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Preface

The present volume on The Many Facets of Complexity Science explores recent devel-
opments in theoretical research and data analysis of real-world complex systems. The
volume is dedicated to the memory of our colleague Valentin Afraimovich (1945—
2018), a visionary scientist, respected colleague, generous mentor, and loyal friend.
Professor Afraimovich was a Soviet, Russian, and Mexican mathematician known
for his works in dynamical systems theory, qualitative theory of ordinary differen-
tial equations, bifurcation theory, concept of attractor, strange attractors, space-time
chaos, mathematical models of nonequilibrium media and biological systems, trav-
eling waves in lattices, complexity of orbits, and dimension-like characteristics in
dynamical systems.

The collection of works in this edited volume opens with the contribution of
Maurice Courbage on the directional entropy for spatially extended systems. Other
works discuss entropy, information, and complexity functions in complexity science,
including selective chaos of traveling waves in feedforward chains of bistable
maps, hidden periodic motions for brushless motor with unsteady torque excitation,
chunking rhythmic synchronization in globally coupled phase oscillators. We discuss
multistability, oscillations, and rhythmic synchronization in complex systems, mixed
diffusion, nonlinear dynamics of deep open-ocean convection, solvability for some
Non-Fredholm operators with drift, complex dynamics of solutions in rotating fluids,
dynamics of water-constrained economies, and the use of anisotropic random walks
for the study of isolation and integration patterns in urban environments. The volume
facilitates a better understanding of the mechanisms and phenomena in nonlinear
dynamics and develops the corresponding mathematical theory to apply nonlinear
design to practical engineering.

Valentin Afraimovich was a generous, gregarious, energetic presence at the very
heart of nonlinear dynamics and complexity science communities, all of which were
transformed by his presence. We hope that the scientific community will benefit from
this edited volume.

Lubbock, TX, USA Dr. Dimitri Volchenkov
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The Directional Entropy for Spatially )
Extended Dynamical Systems glectie

Maurice Courbage

Abstract In investigating the complexity of dynamical systems, entropy and quan-
tities connected with it play an important role. The nonlinear dynamics of a spatially
extended physical, chemical or biological system is complex, as for example in the
case of turbulent flows, unlike the simple motion of laminar fluids. The complexity
of spatially extended dynamical systems has been described in many ways using
several models. We will address issues related to the role of directional entropy in
Lattice Dynamical Systems (LDS) and lifts of circle maps on the plane.

1 Introduction

Valentin Afraimovich had a great culture and an intellectual curiosity concerning the
relation of the theory of Dynamical Systems with physical phenomena. He had many
collaborations with physicists, especially Misha Rabinovich and George Zaslavsky.
With Valentin Afraimovich, I had many discussions about Chaos and especially the
spatio-temporal chaos, during his visits to Paris. Chaotic phenomena in spatially
extended systems were well known to physicists (e.g. [21, 30]). Quite quickly, in
order to avoid the mathematical difficulties of PDEs, Coupled Map Lattices (CML)
have been proposed as models of spatially extended dynamical systems where both
space and time take discrete values (e.g. [23]). The construction of SRB measures
for CML [14] was a first attempt at a mathematical model of spatio-temporal chaos.
It was followed by [13, 22] and others (e.g. [15]).

The topological properties of CML were not as well known (see the review [2]).
There was particular results about chaos of traveling wave solutions ([8]) and about
the abundance of such solutions in CML [3] generalizing results found about density
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of periodic traveling waves in Cellular Automata (CA) with chaotic behavior [17].
Such property is reminiscent to the abundance of periodic orbits in hyperbolic sets
describing chaotic behavior.

The role of directional topological entropy in terms of the velocity of moving of
the Lab frame (or Observer) was introduced by Milnor in CA [24, 25], and studied
later (e.g. [18, 26, 27]). Collet and Eckmann [16] have defined and studied the
topological entropy density in parabolic PDEs. The directional topological entropy
in Lattice Dynamical Systems (LDS) was introduced and studied in [5]. We shall
come back to this subject in Sect. 2.

Entropy, a notion derived from thermodynamics, has been adapted to other dis-
ciplines by Boltzmann, Shannon and Kolmogorov. This story of metamorphosis of
scientific concepts has, as a common thread, the quantification of disorder. Shannon,
an engineer and mathematician working at Bell Labs, carried it into the theory of
telecommunications and message coding. This was the starting point of information
theory. Shannon’s idea was to quantify the degree of stochasticity of random or peri-
odic messages by a formula borrowed from Boltzmann. Kolmogorov has partitioned
the phase space of a dynamical system into cells, coding a trajectory by the sequence
of its passages between the cells thus providing a message. Considering an invari-
ant measure of the dynamical system, Kolmogorov then introduced a probabilistic
notion of entropy of the paths (the above sequences) in order to classify systems
according to their degree of “stochasticity”. If the paths are periodic, no stochasticity
can be expected. Conversely, when the trajectories of the system are very irregular,
the paths are similar to a sequence of a random walk. Seeking for a solution to the
isomorphism problem of dynamical systems, he brought a great novelty in ergodic
theory, introducing a notion of entropy associated with measure-theoretical deter-
ministic dynamical systems. Subsequently, another notion of entropy of dynamical
systems was introduced to characterize the topological aspects of complexity related
to the sensitive separation of neighboring trajectories and to better illustrate the
Kolmogorov-Sinai entropy (KS). Inspired by the Kolmogorov-Thikomorov abstract
works associated with e-capacity of a set, Dinaburg and Bowen formulated the notion
of topological entropy of dynamical system [12, 20] based on fast time increase of
the number of distinct trajectories up to a given precision ¢ (see below), highlighting
an exponential or non-exponential abundance. A non-probabilistic topological com-
plexity is thus introduced. The rate of abundance of distinct trajectories in chaotic
systems, becomes a measure of complexity. For weakly chaotic systems this is more
difficult to quantify, so only a limiting trend with scale laws can be illustrated in
some examples ([9]). But in spatially extended systems, to this temporal complexity
is added a spatiotemporal complexity which manifests the action of time in space.

The Dinaburg-Bowen entropy is based on the count of trajectories of a dynamical
system, as a function of the length of the temporal segment. A trajectory of the map
F on the space X: (xo, xbox? X, ...), x" € X where

X" = F”(xo) = F(FF(XO))

2

The finite sequence (x°, x!, x2, ..., x7) is called a T-segment.
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Let(y°, y', y2, ..., ¥, ...) be another trajectory. These two trajectories are (¢ — T')
separated if there isn < T, such that d(x", y") > €. Let K be a compact subset of X
and let S be a packet of T-segments starting from K and pairwise (¢ — T') separated.
The maximal number of elements of such S is finite as a consequence of the compacity
of K. Let C.(K, T) be this number, i.e.

C(K,T) = max{card (S), S is (e, T) — separated},

One may visualize each such packet reminding the definition of the compacity in R.
A compact set K is in this case a subset that can contain only finite number of discs
of diameter 2¢, whatever small is €. Substitute R? by the space of the T-segments,
putting each segment in the center of a tube of diameter 2¢.

Imagine a dynamic system that amplifies the initial differences (for example the
application F(x) = 2x (mod 1), x € [0, 1]) then, if we consider a sufficiently large
T, we can fit more and more close initial conditions that will separate in this time
interval of length 7. It is a multiplication of trajectories under the T-increase. Of
course, these trajectories are also erratic, but what matters is their mutual separation.
If C.(K, T) exponentially increases with 7', then we obtain a topological entropy
for the set K as the rate of the exponential:

oo 1
i i, €K ) = ()

In other words, C.(K, T) «~ Aelor®T 'when € goes to zero. Its supremum on all K
defines the topological entropy of F (a concept otherwise introduced by Adler et al.
in 1965 [1] by counting recoveries of X). It is called topological entropy because it
is invariant when two applications F and G are topologically equivalent (i.e. when
all the trajectories of G are trajectories of F transported by a continuous transfor-
mation and vice versa). Of course, the analytical calculation of entropy is generally
very difficult because of the complexity of the previous explicit formulas. In some
classes of dynamic systems, formulas could be derived. Numerical algorithms make
it possible to estimate the entropy of a dynamic system, in particular the algorithm
of Grassberger and Procaccia [32].

The entropy introduced above is associated with a single map F'. For an extended
system, there is a natural symmetry defined by the space translation. In [9] a notion
of directional complexity was introduced by Afraimovich and Zaslasky for lifts of
circle maps acting on R?. The directional entropy of lifts of a Markov circle map has
been studied in [6].

2 LDS and Directional Entropy

An observer in a frame moving with some constant velocity, looking to a fluid flow in
apipe, could indicate that the system exhibits a variety of localized structures moving
down the pipe along the stream (see for example [11]). A great number of patterns
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Fig. 1 The parallelogram

W(m,T,6) L

L ;

—m

appear for some time interval and change in such a way that the behavior of the system
for different velocities may be different. The dependence of the complexity on the
frame velocity is caught using space-time parallelograms, with two sides parallel to
the space-time direction corresponding to this velocity (Fig. 1).

A characteristic of such complexity has been introduced in [24, 25] for the cellular
automata (CA) and it was called the directional entropy. It was shown in a family
of (CA) that, the number of different pictures in the parallelogram with two sides
of length T parallel to a prescribed angle 6 in the space—time coordinate system,
and the two others “horizontal” sides of length L parallel to the space-axis, behaves
asymptotically as Ce” s, T >> 1, where the constant C depends on L. The quantity
Hy is said to be the topological entropy in the direction 6.

The continuity of this entropy as a function of 6 has been studied. It was shown
in [29] that, as a function of the direction 6, the directional entropy may be discon-
tinuous. The continuity of the measure-theoretic directional entropy as a function of
6 has been proved [26, 27]. In this case, the directional entropy is always finite and
bounded, an optimal bound depending only on the range of the local interaction has
been given in [18]. In [10], the topological directional entropy of permutative CA
was estimated.

2.1 LDS

Here we consider the case of one dimensional lattice. Let I be a compact subset of a
metric space and let d (-, -) be the corresponding distance. Consider the direct product
I” endowed with the product topology and assume the existence of a compact subset
A C I” and the existence of a map F from ./ into itself. The pair (./Z, F) is called
a lattice dynamical system (LDS). More information about this system (continuity,
expansivity, etc.) are specified elsewhere (e.g. [15]).



The Directional Entropy for Spatially Extended Dynamical Systems 5

Some examples are of the following type:
(i) Linearly coupled Lattice Dynamical System [4], for which .# C I” where I is a
compact interval and the map is given by

(Fu)s =Y I f(us—n), s € Z,

nez

(ii) Coupled map lattice (CML): discrete versions of PDEs of the evolutional type.
The following one is the discrete version of a reaction-diffusion equation:

(Fu)r =us;+ f(uv) + E(usfl - 2us + Merl)v NS Z»

where € > 0 is the coupling parameter and f, the local map, has a compact absorbing
region.

Other interesting examples can be found in the literature, see for instance [13, 15,
22, 23] and references therein.

2.2 Definitions and Properties of Directional Entropy

The definitions are inspired from the Milnor’s definition of directional entropy for
cellular automata [24, 25]. An orbit of F in M is a sequence {u'};cz+ = {ul}sez, rez+
where u' = {u'};cz, u' € M and u'™' = Fu' for all t € Z* (Z™ is the set of non-
negative integers). Define the following window as:

W(m,T,0) ={(x +tcosb,tsind): —m <x <m, t €[0, T}N(Z x Z").
(D
Given W(m, T, 0) and a number € > 0, a set K C M is called (¢, W(m, T, 0))-
separated if for every pair of distinct elements u,u € K, there exists (s,t) €
W((m, T, 0) such that
d((F'u)s, (F'it),) > €.

The number of distinct orbits with accuracy € in the window W(m, T, 0) (1) is
defined by

N, W(m,T,0)) =max{#(K) : Kisan (e, W(m, T, 0))—separated set}.

One can compute its exponential growth with 7', with the size m and when € decreases.
Definition 1 The topological entropy of (M, F) in the direction 6 is defined by

S S—
Hy(M, F) = lim ( lim (Tlim ?log N, W(m, T, 9)))) ,

e—>0 \m—o0
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N(e, St) is a non-decreasing function of m and a non-increasing function of e.
Moreover, Hy (M, F) € [0, +o0].

Remark 1 More general definition of the directional entropy can be given by using
a more general kind of windows, as in [5]. However, it is proved that it is equal to
the one given here.

Remark 2 In many important cases like the above (CML), Hy(M, F) = +00. One
may normalize by the spatial length as in the thermodynamic limit in classical sta-
tistical mechanics [28]:

Definition 2 The density of topological entropy of (M, F) in the direction 6 is
defined by

hy(M. F) = lim (r,}gnoo 1 ((TIE{; Tsin

logN(, W(im, T, 9))))) .
As for the topological entropy in the direction 0, the quantity sy (M, F) exists and
belongs to [0, +o0].

Note that (2m + 1) T'sinf represents the surface of the parallelogram W (m, T, 6).

It is shown that:

(i) the directional entropy and the density of directional entropy have a property
invariance under topological conjugacy [5].

(i) In many examples of lattice dynamical systems as those given above, the map
F commutes with spatial translations [23],i.e. F o0 = ¢ o F, where (cu); = usy,
s € Z. For a lattice dynamical transformation F' commuting with the shift transfor-
mation the density of the directional entropy coincides with the Conze-Katznelson-
Weiss entropy of the Z2-action defined by (F, o) i.e. it is a constant function with
respect to the direction [5, 7]. It is also proved in counterexamples that this result
fails to be true when the space invariance is broken [7].

(iii) By using symbolic dynamics a formulae for the directional entropy density
for weakly coupled hyperbolic maps.

(iv) A measure-theoretical density of directional entropy for LDS has been con-
structed in [19] with similar properties.

3 Directional Entropy in Lifts Dynamical Systems

The relationship between deterministic dynamics and irreversible stochastic pro-
cesses is so complex to understand that several simple models have been used to
address them. One of them is the Sinai billiard where a billiard particle has a chaotic
motion which is approximated by a random walk. A toy model to this motion is the
random walk on the line due to lifts of circle map. The complexity of such motion
is described by topological entropy, as proposed Afraimovich and Zaslavsky [9],
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by extending the concept of directional entropy to trajectories of lift maps. Let us
introduce some definitions.

Definition 3 A continuous function f of the unit circle S' into itself is a continuous
map f onto [0, 1] suchthat f(0) = f(1) (mod 1). ALiftof f isacontinuous function
F : R — R such that f(x) = F(x) mod 1. It follows that

Fx+1)=p+ F(x)

where p is an integer, called the degree of f.

If the degree of f is 1, then:

Fx+p)=p+ fx)

x € [0, 1] and p € Z. We shall briefly account here of the study in [6, 9] based on
an example of the so-called Markov map (Fig. 2) also denoted f (x).

The step of the trajectory of F(x) at time n, F"*V (x) — F®(x) = f"+D(x) —
£™(x), represents the step of a deterministic walk on the line R, at time n. The step
F®*D(x) — F"(x) is non-negative since f(x) — x is so. Given an invariant measure
under f, one obtains a probabilistic random walk. In this sense, we have a determin-
istic diffusion. In the example shown in Figure 2, on account of the expansiveness
for x such that | f'(x)| > 1, the trajectory is irregular and unstable. The question of
whether such a process converges to a normal law or not will be studied separately.
The following limit:

(FP@) = FOD () 4 o+ (F () = x)
lim =7

n—o00 n

Fig. 2 Example of Markov F 4
map of the circle




8 M. Courbage

which represents the average speed of the trajectory is the so-called rotation number
of f introduced by Poincaré in 1855. He showed that if f is monotonous, this limit
exists and does not depend on x. In general, the previous limit may not exist for
any initial condition. But, for a non-monotonic application F, a largest definition is
introduced by using the upper limit instead of the limit in the equality. The upper
limit can then depend on the initial condition:
The set: -
U Tm W =x

n—o0 n
x€[0,1]

is a closed interval called the rotation interval of f. For any u € J, there is a point

F® —
x € [0, 1] such that lim T2 =% _
n—o00 n

The notion of directional entropy is defined for this class of systems. The trajecto-
ries fromx, y € Raresaid (e, W(m, T, 0))-separatedif (n, F"™ (x)), (n, F"™(y))) C
W(m, T, 8))foralln < T,andifthereisO < n < T suchthat |F™ (x) — F™(y)| > e.

The subset S C Ris (e, W(m, T, 0))-separated if any couple x, y of S, x # y, is
(e, W(m, T, 0))-separated.

The number
Cc (W, T) = max{card(S), S is (e, W, T) — separated},
is called e-directional complexity in direction 6.

We define the directional entropy in the space interval [-m, m] by the function:

— InC. (W, T
Hy(m) = Tim T CeW. 1)
e—>0T—00 T
The limit:
Hg = lim H@(m)
m—00

is called the directional entropy in the direction 8. We can interpret C. and Hy as
quantities that reflect the number of trajectories traveled with a speed that converges
to cot @, because, to be in the window W (m, T, 0) the point (F ™ (x), n) must satisfy

—m+ncotd < F'x <m+ncoté, 2)

It is produced in [6] a combinatorial algorithm that calculates the directional entropy
in the above class of maps. The graph of this entropy in the above example shows
that the entropy is zero beyond the interval [0, 1/2], which happens to be the interval
of rotation. This is a general property that states that support for the entropy function
is included in the rotation interval (that is, entropy counts paths that have a defined
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iteration x(n) avec les conditions initiales diferentes de 0 4 1, les o) sont pris de 0 & 1 tous les 0.01
0 T T T T T T T T T

Fig. 3 Trajectories corresponding to a set of initial conditions taken from O to 1 every 0.01

rotation numbers). It describes the density of the trajectories in terms of rotation
number and there is a value of the rotation number where the entropy is maximum.

We have drawn (Fig. 3) the distribution of 100 trajectories by considering 100
initial conditions taken from 0 to 1 every 0.01. The figure shows five lines in different
colors. In fact, an enlargement of each line shows that it corresponds to several
trajectories. There are five beams of trajectories that are distinguished by their rotation
numbers (averaged speed), the directional entropy describes the density in trajectories
of each beam, the greater the entropy in a direction 6 and the more dense trajectories
is the corresponding beam. Although each beam seems to evolve asymptotically
regularly at a given speed, in fact it is not the case for the trajectories. The trajectories
in each beam remain chaotic as shown by an enlargement of a beam piece in Fig. 4.

4 Conclusion

In formulating the ergodic hypothesis that a gas explores all regions of the state
space, Boltzmann initiated the ergodic theory of the complexity of moving systems.
The link between complexity and entropy has been highlighted by Boltzmann in his
statistical theory of gas thermodynamics and his famous formula of entropy. Thanks
to Shannon and Kolmogorov the link between complexity and entropy has appeared in
other science disciplines such as probability and information theory and the theory
of chaotic dynamical systems. While the Kolmogorov-Sinai (KS) is defined by a
probabilistic formula like that of Shannon, the topological entropy is global because
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Fig. 4 Some neighboring trajectories extracted from a single beam of Fig. 3

itencompasses all the trajectories and not the more or less probable. This is why, under
certain specifications, it is equal to the maximum of all the KS entropies associated
with the multiple invariant probability distributions of a dynamical system.

The complexity of a deterministic dynamical system in a spatially extended envi-
ronment must incorporate other parameters such as the translational frame velocity
in this medium and not just the temporal sensitivity to the initial conditions (SIC).
This dependence of complexity on the speed of a translational frame motion offers
new insights of the dynamic complexity. A more general dependence on other spatial
actions than translation must be considered in order to understand the spatio-temporal
nature of extended systems.
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Detecting Regularity with Complexity )
Functions

updates

Olivier Bui and Xavier Leoncini

Abstract In this chapter we consider using complexity function as proposed by V.
Afraimovich to detect the presence of regularity in a priori chaotic systems. When
dealing with systems in high dimensional phase space, a form of master-slave system
is proposed. The complexity is measured, tested in the standard map and is able to
detect sticky regions with long lived portions of coarse-grained regular trajectories.
It is then applied to the Hamiltonian Mean Field (HMF) model. Surprisingly in
this last setting, complexity shows that strong regular behavior is observed with a
characteristic exponent of power law decays between 2 and 3 and does not seem
to depend on the considered dimensions of the phase space, giving rise to future
investigations in what may happen in this system.

1 Introduction

Understanding of complex dynamical systems in high dimensions has always been a
difficult task [1]. If the dimensions of the system are quite large, one is undoubtedly
looking for some randomness in order to use some statistical approach deriving some
equilibrium statistical physics, or out of equilibrium ones, or various forms of kinetic
equations. Conversely one may be looking for some regularity, or synchronization
phenomena that would lead to an effectively simple low dimensional dynamical
system. However most of these considerations are usually falling apart when looking
already at low dimensional Hamiltonian chaos [2-12]. The presence of so-called
mixed phase space with a mixture of regions with regular motion (islands) and chaotic
regions (chaotic sea) implies de facto that simple chaotic system can have non trivial
dynamics, with a non unique ergodic measure. These systems can display as well
the phenomenon of stickiness that generates a slow decay of correlation functions
and induces non trivial anomalous transport properties [3, 6, 13-25]. In order to
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track these phenomena, different tools have been used like finite time Lyapunov
exponents [26], Poincaré recurrences [21, 27-30], Birkhoff sums [31, 32], among
these possibilities the use of tools inspired by complexity functions such as so-called
chaotic jets has been quite successful when considering low dimensional systems [19,
22, 33, 34]. When considering higher dimensions besides synchronization, regular
behavior can as well be observed in high dimensional Hamiltonian system, and self-
organized regularization has been observed in systems with long range interactions
[35-38]. However as will be seen from the brief introduction to complexity function,
measuring complexity becomes very quickly intractable in high-dimensional phase
space. In order to circumvent we propose to consider a master slave system, where
the slave dynamics will be taking place in a low dimensional phase space and driven
by the high-dimensional one in consideration.

What follows is probably not conventional in a regular book chapter, but since it
is the main driving force of the presented results we believe it is worth mentioning
as these were inspired by Valentin Afraimovich to whom this book is dedicated.
In fact, these ideas came up during the visit of Valentin Afraimovich in the Centre
de Physique Théorique in Marseille during the summer of 2013. He was invited by
Xavier Leoncini for a short month as an invited Professor of the University of Toulon.
After that period a rough draft of definitions and set up of looking at practical work
was written, mostly by Valentin Afraimovich himself. We reproduce in the first parts
some of this draft paper that never came to realization. Indeed, due to various reasons,
it took some time to get to the practical work, in fine this lead to a Ph.D. proposal and
is one of the main motivations of the Ph.D. work of Olivier Bui. But his first visit to
Mexico was unfortunately planned in 2017 and scheduled for the summer of 2018.

In this chapter we show some preliminary results obtained from this approach,
considering only Hamiltonian systems, the goal being to identify and characterize
regularity phenomena within chaotic areas of certain systems.

The chapter is organized as follows, first in Sect. 2, we briefly recall the definition
of complexity functions and set up the general context of master-slave systems we
had in mind with Valentin Afraimovich. Then, in Sect. 4, we check the diagnostic in
low dimensions using the standard map as a test bed, finally in Sect. 5 we apply it to
a system with many degrees of freedom before concluding.

2 Complexity Functions

2.1 Complexity Function

A metric complexity function is a characteristic of instability of trajectories of a
dynamical system that shows how fast they diverge in the phase space. The definition
was first introduced by Bowen [39] who used the classical notion of ¢ —separability
[40]. Let

T": M — M, t>0,



Detecting Regularity with Complexity Functions 15

Iy

Fig. 1 Trajectories of xo and x;. We note T"x; the position of x; at time ¢. € is the diameter of
the green circle. In this illustration xo and x| are (e, f2) but also (e, #3)—separated, meaning that
even if the trajectories come close to each other again they are still considered as separated. There
is thus a minimal time 7 such that two points are (e, T)—separated; 7 is the first time when they get
separated

be an evolution operator of a dynamical system with a phase space M that is endowed
with a distance d(x, y). Given an initial point xo € M, let T"xy = x(¢) be the rep-
resentative point on the trajectory {T’xo} ,~o- One can introduce a collection of
distances on M:

d;(xo, yo) = sup d(T"xo, T"yo) .

0<t<t

We say that xpand y, are (¢, t)—separated if d,(xg, yo) > €. It means that on the

segments
U TT)CO . U T® Yo
7€[0,1] 7€[0,7]

of trajectories going through x¢, yo correspondingly, there are representative points
T%xg, T™yg such that d(T"™xq, T™yg) > e.

Given a set A of initial points, we say thata set B C A is (e, t) —separated if each
pair xo, yo of points in B is (g, t) —separated.

A description of the notion is depicted in Fig. 1.

Definition 1 The quantity
C.(A) = max{card(B), B C A, is (g, t) — separated} , @))

where card(B) is the number of elements (cardinality) in B and max is taken over
all (e, r)—separated subsets of A, is called the (e, 1) —Complexity of the set A. As a
function of ¢ it is called the e —complexity function. The number In C, ;(A) is called
the (g, t)—capacity of A. A discussion on the introduced definition can be found in
[22, 41-43].

The asymptotic behavior of C,,(A) as t — oo or ¢ — 0, is determined by two
quantities:
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e The topological entropy

h = hygp(A) = lii% tlirgo w . 2)
e The fractal (upper box) dimension of A
Thus, if 0 <b < 00,0 <h <oo,andt > 1, € < 1, one can believe that
Cer(A) =" e" O, 1), @)

where © is a subexponential function of ¢ and In ¢.

But if ever ¢ and In(1/¢) are not large, the value C,,(A) reflects an “amount
of instability” that becomes feasible during the interval [0, ¢] of time in the scale
determined by the value of ¢.

2.2 Local Complexity Function

Thinking about applications one has to take into account the fact that if the set
A is large (in any reasonable sense), then it would be very difficult or impossible
to perform numerical simulations that would be needed to find C,;(A) . Moreover,
sometimes it is useful to know the evolution of instability around one fixed trajectory.
According to the aforementioned reasons we impose the following definition of local
complexity function [43].

Fix a trajectory {T’ X0 } 1~ going through the initial point xo (we call it the basic
trajectory) and a set A of initial points in the § —neighborhood of x, such that § < ¢.
A'set B C A, is said to be locally e—separated if :

1. for every x € B there exists T € [0, 7] such that
d(T"x, T xy) > ¢

and
d(T*x,T*xg) <e,0<s<T.

2. For every pairx, x’ € B
d(T'x, T"x")> ¢

(where d(T7'x', T" xo) > e).
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Definition 2 The number
C..1(x9, A) = max{card(B), B C A, islocally (g, t) — separated} ®))
where the maximum is taken over all locally (e, t)—separated subsets of A, is called
the local complexity function.
This definition works well, at least for simple systems (see for instance [33]).

One may consider an ensemble of basic trajectories and study average complexity
functions. But now let us consider situations in high-dimensional phase space.

3 A Master-Slave Case

We consider the following system of ODE

Yi=Fx,i=1,...,N (6)
y=GX,y), @)
wherex = (xq,...,xy),x; e R*i=1,...,N,y e R", F = (F, ..., Fy),i.e.we

deal with a master-slave situation. Our goal is to study local complexity functions for
each coordinates x; using the system (7). We will proceed as follows. Fix a basic tra-
jectory {T'xo = x(z, Xg) , t > 0} where xo = (x1, ..., xno0). Giveni € {1, ..., N}
let us consider the §—neighborhood U; of x;o, in R”, § < &, and a set A; C U,.
Denote by y(¢, yo) the solution of the equation

y=Gx(,%0),y) , ®)

satisfying y(0, yo) = yo, where yp € A;.
We say that two of such solutions are locally (g, t)—separated if there are instants
tand 1,0 <t <1,0 <t/ <1 such that:

L d; (y(t, yo), xi (T, X0)) = &, d; (y(t', y)), xi(t, X)) > & and
2. d; (y(t, %), y(x', y) = €), ie. the points y(t,yp) and y(r’,y;) are e—
distinguishable.

Aset B C A;islocally (g, r)—separated if for every pair yo, y; in B the corresponding
solutions y(t, yo) and y(t’, y;) are locally (e, t)—separated

Definition 3 The number
C;,(xo, A) = max{card(B), B C A;, islocally (¢, t) — separated} , ®
where the maximum is taken over all locally (e, ) —separated subsets of A;, is called

the i —th local complexity function of the set A;. As a function of ¢, it is called the
i —Complexity function.
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The defined quantity has a different meaning for dissipative and conservative
systems.

Dissipative systems
When the coupling between the master and slave system is large enough one may
observe the regime of synchronization. Then systems (8) with different initial
conditions can be seen as an ensemble of auxiliary systems in the approach of
[44]. According to [44] all the solutions of (8) become &—indistinguishable as
t > 1, so the i—th local Complexity function stops growing, beginning with
some instant of time independently on the number of initial points in A;.
If the rate of coupling is not sufficient to generate the synchronization regime, then
this function can serve to indicate how far the system is from the synchronization
regime.

Hamiltonian Case
We assume that the i —th subsystem in (6) corresponds to the i —th degree of
freedom of a Hamiltonian system som = 2, x; = (p;, ¢;). The system (7) can be
treated as an “average” system related to the mean field approach (see below). The
solution x(¢, Xp) is an external force (field) that fully (or partially) determines the
dynamics of (7). Changing initial conditions in (7) we obtain a bunch of solutions
that can serve as a device to measure the dynamics of the i —th degree of freedom
of the original system (6). And the local i —th complexity function is a suitable
quantity to reflect the amount of instability stored in the i —th degree of freedom.
Moreover, the shape of the function can indicate subintervals of time with different
rates of instability.

3.1 A Physical Interpretation of (e, t)—Separability

If we give ourselves a measuring instrument with a certain precision and this precision
represents a distance of § in phase space, two points will be indistinguishable by
the instrument if the distance between them is less than §. In this case if these
two indistinguishable points end up after a certain time separating by a distance
of ¢ that is larger than § by several orders of magnitude then this separation will
appear to the observer as two points of the same initial conditions moving towards
“two completely different futures” with the idea that the threshold ¢ defines what
“two completely different futures” means, at the same time he will be only able
to know there were actually two different trajectories after the separation occurs.
Thus this concept encompasses the idea of unpredictability that is often associated
with chaos. Thus basing a diagnostic aiming at quantifying chaos on the notion of
(e, t)—separability or the Complexity function is reasonable.

Definition 4 The Local Complexity function we defined in Sect. 2.2 and Sect. 3
only describes one single point xy of phase space. But if we take a set Q of points
distributed over the whole space or a part of it, we could make the sum or the average
of the complexity functions evaluated in each of these points and therefore define
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C..(0Q, {A}) with {A} a set of neighborhoods (a neighborhood for each point of Q).
We will note A = {A} and they all will be disks of radius § centered around a point of
Q. Note: the sample of points Q we want to use should not be uniformly distributed
over the space, instead the points are sampled along a trajectory. For example: if the
chosen trajectory tends to remain for a long time in certain areas, the set of Q points
will have to be more concentrated at these locations. Since a trajectory, in chaotic
systems, may travel through the whole phase space or large part of it, the sample O
will be representative of the dynamic of the system and the associated underlying
ergodic measure.

There is a similarity between complexity functions and Lyapunov’s exponent
since both are interested in how two adjacent initial conditions move away. The
major difference between Complexity and Lyapunov’s exponent is that the Com-
plexity function ignores what happens beyond a threshold it is set by neighborhoods
A that sets a size for errors § on our initial conditions as well as a threshold e
through which we look at the trajectories. Thus the complexity function could detect
“coarse-grained” regularities (regularities of size & which we can vary) even if the
system is chaotic at smaller scales. This can be an advantage over the Lyapunov
exponent, for instance when considering particle dispersion and associated diffusion
like phenomena.

3.2 Numerical Measurement of the Complexity Function

First of all, given the number of parameters that C, ,(Q, A) has, we must agree on
how to choose them. & will be decided at the start of each simulation and the influence
of this parameter will be analyzed. For the set Q, as we explained in Sect. 3.1, we
want to sample along a trajectory: at the start of the simulation we choose an initial
condition x(, simulate its evolution in phase space and Q are positions this “particle”
took at different time , we call this particle traveling the phase space the “tracer”.
In this case we understand that as long as the chaotic area is of a finite volume our
tracer will travel across all the corners of this area and Q will be well distributed
over this space. Neighborhoods A will be disks of radii § < ¢: thus we can write our
Local Complexity function as C,,(Q, §). The parameter ¢ does not have to be set,
because our simulation will not actually calculate C, ,(Q, §) directly but will give

d
the graph of a function related to I (C&,(Q, 8)) as a function of time. But before

we can explain this 