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Abstract. Given that the BDS-3 (Beidou System-3) has been accomplished and
works well, there are increasing demands for localization and navigation in daily
life. However, BDS-3’s signals cannot cover some challenging areas such as urban
canyons and indoor environments. To extend the availability of the navigation sys-
tem, other positioning technologies are required to aid the BDS-3. Wireless fin-
gerprint localization technologies (e.g., Wi-Fi, Bluetooth, 5G, etc.) have attracted
lots of attention worldwide due to their ubiquitous and cost-effective character-
istics, but there are various challenges such as fingerprints spatial ambiguities,
RSS (Received Signal Strength) fluctuations over time and RSS variation caused
by devices heterogeneity, which impairs positioning accuracy and precision. By
analyzing the relationships hidden in adjacent fingerprints, we utilize the Encoder-
Decoder Framework and the sequence-based Long Short-Term Memory (LSTM)
network to convert vulnerable RSS to stable RSS spatial gradient, which can
eliminate RSS fluctuation over time and hardware diversity. The sequence-based
LSTM also eliminates fingerprint spatial ambiguities using the sequence match.
The preliminary experiments show the superiority of the proposed framework over
the-state-of-art methods in terms of robustness and precision. Specifically, the pro-
posed framework reduces average positioning errors by 24.68% and decreases the
average errors by 36.38% and 6.8% in terms of the resistance to device diversity
and RSS fluctuation over time respectively.
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1 Introduction

With the advancement of urbanization, there are increasing numbers of large buildings
such as urban complexes and shopping malls, which not only block the signal of the
Global Navigation Satellite System (GNSS) but also expands people’s demands for
indoor positioning.

There are various existing signals available for indoor positioning, including Wi-Fi
[1], cellular networks [2], Radio Frequency Identification devices (RFID), Ultra-Width
Ban (UWB), visible light [12] and so on. Among all above technologies, Wi-Fi-based
wireless technologies are relatively popular due to their ubiquitous and cost-effective
characteristics, but they are also faced with many challenges, such as RSS fluctuation
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over time and RSS variation caused by device diversity. The former is that the RSS
will be very different on the same point after a long-time interval, which cost people
a lot of money and resources to frequently update fingerprint in the database to keep
high positioning precision, and the latter is that RSS collected simultaneously by two
different brands of devices are also very different, which is another serious problem.

Most methods [13, 14] only achieve high precision in some specified scenarios, but
fingerprint spatial ambiguity, fingerprint fluctuation over time, and fingerprint variety
caused by device diversity still exist, which impaired their precision seriously. So most
of them may not work well on real problems.

In this work, we have achieved a robust positioning algorithm utilizing the Encoder-
Decoder framework to fuse fingerprints spatial gradient [10] and fingerprints. Hidden
sequential features and hidden sequential gradient features are extracted from adjacent
fingerprints in the Decoder Module and adjacent fingerprint spatial gradients in the
Encoder Module respectively, and then are matched with the fingerprints in the database
by LSTM. This will alleviate fingerprints instability caused by devices heterogeneity and
fingerprints fluctuation over time. The main contributions of this paper are as follows:

• The proposed algorithm fuses fingerprints and fingerprint spatial gradient using the
Encoder-Decoder framework, which can effectively alleviate fingerprint fluctuation
over time and fingerprint instability caused by device diversity.

• We extract the sequence information hidden from adjacent fingerprints and adjacent
fingerprint spatial gradient respectively, and then match fingerprints in the database,
which can eliminate the spatial ambiguity of fingerprint and improve positioning
precision.

The rest of this paper is organized as follows. After reviewing related work in Sect. 2,
we present an overview of the proposed model and extensive details of every part of the
algorithm inSect. 3. results based on experimental trials are discussed inSect. 4. Section 5
concludes the paper.

2 Related Work

Traditional fingerprint technologies, such as Nearest Neighbour and K-Nearest Neigh-
bour algorithm [15], calculates the similarity between fingerprints from the database
and current position, and then assigns different weights to K nearest positions, so the
final position is a weighted average of the K nearest positions. Its time complexity is
O(2), which is slow to navigate on a large database in a real-timemanner. Mirowski et al.
[4] calculated the similarity between fingerprints with time-effectivelyKullback–Leibler
divergence, but they were also faced with many problems, such as fingerprint fluctuation
and spatial ambiguity. Recently, with the increase of the capacity of the GPU (Graphics
Processing Unit), some methods from the Artificial Intelligence have become popular.
You et al. [5] applied DRL (Deep Reinforcement Learning) to indoor positioning, which
provided a new viewpoint. Qun et al. proposed a new model, named Deep Navi [6],
which projected various information including geomagnetism, Wi-Fi, and visual image
into a common space and then put these features into MDN (Mixed Dense Network) to
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infer current position. Instead of using traditional single-point matching, Hoang et al.
[7] used trajectory data for matching, which eliminated questions caused by the RSSI
short collecting time per location during positioning and the authors also compared the
performances of different Recurrent Neural Networks (RNN). All of the above methods
could only achieve high precision in some specified scenarios, but fingerprint spatial
ambiguity, fingerprint fluctuation over time, and fingerprint variety caused by device
diversity still exist.

3 Positioning Algorithm Using Encoder-Decoder Framework

3.1 Data Processing

The data processing program consists of two parts, the offline stage and the online
stage, as shown in Fig. 1. In the offline stage, as shown in black arrow in Fig. 1, we
transform RSS collected by devices into fingerprints stored in database and optimize
the model’s parameters. The entire path is divided into s RP (Reference Points) and
the distance between adjacent reference points is d. In this work, the data are collected
continuously; that is, a person with the device passes the trajectory at a constant speed

and then receive RSSi =
{
rss1i , . . . , rss

j
i, . . . , rss

m
i

}
rssji means that the RSS is received

from jth AP at time ti and position posi = {xi, yi} at time ti{i = 1, 2, . . .}. Then, we can
obtain a fingerprint database F = {f1, f2, . . . , fn}, where fi = {ti, posi, RSSi} shown
in Fig. 1. After the fingerprint database is generated, we train our model and optimize
the parameters. Firstly, the data passes through the Window Split Module, forming a
fingerprint sequence. Then the fingerprint sequence is put into the Decoder Module and
the Gradient Module, respectively.
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Fig. 1. The overall workflow of the proposed method

The latter processes fingerprint sequence into fingerprint spatial gradients. The fin-
gerprint spatial gradients are put into the Encoder Module where the sequential infor-
mation is extracted and form the hidden state. Then the output of the Windows Split
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Module and hidden states of the Encoder are put into the Decoder Module together,
so the Prediction Module will output the current position. We calculate errors between
the real location label and the output of the Prediction Module with the cross-entropy
loss function, which will be used to update the parameters of the network through the
Back-propagation Through Time (BPTT) algorithm. In the online stage as shown in the
red arrow in Fig. 1, the data processing program is similar to the offline stage where the
differences are that the output of the Prediction Module is send to users on the online
stage directly rather than updating parameters of model on the offline stage.

3.2 Extract Features

In the data processing program, the fingerprint database has been established as shown
in the table in Fig. 1. The extracting features program is made up of the Window Split
Module, the Gradient Module and the Public Module.

3.2.1 The Window Split Module

This module mainly allocates the data into different windows. Assuming that the win-
dows size is k in a trajectory, we have gotten fingerprint fp at tp, as shown in Fig. 2, and
then extract k–1 fingerprints from the previous fingerprints in a time order, all of which
will form wp = {

fp−k+1, . . . , fp
}
. We can get W = {wk , wk−1, …, wn} in a trajectory

and note the subscript of w begins with k because the size of window is k.

Fig. 2. Windows split module

3.2.2 The Gradient Module

Although the RSS at the same location changes over time, the RSS differences between
adjacent locations will be relatively stable and will not change rapidly over time [8].
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Fig. 3. Gradient module

In addition, subtraction between RSS of adjacent location can eliminate the bad effect
of devices diversity [3]. If the same trajectory is passed twice at a long-time inter-
val and T 1

(i,j) is the RSS from jth AP at ith RP for the first time. After a period of

time, we collect T 2
(i,j) at the same position for the second time. (T 1

(i,j)–T
2
(i,j)) is very

large, indicating that RSS changes rapidly over time and fingerprints match with RSS
is vulnerable. However, the difference between (T 1

(i,j)–T
1
(i−1,j)) and (T 2

(i,j)–T
2
(i−1,j)) is

little, implying fingerprint spatial gradient is stable. Moreover, two devices collect
RSS simultaneously and S1(i,j) is the RSS that first device received from jth AP at ith

RP as well S2(i,j) is the RSS that second device received from jth AP at ith RP. The

(S1(i,j)–S
2
(i,j)) is totally different, which would dramatically impair the precision of posi-

tioning. However, the difference between (S1(i,j)–S
1
(i−1,j)) and (S2(i,j)–S

2
(i−1,j)) is little,

which means the fingerprint gradient will eliminate diversity of different brands of
devices. From the above analysis, we define fingerprint spatial gradient dwp at tp, which
can be calculated from wp directly as shown Fig. 3. From wp to dwp, tp−k+i (i = 1,
2…, k) and posp−k+i (i = 1, 2…, k) are invariant but RSSp−k+i will be transformed

to DRSSp−k+i. We define DRSSp−k+i =
{
drss1p−k+i, drss

2
p−k+i, . . . , drss

m
p−k+i

}

where drssjp−k+i =
(
rssjp−k+i − rssjp

)
and i = 1,2…, k−1; In other words, the sub-

traction between the RSS at current position and the RSS at end of Window from
the same AP. So we can get dfp−k+i =

{
tp−k+i, posp−k+i, DRSSp−k+i

}
, but note that

dwp = {
dfp−k+1, dfp−k+2, . . . , fp

}
, where the dfp = fp at a window. Finally, we can

get all fingerprint spatial gradient DW = {dwk , dwk+1, …, dwn}.

3.2.3 The Public Module

Three types of the Public Modules: A, B, and C are presented in Fig. 4. They consist
of different MLP (Multi-Layer Proceptions) and these Modules in the same type share
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their parameters with each other, which means there are only three set of parameter
values. Since RSS, DRSS and ŷ have different measurement scales, it is unreasonable to
concatenate or send them to other Modules (such as the Encoder Module or the Decoder
Module) together so we use the Public Module to solve this problem.

Fig. 4. Framework of the proposed algorithm

3.3 Algorithm Framework

The Encoder-Decoder Framework [9] is one of the most prevalent frameworks in the
deep learning field and perform well in solving many problems. It consists of two parts:
The EncoderModule and theDecoderModule. In the EncoderModule, we should design
an appropriate neural network to extract features from the input data, acquiring hidden
semantic; While in the Decoder Module, we also design a neural network to absorb
hidden semantic produced by the Encoder Module and other factors, which is used to
predict current position. LSTM [10] is a kind of RNN and is equipped with excellent
“memory” because of its three logic gates (the forgetting gate, input gate and out gate).
The good “memory” allows it to remember previous information from a long time ago
and avoid gradient disappearance problem [11] that stop parameters of neural network
updating. This paper fuses fingerprint spatial gradients and fingerprints by Encoder-
Decoder framework as shown in Fig. 4, which can alleviate the effect of device diversity
and RSS fluctuation over time effectively in the positioning system. Considering hidden
sequential information in adjacent fingerprints and adjacent fingerprint spatial gradients,
we hire LSTM Cell in the Decoder Module and the Encoder Module to abstract hid-
den sequential information, which relieve the space ambiguity of fingerprint effectively
and improve localization precision to some extent. Specifically, fingerprints database F
pass through the Window Split Module and the Gradient Module, generating sequen-
tial fingerprints database W and sequential fingerprint spatial gradients DW (Sect. 3.2)
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respectively. We take out wi from W as well dwi from DW and then put them into the
Decoder Module comprised of multiple LSTM Cells as well the Encoder Module com-
prised of multiple LSTM Cells respectively. Each LSTM Cell will output cell state and
hidden state, both of which have the same dimension and are passed to the next LSTM
Cell. For convenience, all cell state and hidden state in the Encoder Module and in the
Decoder Module are represented by (cei , hi), where i = 0, 1, 2.., k and (cdi , si),where i
= 0,1,…, k, respectively, and we also set h0, ce0 = the matrix consisted of zero and (cd0 ,
s0) = (cek , hk ). So, we can define the Encoder Module as follows:

(
H, Ce) = Encoder (DRSSp−k+1, . . . , DRSSp−k+i, . . . , DRSSp) (1)

where H = {h1, …, hk} is the hidden state containing sequential information extracted
by LSTM Cell from DRSS and Ce = {ce1, …, cek} is cell states; the Encoder is a neural
network constituted of k LSTM Cells that pass massages to each other by hidden states
hi and cell state cei ; DRSSi is fingerprint spatial gradients from dwi.While we define the
Decoder Module as follows:

(
cdi , si

)
= Decoder (ŷi−1, si−1, RSSi) (2)

where si is hidden state containing sequential information extracted by LSTMCell from
RSS; ŷi−1 is output of the PredictionModule at previous time, namely previous position,
which also affect the prediction of position at current time. si−1 is the previous hidden
state in the Decoder Module and RSSi is fingerprint at current time. Then, we can predict
current position as follows:

ŷi = g(ŷi−1, si, RSSi) (3)

ŷi is the output and the g is the Prediction Module consisted of full-connected layers as
well the SoftMax layer. Here we need to discuss the input data of the Encoder Module
and the Decoder Module. The input of proposed model consists of two parts, RSS and
DRSS. The reason why we input RSS into the Decoder Module is that the relationship
between fingerprint and position is more direct, andwe can extract the hidden features by
LSTM Cells in the Decoder Module. However, the relationship between the fingerprint
spatial gradients and the position is more difficult to discover but have pivotal effect on
the positioning system especially in the case of complex scenes. We conduct a series of
experiments to prove this idea.

4 Experiment Evaluation

4.1 Data Description

In order to evaluate the performance of the proposed algorithm, we conduced various
experiments on a test site with an area of 4859 m2 (113 m * 43 m). The map is shown
in Fig. 5. At the same time, in order to validate the capacity of the model relieving
device diversity, we use a total of 4 devices to collect data, including Samsung S5,
Xiaomi Mi4_1, Xiaomi Mi4_2 and Xiaomi Mi4 black, and they are divided into two
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groups: group1 consists of Samsung Galaxy S5 and XiaomiMi4_2 where 20 trajectories
are collected; group2 are made up of Mi4_1 and Mi4_black where 24 trajectories are
collected. Two volunteers use a continuous collection method to collect data, which
means volunteers go through all trajectories at a constant speed, and the RSS, current
time ti as well location coordinates posi are recorded when they arrive at each RP.

Fig. 5. The trial site in our experiment

4.2 Software and Hardware Equipment

All the baseline and the proposed model are implemented on a server. We use two
NVIDIA GeForce RTX2080Ti image processing units with 10 GB memory. For hyper-
parameters, we set the learning rate LR = 10e–4 and use the SGD optimizer. The batch
size is 100 and the model training phase cost 1,681.81 s; while the prediction phase cost
0.01s for a single sample. We set dropout = 0.5 to avoid overfitting.

4.3 Model Comparison

In order to verify the performance of the proposed model, we compared the proposed
method with K-Nearest Neighbors algorithm, Support Vector Regression (SVR), Ran-
dom Forest (RF) and xgboost. Cumulative Distribution Function (CDF), Root Mean
Square (RMS) and running time are used as metrics. If not specified, the time sequence
length of the proposed method is 4 (window size or TIME STEP = 4) and the grid size
is 3 m.

4.3.1 Comparison Schemes on Same Devices

We have conducted extensive experiments on four data sets. In this part, test data and
training data are collected by the same device, and then the RMS are calculated. The
RMS of the proposed framework decrease about 1 m (3.57 m), compared the traditional
method (4.74 m). Although the training phase of this method takes the majority of the
time (1681.81 s), It only costs about 0.01 s to predict a single position in the online stage,
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which is acceptable in most scenarios. We also separately compared the performance of
different methods on the four data sets. The CDF curves of different methods on the four
data sets can be found in Fig. 6 and the proposed method is better than other methods,
especially in test data of S5 (4.06 m) and Mi4_2 (4.31 m), whose environment is more
complex.

Fig. 6. CDF of location error on four datasets

4.3.2 Comparison Scheme on Different Devices

In order to test the anti-hardware interference ability of the proposed model, our train-
ing data and test data are collected by different devices. The four mentioned devices are
divided into two groups. In the first experiment, training data and test data were collected
by Mi4_1 and Mi4 black respectively. It can be seen that the RMS of the model in this
work (3.73 m) is the lowest, and RMS increased 1.58 m (it was the smallest among all
methods) compared with experiments on the data collected by the same devices, indi-
cating the strongest robustness for hardware interference. And Fig. 7 is the cumulative
distribution function (CDF) of this experiment. In the second experiment, as shown in
Fig. 8, the training data was collected by Mi4_2 and the test data was collected by S5. It
can also be found that the proposed algorithm in this framework has the smallest RMS
(5.60 m) and the rise in RMS is also the smallest (1.54 m).

4.3.3 Hyper-Parameters Analysis

This section extends detailed extensive experiments of choosing optimal the length of
the TIME STEP on the data set collected by Mi4_2. As shown in Fig. 9, the left y-axis is
training time while the right y-axis is RMS, and the abscissa is the TIME STEP. Because
the time of prediction in the actual scene does not change much with the TIME STEP, it
is not necessary to describe the test time in detail. It can be seen from Fig. 9 that when the
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Fig. 7. CDF of location error to evaluate robustness in terms of hard ware. Training data and test
data collected by Mi4_1 and Mi4 black, respectively

Fig. 8. CDF of location error to evaluate robustness in terms of hard ware, Training data and test
data collected by Mi4_2 and S5 respectively

TIME STEP is 4, the performance on this data set is the best (4.31 m), and the training
time gradually increases with the length of the TIME STEP.

Fig. 9. The performance of proposed method with respective to value of TIME STEP
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4.3.4 Comparison Scheme on Time

In this section, the train data and test data were collected in 2015 and 2017 respectively.
Because data (in Fig. 10) was collected not only at different time but also by different
devices, we just make the preliminary decision that the proposed method can relieve the
RSS’s fluctuation over time through the rough experiment and the literature [3]. From
the Fig. 10, it is obvious that the proposed data also reach the lowest RMS, implying
that proposed method can alleviate the RSS fluctuation over time.

Fig. 10. The performance of methods on Time fluctuation

5 Conclusion

This work proposed an indoor positioning algorithm for sequence matching by fus-
ing fingerprints and fingerprint spatial gradients with the encoder-decoder framework,
which is a deep learning technique. The algorithm has effectively alleviated hardware
heterogeneity and spatial ambiguities and improved the indoor positioning accuracy by
1.17 m, which is superior to the state-of-the-art algorithms proposed in the literature. As
the data were collected on the same day, it is impossible to verify the fingerprint gradient
fusion and the mitigation effect of time instability, which remains to be explored. In the
future, we will combine our model with the Inertial Navigation technique to improve
the robustness of the system when the wireless signal is weak or unreliable. We will also
add the barometer to our deep learning framework to further determine the floor level
while the user is using an elevator or a lift to achieve ubiquitous indoor positioning.
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