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Abstract Ongoing advancements in the improvement of multilayer convolutional
neural organizations have brought about upgrades in the precision of important recog-
nition jobs, for example, huge category picture classification and cutting-edge auto-
mated recognition of speech. Custom hardware accelerators are crucial in improving
their performance, given the large computational demands of Convolution Neural
Networks (CNN). The Field-Programmable Gate Arrays (FPGAs) reconfigurability,
computational abilities, and high energy efficacy makes it a propitious CNN hard-
ware acceleration tool. CNN have demonstrated their value in picture identification
and recognition applications; nonetheless, they require high CPU use and memory
transmission capacity tasks that cause general CPUs to neglect to accomplish wanted
execution levels. Consequently, to increase the throughput of CNNs, hardware accel-
erators using Application-Specific Integrated Circuits (ASICs), FPGAs, and Graphic
Processing Units (GPUs) have been employed to improve CNN performance. To
bring out their synonymity and dissimilarity, we group the works into many groups.
Thus, it is anticipated that this review will lead to the upcoming development of
successful hardware accelerators and be beneficial to researchers in deep learning.
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1 Introduction

In the past decade, artificial intelligence (AI) and machine learning (ML) instru-
ments have gained considerable prominence due to advancements in computational
structure which consists of area, power, and effectiveness. A range of programs have
started using AI algorithms to improve overall efficiency than conventional methods.
These applications include image processing [1], for example, face identification,
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banking and statistical surveying [2], mechanical arms in the robotized producing
area [3], medical services applications [4], database administration and management
[5], and face checking and investigation security applications [6].

The explosive development of big data over the past decade has inspired revo-
lutionary approaches to obtain data from various sensors such as photos and
voice samples. In reality, these Convolution Neural Networks (CNNs) [7] now
are conceived as the standard method among the proposed methods by delivering
“human-like” accuracy in various computer vision-related applications, such as
classification [8], detection, segmentation [9], and speech recognition [10].

As CNNs need up to 38 GOP/s to identify a single frame [11], this output is
obtained at the expense of a high computational price. Hence, to accelerate their
execution, dedicated hardware is required. The most frequently used platform for
implementing CNNs is Graphics Processing Units (GPUs), as they provide the
highest performance with respect to computational throughput, hitting 11 TFLOP/s
[12].

Nonetheless, FPGA systems are considered to be better energy efficient in terms
of power consumption (vs GPUs). Thereby, several FPGA-based CNN accelerators
were suggested, targeting both data centers for High Performance Computing (HPC)
[13] and embedded applications [14].

Although GPU implementations have shown exceptional computational effi-
ciency, for two reasons, CNN acceleration is heading momentarily towards FPGAs.
First, recent advances in FPGA technology have brought about FPGA performance
with a recorded performance of 9.2 TFLOP/s for the latter in striking distance to
GPUs. Second, recent CNN production patterns are increasing the sparsity of CNNs
and using extremely compact types of data.

The remaining paper is structured in the following way: Literature Review,
summarizing the use of AI algorithms in the past decade. Explanation of CNN and
challenges of FPGA-based implementation. A detailed analysis of FPGA, GPU, and
ASIC-based implementation of AI networks which compares between the power,
area performance, and efficiency parameters. Finally, we look into the optimizations
available and scope of future research.

2 Literature Review

Lately, the application of AI algorithm as a replacement of conventional algorithms
have become popular. With the advent of ML and AI, there is a worry to basically
address computational cost and power-burning through AI calculations. This leads to
the necessity for particular equipment with high capacity to perform AI estimations
with large scope issues [15]. The aim of all the research is to achieve better and more
capable handling of AI algorithmic calculations. Numerous researches have been
conducted over the span of the latest decade discussing hardware and programming
advancements and execution strategies in this field [1, 16–21].
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Table 1 A comprehensive compendium of survey papers

References Publication year Description and scope

[16] 2010 This research addresses all the main architecture methods and
models for the 1990–2010 “hardware neural network.” They
exemplify numerous HNN implementations in a variety of
“ANN models” like CNN, neural bursts, and so on. Digital,
analog, composite, neuromorphic, “FPGA,” or
optical implementations are used in these HNN

[19] 2013 The scope of the research work was if developers were
designing customized versions or were using pre-tailored free
platforms for the development. The “artificial neural networks
(ANN)” software framework table was also included in the
work

[1] 2017 The paper provides a brief analysis of past work on the main
approaches of FPGA-based neural inference networks

[21] 2018 This survey paper gives insight about the Moore’s law in
conjunction with the increasing use of CPUs and GPUs. Major
applications of AI are also discussed

[22] 2020 This paper summarizes AI neural network’s hardware
implementation, with emphasis on all three-hardware
equipment: ASIC, GPU, and FPGA. A comprehensive flatting
strategy has been used to pick the research articles to address
issues of science

Here in Table 1, we discuss corresponding survey articles published roughly
between 2009 and 2019 on the implementation of AI algorithms, more precisely
neural nets for hardware. Few studies have covered hardware implementations of
artificial neural networks [16, 19, 20]. While other studies have centered on FPGA-
based deep learning neural network accelerators [1, 17, 18]. In [19], the FPGA
implementation of coevolutionary neural networks was the subject of the authors
(CNNs). The survey addressed GPU implementations in [21].

This examination distinguishes and addresses various papers. These papers were
evaluated as per the hardware used. The bulk of the documents include FPGA-
based implementations.With its high adaptability and solidness, the FPGA is viewed
as a promising option for the use of these calculations. Likewise, recent FPGA
design improvements have brought aboutmaking itmore accessible because ofwhich
profound learning research has procured significant consideration [23].

One of the powerful “application-specific integrated circuit” (ASICs) is also used
for AI algorithm implementation. ASICs are personalized chips that are conceived
for a particular purpose. They save high-power and are speed-efficient, consume less
silicon area, making them ideal solutions for accelerating AI algorithms [24]. To
accelerate AI algorithms, graphical processing units (GPUs) are also used to pace up
algorithms to hundreds of times the initial speed [25]. GPUs are made to carry out
scalar and parallel intensive computing [26]. UnlikemulticoreCPUs,when accessing
DRAMmemories, GPUs try not to depend on shrouded latencies utilizing large cache



498 A. Negi et al.

memories [27]. Such highlights have made GPUs increasingly more useful for AI
acceleration.

Using small single-board processors, some AI algorithms are applied. For
example, raspberry pi. As a result of their little size and low force prerequisites,
single-board PCs are viewed as a decision for AI usage.

3 Overview of CNN

One of the classic profound learning networks is the deep convolutional neural
network. They are widely used in these areas for the continued development of
deep learning technologies, machine vision, and language recognition [28]. Earlier
studies have indicated that the calculation of the cutting-edge CNNs is overwhelmed
by the convolutional layers [29, 30] formation.

It contains numerous falling layers, pooled layers, and fully-connected complex
layers. The convolutionary neural network distinguishes the image as the input,
and obtains the outcome across several “convolutional layers, pooling layers and
associated layers.”

3.1 Model of Convolutional Layer

The input f in and convolution kernel composed of weights wij, comprises the convo-
lution layer. The sampled function is set by balancing results to get the output f out.

[30].

f out
i =

nin∑

i=1

f in
i ∗ wi, j + bi , 1 ≤ i ≤ nout (1)

3.2 Model of Pooling Layer

The pooling layer typically uses the maximum scan or core scan to minimize the
size of the input matrix. The activity will viably lessen the following layer’s data
processing ability while forestalling the loss of characteristic information.
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3.3 Full Connection Layer

The layer changes over the input to straight space, hence, changing over the input to
a direct space. Output is received.

f out =
n∑

j=1

f in
j ∗ wi, j + b (2)

3.4 Activation Layer

A nonlinear change of the input is presented by the activation function excitation,
and the output after each layer is regularly handled. Some common functions include
nonlinear (Relu), trigonometric function (Tanh), shock response (Sigmod), etc.

4 Challenges in FPGA

4.1 Tradeoff Between RTL and HLS Approaches

Via high-level abstractions, the HLS-based design approach enables fast growth.
This demonstrates the conventional plan utilizing the OpenCL-based methodology
[31]. Key features including partitioning, automatic pipelining of the CNN model,
etc., can also be supported but for HW performance, however, the resulting design
cannot be optimized.

4.2 Necessity of Diligent Design

Considering the particular characteristics of both FPGAs and Convolutional Neural
Net, the optimization of throughput demands careful design. In general, two archi-
tectures for the same use of resources may have significantly different performances
[30],and thus, the use of resourcesmay not be a reliable overall performancemeasure.
There are vastly different criteria for separate CNN layers. In addition, the use of
FPGA relies heavily on the burst duration of memory access [32], so the access
pattern of CNN memory must be cautiously configured. Furthermore, the compute-
throughput ought to be adjusted with the memory or the memory can end up being
the bottleneck [19].
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4.3 FPGAs Over GPUs/ASICs/CPUs

Although the computer software environments are already mature for developing
convolutional Neural Net designs for CPUs or GPUs, those for FPGAs are even now
nascent. Furthermore, despite the HLS software, it can take several months for an
experienced HW designer to implement the CNN model on FPGAs [33]. There-
fore, in general, modeling efforts for GPUs is quite less when compared to FPGAs.
Accounting for rapid changes growth related to neural nets, it may not be feasible
to re-architect accelerators based on FPGA with every upcoming neural net algo-
rithm. Therefore, the most recent NN algorithm cannot efficiently model an FPGA-
based architecture. In addition, a Field-Programmable Gate Array (FPGA) modeling
demands greater resource overhead than an ASIC design because of reconfiguration
of logic blocks and switches. These factors give these custom boards a competitive
disadvantage over other HW acceleration computing platforms for NNs.

4.4 A Comparative Study Between FPGA, ASIC, and GPU

Here, we bring the execution technique, GPUs/FPGAs/ASICs, in relation to regular
merit figures. A distinction between the three methods is seen in Table 2. Since the
ASIC specification is unaltered post-production, it becomes unsuitable for applica-
tion where subsequent to installation, the model needs to be revised. ASIC is better
used where low power and area are the goal. In comparison to ASICs, FPGAs are
available for post-implementation upgrades. It is worth mentioning that even though
the ultimate objective is ASIC execution, FPGAs are also used for prototyping and
validation [22].

GPUs provide a solution at the software level, while FPGAs and ASICs have a
solution at the hardware level. FPGAs andASICs thus have greater stability compared
to GPUs during the deployment process. As a result, the implementation of the GPU

Table 2 A comparison between the aforesaid

FPGA (Hardware) ASIC (Hardware) GPU (Software)

Skills required Verilog Verilog High level language

Implementation level Medium High Medium

Versatility High High Low

Post implementation change High Very low High

Overall expenditure Medium High Low

Area consumption High Low High

Performance Medium High Low/Medium

Power consumption Medium Low High
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is constrained by the current underlying hardware. Thus, in some situations, FPGAs
can be quicker than GPUs.

5 A Compendium of Numerous Hardware
Implementations

Implementation details of neural nets on various FPGA boards are shown in Table
3. Loop optimizations were first investigated in [30] to extract an FPGA-based CNN
accelerator. This design was modeled utilizing HLS tools, therefore, it relies on the
arithmetic of 32 floating points. Works in [34, 35] pursue the same unrolling scheme.
In addition, [35] design has 16 bits of fixed-point arithmetic and RTL design, which
results in an increase of performance by approximately two times. In recent works
[36], the same unrolling and tiling scheme is used where authors report an improve-
ment of x13.4 over their original works [30]. Consequently, unrolling and tiling loops
can be proficient as it were for devices with large computational capabilities (i.e.,
DSP). This is often illustrated in works of Rahman et al. [34] which improves speed
by 1.2 times over [30].

Conversely, all modeling factors looking for ideal loop unroll are fully explored
in the works of Ma et al. [37, 40, 41]. More specifically, researchers show that using
unroll function for single input arithmetic, the input FMs and weights are optimally
reused [38, 39, 42–46].

6 Conclusion and Future Work

In this paper, a comprehensive study related to development and deployment of
FPGA in CNN accelerators has been provided. To highlight their similarities and
distinctions, we categorized the works based on many parameters. We outlined the
influential avenues for study and summarized the key themes of numerous works.
Usage ofmore than one FPGA is important for computational acceleration ofmassive
and extensive Neural Net models, considering the limited hardware resources avail-
able on an FPGA board. This allows the architecture to be partitioned across several
FPGAs.Although a software for automatic partitioningwill not be readily accessible,
themanual approach to partitioning is vulnerable to error and unscalable. In addition,
random splitting will increase the complexity of interconnections in a manner that
the I/O pin count cannot complete the requirement of number of connections.

Lately, researchers have also reconnoitered models of the spike neural network
(SNN) that model the biological neuron more closely [47]. This study concentrates
on (ANN) which is an acronym for artificial neural network. SNNs and ANNs vary
considerably. As a result, their training rules and network architectural structure
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Table 3 Specifications of various hardware implementations

Neural net FPGA
board

Frequency
(MHz)

Performance
(GOPs)

Consumed
power (W)

LUT
(K)

DSP Memory
(MB)

[30] AlexNet-C Virtex7
VX485T

100 62 19 186 2240 19

[14] VGG16SVD-F Zynq
Z7045

150 137 10 183 780 18

[31] AlexNet-C Stratix5
GSD8

120 187 34 138 635 18

AlexNet-F 72 272 752 30

VGG16-F 118 524 1963 52

[34] AlexNet-C Virtex7
VX485T

100 75 28 2695 20

[36] AlexNet-F Virtex7
VX690T

150 826 126 14,400

VGG16-F 1280 160 21,600

[35] NIN-F Stratix5
GXA7

100 114 20 224 256 47

AlexNet-F 134 19 242 256 31

[40] AlexNet-F Virtex7
VX690T

156 566 30 274 2144 35

[41] AlexNet-C Virtex7
VX690T

100 62 273 2401 20

[37] VGG16-F Arria10
GX1150

150 645 50 322 1518 38

[42] AlexNet-F Arria10
GT1150

240 360 700 1290 47

VGG-F 222 460 708 1340 49

VGG-F 232 117 626 1500 33

[43] AlexNet-C Cyclone5
SEM

100 12 22 28 1

Virtex7
VX485T

100 445 2800

[39] NiN Stratix5
GXA7

150 283 453 256 30

VGG16-F 352 424 256 44

ResNet-50 251 347 256 39

NiN Arria10
GX1150

200 588 320 1518 31

VGG16-F 720 263 1518 45

ResNet-50 619 437 1518 39

[38] AlexNet-F Virtex7
VX690T

100 446 25 207 2872 37

VGG16SVD-F 473 26 224 2950 47
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vary drastically. Large-scale SNN modeling onto SOC/FPGA boards will offer an
exhilarating and remunerating challenge for IT designers later on [45].
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