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Abstract. As the number of satellites available for global satellite navigation
systems continues to increase, the possibility of simultaneous failures of multiple
observations also increases. When the observation contains abnormal errors, the
least square method is very sensitive to abnormal values, there will be unreli-
able errors in positioning. In order to reduce this integrity risk and improve the
availability, it is necessary to use the Receiver Autonomous Integrity Monitoring
(RAIM) and Fault Detection and Exclusion (FDE) algorithm to detect and exclude
faults to ensure accurate positioning under multiple outliers. At present, there are
still some problems in the existing algorithms under multiple faults, such as a huge
computation burden, failed to completely eliminate the faults, missed detection
and a prior assumption on the number of faults. So this paper proposes an adaptive
RAIM-FDEmethod under multiple faults based on the non-Gaussian distribution.
Firstly, the assumption of non-Gaussian distribution is adaptive for observations
with faults or non-faults. It can iteratively calculate the different posterior proba-
bility of each satellite failure based on the observation, while the corresponding
weights are adjusted adaptively to achieve a lower robust positioning error. Sec-
ondly, this method has a small amount of calculation which do not increase with
the number of faults. Finally, we derived the formulation of protection level and
verified its effectiveness. Experiments under multiple failure modes show that our
method can effectively detect multiple failures, ensure a low integrity risk and a
high level of availability, and also a lower positioning error, especially when the
faults happened on half of all the observations.

Keywords: RAIM · Multiple outliers · FDE · Non-Gaussian · Robust estimate ·
Gaussian-mixture

1 Introduction

In real-time positioning and speed measurement using Global Navigation Satellite Sys-
tem (GNSS), Receiver Autonomous IntegrityMonitoring (RAIM) is important to ensure
reliable and accurate positioning which is a method for real-time monitoring of posi-
tioning error. When the true positioning error (PE) is greater than the alarm limit (AL),
it is necessary to do fault detection and exclusion (FDE) to reduce the effect of the fault
observation and improve the availability.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. Yang and J. Xie (Eds.): China Satellite Navigation Conference (CSNC 2021) Proceedings, LNEE 773, pp. 130–139, 2021.
https://doi.org/10.1007/978-981-16-3142-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3142-9_12&domain=pdf
https://doi.org/10.1007/978-981-16-3142-9_12


A Robust Positioning and Adaptive RAIM FDE Algorithm for Multiple Outliers 131

At present, the least square method is widely used for positioning but still needs to
be improved. Because when there is a fault, the parameter estimation will be offset [1],
resulting in some misleading information in residual [2]. The integrity monitoring and
fault exclusion methods have evolved from the earliest single fault method to the current
multiple fault method.

For multiple faults, FDE methods mainly include three types, multiple solution sep-
aration methods [3, 4], weight adjustment methods, and robust estimation methods [1,
6–8]. Most of them are based on all possible subsets of all observations which make the
computation burden unaffordable. Some of the abovemethods need the prior assumption
about the number of faults which is not infeasible. At present, the robust methods such as
M [6] or MM [1] methods have good performance, but the calculation of the Protection
Level (PL) [3] is lacked, which make it hard to decide the error range of the real-time
positioning. Due to the above reason on computation burden, the research on more than
four faults is lacked. But with the increasing number of availably satellites and other
observations such as INS or movement sensors, more faults may happen which ask for
the algorithm and experiment for more faults.

This paper proposes amulti-faults adaptive integritymonitoringmethod based on the
observations of non-zero mean, thick tail, and non-Gaussian error distribution when the
faults happened [8–10]. We use Gaussian Mixture distribution to model the error. This
distribution can well describe the characteristics of errors such as thick tail, asymmet-
ric, and non-Gaussian distribution [8–10] under different parameters. Real-time maxi-
mum likelihood parameter estimation based on real-time observation can achieve self-
adaptation. At the same time, the method proposed in this paper iteratively calculates the
posterior probability of each satellite’s failure mode and the range of the failure using
EM algorithm, so the calculation complexity is reduced and does not increase with the
number of failures.

Finally, this article designed three failuremodes (fixed, random, and slowly changed)
in the experiment. When the total number of satellites is 20, the number of failures
gradually increased from zero to ten. The results show that in most cases, our method
achieves lower positioning error and fast computation. Finally, this article also gives the
calculation and derivation of the protection level, and analysis the false alarm (FA) and
missed detection (MD) [11–14] under different experimental conditions, which proves
that the PL calculation can effectively reflect the range of the true positioning error.

2 Gaussian Mixture Model

In this section, we propose the algorithm for multi faults which includes the Gaussian
mixture model for error distribution and EM algorithm for positioning and FDE, the
formula of protection level is also derived to make up the whole solution.

2.1 Convert Weighted Least Squares to Ordinary Least Squares

In order to simplify the calculations, suppose the least squares positioning equation is
Ỹ = H̃β + ε̃, ε̃ ∼ N (0, σ 2 ∑

), Ỹ is the pseudo-range observation, H̃ is the observation
geometric matrix and the intercept, β is the positioning parameters need to be solved,
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∑
is a positive definite diagonal matrix which represents the priori variance of the

pseudo-range. We apply a linear transformation to the equation:
∑− 1

2 Ỹ = ∑− 1
2 H̃β +

∑− 1
2

ε̃,
∑= ∑ 1

2 (
∑ 1

2
)T .

Obviously,
∑− 1

2
ε̃ ∼ N (0, σ 2I), I is the unit diagonal matrix.

∑− 1
2 = (

∑− 1
2 )T=diag{ 1√

σ 2
1

, ..., 1√
σ 2
n
} . Then we get Y = Hβ + ε, ε ∼

N (0, σ 2I),

Y = ∑− 1
2 Ỹ = (y1, ..., yn), H = ∑− 1

2 H̃ = (h1, ..., hn)T .

2.2 The Gaussian Mixture Model

The Gaussian mixture density [15] is composed of the weighted sum of K normal
distributions. The weight is the prior probability of these K components, while each
normal distribution is a component. The form is as follows:

fm(yi) =
K∑

k=1

γk fk(yi;hTi β + μk , σ
2
k ),

K∑

k=1

γk = 1 (1)

fk(yi) = 1

σk
√
2π

e
− (yi−hTi β−μk )2

2σ2k

fm(yi) represents the density of the Gaussian mixture, fk(yi) represents the density of the
k-th component. K is the number of components. We let K = 3 andμ1 = 0, assume that
the first component of the Gaussian mixture is a Gaussian distribution with zero mean
and an unknown error. A schematic diagram of the Gaussian mixture density function
under different parameters can be seen in Fig. 1. The expectation and variance can be
computed as follows:

E(yi) =
∫

yifm(yi)dyi = hTi β+
K∑

k=1

γkμk (2)

Var(yi) =
K∑

k=1

γk(μ
2
k + σ 2

k ) − (

K∑

k=1

γkμk)
2 (3)

Fig. 1. Diagram of Gaussian mixture density function under varying parameters
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2.3 Positioning Using EM Algorithm

We use the EM algorithm [15]. Add a hidden variable zi for each satellite which means
the type of faults, for zi �= 1, the fault exist, and the prior probability is P(zi = k) =
γk , k = 1, ...,K;K = 3. We can calculate the posterior probability of zi based on the
observation data yi. (see Sect. 2.4).

Due to the limited space, we only give the derived formula:
By adding hidden variables, the posterior probability of pseudo-range residuals can

be simplified for calculating the log likelihood:

fm(yi|zi, θ) =
K∏

k=1

fk(yi;hTi β + μk , σ
2
k )Ik (zi) (4)

Ik(z) =
{
1, if z = k

0, else
, θ = (βT , μT , (σ 2)T , γ T )T .

The log likelihood is

lc(θ) = log fm(Y ,Z|θ) =
n∑

i=1

log fm(yi, zi|θ) (5)

2.3.1 E Step: Compute the Expected Log Likelihood Q(θ |θ(t),Y)
Q(θ |θ(t),Y ) � EZ [lc(θ)|θ(t),Y ]

=
n∑

i=1

K∑

k=1

γik log[γk ] −
n∑

i=1

K∑

k=1

γik
(yi − hTi β − μk)

2

2σ 2
k

− 1

2

n∑

i=1

K∑

k=1

γik log(σ 2
k ) − nlog

√
2π

(6)

γ
(t)
ik =E[Ik(zi)]= γ

(t)
k fk(yi|θ(t))

K∑

k=1
γ

(t)
k fk(yi|θ(t))

(7)

t is the number of iterations. See Sect. 2.4 for the selection of the initial value θ(0).
γ

(t)
ik =P(zi = k |yi, θ

(t)) represents the posterior probability of the failure state.

2.3.2 M Step: Maximize Q(θ |θ(t),Y) and Update θ(t+1)

γ
(t+1)
k = argmax

γ
Q(θ |θ(t),Y ) =

n∑

i=1
γ

(t)
ik

n
(8)

⎛

⎝
β

μ2

μ3

⎞

⎠

(t+1)

= (HT
E WEHE)−1HT

E WEYE (9)
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YE =
⎛
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Wk = diag{ γ
(t)
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(σ 2
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γ

(t)
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(σ 2
k )(t)

}, k = 1, 2, 3 (11)

(σ 2
k )(t+1) = argmaxQ(θ |θ(t),Y ) =

n∑

i=1
γ

(t)
ik (yi − hTi β(t+1) − μ

(t+1)
k )2

n∑

i=1
γ

(t)
ik

(12)

Complete an iteration θ(t) → θ(t+1) as described in Sects. 2.3.1 and 2.3.2, and repeat
until

∥
∥θ(t+1) − θ(t)

∥
∥ is small to obtain the final estimation of all unknown parameters

θ̂ = θ(t+1) and the posterior of the fault state γ
(t+1)
ik .

2.4 Initial Value Selection

The MM method is selected as the method for initial value for iteration, and some
improvements have beenmade. The FAST-S [7] algorithmbased on optimal subsampling
is used instead of the LTS algorithm to makes the estimation efficiency and reduce the
time consumption for initial value [7]. The other initial values of the parameters in the
Gaussianmixture distribution can be set tomake the distribution asmore flat, thick-tailed
and symmetrical as possible based on experience.

2.5 Calculation of the Protection Level

The covariance matrix of β̂ can be calculated using (9) as follows:

cov

⎛

⎜
⎝

β

μ2

μ3

⎞

⎟
⎠

(t+1)

= AEcov(YE)ATE , AE = (HT
E WEHE)−1HT

E WE, cov(YE) =
⎛

⎜
⎝

�Y �Y �Y
�Y �Y �Y
�Y �Y �Y

⎞

⎟
⎠

According to (3) and (7), the posterior covariance matrix �Y of Y , is a diagonal
matrix, which can be calculated according to formula (3), and replaces γk with the
posterior probability γik in (7).

We let Cii denote the i th diagonal element of cov

⎛

⎜
⎝

β

μ2

μ3

⎞

⎟
⎠

(t+1)

, then

VPL = κα

√
C33, HPL = κα

√
C11 + C22 (13)

κα can be set according to the required false alarm rate.
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3 Experiments

In this section, the experimental results of our algorithm and three other algorithms are
compared. Our algorithm achieved a good performance on almost all the error modes
and error ranges.

3.1 Experimental Design

Wecollected24hofGPS (L1) andBeidou (B1C)measureddata for simulation inOctober
15, 2020. The fixed antenna is located on the top floor of the office building, both GPS
(L1) or Beidou (B1C) have 9–12 visible stars, the total number of satellites is about 20–
22, the elevation threshold is 5°, and the carrier-to-noise threshold is 25, using pseudo-
range for positioning. The simulation environment is as follows: laptop Thinkpad-T450,
operating systemwin10, IntelCore i5-5200UCPU@2.20GHz2.19GHz, 12.0GBRAM,
and simulation software R-3.5.3 and gcc-4.9.3. We randomly selected 3000 samples
from the 24-h observation data with a uniform distribution for the experiment. Then we
randomly selected 20 satellites each epoch. We calculate the Root Mean Square Error
(RMSE) of the three-dimensional ENU direction under each experimental condition.
The long-term RTKmeasurements are used as the reference true position. Due to limited
space, this article only uses the U direction as an example.

We chose four calculation methods for comparison:
Method 1 (denoted as LS): Least square estimation.
Method 2 (denoted as M): M estimation method (Huber loss [5]).
Method 3 (denoted as MM): MM estimation method [1].
Method 4 (denoted as GM3): The Gaussian mixture model with 3 components

proposed in this paper.
The following strategies are adopted for the failure modes, and at each mode, the

fault satellites are randomly selected:
Failure mode 1: random failure, with a deviation of 5–30 m in a uniform distribution

added on the pseudorange measurement.
Failure mode 2: Fixed deviation of 20 m is added on the pseudorange.
Failure mode 3: Slop biased failure, adding deviation at the speed of 0.03 m/s (6

faults) and 0.02 m/s (8 faults) after 200 s on the pseudorange measurement.

3.2 Positioning Error Analysis

We use the failure mode 1 and 2 in Sect. 3.1 and randomly selected the number of faulty
satellites from 0 to 10 respectively. In Fig. 2 and 3, it can be seen that the positioning error
of the GM3method is lower than the other three methods in most cases. The positioning
error of failure mode 3 are shown in Fig. 4 and 5. It can be seen that with the delay of
time, the increase of the deviation causes the positioning error to become larger. The
increase speed of the positioning error obtained by the GM3 method is slower than the
other three methods, and the average positioning error is the lowest. When there are 8
faulty satellites, the positioning error is reduced by at least 6 m compared with the other
three methods.
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Fig. 2. Positioning error on 4 methods at random failures and different numbers of faults

Fig. 3. Comparison of the positioning error (height) between 4 methods at 20 m bias

Fig. 4. Positioning error (height) between 4 methods at slope bias (0.03 m/s) and 6 faults

Fig. 5. Positioning error (height) between 4 methods at slope bias (0.02 m/s) and 8 faults
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3.3 Protection Level Analysis

It can be seen from the histograms in Fig. 7 that in most cases, |VPE|
VPL < 1 indicates that

the VPL can effectively measure the range of the real time positioning error [3, 16–18].
From Fig. 6 we can see that a low missed detection and false alarm rate is achieved.

Fig. 6. The comparison between VPL and VPE at slope bias (0.01 m/s) and 6 faults

Fig. 7. The timing diagram of VPL and VPE, and the histogram of VPE/VPL at slope bias
(0.01 m/s) and 6 faults

3.4 Time Complexity

It can be seen from Table 1 that the computational complexity of our method is basically
independent of the number of failures after the subsampling improvement of the MM
method and the EM algorithm described in Sects. 2.3 and 2.4.

Table 1. Running time under each umber of faults

Number of faults 0 3 5 8 10

Running time (ms) 15.50 17.62 18.98 23.29 23.17



138 L. You and B. Bi

4 Conclusions

This paper proposes a RAIM algorithm based on Gaussian mixture distribution, which
can describe the characteristics of non-central, thick-tailed, non-Gaussian residualswhen
there are faults, and also has good adaptability to the residual distributionwhen there is no
fault. The parameters of the distribution are determined based on maximum likelihood
and real time observation, and can adapt to changes in errors distribution over time.
Using EM algorithm and subsampling-based initial value determination can make the
calculation complexity do not change with the increase of the number of failures and
ensure the real-time performance of the algorithm. Experiments with multiple failure
modes (random, fixed, and slowly varying) are performed. When the total number of
satellites is 20 and the number of faulty satellites gradually increases from 0 to 10, the
performance of fourmethods are compared. It is verified that themethod in this paper can
effectively reduce the positioning error when multiple faults occur, the PL calculation is
effective and the computation is fast. This method can be widely used in multi scenarios
such as city valley, cycle slip and so on, we will do more experiments on more scenarios
and more complex error modes in the future.
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