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Abstract Due to the coupling between the direct-axis current, quadrature-axis
current and rotor speed, the dynamic response could be strongly nonlinear. Besides,
if the working condition is severe, the loading is no longer constant and multiple
harmonics could be introduced. In this chapter, a 3-D model for brushless motor is
discussed, and an excitation with single harmonic will be considered. With discrete
implicit maps algorithm, complex dynamical behaviors can be obtained for such a
brushless motor. With bifurcation analysis, the parameter sensitivity can be obtained
which can be a suggestion for design and operation. This chapter is dedicated to
Valentin Afraimovich for his fabulous achievement in the scientific world.

1 Introduction

A brushless motor is an important power source which can be used in various fields
such as robotics and aerospace. The vibration of such a motor could affect the perfor-
mance of the loading, the comfort of the environment, the fatigue life of the entire
system etc. Therefore, vibration issues should be considered in the design stage of a
brushless motor. Due to the variation of the rotor speed, it could cause the torsional
vibration of the rotor system and then affect the vibration of the whole structure.
Hemati [1, 2] formulated a mathematical model for a brushless motor in a rotating
coordinate frame through Park’s transformation to investigate the global and local
dynamics of such a direct-drive brushless motor. Such a model of brushless motor
is a set of three dimensional first order autonomous differential equations system.
Kang et al. [3] applied nonideal trapezoidal back EMF to attenuate the undesired
torque fluctuation for the brushless dc motor, and a high precision encoder was used
to measure the instantaneous torque ripple. Rubaai et al. [4] constructed a three-
layer feedforward network to identify and control brushless dc motor drives. The
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differential equations for the stator current were transformed to a single second-
order nonlinear differential equation, and the solution was worked out by second-
order central difference approximation. In 2003, Ge and Chang [5] transformed the
brushless motor system into a compact form to study the chaos synchronization of
identical systems through four methods such as the adaptive control, the backstep-
ping design method, the Gerschgorin theorem and the addition of a monitor. Lee
and Ehsani [6] effectively analyzed the speed, torque, voltages and currents of PWM
inverter components using a developed model based onMATLAB environment. The
trapezoidal back EMF waveforms were modeled as a function of rotor position.
Jabbar et al. [7] introduced a methodology of modeling and numerical simulation of
BLDCMwith time-stepping approach. Finite elementmethod (FEM)was considered
to be practical to compute the performance of electrical machines. The simulation
results correlated well with the experimental results which indicated that the model
was significant. Luo [8, 10] studied the application of the combination of dynamic
surface control (DSC) technology, radial basis function (RBF) neural network, and
adaptive method, in the control of chaos for the BLDCM system. The same model
with Hemati was applied, and the tangent barrier Lyapunov function (TBLF) was
used for a time-delay nonlinear system. Zhang et al. [9] investigated the boundedness
solutions of BLDCM. The generalized Lyapunov function stability theory and the
extremum principle of function were used to analyze global attractive and positively
invariant sets. The efficiency has been verified through the numerical simulations.
Jagiea and Gwozdz [11] introduced a time-periodic finite element model of a brush-
less dc motor to evaluate the machine characteristic and the power losses. Cho et al.
[12] analyzed the vibration characteristics of a brushless direct current motor through
an entire finite element model, and electromagnetic-structural weak coupled analysis
was carried out to give the transient response.

In this chapter, a brushless motor will be expressed with a set of three-dimensional
nonlinear different equations. The electrical states (quadrature-axis current and
direct-axis current) and mechanical state (rotor speed) are coupled. In the history
of development of techniques for solving the steady-state response analytically of a
nonlinear system, perturbation method [13] and harmonic balance method [14] are
two of themost famousmethods, but small parameter assumption for nonlinear terms
was made. In order to remove such a limitation and deal with systems with strong
nonlinearity, a generalized harmonic balanced method was developed and the effec-
tiveness of such a method was verified with the Duffy oscillator [15], nonlinear Jeff-
cott oscillator [16] etc. Further, a semi-analytic methodology called discrete implicit
maps was introduced [17] to give the analytic solution of periodic motions for any
type of nonlinear system which possesses ordinary differential equations. With such
a method, the bifurcation of analytic steady state solution for nonlinear systems such
as piston in a high pressure gas cylinder [18], hardening Duffing oscillator with
time-delay [19] and Parametrically Excited Pendulum [20] etc. have been obtained.

Since such a discrete implicit mapmethod can be easily applied to solve nonlinear
systems, and the stability and bifurcation condition can also be accurately calculated
with which a large dimension of sparse Jacobian matrix is avoided, the analytic
solution of periodic motions for nonlinear equations for brushless motor system will
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be calculated using such a technique herein. Additionally, the number of harmonic
terms does not need to be determined before the calculation, thus the accuracy of the
analytic solution can be guaranteed. For a brushless motor with loading, the loading
can cause the torque fluctuation when the loading increases which may dramatically
change the dynamic characteristics for brushless motor dramatically, for instance the
steady state motion may become other type of periodic motion or chaos when the
periodical torque is introduced.

2 Motion Discretization and Mapping Reconstruction
for Periodic Motions

In Fig. 1, a three-phase brushless motor with drive circuit is illustrated. The rela-
tionship between the input voltage and the back EMF in the motor will be expressed
as

ua = Ria + L
dia
dt

+ ea,

ub = Rib + L
dib
dt

+ eb,

uc = Ric + L
dic
dt

+ ec. (1)

Through Park transformation and a periodical torque excitation is considered,
the dynamical equations for such a brushless motor in the d-q coordinates can be
expressed as

diq
dt

= L−1(vq − Riq − npLωid − npktω),

ua
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ub

R
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Fig. 1 Illustration of three-phase brushless motor with drive circuit
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did
dt

= L−1(−Rid + npLqωiq + vd),

dω

dt
= J−1(npkt iq − bω+TL0 + TL cosΩt) (2)

where iq and id are the quadrature-axis and direct-axis current; vq and vd are the
quadrature-axis and direct-axis voltage; L is the fictitious inductance; R is winding
resistance; n is number of pole pairs; ω is the rotor speed; J is the inertia of rotor; b
is the viscous damping coefficient; TL is the torque due to external load; TL and �

are the magnitude and frequency of the torque fluctuation due to the external load;

kt =
√

3
2ke and ke is the permanent-magnet flux constant.

One define the state variables for such a motor as

x � (x, y, z) ≡ (iq , id , ω) (3)

For a period-1 motion of such a brushless motor system, it can be discretized into
multiple mappings with constant time step. For a certain map Pk (k = 0, 1, 2, …),
it maps from one state (xk−1, yk−1, zk−1) at t = tk−1 to another (xk, yk, zk) at t = tk
with a mapping criteria based on the midpoint algorithm given as follows.

Pk : (xk−1, yk−1, zk−1) → (xk, yk, zk) ⇒ (xk, yk, zk) = Pk(xk−1, yk−1, zk−1). (4)

xk = xk−1 + hL−1
[
vq − R(xk−1 + xk)/2 − npL(yk−1 + yk)

(zk−1 + zk)/4 − npkt (zk−1 + zk)/2
]
,

yk = yk−1 + hL−1
[−R(yk−1 + yk)/2

+npLq(xk−1 + xk)(zk−1 + zk)/4 + vd
]
,

zk = zk−1 + h J−1[npkt (xk−1 + xk)/2 − b(zk−1 + zk)/2

+TL0 + TL cos�(t + dt/2)]. (5)

where h = tk − tk−1.
Then the mapping structure for such a period-m motion which is divided into mN

partitions becomes

P = PmN ◦ PmN−1 ◦ · · · ◦ P2 ◦ P1 : (x0, y0, z0) → (xmN , ymN , zmN ). (6)

Due to periodicity, the initial position for the first map and the final position of
the final map should be overlapped, and the time span equals the time period of the
external torque.
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x0 = xN , y0 = yN and tN = t0 + 2πm

Ω
(7)

For a period-mmotionwithmN maps, it has 3mN equations and the state variables
for those nodes are unknown, the number ofwhich is 3mN + 3. Butwith the constraint
given in Eq. (7), three more equations are added such that the node points for such
a period-1 motion can be solved analytically through Newton-Raphson method.

To determine the stability of a period-1 motion, the small neighborhood of the
node point x∗

k can be written as xk = x∗
k +�xk , (k = 0, 1, 2, · · · , N ). Then linearize

Eq. (6) at the equilibrium and the first order of the Taylor’s expansion is kept, it gives

�xN = DP�x0 = DPmN · DPmN−1 · . . . · DP2 · DP1︸ ︷︷ ︸
mN−multiplication

�x0 (8)

where

DPk =
[

∂xk
∂xk−1

]

(x∗
k ,x

∗
k−1)

, for k = 1, 2, · · · , N (9)

Solve the Jacobian matrix DP, and it gives three eigenvalues such as λi (i =
1, 2, 3). According to theory of the continuous system, the periodic motion is stable
only if all of magnitudes of the eigenvalues are less than 1, e.g. |λi | < 1 (i = 1 and
2 and 3). Otherwise, the motion is unstable. At the boundary between the stable and
unstable motions, it is the bifurcation point, of which the magnitude of one of the
eigenvalues is 1:

I. If one of the eigenvalues is 1, the saddle-node bifurcation of period-1 motion
occurs;

II. If one of the eigenvalues is −1, the period-doubling bifurcation of period-1
motion occurs;

III. If a pair of eigenvalues are complex withmagnitude equating to 1, the Neimark
bifurcation of period-1 motion occurs.

For a given resolution mN, a period-m motion can be divided into mN segments
with constant time interval ofmT /N where T is one period of excitation (T = 2π/ω).
Then a set of node points of periodic motions with (mN + 1) points per one period
of excitation can be expressed as. Furthermore, the set of node points of period-m
motion with (mN + 1) node points for one period can be expressed as

	 = { (xk, yk, zk)|tk = t0 + 2kπ

N�
; t0 = 0; k = 0, 1, 2, . . . ,mN } (10)

Instead of presenting all node points of periodic motions, the node points per
each period of excitation frequency are collected in the Poincaré mapping section
for period-1 motions. Such Poincaré mapping is defined as
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	PM = { (xk, yk, zk)| mod (k, N ) = 0, τk = τ0 + kT

N
;

τ0 = 0; k = 0, 1, 2, . . . ,mN } (11)

By analyzing the aforementioned set Ξ via Discrete Fourier Transform, the
analytic solution for such a period-m motion can be recovered as

x(t) ≈ a(m)
0 +

mN/2∑
j=1

b j/m cos( j
mΩt) + c j/m sin( j

mΩt) (12)

and

a(m)
0 = 1

mN

mN−1∑
k=0

xk,

b j/m = 2

mN

mN−1∑
k=0

xk cos(
j
mΩtk),

c j/m = 2

mN

mN−1∑
k=0

xk sin(
j
mΩtk),

tk = 2kπ

ΩmN
, (13)

where a(m)
0 = (a(m)

01 , a(m)
02 , a(m)

03 ), b j/m = (b j/m(1), b j/m(2), b j/m(3)) and c j/m =
(c j/m(1), c j/m(2), c j/m(3)).

The highest order of the harmonic depends on the number of the partition which
the motion is divided into. The amplitude and phase for each order of harmonic for
the period-1 motion are expressed by

Ak/m =
√
b2k/m + c2k/m, ϕk/m = arctan

ck/m
bk/m

(14)

3 Analytical Bifurcation

For an eight-pole brushless motor, the system parameters are given as

R = 0.9, np = 4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047 (15)
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For the loading condition, it is assumed as TL0 = 0, TL = 0.2 and Ω = 10. The
quadrature-axis voltage vq is set to be zero and direct-axis voltage vd is varied from
−9.0 V to −6.0 V. The analytical bifurcation diagram of node point sets of period-1
motion, which is expressed as in Eq. (10), for such a brushless motor is illustrated in
Fig. 2. The solid curve is stable motion and the dashed curved is unstable motion. For
the upper branch of the stable period-1 solution, the periodic nodes of the states for
such a brushless motor system (such as quadratic-axis current, direct-axis current,
and rotation speed) are almost invariant when the direct-axis voltage increases. The
period-doubling bifurcation (“PD”) of the period-1 motion occurs at vd = −7.769 V,
and the saddle-node bifurcation (“SN”) of the period-1 motion is at vd = −7.752 V.

Since the rotor speed is the mechanical state, by which the vibration of such a
brushless motor can be affected it can reflect the vibration characteristics of such a
brushless motor, the harmonic amplitudes of rotor speed for such a motor when the
direct-axis varies in the range of vd ∈ [−9,−6] are presented In Fig. 3. The constant
terms a03 gives the average value of the rotor speed versus direct-axis voltage, which
is shown in Fig. 3a. For constant term a03 which is nonzero, the periodic motion
is asymmetric to the rotor speed. Otherwise, the periodic motion is symmetric to
the rotor speed. In Figs. 3b–d, the first three orders of the harmonic amplitudes are
illustrated. For the analytical solution of the periodic motion which is symmetric to
the rotor speed, the even orders of the harmonic amplitude forAk(3) (k= 2, 4, 6,…) are
all zero. It can be seen that the third order of the harmonics for the period-1 motions
still has a quantity level of 101, which indicates that higher orders of harmonic are
required. The harmonic amplitude of A2(3) goes to zero at vd = −7.557 V which is
the unstable saddle-node bifurcation, and the unstable periodic solution has jump
phenomenon when the direct-axis voltage continues to increases. In Figs. 3e, f, the
harmonic amplitudes of A59(3) and A60(3) are shown, respectively. The quantity level
of harmonic amplitude for stable period-1motion which is asymmetric to rotor speed
has dropped to 10−4 when the order increases to 60, and the quantity level of harmonic
amplitude for stable period-1 motion which is symmetric to rotor speed has dropped
to 10−2 when the order increases to 59.

For period-2 motion, it only exists in a very narrow range. The periodic nodes
for period-2 motion in the range of vd = [−7.764, −7.745] are shown in Fig. 4.
The period-doubling bifurcation occurs at vd = −7.752408 V and −7.754412 V.
In Fig. 5a, for the constant term a03 of stable period-2 motion, it increases and then
decreases when the direct-axis voltage increases. But the average rotation speed only
varies from 9.452250 to 10.632700 rad/s. For the period-2 motion, the subharmonic
terms of Ak/2(3) (k = 1, 3, 5, …) is non-zero, as shown in Fig. 5b–g. For k = 6, the
harmonic amplitude still has a quantity level of 101. For k = 94 and 95 which is
shown in Fig. 5h, i, the quantity level decreases to 10−2, and it becomes 10−3 when
k = 96 as is given in Fig. 5j.
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Fig. 2 Analytical bifurcation of periodic nodes of period-1 motion for brushless motor (R =
0.9, n p = 4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047) with working condition
TL0 = 0, TL = 0.2, � = 10 and vq = 0: a quadrature-axis current, b direct-axis current and c rotor
velocity
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Fig. 3 Harmonic amplitude of rotor speed for brushless motor (R = 0.9, n p = 4, L =
0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047) with working condition TL0 = 0, TL =
0.2, � = 10 and vq = 0: a constant term, b–d first three orders of harmonics, e harmonic amplitude
of A59(3) and f harmonic amplitude of A60(3)

4 Periodic Motions

In this section, periodic motions in the brushless motor with loading fluctuation will
be discussed. The initial conditions are calculated by the analytical solution which
is obtained through implicit discrete map method at the phase t = 0 which is given
by the green solid circle (“I.C.”). The solid curve is the numerical prediction, and
the red fork symbols are the analytical solution.



92 J. Huang and F. Min

(a) 

(b) 

(c) 

Direct-axis Voltage, vd (V)

-7.765 -7.760 -7.755 -7.750 -7.745

Pe
rio

di
c 

N
od

e,
 Q

ua
dr

at
ur

e-
ax

is
 C

ur
re

nt
 i q

m
od

(k
, N

)

-3.0

-1.2

0.6

2.4

4.2

6.0
PD

-7.765 -7.755 -7.745

-2.65

-2.50

PD

Direct-axis Voltage, vd (V)

-7.765 -7.760 -7.755 -7.750 -7.745

Pe
rio

di
c 

N
od

e,
 D

ire
ct

-a
xi

s C
ur

re
nt

 i d
m

od
( k

,N
)

-9.0

-7.2

-5.4

-3.6

-1.8

0.0

-7.765 -7.755 -7.745

-6.84

-6.80

PD PD

Direct-axis Voltage, vd (V)

-7.765 -7.760 -7.755 -7.750 -7.745

Pe
rio

di
c 

N
od

e,
 R

ot
or

 V
el

oc
ity

 ω
m

od
( k

,N
)

-10.0

5.0

20.0

35.0

50.0
PD PD

-7.765 -7.755 -7.745
-8.8

-8.6

-8.4

Fig. 4 Analytical bifurcation of periodic nodes of period-2 motion for brushless motor (R =
0.9, n p = 4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047) with working condition
TL0 = 0, TL = 0.2, � = 10 and vq = 0: a quadrature-axis current, b direct-axis current and c rotor
velocity
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Fig. 5 Harmonic amplitude of rotor speed of period-2motions for brushlessmotor (R = 0.9, n p =
4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047) with working condition TL0 = 0, TL
= 0.2, � = 10 and vq = 0: a constant term, harmonic amplitudes of b A1/2(3), c A1(3), d A3/2(3),
e A2(3), f A5/2(3), g A3(3), h A47(3), i A95/2(3), j A48(3)
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Fig. 5 (continued)

A stable period-1 motion at vd = −7.73 V is presented in Fig. 6a–c, and the initial
conditions are (iq0, id0, ω0)≈ (−2.558350,−6.994479,−7.567532). It can be found
that the numerical simulation correlates with the analytical solution very well. In
Fig. 6b, the rotor speed versus time is illustrated and one period is labeled. For the
harmonic amplitudes of the rotor speed, which are presented in Fig. 6c, the constant
term is zero and the first harmonic is 25.9979 rad/s. The amplitudes of even orders
(Ak(3) for k = 2, 4, 6, …) for such a stable period-1 motion are all zero, and the
amplitudes of the order orders drop asymptotically with the increase of the order.
The harmonic amplitude stay above 1 for k < 21, and the quantity level drops to 10−2

until k = 39. The quantity level goes to 10-4 when k increases to 73. With the same
system parameters, there is another unstable motion coexisted which is presented in
Figs. 6d–f. The initial conditions for such a unstable period-1 motion are given as
(iq0, id0, ω0) ≈ (−2.779143, −6.624351, −9.195011), for which the initial current
for quadratic-axis and direct-axis is very close to those for the aforementioned stable
period-1 motion. As shown in Fig. 6e, the numerical prediction stay on the unstable
period-1 orbit for the first half cycle and then leaves due to the error accumulation
of the numerical simulation and the strong attraction of the stable orbit. In order to
illustrate all the coexisting periodic motions at vd = −7.73, the analytical solutions
of the stable and unstable motions are plotted in Fig. 7. The black solid curve is the
stable period-1 motion, and there are other six unstable period-1 motions which are
represented by the color dashed curves.

InFig. 8, a stable andunstable period-2motion at vd =−7.754Vare demonstrated.
As shown in Fig. 8c, f, the frequency spectrum for period-2 motions becomes more
dense than that for period-1 motion since the subharmonics such as Ak/2(3) (k = 1,
3, 5, …) are introduced. There are one stable period-2 motion and eight unstable
period-2 motions coexisting at vd = −7.754 V which is plotted in Fig. 9. It can be
found that the lower part of all the periodic motions is almost overlapped.
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ω

Fig. 6 Period-1 motion for vd = −7.73: stable motion a 3-D trajectory b time history of rotation
speedω, c harmonic amplitude of Ak(3) (initial conditions: (iq0, id0,ω0)≈ (−2.558350,−6.994479,
−7.567532); unstable motion d 3-D trajectory e time history of rotation speed ω, c harmonic
amplitude of Ak(3) (initial conditions: (iq0, id0, ω0) ≈ (−2.779143, −6.624351, −9.195011), (R =
0.9, n p = 4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047)
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Fig. 6 (continued)
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Fig. 7 Coexisting analytical orbits for period-1 motions for vd = −7.73 (R = 0.9, n p = 4, L =
0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047)

5 Conclusions

In this chapter, the discrete implicit maps method is adopted to investigate the
nonlinear dynamic behavior of a brushless motor. A periodic torque is introduced
to model the loading fluctuation. Period-m motion is discretized and mappings are
described using a set of algebraic equations. Through Newton-Raphson method, the
node points of mappings of period-1 motion for such a brushless motor can be easily
solved and the eigenvalue analysis has been carried out through the reduced system.
By selecting specific parameters, analytic bifurcation for Poincaré section and solu-
tion of period-1 motion varying direct-axis voltage have been presented. A strong
nonlinear characteristic for such a brushless motor with periodically excited loading
can be observed, and higher orders of harmonics should be kept in the solution which
may be difficult to solve for traditional analytical method of solving nonlinear prob-
lems such as harmonic balance method. With such a technique, many coexisting
unstable periodic motions can be obtained, and with proper control such unstable
periodic motions can be altered to be stable if the motions are desired for operation.
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Fig. 8 Period-2 motion for vd = −7.754: stable motion a 3-D trajectory b time history of rotation
speed ω, c harmonic amplitude of Ak(3) (initial conditions: (iq0, id0, ω0) ≈ (2.557057, -3.437199,
31.922249); unstable motion d 3-D trajectory e time history of rotation speed ω, c harmonic ampli-
tude of Ak(3) (initial conditions: (iq0, id0, ω0) ≈ (−.582655, −8.315973, 5.041553),R = 0.9, n p =
4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047)
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Fig. 9 Coexisting analytical orbits for period-1 motions for vd = −7.754 (R = 0.9, n p = 4,L =
0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047)

References

1. Hemati N (1992) The global and local dynamics of direct-drive brushless dc motors. In: the
1992 IEEE International conference on robotics and automation. Nice, France, May 12–14

2. Hemati N (1993) Dynamic analysis of brushless motors based on compact representations
of equations of motion. In: the 1993 IEEE industry applications conference 28th IAS annual
meeting. Toronto, Canada, October 2–8

3. Kang SJ, Sul SK (1995) Direct torque control of brushless dc motor with nonideal trapezoidal
back EMF. IEEE Trans Power Electron 10(6):796–802

4. RubaaiA,KotaruR,KankamMD(2000)Acontinually online-trainedneural network controller
for brushless dc motor drives. IEEE Trans Ind Appl 36(2):475–483

5. Ge ZM, Chang CM (2004) Chaos synchronization and parameters identification of single time
scale brushless dc motors. Chaos Solitons Fractals 20(4):883–903

6. Lee BK, Ehsani M (2003) Advanced simulation model for brushless dc motor drives. Electr
Power Compon Syst 31(9):841–868

7. Jabbar MA, Phyu HN, Liu ZJ, Bi C (2004) Modeling and numerical simulation of a brushless
permanent-magnet dc motor in dynamic conditions by time-stepping technique. IEEE Trans
Ind Appl 40(3):763–770

8. Luo Shaohua, Wang Jiaxu, Songli Wu (2014) Chaos RBF dynamics surface control of brush-
less dc motor with time delay based on tangent barrier Lyapunov function. Nonlinear Dyn
78(2):1193–1204

9. Zhang F, Lin D, Xiao M, Li H (2014) Dynamical behaviors of the chaotic brushless dc motors
model. Complexity 21(4):79–85

10. Luo S, Wu S, Gao R (2015) Chaos control of the brushless direct current motor using adaptive
dynamic surface control based on neural with the minimum weights. Chaos 25(7) 073102:8

11. Jagiela M, Gwozdz J (2015) Steady-state time-periodic finite element analysis of a brushless
dc motor drive considering motion. Arch of Electr Eng 64(3):471–486

12. Cho S, Hwang J, Kim CW (2018) A study on vibration characteristics of brushless dc motor
by electromagnetic-structural coupled analysis using entire finite element model. IEEE Trans
Energy Convers. https://doi.org/10.1109/TEC.2018.2833493

https://doi.org/10.1109/TEC.2018.2833493


Hidden Periodic Motions for Brushless Motor … 101

13. Hayashi G (1964) Nonlinear oscillations in physical systems. McGraw-Hill Book Company
14. NayfehAH, SinghV (1978) Perturbationmethods. IEEETrans SystManCybern 8(4):417–418
15. Luo ACJ, Huang JZ (2013) Analytical solutions for asymmetric periodic motion to chaos in a

hardening Duffing oscillator. Nonlinear Dyn 72(1–2):417–438
16. Huang JZ, Luo ACJ (2015) Periodic motions and bifurcation trees in a buckled, nonlinear

Jeffcott rotor system. Int J Bifurc Chaos 25(1):1550002
17. Luo ACJ (2015) Periodic flows in nonlinear dynamical systems based on discrete implicit

maps. Int J Bifurc Chao 25, 1550044: 62
18. Wang D, Huang JZ (2016) Periodic motions and chaos for a damped mobile piston system in

a high pressure gas cylinder with P control. Chaos Solitons Fractals 95:168–178
19. Luo ACJ, Xing SY (2016) Multiple bifurcation tress of period-1 motions to chaos in

a periodically forced, time-delayed, hardening Duffing oscillator. Chaos Solitons Fractals
89:405–434

20. Guo Y, Luo ACJ (2017) Period-1 motions to chaos in a parametrically excited pendulum.
In: ASME 2017 International mechanical engineering congress and exposition. Tampa, USA,
November 3–9


	 Hidden Periodic Motions for Brushless Motor with Unsteady Torque Excitation
	1 Introduction
	2 Motion Discretization and Mapping Reconstruction for Periodic Motions
	3 Analytical Bifurcation
	4 Periodic Motions
	5 Conclusions
	References




