l‘)

Check for
updates

Android Malware Detection Method
Based on App-Image Conversion

Nannan Xie', Hongpeng Bai'®), Yanfeng Shi?, and Haiwei Wu'!

! Changchun University of Science and Technology, Changchun 130022, China
2018100597@mails.cust.edu.cn
2 School of Computer Engineering, Nanjing Institute of Technology,
Nanjing 211167, China

Abstract. With the rapid development of mobile internet, Android has
become the most widely used mobile terminal operating system and play
an increasingly important role in users’ lives. However, Android malware
is also bringing privacy leaks and security threats that are causing trou-
bles to third-party markets and users. What’s more, malware uses code
obfuscation and camouflage to hide itself to avoid detection. Traditional
malware detection techniques based on machine learning and feature
matching are usually difficult to deal with this type of malware. Consider-
ing about this problem, an Android malware detection method based on
app-image conversion is proposed, which maps the Android installation
files to grayscale images, and employs the deep learning algorithm, CNN
(Convolutional Neural Networks), for malware detection. A detection
framework for Android malware is presented, which includes three parts:
data set construction, app-image conversion, and deep learning detec-
tion. In the experiments, the parameters of CNN are determined through
comparative analysis. It achieves the detection accuracy of 95.23%, which
shows the effectiveness and feasibility of the proposed method.

Keywords: Android malware - Grayscale image + Deep learning *
Convolutional Neural Networks

1 Introduction

The openness and freedom of the Android operating system allow developers
all over the world to conduct secondary development and upload their own
applications to the application markets. These features have promoted the rapid
growth of Android applications, but they have also led to the spread of mali-
cious applications. For example, the Android malware family DroidKungFu [6],
which appeared in 2011, is a typical Trojan horse with many variants. It opens
the system back door to remotely access the infected mobile phone and uses the
system vulnerability to root the system. The common functions of DroidKungFu
include to execute file delete commands, execute web page opening commands,
download other apks, open URLs, and start other programs. These malicious
behaviors have caused serious economic losses and privacy leaks.

© Springer Nature Singapore Pte Ltd. 2021
Y. Tian et al. (Eds.): ICBDS 2020, CCIS 1415, pp. 60-74, 2021.
https://doi.org/10.1007/978-981-16-3150-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3150-4_6&domain=pdf
https://doi.org/10.1007/978-981-16-3150-4_6

Android Malware Detection Method Based on App-Image Conversion 61

Smartphones with Android operating system accounted for 87% of global
smartphone sales in 2019 [10]. Malware is becoming an important threat to
privacy protection and network security. Kaspersky pointed out in the analysis
report on the evolution of mobile malware [11], attacks on personal data have
become frequent in 2019 with more Trojan horse attacks. From 2018 to 2019,
the number of attacks of personal data on mobile devices increased by 50%.
Public security incidents caused by mobile terminal security issues are appearing
from time to time. For example, the positioning function leaks mobile phone
location information, applications collect user information without notification,
free wireless connection stealing device data, which resulting in the leakage of
sensitive information and have caused serious security risks to social public safety
and individuals’ privacy. Therefore, how to detect malicious software efficiently
and deal with malicious behaviors timely are still the problems that need to be
solved urgently.

In the academic and industrial practice, the current Android malware detec-
tion methods mainly include rule matching and active detection. Rule matching
detects the maliciousness of an application by matching its signatures with the
rule base, and the rule base is maintained and updated on time. This method
detects quickly but is difficult to detect new emerging malware. The active detec-
tion has high detection accuracy and can deal with unprecedented attacks by
using unsupervised algorithms. Static or dynamic features are extracted, such as
permissions, API calls, component information, and machine learning or other
algorithms are employed to classify the malware and benign applications. There
are many existing Android malware detection techniques and detection engines.
However, due to the limitations of technology and regional cultures, the rele-
vant researchers and security companies of malware detection have difficulty to
share the detection results. Therefore, it is necessary to study fast and efficient
detection methods.

CNN is the most widely used deep learning method with a wide range of
applications in image processing since 2010. Its key concepts are “local receptive
fields” and “shared weights and biases”. The CNN algorithm is based on the
correlation between local pixels, so the local receptive fields can be used to reduce
the processed feature dimensionality and build high-level features, which make
CNN more suitable for processing related features than independent features.

In this work, we propose an Android malware detection framework based
on app-image conversion. The installation apk files of Android applications are
converted into grayscale images in binary form, and then we employ CNN to
classify the images to detect malicious applications. The theoretical basis of
this method is that malware and normal applications have different behaviors
in different classes while have similarities in the same class, and the grayscale
images can reflect the difference between malware and normal applications to a
certain extent. In addition, the detection method based on image classification
try to solve the problem of malicious code deformation and confusion caused by
code obfuscation and camouflage.

62 N. Xie et al.

2 Related Work

2.1 Android Malware and Detection

As the most widely used mobile terminal system, in order to improve the secu-
rity and deal with the problems caused by malware attacks, Android itself has
three security mechanisms: program sandbox, software signature, and permis-
sion management. However, malware can bypass these security mechanisms to a
certain extent by increasing code obfuscation, encrypting malicious payloads, or
conducting secret commands communicates with remote servers, which increas-
ing the difficulty of malware detection.

Android malware refers to applications developed for malicious purpose based
on Android and circulating in the application markets. The malicious behaviors
mainly include the following 6 types.

(1) Malicious deduction. It refers to the automatic deduction of fees without
permission. For example, some applications automatically purchase paid
services without notifying the user and deduct the fees from the user’s phone
account.

(2) Privacy theft. The application contains code to collect sensitive data, such as
call records, contact information, location information, even account pass-
words, and upload them to a remote server or analyze them.

(3) Traffic data consumption. The application opens network download services
in the background, which consumes data traffic and causes direct economic
losses.

(4) Remote control. This kind of malicious application remotely controls the
device and conducts remote operations, such as calling the camera to take
pictures and upload them to a remote server.

(5) System damage. These applications delete important system files and mali-
ciously occupy system resources, such as CPU computing resources or mem-
ory resources, which cause the system to fail to operate normally.

(6) Other behaviors. There are some other malicious behaviors, and new mal-
ware has emerged over time. For example, some applications bundle the
installation of applications or automatically perform certain or illegal oper-
ations, such as playing audio. Although they do not directly damage the
system, they cause confusion to users.

Android malware detection technologies mainly include static detection and
dynamic detection. Static detection constructs the feature set by extracting fea-
tures from system files or sentence sequences without running the source code,
and use feature matching or machine learning methods to detect the malicious-
ness [23]. The advantages of the static detection are that it can cover the entire
code and is suitable for large-scale detection, but the disadvantage is that the
real operating environment cannot be simulated, so it is difficult to detect some
specific behaviors. There are many studies on static methods, such as malware
detection with permission features [7], behavior analysis with opcode [24], and
detection with combined features of permissions and API calls [9].

Android Malware Detection Method Based on App-Image Conversion 63

Dynamic detection methods run the Android application in a sandbox or vir-
tual environment and judge whether the application is malicious by monitoring
the behaviors. This method is more practical and has a higher detection accu-
racy since it can simulate real running environment. Because techniques such as
repacking, obfuscation, and encryption will not change the actual running behav-
iors of the application, dynamic method can effectively deal with the variants
of malicious applications. However, dynamic detection has the disadvantage of
large resource consumption. Since all working paths and functions of the appli-
cation must be executed, the operation of the simulation program requires a lot
of time and space.

A typical dynamic detection research is TaintDroid, which is a dynamic tool
based on the detection of sensitive data flow paths in a sandbox environment [5].
By analyzing user-related activities to determine whether the user operation is an
active behavior or passive one, RansomeProber [3] detected malicious behaviors
in real time. In addition, Cai et al. proposed Droidcat [1], which detected the
behavior of malware from the app-level, and used a combination of multiple
dynamic features based on method calls and communication intentions between
components to determine the maliciousness.

In addition to be used in feature matching, the features extracted by static
and dynamic methods can be processed by machine learning algorithms. Machine
learning algorithms, especially which based on probability statics and neural net-
works, are the most widely used detection methods. Probabilistic models rep-
resented by Naive Bayes have many practical applications, such as risk assess-
ment of Android software through probability generation models [22], and con-
struct probability discriminant models of permission features for malware detec-
tion [21].

Statistical machine learning algorithms represented by SVM and KNN are
widely used because of their high accuracy and mature development. For exam-
ple, Mu et al. [26] used SVM as a classifier to analyze malware risks intro-
duced by permission features. Since a single algorithm has disadvantages, there
are also researches that combine different algorithms to improve the detection
result [15]. Probabilistic statistical methods have some limitations, for example,
high dimensional features will take more running time and computational space.
Therefore, some research combined feature selection, feature extraction or other
feature dimensionality reduction methods with classification techniques, in order
to achieve the balance of detection effect and detection consumption. In recent
years, deep learning methods have made good attempts in this field. The cor-
relations between Android applications are the theoretical basis for using deep
learning in malware detection. Hao et al. [17] used CNN to process the extracted
opcodes, while Lei et al. [2] employed Deep Belief Network to analyze multiple
kinds of features.

Due to the openness of the Android system, any organizations and indi-
viduals can carry out secondary development. Malware developers may evade
the detection by repackaging, resigning, and obfuscating the codes. At present,
the researchers are taking attentions to the new techniques, such as knowledge

64 N. Xie et al.

graphs, artificial intelligence, to improve detection performance. In the indus-
try, with the continuous emergence of new malware, it is important to develop
detection systems with high accuracy and low consumption.

2.2 Grayscale Image and Android Malware

Grayscale image has only one sampled color per pixel and displays from the
darkest black to the brightest white, with multiple levels of color depth between
black and white. A complete image is usually composed of three channels of
red, green, and blue, with different gray scales, which can be used to express
the proportion of the three colors in the image. Grayscale image reduces the
amount of original image information, but it still retains important features of
the original image for processing.

There are studies attempt to combine Android malware detection with visu-
alization, such as Android malware binary file analysis based on visualization
methods. The theoretical basis of these research is that most variants of mal-
ware are generated by using automated techniques or reusing some important
modules, so they have similarities in the binary codes.

In 2011, NATARAJ et al. [16] proposed a method to visualize and classify
malware by image processing. Later, researchers tried different methods to visu-
alize and detect malware, which include the method that transformed malware
into images by direct conversion and opcode conversion [27]. Direct conversion
is to convert the PE file of the malware into binary codes, and then generate the
malware image from the binary codes, which are converted into grayscale and
RGB. Opcode conversion decompiles the installation file to obtain the operation
codes at first, and then the operation codes are selected and converted into a
malware image. Fu et al. [8] proposed a method to convert malware into RGB
color images to solve the problem of insufficient information in gray images.
Zhang et al. [25] converted the opcodes into an image and achieved a better
malware detection effect. Similarly to traditional malware detection, Android
malicious behaviors have certain regularity, which can be distinguished from the
perspective of images during the visualization process.

2.3 Convolutional Neural Networks

CNN is a deep learning algorithm with a multi-layer structure, and its related
research was proposed in 1989 [12]. In the 1980s and 1990s, some researchers
published related work on CNN and achieved good recognition results in sev-
eral pattern recognitions and handwritten digit recognitions [13]. Utile 2012,
Krizhevsky et al. used the extended depth CNN and achieved the best classifi-
cation effect in the ImageNet Large Scale Visual Recognition Challenge, which
make CNN to attract growing attentions. In addition, many other algorithms
have emerged in deep learning, including denoising autoencoders [19], DCN [4],
and sumproduct [18].

CNN is composed of input layer, convolutional layer, pooling layer, and fully
connected layer. It is based on multilayer neural network structure and constructs

Android Malware Detection Method Based on App-Image Conversion 65

high level abstract features by learning the original features. CNN extracts fea-
tures from the input data layer by layer. After the data being operated by convo-
lution, pooling, activation function mapping, it finally realizes the classification.
The 4 layers are described as following.

(1) Convolutional layer. Through the convolution operation, the convolution
kernel is used to extract the features in the local area. It uses a sliding
window to extract features from the image to obtain the local information
of the overall data. The size of the convolution kernel is the main parameter
in this layer.

(2) Pooling layer. It performs dimensionality reduction of the up layer, and it
controls the over-fitting of the model to a certain extent and optimizes the
entire network. The pooling window size is the main parameter.

(3) Fully connected layer. This layer maps the features learned by the model to
the classification space. In image processing, the neurons of the input are
connected to the neurons of the output, and the input is the stitching of the
feature maps.

(4) Activation function. The features of activated neurons are preserved and
mapped out to enhance the nonlinear characteristics of convolutional neural
networks. The common activation functions include Sigmoid and ReLU.

One of the characteristics of CNN is the introduction of “local perception”
and “weight sharing” concepts. Local perception is a learning method that
extends from local feature learning to global learning, which divides the image
into several regions. Since the local features of the image are relatively stable, the
overall information can be obtained after the local information is summarized.
Thus, the number of connections between neurons can be greatly reduced, in
other words, the model parameters are reduced. Weight sharing means to that
all convolution kernels in the same layer use the same convolution kernel weights,
with the purpose to effectively reduce the number of parameters required in the
model training. The basic process of CNN is shown in Fig. 1.

Convolution operation Pooling operation Full connected operation Classification

—| = =]]

Convolution Pooling
kernel kernel

Fig. 1. Convolution Neural Networks structure.

The applications of CNN in the network security have gradually increased
in recent years. Wang et al. [20] presented a hybrid Android malware detection

66 N. Xie et al.

model based on deep autoencoder and CNN, which effectively reduced the run-
ning time of the algorithm while improving the detection accuracy. Li et al. [14]
proposed an Android malware detection system, which employed optimized
deep Convolutional Neural Network to learn from opcode sequences. CNN is
mainly employed in Android malware detection to process the extracted static
or dynamic features. Considering that CNN has advantages in processing images,
we employs CNN to process the converted grayscale images to achieve the mal-
ware detection in this work.

3 Malware Detection Based on App-Image Conversion

3.1 Malware Detection Framework

The proposed Android malware detection method is to convert binary Android
application installation files into grayscale images, and then classify them by
CNN. The detection framework is in Fig. 2, which includes data set construction,
app-image conversion, and CNN detection.

Malware detection

N A A

CNN
detection
Training models Parameters selection
T =
Training sample images Testing sample images
¥ 5
Grayscale images
App-image T
conversion
App-image conversion
’ Android apk files ‘
2
B
s Sample e SO
Normal applications — A «— Malicious applications
labeling
Data set
construction T T
Third-party markets Open source data base

Fig. 2. Malware detection framework.

Android Malware Detection Method Based on App-Image Conversion 67

(1) Data set construction. The data set includes malicious samples and normal
samples. The normal samples are collected from third-party markets, and
the malicious samples come from public virus databases. The constructed
data set is used to train and test CNN. In order to ensure the label purity and
classification accuracy, the applications obtained are scanned by VirusTotal,
the open source malware detection tool, to label the samples as accurate as
possible.

(2) App-image conversion. The main work of this step is to convert the collected
normal samples and malicious samples to grayscale images. At first, the apk
file is read as a binary file, and then the binary file is mapped to a grayscale
image. The pixels in the image represent the original Android sample.

(3) Malware detection. The Android application data set constructed above is
divided into training samples and testing samples. The converted images are
used to train the CNN model and test the classification results. In this pro-
cess, the parameters of the model are selected, and we use the test samples
to evaluate the malware detection results.

3.2 Grayscale Image Conversion

The process of grayscale image conversion adopts the function in the OpenCV
library, which is an open source computer vision library that contains hundreds
of computer vision algorithms of image processing. The steps of conversion are
as following.

(1) The apk installation file of the Android application is read in a binary for-
mat. Every 8 bits are treated as an unsigned integer.

(2) By setting a fixed line width in advance, the binary file is converted into a
two-dimensional array, and the value range of each element in the array is
in [0,255].

(3) In the single channel image processing, “0” represents black and “255” rep-
resents white. The value in the array is used as the value of each pixel to
generate a grayscale image. A part of the generated grayscale image is shown
in Fig. 3.

4 Experiments

4.1 Environment and Data Set

The experimental part discusses the three parameters of CNN: batch size, convo-
lution kernel size, and the number of hidden layers, and finally achieves malware
detection according to the selected parameters.

The configurations used in this experiment are: Linux system, Intel Core
Processor 2.4 GHz CPU, 4 GB memory, 80G hard disk, and the deep learning
framework is TensorFlow-cpu 1.7.0. The data set contains 533 malware and 561

68 N. Xie et al.

Fig. 3. Grayscale image generated by binary file (partial).

normal applications with a total of 1094 samples. The following experiments
adopt five-fold cross validation.

We use accuracy to evaluate the classification results. Set P denotes the
number of positive samples and N denotes the negative samples. Define the
following 4 parameters: (1) TP (True Positives): the number of samples that are
correctly divided into positive samples. (2) FP (False Positives): the number of
samples that are wrongly divided into positive samples. (3) FN (False Negatives):
the number of samples that are wrongly divided into negative samples. (4) TN
(True Negatives): the number of samples that are correctly divided into negative
samples.

The accuracy is defined as: Accuracy =(TP + TN)/(P + N). The higher the
accuracy, the better the classification effect.

4.2 Parameters of CNN

CNN needs several parameters during its execution. These parameters are related
to the actual data set and operating environment. In practical, there is no effec-
tive and unified method for specific data set and environment, and experiments
are usually needed to find proper parameters. Three parameters are mainly con-
sidered in the following experiments: batch size, convolution kernel size, and
hidden layer.

(1) Batch size

Batch size is an important learning parameter in machine learning. In the gra-
dient algorithm, increasing batch size within a reasonable range can improve

Android Malware Detection Method Based on App-Image Conversion 69

memory utilization. It reduces the algorithm iterations, speeds up the process-
ing of the data, and can determine the directions of decline. But the choice of
batch size is not as large as possible. When it is too large, because the number
of iterations required is too small, the time spend will increase greatly. Reason-
able batch size selection is related to the format and quantity of data, and it is
usually determined by expert experience.

In this experiment, the values of batch size are set to 10, 20, 30, 40, and
the numbers of training iteration are set to 500, 1000, 2000. The experimental
results are shown in Table 1 and Fig. 4.

Table 1. Training accuracy of different batch sizes

Group No. | Batch size | 500 iterations | 1000 iterations | 2000 iterations
1 10 59.90% 54.53% 58.99%
2 20 55.00% 59.50% 79.00%
3 30 56.74% 59.97% 82.03%
4 40 56.49% 60.04% 82.60%
5 50 56.38% 59.99% 82.58%

100%
mmm 500 iteration

= 1000 iteration

=== 2000 iteration
80%

60%

40%

20%

0%
° batch_sizes=10 batch_sizes=20 batch_sizes=30 batch_sizes=40 batch_sizes=50

Fig. 4. Training accuracy of different batch sizes.

It can be seen from Fig.4 that when the batch size is small, it may be
insufficient training and is difficult to achieve the satisfied effect. With the batch
size increasing, the improvement of accuracy is slowing down. When training
2000 iterations, batch size equals to 30 and 40, the training accuracy is 82.03%
and 82.60%, and the test accuracy is 83.10% and 83.83%. When the value is 50,
the accuracy drops slightly. Therefore, in the subsequent experiments, batch size
is selected as 40, and the iteration is set to 2000.

70 N. Xie et al.

(2) Convolution kernel size

The size of the convolution kernel is another key parameter of CNN. Set 5 groups
of convolution kernels: 3*3,5*5,9*9, 11*11, 15* 15, and the training accuracy
and test accuracy are shown in Table2 and Fig. 5.

Table 2. Accuracy of different convolution kernel sizes

Group No. | Kernel size | Training accuracy | Test accuracy
1 3*3 80.56% 55.23%
2 5%5 83.25% 55.40%
3 9*9 83.00% 63.12%
4 11*11 86.99% 94.88%
5 15*15 88.50% 44.30%

100%

W Training accuracy
mmm Test accuracy

80%
60%
40%
20%
0% 3*3 5*5 9*9

11*11 15*15

Fig. 5. Accuracy of different convolution kernel sizes.

From Table 2, we can see that as the convolution kernel size increases, the
accuracy of training is gradually increasing, and the accuracy of testing also
shows the same trend. However, when the convolution kernel is 15*15, the test
accuracy is significantly reduce. Therefore, for the data set of this experiment,
the convolution kernel of 11*11 achieves relatively best result.

(3) Hidden layers

A typical characteristic of deep learning is the multi-layer neural network, which
can provide high level abstraction of data features. A hidden layer includes a
convolutional layer and a pooling layer as in Fig. 1. The following 5 groups of

Android Malware Detection Method Based on App-Image Conversion 71

experiments are set with the hidden layers of 1,2,3,4,5, and with the same of
pooling layers. “lc-1p” refers to “1 convolution layer and 1 pooling layer”. The
experimental results are shown in Table 3 and Fig. 6.

Table 3. Accuracy of different hidden layers

Group No. | Hidden layers | Training accuracy | Test accuracy
1 le-1p 85.02% 61.87%
2 2¢-2p 86.99% 84.17%
3 3c-3p 87.54% 94.88%
4 4c-4p 87.62% 95.12%
5 5¢c-5p 87.68% 95.23%
100%

B Training accuracy
mm Test accuracy

80%

60%

40%

20%

0% lc-1p 2c-2p 3c-3p 4c-4p 5¢-5p

Fig. 6. Accuracy of different hidden layers.

With the number of hidden layers increasing, the training accuracy and test
accuracy are both rising. However, when the number of hidden layers increases
from 3 to 5, the accuracy increasing tends to be flat, reaching a relatively sim-
ilar accuracy. When the hidden layer is 5, the highest test accuracy of 95.23%
is achieved. However, as the hidden layer increases, the time consumption is
increasing significantly. Therefore, the accuracy and time consumption need to
be balanced in practical application.

72 N. Xie et al.

5 Conclusion

Android malware detection is not only for the safety of the third-party appli-
cation markets, but also for the safety of individual users who download and
install the applications. With the continuous emergence of new malicious appli-
cations and the continuous updating of malicious code camouflage and obfusca-
tion, Android malware detection is the main technology to ensure security.

An Android malware detection framework based on app-image conversion is
presented in this work. It focuses on mapping the installation files of Android
applications to grayscale images in binary form, and then classify the images by
CNN. This method can solve the problem of malicious code deformation and
confusion to a certain extent.

The experiments compare and select three parameters of CNN: batch size,
convolution kernel size, and the number of hidden layers. By the constructed data
set, the proposed method finally achieves a classification accuracy of 95.23%,
which shows the effectiveness and feasibility of the presented method. In the
future work, we will apply the proposed method to specific types of malware
detection, especially malware with disguise and confusion, to verify the effec-
tiveness and scalability if the method.

Acknowledgments. This work was supported in part by the 13th Five-Year Sci-
ence and Technology Research Project of the Education Department of Jilin Province
under Grant No. JJKH20200794KJ, the Innovation Fund of Changchun University of
Science and Technology under Grant No. XJJLG-2018-09, the fund of Key Laboratory
of Symbolic Computation and Knowledge Engineering of Ministry of Education (Jilin
University) under Grant No. 93K172018K05.

References

1. Cai, H., Meng, N., Ryder, B., Yao, D.: Droidcat: effective android malware detec-
tion and categorization via app-level profiling. IEEE Trans. Inf. Foren. Secur.
14(6), 1455-1470 (2018)

2. Cen, L., Gates, C.S., Si, L., Li, N.: A probabilistic discriminative model for android
malware detection with decompiled source code. IEEE Trans. Dependable Secur.
Comput. 12(4), 400-412 (2014)

3. Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., Ahn, G.J.: Uncovering the face of
android Ransomware: characterization and real-time detection. IEEE Trans. Inf.
Foren. Secur. 13(5), 1286-1300 (2017)

4. Deng, L., Yu, D.: Deep convex net: A scalable architecture for speech pattern
classification. In: Twelfth Annual Conference of the International Speech Commu-
nication Association (2011)

5. Enck, W, et al.: Taintdroid: an information-flow tracking system for realtime pri-
vacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 1-29
(2014)

6. F-Secure: Trojan: andriod/droidkungfu.c. [EB/OL] (2020). https://www.f-secure.
com/vdescs/trojan_android_droidkungfu_c.shtml

7. Fang, Z., Permission based android security: Permission based Android security:
issues and countermeasures. Comput. Secur. 43, 205-218 (2014)

https://www.f-secure.com/vdescs/trojan_android_droidkungfu_c.shtml
https://www.f-secure.com/vdescs/trojan_android_droidkungfu_c.shtml

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Android Malware Detection Method Based on App-Image Conversion 73

Fu, J., Xue, J., Wang, Y., Liu, Z., Shan, C.: Malware visualization for fine-grained
classification. IEEE Access 6, 14510-14523 (2018)

Hou, S., Ye, Y., Song, Y., Abdulhayoglu, M.: Hindroid: an intelligent android
malware detection system based on structured heterogeneous information network.
In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 15071515 (2017)

IDC: Smartphone challenges continue in 2019. [EB/OL] (2019). https://www.idc.
com/getdoc.jsp?containerld=prUsS45487719

Kaspersky: Mobile malware evolution 2019. [EB/OL] (2020). https://securelist.
com/mobile-malware-evolution-2019/96280

LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541-551 (1989)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278-2324 (1998)

Li, D., Zhao, L., Cheng, Q., Lu, N., Shi, W.: Opcode sequence analysis of android
malware by a convolutional neural network. Concurr. Comput. Pract. Exp. 32(18),
€5308 (2020)

McLaughlin, N., et al.: Deep android malware detection. In: Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy, pp.
301-308 (2017)

Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B.S.: Malware images: visu-
alization and automatic classification. In: Proceedings of the 8th International
Symposium on Visualization for Cyber Security, pp. 1-7 (2011)

Peng, H., et al.: Using probabilistic generative models for ranking risks of android
apps. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, pp. 241-252 (2012)

Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: 2011
IEEE International Conference on Computer Vision Workshops (ICCV Work-
shops), pp. 689-690. IEEE (2011)

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.:
Stacked denoising autoencoders: learning useful representations in a deep network
with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371-3408 (2010)
Wang, W., Zhao, M., Wang, J.: Effective android malware detection with a hybrid
model based on deep autoencoder and convolutional neural network. J. Ambi-
ent Intell. Humaniz. Comput. 10(8), 3035-3043 (2018). https://doi.org/10.1007/
$12652-018-0803-6

Wei, F., Roy, S., Ou, X.: Amandroid: a precise and general inter-component data
flow analysis framework for security vetting of android apps. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1329-1341 (2014)

Xu, K., Li, Y., Deng, R.H.: ICCDetector: ICC-based malware detection on android.
IEEE Trans. Inf. Foren. Secur. 11(6), 1252-1264 (2016)

Zhandi, W.: Research and application of Android malware detection based on deep
learning. Guizhou Normal University (2019)

Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F., Sangaiah, A.K.: Classifi-
cation of Ransomware families with machine learning based on n-gram of opcodes.
Fut. Gener. Comput. Syst. 90, 211-221 (2019)

Zhang, J., Qin, Z., Yin, H., Ou, L., Hu, Y.: IRMD: malware variant detection
using opcode image recognition. In: 2016 IEEE 22nd International Conference on
Parallel and Distributed Systems (ICPADS), pp. 1175-1180. IEEE (2016)

https://www.idc.com/getdoc.jsp?containerId=prUS45487719
https://www.idc.com/getdoc.jsp?containerId=prUS45487719
https://securelist.com/mobile-malware-evolution-2019/96280
https://securelist.com/mobile-malware-evolution-2019/96280
https://doi.org/10.1007/s12652-018-0803-6
https://doi.org/10.1007/s12652-018-0803-6

74

26.

27.

N. Xie et al.

Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware android malware classi-
fication using weighted contextual api dependency graphs. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pp.
1105-1116 (2014)

Zhang, J., Chen, B., Gu, L.: Research on malware detection technology based on
image analysis. Netinfo. Secur. 19(10), 24-31 (2019)

	Android Malware Detection Method Based on App-Image Conversion
	1 Introduction
	2 Related Work
	2.1 Android Malware and Detection
	2.2 Grayscale Image and Android Malware
	2.3 Convolutional Neural Networks

	3 Malware Detection Based on App-Image Conversion
	3.1 Malware Detection Framework
	3.2 Grayscale Image Conversion

	4 Experiments
	4.1 Environment and Data Set
	4.2 Parameters of CNN

	5 Conclusion
	References

