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Abstract. Due to the large-scale growth of data, the storage scale of data centers
is getting larger and larger. Hard disk is the main storage medium, once a failure
occurs, it will bring huge losses to users and enterprises. In order to improve the
reliability of storage systems, many machine learning methods have been widely
employed to predict hard disk failure in the past few decades. However, due to the
large number of different models of hard disks in the heterogeneous disk system,
traditional machine learning methods cannot build a general model. Inspired by
a DANN based unsupervised domain adaptation approach for image classifica-
tion, in this paper, we propose the DFPTL (Disk Failure Prediction via Transfer
Learning) approach, which introduce the DANN approach to predict failure in
heterogeneous disk systems by reducing the distribution differences between dif-
ferent models of disk datasets. This approach only needs unlabeled data (the target
domain) of a specific diskmodel and the labeled data (the source domain) collected
from a different disk model from the same manufacturer. Experimental results on
real-world datasets demonstrate that DFPTL can achieve adaptation effect in the
presence of domain shifts and outperform traditionalmachine learning algorithms.
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1 Introduction

The development of the Internet has brought about an explosive growth in the amount
of data, and the reliability of hard disks as the common and primary storage devices is
crucial. Because of the complex structure and huge volume of the storage system, hard
disk failures become the norm. However, due to the physical characteristics of the hard
disk, once the hard disk fails, it will often cause a relatively large accident, and at the
slightest degree, the data service provided by the data center is unavailable, and at the
worst, it may cause permanent loss of the stored data, causing huge losses to users and
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enterprises. Microsoft has made statistics on hardware failures in data center [1]. Of
these replacements failures, a majority (78%) were for hard disks, followed by a few
(5%) due to raid controller and even fewer (3%) due to memory. In a year, approximately
2.7% of hard drives in the data center have been replaced. Furthermore, the hard disk
as hardware, the longer it is used, the greater the probability of failure. Therefore, in
order to improve the reliability of the storage system, some fault tolerance mechanisms
have been adopted, which are mainly divided into passive fault tolerance and active fault
tolerance. Compared with the passive fault tolerance mechanism of copying and erasing
code, the advantage of active fault tolerance is that it can predict hard disk failure in
advance. So that users have sufficient time to take protectivemeasures, which can greatly
reduce the loss of enterprises and users.

The original active fault tolerance mechanism of hard disks was implemented by the
Self-Monitoring, Analysis and Reporting Technology (SMART) technology [2] built
into the hard disk by hard disk manufacturers. Through SMART technology, individual
hard disk can be monitored, and the collected information of each state attribute inside
the hard disk is compared with the predefined fault threshold, if any attribute value
exceeds its threshold, it will raise an alarm. However, this threshold-based detection
method can only achieve a failure detection rate of 3%–10% at most (that is, it can
predict 3%–10% of failed hard drives) with 0.1% false alarm rate [3, 4]. In order to solve
the problem of low accuracy of hard disk failure prediction, many supervised machine
learningmethods are widely used [5−12]. Thesemethods formulate the hard disk failure
prediction problem as a binary classification problem. Specifically, these approaches take
SMART attributes as input, and each hard disk is classified either as health or failure
by the trained classifier. But these methods usually assume that training data and test
data have the same distribution. The real storage systems consist of a large number of
different models of hard disks, which are called heterogeneous disk systems [13, 14].
The distributions of hard drives SMART attributes from different models are different,
so if the model trained with data from one model of hard drive is directly applied to
predict another different model of hard drive, the results are usually inaccurate.

In order to eliminate the training–testing mismatch in heterogeneous disk systems,
we utilize deep transfer learning technology to build an accurate and effective hard disk
failure prediction model. Our work is inspired by a DANN based unsupervised domain
adaptation approach for image classification [15]. This approach conducts domain adap-
tation based on the idea of adversary. Specifically, the classifier, the feature extractor,
and the domain discriminator are learned at the same time. By minimizing the classi-
fier error and maximizing the discriminator error, the learned feature representation has
cross-domain invariance. Then in this feature representation space, the discriminative
model learned from source domain features can also be applied to target domain features.
In addition, this approach only needs the labeled training data from the source domain and
unlabeled data from the target domain. In this study, we introduce the DANN approach
to predict failure in heterogeneous disk systems by reducing the distribution differences
between different models of hard disk datasets. However, applying DANN to predict
disk failure is not straightforward and trivial. A critical challenge is one SMART record
of the hard disk is collected at a specific time point, so it is one-dimensional, which is
different from two-dimensional image features. To tackle this challenge, in this paper,
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we study how to construct the original 1D SMART data into 2D. The constructed 2D
SMART attributes can directly deploy the deep transfer learning algorithm of DANN.
We call the proposed approach DFPTL (Disk Failure Prediction via Transfer Learning).

We have conducted experiments on public datasets to verify the effectiveness of
our method. The experimental results show that DFPTL achieves better performance
than traditional unsupervised and supervised approaches when performing disk failure
prediction on target dataset using the model learned from source dataset. The main
contributions of our paper are summarized as follows:

• To the best of our knowledge, we pioneer the use of the transfer learning method
based on unsupervised domain adaptation to predict disk failure, which can transfer
knowledge of labeled disk data in the source domain to predict disk failure in the
target domain.

• To deploy the deep transfer learning algorithm of DANN, we reconstruct the original
1D SMART data into 2D SMART data.

• We evaluate our approach on real-world datasets, and the experimental results
demonstrate the effectiveness of the method.

The remainder of this paper is structured as follows: We first survey the related work
in Sect. 2. Section 3 describes the details of the proposed method. Section 4 discusses
experimental settings and results. Finally, conclusions are drawn in Sect. 5.

2 Related Work

Nowadays, most manufacturers equip hard disks with SMART technology to monitor
and analyze the health status of the hard disk. A SMART record of the hard disk contains
at most 30 meaningful attributes, describing the operating status of the hard disk from
various aspects. Each SMART attribute contains four values, Raw value, Normalized
Value, Threshold Value and Worst Value.

• ID: The unique identifier assigned to the SMART attribute.
• Raw: Measured value of each attribute when the hard disk is running, such as Celsius
degree, Power-On Hours, etc.

• Normalized: Calculated by a specific algorithm built into the hard disk using its raw
value.

• Threshold: The reliable attribute value specified by the hard disk manufacturer is
calculated by a specific formula. If an attribute value is lower than the corresponding
threshold, it means that the hard disk will become unreliable.

• Worst: The largest abnormal value that has ever occurred in the operation of the hard
disk.

Because the raw value and normalized value can best reflect the current health status
of the hard disk, in our paper, we use them as the characteristic value for building the
hard disk failure prediction model.
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There have proposed many machine learning algorithms for disk failure prediction
models based on SMART data. Hughes et al. [16] proposed two statistical hypothe-
sis test methods to improve performance of the detection method based on the SMART
threshold. They usedWilcoxon rank-sum test and OR-ed single variate test and achieved
60% failure detection rate (FDR) and 0.5% false alarm rate (FAR). Hamerly et al. [17]
studied two Bayesian methods named Naive Bayes clusters trained using expectation-
maximization (NBEM)andnaiveBayes classifier, and conducted experiment on a dataset
from Quantum Inc., which contains 1927 hard disks, but only 9 failed hard disks. Exper-
imental results show that under the condition of a FAR of 1%, the FDR of naive Bayes
classifier can reach 55%, and the FDR of NBEM is 35–45%. Wang et al. [18] proposed
a disk failure prediction model based on Mahalanobis Distance (MD), which converts
multivariate SMART data into a single variable representing the health degree of disks.
The health degree represents the change in the health of the hard disk. Finally, a specific
health degree is used to analyze the abnormal changes of the hard disk’s health state.
When there are enough abnormal changes in a certain period of time, it means that the
hard disk is about to fail. They achieved a 68% FDR with 0% FAR. Zhao Y et al. [9]
proposed to employ Hidden Semi-MarkovModels (HSMMs) and HiddenMarkovMod-
els (HMMs) to predict disk failure. They believe that there is a connection between the
continuously collected SMART attribute values and the hard disk health status. The pro-
posed model uses the connection of the same SMART attribute at different time points
to represent the health status of the hard disk, which has the advantage that it does not
require expensive parameter searching. Experimental results show that when using the
best SMART attributes, HSMMs can achieve a failure detection rate of 30% and a false
alarm rate of 0%, while HMMs model achieves a failure detection rate of 46% and a
false alarm rate of 0%.

With the development of neural network technology, researchers have gradually
turned their attention to the field of neural networks. A neural network includes an
input layer, several hidden layers, and an output layer. Neuron nodes of different levels
are connected by specific network weight values. The neural network-based hard disk
failure prediction method uses historical hard disk SMART data as the input of the
input layer to adjust and optimize the network weights of nodes at different layers in
the network, and complete the training of the neural network model; when performing
hard disk failure prediction, the real-time hard disk SMART data is input and processed
by the entire neural network model to obtain the predicted hard disk operating state.
Zhu et al. [11] implemented a backward propagation (BP) neural network model and an
improved support vector machine (SVM) model. Both models were tested on a dataset
from Baidu Inc., including 22962 good drives and 433 failed drives, and achieved much
higher prediction accuracy compared with previous studies. Because SMART attributes
gradually deteriorates over time, the methods mentioned above do not take into account
time series characteristics. Xu et al. [19] introduced a new method based on Recurrent
Neural Network (RNN) to assess the health of hard drives, making full use of the timing
of SMART data. Experiments results show that this method can not only reasonably
explain the health status of the hard disk, but also achieve better prediction results.
But the standard RNN algorithm has the problem of gradient explosion or gradient
disappearance. When the number of neurons in the loop layer is large, the early input
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historical data will be invalid due to the disappearance of the gradient. Lima et al.
[33] made improvements on this basis and proposed a variant algorithm of recurrent
neural network LSTM (Long Short-Term Memory) for long-term prediction of hard
disk failures. Compared with the traditional recurrent neural network algorithm, this
algorithm can achieve similar results in short-term prediction, and has a significant
improvement effect in long-term prediction.

The above methods are all supervised algorithms, based on sufficient labeled data,
and only train a model using SMART data from one disk model is not applicable to
other different models even from the same manufacturer. When existing data set that are
relevant but not identical to the target domain are available, transfer learning becomes
an effective solution. Transfer learning has a wide range of applications, including but
not limited to computer vision [20], text classification [21], behavior recognition [22],
medical health [23] and so on. In recent years, transfer learning has been applied to
the field of hard disk failure prediction. Botezatu et al. [10] adopted an instance-based
transfer learning method to eliminate the sample selection bias between source data
and target data, so as to apply a model trained on a specific hard drive model to a new
one from the same manufacturer. Its main idea is to train a classifier to indicate the
probability that a hard disk belongs to a certain model, and then utilize the classifier to
sample the labeled hard disk model to make it obey the same distribution as the target
hard disk dataset. Pereira et al. [13] proposed a new source building method called
clustering-based information source and groups them according to their similarity to
build a novel information source for transfer learning. Zhang et al. [24] explored an
iterative transfer learning approach to solve the failure prediction problem of minority
disks lacking sufficient training data. Specifically, theweights of instances are adjusted in
each iteration, and larger weights are assigned to the instances of the majority disks that
are similar to the instances of theminority disks, otherwise, smaller weights are assigned.
They also proposed a method to select appropriate disk models based on the KLD value.
These instance-based transfer learning methods mainly reduce the differences in the
distribution of the source domain and the target domain in two ways: by adjusting
the weight of the source domain instance and selecting the source domain instance
according to the similarity with the target domain instance, they make it possible to
transfer health status information from one disk model with enough data available to
another disk model with insufficient data. Different from these methods, the transfer
learning component in our method is a feature-based transfer learningmethod that learns
a common feature representation space on the source domain and the target domain to
realize shared-classifier.

3 Proposed Approach

In this section, we will introduce the details of our proposed approach, called DFPTL
(Disk Failure Prediction via Transfer Learning), which use transfer learning technology
for disk failure prediction. Figure 1 shows the overall workflow of DFPTL.
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Fig. 1. The overallworkflowofDFPTL. For each individual disk,wefirst use 1D to 2D technology
to construct SMART records from two different domains Ls and Ut as 2D-SMART attributes of
size M * T, then input them into the transfer learning component to train the base model.

There are two sets of input data. The unlabeled disk data Ut to be predicted serves
as the target domain, and the labeled disk data Ls from the same manufacturer but
different model as the target domain hard disk serves as the source domain. Every disk
is classified either as “health” or “failure”. DFPTL comprises three main components:
(1) data processing, (2) Construction of 2D-SMART attributes, (3) transfer learning. We
will describe more details about each component in the following sections.

3.1 Data Processing

In our disk dataset, each sample contains up to 30 SMART attributes, but some attributes
are useless for failure prediction since they keep unchanged during operation, so we get
rid of these attributes,while some attributes change significantly over time, and the values
on healthy and failed hard disks are obviously different, so we keep these attributes. We
select 15 attributes using principal component analysis (PCA), the selected SMART
attributes are shown in Table 1.

Table 1. The 15 selected SMART attributes.

Smart ID SMART attribute name Attribute type

1 Raw read error rate Normalized

3 Spin-up time Normalized

5 Reallocated sectors count Raw

7 Seek error rate Normalized

(continued)
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Table 1. (continued)

Smart ID SMART attribute name Attribute type

9 Power-on hours Normalized

187 Reported uncorrectable errors Raw

188 Command timeout Raw

190 Airflow temperature Raw

193 Load/unload cycle count Raw

194 Temperature Normalized

197 Current pending sector count Raw

198 Offline uncorrectable sector count Raw

240 Head flying hours Raw

241 Total LBAs written Raw

242 Total LBAs read Raw

The 15 attributes above have different value intervals. The large difference in the
value interval makes the model difficult or even unable to converge. Therefore, normal-
ization is very necessary. We use min-max scaling [5, 12] to normalize the range of
selected SMART attributes.

xnorm = xi − xmin
xmax − xmin

(1)

Where xi is the original value of i-thSMARTattribute, xmax and xmin are themaximum
andminimumvalue of the attribute, respectively. After normalization, all attribute values
are mapped to the range [0, 1].

3.2 Construction of 2D-SMART Attributes

The DANN algorithm [15] was first proposed for image classification and achieved
good performance in experiments. Correspondingly, the feature extractor in the DANN
model architecture is composed of convolutional neural networks (CNN) to automati-
cally extract image features. After the steps in Sect. 3.1, the feature of each sample is
one-dimensional, referred to as 1D-SMART attribute. In order to support the deploy-
ment of DANN for transfer learning, the 1D-SMART attribute needs to be transformed
into a two-dimensional feature similar to an image. In [25], in order to use the GAN-
based model for disk failure prediction, Jiang et al. convert 1D-SMART attributes into
2D attributes chunks, this technology is called 1Dto2D. Inspired by [25], we employ
1Dto2D to reconstruct the 1D-SMART attributes into 2D-SMART attributes, which is
regarded as the input of the feature extractor. As shown in Fig. 2, 1D-SMART attribute
represents a SMART record of a hard disk, including M SMART attributes after fea-
ture selection. Then stack continual 1D-SMART attributes and segment data with time
window of size T. The 2D-SMART attributes constructed in this way is conducive to
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deploying the deep transfer learning algorithm of DANN, and can take advantage of the
automatic feature extraction of the CNN-based feature extractor.

Fig. 2. Construction of 2D-SMARTattributes. Each rowof records (blue lines) represents selected
15 SMART attributes of a hard disk, and then stack the continuous SMART attributes. Because
SMART attributes are collected on a daily basis, T represents hard disk data for T consecutive
days. We call the constructed SMART attributes of size M * T as 2D-SMART attributes.

3.3 Transfer Learning Component

Themain idea of transfer learning is to transfer related but different domain knowledge to
complete or improve the learning effect of the target domain, which is suitable for situa-
tion where the source domain and target domain have different distributions. According
to the analysis of [10, 24], we know that different models of hard drives exhibit dif-
ferent SMART value distributions, even from the same manufacturer, we refer to this
phenomenon as covariate shift [27]. Therefore, the failure prediction model trained on
disk data of one model can’t be directly transferred to other models of hard disks, other-
wise the prediction results will be inaccurate. The solution is to use the transfer learning
algorithm to train the model with a large amount of labeled SMART data from source
domain and a large amount of unlabeled SMART data from target domain. Inspired
by the DANN based unsupervised domain adaptation approach for image classification
[15], we adopt DANN to predict disk failure.

Figure 3 shows how to use the DANN approach in disk failure prediction. For the
unlabeled disk dataUt in the target domain that needs to be predicted, and the labeled disk
data Ls of other models in the source domain, first of all, we adopt the 1Dto2Dmethod to
construct each 1D-SMART attribute ofUt and Ls into image-like 2D-SMART attributes,
which is then used as the input of the DANN-based transfer learning model. The net-
work architecture is based on a standard feedforward neural network, which consists of
three parts: a deep feature extractor Gf used to extract features, generally composed of
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convolutional layers and pooling layers; A label predictor Gy, which consists of fully
connected layers and a logistic classifier, has an output of 0 (health) or 1 (failure); Aswell
as a domain classifier Gd , which forms the adversarial network framework with Gf , is
composed of fully connected layers and a cross-entropy classifier. We denote the source
domain with 1 and the target domain with 0. The loss function of DANN is defined as:

E
(
θf , θy, θd

) =
∑

i = 1..N
di = [0, 1]

Liy
(
θf , θy

) − λ
∑

i = 1..N
Lid

(
θf , θd

)
(2)

Where θf , θy, θd are the parameters of the network Gf , Gy, Gd respectively. For the
i-th training sample, Liy and L

i
d represent label prediction loss and domain classification

loss respectively. The parameter λ is introduced to trade off two losses during learning.
Then we utilize the standard stochastic gradient (SGD) approach to seek the optimized
parameters.

Fig. 3. The DANN approach used for disk failure prediction

4 Experimental Results

4.1 Dataset

We used BackBlaze’s public dataset to evaluate our proposed method. From the
datasets, we select disk data of different models from two manufacturers. Seagate’s
ST4000DM000 as the source domain dataset and Seagate’s ST12000NM0007 as the
target domain dataset respectively. And two models of hard drives from HGST manu-
facturer, HDS722020ALA330 and HDS5C3030ALA630 as source domain dataset and
target domain dataset, respectively. Each hard disk is classified either as “health” or “fail-
ure”, and each hard disk has many SMART records. Table 2 lists the selected datasets. In
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order to alleviate the problem that there are much more health disk samples than failure
disk samples, we under-sample the health samples to balance the dataset [30]. We have
chosen a 1:5 ratio of failure disks to health disks.

Table 2. The selected disk models

Manufacturer Disk model Health Failure

Seagate ST4000DM000 8230 1646

ST12000NM0007 7650 1530

HGST HDS722020ALA330 4580 229

HDS5C3030ALA630 4020 134

4.2 Evaluation Metric

We evaluate the effectiveness of our proposed approach using Precision, Recall, F1-
Score and AUC metrics, which have been widely used to evaluate the capability of a
classification model in machine learning [29]. Precision is defined as the proportion of
predicted failed disks that are predicted accurately:

Precision = TP

TP + FP
(3)

Recall represents the proportion of true failed disks that are correctly predicted as
failed:

Recall = TP

TP + FN
(4)

Where TP, FP and FN denote true positive, false positive and false negative, respec-
tively. F1-Score is the balance between Precision and Recall. The higher the F1-Score,
the better the model:

F1 − Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(5)

AUC represents the Area Under the Curve-Receiver Operating Characteristic (AUC-
ROC) curve, it considers the classifier’s ability to classify positive andnegative samples at
the same time. In the case of imbalanced classes, it can still make a reasonable evaluation
of the classifier.
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4.3 Results

The Effectiveness of Transfer Learning Component. In order to evaluate the effec-
tiveness of the transfer learning component in our method, the transfer learning model
trained with the labeled disk data of the source domain and the unlabeled disk data of
the target domain will be compared with the SOURCE-ONLY model, which is trained
without consideration for target-domain data (no domain classifier branch included into
the network). In addition, The TRAIN-ON-TARGET model serves as an upper perfor-
mance bound, which is trained and tested on the target domain, assuming labels are
available.

Table 3. Experimental results of different methods.

Disk model Methods Precision Recall F1-Score AUC

ST-A → ST-B DFPTL 0.4309 0.8030 0.5608 0.8332

SOURCE-ONLY 0.2204
0.2204

0.9303 0.3564 0.7533

TRAIN-ON-TARGET 0.8011 0.8909 0.8436 0.8816

HDS-A → HDS-B DFPTL 0.6923 0.6338 0.6618 0.8101

SOURCE-ONLY 0.4742 0.6479 0.5476 0.8066

TRAIN-ON-TARGET 0.8425 0.7571 0.7975 0.8471

Table 3 shows the Precision, Recall, F1-Score and AUC for disk failure prediction
for different source and target domains. The experiments are conducted on two pairs of
datasets, including ST-A→ST-B, andHDS-A→HDS-B. ST-A andST-B represent hard
drive models ST4000DM000 and ST12000NM0007 from the Seagate manufacturer,
respectively. HDS-A and HDS-B represent hard drive models HDS722020ALA330 and
HDS5C3030ALA630 from the HGST manufacturer, respectively. The right side of the
arrow denotes the unlabeled disk dataset to be predicted and the left side of the arrow
denotes the labeled auxiliary disk dataset.

As we can see, our DFPTL shows higher F1-Score and AUC than SOURCE-ONLY.
The reason is that when the SMART attributes distributions of the source domain disk
dataset and the target domain disk dataset are different, if the model trained with the
disk dataset of the source domain directly predicts the disk failure of the target domain,
the result is often inaccurate. The SOURCE-ONLY model only capture the feature
distribution of hard disk data in the source domain, and the trained label predictor can
only classify the source domain hard disk. OurDFPTL’s transfer learning component can
map the features of the two domains to the common feature space through the adversarial
network framework, reducing the difference in the distribution of SMART attributes, so
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that the classifier trained based on the labeled data of the source domain can be applied
to the target domain. The experimental results verify the effectiveness of the transfer
learning component.

The Effectiveness of 1Dto2D. In this section,we evaluate the effectiveness of proposed
1Dto2D approach. We use sliding windows with lengths of 1, 5, 10, and 15 to segment
continual 1D-SMART attributes stacked along with time, respectively. Note that each
harddrive collects oneSMARTrecord aday, soT=1 represents the 1D-SMARTattribute
of a certain day, T = 5 represents the SMART records collected for 5 consecutive days,
the size of the corresponding 2D-SMART attribute is 15 * 5, and so on, for T = 10,
15, the size of corresponding 2D-SMART attribute are 15 * 10, 15 * 15, respectively.
Figure 4 and Fig. 5 represent the prediction results on two target domains, respectively.
We calculate the F1-Score of themodel of different percentage of labeled data. Therefore,
the horizontal axis represents the percentage of labeled data in the target domain. As
shown in these figures, when T = 1, the prediction effect of the trained model was the
worst, because 1D-SMART is not converted to 2D-SMARTattributes, and the advantages
of CNN’s automatic feature extraction cannot be utilized well. The performance of the
model at T = 5, 10, 15 is better than that at T = 1, indicating the effectiveness of
1Dto2D approach. Besides, we observe that when T = 15, the model achieved the
highest F1-Score. Therefore, we set T = 15 in the experiments in this paper.

Fig. 4. F1-Scores under different time range T on dataset ST-B.
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Fig. 5. F1-Scores under different time range T on dataset HDS-B

5 Conclusion

In this paper,wepropose an approach calledDFPTL for disk failure prediction,which can
address the training–testing mismatch problem in heterogeneous disk system. Transfer
learning can eliminate the differences of data distribution between the source and the
target domains. Moreover, to deploy DANN-based deep transfer learning approach, we
stack continuous hard disk SMART data into 2D image-like SMART data. The use
of CNN gets rid of manually extracting features. Experimental results with real-world
datasets have confirmed that DFPTL can achieve higher detection accuracy, compared
to traditional machine learning methods.
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