-2 additions;

(iv) substitute A{"™ for A, in the computer memory (:=0, 1,..., m—1).
Step 2

(m—

Compute the number of common gates w " for all sets of (m—1) functions:

(i) choose the first set of (m—1) functions, as step 1,compute the (7 —1)-common function
coefficients Ay, ....(n—2 and the number of common gates wo, ....(n—» schoose C,,—;#C,, ,compute (m—
1) residue function coefficients A" " (i =0, 1,++(m—2)), and substitute A" by A" " in the

computer memory;

(ii) choose the second set of (m — 1) functions, as in step 2 (i), compute Aui. ... insm_1) s
Wor o om— o1, and residue functions A7 ' (i=0,1,++,(m—3),(m—1)), and substitute A",“m—1)
for A" " and A{"™, but the second set of (m—1) function coefficients have been modified by the

above step, and they will be modified by A" P (i=0, 1,++-, m—3, m—1) again in this step;
(m) choose the mth set of (m—1) functions and compute Ay,... ,,—; and w,...,,—1 etc. » as in the
above step, and modify the function coefficients;

(n) compute the total number of all (m—1)-common gates using

w" P = W0t T W0t e 9 0n1 T 0 W1
Step 3
Compute the number of common gates w™ ?, w™ ¥ ,.., w® as above steps.
Step 4

Compute the total number N, of the ExOR gates that may be saved based on eqn. (22), and
compute the total gate number N, for one polarity by eqn. (23).
Step 5

Compute the total number N, of ExOR gates for all possible polarities. The polarity that
makes N, minimum is optimum.

For the above example, the total number of ExOR gates for different polarities is shown in
Table 3.

From Table 3, it may be seen that the polarity (011) is the optimum one for realisation of the 3-
output functions with regard to the common terms. Only 4 ExOR gates are required to realise the

circuit. The logical circuit of the example is shown in Fig. 4.

x>0

Fig. 4 Optimum logical circuits for the example
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The number N, of input NOT gates depends on the polarities. The numbers of output NOT
gates and AND gates are given by the following corollaries.
Corollary 2

The number N, of output NOT gates is

Now= 2 as @n
where
N, denotes the number of NOT gates at output end
a;, is the constant term of the 7th output function
It is obvious that N, is a function of the polarities.
Corollary 3

The number N,, of AND gates for realisation of m-output functions is

n—1

Ny = wy — ,.Zodz' —d, 25
where
w, 1s the weight of the OR polynomial D for the m-output functions, where
D=A, VA V- VA, , (26)
(V denotes the logical OR operation)
d,i denotes the coefficients of single variable terms of the D polynomial
N..a denotes the number of AND gates.
For the example in Table 2, the numbers of input NOT gates, output NOT gates and ExOR

gates are shown in Table 4.

Table 3 The number of ExOR gates for the example

Gray Code 000 001 011 010 110 111 101 100
polarity X021 Xo X921 X0 X921 T X921 X0 o2, X0 01 X0 T2 21 X0 X221 X0

wy 2 4 2 1 2 4 5 2
w) 3 4 3 3 2 3 5 3
wsy 3 3 4 5 3 3 3 2
w = g()w; 8 11 9 9 7 11 13 7
w™® 0 2 2 1 0 2 3 0
w® 2 1 1 2 1 1 1 1
N 2 S 5 4 1 5 7 1
Nesor 6 6 4 5 6 6 6 6
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Table 4 Number of NOT, AND&EXOR gates for the example

Gray Code 000 001 011 010 110 111 101 100
polarity X0 ) T X021 X0 X021 T X921 X0 T2 X0 Tp 1 X0 T2 X120 T21 X0
N, 0 1 2 1 2 3 2 1
Nou 1 0 0 3 2 0 3 2
Nooo 1 1 2 4 4 3 5 3
Nina 3 4 4 3 3 4 1 3
Nevor 6 6 4 5 6 6 6 6

If the price of NOT, AND and ExOR gates is P, , P, and P, respectively, then the total price
of the circuits is
P:P1N110!+P2 Nand+P3chor (27)

The optimum polarities should be obtained by minimum P.

4. Minimisation of Polynomials Over Extension Field GF(2")

Any multiple-valued logic function may be represented as a polynomial over the extension Galois
field GF(2"), as follows'' ;
y=f(x) = Yax' (28)
=0
where
a2, y€EGFC2M) i=0,1,-,2"—=1) r=2"—1

The polynomial coefficients may be obtained from the function output vector by

a, = f(0)
Ja=1 (29)
Ia,- = > fla)a
reGFeM)
where
i=1,2,,2M—1)
> cecreMy denotes the sum for all the possible elements of GF(2")
If ¢ is a primitive root of a primitive polynomial gy (a) over GF(2), then
gM(a>=dMaM+dM ]aMilJF"'JFd]lldeo (30)

where
d,€GF(2) i=0,1,.M

Then any nonzero element x of GF (2") may be uniquely represented as a power of ¢ or a

polynomial mod. gu(a) as follows:
r=d =xy1a" oy et a2, mod gy (a) (3D

where

i=0,1,..,02"—2)

;,€GF(2) j=0,1,~,(M—1)
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€ GF@2M)
Therefore, the coefficent a; of eqn. (29) may be represented as the powers of a.
For the example of Table 2, the primitive polynomial of GF(2*) is
g:(a)=a"t+at1
The nonzero elements of GF(2°) are
o' mod (¢’ +a+1) for i=0.1,2,3,4,5,6

Table 2 may be rewritten in terms of powers of a, as is shown in Table 5.

Table 5 Truth table over GF(2*)

Input Output
x Ty Z Zo Y2 1 Yo y
0 0 0 0 1 0 0 o
1 0 0 1 0 0 0 0
a 0 1 0 1 1 1 o
o 1 0 0 1 0 1 o’
a’ 0 1 1 0 0 0 0
o 1 1 0 1 1 0 o
a 1 1 1 0 0 0 0
o 1 0 1 1 1 1 a

The coefficients of the polynomial are computed from eqn. (29). The truth table may be
represented by the polynomial over GF(2*) as follows:
y=f(r)=d" ta'xz+a’ 2" tar’ +a 2" +a' 2"+ 2" o’ 2
where x,yE GF(2%), and where
r=x0" t a0ty
y=y,a" T yiaty, (mod(a’ +a+1))
2.y, €(0,1) for i=0,1,2
Seven multipliers and adders are required to realise the polynomial.

The multipliers over GF(2") may be implemented by an M-stage feedback shift register'*, and
GF(2™)-adders are implemented by M modulo-2 adders.

It is desirable to reduce the number of nonzero coefficients in the polynomials in eqn. (28), thus
reducing the number of multiplications. Obviously, the number of nonzero coefficients is affected by
polarities of input and output variables. For the example of Table 5, let the input polarity be
changed to (25,2, .20). Then the truth table is changed to Table 6.

Let 2 =20 +x1a+ 2, (mod(a® +a+1)). From eqn. (29) ,the polynomial is

y:of JﬁozGJC/Jrozﬁjlf/5 JFozGJr/G TLozSJ”/7
The polynomial possesses 5 nonzero coefficients which are less than that of the polarity (000). The

minimum polarity may be obtained by finding of all the possible polarity coefficients.
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Table 6 Truth table with new input polarity

Input Output
2 ;; xZ ;o V2 V1 Yo y
o 1 0 1 1 0 0 o
o 1 0 0 0 0 0 0
o 1 1 1 1 1 1 o
1 0 0 1 1 0 1 o’
o' 1 1 0 0 0 0 0
o 0 1 1 1 1 0 o'
a 0 1 0 0 0 0 0
0 0 0 0 1 1 1 o

The minimisation of polynomials over extension Galois fields GF(2") is a special problem of the
minimisation of M-output functions over GF(2) with the constraint of a minimum number of nonzero
coefficients for the extension Galois field polynomial. Certain properties of Galois fields lead to an
efficient algorithm for minimisation of the extension field polynomials. Eqn. (29) shows that the
polynomial’s coefficients may be computed from its function output vectors. The direct computation
of all the polarity coefficients needs 2" (2" — 1) field multiplications and additions, and (2" — 1)
permutations of the truth table. It will be shown that the polynomial coefficient with a new polarity
may be mapped from another polarity coefficient without permuting the truth table and recomputing
eqn. (29).

Actually, any change of input polarities corresponds to an input variable transformation as
follows:

& =Ty e et
=zx+by "+t batb,=1+B (32)
1 for ;, =z,
for r=a,,i=0,1,++,(M—1)
Substituting eqn. (32) into eqn. (28). it follows that

where b, =

y=fG"+B = Ya ' +B)' = Yd "
i=0 i=0
Comparing the coefficients of variable 2’, the new polarity coefficient can be mapped from another

polarity coefficient by

A'=Ty(B)A (33)
where A'=(a"va’ 1, sa' vy 1) A= (ava, s>+ ray 1) and Ty (B) is recursively computed by
Ty (B) B™ T, ,(B) 1 B
Ty (B)= T,(B)= (34)
0 Ty (B) 1

For the polynomial over GF(2°), eqn. 33 may be written in matrix form as
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a', 1 B B B B B B K |a
a’ R B0 B |l|a
a', 1 B i B K a
a| 1 i B* ||a,
a | [T [ I P
a'y 1 0 B |l|a
Vel % 1 B a,
a’; i 1 a,

In general, any input polarity map corresponds to a polynomial in the transformed variable (x+B),
where B may be any element of GF (2"). The number of field multiplications and additions of

GF(2") for one polarity map is

(3" —2") (35)
The above mapping matrix may be factored as Kronecker products as follows:
1 B ! B i I s
I | 1 B ] i B
] B i 1 i l i Ba
1| 1 1 B

i 1 B i ] B i |
i 1 | 1 5 i 1
| I | 1 | 1
i 1 i 1 | 1

Using the above factorisation, the number of field multiplications and additions for each mapping is
reduced to
M % 2M! (36)

An efficient algorithm for further reducing the number of multiplications is developed by introducing

adjacent polarity mappings and rearranging the polarity orderings. The polarity (Taior s*es s p s e s 0)
is the adjacent polarity of the polarity (;’M PR ,;’k yoee ,;0 ), as only one variable ;'k between them is
in different polarity. From eqn. (32), any adjacent polarity change corresponds to a low-order
transformed variable of (x+qa”), where m<ZM. The most important is the adjacent polarity change
of variable x,, which corresponds to the transformed variable (x + 1), i. e B=1. No field
multiplications are required for computing this polarity mapping. If the 2" sets of polarities can be
arranged in an ordering such that the transformed variable (x+1) appears as often as possible,then
the exhaustive search of polarity coefficients needs a minimum of multiplications. If all 2" sets of
polarities are rearranged according to the Gray code ordering, then 2" ! sets of polarity changes out
of a total of (2" —1) sets of polarity changes correspond to the transformed variable of (z+1). No
field multiplications are needed for these 2™ ' mappings. The other (2" ' — 1) sets of polarity
changes correspond to low-order transformed variables. The total number of field multiplications for
all (2 — 1) adjacent polarity mappings is M * 21 (2" ' —1). The average number of field
multiplications for one mapping is less than

M » 2M°*® 37)

For the example shown in Table 5, the flow chart of the algorithm is shown in Fig. 5.
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Fig. 5 Algorithm for extension field polynomials over GF(2°)

In Fig. 5, w’ is the weight of the polynomial coefficients and w is the number of nonconstant

terms.

Furthermore, the constant term of the output polynomial may be saved by changing the output

variable polarity. For the above example,if the output polarity is changed from (000) to (111),the

truth table in Table 7 results.

Table 7 Truth table with new output polarity

Input Output

x 7_) X1 x0 }2 51 ;u y '
o 1 0 1 0 1 1 a

o 1 0 0 1 1 1 o
o 1 1 1 0 0 0 0
1 0 0 1 0 1 0 a
o 1 1 0 1 1 1 o
o 0 1 1 0 0 1 1

a 0 1 0 1 1 1 o
0 0 0 0 0 0 0 0

40
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y/:asl‘/+a6.r/5+a61‘/6 —"01536/7

The constant term o’ is removed by the output map (y, 31 53v0) to (yssy153,). The input polarity
(25521 »20) and output polarity (y,,yi,y,) are optimum. Only 4 nonzero terms are in the optimum
polarity polynomial.

From the above example. it may be seen that any nonzero constant term (a, % 0) in the
polynomial may be removed be the output map

v =y+a, (39

The optimum input and output polarity may be obtained by the above algorithms.

5. Conclusions

An efficient algorithm for minimisation of Reed-Muller polynomials with fixed polarities has
been presented. The number of modulo-2 additions for this algorithm is #/(1+(n—1)2"") times
less than that of fast RM transforms.

With regard to the common terms, the minimisation of multiple-output functions is developed.
The common functions, residue functions and remainder terms are introduced. An algorithm for
computing the common terms of multiple-output functions is presented. The common ExOR gates
may be obtained by modulo-2 additions and logical AND operations among m sets of polynomial
coefficients. The number of AND gates may be computed by logical OR operations.

The minimisation of extension Galois field polynomials is studied, and an efficient algorithm
that directly maps the polynomial coefficient from one polarity to the adjacent one, without
permuting the truth table and computing the RM transformations, is presented. The average
number of field multiplications for each mapping is reduced to (M * 2Y7%). This algorithm can be
easily extended to use in the case of multiple-output polynomials over extension Galois fields.

This paper is concerned only with the fixed-polarity Reed-Muller polynomials. The mixed-
polarity polynomials may give a smaller number of nonzero coefficients than fixed-polarity polynomials.
However, so far as the authors know, no general minimisation algorithm for mixed-polarity polynomials
has been proposed for the case of variable number n>6,

The algorithms proposed in this paper are exhaustive, effective and can be computed ‘in place’.
They can be efficiently used in computer-aided logic design. The algorithms require only about 2"

memory locations and are efficient in terms of the multiplication and addition numbers.
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A Direct Algorithm for Synthesis of Stable
Feedback Shift Registers

ZHANG Yan-zhong

Department of Engineering, Cambridge University, U. K.

The sufficient and necessary conditions for generating a stable sequence by means of a stable
feedback shift register (FSR) is proved in this paper. A direct algorithm is presented for synthesis of

stable FSRs with a minimum number of stages n.

1. Introduction

Stable feedback shift registers (FSRs) are useful for code theory and sequential machines.
Golomb (1967) systematically studied the properties of nonlinear FSRs, especially cyclic properties.
Mowle (1966) proposed the relation between cyclic and stable FSRs, but did not give feedback
function forms. Lempel (1969) dealt with K-stable FSRs and presented a direct realization procedure.
Cohn and Even (1969) developed a design procedure for finite sequences. The theory and an algorithm
for synthesis of stable and infinite sequences using a stable FSR with a minimum number of stages »

is presented.

2. Stable FSRs

The general form of a FSR is shown in Fig. 1. In Fig. 1, the n squares denote binary storage

elements, feedback logic f(xy,x,,**,2,—,) is a combinational circuit, in general this is non-linear.

Fcedback Logic fix,. x,, ==+, x,,)

Fig. 1 General feedback shift registers
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Any FSR may be considered as a finite state machine (FSM). Let the present state of a finite

state machine be

S:(l'o 91‘17"'51,,—1) (1)
then the next state of the machine is
S/:(I/o 91'/15""1'/,,—1) (2)
where
4
X o T
[
X — X2
3)
/7
T p—2 = Tp—1

/ .
= f(rysxyesx, 1)

Let T be a next state operator, the next state S’ may be expressed by
S'=T(S) = (aysas s, 1 f(Xgsxy o2, 1)) )
The state after 7 shifts will be denoted by
T (S) (5
De finition
An FSR is stable if there exists an integer g=¢(S) for any state S of the machine, such that
T(S)=0 (6)
where 0 = (0, 0,++,0) is the zero state. The state 0 is the only cyclic state and there are no other
loops in the stable FSM state graph,
The output sequence of a stable FSR is as follows
CorCrntt sy 1204040, <8
where ¢; € (0,1) and i=0,1,++,9g—1. This is called a stable sequence. After a finite sequence of

length g, the stable sequences result in all zeros.

3. Synthesis Theory of Stable FSRs

Any stable sequence may be generated by an FSR of stage n—=¢, but in the synthesis of stable
FSRs it is desirable to design an FSR with a minimum number of stages n which generates the stable
sequence (7). If the feedback function of the required stable FSR is

fxgsay s rx,—1) (&)
then from Fig. 1 and eqn. (3) it follows
S sCrpr s sChtn1) =Crtn
fC0,0,++-,0)=0

Actually, eqns. (8) and (9) is a combinational function. The combination function (8) with

Jfor k=0,1,+,q 9

minimum variable number n may be obtained from the stable sequence (7) by the following theorem.
Theorem

A stable sequence (¢y ¢ 5*5¢,1,0,0,0++) may be generated by a stable FSR of stage n, if and
only if all (¢g+1) sets (cpacpiss**scpin—1) of length n for k&=0,1,+++, g are distinct.

44



A Direct Algorithm for Synthesis of Stable Feedback Shift Registers

Proof
For the necessary condition, suppose a stable FSR. of stage n can generate the stable sequence
(7)., if two sets of length n are identical., say. there exists £, and %, such that
CepynCryinnmsraCryin1) = (Chy s Cryitnttt s Cpyin) (10
where &k, #k, . and 0k, ,k,<_q. Then from eqn. (9) it must hold that

Ck1+n:f(ckl $Ch 419" 9 Ch 4 1)

:f(cw2 ’Cle2+1?...’C/sz‘**rt*l):ckz‘**u (11
therefore
(C/elﬂ 2 Cryt2 0™t vC'k1+u): (C'kzvl 2Cpy+29°°° aC'/e_)Jrn) (12)
Similarly
Chytnt1 = Chytatl
civj =g for j=n,(nt-1) - (13)

Hence the sequence is cyclic and the FSR is unstable. this is in contradiction with the definition.
The sufficient condition is obvious. If all the (¢g+1) sets of length n {rom the sequence (7) are

distinct, then a truth table of (¢g+1) rows and (n+1) columns may be set up from the sequence as

follows.
Table 1 Truth table of distinct sets of sequences

Zo ) Ly S/

Co a Ca—1 [

(& 2 Cn Cnt1

Cog—n—1 Cq—n Cq—2 Cq—1

Con Contl Cot 0

Com1 0 0 0

0 0 0 0

Since the (¢+1) sets of (xy,2,,*,x, ) in Table 1 are distinct, so the combinational function
f can be uniquely determined by the above truth table. From Fig. 1. this function is the feedback

function of stable FSRs which generate the output sequence (7).

4. Algorithm and Example

The theorem presented not only the proof of necessary and sufficient conditions, but also a
procedure for synthesis of stable FSRs. A direct synthesis algorithm of stable FSRs from the stable
sequence (7) is shown below. Step 1 determines the minimum number of stages n of the FSR. Step

2 is used in finding the feedback functions
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Step 1

Let n=2,3,++, determine the minimum » such that any sets of length n (¢, scp i1 scii 1) for b=

0.1,2,+-.g.appear once and only once in the stable sequence (¢;.c; "¢~ ,0,0,0.+:-). The flow

{ START

LET n=2

chart is shown in Fig. 2.

LET k=0 a—ntl

APPEAR ONLY ONCE

ekt 1

STACENUHBER

STOP

Fig.2 Flow chart for determining the minimum number of stages n

Step 2

After finding the minimum stage n, the truth table of the feedback function may be obtained as
shown in Table 1. Since

Cg=Cqp1 ="+=0 14
the feedback function may be computed from the first (g—n) rows of the truth table as follows
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g—n—1
SCrosaysesa, )= NV o et s iy (15
=0

where

X fOI‘ 1'k+,:1
Tkl =

;s for ¢, =0.,i=0,1,.(n—1)
Cen=0o0r1, k=0,1,,(g—n—1)
V  denotes logical OR operation
For example, a stable sequence of length 12 is shown below
1 1 1 o0 1 1 O 0 0 1 0 1 0 0 0
cy € Cy €3 €4 C5 €z C; €y Cy Cip €11 Ci2  Ci3  Cu
Step 1
Find the minimum number of stages n.
n=2 (1 1)="C(c, c;)="C(c, ¢;)=1C(c, ¢c5) appears three times
n=3 (11 1) appears once
(1 10)=Cc; ¢y c5)="C(c, ¢5 ¢5) appears twice
n=4 (1110),(11T01.(1011),0110),(1100) appears once
(1000)=Ccs5 ¢c5 ¢c7 cg)=Ccy1 15 €13 ¢14) appears twice
n=5 (11101,(11011),(10110),(01100,(110000
(10001,(00010),(00101),(01010),(10100)
(01000),(10000),00000)
Each of the 13 sets of length 5 appears only once in the sequence, so the minimum number of
stages of the FSR which can generate the above sequence is 5.
Step 2
Determine the feedback function. From Table 1, the first (12—5) =7 rows of the truth table

are as follows.

Table 2 Truth table of the example

Zo X x Xy kan f
1 1 1 0 1 1
1 1 0 1 1 0
1 0 1 1 0 0
0 1 1 0 0 0
1 1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 1

The feedback function is as follows:

S (g sxysxs sxs sxy) =xoxi 225204 N 2o 2205200 V 2o 20205204
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5. Discussion

In the above example, 3 AND gates of 5 inputs, 2 OR gates, 5 NOT gates and 5 binary storage
elements are required to implement the stable FSR. It is easy to prove that if all the (¢g+1) sets of
length n are distinct for the stable sequence (7), then all the (¢+1) sets of length larger than n are
also distinct. The stable sequence (7) can be also implemented by a stable FSR with greater than »
stages. For the above example, all the 13 sets of length 6 are distinct, the truth table consisting of

the first (12—6) =6 rows from the sequence is as follows.

Table 3 Truth table of 6 variables

X X ko) x; Xy x5 I
1 1 1 0 1 1 0
1 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 1
1 1 0 0 0 1 0
1 0 0 0 1 0 1

The feedback function with 6 variables for the example is
F(0 X1 s T2 53 X4 »X5) =20 X1 X2 L3 X0 5 N To 21 L5 T3 T4 X5
Two AND gates of 6 inputs, 1 OR gate, 6 NOT gates and 6 binary storage elements are required to
realize the stable FSR. The optimum stage number may be obtained bv the number and price of

AND, OR, NOT gates and binary storage elements.

6. Conclusion

Any stable FSR may be synthesized from the required stable sequences by the direct algorithm

proposed in this paper. The optimum realization may be obtained by certain constrained conditions.
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Indirect Synthesis of Stable Binary Sequences

ZHANG Yan-zhong

Department of Engineering, Cambridge University, U. K.

An indirect method is presented for the synthesis of stable binary sequences by means of
maximum transient feedback shift registers (FSRs). An algorithm for the synthesis of maximum
transient FSRs and output mapping is developed. The feedback functions of maximum transient

FSRs are presented.

1. Introduction

Zhang (1984) proposed a direct algorithm for the synthesis of stable feedback shift registers
from the required output sequences. The minimum number of stages n and the feedback function of
stable FSRs which can generate the required output sequences may be obtained by means of that
algorithm. However,for some stable binary sequences the number of stages obtained from the direct
algorithm is rather large. For example, for a stable sequence of length 15

1000,0000,0000,0010,0000--- @)
the direct synthesis method leads to a 15-stage stable FSR.

In general, for any stable binary sequences of length ¢, let n be the minimum integer

which satisfies

2”71<(1<2" (2)
Then the possible number of stages m of the required stable FSRs is within
n<m<q (3)

If a stable FSR of n stages generates a stable sequence of length N = 2", then it is called a
maximum transient feedback shift register which outputs the longest sequence among all the stable
FSRs of n stages. If any stable binary sequence of length less than 2" may be mapped from a
maximum transient FSR of n stages, then an indirect synthesis method which uses the minimum
stage FSR may be developed.

The synthesis of maximum transient FSRs is first presented in § 2. Section 3 introduces the

theory of indirect synthesis, and the algorithm and an example are presented in § 4 and § 5.
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2. Synthesis of Maximum Transient Feedback Shift Registers

A non-linear FSR of n stages is shown in Fig. 1.

Feedback Logic flx, x,, ==, X, )

Fig.1 General forms of FSRs

Any FSR may be viewed as a [inite state machine (FSM). Let the present state of an FSM be
S=(xysx15***»x, 1); then from Fig. 1 its next state may be represented S'= (2’ ,2"1 s ++*,2’, 1) may
be represented as follows

S'=T(S)= (a1 sy s, 1+ [(Xg 21522, 1)) D)
where T denotes a next-state operator. f is the feedback function, and x;, f & (0, 1) with i=0,
1, n—1.

The state graph of maximum transient. FSRs is a maximum single tree of length 2" which
contains all the 2" distinct states of FSRs of n stages. Before we give the synthesis of maximum
transient FSRs, the following two lemmas must be introduced.

Lemma 1
The possible successors of state (xy, x;...,x, ) are the states
(s s sx,1+0) or (T sxys sy 1).
This is easily proved from (4) and Fig. 1 by using f=0 or 1. For example
TC0,0,xwex ,0,0)=0(0,0,%e-- 50,0) or (0,0,eee+ ,0,1) (5)
T(1,0, 00000 ,0.0)=1C(0,0,=e-- ,0,0) or (0,0,eeex" .0.1D) (6)
Lemma 2

If ple)=1+a,x+aa*+ -+ a,x" with ¢, =1 is a primitive polynomial of degree n over

GF(2), then the linear FSR with feedback function
p(xysxr s sx, ) =a,x0Pa, 2B Pa,x, 7)
is a primitive linear FSR of order n (@ denotes modulo-2 addition).

The proof of this lemma was given by Stone (1974). A primitive LFSR has two cycles in its
state graph: all the non-zero states on a pure cycle of length (2"—1), and the state 0 forms a pure
cycle of length 1. No branch is in the state graph (see Fig. 2). A large class of feedback functions

for maximum transient FSRs may be derived from primitive linear FSRs by the following theorem.
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(00+++01)

______________________________________ O (00--00)
(10++00) @

Fig.2 Primitive linear FSRs

Theorem 1
If ple)=1+axta,x*++++a,x" is a primitive polynomial over GF(2), where ¢, =1 and
a,€(0,1) with i =1, 2, +=+, n; then a large class of maximum transient FSRs may be obtained
as follows
S g sy sy ) =acxe@a, 111D Da,x, Dxoaxs -z, 1 (8)
Proof
Since p(x) is a primitive polynomial of degree n over GF(2), from Lemma 2 the linear FSR
with feedback function p(x,s xy,*, x,—-1) is a primitive linear FSR. The state 0 forms a pure cycle
of length 1. Its predecessor is only itself, From (6), the successor of the state (1,0,...,0) must be

(0, 0,..,1), say, 2/, 1=1. From (4) we have

p(1,0,++,0,00=1 9
Since
- 1 only for xy=1, and 2, =z, =++=2x, =0
IOII...IH:{ | (10)
0 otherwise

Eqn. (8) becomes as follows
0 for zo=1, and &, =x, ==z, , =0
SCrosxy sy, )= . 11
p(I()917] 9"'31',,7]> OtherWlSG
The large cycle in the state graph of the primitive linear FSR is broken at point B (Fig. 2), and
the state (1,0, ++,0,0) is connected to the state (0, 0,++,0, 0); all the other states form a

maximum single tree.
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Table 1 The state table of the example in § 2

S X0 x k) X f(xo sy yx5 5 23) R z 2, 2’y s’
S, 0 0 0 0 0 0 0 0 0 So
S 0 0 0 1 1 0 0 1 1 S;
S, 0 0 1 0 0 0 1 0 0 Si
S; 0 0 1 1 1 0 1 1 1 S;
S, 0 1 0 0 0 1 0 0 0 Ss
S 0 1 0 1 1 1 0 1 1 Si
Se 0 1 1 0 0 1 1 0 0 Sz
S; 0 1 1 1 1 1 1 1 1 S

Ss 1 0 0 0 0 0 0 0 0 So
Sy 1 0 0 1 0 0 0 1 0 S

Sio 1 0 1 0 1 0 1 0 1 Ss
S, 1 0 1 | 0 0 1 | 0 S,
St 1 1 0 0 1 1 0 0 1 So
Si; 1 1 0 1 0 1 0 1 0 Sio
S 1 1 1 0 1 1 1 0 1 S,

Sis 1 1 1 1 0 1 1 1 0 S

For example, the primitive polynomial of degree 4 over GF(2) is given by
plo)=1+a+z
Then the following feedback function
f(xgsay yxs s03) :1'0@1'3@1'0;] ;2;3
generates a maximum transient FSR of 4 stages. its state table and state graph being as shown in

Table 1 and Fig. 3 respectively.

(0001)

Fig.3 Example of stable maximum length FSRs
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A large class of feedback functions of maximum transient FSRs is shown in the Appendix.

3. Indirect Synthesis of Stable Binary Sequences

The above section has shown a method for the synthesis of maximum transient FSRs. The
maximum transient FSR is the minimum stage FSR for generating stable sequences of length 2". All
the 2" states of maximum transient FSRs form a maximum single tree. An important property of a
maximum transient FSR is that each of its 2" states appears once and only once in the state graph.
Therefore a maximum transient FSR may be employed as a field clement generator; any stable
sequences of length less than 2" may be generated by means of maximum transient FSRs and an

output logic as shown in Fig. 4.

Qutput

T

Output mapping glx,, x. . x,_)

A

v

Feedback Function flx,, x, -, x, )

Fig. 4 FSRs with output mapping

Theorem 2
If a stable binary sequence of length ¢ is as follows
dosdi s ad, 50,0, a2z
where d. € (0,1) withi=0,1,*+,(¢g—1); and a maximum transient sequence of length 2" (2" ' < ¢<<C
2") is as follows
CosCrstttaCyn—150,0,0,° (13)
where ¢; € (0,1) with i=0,1,++-,(2"—1); then the stable sequence (12) may be generated by using

the following output mapping logic

1l
(g a1 s sa,) = > dk;f T e k! (14
£=0
where
jfj for ¢cprj1 =1
i =L
11‘/ for Crtj—1 =0
7=1,2,n (15)
Proof

From (4), the state s, of maximum transient FSRs may be expressed by
-Sk:(('k’ck+17'."CkA7; 1) (16)
where £=0,1,:+,(2"—1). Because a maximum transient FSR is stable, its last state (k=2"—1) is

the O state and forms a cycle of length 1

53



Footprints in Cambridge Aviation Industries of China

-‘2"*1:(()’09"’90) and com =0 17)

and

T(Osoa'"so):(osoa"'vo) (18)
Since the 2" states of maximum transient FSRs are distinct, a truth table of (n+1) columns and

2" rows (Table 2) can be set up from the sequences (12) and (13).

Table 2 The truth table of output mapping

Lo Ea Tn—1
Co & o Ca—1 d,
Cy Cy Cy dl
Cq—1 Cq Cqtn—2 dq—l
Cq Coti Cotn1 0
Co —» 0 0 0
0 0 0 0

As 2" sets of variables (xys2,,**»2, 1) and distinct in Table 2, so the combination function
g(xy,xy 52, 1) can be uniquely determined from the table in tho form of (14). From the last row

of Table 2, it follows that g(0, 0,...,0)=0. So, from (18), the output of g is stable,

4. Algorithm

The proof of Theorem 2 also presented a procedure for generating a stable binary sequence from
a maximum transient FSR. If a stable binary sequence of length ¢ is given by (12), then the
algorithm for indirect synthesis of the required sequence from a maximum transient FSR is as
follows.

Step 1. Choose n such that

2t <lg=2r 19
Step 2. Choose a primitive polynomial p(x) of degree n over GF(2)
p(o)=1%a xtayx’+++a,x" (20)
Step 3. Design a maximum transient FSR with feedback function f as follows
F(zysxr sz, ) =axo@Da, 111D Darx, Doz -z 2D
Step 4. Generate the output sequence of the maximum transient FSR
CosCratsCon—550,0,0,°° (22)

Step 5. Construct a truth table of an output mapping function from the sequences (12) and (22);

design the output mapping function g as follows
—1

(o xi s sx, 1) = X dpxi xit e ape (23)
E=0

The flow chart of this indirect algorithm is shown in Fig. 5.
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Choose n such chat
2 g2t

Choose primitive Polynomial p(x)

Construct a Maximum Transient FSR
with Feedback Function /

Generate Maximum Transient
Sequence ¢,,c),**-,¢,,,0,0,0,

Design the output Logic g in Eqn.(23)

Fig. 5 Flow chart of indirect algorithm

5. Example

Consider a stable binary sequence of length 15 as follows
1000,0000,0000,0010,000---
where d,=d,, =1 and d,=d,=++=d,; =0.
Step 1. Choose n=4, as 2°<C 15<C2".
Step 2. Choose a primitive polynomial of degree 4 over GF(2) as follows
plo)=1+a+z
Step 3. From Theorem 1, design a maximum transient FSR with the feedback function
f(xosxy 20 s23) =2,@Dx; Do) 2525
Step 4. The output sequence of the above maximum transient FSR is
0001,1110,1011,0010,000 ---
Step 5. As d,=d,;=1. the corresponding sets s,=(0 0 0 1) and s,,=(1 0 0 0).
From Theorem 2, the required sequence may be obtained from the following output mapping

gy 21 s 20 s 03) =2y 2 Py 25205
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6. Discussion and Conclusions

The indirect synthesis of stable binary sequences uses a maximum transient FSR which
possesses a minimum of n stages, so it requires the least number of binary memory elements.
However, it needs more logic to realize the output mapping, which increases the complexity of the
circuits. The direct synthesis of stable sequences need not have any output mapping, but it usually
requires more stages than the indirect method. The optimum synthesis may be a compromise.

We have seen that any stable binary sequences may be indirectly generated from a maximum
transient FSR by means of an output mapping. Maximum transient FSRs which possess the

minimum number of stages can be obtained from primitive linear FSRs.

Appendix

Feedback functions of maximum transient FSRs

n Feedback functions f(x,,x; 5 s2,-1) Length
1

2 I\>®11®1<7;1 4

3 0P, Dy 120 8

1 ~Tx>®73®«1'o;|;2;3 16

5 10@1’%@1’@;1;2;3;1 32

6 Xo @fs @«To;l ;2 ;3;1;3 64

7 xoPxs @1'<7;1;2;3;1;2;e 128
8 Lo @ll @13 @Is @10;1 71 ;271 ;2 ;5 ;7 256

9 J‘(»(‘BIS @«T<>;|;2;3;\;3;6;7;3 512
10 20D Dy 11 20 X5 24 15 T4 17 T T 1024
11 J‘m@1”9@«To;l;2;3;4;3;6;7;3;9;10 2048
12 20D as Dy Dy Do 2 x5 25 24 27 26 17 25 01 L1021 1096
13 1'0@1'9(91'10 @1'11 @1'0;1 ;2;3;0;3;6;7231'1;10;'11;12 8192
14 IU®I‘)®~T]]@IHGBIU;]EZEKEI;B;G;7;8;I;M;]I;l2;].5 16384
15 1'0@1'“@1'@;1;2;'3;1;3;6;7;}5;9;10;11;12;13511 32768
16 1‘1)@-1'11@-Ivl"i@»l‘ll@f();] ;2;3;1;3;(;;735;1;1(\;11;12113;11;13 65536
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A systematic study for representing a finite state machine as a polynomial over Galois Field is
presented. A Discrete Fourier Transform method is developed for computing the coefficients of
polynomials. The representation of the machines which inputs and outputs possess different word
lengths is presented. The cyclic subgroup property of the polynomial coefficients is revealed. This
property considerably reduces the amount of computation. The conversion between one and multiple-
variable machines is discussed. The Ring-Sum representation and Fast Reed-Muller Transformation

are also discussed.

1. Introduction

1.1 Finite State Machine

A finite state machine is a mathematical model of sequential systems. It comprises a finite input
set Ue (U, U, 4+ ,Uw”fl ). a finite output set YE (Y, ,Y, , - ’Y'\"y*‘ ), a finite state SE (S, ,S; .+,
Sx,—1) set and two mappings f and g defined by 2!

s =L (1a)
y=g(su) (1b)

where u€ U, y€ Y and s& S are respectively the input, output and present state of systems at the nth

|

clock instant. s"€ S denotes the state at the (n+1)th clock instant and is named the next state, The

mapping f maps the present state s and the input « into the next state s, it is called the next state

mapping. g is referred to as the output mapping which produces the present output y from only the

present state S. This model is called the Moore model. Another finite state machine model is the

Mealy model which produces the output y from both the present state s and the input u as follows.
y=gCsu

It has been proved that any Mealy model machine is equivalent to a Moore machine. The Moore

machine might need more states than the Mealy machine for performing the same computation‘?"”,

*  Published in Cambridge University Engineering Department CUED/B-Elect/ TRTO, 1984 :1-44.
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Galois Field Representation of Finite State Machines

Because we are particularly interested in the next-state behaviour of machines, it is convenient to use
the model with the simplest possible output functions. Therefor