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Abstract. We present a decentralized cooperative localization algorithm based on
covariance propagation. The proposed algorithm solves the problem that decen-
tralized collaborative localization’s accuracy. In this paper, the correlation of local-
ization errors between different platforms is considered. The transfer equation of
covariance between two cooperative localization is derived based on the Kalman
filter. A method to calculate the covariance matrix based on the state recursive coef-
ficient matrix is presented, and a decentralized cooperative localization system is
designed. The simulation results show that the decentralized collaborative local-
ization algorithm’s accuracy is equivalent to that of the centralized collaborative
localization algorithm. The collaborative localization algorithm can effectively
reduce distance over-correction after considering the correlation of localization
errors.
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1 Introduction

In recent years, the multi-unmanned platform cooperative task execution mode has
attracted more and more international attention (Kurazume et al. 1996). Multi-platform
cooperation can expand surveillance, search and combat scope, and has the advantages
of multiple tasks, high overall efficiency, increased system reliability, and strong stability
(Fallon et al. 2010). Collaborative task execution by multiple unmanned platforms is an
important trend in developing unmanned platform technology (Hirose et al. 1995; Han
et al. 2020).

Multi-unmanned collaborative localization is a localization method to improve the
system’s localization accuracy by observing each other in movement and using the con-
straint relationship between platforms (Bahr et al. 2009; Hua et al. 2011). According
to the data fusion structure, it can be divided into centralized, distributed, and decen-
tralized. Compared with the other two data fusion methods, decentralized data fusion
has the advantage of not relying on a separate processing center to solve the problem
of unmanned platform collaborative localization (Kia et al. 2014). In this way, the sys-
tem stability and reliability can be improved effectively by avoiding a single platform’s
failure, leading to the collaborative system collapse (Chen et al. 2020; Han et al. 2020).
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Bahr et al. (2009) proposed a suboptimal algorithm in which each robot retains a
set of extended Kalman filters. Only the robot obtaining the relative measured value can
update its state. Each filter in the algorithm is updated only if its state is not related to
the current update equation’s state. This algorithm’s main disadvantages are high com-
putational complexity, large memory requirements, and more information required for
each update. Roumeliotis et al. (2015) proposed a distributed computing decentralized
algorithm equivalent to the centralized Kalman filter. The core of the algorithm is to dis-
perse each covariance item of the covariance matrix on each platform. In the algorithm,
each platform estimates the state covariance between its state and other platforms. A
data fusion center is still needed in this calculation mode, and decentralized data fusion
is not achieved. Kia et al. (2014) targeted the above problems and took the robot car-
rying out relative measurement as the centralized processing center. The centralized
processing center computes and broadcasts intermediate variables that other robots use
to update their estimates to match the centralized extended Kalman filtering forecast for
collaborative localization. However, when the robot’s status update frequency is high,
the whole collaborative system’s communication frequency will increase, increasing the
communication burden.

In this paper, a decentralized data fusion algorithm based on covariance propagation
is proposed, and a corresponding communication strategy is designed according to the
proposed algorithm. The proposed algorithm’s accuracy is equivalent to that of the
centralized collaborative location algorithm through simulation experiments.

2 Recursion Law of State Vector and Covariance Between
Synergies

In order to analyze the covariance transfer relationship between synergies, it is assumed
that there are two platforms.

Assume that for each unmanned platform, its discrete mathematical model is as
follows:

Xy =P 1 Xp1 + T Wiy

(1)
Zy =H; Xy + Vi

The basic assumption about noise is as follows:

E[Wi] =0, E[W, W] = 0,8y
E[Vi] =0, E[V,V]] =Ry
E[W,V]1=0

0y>0, R>0

2)

Suppose that the state quantity at the initial moment is Xy, and the covariance
matrix is Pg_. After state prediction, we can get:

Xk/k—] = ¢k/k—1f(k—1

3
Pijk—1 = ¢k/k—1Pk—1‘1’;£/k,1 + T1Qp Th_,
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After measurement and update, we get:
X = Xk/kfl +KiZy = Xk/kfl + Ky (Zy — ka(k/kfl)
= (I — KyH) Xy 1 + KiZi ©)
= — KeH) @i i1 X1 + KiZy
P = —KiHp)Pyjr—1 — KiH)" + K R K]
= (I - KH)®p -1 Pr1 @5 (I — KeHy)' (5)
+I — KeHOT -1 Qe T (I — KeH)" + KeRiKy

For the convenience of simplification, let §;, = (I — Ky H)®Py/—1 and & = (I —
K. H;)I';_,, then:

X = §X1 +KiZ (6)
— T T T
Py = & P18 + 5Ok 18y + KiRiKy ™)
Assume that the position covariance matrix of the two platforms A, B at the time
k—1is:
P — PA(k—l) PAB(k—l) (8)
PBA(k—l) PB(k—l)

A
(k=1)
5

Since the process noise and measurement noise of the platform are not related to the
state quantity of other platforms, the position covariance matrix of the two platforms
A, B at the time £ is:

T T
é:A(/r)PA(k—l)é:A(k) +§A(k)QA(k—l)£A(k) T
éA(k)PAB(k—l)é:B(k)

T
P 3 +K R, Ky )
Ak = T !
{B} r éB(k)PB(k—l)é:B(k) +CB(k)QB(k—1)CB(k>
a0 PaacknSacn) +K. R KT

BB (k) B(k)

It can be seen that the change of the covariance term of the two platforms A, B at
the time & is only related to § 4, and & gy, that is, exclusively related to the coefficient
matrix in front of the recursive state Eq. (6).

Similarly, assuming that the time of two synergies is time k and time k+n respectively,
the corresponding recursive relation of covariance term can be expressed as follows:

T
PaBG+n) = EAG+mEAK+n—1) - - - EAK+) EAK+DPABK) (EBK+1)EBK+2) - - EBk-+n—1)EB(k+n)) (10)

As aresult, in a collaborative localization, each platform preset a state and position
vector of the same dimension recursive coefficient matrix. Its initial value for the unit
matrix, updated every update or time measurement, the quantity of state before the coef-
ficient matrix of left by recursive coefficient matrix, so that when the next collaborative
localization can according to the recursive coefficient matrix of each platform and col-
laborative covariance item after the last time to calculate the covariance of the current
time.
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3 Design of Decentralized Collaborative Localization System

3.1 Problem Hypothesis

Assume that the entire collaborative localization system meets the following
assumptions:

e The whole collaborative system has a total of M independent unmanned platforms
moving in n-dimensional space. Each unmanned platform can realize dead reckoning
according to the sensors carried by itself.

e Through communication network connection between platforms, each platform can
broadcast its state information and sensor data at corresponding time nodes, and the
communication delay can be ignored.

e Each platform is equipped with the corresponding ranging sensor, measuring the
platform’s distance information and other platforms.

3.2 Collaborative Localization System Equation

In this paper, each member’s position information and relative distance carry out collab-
orative localization. Instead of building the state equation of co-positioning separately,
the prediction value of the state quantity involved in the measurement equation and the
prediction covariance matrix is directly used to obtain each platform’s current state chain
information reckoning the navigation position.

Assuming at the moment k, the position error vector of the ith member
is 6X;(k), and the covariance matrix is P;;(k). The relative distance between
this member and other N — 1 members is observed, and the corresponding
position error vector is 8X;(k)(j =1,2,...,N,j #i). The position covariance is
P;k)(j=1,2,...,N,j # i), then the state vector of collaborative localization is:

X(k) = [SX,-(k) 85X 1(k) 6Xa(k) ... SXN(k)]
Considering the position correlation among all members, the state covariance matrix
is:

Pii(k) Pij(k) Ppk) ... Piv(k)
Pyi(k) Pii(k) Pia(k) ... Piny(k)
P(k) = | Pyi(k) Pyi(k) Py(k) ... Pyy(k)

Pyi(k) Pni(k) Pna(k) ... Pyn (k)
In the formula, §X;(k) and P;;(k) are obtained from its state chain. 6X;(k) and
Pjk)G=1,2,...,N,j # i) are received from the state information broadcast by data
link and P;;(k)(i # j) is given by the calculation method in the previous section. The

observation distance between this member and the jth member is dj;, and the relationship
between the distance and coordinates is as follows:

dij(k) = hyj(X;(k), X;(k)) + &;j (k) (11)
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The function expression of h; (X;(k), X;(k)) is:

i (X500, X;0) =/ (6100 — 500)° + (k) — ,00)° + (z:(8) — 2(h))?

In the formula A;; is the observation function of this member and the jth member.
X;(k) and X (k) are the position vector of i and j member, and ¢;; (k) is the ranging error.
The Equation is linearized to obtain:

(k) = hig(Xi(0), %50 ) + VL (X 00) = Xi(0))+VH (X, = 58 ) + 5K
= dy (o) + VI (Xi(k) = Xi0) ) +Vi (X, = %;0) + 6500
= dij(k) + VAX;()+VHX; (k) + &(k)

12)
Among them:
VH. = Lﬁl e VK, = a_hi/ Y
U 8X, (k) |Xik=Xik) U aX k) X (k)=X; (k)
The corresponding observation equation is as follows:
Z;j(k) = Hj(k)X (k) + &;(k) (13)

In the formula:
Zij(k) = djj(k) — Elij(k)
H(k) = [Vh;j 0.V, ...o]

According to Eq. (13), the corresponding observation N — 1 equations can be written
to form a complete observation equation.

3.3 System Design

According to the covariance calculation formula derived in the previous section, this
paper designs a decentralized filtering algorithm equivalent to the centralized filtering
algorithm. Two filters are designed for each platform. A filter is used to recursion its state
chain, which can be different according to different sensors. The other filter is used for
collaborative localization, which contains each platform’s position state quantity in the
current collaborative localization system and their covariance information, so this filter
on each platform is the same. The algorithm is described after the first measurement
update of collaborative localization is completed to facilitate description.

Step 1 state recursion and recursion coefficient matrix recursion

According to the state estimate and state covariance obtained after collaborative
localization, each platform takes the initial value as the time update and measurement
update according to its different sensors. For each time update or measurement update,
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the coefficient matrix in front of the state quantity is left multiplied by the recursive
coefficient matrix. The recursive coefficient matrix is updated accordingly.

Step 2 Ranging

Each platform of the collaborative system shall conduct ranging between platforms
following the agreed frequency and range rules.

Step 3 Data broadcasting

The data broadcast stage is divided into two parts:

1. The ranging information (including the length of the distance and the platforms’
names at both ends of the distance) is broadcast outward by the platform that con-
ducts ranging at the agreed time point so that each platform gets the same distance
information.

2. At the time node of ranging, each platform in the collaborative localization system
broadcasts its current state chain information, including the estimated value of state
quantity, state covariance matrix, and a recursive coefficient matrix.

Step 4 Collaborative localization filter setting
The state vector and covariance matrix are set as follows:

e The state vector of collaborative localization is composed of combining the position
state information broadcast by each platform. The dimension and value of the state
vector of the collaborative localization filter for each platform are equal.

e The state vector covariance matrix is composed of two parts. The covariance matrix’s
diagonal block, namely the covariance item of each platform’s position, is obtained
from the broadcast state covariance matrix. The covariance matrix’s non-diagonal
block, namely the covariance item of the position state quantity between each platform,
is calculated by the transmitted recursive coefficient matrix and the locally saved
covariance item after the last collaborative localization according to Eq. (10).

Step 5 Collaborative localization measurement update

Based on the state vector and covariance matrix obtained in step 4, the corresponding
measurement equation is constructed according to the transmitted distance information,
and the measurement is updated.

After the measurement update, the obtained self-state estimation and covariance
information are brought back to the platform’s state chain. In contrast, the covariance
items with other platforms are saved locally to use the new covariance items before the
next collaborative localization.

It should be noted that, in the first collaborative localization, the non-diagonal blocks
of the initial covariance matrix are all zero because there is no correlation between
platforms.

4 Experimental Results and Performance Analysis

Digital simulation analysis is carried out to verify the effectiveness of the proposed
algorithm. In the simulation, a total of three mobile land platforms were simulated for



390 D. Wang et al.

collaborative localization. Each platform carried out dead reckoning through inertial
navigation and odometer, as shown in Table 1 for specific parameters. The simulation
trajectory is shown in Fig. 1. The simulation time is 380 s in total. When comparing
the accuracy of dead reckoning and collaborative localization, the ranging frequency is
set at 1 Hz. Distance measurement was carried out at 1 S, 100 S, 200 S, and 300 S,
respectively, when the collaborative localization algorithms’ accuracy differences were
compared to observe covariance’s influence on the collaborative localization results.

Table 1. Platform sensor parameters

Parameter’s name Value

Accelerometer constant deviation (ug) 500

Accelerometer random deviation (g - 4/s) | 100

Gyroscope constant drift (°/h) 3
Gyroscope random drift (°/+/h) 1.2
The speed error of the odometer (m1/s) 0.2

Distance measuring error (m) 0.1
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Fig. 1. Platform trajectory diagram

Figure 2 respectively show the positioning error and heading Angle error of the plat-
form in the co-positioning mode without covariance transmission and dead reckoning
mode. It can be seen that both the positioning error and heading Angle error are signifi-
cantly suppressed in the collaborative localization mode. In terms of localization error,
each platform’s last localization error is 6-12 m in the single dead reckoning mode. The
last localization error is up to 3 m in the collaborative localization mode, and the error
is reduced by 50%—75%. In terms of heading Angle error, each platform’s final heading
Angle error reached 0.5° in the single dead reckoning mode. The last heading Angle
error was less than a 0.23° in the collaborative localization mode, which reduced by
54%.



Decentralized Collaborative Localization Algorithm 391

Averror(m)
Ayaw(deg)

0 50 100 150 200 250 300 350 400 450 500

Berror(m)

B'yaw(deg)

0 50 100 150 200 250 300 350 400 450 500 Y0 s0 100 150 200 250 300 350 400 450 500

Ceerror(m)
Cyaw(deg)

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 35 400 450 500
Bifls Bifills

Fig. 2. Comparison diagram of dead reckoning and collaborative localization

Figure 3 is a covariance passes centralized collaborative localization algorithm and
distributed collaborative localization algorithm of location error and the heading Angle
error contrast figure. It can be found by comparing the location precision of the two
quite, can draw based on covariance propagation of distributed collaborative localization
accuracy with the centralized location on the precision are equivalent.
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Fig. 3. Comparison diagram of centralized and distributed

Figure 4 shows the comparison of location errors and heading Angle errors under
two different collaborative localization modes of covariance transfer and non-covariance
transfer. It can be seen that under the covariance transfer mode, the effect of collaborative
localization is further improved. As can be seen from the figure, after four collaborative
localization times, the positioning error can be reduced by 49.3% at most, 10.3% at least,
and 24.1% on average. The heading Angle is reduced by 13.6% at most, 7.1% at least,
and 11.9% on average. As can be seen from the figure, when measuring collaborative
localization with distance each time, the correlation between locations is taken into
account in the collaborative localization mode of covariance transmission, which reduces
the influence of over-correction of distance. It can be seen that with the increase of the
number of collaborative localization, the accuracy of this collaborative localization mode
is improved more obviously.
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Fig. 4. Comparison diagram of platform location error

5 Conclusions

In this paper, based on the Kalman filter, the transfer equation of covariance between two
collaborative localization methods is derived. A decentralized collaborative localization
algorithm equivalent to the centralized filtering method is designed. The simulation
results show that the collaborative localization algorithm based on covariance transfer
can reduce the over-correction of the collaborative localization position by distance
information according to the correlation of position errors between various platforms
and improve the location accuracy of the collaborative localization. The improvement
effect is more obvious with the increase of time. The algorithm has a certain reference
value to the design of a multi-platform decentralized collaborative positioning system.
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