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Abstract. Ionospheric delay is an important factor affecting the high precision
satellite positioning. Under short baseline conditions, it is possible to directly
eliminate most of the ionospheric delay by using double-difference (DD) obser-
vation, while under long baseline conditions, it is necessary to use the ionospheric
information from the base station network to perform interpolation. A DD iono-
spheric interpolation method under long baseline conditions based on Gaussian
process regression is proposed in this paper. In our theory, we introduced the
difference between the geographic longitude of the subsolar point and the iono-
spheric pierce point, and use it together with geographic coordinates as the input
of kernel function. Kernel of the zenith ionospheric delay at the pierce point is
reasonable assumed, and kernel of the DD ionosphere delay is derived based on it.
Experimental results show that using the kernel proposed in this paper to perform
Gaussian process regression interpolation, its effect can be better than the tradi-
tional Kriging and linear interpolation algorithms, and the accuracy is generally
within 1 cm.
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1 Introduction

For GNSS (Global Navigation Satellite System) positioning, the ionosphere will sig-
nificantly affect the propagation delay of satellite signals, thus affecting the positioning
accuracy [1]. Accurate ionospheric delay estimation can effectively improve the accu-
racy of single point positioning, and for high-precision positioning applications, it can
also reduce the convergence time of carrier phase ambiguity resolution [3].

Dual frequency receivers can eliminate the influence of ionospheric delay by using
ionosphere-free combination, but for the single frequency receivers, additional infor-
mation is needed to correct the ionospheric delay. The first method is to model TEC
distribution through mathematical function model, and there are different model choices
according to different spatial-temporal scales [4]. For global ionospheric TEC, spherical
harmonics can be used as its mathematical model, while for the regional ionospheric
TEC, polynomial functions [13], low-degree spherical harmonic functions [7], spherical
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cap harmonics functions [8] can be used. Due to the obvious diurnal variation char-
acteristics of local Ionospheric TEC, the polynomial function can be combined with
the periodic trigonometric series function to obtain the generalized trigonometric series
function model for estimation [9]. The disadvantage of the above estimation method
based on the mathematical function model is that it cannot effectively reflect the high-
frequency variation components of the local ionosphere. Especially when the ionosphere
is active, the difficulty of modeling is that the physical characteristics do not conform
to the conventional model assumption. Some widely used models, such as Klobuchar
model broadcast by GPS, can only correct 50% of the ionospheric delay [5]. The second
method is to get accurate TEC estimation from the observations of the existing base
station network, and then reconstruct the TEC of the whole region through interpola-
tion. The common methods include inverse distance weighted method [2], planar fitting
method [6], and Kriging interpolation method [10, 11], which is widely studied and used
in the current wide area augmentation system (WAAS). This kind of interpolation based
method can make more effective use of the spatial correlation between stations, and has
a more accurate estimation of the local ionospheric information.

With the continuous in-depth study ofmachine learning and other big data processing
methods in recent years, some interpolation regression related algorithms are becoming
more mature, and have been widely used in various fields. Gaussian process regression
is one of the most widely used methods. Gaussian process is actually a set of non-
parametric model based on Bayesian, and with the increase of the amount of data, the
interpretation ability of the model is more powerful [12]. However, at present, there are
few researches on ionospheric delay interpolation usingGaussian process regression, and
many new algorithms proposed are also based on traditional Kriging method. Therefore,
the research on ionospheric delay interpolation based on Gaussian process regression is
very meaningful.

In this paper, the DD ionospheric interpolation algorithm based on Gaussian process
regression is studied, which aims to solve the problem of DD ionospheric estimation
in local base station network. In practical applications, users often do not need the
overall trend of the global ionosphere, but only need the precise ionospheric variation
of a specific location, so the observation of local base station network can meet the
requirements. In addition, due to the few number of stations in the local base station
network, the number of observations in a single epoch is small, so it is difficult to get
satisfactory results. It is necessary to process the data ofmultiple epochs for interpolation,
so as to solve the problem of data sparsity.

2 Problem of Double-Difference Ionospheric Interpolation
for Local Base Station Networks

This section describes the problem of DD ionospheric interpolation in local base station
network.

Figure 1 is a diagram of the base station network, including multiple base stations
and a rover station, and the base station nearest to the rover station can be selected as
the master base station. The DD ionospheric delay of each base station relative to the
main base station can be calculated by GNSS dual frequency observation.
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For rover stations, if we don’t use high-quality and long-time observation, it is
impossible to directly calculate the DD ionospheric delay relative to the main base
station, which can only be obtained by interpolating the DD ionospheric delay of the
surrounding base stations according to the longitude and latitude coordinates of the
base station. After the estimated DD ionospheric delay is obtained by interpolation, the
corrected DD observation can be obtained by subtracting the estimated DD ionospheric
delay directly from the DD observation of the rover station relative to the main base
station, and then it can be used in the subsequent positioning algorithm.

Fig. 1. Diagram of base station network

3 Gaussian Process Regression

Gaussian process regression is a kind of supervised learning regression method. It is
a non-parametric model that uses the prior of Gaussian process for regression analysis
of data. In this section, we will elaborate the basic concepts and principles of Gaussian
process, and how to determine the hyperparameters of kernel.

Let’s assume that we have training data input satisfying Gaussian process S =
{xi, yi | i = 1, 2, . . . , n}, where x is the input vector of D dimension, y represents the
corresponding observation output. Then the input matrix X and the target output obser-
vation y can be obtained by combining all n data. A Gaussian process can be uniquely
expressed as

f (x) ∼ GP
(
m(x), k

(
x, x′)) (1)

where m(x) is the mean function of the Gaussian process and k
(
x, x′) is the covariance

function of the Gaussian process, which is often called kernel. If there is additive white
Gaussian noise ε in the observation, we have

y = f (x) + ε (2)

where the variance of noise is σ 2
n .

Suppose X and X∗ represent the input matrix of training data and test data respec-
tively, y represents the observation vector of training data and f∗ represents the target
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output of test data, then their joint distribution can be expressed as

[
y
f∗

]
∼ N

(
0,

[
K(X ,X ) + σ 2

n I K(X ,X∗)
K(X∗,X ) K(X∗,X∗)

])
(3)

where N (m,C) is a Gaussian distribution with mean m and covariance matrix C. K
is the covariance matrix calculated by kernel function. Then the conditional distribution
can be calculated

f∗ |X∗,X , y ∼ N
(
f∗, cov(f∗)

)
(4)

where

f∗ = K(X∗,X )
[
K(X ,X ) + σ 2

n I
]−1

y (5)

cov(f∗) = K(X∗,X∗) − K(X∗,X )
[
K(X ,X ) + σ 2

n I
]−1

K(X ,X∗) (6)

Then f∗ is the regression prediction result calculated at the test data point according
to the training data, and cov(f∗) is the corresponding variance, which can be used to
estimate the confidence of the prediction result.

Here we can introduce the marginal probability density, which can be expressed as

p(y |X , θ) =
∫

p(y | f,X )p(f | ,X )d f (7)

where the prior p(f | ,X ) satisfies Gaussian distribution, and θ is the hyperparameters,
then

log p(f |X , θ) = −1

2
fTK−1f − 1

2
log|K | − n

2
log(2π) (8)

By calculating the integral of Eq. (7), we can get

log p(y |X , θ) = −1

2
yT

(
K + σ 2

n I
)−1

y − 1

2
log

∣
∣∣K + σ 2

n I
∣
∣∣ − n

2
log(2π) (9)

The gradient descentmethod can be used to optimize themarginal probability density
and get the appropriate hyperparameters.

4 Selection of the Kernel of Double-Difference Ionospheric Delay

Our ultimate goal is to construct a reasonable kernel of DD ionospheric delay. However,
due to the complex statistical characteristics of the ionospheric delay after DD operation,
it is difficult to be directly determined. Therefore, we need to first assume a reasonable
kernel of zenith ionospheric delay, and then derive the kernel of DD ionospheric delay
based on it.
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4.1 Kernel of Zenith Ionospheric Delay

In the traditional linear ionospheric interpolation and Kriging interpolation algorithm,
the input as the interpolation independent variable is two-dimensional geographic coor-
dinates. This kind of method only interpolates the data on a single epoch according to
the correlation between geographical coordinates, but does not consider the relation-
ship between epochs, thus weakening the effect of interpolation. Therefore, this paper
proposes an algorithm that can take multiple epoch data as input, and through subse-
quent analysis, we can know that its physical meaning represents the correlation of solar
activity.

The simplest way to deal with multi-epoch data interpolation is to directly add time
dimensional, so the input can be formed as

x0 = [λ, ϕ, t]T (10)

where λ is the longitude, ϕ is the latitude, t is the UTC time in hour.
The method above is an improvement to the original two-dimensional interpolation,

but there is still room for improvement. We take the difference between the longitude of
the ionospheric pierce point and the geographical longitude of the subsolar point as the
third dimension, we can get

x = [λ, ϕ, ϕ − ϕs]
T (11)

where ϕs = − 360
24 t + 180 is the longitude of the subsolar point. It can be found that

this method actually adds time epoch t to the third dimension of the input too. However,
this method has more advantages under the actual observation conditions of the sun
moving from east to west with the epoch variation. Geographical longitude and latitude
can reflect the influence of the geomagnetic field on the ionosphere, that is, the smaller
the difference between the geographical coordinates, the higher the correlation of the
ionosphere delay due to the similarity of the geomagnetic field. On the other hand, taking
the difference between the longitude of ionospheric pierce point and subsolar point as
the input can also reflect the influence of solar radiation on the ionosphere.

So far, we have determined the input of interpolation, from the traditional two-
dimensional interpolation to three-dimensional interpolation, making full use of the
correlation of data between epochs, and reasonably introduced the influence of subsolar
point. In order to quantify the relationship between input data and output correlation,
it is necessary to determine the kernel k

(
x, x′). Here we can assume that the kernel is

expressed as

k
(
x, x′) = cov

(
y, y′) = σ 2 exp

[
−1

2

(
x, x′)TD

(
x, x′)

]
(12)

where σ is a scalar value and D is a 3 × 3 diagonal matrix, both of which are
hyperparameters to be optimized by maximizing the marginal probability density.

4.2 Kernel of Double-Difference Ionospheric Delay

In the previous section, the zenith ionospheric kernel function was determined. In this
section, we will derive the DD ionospheric kernel based on it.
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Suppose that the top view of the distribution of ionospheric pierce point is shown in
Fig. 2, which contains eight pierce point corresponding to two different DD ionospheric
delays. x is the three-dimensional input designed in Sect. 4.1, and y is the zenith iono-
spheric delay. The superscript is used to distinguish the DD observations of two different
epochs. The subscripts 1, 2, 3 and 4 represent the ionospheric pierce point between rover
station and rover satellite, reference station and rover satellite, rover station and reference
satellite, reference station and reference satellite, respectively.

We can get two DD observations

∇�y = F1y1 − F2y2 − (F3y3 − F4y4) (13)

∇�y′ = F ′
1y

′
1 − F ′

2y
′
2 − (

F ′
3y

′
3 − F ′

4y
′
4

)
(14)

Fig. 2. Schematic diagram of the DD ionosphere pierce point distribution

where F1,F2,F3,F4 are the corresponding trigonometric projection functions, which
are related to the elevation angle of the satellite relative to the receiver, and are used to
convert the STEC in the line of sight direction to VTEC in the vertical direction, which
is

F(E) = STEC

VTEC
= 1

√

1 −
(

Re
Re+H cos(E)

)2
(15)

where, E is the elevation angle, Re is the radius of the earth, H is the height of the
ionosphere. Because the ionospheric delay is proportional to TEC, the zenith ionospheric
delay canbe transformed into oblique ionospheric delay byusing this projection function.

Due to the introduction of the trigonometric projection function, the corresponding
input should also include the value, and include the three-dimensional input of four
pierce points, namely

x�∇ =
(
xT1 , xT2 , xT3 , xT4 ,F1,F2,F3,F4

)T
(16)

x
′
�∇ =

(
x

′T
1 , x

′T
2 , x

′T
3 , x

′T
4 ,F

′
1,F

′
2,F

′
3,F

′
4

)T
(17)
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According to the definition, the kernel of DD ionosphere can be expressed as

k∇�

(
x∇�, x′∇�

) = cov
(∇�y,∇�y′) (18)

Because

cov

⎛

⎝
∑

i

Ai,
∑

j

Bj

⎞

⎠ =
∑

i

∑

j

cov
(
Ai,Bj

)
(19)

we can substitute (13), (14) into (18) and using (19) to get

k∇�

(
x∇�, x′∇�

) =
4∑

i=1

4∑

j=1

aijFiF
′
j k

(
xi, x′

j
)

(20)

where aij is selected as 1 or 1.
If we only consider local base station network conditions, the correlation of iono-

spheric delay between different stations (same satellite) is relatively large, while the
correlation of ionospheric delay between different satellites (same station) is relatively
small, which can be ignored, so we have

k
(
xi, x

′
j

)
= 0, k

(
xj, x

′
i

)
= 0,∀i = 1, 2 j = 3, 4 (21)

In addition, the elevation angles of different base stations to the same satellite can
be regarded as approximately equal, that is

F1 ≈ F2,F3 ≈ F4,F
′
1 ≈ F

′
2,F

′
3 ≈ F

′
4 (22)

Using (21) and (22), (20) can be transformed into

k∇�

(
x∇�, x′∇�

) = F1F
′
1

[
k
(
x1, x′

1
) + k

(
x2, x′

2
) − k

(
x1, x′

2
) − k

(
x2, x′

1
)]

+ F3F
′
3

[
k
(
x3, x′

3
) + k

(
x4, x′

4
) − k

(
x3, x′

4
) − k

(
x4, x′

3
)]

(23)

which is the DD ionospheric kernel function, where k
(
x, x′) is the kernel of zenith

ionospheric delay determined by (12).
After determining the kernel and the form of input and output, the DD ionosphere

delay can be interpolated directly by theGaussian process regression described in Sect. 3.

5 Experimental Results

5.1 Experimental Data

In this paper, the proposed algorithm is verified by the realmeasured base station network
data. Thebase station network is located at the junctionof Jiangxi,Guangdong andHunan
provinces in China, which is in the low latitude region. Compared with the high latitude
region, the ionospheric variation is more intense, which is hard to estimate and has more
research value. As shown in Fig. 3, the network consists of six base stations and one
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rover station. The master station is JXDY and the rover station is GDNX. Note that the
rover station used here can obtain high quality observation to calculate accurate DD
ionospheric delay, but it is only used as reference of the interpolation result. Ten groups
of the DD ionospheric delay of base station network are obtained from the observation
data of 6 GPS and 6 Beidou satellites on August 3, 2019. Each group corresponds to the
DD ionospheric delay of a satellite pair. Because the proposed kernel function needs to
ensure that the reference satellite of training input is the same, in order to ensure that the
reference satellite does not change in the interpolation process, the observation time of
each group of satellites is generally 1–3 h. The GPS reference satellite is PRN 5 and the
Beidou reference satellite is PRN 10. For each group of data, we use the base station’s
DD ionospheric delay to interpolate at the rover station, and compare with the rover
station’s DD ionospheric reference value calculated by its high quality observation.

Fig. 3. Base station network distribution

5.2 Comparison of Three Interpolation Algorithms

Figures 4 and 5 show the DD ionospheric interpolation results of GPS satellites and
Beidou satellites under the three methods, and compare them with the reference val-
ues calculated based on rover observations. Table 1 lists the RMS errors of the DD
ionospheric interpolation of different satellites under the three methods.

By comparing the data in Table 1, we can see that the RMS error of the results
obtained by Gaussian process regression interpolation is significantly better than the
results obtained by Kriging and linear interpolation methods, and the errors are mostly
within 1 cm. In most cases, The Kriging interpolation method is slightly better than the
linear interpolation result. This is because the Kriging interpolation considers the cor-
relation between the DD ionospheric delays of the base station. The kernel of Gaussian
process regression proposed in this paper makes further use of multiple epoch obser-
vations to link the correlation of double difference ionospheric delay between different
epochs relative to the position of subsolar point. This result also proves that the DD
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ionospheric kernel proposed in this paper can significantly improve the accuracy of the
interpolation algorithm.

Fig. 4. Comparison of interpolation methods of GPS satellite DD ionospheric

Fig. 5. Comparison of interpolation methods of BEIDOU satellite DD ionospheric

In addition, by comparing the interpolation error of GPS and Beidou, it can be found
that the interpolation error of Beidou is generally less than that of GPS. Considering
that the value of double difference ionospheric delay has nothing to do with the type of
satellite constellation itself, it is mainly related to the azimuth and orbit of the satellite.
Here, Beidou satellites all choose geosynchronous orbit satellites (Beidou 01–04) and
inclined geosynchronous orbit satellites. Therefore, it can be reasonably inferred that
the interpolation accuracy of geosynchronous orbit and inclined geosynchronous orbit
is better than that of medium orbit earth satellite.
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Table 1. RMS Interpolation error of DD ionosphere for different satellites under three methods

Satellite Gaussian process regression Kriging Linear

GPS02 0.0052 0.0104 0.0150

GPS06 0.0117 0.0237 0.0215

GPS13 0.0065 0.0251 0.0246

GPS15 0.0106 0.0280 0.0524

GPS29 0.0069 0.0118 0.0218

Beidou01 0.0060 0.0071 0.0149

Beidou02 0.0038 0.0045 0.0083

Beidou03 0.0034 0.0075 0.0076

Beidou04 0.0059 0.0200 0.0135

Beidou08 0.0044 0.0064 0.0111

6 Conclusion

This paper mainly studies the DD ionospheric delay interpolation algorithm based on
Gaussian process regression. As the kernel is an important factor affecting the Gaussian
process regression, a special kind of kernel is constructed according to the physical char-
acteristics of the ionosphere and the mathematical form of the DD ionospheric delay.
In addition to the geographic longitude and latitude coordinates of the target point, the
input of this kernel also includes the difference between the longitude of the ionospheric
pierce point and the longitude of the subsolar point. Compared with the traditional Krig-
ing interpolation and linear interpolation algorithm which only uses single epoch data,
it makes full use of the correlation between epochs. Based on the assumption of a sim-
ple kernel of zenith ionospheric delay, this paper derives the kernel of DD ionospheric
delay according to its mathematical form. The experimental results show that the effect
of Gaussian process regression interpolation using the kernel proposed in this paper is
significantly better than that of the traditional Kriging and linear interpolation algorithm,
and its accuracy is generally less than 1 cm. In addition, for all three methods, interpola-
tion results of Beidou geosynchronous orbit satellite and inclined geosynchronous orbit
satellite are better than that of GPS medium orbit satellite.
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