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Abstract. Multipath detection has long been a fundamental problem in GNSS
research and application especially under heavily urbanized condition. In this
work, we aim to apply a machine learning algorithm to detect and classify mul-
tipath error in urban, kinematic situation based on Rinex datasets provided by
the University of Texas. Correspondingly, the data samples are classified into 3
groups according to the chip length from GPS L1 and LS5: Short Multipath (0-
30 m), Medium Multipath (30-90 m) and Long Multipath (=90 m). As aresult, the
algorithm achieves an average accuracy of 70% in the 5-folded cross validation.
Furthermore, the detection result of satellites with various conditions of blockage
are compared to give some angle of optimization.
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1 Introduction

With the continuous development and improvement of GNSS (Global navigation satellite
system), it gradually provides more and more accurate and reliable positioning services,
making applications such as unmanned vehicles and drones possible. These applications
are often applied in urban dynamic environments and have higher requirements for GNSS
positioning services. In this so-called urban canyon environment, GNSS signals may be
blocked by buildings around the target, creating multipath errors on the received signals,
which is considered to be the main source of GNSS signal errors in this environment.
Therefore, the detection and removal of multipath errors is a necessary step before the
actual application of GNSS signal.

To remove multipath errors, many previous studies have been done. At the antenna
level, multipath errors can be reduced by upgrading the quantity or quality of the antenna
[4]. At the receiver level, advanced receiver algorithms such as VDLL can improve the
reliability of the signal when it is affected by multipath [3]. While at the software level,
inertial navigation is used in [5] to assist GPS systems in positioning under multipath
interference, and 3D building models are used in [10] and [6] to label LOS/NLOS
signals. These labelled data, in turn, can be used to assist machine learning algorithms
[10]. While features calculated based on pseudorange and phase observations are used
in [8] and CNN is used as a model in [9].
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Among these methods, the machine learning algorithm shows some advantages with
its flexibility and ability to respond to multiple situations or input information. In this
study, we used a decision tree machine learning algorithm based on MATLAB’s Classi-
fication Learner toolbox. Considering ease of use and understanding, the input features
are based on the information from Rinex files. The features include carrier-to-noise ratio,
pseudorange-doppler residual, pseudorange residual, elevation angle and azimuth angle.
In terms of data labelling, two labelling methods relying on Rinex files and true values
were used in this study: the pseudorange positioning method and the pseudorange cor-
rection method. Considering that the pseudorange observation is not able to distinguish
well between the multipath and NLOS signal, and that these 2 interferences have similar
effect on pseudorange, they are collectively referred to as multipath interference in this
study, For the labelled results, the chip length of GPS L1/L5 was referred (which is
300 m and 30 m separately) to make a classification of 3 categories: short multipath
(0-30 m), medium multipath (30-90 m) and long multipath (>90 m).

Overall, in this study, a decision tree machine learning model was trained using
input from Rinex files and reference to the ground truth to detect the multipath among
the dataset, and finally is able to achieve an average accuracy of 75% against its own
labelled results. In addition, this paper also analyses and compares the classification
results of multipath errors from the perspective of signal frequency and code rate with
respect to the physical significance of multipath generation, and gives some optimization
directions for current machine learning algorithms for detecting multipath effects.

2 Data Sources and Labelling

2.1 Data Sources

The source data used in this study are from [7], an open dataset collected by researchers at
the University of Texas on 2019/05/09 in the downtown area of Austin, during which the
researchers drove from the sparsely built campus area to the heavily built-up downtown
area and back when the blockage around changed in terms of height and angle. Thus,
the exposure to multipath disturbances encompasses the three scenarios classified in this
study. The process last about 2 h.

2.2 Data Labelling

In this study, the labelling result of the data will be determined by a combination of the
two methods. Since the variable that determines its final labelling result has the same
physical significance (multipath error value), this variable will be averaged from the
calculations of the two methods.

2.2.1 Pseudorange Positioning Method

The pseudorange positioning method is calculated using the traditional least squares
method [11]. For the target satellite at a certain moment, the pseudorange observations of
all satellites in the same system and frequency as the target satellite at the current moment
are used for the least-squares positioning. And the difference of this positioning result and
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the true value from the dataset is taken absolute value as the final considered multipath
error value. Thus, this main consideration of this method would be the positioning result.

The reason for using this method is that it is simple and intuitive to calculate. It
contains the signal quality of all the targeted satellites of the same frequency at that
moment, thus has a better performance with receiver at different positions. On the other
hand, the method also has the obvious drawback that it cannot distinguish the errors
resulted from different satellites, which is why we need to combine it with the second
method for more accurate and targeted labelling.

2.2.2 Pseudorange Correction Method

The pseudorange correction method takes a single pseudorange observation of the target
satellite as the main discriminator at a given moment. First, the current position of
the target satellite is solved from the ephemeris file. Then the difference between the
receiver’s position from true value and the position of the target satellite is taken as the
distance true value. This pseudorange observation is corrected according to the following
pseudorange observation model [11].

P =r+8u—08+1+T+ec+M (1)

Where p is the pseudorange observation, r is the satellite-receiver distance, M is the
perceived multipath error value, € is the thermal noise, dy, is the receiver clock difference,
8, is the satellite clock difference, I is the ionospheric error, and T is the tropospheric
error. The first two clock differences are calculated from ephemeris files, and the last
two atmospheric delays are calculated from the model.

Finally, the difference between the true value of the satellite-receiver distance and the
corrected pseudorange is taken absolute value as multipath error value for calibration.

Although this method can distinguish between satellites, its reliability is not high
enough in the complex urban dynamic environment. For example, clock difference calcu-
lation error, atmospheric delay error, etc. may make the result far from the real multipath
error value, so it needs to be combined with the previous method.

2.3 Labelling Result

The labelling results for short multipath (0—30 m), medium multipath (30—90 m) and
long multipath (>90 m) are obtained according to the above methods from the selected
23555 samples of GPS L1, 21690 of GAL E1 and 19230 of E5b. The number of epochs
is converted into percentages for comparison purpose (Table 1).

3 Selection and Calculation of Features

All features are calculated and applied in model training or validation following two
principles. One is that when the absolute value of the feature significantly exceeds the
error caused by the normal multipath effect, the data at that point is considered unusable.
And the second is that when one of the observations used in the signal is stumped, the
data at that point is considered unusable.
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Table 1. Result of labelling.

Percentage GPS L1 | GAL E1 | GAL E5b
Short multipath 33.43% | 34.80% | 21.70%
Medium multipath | 33.24% | 33.42% | 41.00%
Long multipath 33.33% | 32.20% |37.30%

Carrier-to-Noise Ratio: C/Ng

The carrier-to-noise ratio C /Ny is a common characteristic that indicates the strength
of the signal received by the receiver. According to the characteristics of signal
propagation, the signal will be significantly reduced in strength when it is reflected
and blocked by walls. Therefore, the carrier-to-noise ratio is used as a feature here.
The value can be read out directly from a Rinex file.

Pseudorange-Doppler Residuals: pd

The Doppler shift is another observation related to the multipath, which characterizes
the rate of change of the pseudorange. However, it is calculated differently from the
pseudorange in the receiver’s algorithm, the former given by the code tracking loop,
while the latter is given by the carrier frequency. Therefore, the two observation can
be considered as independent when multipath happens and the difference between
the pseudorange rate of change and the Doppler shift can indicate the consistency of
the internal calculations of the receiver, which in turn reflects the receiver receiving
multipath interference. The calculation requires the use of both pseudorange and
Doppler shift observations from the Rinex file.

First, the pseudorange is differenced between epochs. Then the doppler value is
converted into length. Finally, difference the two value and take absolute value to
get the feature.

Here, the effect of time-differenced pseudorange is ignored as the interference of
multipath is considered to last for a while, namely around 10 s.

Pseudorange Residuals: p,.

The pseudorange residual exploits the inconsistency between the pseudorange obser-
vations of certain frequency of the target satellite and the results of the overall pseudo-
range positioning. According to the conclusions of [8], this feature can characterize
the degree of multipath error when the number of observed satellites is sufficient.
The method and principle of its calculation are almost identical to the method of cal-
culating the multipath error by the pseudorange correction method in the labelling
part (Eq. (1)), except that the true value position is replaced by the result of pseudo-
range positioning of the corresponding frequency at the current moment. Thus, the
value of this feature is much smaller than pseudorange positioning labelling, namely
0-5 m.

Elevation angle

The satellite elevation angle refers to the angle between the satellite and the receiver
line and the horizontal plane. In the same urban environment, it is clear that satellites
with low lift angles are more likely to be blocked by surrounding obstacles than
satellites with high lift angles, thus generating multipath errors. In the case where
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the model considers multiple satellites with different lift angles, this value has con-
siderable relevance to the absence of multipath errors.This value is calculated from
the ephemeris data at the time during the pseudorange positioning.

5. Azimuth Angle

The satellite azimuth refers to the angle turned by the receiver clockwise from the
due north direction line to the horizontal direction line of the satellite. In a similar urban
canyon environment, the degree of obstruction in different directions may also vary,
which can lead to different levels of multipath interference for satellites at different
azimuths. Although this correlation is diminished in the dynamic case, the azimuth of
satellites can still play arole in model judgments in short time and small range conditions.
Similarly, this value is calculated from the prevailing ephemeris data during pseudorange
positioning.

4 Model Training and Classification Results

In the experimental phase, we used all satellite data of GPS L1, GALILEO E1 and E5b
in the dataset.

4.1 Model Training

In this section, we use the Rinex files of GPS L1, GAL El and E5b frequencies in
the dataset to perform the labelling, feature calculation and training. A total of 20,604
samples from 5 satellites were used for GPS Lland 19475, 17018 samples from 5
satellites were used for GAL E1 and ESB.The overall self-test accuracy with all the
above 5 features used is shown in the table below (Table 2).

Table 2. Accuracy of the model

GPS L1 | GAL El | GAL E5b
Model accuracy (%) | 68.4% | 80.3% |80.7%

To further verify the meaning of these three sets of self-test accuracies, recall rates
of different labelling groups were calculated using the model predictions (Table 3).

Table 3. Recall of the model of different labelling groups

Recall (%) GPSL1 GAL El1 | GAL E5b
Short multipath 85% 92% 84%
Medium multipath | 61% 75% 90%
Long multipath 59% 73% 68%
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From the data in the table, it can be seen that the model training results for different
frequencies vary widely. For GPS L1 and GAL E1 with higher carrier frequencies, they
have better distinguishing capabilities for short multipath, but poorer for medium and
long multipath. For the medium and long multipaths, the model classifies these samples
as two other wrong multipath cases with 20% probability respectively, leading to a
lower overall accuracy. For ESb, a frequency point commonly used for multi-frequency
combination analysis, its carrier frequency is lower while its level of multipath error is
higher (which will be discussed in detail later). This is reflected in the prediction results
as the model tends to classify samples with corresponding features as medium multipath,
resulting in a higher recall rate for medium and short multipath, but long multipath cases
are often misclassified as medium multipath. Thus, the ESb model has a higher overall
accuracy.

In order to verify the contribution of each feature, we also exclude one of the features
and re-trained model to see its accuracy. The results are shown in the following Table 4.

Table 4. Accuracy of the model with certain feature excluded

Feature excluded Accuracy
None (with all features) 80.7%
Carrier-to-noise ratio 81.4%
Pseudorange residual 78.5%
Pseudorange-Doppler residual | 78.8%
Elevation angle 76.0%
Azimuth angle 77.7%

It can be seen that all feature, except the carrier-to-noise ratio, reduce the overall
accuracy after being removed. Among all features, the effect of lift angle and azimuth
angle are more significant, which indicates that both of them can better distinguish the
situation of multipath interference based on the previous experience in the dynamic
situation of similar environment. On the contrary, the correlation between the carrier-
to-noise ratio and multipath interference in the dynamic environment may not be strong
enough to support our machine learning model, and may produce some interference
instead.

4.2 Verification of Classification Results

This section focuses on the comparison of the between different frequencies, i.e., dif-
ferent carrier frequencies and code rates. Thus, the results of two frequencies from the
same satellite system, E1 and E5b of GAL, are selected (Table 5).

According to the previously labelled results, the ESb frequency point with lower
carrier frequency, longer wavelength, and higher code rate suffers more long multipath
and medium multipath cases than the E1 frequency point does, i.e., ESb suffers more
serious multipath errors at the level of pseudorange observation than E1. This is different
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Table 5. Labelling result of GAL E1 and ESb

Percentage GAL E1 | GAL E5b
Short multipath 34.80% | 21.70%
Medium multipath | 33.42% | 41.00%
Long multipath 32.20% | 37.30%
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from our expected results: considering that the lower carrier frequency gives ESb a longer
carrier wavelength, which makes the same multipath propagation cause arelatively larger
code phase delay for ESb; the final multipath error is the code phase delay multiplied
by the chip length, while the code rate of ESb is 10 times that of E1 (10.23 MHz:
1.023 MHz), and the chip length is 0.1 times (30 m: 300 m).

There are several possible reasons for this error. One is the processing mode compat-
ibility of the receiver platform with the special AItBOC (alternating binary offset carrier)
modulation method for the GAL E5b frequency point. According to [12], the AltBOC
modulation method, although with high tracking accuracy, requires a high RF bandwidth
and sampling rate of the receiver, which may have produced a larger error at the stage
of generating the code phase delay. Secondly, the steps of pseudorange positioning and
correction may produce an offset. By observing the above two labelling benchmarks on
ES5b, it is found that the latter part of the route yields higher positioning and pseudorange
errors under the same open conditions. This may be due to the fact that the positioning
and correction algorithms do not apply higher-order smoothing algorithms such as car-
rier or Doppler smoothing, resulting in the accumulation of random errors in the moving
process not covered by the observation model (Fig. 1).
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Fig. 1. Increase of labelling benchmarks over time
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5 Conclusion

In this study, a decision tree algorithm is applied to give a solution to the multipath
classification detection problem in urban-canyon environments. A total of five feature
from Rinex files output are used to train a machine learning model. As a result, the model
is able to achieve an average classification accuracy of about 75% in cross-validation.
While carrier-to-noise ratio may produce negative effect on accuracy, elevation and
azimuth angle contribute more than other features that are applied. Compared to the
existing work that shares the same method such as [6], our solution mainly deals with
dynamic situations and verifies the availability of machine learning algorithm under such
condition. However, the physical significance and actual effect of each feature may differ
from static condition. Finally, based on the initial labelling algorithm, we analyze the
reason why the E5b frequency point of the Galileo system suffers more from multipath
errors than the E1 frequency point based on the physical significance of the multipath
error generation. The conclusion is that the error may be generated by the hardware of the
receiver or the labelling algorithm. As a pioneering study, the feasibility and reliability
of machine learning algorithms for detection and rejection of multipath errors at the
Rinex file level is verified in this study.

6 Future Outlook

Based on this study, we have plans for more in-depth research and development. First,
we plan to use a more comprehensive data labelling algorithm, combining the 3D city
model, the multipath error reference values given by the receiver itself to make a weighted
comprehensive labelling. Also, the least-square positioning can be modified to allocate
more weight to satellites with higher elevation angle so that the result can be more
validated in terms of feature calculation. Following that, we can add multi-dimensional
feature variables, and conduct joint machine learning algorithm research for multipath
problems. The research currently underway has machine learning algorithms based on
receiver correlators as features. And in the future, we hope to apply vehicle vision
signals to further improve the reliability and strain of the algorithms. Eventually, different
machine learning algorithms, such as convolutional neural networks, can be applied to
better integrate the impact of each feature quantity on the classification conclusion.
Overall, we plan to conduct our own data-collection test to verify our method in terms
of universality and apply above-mentioned improvement.
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