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In memoriam of Prof. Valentin Afraimovich
(1945–2018), a visionary scientist, respected
colleague, generous mentor, and loyal friend.



Preface

The present volume onTheManyFacets of Complexity Science explores recent devel-
opments in theoretical research and data analysis of real-world complex systems. The
volume is dedicated to the memory of our colleague Valentin Afraimovich (1945–
2018), a visionary scientist, respected colleague, generous mentor, and loyal friend.
Professor Afraimovich was a Soviet, Russian, and Mexican mathematician known
for his works in dynamical systems theory, qualitative theory of ordinary differen-
tial equations, bifurcation theory, concept of attractor, strange attractors, space-time
chaos, mathematical models of nonequilibrium media and biological systems, trav-
eling waves in lattices, complexity of orbits, and dimension-like characteristics in
dynamical systems.

The collection of works in this edited volume opens with the contribution of
Maurice Courbage on the directional entropy for spatially extended systems. Other
works discuss entropy, information, and complexity functions in complexity science,
including selective chaos of traveling waves in feedforward chains of bistable
maps, hidden periodic motions for brushless motor with unsteady torque excitation,
chunking rhythmic synchronization in globally coupled phase oscillators.We discuss
multistability, oscillations, and rhythmic synchronization in complex systems, mixed
diffusion, nonlinear dynamics of deep open-ocean convection, solvability for some
Non-Fredholm operators with drift, complex dynamics of solutions in rotating fluids,
dynamics of water-constrained economies, and the use of anisotropic random walks
for the study of isolation and integration patterns in urban environments. The volume
facilitates a better understanding of the mechanisms and phenomena in nonlinear
dynamics and develops the corresponding mathematical theory to apply nonlinear
design to practical engineering.

Valentin Afraimovich was a generous, gregarious, energetic presence at the very
heart of nonlinear dynamics and complexity science communities, all of which were
transformed by his presence.We hope that the scientific community will benefit from
this edited volume.

Lubbock, TX, USA Dr. Dimitri Volchenkov
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The Directional Entropy for Spatially
Extended Dynamical Systems

Maurice Courbage

Abstract In investigating the complexity of dynamical systems, entropy and quan-
tities connected with it play an important role. The nonlinear dynamics of a spatially
extended physical, chemical or biological system is complex, as for example in the
case of turbulent flows, unlike the simple motion of laminar fluids. The complexity
of spatially extended dynamical systems has been described in many ways using
several models. We will address issues related to the role of directional entropy in
Lattice Dynamical Systems (LDS) and lifts of circle maps on the plane.

1 Introduction

Valentin Afraimovich had a great culture and an intellectual curiosity concerning the
relation of the theory of Dynamical Systems with physical phenomena. He had many
collaborations with physicists, especially Misha Rabinovich and George Zaslavsky.
With Valentin Afraïmovich, I had many discussions about Chaos and especially the
spatio-temporal chaos, during his visits to Paris. Chaotic phenomena in spatially
extended systems were well known to physicists (e.g. [21, 30]). Quite quickly, in
order to avoid the mathematical difficulties of PDEs, Coupled Map Lattices (CML)
have been proposed as models of spatially extended dynamical systems where both
space and time take discrete values (e.g. [23]). The construction of SRB measures
for CML [14] was a first attempt at a mathematical model of spatio-temporal chaos.
It was followed by [13, 22] and others (e.g. [15]).

The topological properties of CML were not as well known (see the review [2]).
There was particular results about chaos of traveling wave solutions ([8]) and about
the abundance of such solutions in CML [3] generalizing results found about density
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2 M. Courbage

of periodic traveling waves in Cellular Automata (CA) with chaotic behavior [17].
Such property is reminiscent to the abundance of periodic orbits in hyperbolic sets
describing chaotic behavior.

The role of directional topological entropy in terms of the velocity of moving of
the Lab frame (or Observer) was introduced by Milnor in CA [24, 25], and studied
later (e.g. [18, 26, 27]). Collet and Eckmann [16] have defined and studied the
topological entropy density in parabolic PDEs. The directional topological entropy
in Lattice Dynamical Systems (LDS) was introduced and studied in [5]. We shall
come back to this subject in Sect. 2.

Entropy, a notion derived from thermodynamics, has been adapted to other dis-
ciplines by Boltzmann, Shannon and Kolmogorov. This story of metamorphosis of
scientific concepts has, as a common thread, the quantification of disorder. Shannon,
an engineer and mathematician working at Bell Labs, carried it into the theory of
telecommunications and message coding. This was the starting point of information
theory. Shannon’s idea was to quantify the degree of stochasticity of random or peri-
odic messages by a formula borrowed from Boltzmann. Kolmogorov has partitioned
the phase space of a dynamical system into cells, coding a trajectory by the sequence
of its passages between the cells thus providing a message. Considering an invari-
ant measure of the dynamical system, Kolmogorov then introduced a probabilistic
notion of entropy of the paths (the above sequences) in order to classify systems
according to their degree of “stochasticity”. If the paths are periodic, no stochasticity
can be expected. Conversely, when the trajectories of the system are very irregular,
the paths are similar to a sequence of a random walk. Seeking for a solution to the
isomorphism problem of dynamical systems, he brought a great novelty in ergodic
theory, introducing a notion of entropy associated with measure-theoretical deter-
ministic dynamical systems. Subsequently, another notion of entropy of dynamical
systems was introduced to characterize the topological aspects of complexity related
to the sensitive separation of neighboring trajectories and to better illustrate the
Kolmogorov-Sinai entropy (KS). Inspired by the Kolmogorov-Thikomorov abstract
works associatedwith ε-capacity of a set, Dinaburg andBowen formulated the notion
of topological entropy of dynamical system [12, 20] based on fast time increase of
the number of distinct trajectories up to a given precision ε (see below), highlighting
an exponential or non-exponential abundance. A non-probabilistic topological com-
plexity is thus introduced. The rate of abundance of distinct trajectories in chaotic
systems, becomes a measure of complexity. For weakly chaotic systems this is more
difficult to quantify, so only a limiting trend with scale laws can be illustrated in
some examples ([9]). But in spatially extended systems, to this temporal complexity
is added a spatiotemporal complexity which manifests the action of time in space.

The Dinaburg-Bowen entropy is based on the count of trajectories of a dynamical
system, as a function of the length of the temporal segment. A trajectory of the map
F on the space X : (x0, x1, x2, ..., xn, ...), xn ∈ X where

xn = Fn(x0) = F(F...F(x0))

The finite sequence (x0, x1, x2, ..., xT ) is called a T-segment.
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Let (y0, y1, y2, ..., yn, ...)be another trajectory. These two trajectories are (ε − T )

separated if there is n ≤ T , such that d(xn, yn) > ε. Let K be a compact subset of X
and let S be a packet of T-segments starting from K and pairwise (ε − T ) separated.
Themaximal number of elements of such S is finite as a consequence of the compacity
of K . Let Cε(K , T ) be this number, i.e.

Cε(K , T ) = max{card (S), S is (ε, T ) − separated},

Onemay visualize each such packet reminding the definition of the compacity inR2.
A compact set K is in this case a subset that can contain only finite number of discs
of diameter 2ε, whatever small is ε. Substitute R2 by the space of the T-segments,
putting each segment in the center of a tube of diameter 2ε.

Imagine a dynamic system that amplifies the initial differences (for example the
application F(x) = 2x (mod 1), x ∈ [0, 1]) then, if we consider a sufficiently large
T , we can fit more and more close initial conditions that will separate in this time
interval of length T . It is a multiplication of trajectories under the T-increase. Of
course, these trajectories are also erratic, but what matters is their mutual separation.
If Cε(K , T ) exponentially increases with T , then we obtain a topological entropy
for the set K as the rate of the exponential:

lim
ε→0

lim
T→∞

1

T
lnCε(K , T ) = htop(K )

In other words, Cε(K , T ) � Aehtop(K )T , when ε goes to zero. Its supremum on all K
defines the topological entropy of F (a concept otherwise introduced by Adler et al.
in 1965 [1] by counting recoveries of X ). It is called topological entropy because it
is invariant when two applications F and G are topologically equivalent (i.e. when
all the trajectories of G are trajectories of F transported by a continuous transfor-
mation and vice versa). Of course, the analytical calculation of entropy is generally
very difficult because of the complexity of the previous explicit formulas. In some
classes of dynamic systems, formulas could be derived. Numerical algorithms make
it possible to estimate the entropy of a dynamic system, in particular the algorithm
of Grassberger and Procaccia [32].

The entropy introduced above is associated with a single map F . For an extended
system, there is a natural symmetry defined by the space translation. In [9] a notion
of directional complexity was introduced by Afraïmovich and Zaslasky for lifts of
circle maps acting onR2. The directional entropy of lifts of a Markov circle map has
been studied in [6].

2 LDS and Directional Entropy

An observer in a framemoving with some constant velocity, looking to a fluid flow in
a pipe, could indicate that the system exhibits a variety of localized structuresmoving
down the pipe along the stream (see for example [11]). A great number of patterns
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Fig. 1 The parallelogram
W (m, T, θ)

appear for some time interval and change in such away that the behavior of the system
for different velocities may be different. The dependence of the complexity on the
frame velocity is caught using space-time parallelograms, with two sides parallel to
the space-time direction corresponding to this velocity (Fig. 1).

A characteristic of such complexity has been introduced in [24, 25] for the cellular
automata (CA) and it was called the directional entropy. It was shown in a family
of (CA) that, the number of different pictures in the parallelogram with two sides
of length T parallel to a prescribed angle θ in the space–time coordinate system,
and the two others “horizontal” sides of length L parallel to the space-axis, behaves
asymptotically asCeT Hθ , T >> 1, where the constantC depends on L . The quantity
Hθ is said to be the topological entropy in the direction θ .

The continuity of this entropy as a function of θ has been studied. It was shown
in [29] that, as a function of the direction θ , the directional entropy may be discon-
tinuous. The continuity of the measure-theoretic directional entropy as a function of
θ has been proved [26, 27]. In this case, the directional entropy is always finite and
bounded, an optimal bound depending only on the range of the local interaction has
been given in [18]. In [10], the topological directional entropy of permutative CA
was estimated.

2.1 LDS

Here we consider the case of one dimensional lattice. Let I be a compact subset of a
metric space and let d(·, ·) be the corresponding distance. Consider the direct product
IZ endowed with the product topology and assume the existence of a compact subset
M ⊂ IZ and the existence of a map F fromM into itself. The pair (M , F) is called
a lattice dynamical system (LDS). More information about this system (continuity,
expansivity, etc.) are specified elsewhere (e.g. [15]).
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Some examples are of the following type:
(i) Linearly coupled Lattice Dynamical System [4], for whichM ⊂ IZ where I is a
compact interval and the map is given by

(Fu)s =
∑

n∈Z
ln f (us−n), s ∈ Z,

(ii) Coupled map lattice (CML): discrete versions of PDEs of the evolutional type.
The following one is the discrete version of a reaction-diffusion equation:

(Fu)s = us + f (us) + ε(us−1 − 2us + us+1), s ∈ Z,

where ε ≥ 0 is the coupling parameter and f , the local map, has a compact absorbing
region.

Other interesting examples can be found in the literature, see for instance [13, 15,
22, 23] and references therein.

2.2 Definitions and Properties of Directional Entropy

The definitions are inspired from the Milnor’s definition of directional entropy for
cellular automata [24, 25]. An orbit of F inM is a sequence {ut }t∈Z+ = {uts}s∈Z, t∈Z+

where ut = {uts}s∈Z, ut ∈ M and ut+1 = Fut for all t ∈ Z
+ (Z+ is the set of non-

negative integers). Define the following window as:

W (m, T, θ) = {(x + t cos θ, t sin θ) : −m < x < m, t ∈ [0, T ]} ∩ (Z × Z
+).

(1)
Given W (m, T, θ) and a number ε > 0, a set K ⊂ M is called (ε,W (m, T, θ))-
separated if for every pair of distinct elements u, ū ∈ K , there exists (s, t) ∈
W (m, T, θ) such that

d((Ftu)s, (F
t ū)s) ≥ ε.

The number of distinct orbits with accuracy ε in the window W (m, T, θ) (1) is
defined by

N (ε,W (m, T, θ)) = max{#(K ) : K is an (ε,W(m,T , θ))−separated set}.

Onecan compute its exponential growthwithT ,with the sizem andwhen ε decreases.

Definition 1 The topological entropy of (M, F) in the direction θ is defined by

Hθ (M, F) = lim
ε→0

(
lim
m→∞

(
lim
T→∞

1

T
log N (ε,W (m, T, θ))

))
,
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N (ε, ST ) is a non-decreasing function of m and a non-increasing function of ε.
Moreover, Hθ (M, F) ∈ [0,+∞].
Remark 1 More general definition of the directional entropy can be given by using
a more general kind of windows, as in [5]. However, it is proved that it is equal to
the one given here.

Remark 2 In many important cases like the above (CML), Hθ (M, F) = +∞. One
may normalize by the spatial length as in the thermodynamic limit in classical sta-
tistical mechanics [28]:

Definition 2 The density of topological entropy of (M, F) in the direction θ is
defined by

hθ (M, F) = lim
ε→0

(
lim
m→∞

1

2m + 1

((
lim
T→∞

1

T sinθ
log N (ε,W (m, T, θ))

)))
.

As for the topological entropy in the direction θ , the quantity hθ (M, F) exists and
belongs to [0,+∞].

Note that (2m + 1)T sinθ represents the surface of the parallelogramW (m, T, θ).
It is shown that:
(i) the directional entropy and the density of directional entropy have a property

invariance under topological conjugacy [5].
(ii) In many examples of lattice dynamical systems as those given above, the map

F commutes with spatial translations [23], i.e. F ◦ σ = σ ◦ F , where (σu)s = us+1,
s ∈ Z. For a lattice dynamical transformation F commuting with the shift transfor-
mation the density of the directional entropy coincides with the Conze-Katznelson-
Weiss entropy of the Z2-action defined by (F, σ ) i.e. it is a constant function with
respect to the direction [5, 7]. It is also proved in counterexamples that this result
fails to be true when the space invariance is broken [7].

(iii) By using symbolic dynamics a formulae for the directional entropy density
for weakly coupled hyperbolic maps.

(iv) A measure-theoretical density of directional entropy for LDS has been con-
structed in [19] with similar properties.

3 Directional Entropy in Lifts Dynamical Systems

The relationship between deterministic dynamics and irreversible stochastic pro-
cesses is so complex to understand that several simple models have been used to
address them. One of them is the Sinaï billiard where a billiard particle has a chaotic
motion which is approximated by a random walk. A toy model to this motion is the
random walk on the line due to lifts of circle map. The complexity of such motion
is described by topological entropy, as proposed Afraïmovich and Zaslavsky [9],
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by extending the concept of directional entropy to trajectories of lift maps. Let us
introduce some definitions.

Definition 3 A continuous function f of the unit circle S1 into itself is a continuous
map f onto [0, 1] such that f (0) = f (1) (mod 1). ALift of f is a continuous function
F : R → R such that f (x) = F(x) mod 1. It follows that

F(x + 1) = p + F(x)

where p is an integer, called the degree of f .

If the degree of f is 1, then:

F(x + p) = p + f (x)

x ∈ [0, 1] and p ∈ Z. We shall briefly account here of the study in [6, 9] based on
an example of the so-called Markov map (Fig. 2) also denoted f (x).

The step of the trajectory of F(x) at time n, F (n+1)(x) − F (n)(x) = f (n+1)(x) −
f (n)(x), represents the step of a deterministic walk on the line R, at time n. The step
F (n+1)(x) − Fn(x) is non-negative since f (x) − x is so. Given an invariant measure
under f , one obtains a probabilistic random walk. In this sense, we have a determin-
istic diffusion. In the example shown in Figure 2, on account of the expansiveness
for x such that | f ′(x)| > 1, the trajectory is irregular and unstable. The question of
whether such a process converges to a normal law or not will be studied separately.
The following limit:

lim
n→∞

(F (n)(x) − F (n−1)(x)) + ... + (F1(x) − x)

n
= ρ

Fig. 2 Example of Markov
map of the circle
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which represents the average speed of the trajectory is the so-called rotation number
of f introduced by Poincaré in 1855. He showed that if f is monotonous, this limit
exists and does not depend on x . In general, the previous limit may not exist for
any initial condition. But, for a non-monotonic application F , a largest definition is
introduced by using the upper limit instead of the limit in the equality. The upper
limit can then depend on the initial condition:

The set: ⋃

x∈[0,1]
lim
n→∞

F (n)(x) − x

n
= J,

is a closed interval called the rotation interval of f . For any μ ∈ J , there is a point

x ∈ [0, 1] such that lim
n→∞

F (n)(x) − x

n
= μ.

The notion of directional entropy is defined for this class of systems. The trajecto-
ries from x, y ∈ R are said (ε,W (m, T, θ))-separated if ((n, F (n)(x)), (n, F (n)(y))) ⊂
W (m, T, θ)) for alln ≤ T , and if there is 0 ≤ n ≤ T such that |F (n)(x) − F (n)(y)| ≥ ε.

The subset S ⊂ R is (ε,W (m, T, θ))-separated if any couple x, y of S, x �= y, is
(ε,W (m, T, θ))-separated.

The number

Cε(W, T ) = max{card(S), S is (ε,W, T ) − separated},

is called ε-directional complexity in direction θ .

We define the directional entropy in the space interval [-m, m] by the function:

Hθ (m) = lim
ε→0

lim
T→∞

lnCε(W, T )

T

The limit:
Hθ = lim

m→∞ Hθ (m)

is called the directional entropy in the direction θ . We can interpret Cε and Hθ as
quantities that reflect the number of trajectories traveled with a speed that converges
to cot θ , because, to be in the windowW (m, T, θ) the point (F (n)(x), n)must satisfy

− m + n cot θ ≤ Fnx ≤ m + n cot θ, (2)

It is produced in [6] a combinatorial algorithm that calculates the directional entropy
in the above class of maps. The graph of this entropy in the above example shows
that the entropy is zero beyond the interval [0, 1/2], which happens to be the interval
of rotation. This is a general property that states that support for the entropy function
is included in the rotation interval (that is, entropy counts paths that have a defined
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Fig. 3 Trajectories corresponding to a set of initial conditions taken from 0 to 1 every 0.01

rotation numbers). It describes the density of the trajectories in terms of rotation
number and there is a value of the rotation number where the entropy is maximum.

We have drawn (Fig. 3) the distribution of 100 trajectories by considering 100
initial conditions taken from 0 to 1 every 0.01. The figure shows five lines in different
colors. In fact, an enlargement of each line shows that it corresponds to several
trajectories. There arefivebeamsof trajectories that are distinguishedby their rotation
numbers (averaged speed), the directional entropy describes the density in trajectories
of each beam, the greater the entropy in a direction θ and the more dense trajectories
is the corresponding beam. Although each beam seems to evolve asymptotically
regularly at a given speed, in fact it is not the case for the trajectories. The trajectories
in each beam remain chaotic as shown by an enlargement of a beam piece in Fig. 4.

4 Conclusion

In formulating the ergodic hypothesis that a gas explores all regions of the state
space, Boltzmann initiated the ergodic theory of the complexity of moving systems.
The link between complexity and entropy has been highlighted by Boltzmann in his
statistical theory of gas thermodynamics and his famous formula of entropy. Thanks
toShannon andKolmogorov the linkbetween complexity and entropyhas appeared in
other science disciplines such as probability and information theory and the theory
of chaotic dynamical systems. While the Kolmogorov-Sinai (KS) is defined by a
probabilistic formula like that of Shannon, the topological entropy is global because
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Fig. 4 Some neighboring trajectories extracted from a single beam of Fig. 3

it encompasses all the trajectories andnot themore or less probable. This iswhy, under
certain specifications, it is equal to the maximum of all the KS entropies associated
with the multiple invariant probability distributions of a dynamical system.

The complexity of a deterministic dynamical system in a spatially extended envi-
ronment must incorporate other parameters such as the translational frame velocity
in this medium and not just the temporal sensitivity to the initial conditions (SIC).
This dependence of complexity on the speed of a translational frame motion offers
new insights of the dynamic complexity. Amore general dependence on other spatial
actions than translationmust be considered in order to understand the spatio-temporal
nature of extended systems.
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Detecting Regularity with Complexity
Functions

Olivier Bui and Xavier Leoncini

Abstract In this chapter we consider using complexity function as proposed by V.
Afraimovich to detect the presence of regularity in a priori chaotic systems. When
dealing with systems in high dimensional phase space, a form of master-slave system
is proposed. The complexity is measured, tested in the standard map and is able to
detect sticky regions with long lived portions of coarse-grained regular trajectories.
It is then applied to the Hamiltonian Mean Field (HMF) model. Surprisingly in
this last setting, complexity shows that strong regular behavior is observed with a
characteristic exponent of power law decays between 2 and 3 and does not seem
to depend on the considered dimensions of the phase space, giving rise to future
investigations in what may happen in this system.

1 Introduction

Understanding of complex dynamical systems in high dimensions has always been a
difficult task [1]. If the dimensions of the system are quite large, one is undoubtedly
looking for some randomness in order to use some statistical approach deriving some
equilibrium statistical physics, or out of equilibrium ones, or various forms of kinetic
equations. Conversely one may be looking for some regularity, or synchronization
phenomena that would lead to an effectively simple low dimensional dynamical
system. However most of these considerations are usually falling apart when looking
already at low dimensional Hamiltonian chaos [2–12]. The presence of so-called
mixed phase spacewith amixture of regionswith regularmotion (islands) and chaotic
regions (chaotic sea) implies de facto that simple chaotic system can have non trivial
dynamics, with a non unique ergodic measure. These systems can display as well
the phenomenon of stickiness that generates a slow decay of correlation functions
and induces non trivial anomalous transport properties [3, 6, 13–25]. In order to
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track these phenomena, different tools have been used like finite time Lyapunov
exponents [26], Poincaré recurrences [21, 27–30], Birkhoff sums [31, 32], among
these possibilities the use of tools inspired by complexity functions such as so-called
chaotic jets has been quite successfulwhen considering lowdimensional systems [19,
22, 33, 34]. When considering higher dimensions besides synchronization, regular
behavior can as well be observed in high dimensional Hamiltonian system, and self-
organized regularization has been observed in systems with long range interactions
[35–38]. However as will be seen from the brief introduction to complexity function,
measuring complexity becomes very quickly intractable in high-dimensional phase
space. In order to circumvent we propose to consider a master slave system, where
the slave dynamics will be taking place in a low dimensional phase space and driven
by the high-dimensional one in consideration.

What follows is probably not conventional in a regular book chapter, but since it
is the main driving force of the presented results we believe it is worth mentioning
as these were inspired by Valentin Afraimovich to whom this book is dedicated.
In fact, these ideas came up during the visit of Valentin Afraimovich in the Centre
de Physique Théorique in Marseille during the summer of 2013. He was invited by
Xavier Leoncini for a short month as an invited Professor of the University of Toulon.
After that period a rough draft of definitions and set up of looking at practical work
was written, mostly by Valentin Afraimovich himself. We reproduce in the first parts
some of this draft paper that never came to realization. Indeed, due to various reasons,
it took some time to get to the practical work, in fine this lead to a Ph.D. proposal and
is one of the main motivations of the Ph.D. work of Olivier Bui. But his first visit to
Mexico was unfortunately planned in 2017 and scheduled for the summer of 2018.

In this chapter we show some preliminary results obtained from this approach,
considering only Hamiltonian systems, the goal being to identify and characterize
regularity phenomena within chaotic areas of certain systems.

The chapter is organized as follows, first in Sect. 2, we briefly recall the definition
of complexity functions and set up the general context of master-slave systems we
had in mind with Valentin Afraimovich. Then, in Sect. 4, we check the diagnostic in
low dimensions using the standard map as a test bed, finally in Sect. 5 we apply it to
a system with many degrees of freedom before concluding.

2 Complexity Functions

2.1 Complexity Function

A metric complexity function is a characteristic of instability of trajectories of a
dynamical system that shows how fast they diverge in the phase space. The definition
was first introduced by Bowen [39] who used the classical notion of ε−separability
[40]. Let

T t : M −→ M, t ≥ 0 ,
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Fig. 1 Trajectories of x0 and x1. We note T t xi the position of xi at time t . ε is the diameter of
the green circle. In this illustration x0 and x1 are (ε, t2) but also (ε, t3)−separated, meaning that
even if the trajectories come close to each other again they are still considered as separated. There
is thus a minimal time τ such that two points are (ε, τ )−separated; τ is the first time when they get
separated

be an evolution operator of a dynamical systemwith a phase spaceM that is endowed
with a distance d(x, y). Given an initial point x0 ∈ M , let T t x0 = x(t) be the rep-
resentative point on the trajectory

{
T t x0

}
t≥0. One can introduce a collection of

distances on M :
dt (x0, y0) = sup

0≤τ≤t
d(T τ x0, T

τ y0) .

We say that x0and y0 are (ε, t)−separated if dt (x0, y0) ≥ ε. It means that on the
segments ⋃

τ∈[0,t]
T τ x0,

⋃

τ∈[0,t]
T τ y0

of trajectories going through x0, y0 correspondingly, there are representative points
T τ0x0, T τ0 y0 such that d(T τ0x0, T τ0 y0) ≥ ε.

Given a set A of initial points, we say that a set B ⊂ A is (ε, t)−separated if each
pair x0, y0 of points in B is (ε, t)−separated.

A description of the notion is depicted in Fig. 1.

Definition 1 The quantity

Cε,t (A) = max{card(B), B ⊂ A, is (ε, t) − separated} , (1)

where card(B) is the number of elements (cardinality) in B and max is taken over
all (ε, t)−separated subsets of A, is called the (ε, t)−Complexity of the set A. As a
function of t it is called the ε−complexity function. The number lnCε,t (A) is called
the (ε, t)−capacity of A. A discussion on the introduced definition can be found in
[22, 41–43].

The asymptotic behavior of Cε,t (A) as t → ∞ or ε → 0, is determined by two
quantities:
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• The topological entropy

h = htop(A) := lim
ε→0

¯lim
t→∞

lnCε,t (A)

t
. (2)

• The fractal (upper box) dimension of A

b := lim
t→∞

¯lim
ε→0

lnCε,t (A)

− ln ε
. (3)

Thus, if 0 < b < ∞, 0 < h < ∞, and t � 1, ε 	 1, one can believe that

Cε,t (A) = ε−b eht �(ε, t) , (4)

where � is a subexponential function of t and ln ε.
But if ever t and ln(1/ε) are not large, the value Cε,t (A) reflects an “amount

of instability” that becomes feasible during the interval [0, t] of time in the scale
determined by the value of ε.

2.2 Local Complexity Function

Thinking about applications one has to take into account the fact that if the set
A is large (in any reasonable sense), then it would be very difficult or impossible
to perform numerical simulations that would be needed to find Cε,t (A) . Moreover,
sometimes it is useful to know the evolution of instability around one fixed trajectory.
According to the aforementioned reasons we impose the following definition of local
complexity function [43].

Fix a trajectory
{
T t x0

}
t≥0 going through the initial point x0 (we call it the basic

trajectory) and a set A of initial points in the δ−neighborhood of x0, such that δ 	 ε.
A set B ⊂ A, is said to be locally ε−separated if :

1. for every x ∈ B there exists τ ∈ [0, t] such that

d(T τ x, T τ x0) ≥ ε

and
d(T sx, T sx0) < ε , 0 ≤ s ≤ τ .

2. For every pair x, x ′ ∈ B
d(T τ x, T τ ′

x ′) ≥ ε

(where d(T τ ′
x ′, T τ ′

x0) ≥ ε).
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Definition 2 The number

Cε,t (x0, A) = max{card(B), B ⊂ A, is locally (ε, t) − separated} (5)

where the maximum is taken over all locally (ε, t)−separated subsets of A, is called
the local complexity function.

This definition works well, at least for simple systems (see for instance [33]).
One may consider an ensemble of basic trajectories and study average complexity
functions. But now let us consider situations in high-dimensional phase space.

3 A Master-Slave Case

We consider the following system of ODE

ẋi = Fi (x) , i = 1, . . . , N (6)

ẏ = G(x, y) , (7)

where x = (x1, . . . , xN ), xi ∈ R
m , i = 1, . . . , N , y ∈ R

m ,F = (F1, . . . , FN ), i.e.we
deal with a master-slave situation. Our goal is to study local complexity functions for
each coordinates xi using the system (7). We will proceed as follows. Fix a basic tra-
jectory {T tx0 = x(t, x0) , t ≥ 0} where x0 = (x10, . . . , xN0). Given i ∈ {1, . . . , N }
let us consider the δ−neighborhood Ui of xi0, in R

m , δ 	 ε, and a set Ai ⊂ Ui .
Denote by y(t, y0) the solution of the equation

ẏ = G(x(t, x0), y) , (8)

satisfying y(0, y0) = y0, where y0 ∈ Ai .
We say that two of such solutions are locally (ε, t)−separated if there are instants

τ and τ ′, 0 ≤ τ ≤ t , 0 ≤ τ ′ ≤ t such that:

1. di (y(τ, y0), xi (τ, x0)) ≥ ε, di
(
y(τ ′, y′

0), xi (τ
′, x0)

) ≥ ε and
2. di

(
y(τ, y0), y(τ ′, y′

0) ≥ ε
)
, i.e. the points y(τ, y0) and y(τ ′, y′

0) are ε−
distinguishable.

A set B ⊂ Ai is locally (ε, t)−separated if for every pair y0, y′
0 in B the corresponding

solutions y(τ, y0) and y(τ ′, y′
0) are locally (ε, t)−separated

Definition 3 The number

Ci
ε,t (x0, A) = max{card(B), B ⊂ Ai , is locally (ε, t) − separated} , (9)

where the maximum is taken over all locally (ε, t)−separated subsets of Ai , is called
the i−th local complexity function of the set Ai . As a function of t , it is called the
i−Complexity function.
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The defined quantity has a different meaning for dissipative and conservative
systems.

Dissipative systems
When the coupling between the master and slave system is large enough one may
observe the regime of synchronization. Then systems (8) with different initial
conditions can be seen as an ensemble of auxiliary systems in the approach of
[44]. According to [44] all the solutions of (8) become ε−indistinguishable as
t � 1, so the i−th local Complexity function stops growing, beginning with
some instant of time independently on the number of initial points in Ai .
If the rate of coupling is not sufficient to generate the synchronization regime, then
this function can serve to indicate how far the system is from the synchronization
regime.

Hamiltonian Case
We assume that the i−th subsystem in (6) corresponds to the i−th degree of
freedom of a Hamiltonian system som = 2, xi = (pi , qi ). The system (7) can be
treated as an “average” system related to themean field approach (see below). The
solution x(t, x0) is an external force (field) that fully (or partially) determines the
dynamics of (7). Changing initial conditions in (7) we obtain a bunch of solutions
that can serve as a device to measure the dynamics of the i−th degree of freedom
of the original system (6). And the local i−th complexity function is a suitable
quantity to reflect the amount of instability stored in the i−th degree of freedom.
Moreover, the shape of the function can indicate subintervals of timewith different
rates of instability.

3.1 A Physical Interpretation of (ε, t)−Separability

Ifwe give ourselves ameasuring instrumentwith a certain precision and this precision
represents a distance of δ in phase space, two points will be indistinguishable by
the instrument if the distance between them is less than δ. In this case if these
two indistinguishable points end up after a certain time separating by a distance
of ε that is larger than δ by several orders of magnitude then this separation will
appear to the observer as two points of the same initial conditions moving towards
“two completely different futures” with the idea that the threshold ε defines what
“two completely different futures” means, at the same time he will be only able
to know there were actually two different trajectories after the separation occurs.
Thus this concept encompasses the idea of unpredictability that is often associated
with chaos. Thus basing a diagnostic aiming at quantifying chaos on the notion of
(ε, t)−separability or the Complexity function is reasonable.

Definition 4 The Local Complexity function we defined in Sect. 2.2 and Sect. 3
only describes one single point x0 of phase space. But if we take a set Q of points
distributed over the whole space or a part of it, we could make the sum or the average
of the complexity functions evaluated in each of these points and therefore define
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Cε,t (Q, {A}) with {A} a set of neighborhoods (a neighborhood for each point of Q).
We will note A = {A} and they all will be disks of radius δ centered around a point of
Q. Note: the sample of points Q we want to use should not be uniformly distributed
over the space, instead the points are sampled along a trajectory. For example: if the
chosen trajectory tends to remain for a long time in certain areas, the set of Q points
will have to be more concentrated at these locations. Since a trajectory, in chaotic
systems, may travel through the whole phase space or large part of it, the sample Q
will be representative of the dynamic of the system and the associated underlying
ergodic measure.

There is a similarity between complexity functions and Lyapunov’s exponent
since both are interested in how two adjacent initial conditions move away. The
major difference between Complexity and Lyapunov’s exponent is that the Com-
plexity function ignores what happens beyond a threshold it is set by neighborhoods
A that sets a size for errors δ on our initial conditions as well as a threshold ε

through which we look at the trajectories. Thus the complexity function could detect
“coarse-grained” regularities (regularities of size ε which we can vary) even if the
system is chaotic at smaller scales. This can be an advantage over the Lyapunov
exponent, for instance when considering particle dispersion and associated diffusion
like phenomena.

3.2 Numerical Measurement of the Complexity Function

First of all, given the number of parameters that Cε,t (Q, A) has, we must agree on
how to choose them. εwill be decided at the start of each simulation and the influence
of this parameter will be analyzed. For the set Q, as we explained in Sect. 3.1, we
want to sample along a trajectory: at the start of the simulation we choose an initial
condition x0, simulate its evolution in phase space and Q are positions this “particle”
took at different time , we call this particle traveling the phase space the “tracer”.
In this case we understand that as long as the chaotic area is of a finite volume our
tracer will travel across all the corners of this area and Q will be well distributed
over this space. Neighborhoods A will be disks of radii δ 	 ε: thus we can write our
Local Complexity function as Cε,t (Q, δ). The parameter t does not have to be set,
because our simulation will not actually calculate Cε,t (Q, δ) directly but will give

the graph of a function related to
d

dt

(
Cε,t (Q, δ)

)
as a function of time. But before

we can explain this last point, we need to describe our numerical program.
We will call trapping time, which we note τ , the minimum duration taken for

two “particles” in phase space to be (ε, τ )−separable, i.e. the first moment they are
ε−distinguishable.

At the beginning of the simulation we choose an initial condition for our tracer
whose trajectory we will follow, but we will also follow the trajectory of a second
point/particle whichwe call “ghost” taken at a distance δ of the tracer. The simulation
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Fig. 2 Illustration of how the simulation operates. At each instant, we follow the trajectory of
our tracer (here illustrated by the trajectory at the center of the tube of radius ε) and also note the
trajectories of some ghosts which were generated at a distance δ of the tracer. Once a ghost escapes
from the tube we generate a new one. We note the duration τ each ghost spent inside the tube before
escaping it

will then measure the trapping time τ between the ghost and the tracer, and once we
got the τ for this ghost we stop following the movement of the ghost and generate a
new ghost at a distance δ of the tracer and measure its τ etc.

An illustration of this process is given in Fig. 2. On this figure, we associated two
ghosts to the tracer instead of only one. In this case, the individual trapping time
of each of them should be measured. Increasing the number of ghosts increases the
number of data and therefore refines the graph we will create. This graph being a
histogram of the recorded τ . Normalizing this histogram will then give us a curve
that we can interpret as a probability density on the τ , noted ρ(τ) (probability that a
point initially generated at δ of the tracer to have a trapping time of a certain value
τ ). We should insist as well that, for reasons of simplicity unlike what our definition
of Complexity function would have suggested, we do not really generate the ghosts
in the disk of radius δ around the tracer but on the circle of radius δ.

Now let’s come back to the link between this probability density that we will
measure and the Complexity function. On the following segment we will change the
notation of Cε,t (Q, δ) into C(ε, t, Q, δ). C(ε, τ + �t, Q, δ) − C(ε, τ, Q, δ) corre-
sponds to a number of trajectories escaping from a tube of size ε around the tracer in a
time�t and it is possible to prove under certain conditions, for example if the chaotic
space we consider has a finite volume, that by posing ρ(ε, τ, Q, δ), the probability
that a ghost has a trapping time of τ , we have[42]:

1

C(ε, τ, Q, δ)
[C(ε, τ + �t, Q, δ) − C(ε, τ, Q, δ)] ≈ ρ(ε, τ, Q, δ)�t (10)

Thus our histogram which corresponds to this probability density ρ will be linked to
how the proliferation of trajectories varies over time as it is related to the (logarithmic)
derivative of the Complexity function.
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4 Application to the Standard Map

4.1 Brief Introduction to the Standard Map

The Standard Map is a discrete dynamical system governed by the following equa-
tions:

pn+1 = pn + K sin(qn) [2π ] (11)

qn+1 = qn + pn+1 [2π ]

Given the presence of the modulo 2π , the phase space is a torus. K is a positive
parameter. The phase portrait of the system is very dependent on the K parameter
(see Fig. 3), which is why we will perform our simulations for different values of K .
The Standard Map is a standard system if we want to study Hamiltonian chaos as it
illustrates quite well the situation where chaotic zones and regular zones coexist in
the phase space. At K = 0, the trajectories are all regular but chaotic areas appear
very quickly and grow as K is increased (see Fig. 3). From K � 1, chaotic areas fill
more than half of the torus. However, instead of focusing solely on the fact that the
proportion of chaotic zones increases with K , we want to address the question of the
behavior of trajectorieswithin the chaotic zones themselves. Chaotic trajectories near
the boundaries between regular and chaotic areas are expected to have regularities
that would not be seen in the absence of these “frontiers”.

If we want to study the influence of the existence of regular zones on chaotic
trajectories then the Standard Map is an excellent object of study since we have
this parameter, K , which allows to make these zones appear or disappear at will. In
addition, the StandardMap being a discrete dynamic system allows us to avoid errors
caused by numerical integration algorithms. In a discrete system, the only limitation
is the accuracy of the machine itself.

4.2 Study Framework

Let’s look at the different plots depicted in Fig. 3. We can see then that when K
is large enough, we have a large “chaotic sea” in which are some islands of regular
trajectories. The islands disappear as K grows until the system is completely chaotic.
These pictures, although useful, do not inform us about the phenomena within each
chaotic sea for the different values of K .Weneed to diagnose the potential regularities
that the trajectories in these chaotic seas may have. We need to check whether the
diagnostics described in Sect. 3.2 can identify these patterns and if so how are they
characterized? Although we suspect that regularities will only appear when there are
islands it is important to test our diagnosis for K = 10 since in their absence the
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(a) K=0.1 (b) K=1.1

(c) K=1.5 (d) K=10

Fig. 3 Phase portrait of the Standard Map for different value of parameter K . For K = 1.1 and
K = 1.5, we see coexisting chaotic seas and regular island

system is supposed to be completely chaotic; making our measurements for K = 10
then gives us a reference concerning the results we should expect for a system that is
completely chaotic and should lead to Gaussian statistics (see for instance) and thus
we can make a comparison with the case presenting islands.

Reminder: the simulation measures the time it takes for two neighboring points to
separate, noted τ , in order to determine its probability density noted ρ(τ). The tracer
we choose will always be in the chaotic sea since we are studying the chaos of the
Standard Map. How ρ(τ) decays when τ approach ∞ is what we are looking at to
describe the presence or absence of regularities. We imagine that a system with more
regularities than another should have a slower decay of ρ(τ). On the other hand,
we do not expect that the decay of ρ will be slower than 1/τ 2 since otherwise the
average trapping time 〈τ 〉 = ∫

ρ(τ) · τ dτ would be infinite, and that would need to
be further investigated.
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(b) Log-log plot for different values of K.

Fig. 4 Fig. 4a shows that when we have global chaos we get and exponential decay of ρ(τ).
The presence of regular islands, on the other hand, leads to a power law behavior and ρ(τ) ∼ 1/τα

Fig. 4b: in red we have K = 10 and its exponential decay. The color code is (black : K = 5) , (blue :
K = 1.5) , (magenta : K = 1.1) , (green : K = 0.5). The curves for K = 1.5 , 1.1 and 0.5, which
corresponds to cases where we see very large islands, are very similar and have a slope α ≈ 3.
Even the case K = 5, where the islands almost disappear, ρ(τ) is still very similar to the other
“island-cases”: the slope α for τ → ∞ is similar and the only differences appear for low τ

4.3 Results on the Trapping Times τ

The histograms obtained for the different values of K are normalized. The result
is that ρ(τ) quickly reaches a maximum and then decays either exponentially or
in power law. The figures obtained are those of Fig. 4. We see that global chaos is
characterized by an exponential decrease while the presence of islands shows longer
trapping times that decrease algebraically, in 1/τα . Thus, making a diagnostic based
on the measurement of trapping time effectively allows us to detect regularities in a
chaotic space by looking at how ρ(τ) decays: regularities related to the islands of
stability are characterized by an algebraic decrease in ρ(τ) instead of an exponential
one.

That said, we can try to ensure that this algebraic decay characterizes the phe-
nomena around the islands wementioned: we can try to locate where the tracer-ghost
couples were located when they contributed to these “high” τ . We are locating these
areas of high τ in Fig. 5 for K = 1.5. What we did was choose a high time τthreshold
which corresponds to a time located in the 1/τα tail in Fig. 4b.

In conclusion, diagnostics based on trapping times may allow us to study phe-
nomena at the boundary between islands of stability and the chaotic sea. Among
the known phenomena happening at these boundaries is the phenomenon of “sticki-
ness” [45]. It is the phenomenon bywhich trajectories remain around the border of an
island for very large times giving the impression, if we limited ourselves to small time
scales, that they would be regular and would never visit the chaotic zone. Stickiness
manifests itself the most strongly around the smallest islands, these islands typically
also feature fractal structures [45]. The stickiness phenomena can be detected, for
example, by using Poincaré recurrences. But we may also ask ourselves if our diag-
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Fig. 5 Regions with large trapping time is colored in green. We considered here the case with
K = 1.5, The chaotic see is plotted in red.We notice that large τ are located at the vicinity of islands,
and confirm the stickiness phenomenon with the presence of regular coarse-grained trajectories in
the vicinity of islands

nostic based on trapping times within these jets (regular coarse-grained tubes) can
capture this kind of phenomena. Indeed, we can suspect that the sticking trajectories
are also trajectories with certain regularities in terms of (ε, t)−separability and they
may even be the trajectories that generated the very long τ we found in our plots.

To test this hypothesis we use the same method used for plotting Fig. 5 but using
a τthreshold much larger: we obtain Fig. 6 and we can see that the contributors to very
long trapping times τ are sticking regions (Fig. 7).

4.4 Summary of the Efficiency of Detecting Regularity with
Complexity for the la Standard Map

Let’s come back to the algebraic or exponential decrease of the probability density
function of τ . Remember that the formula (10) indicates that ρ(τ) is related to the
logarithmic derivative of the complexity function with respect to time. In the case of
K = 10, that is globally chaotic, this exponential decrease indicates that Complexity
“reaches” its asymptotic value after a very short time: “all” the ε−separations are
done after a few iterations of the map. This behavior seems intuitive and logical for
a globally hyperbolic system. On the contrary, in the presence of islands, the much
slower decrease (algebraic) shows that even after a long time all the trajectories have
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Fig. 6 Here we plot the parts of the trajectory which have the longest lived jets in black. The chaotic
see is plotted in yellow. We can notice that these long lived jest are sticking to the small islands
(when comparing to Fig. 5)

Fig. 7 Representation of a <<jet>> of coarse-grained regular trajectories (on the picture a ghost
and a tracer remain together for large times). Within a jet, we may have, as depicted, some chaotic
dynamics

not finished separating: we have even seen (see Fig. 6) “jets” of coherent trajectories
that last a long time and that moreover “stick” to the islands.

Conclusion on the Use of Complexity in the Standard Map

In the end, we may say that the diagnostic fulfills its objectives on the Standard Map
by correctly detecting regularity phenomena in a chaotic space. And it can easily be
extrapolated that it would also work on system similar to the Standard Map namely
those showcasing coexistence between chaotic seas and islands of stability. At least
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in this particular system, this time-trapping approach could detect the transition, that
appears when K is reduced, from the globally chaotic case to the coexistence case.
But this approach also made it possible to locate areas with little dispersion but also
to probe the “jets”. We may emphasize that it is actually the first time that jets are
used to characterize stickiness around islands, in previous papers they were used to
probe some possible stickiness phenomenon when due to its large dimension or the
non periodic nature of the driving, we could not visualize phase space.

4.5 Influence of the Parameters

We give here some details of the numerical simulations, and how we obtained the
data.

Simulations Times, Reliability of the Results and Initial Conditions

In our simulations we followed the tracer’s trajectory over a period of about 108

iterations. The number of ghosts that accompanied it at any given time was 3, so we
have a program that runs fairly quickly but with fairly reliable results, i. e. by running
the program for the same K (and the same ε and δ) several times we have the same
curves (see Fig. 8). The initial conditions for the tracer does not seem to affect the
results either suggesting that 108 iterations are more than enough to properly sample
the totality of the chaotic space of this system.

Influence of ε and δ

On the Standard Map ε and δ do not change the overall density rate: the exponent α
in 1/τα is a constant. Changing ε and/or δ will actually only shift the curve, but only
if the ratio ε/δ changes. That said, all this obviously implies that we have already
taken sufficiently small ε, in our case 10−3 or smaller, if the parameter has the size
of an island (i.e. a characteristic size of the Map) then unexpected phenomena are
possible. But the conclusion of this is that despite all these parameters that we have
to manage, at least one characteristic variable of the system (which is this exponent
α) emerges.
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Fig. 8 Three different simulations for the same K (K = 1.5) with different initial conditions of
both the tracer and the ghosts. We see that all curve fall on the same line. Errors may grow a bit
for large trapping times τ and this would indicate when our density functions are not really reliable
anymore

5 Application to the HMF

5.1 Introduction

After having measured complexity functions on a simple system like the Standard
Map which has only two dimensions, we will now consider a Hamiltonian system
with N particles, each described by a position q and an momentum p. Such a sys-
tem has a 2N dimensional phase space which is significantly larger than 2 simple
dimensions; indeed we will consider systems with the numbers of degree of freedom
N varying from a hundred to a million, it will be in fact our parameter, analogous
to how we were varying the K parameter to detect a transition using the trapping
time diagnostic. The idea being that here the degree of chaos in the system can be
linked to the number of particles N [35, 36, 38]. However, although our diagnostic
worked well in a phase space with a small number of dimensions, it can be difficult to
imagine and implement it with a much “larger” phase space considering the number
of calculations needed to generate randomly ghosts at a distance δ or keeping track of
their distance with the tracer. The workaround is then to reduce the dimension of the
phase space to be studied. Since in the considered system with N identical particles
interacting with each other through the same interaction, we may expect that the
study of a single particle should already contain a lot of information about the entire
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system, because no particle is more special than another. We will thus implement the
master-slave idea proposed earlier and see how it fares.

5.2 Introduction of the HMF Model, and the Master-Slave
Implementation

The Hamiltonian Mean Field (HMF) system is a Hamiltonian system with N bod-
ies interacting with each other [46]. We note qi and pi respectively the position
and momentum coordinates of particle i . The HMF is the system described by the
following Hamiltonian:

H =
N∑

i=1

⎛

⎝ p2i
2

+ 1

2N

N∑

j=1

[
1 − cos(qi − q j )

]
⎞

⎠ . (12)

It should be noted that the position coordinates qi can be interpreted as angles, as
such this Hamiltonian can be seen as mean field system of ferromagnetic XY−spins
to which a classical kinetic energy part has been added, so it is possible to deduce that
the HMF system physically describes a system of rotators (e.g. spins), each of which
creates a field (e.g. magnetic) that “tends” to align its neighbours with itself. Due
to the mean field nature, this model has been since its inception a paradigmatic one
to study systems with long range interactions. From a purely statistical equilibrium
point of view an order parameter

−→
M , the magnetization, which is the average vector

of all spins
−→
M = 1

N

(∑
cos(qi )∑
sin(qi )

)
= M

(
cos(φ)

sin(φ)

)
,

can be defined and a second order phase transition is observed at a critical temperature
Tc = 1/2 or critical energy density e = 3/4 [46, 47]. There is a long history of
studying systems with long range interactions, as these may lead to inequivalence to
statistical ensemble and negative specific heats in themicro-canonical one.Moreover
its out of equilibrium features and slow relaxation towards equilibrium has been
thoroughly investigated. Indeed the relaxation dynamics in the large N limit can
be well describe using a Vlasov equation, and in many situations the system can be
trapped in long lived quasi-stationary states, whose lifetime diverges with the number
of constituents [47–57]. The mean field results obtained with this model have also
been shown to capture or be equivalent to more complex long range system of XY-
spins, evenwhen considering the interactions on regular networks with finite range or
complex networks with small-world properties [58–61]. Regarding the dynamics of
the relaxation, specific behaviors related to long-range systems have been observed.
But the one that will particularly interest us in the present case, is the fact that even at
statistical equilibrium the system display self-organized regularity [35, 36, 38]. Let
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us now turn to some specificities of the model The equations of the motions derived
from the Hamiltonian

ṗi = −∂H

∂qi
= − 1

N

N∑

j=1

sin
(
qi − q j

)
(13)

q̇i = ∂H

∂pi
= pi . (14)

which if we develop the sinus can then be rewritten as :

ṗi = −M sin(qi − φ)

q̇i = pi .
(15)

During our simulations the initial conditions of the rotators will be generated with
an equilibrium distribution which will be parametrized by its temperature, so we will
only treat the case at equilibrium in the same spirit as was performed in [38],

ρ(p, q) =
√
2π

β

1

I0(βM)
exp

(
−β

(
p2

2
− M cos q

))
, (16)

with the norm of the magnetization M solution of the implicit equation

M = I1(βM)

I0(βM)
, (17)

Once data is collected we “center” the initial conditions so that the initial phase of
the magnetization φ is zero.

We now define the slave system: we have seen that the N spins of the HMF are
subjected to a uniform average field created by all the spins, the slave dynamics is
then naturally chosen to be driven by the following Hamiltonian

H = p2

2
− M(q1, . . . , qn) cos(q − φ(q1, . . . , qn)) ,

resulting in the dynamics given by a driven pendulum

q̇ = p

ṗ = −M sin(q − φ) ,

where M and φ are computed from the master system and are the global mean fields
driven by the trajectory of the N couple (pi , qi ) of the particles. We are then indeed
in a master slave situation and the slave system does not affect the master system nor
its magnetization. It is on this slave system that we will launch our tracer and ghosts
and compute complexity functions.
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5.3 Chaos as a Function of the Number of Particles N

Before taking care of the trapping times of the slave system. Let us start by getting an
overview of how the HMF behaves and more precisely how each particle moves in
their restricted 2D phase space. Indeed as already seen in [35, 36, 38] , and guessed
from the equation of motion themselves, if we are near a statistical equilibrium the
magnetization should be almost constant, hence the particle’s motion (15) should as
well mimic those of a pendulum. Of course the magnetization is expected to fluctuate
less and less the more particles are driving the master system, so we can expect their
dynamics to be more and more regular. This lead to the notion of what was dubbed
self-organized regularity in [38]. So let us consider various systems size and vary
the number of particles N and see how individual particle moves. The results are
displayed in Fig. 9. Since it is more common to chose φ = 0 for a real pendulum,
for example in the case of the pendulum under gravity, in order to take into account
the fluctuations of the phase which may blur the trajectory we draw the individual
trajectories of the particles in the frame (pi , qi − φ).

It appears that by increasing the number of particles, they are increasingly confined
around apendulumorbit,whereas ifwehave fewparticles eachmakevery large jumps
from one orbit to another. These displacements indicate the fluctuation of particle
energy since it is recalled that the orbits of the pendulum are isoenergies. Thus the
more particles there are, the less each particle will have a fluctuating energy. Now,
we can wonder if what looks like a decrease in chaos and a rise of regular motion
is in fact something similar to what was observed in the Standard Map caused by
the appearance of islands and stickiness phenomenon, and if this regularization can
be detected by measuring complexity in the low dimensional slave system: this is
where the slave particle and the time of trapping of ghosts come into play.

5.4 Simulations of the HMF

We ran simulations for N from10 to approximatively N = 105 and for an equilibrium
temperature T = 0.1 and T = 0.4. The simulation time was T f = 105. The results
are given in Fig. 10.We recognize the algebraic decay of ρ(τ)we saw in the Standard
Map. But even for low N , there is nothing similar to the exponential decay in the
StandardMap in the globally chaotic case.We notice that the figures overlap strongly:
our results do not depend on the N we choose. This seems strange since we have seen
in Fig. 9 that chaos appeared we decrease N . Nevertheless surprising, these results
as mentioned all display a power law behavior, which are puzzling, as we could have
expected chaos in low dimensional phase space to give rise to exponential decay, so
in fact this system appears to be much more regular than we initially anticipated.
We probably will need to refine our diagnostic, maybe taking to account as well the
vicinity of a real trajectory as proposed in the definition (the point 1 in the definition of
separability in Sect. 3 that we neglected) could solve the problem.Another possibility



Detecting Regularity with Complexity Functions 31

-4 -2 0 2 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

q − φ

p

(a) N=103

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

q − φ

p

(b) N=104

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

q − φ

p

(c) N=5 ·105

Fig. 9 Trajectories of some particles of the HMF in their own reduced phase space, plots are
superimposed. Each color corresponds to a given particle. Different values of N are considered.
Initial conditions for the different values of N were chosen so that the energy per particle is preserved
(constant temperature T at equilibrium, here T = 0.48). We notice clearly that the trajectories
become more and more regular as the size of the system is increases

is that given the dynamics of the ghost, we are facing a configuration giving rise
to adiabatic invariants which could be not so sensitive to the fluctuations of the
magnetization, unless we are considering trajectories close to the separatrix of the
pendulum [62–64], but then we may just endup tracing chaos in the stochastic layer,
as was already somewhat performed in our study of the standard map (Fig. 11).

Trajectory of the Tracers and Influence of ε

By looking at Fig. 10 in conjunction to Fig. 10, we can see that distribution of
trapping of trapping times τ does not detect the vast difference in trajectory taken by
the different tracers. For ε = 0.05, it seems having its trajectory confined on a narrow
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Fig. 10 Plots in log-log of ρ(τ) for different N and T . ε = 0.05 and δ = 0.002. Initial condition
of the tracer (p = 0, q − φ = π/2). For the different values of N and T chosen, we do not notice
any major differences in ρ(τ). We can see ρ(τ) decays as 1/τα with α being slightly lower than 3
for both figures

Fig. 11 For T = 0.4, we
plot the trajectory of the
tracers we used for the
Fig. 10 in the cases N = 10
(in yellow) and N = 7 · 104
(in black)
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rings does not have a particular effect on its ε−separability compared to being able
to explore the whole region enclosed by the separatrices and even more. But we may
want to know whether having ε closer to the width of the ring in which the tracer is
confined may change the distribution. This is was we verified in Fig. 12. Changing
ε mainly shifts the distribution. This result was also replicated for other values of N
such as N = 2 · 104 and N = 10.

Conclusion on the HMF

The (ε, t)−separability properties of the slave system of the HMF does not seem
to change for different N . So far, our diagnostic failed to perceive the differences
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Fig. 12 For T = 0.4 and
N = 7 · 104: plots of ρ(τ)

for different values of ε. We
notice that increasing ε does
not affect the overall form of
the distribution but only shift
to the right
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between the different values of N . However, it is not impossible therewould exist val-
ues for ε, δ or N that would yield interesting observations and further investigations
are needed.

6 Conclusion

In conclusion, we obtain a very relevant approach for two-dimensional systems with
islands of stability stranded in a chaotic sea like the Standard Map. Moreover, the
idea of trapping time opens up possibilities such as probing these long jets or trying
to locate them in the phase space. For the large mean-field Hamiltonian we consid-
ered, thus far we could surprisingly only detect characteristics of regular power law
behavior with a typical slope of trapping time between 2 and 3, indicating most likely
anomalous transport properties andmemory effects generated by some form of stick-
iness, however we were not able to see any effect of regularization of the dynamics
induced by increasing the size of the system. This leads to some open questions and
more work to be done to apprehend clearly the obtained results. Either we are falsely
induced by the regular trajectories depicted Fig. 9 and there is some not obvious
renormalizable regularity in this system, or we have to delve deeper in implementing
the master-salve scenario in order to clearly understand what is happening.
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Local Complexity Functions of the
Ehrenfest’s Wind-Tree Model

Raúl Rechtman

Abstract We present numerical results of two local complexity functions of the
Ehrenfest’s wind-tree model [1]. This is a simple model originally used to present
Boltzmann’s transport equation. It is a Lorentz gas in which particles collide with
fixed obstacles. We show that both local complexity functions scale linearly with the
number of obstacles, the initial separation between pairs of particles, and the time.

In 1912 Tatiana and Paul Ehrenfest presented what they called the wind-tree model
in order to discuss Boltzmann’s transport equation (BTE) and the hypothesis of
molecular chaos [1]. Paul Ehrenfest had been invited by Felix Klein to contribute to
the Mathematics Encyclopedia with a paper explaining Boltzmann’s ideas. For this
model, BTE is a set of four linear differential equations with analytical solutions.
Then Boltzmann’s H -function can be evaluated. On a two dimensional space there
are wind (point) particles that move with one of four unit velocities c0 = (1, 0),
c1 = (0, 1), c2 = (−1, 0) and c3 = (0,−1) and may eventually collide with fixed
trees that are squares of a fixed size and diagonals along the axes as shown in Fig. 1.
In a collision, the velocity of the wind particle changes by ±π/2. The model has
been discussed extensively; by adding an internal degree of freedom to the wind
particles [3, 5] and by rounding the edges of the trees [6]. The thermodynamics of
themodel has a closed expression [4]. Thewind-treemodel is the basis of the flipping
mirror model (FMM) [7] and the flipping rotator model (FRM) [8] that in a sense
are a restriction to a two dimensional lattice. In both models the particles move in Z2

with a fraction of sites occupied by obstacles, which in the FMM model are mirrors
placed at 45◦ or 135◦ and after a specular reflection, the mirror flips. In the FRR the
obstacles are right and left rotators so that in a collision, the particle turns to its right
(or left) and the rotator changes its direction. The two models are related in the sense
that given a walk on one of the two, there is an equivalent walk on the other one [9].

Another line of research has to do with diffusion and recurrence in the wind-tree
model [10] and particularly on the periodic wind-tree model where the trees are
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centered on Z2, may be rectangles and the wind particles can travel initially in some
given direction and are reflected specularly by the trees [11–13] and the references
cited in these papers. There are periodic and divergent trajectories on these billiards.
The dynamics can be studied in a fundamental cell with the appropriate boundary
conditions.

The wind-tree model is an example of a Lorentz gas in which particles collide
with fixed obstacles. If these objects are disks, the trajectories are chaotic and the
largest Lyapunov exponent depends on the curvature of the obstacles. For the wind-
tree model, the curvature is zero and the trajectory of any wind particle is not chaotic.
However, two initially closewind particles can separate at some time ts , the separation
time, and the two local complexitiesC1 andC2 found froman ensemble of trajectories
with different ts are an approximation of the local ε-complexity [14]. In what follows
we present the definitions of the two local complexities C1 and C2 and show that
they scale linearly with time t , the number of trees Nt , and the initial separation ε

between trajectories.
The wind particles can move in one of four directions c0 = (1, 0), c1 = (0, 1),

c2 = (−1, 0) and c3 = (0,−1), as mentioned before. When a wind particle with
velocity ck collides with a tree, the velocity changes to c j with j = (4 + k ± 1)
mod 4 turning ±π/2 as shown in Fig. 1.

Two wind particles initially close and with the same velocity will eventually
separate as we show in Fig. 2a where the initial position of the particles is marked
by a small circle in the bottom. The trees are put at random with the condition that
they do not overlap. After several reflections with the trees, the two wind particles
separate as shown in the area inside the black circle in the bottom left of the figure
shown in detail in Fig. 2 (b). The green particle is reflected by the tree while the red
one continues to travel in a straight direction.

For this model, one would like to find the local complexity function, [14–16] and
instead we can define two complexity functions, C1 and C2 defined below which are
closely related in the case of interval exchange maps [14].

To evaluate C1 we put Nt trees at random inside a square of side L and then put
one wind particle at a random position in the square (and not inside a tree) with
velocity c0 and another a distance smaller than ε in the vertical direction of the first
one and with the same velocity. Then we find the separation time ts and repeat this
for N couples of wind particles initially placed at random and separated less than ε.
We find the histogram of separation times and C1 is the integral of this histogram.

The other quantity, C2, is the integral of the histogram of the separation times
of an interval of initial conditions of length 2ε of wind particles. This is evaluated
numerically by taking Nt trees placed at random inside a box of sides L , and N
wind particles with random initial positions and moving with velocity c0. For each
wind particle with random initial position (x0, y0)with velocity c0, called the central
particle, we put two more a distance ε, one at (x0, y0 − ε) and the other one at
(x0, y0 + ε) with the same initial velocity. One must take care that the three initial
positions are not inside any tree. The separation time ts is the time when the orbit of
the central wind particle and one of the other two separate.
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Fig. 1 Trajectory of a wind particle. There are Nt = 50 trees of side d = 4 put at random in a
square of side L = 100 with the condition that they do not overlap. The wind particle is initially at
the point marked by a small circle and moves with periodic boundary conditions

The trees have random positions and it may happen that a wind particle never
collides with a tree. Then, to measure the local complexities, we only take into
account wind particles that collide with trees. If there is no collision, the particle will
be at its initial position after a time L , and this particle is not taken into account in
the numerical evaluation of C1 or C2. Thus the flight time between collisions has to
be smaller than L to be considered. In Fig. 3a, b we show C1 as a function of the
separation time ts for three values of ε. The straight lines in black are C1 = Aεts
with A that should depend on Nt , d and L .

In Fig. 4 we show C1 as a function of the separation time ts for different number
of trees Nt in the same area, that is, as Nt grows, the density of trees grows. For the
interval exchange map C1 scales linearly with number of discontinuities of the map,
here the number of vertices of the trees plays the same role.
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(a)

(b)

Fig. 2 a Trajectories of two wind particles initially a distance ε = 1. The initial position of the
particles is marked by circles, the first in red, the other in green, in the bottom part of the figure and
both with velocity c0. After several collisions with the trees, the two particles separate, close to the
lower left corner of the figure and marked by a circle. b An amplification at the time of separation
ts . There are fifty trees of side d = 4 put at random in a square of side L = 100 with the condition
that they do not overlap and the wind particles move with periodic boundary conditions



Local Complexity Functions of the Ehrenfest’s Wind-Tree Model 41

)b()a(

1e-02

1e-01

1e+00

1e+01 1e+03 1e+05 1e+07

C1

ts

= 1e − 2
= 1e − 3
= 1e − 4 1e-03

1e-02

1e-01

1e+00

1e+01 1e+03 1e+05

C1

βtαs

= 1e − 2
= 1e − 3
= 1e − 4

Fig. 3 a The local complexity C1 as a function of the separation time ts for three values of ε. The
curves in black areC1 = Aεts with A = 7e − 3. These are a fit to the eye. b The data of the previous
figure scale with ε. The curve in black is Ca = Ats . There are Nt = 200 trees of side d = 4 located
at random in a square box of sides L = 200 and N = 1, 000 wind particles are located initially at
random with velocity c0 and move with periodic boundary conditions
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curve in black is C1 = Ats . In each numerical simulation, there are Nt trees of side d = 4 with
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initial position and velocity c0, move with periodic boundary conditions and ε = 1e − 3. For each
value of Nt , the position of the trees is fixed

In Figs. 5 and 6 we show the corresponding results for the local complexity C2.
Both quantities scale as

Cx ∼ N γ
t εβ tα

with x = 1, 2 and α ∼ 1, β ∼ 1 and γ ∼ 1. The Ehrenfest’s wind-tree model
behaves, in terms of the local complexities C1 and C2, as the interval exchange
map [14].
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References

1. Afraimovich V, Rechtman R (2008) Local complexity functions of interval exchange transfor-
mations. Commun Nonlinear Sci Numer Simul 14:1454–1460

2. AfraimovichV, ZaslavskyGM (2003) Space-time complexity in Hamiltonian dynamics. Chaos
13:519

3. Bagnoli F, Rechtman R, Zanette D (1993) Termodinámica de equilibrio de sistemas con veloci-
dades discretas. Revista Mexicana de F’isica 39(5):763

4. Delecroix V (2013) Divergent trajectories in the periodic wind-tree model. J Modern Dyn 7:1
5. Ehrenfest P, Ehrenfest T (1959) Begriffliche Grundlagen der statistischen Auffasung in der

Mechanik. In: Klein TF y Müller C (eds) Encylopädie der Mathematischen Wissenschaften



Local Complexity Functions of the Ehrenfest’s Wind-Tree Model 43

mit Einschluss ihrer Anwendunge, Band IV, 2. Teubner, Leipzig, pp 3–90. English transltion:
Moravczik MJ The conceptual foundations of the statistical approach in mechanics. Cornell
University Press

6. Güemez J, Cervero JM, Velasco S (1994) The Wind-round-tree model and the 2-dimensional
Lorentz gas. Phys Lett A 190:434

7. Gunn JMF, Ortuño M (1985) Percolation and motion in a simple random environment. J Phys
A 18:L1095

8. Hardy J, Weber J (1980) Diffusion in a periodic wind-tree model. J Math Phys 21:1802
9. Hauge EH, Cohen EGD (1969) Normal and abnormal diffusion in Ehrenfest’s wind-treemodel.

J Math Phys 10:397
10. Hubert P, Lelièvre S, Troubetzkoy S (2011) The Ehrenfest wind-treemodel: periodic directions,

directions, diffusion. J Reine Angew Math 656:223
11. Rechtman A, Rechtman R (2017) Equivalence of deterministic walks on the plane. Phys A

466:69
12. Rechtman R, Salcido A, Calles A (1991) The Ehenfest’s wind-tree model and the hypothesis

of molecular chaos. Eur J Phys 12:27
13. Ruijgrok ThW, Cohen EGD (1988) Anomalous diffusion in a lattice-gas wind-tree model. Phys

Lett A 133:415
14. Schultze U, Penson KA, Perera A, Moreau M (1993) Wind-tree model in two dimensions with

internal degrees of freedom: exact solution. Phys Rev E 47:4589
15. Schultze U, Penson KA, Perera A, Moreau M (1994) Dynamics of discrete models of binary

mixtures in 2 dimensions: exact solution Phys Rev E 50:3641
16. Zaslavsky GM, Afraimovich V (2005) Working with complexity functions. In: Collet P et al.

(eds) Chaotic dynamics and transport in classical and quantum systems. Kluwer Academic
Publishers, p 78



Selective Chaos of Travelling Waves in
Feedforward Chains of Bistable Maps

Bastien Fernandez

Abstract We study the chaos of travelling waves (TW) in unidirectional chains of
bistable maps. Previous numerical results suggested that this property is selective,
viz. given the parameters, there is at most a single (non-trivial) velocity for which the
corresponding set of wave profiles has positive topological entropy. However, math-
ematical proofs have remained elusive, in particular because the related symbolic
dynamics involves entire past sequences. Here, we consider instead finite (short)
rank approximations for which the symbolic dynamics has finite memory. For every
possible velocity, we compute the existence domains of all possible finite type sub-
shifts of TW with positive entropy. In all examples, chaos of TW turns out to be
selective, indeed.

1 Introduction

Valentin Afraimovich had a strong interest for lattices of coupled dynamical systems,
the so-called Lattice Dynamical Systems (LDS). He made a number of diverse and
important theoretical contributions to this field; a summary of them can be found in
the notes of his lecture at the CML2004 school in Paris [1]. In short terms, a LDS is
a (continuous or discrete time) dynamical system whose phase space isMZ

d
(lattice

configurations), whereM is a subset of R or of a (compact) manifold, and d ∈ N is
the lattice dimension.

In this setting,Valentin introducedme to the problemof the detection of apreferred
direction in space-time (fromhis ownwords, often accompaniedwith expressive hand
motions!), presumably a measure of the velocity of information flow in the system.
During several years, we frequently spent time together in various places, San Luis
Potosi,Marseille, etc.While he continuously showed receptive patience,Valentinwas
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moved by a strong will, which manifested itself as a vigorous stimulation. A young
fellow at that time, I had no previous experience of interactionwith a senior colleague
who was both scientifically demanding and open to feedback and discussion. This
collaborative experience has been truly beneficial to me, and also a particularly good
time of a close relationship.

Valentin’s incentive brought us (also with Antonio Morante) to extend Milnor’s
notion of directional entropy in cellular automata [2, 3] to lattice dynamical systems
[4]. Two context-dependent definitions emerged. The first one involved space-time
normalisation and was intended for systems with chaotic (temporal) dynamics. The
second one used temporal normalisation only and was aimed at the case of regular
dynamics.

We proceeded to an extended investigation of basic characteristics, by analogy
with the analysis of the topological entropy in dynamical systems [5]. Furthermore,
we obtained explicit estimates in simple examples, which unexpectedly showed that
the space-time normalised quantity did not depend on the direction. This invariance
was later confirmed to hold in every translation invariant LDS,1 thanks to a decisive
contribution by Afraimovich et al. [6].2 Therefore, the directional entropy unfortu-
nately appears to be insufficient to detect preferred space-time directions, at least for
chaotic systems whose dynamics commutes with spatial translations.

What about systems with regular dynamics? The space-time normalised direc-
tional entropy would have to vanish but not necessarily the time normalised one.
Moreover, the examples below [4] show non trivial dependence and call for further
investigation.

2 Unidirectional Systems, Chaos of Travelling Waves
and Symbolic Dynamics

The probably simplest (non trivial) example of LDS with regular dynamics is the
direct product (over Z) of bistable one-dimensional maps (i.e. maps of the interval
having two stable fixed points). Explicitly, the dynamics of configurations x ∈ [0, 1]Z
is generated by the map F defined by

(F(x))s = f (xs), ∀s ∈ Z.

Assuming that f (0) = 0 and f (1) = 1 are the two stable fixed points of f , any
configuration in {0, 1}Z must be a (stable) fixed point of F . This property is an

1 Translation invariantmeans that the dynamics commuteswith the operatorσ of spatial translations,
which is defined below.
2 More precisely, the entropy as defined in [4] depended on the direction. However, [6] showed that
this dependence was trivial, because it could be removed by suitable renormalisation.
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instance of spatial chaos in LDS,3 and it implies that the (time normalised) directional
entropy vanishes in the direction of time and is maximal in the direction of space.

The next example is when this uncoupled system is combined with the spatial
transition operator σ , viz.

(σ ◦ F(x))s = f (xs−1), ∀s ∈ Z.

Under the same circumstances, the system σ ◦ F has a spatial chaos, now of (con-
vectively stable) travelling waves of velocity 1. Its directional entropy vanishes in
the direction of wave propagation (corresponding to the angle π

4 in the space-time)
and, as before, is maximal in the orthogonal direction.

These examples are somewhat naive and rather irrelevant. As modelling of trans-
port phenomena is concerned, it would be more interesting to have similar informa-
tion for the following unidirectional chain of coupled (bistable) maps

(Fε(x))s = (1 − ε) f (xs) + ε f (xs−1), ∀s ∈ Z, (1)

for ε ∈ [0, 1] (NB: this system reduces to the previous examples for the limit values
ε = 0 and ε = 1 respectively). So far, estimates of the directional entropy for this
chain have remained elusive (expected in the neighbourhood of the limit cases, using
perturbative arguments). To address this issue, the considerations in the limit cases
above suggest to investigate the chaos of travelling waves (TW) for an arbitrary
velocity.

Travelling waves in (continuous or discrete time) LDS can be defined following
the basic notion in physics, namely that they are trajectories given by xts = u(s − vt)
for some profile u : R → R and some velocity v ∈ R [9]. However, TW in discrete-
time LDS can also be characterised using spatial translations [10], including for
irrational velocities [11]. In particular, any solution of the equation

Gq(x) = σ p(x), (2)

where p ∈ Z and q ∈ N, defines a TW of velocity v = p
q for the LDS generated by

the map G. Of note, the velocity is constrained by the coupling range, in particular
we must have v ∈ [0, 1] for the LDS (1).

Extending the notion above, the LDS generated by G is said to have (spatial)
chaos of TW of velocity p

q if the action of σ on the set of solutions of (2) has positive
topological entropy. Together with Vladimir Nekorkin, Valentin has asserted the
existence of chaos of TW in some examples of LDS by constructing horseshoes of
the profile generating dynamics associated with Eq. (2) [12]. This approach can be
viewed as a nonlinear extension of the transfer matrix technique in theoretical solid-

3 Another area of Valentin’s expertise, a LDS is said to have spatial chaos when the action of the
spatial translations (σ (x))s = xs−1 on the set of LDS fixed points (viewed as a dynamical system
whose time is given by the spatial variable s [7, 8]), is chaotic, typically with positive topological
entropy [1].
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state physics. However, the construction is velocity specific and makes it difficult to
evaluate the velocity dependence on parameters, not to mention to portray a global
description of the chaos of TW in parameter space.

To address this issue, we considered a special case of the unidirectional chain (1)
above, when the individual map f is piecewise affine with two branches of unique
slope, separated by a discontinuity. Formally speaking, the map writes

f (u) = au + (1 − a)H(u − T ), ∀u ∈ [0, 1], (3)

where H is the (right continuous) Heaviside function, the slope a ∈ [0, 1) and the
discontinuity T ∈ (0, 1). That this map is a piecewise contraction implies that any
TW away from the discontinuity must be convectively stable [9], and in particular
that any chaos of TW must be a chaos of stable TW.

By using symbolic dynamics (see below), we numerically discovered [13, 14]
that, given any values of the parameters, there is at most one (non-trivial) velocity
v ∈ (0, 1) for which the corresponding TW set may have positive entropy,4 see Fig. 1
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Fig. 1 Entropy-velocity diagrams of TW of the LDS (1) with individual map (3) for a = 0.6
(Left: Original diagram in the full square of the parameters (ε, T ). Right: Zoom into the central
region delimited by the square). Painted points represent the velocity dependent quantity log P13,v

13
(approximation of the TW entropy), based on color and intensity. The color indicates the velocity
v ∈ V ∪ 1 − V where V = {0, 1

6 , 1
5 , 1
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3 , 2
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2 }, 0 (resp. 1) is painted in gray (resp. black) and
the other velocity colors monotonically range from yellow to red. The intensity is proportional to
the entropy, from 0 to log 2. Positive entropy domain of intermediate velocities v ∈ (0, 1) appear
to be pair-wise disjoints. However, the domains with small velocities overlap with the one at v = 0
(and similarly in the right part of the pictures) indicating that a chaos of fixed points (resp. of TW
with v = 1) may coexist with a chaos of patterns with intermediate velocity

4 In symbolic systems, the topological entropy can be defined as the exponential growth rate of
the number of admissible blocks [15]. For numerical purposes, following [16], we used instead the
number of periodic points and assumed that the entropy of the set of TW profiles with velocity v is
given by lim supL→+∞

log PL ,v

L where PL ,v is the number of L-periodic blocks of velocity v.
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for an illustration for a = 0.6. Depending on the parameters, either there is no chaos
ofTW,orwehave a chaos ofTWwith trivial velocity 0 or 1, or such chaos is combined
with a chaos of TW with v ∈ (0, 1), but we have never observed two chaos of TW
with distinct non-trivial velocities. This observation might not be what Valentin had
expected but it can be considered as a selection of a unique, if not preferred, direction
in space-time (when one discards the background velocities 0 and 1).

Besides its obvious symmetric features,5 the numerical results called for rigorous
explanation. That a chaos of TWwith v ∈ (0, 1) could coexist with one at v ∈ {0, 1},
combined with proofs of parameter dependent coexistence of TW with different
velocities [13], suggested that the proof could not be elementary. In fact, excepted
for the extreme velocities v = 0 and v = 1 for which the exact parameter domain
for existence of full chaos could be determined [17], for arbitrary velocities, only
estimates of pairwise disjoint domains of existence of chaotic sets of TW were
available, based on shadowing arguments. In order to provide further insights into
analytic arguments, we need to introduce considerations about symbolic dynamics.

A convenient aspect of the piecewise affine system (1) with individual map (3) is
that its symbolic description is easily accessible. Indeed, any trajectory {xt } (where
xt+1 = Fε(xt )) can be coded by a space-time symbolic sequence {θ t

s } via the relation
θ t
s = H(xts − T ) ∈ {0, 1}. Conversely, and more importantly, symbolic sequences
uniquely determine trajectories in the attractor of the LDS. Indeed, solving the iter-
ations associated with trajectories whose components exist and are bounded for all
t ∈ Z yields the following expression [9, 13]

xts = (1 − a)

∞∑

k=1

ak−1
k∑

n=0

�n,kθ
t−k
s−n (4)

where the coefficients �n,k = (k
n

)
(1 − ε)k−nεn ≥ 0 satisfy the evident normalisation

k∑

n=0

�n,k = 1, ∀k ∈ N

Not only the LDS attractor can be fully specified using symbolic dynamics, but so
do the topological properties of the dynamics in this set, when symbolic sequences
are endowed with a suitable topology. In particular chaos of TW can be analyzed
and quantified in the symbolic context.

This topological equivalence between the dynamics in the original space and its
symbolic representation is standard in the theory of dynamical systems. However,
what is specific to the current setting is the following iterative process for sym-
bolic codes

5 The symmetric features of Fig. 1 are consequence of the following symmetries of the LDS:

• If {xts} is a trajectory for T (with all xts 	= T ), then {1 − xts} is a trajectory for 1 − T .
• If Fq

ε (x) = σ p(x) then Fq
1−ε ◦ R(x) = σ q−p ◦ R(x) where (R(x))s = x−s for all s.

.
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θ t+1
s = H

(
(1 − a)

∞∑

k=0

ak
k+1∑

n=0

�n,k+1θ
t−k
s−n − T

)
, ∀s, t ∈ Z (5)

obtained by stipulating that the code of any trajectory given by (4)must coincide with
the input symbolic sequence. In other words, the LDS attractor and its topological
properties can be captured by an explicit iteration scheme for symbolic codes. This
formulation has proved useful in several cases [9, 13, 17], for instance to obtain the
estimates mentioned above about chaos of TW.

3 Selective Chaos of Travelling Waves for Finite Rank
Approximations

A full mathematical proof of the numerical results of [13] remains elusive, espe-
cially because the iterations (5) involve the entire past sequence (i.e. the series in k
is infinite when a > 0) and this makes it virtually impossible to determine all solu-
tions for arbitrary values of the parameters. Here, we suggest to investigate instead
the following finite rank iteration schemes, obtained by truncating the series in the
expression (4) (and using a suitable normalisation)

θ t+1 = FR (θ t−R+1, . . . , θ t ) where
(
FR (θ−R+1, . . . , θ0)

)

s
(6)

= H

⎛

⎝ 1 − a

1 − aR

R−1∑

k=0

ak
k+1∑

n=0
�n,k+1θ

−k
s−n − T

⎞

⎠ .

The iteration schemeFR can be viewed as a kind of cellular automaton (CA), which,
thanks to the updated normalisation, actually shows the same symmetries as the
original LDS. Our goal is to systematically determine the existence domains of TW
for increasing values of R. Exponential decay of the coefficients ak suggests that
the FR should be good approximations of the LDS; the larger R, the better the
approximation. The dependence on a indicates that the approximation should be
better for smaller values of this parameter.

SinceFR only involves input symbols in a timewindowof length R, the velocity of
the TWFq

R(θ) = σ p(θ)must be of the form p
q for q ∈ {1, . . . , R} and p ∈ {0, . . . , q}

(and assuming wlog that p and q are co-prime). Similarly, the inputs are limited to
the R + 1 neighbour sites, so the TW profile {θs}, when read from left to right, can
be regarded as being generated by a topological Markov chains (subshift of finite
type); given an arbitrary site s and an admissible (R + 1)-block θs−R+1 · · · θs , the
subshift specifies those subsequent admissible blocks θs−R+2 · · · θs+1 at the next site.
This viewpoint is convenient for the computation of the TW entropy, as the logarithm
of the largest eigenvalue of the corresponding transition matrix (see [15] for more
details on finite-type subshift and the computation of their entropy).
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3.1 Rank 1 Approximation

The simplest approximation is when the summation on k only has one term (R = 1)
so that the iterative process on symbolic sequences reduces to one for elements of
{0, 1}Z, viz. we have the following (genuine) CA

(F1(θ))s = H ((1 − ε)θs + εθs−1 − T )

The TW velocities of F1 are v ∈ {0, 1} are trivial. By the symmetry v ↔ 1 − v, it
suffices to study the fixed points (v = 0). To that goal, let

X1(θ1θ0) = (1 − ε)θ0 + εθ1.

It is simple to check that

• In the interval 0 < T ≤ min {X1(10), X1(01)} = min {ε, 1 − ε}, the only possible
fixed points are the homogeneous ones 0Z and 1Z, and {H(s)} mod σ .6 Indeed,
we then have H(X1(01) − T ) = H(X1(10) − T ) = 1. Furthermore, using that
X1(01) = 1 − X1(10), a symmetric conclusion holds for T ∈ (X1(01), 1].

• In the interval ε = X1(10) < T ≤ X1(01) = 1 − ε, (which is non-empty obvi-
ously iff ε < 1

2 ) every element of {0, 1}Z is a fixed point of F1 (full chaos of fixed
points, with entropy equal to log 2).

The entropy-velocity diagram of TW for F1 is given in Fig. 2. The situation is pretty
obvious in this case as the two domains of existence of chaos of TW do not overlap.

3.2 Rank 2 Approximation

We now turn to the analysis of waves forF2. The only possible TW velocities in this
case are v ∈ {0, 1

2 , 1}. Let

X2

(
θ1
2 θ

1
1 θ

1
0

θ0
1 θ0

0

)
= 1

1 + a

1∑

k=0

ak
k+1∑

n=0

�n,k+1θ
k
n ,

(where sub- and super-scripts are denoted with non-negative integers for simplicity)
which obviously depends on a and ε.

6 All the LDS here are translation invariant; hence all their trajectories come as equivalence classes
{xt } mod σ or {θ t } mod σ .
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Fig. 2 Entropy-velocity diagrams of TW of the cellular automaton F1. The square of parameters
(ε, T ) decomposes into 4 regions. In the left grey triangle, every element θ ∈ {0, 1}Z is invari-
ant under the dynamics (full chaos of fixed points). In the lower white triangle, the only non-
homogeneous TW profiles are {H(s)} mod σ (v = 0) and {H(−s)} mod σ (v = 1). The TW in the
other domains follow from symmetries

3.2.1 Analysis of Fixed Points

In order to determine the existence of fixed points (v = 0), one needs to order the
values of X2 for θ1 = θ0. Using the symmetry X2(1 − ·) = 1 − X2(·), it suffices to
consider those θ1 = θ0 with θ1

0 = θ0
0 = 0. Using for simplicity, only the top row to

identify the 3-blocks in this case, one can show that the corresponding values comply
with the lexicographic order, i.e. we have

0 = X2 (000) < X2 (100) < X2 (010) < X2 (110) .

Now, θ ∈ {0, 1}Z is a fixed point of F2 iff the following constraint holds on its
3-blocks {θs−2θs−1θs}s∈Z

H (X2 (θs−2θs−1θs) − T ) = θs, ∀s ∈ Z.

As mentioned above, this constraint is regarded as defining a subshift over 3-blocks,
which depends on parameters, see Fig. 4 for the graphs obtained from the analysis
to follow.

By considering the relative position of T with respect to the ordered values of
X2 above, the following claims result about the existence of fixed point subshifts.
Needless to say that similar conclusions immediately follow for the TW with v = 1,
from the symmetry ε ↔ 1 − ε.
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Fig. 3 Entropy-velocity diagram of TW of the cellular automaton F2 (and zoom into the central
region).Chaos of fixedpoints is full in the central blue region (all 3-blocks are admissible and entropy
= log 2) and partial in the two other blue domains (either 110 or 001 is forbidden, depending on the

domain/entropy = log 1+√
5

2 in both cases). In the black domains, the same comments apply to v = 1
TW.Orange domains correspond to chaos of TWwith v = 1

2 . In particular, in low intensity domains

(left and right), both 010 and 101 are forbidden (entropy = log 1+√
5

2 ). In each of the high intensity
domains (bottom and top), only one of these words is forbidden (entropy = log 1.755). Finally, the
only admissible non-homogeneous profiles in the white domains are the same as in Fig. 2

• The full shift is admissible7 iff X2 (110) < T ≤ 1 − X2 (110).
• The subshift for which all 3-blocks but 110 are allowed is admissible iff8

X2 (010) < T ≤ min {X2 (110) , X2 (001)} .

By symmetry T ↔ 1 − T , the subshift for which all 3-blocks but 011 are allowed
is admissible iff 1 − T satisfies the same condition.

• There are no other possibly admissible subshifts of positive entropy. In particular,
the only non-homogeneous fixed points which exist for 0 < T ≤ min {X2 (010) ,

X2 (001)}, write {H(s)} mod σ .9 By symmetry T ↔ 1 − T , the only non-trivial
fixed points for max {X2 (001) , X2 (110)} < T ≤ 1 are {1 − H(s)} mod σ .

As before, the intervals in either of the first two items are non-empty iff ε is not too
large (and smaller than some threshold smaller than 1

2 that depends on a). Moreover,

7 This means that every element in this set if a fixed point.
8 To see this, note that we have H(X2(θ2θ10, θ10) − T ) = 0 except when θ2 = θ1 = 1 and
H(X2(θ2θ11, θ11) − T ) = 1 for every θ2, θ1 ∈ {0, 1}.
9 Indeed, we then have H

((
θ10
10

)
− T

)
= 1 for θ ∈ {0, 1}. Alternatively, one first observes that

the new constraint T ≤ X2 (010) immediately implies that 010 is forbidden. The transition graph
on Fig. 4 then implies that the block 101, and then also 100, cannot be accessed either. The only
non-trivial admissible path is the one that joins 000 to 111. Notice also that these fixed points exist
in the larger interval 0 < T ≤ min {X2 (110) , X2 (001)}.
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Fig. 4 Graphs associated with the (nested) 3-blocks subshifts that generate the (parameter depen-
dent) fixed point sets of the cellular automaton F2. Left. DeBruijn graph B(2, 3) (see Wikipedia
or [18]) associated with the full shift. Center. All 3-blocks but 110 are allowed. Right. The four
blocks 110, 010, 101 and 100 are forbidden. Light red color corresponds to blocks/transitions that
are forbidden. Dark red color corresponds to transient blocks/transitions that do not contribute to
the subshift entropy

they are adjacent when all non-empty. The intervals in the third claim are never
empty, see Fig. 3.

As entropy is concerned, it is obviously equal to log 2 in the first case. To compute
it in the second case (and also for any other subshift in the sequel), we consider that
this quantity is not affected by passing to non-wandering sets, so that the transitions
painted in red in the central picture of Fig. 4 can be ignored. The remaining subshift
turns out to be identical to the golden shift, Fig. 6a, whose entropy can be easily
computed as the logarithm of the largest eigenvalue 1+√

5
2 
 1.618 of the matrix(

1 1
1 0

)
.

3.2.2 Analysis of TW with Velocity v = 1
2

A configuration θ ∈ {0, 1}Z of a TW with velocity v = 1
2 is defined by θ =

F2(σ
−1(θ), θ) (or equivalently by σ(θ) = F2(θ, σ (θ))). In this case, the analysis

of admissible 3-blocks then amounts to consider both quantities X2

(
θ2θ1θ0
θ1θ0

)
and

X2

(
θ2θ1θ0
θ2θ1

)
and to obtain conditions so that its output is equal to θ1 in both cases.

The results are given below and the corresponding transition graphs are presented in
Fig. 5.

• The subshift for which all 3-blocks but 101 are allowed (Fig. 5 left) is admissible
iff10

max

{
X2 (001) , X2

(
100
10

)}
< T ≤ min

{
X2 (010) , X2

(
010
01

)}
.

10 Indeed, we then have H

(
X2

(
θ2θ1θ0
θ1θ0

)
− T

)
= H

(
X2

(
θ2θ1θ0
θ2θ1

)
− T

)
= θ1 for all θ2θ1θ0 	=

101. Conversely, that the block 101 is not admissible is obvious from the condition on T . (NB:
When the space-time symbol block corresponds to a fixed point, we use the simplified notation).
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Fig. 5 Graphs associated with subshifts that generate TW of velocity 1
2 of the CA F2. Left. The

block 101 is the only forbidden one. Right. Both 101 and 010 are forbidden. Same color codes as
in Fig. 4

By the symmetry T ↔ 1 − T , the subshift in which no 3-block is equal to 010
is admissible iff 1 − T satisfies the same condition (which amounts to reflect the
interval wrt to 1

2 ).• The subshift for which all 3-blocks but 101 and 010 are allowed (Fig. 5 right) is
admissible iff

max

{
X2 (001) , X2

(
100
10

)}
< T ≤ min

{
X2 (110) , X2

(
011
01

)}
.

• There are no other possibly admissible subshifts of positive entropy. In particular,
no non-homogeneous TW with v = 1

2 exists when the previous condition fails.

As before, the intervals for T depend on ε, but this time they are non-empty onlywhen
ε is close enough to 1

2 (again depending on a), and complement existence domains
of chaos of fixed points and TW with v = 1, see Fig. 3. Moreover, the interval in
the second item contains the two ones in the first item.11 These two intervals never
intersect,12 which means that it is impossible to have full chaos of TW with v = 1

2 .
As entropy is concerned, using a similar non-wandering argument as above, we

obtain that the entropy of the subshift(s) in the first item is obtained from the largest

eigenvalue λ ∼ 1.755 of the transition matrix

⎛

⎝
1 1 0
0 1 1
1 0 0

⎞

⎠ associated with the graph

11 Indeed, we have min

{
X2

(
010
10

)
, X2

(
010
01

)}
< min

{
X2

(
011
01

)
, X2

(
110
10

)}
= 1 −

max

{
X2

(
100
10

)
, X2

(
001
01

)}
.

12 Because min

{
X2

(
010
10

)
, X2

(
010
01

)}
≤ 1

2 .
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Fig. 6 Transitions graphs of some simple subshifts, which capture the entropy of TW profile
subshifts in the CA FR , see text more details
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Fig. 7 Entropy-velocity diagram of TW of the cellular automaton F3 (and zoom into the central
region). As before, chaos of fixed points is full in the central blue region and the successive lower
blue domains correspond to successive subshifts in Table 1/Fig. 8. The central orange domains is
where we have chaos of TW with v = 1

2 (Table 2 and Fig. 9). The intermediate yellow and red
domains respectively correspond to v = 1

3 and v = 2
3 , see Table 3 and Fig. 9 for a description of

these domains, together with the corresponding subshifts

in Fig. 6b. The entropy of the subshift in the second item is equal to that of the one
depicted in Fig. 6c, which turns out to be equal to that of the golden shift log 1+√

5
2

(< log 1.755).

3.3 Rank 3 Approximation

In order to obtain further refinement of the entropy-velocity diagram, the next logical
step is to consider the rank 3 approximation F3. The analysis is similar to as before
and we only provide the results here, which are illustrated by the entropy-velocity
diagram in Fig. 7. To that goal, we shall need to investigate the values of the function

X3

⎛

⎝
θ2
3 θ

2
2 θ2

1 θ
2
0

θ1
2 θ

1
1 θ

1
0

θ0
1 θ0

0

⎞

⎠ = 1 − a

1 − a3

2∑

k=0

ak
k+1∑

n=0

�n,k+1θ
k
n ,
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Table 1 Summary of possibly admissible (nested) subshifts of fixed points in the CA F3, together
with references to the graphs in Fig. 8, to their simplification in Fig. 6 (where it applies), to entropy
estimates and to the intervals of the parameter T where they are admissible. (NB: The constraint in
the first column means that words that are not forbidden are all admissible. The symbol + means
in addition to forbidden blocks in the previous row.)

Forbidden 4-blocks Graphs Entropy Existence condition

None Figure8a log 2 X3(1110) < T ≤ X3(0001) =
1 − X3(1110)

1110 Figures8b/6d log 1.839 X3(0110) < T ≤ min {X3(1110), X3(0001)}
+ 0110, 1100, 1101 Figures8c/6a log 1+√

5
2 X3(1010) < T ≤ min {X3(0110), X3(0001)}

+ 1010 Figures8d/6e log 1.466 X3(0010) < T ≤ min {X3(1010), X3(0001)}
all non-homogenous Figure8e 0 0 < T ≤ min {X3(0010), X3(0001)}

Fixed points. As before, one can check that the values of this function, for configu-
rations θ2 = θ1 = θ0 that are associated with fixed points, are ordered according the
lexicographic order. We have for ε ∈ (0, 1

2 ), and using similar notation as for rank-2
fixed points,

X3(1000) < X3(0100) < X3(1100) < X3(0010) < X3(1010) < X3(0110) < X3(1110).

The admissible 4-blocks subshifts depend on the relative location of the threshold
T with respect to this ordering. The possibly admissible subshifts are those listed
in Table 1—there are no other possibly admissible subshifts of positive entropy,
excepted, evidently those obtained by the exchanging 0 and 1—and illustrated in
Fig. 8.

As for the rank-2 fixed points, the intervals in T are only non-empty when ε is not
too large. When non-empty, these intervals are adjacent to each other. The subshift
are nested, with decreasing entropy, when T moves away from 1

2 .
TWwith velocity v = 1

2 . For v = 1
2 TW, one needs to check that we simultaneously

have

X3

⎛

⎝
θ3θ2θ1θ0
θ2θ1θ0
θ2θ1

⎞

⎠ = θ1 and X3

⎛

⎝
θ3θ2θ1θ0
θ3θ2θ1
θ2θ1

⎞

⎠ = θ2,

for every 4-block in the presumed subshifts. Candidate subshifts can be obtained
from the 4-block graph associated with the full shift on 2 symbols, de Bruijn graph
B(2, 4), Fig. 8a. The possibly admissible subshifts are listed in Table 2—there are no
other possibly admissible subshifts of positive entropy, excepted,13 evidently, those
obtained by the exchanging 0 and 1—and illustrated in Fig. 9.

13 In particular, the analysis shows that no subshift can be admissible without 1001 and 0110
being admissible. Similarly, the numerical computations of the existence conditions show that no
admissible subshift can allow for 0101 or 1010.
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Fig. 8 Graphs associated with the (nested) 4-blocks subshifts in Table1. Details as in Fig. 4

Table 2 Summary of possibly admissible subshifts of TW v = 1
2 in the CA F3, together with

references to the graphs in Fig. 9, to their simplification in Fig. 6 (where it applies), to entropy
estimates and to existence domains, expressed in terms of intervals for the parameter T . In particular,
the intervals in the middle row are symmetric wrt 1

2

Graphs Entropy Existence condition

Figures9b/6e log 1.446 max

⎧
⎪⎨

⎪⎩
X3

⎛

⎜⎝
0100

100

10

⎞

⎟⎠ , X3

⎛

⎜⎝
0010

001

10

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
< T ≤

min

⎧
⎪⎨

⎪⎩
X3

⎛

⎜⎝
0010

010

01

⎞

⎟⎠ , X3

⎛

⎜⎝
0100

010

10

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

Figures9d/6c log 1+√
5

2 max

⎧
⎪⎨

⎪⎩
X3

⎛

⎜⎝
0011

001

01

⎞

⎟⎠ , X3

⎛

⎜⎝
1100

100

10

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
< T ≤

min

⎧
⎪⎨

⎪⎩
X3

⎛

⎜⎝
1100

110

10

⎞

⎟⎠ , X3

⎛

⎜⎝
0011

011

01

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

Figure9e log 1.674 Intersection of previous conditions

As for the rank-2 TW v = 1
2 , the intervals in T are non-empty when ε is close

to 1
2 . However, when both non-empty, the intervals in the first and second rows

overlap and enhancement of the entropy results when either T or 1 − T lies in their
intersection (Notice also, that the interval in the first row never intersects its reflected
image wrt 1

2 ).
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Fig. 9 Graphs associated with the subshifts in Tables2 and 3

TW with velocity v = 1
3 . In addition to fixed points and v = 1

2 TW, the rank 3
approximation may also have v = 1

3 (and v = 2
3 ) TW. We focus on v = 1

3 since the
other one can be deduced from the symmetry ε ↔ 1 − ε. In this case, a 4-block
θ3θ2θ1θ0 is admissible iff the following three conditions simultaneously hold

X3

⎛

⎝
θ3θ2θ1θ0
θ2θ1θ0
θ1θ0

⎞

⎠ = X3

⎛

⎝
θ3θ2θ1θ0
θ2θ1θ0
θ2θ1

⎞

⎠ = X3

⎛

⎝
θ3θ2θ1θ0
θ3θ2θ1
θ2θ1

⎞

⎠ = θ1,

Asbefore, candidate subshifts can beobtainedbypruning the deBruijn graph B(2, 4).
Up to the symmetry 0 ↔ 1, the resulting possibly admissible subshifts are listed in
Table3 (again, no other subshift of positive entropy can be admissible), where the
existence conditions have been simplified by assuming ε ≤ 1

2 . The corresponding
existence domains do not intersect those of previous velocities, except for some
boundaries (complementary domains). The corresponding intervals in T are only
non-empty when ε lies in a intermediate range, between existence domains of veloc-
ities 0 and 1

2 . The subshifts are similar to those associated with v = 1
2 TW (NB: in

particular, no admissible subshift can allow for 0101 or 1010); however, there are
two significant differences

• The admissibility of the blocks 1001 and 0110 is not a consequence of that of
other blocks; hence there are additional (nested) existence domains (see 2nd and
4th rows in Table3).

• The existence domains do not overlap as they did; so that there no enhancement
effect on the entropy exists in this case.
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Table 3 Summary of possibly admissible subshifts of TW v = 1
3 in the CA F3, together with

references to the graphs in Fig. 9, their simplification in Fig. 6 (where it applies), entropy estimates
and existence domains. The intervals in the last two rows are symmetric wrt to 1

2 . The interval in
the 2nd (resp. 4th) row is contained in the one of the 1st (resp. 3rd) row. The entropy of the subshift
in rows 2 and 3 are unexpectedly equal

Graphs Entropy Existence condition

Figures9a/6f log 1.380 max
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⎪⎭

4 Concluding Remarks

The analysis above has revealed that chaos of TW is selective in basic finite rank
approximations FR of the LDS Fε , with unique velocity depending on parameters.
More than in Fε , in the FR , this uniqueness applies to all velocities and not only
to v ∈ (0, 1). For F3, some boundaries curves in the (ε, T ) square, of the domains
associated with v = 1

3 , coincide with some boundaries associated with v = 0 (Fig.
7) (and a similar coincidence holds for v = 1

2 and v = 0 in Fig. 3). This suggests
that some overlap between the domains for v = 0 and v = 1

R might exist for R large
enough.
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Moreover, even though this analysis is too preliminary to anticipate full results
for larger values of R, some systematic features have emerged. In particular, the fact
that for any R, the following extreme subshifts can certainly admissible, depending
on the parameters:

• BR : every block of consecutive 0’s (or consecutive 1’s) must be of length R or
longer; a generalisation of the graphs in Fig. 5 right and Fig. 9c.

• AR : every block of consecutive 0’s must be of length R or larger, and every 1 must
be isolated (or the subshift resulting from exchanging 0’s and 1’s); a generalisation
of the graphs in Fig. 9a.

Sufficient existence conditions for these subshifts have been provided in [13], in term
of existence regions of fronts and solitary waves respectively. Namely, domains in
the (ε, T ) square have been given, so that the subshift BR (resp. AR) of TW with
v = p

q given and R sufficiently large, is admissible. However, to compute existence
conditions of AR and BR for any R, is not totally obvious, even though there are
some similarities between the case R = 2 and R = 3. Those computations could be
part of a continuation to this paper.

Acknowledgements I am grateful to Stanislav M. Mintchev for careful reading of the manuscript,
comments and suggestions.
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On Periodic Motions in a van der Pol
Oscillator

Yeyin Xu and Albert C. J. Luo

Abstract In this chapter, symmetric periodic motions in a periodically forced van
der Pol oscillator is presented. To obtain the periodicmotions, the discretemaps of the
van der Pol oscillator are developed through the discretization of the corresponding
differential equations. Through mapping structures of periodic motions, stable and
unstable periodicmotions are obtained. A sequence of symmetric periodicmotions to
chaoswith 1(S)�3(S)� · · ·�(2l−1)(S)�· · · is presented. The numerical simulations
of the periodic motions are completed for illustration of motion complexity. This
chapter is for a memory of Valentin Afraimovich for 20-year friendship.

1 Introduction

In 1788, Langrage [1] used the method of averaging for the periodic motions of
a three-body problem from the perturbation of a two-body problem. The method
of averaging was based on the solutions of the corresponding linear systems with
coefficients slowly varying. At the end of the 19th century, Poincaré [2] extended
the idea of averaging and developed the perturbation method for the approximate
analytical solutions of periodic motions of the celestial bodies. In 1920, van der Pol
[3] used the method of averaging to determine periodic oscillation in the circuits. In
1928, Fatou [4] gave a proof of the asymptotic validity of the method of averaging
through the solution existence theorem of differential equations. In 1935, Krylov and
Bogoliubov [5] further extended the method of averaging for nonlinear oscillations
in nonlinear vibration systems. Since then, the perturbation method has become a
popular approach for periodic solutions in nonlinear dynamical systems. In 1964,
Hayashi [6] used the perturbation and traditional harmonic balance methods for peri-
odic motions in nonlinear systems. The multiscale perturbation method was exten-
sively used for nonlinear vibration (e.g., Nayfeh [7];Nayfeh andMook [8]). Recently,
one also used the perturbation method for periodic motions and chaos in nonlinear
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systems. In 2016, Maaita [9] discussed the bifurcation of the slow invariant mani-
folds of completed oscillators. In 2017, Yamgoue et al. [10] studied the approximate
analytical solutions of a constrained nonlinear mechanical system. Shayak and Vyas
[11] used the Kyylov-Bogoliubov method to the Mathieu equation. Rajamani and
Rajasekar [12] discussed the response amplitude of the parametrical Duffing oscil-
lator. Though chaotic motions in nonlinear systems were studied by the perturbation
method, such a way for chaotic motions in nonlinear dynamical systems may not
be adequate. The perturbation methods require the corresponding linear solutions to
determine the approximate periodic solutions of original nonlinear systems, and the
perturbation expansion with small parameters was adopted.

To avoid the aforementioned puzzling issues for the traditional analyticalmethods,
in 2012, Luo [13] developed the generalized harmonic balance method for analyt-
ical periodicmotions in nonlinear dynamical systems. Luo andHuang [14] employed
such amethod for approximate analytical solutions of periodicmotions in theDuffing
oscillator, and Luo and Huang [15] gave the analytical bifurcation trees of period-m
motions to chaos in the Duffing oscillator. For the twin-well Duffing oscillator, bifur-
cation trees of periodic motions to chaos are presented in Luo and Huang [16, 17]).
In 2013, Luo and Lakeh [18] obtained the analytical solutions of period-mmotions of
the van der Pol-Duffing oscillator. From the generalized harmonic balance method,
Xu et al. [19] studied periodic motions in a first-order nonlinear dynamic system.
Luo and Wang [20] used the generalized harmonic balance method for approxi-
mate analytical solutions of periodic motions in the rotor dynamical systems. The
generalized harmonic balance methods and applications can be found in Luo [21,
22]

The generalized harmonic balance method is very good for polynomial nonlinear
systems. However, it is difficult to apply such a method to non-polynomial nonlinear
systems. Thus, in 2015, Luo [23] developed a semi-analytical method for the predic-
tion of periodic motions in nonlinear dynamic systems. This approach discretizes
nonlinear differential equations into discrete mappings. Using mapping structures to
construct periodic motions, the corresponding algebraic equations are used to deter-
mine the discrete nodes of periodic motions. Further, the periodic motions in the
corresponding nonlinear systems are obtained. Such a method can control compu-
tational errors of periodic motions. Luo and Guo [24] used such a semi-analytical
method for the bifurcation trees of periodicmotions to chaos in the hardeningDuffing
oscillator. Periodic motions to chaos in such a twin-well Duffing oscillator were
also studied in Guo and Luo [25]. In addition, Luo and Guo [26] used such a semi-
analytical method to investigate bifurcation trees of periodicmotions to chaos in peri-
odically excited pendulum (also see, Guo and Luo [27]). Guo and Luo [28] presented
the bifurcation trees of periodic motions in parametrically driven pendulum. Such a
method was systematically presented in Luo [29]. The semi-analytical method was
also developed for time-delay nonlinear systems.

In 2015, Luo andXing [30, 31] applied such semi-analytical method to investigate
a time-delay hardening Duffing oscillator. Luo and Xing [32] also discussed time-
delay effects on periodic motions in the time-delay Duffing oscillator. In Xing and
Luo [33], discovered was possible infinite bifurcation trees of period-1 motions
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to chaos in the time-delay, twin-well Duffing oscillator. Luo [34] systematically
presented the semi-analytical method for time-delayed nonlinear systems. In 2018,
Xu and Luo [35] used the semi-analytical method studying periodic motions in a
two-degrees-of-freedom van der Pol Duffing oscillator, and a periodic motion series
was determined. Xu and Luo [36] found a sequential order of period-(2m-1) motions
in a periodically forced van der Pol oscillator.

In this chapter, periodic motions in the periodically forced van der Pol oscillator
will be discussed for a better understanding of dynamics of the van der Pol oscillators.
The corresponding stability and bifurcations of periodic motions will be analyzed.
Numerical simulations will be carried out for illustrations of motion complexity in
the van der Pol oscillator.

2 A Semi-analytical Method

Consider a periodically forced, van der Pol oscillator as

ẍ − (α1 − α2x
2)ẋ + βx = Q0 cosΩt (1)

whereα1 andα2 are linear and nonlinear damping coefficients.β is the linear stiffness
coefficient; Q0 andΩ are excitation amplitude and frequency, respectively. The state
space form of Eq. (1) is

ẋ = y,

ẏ = (α1 − α2x
2)ẋ − βx + Q0 cosΩt. (2)

From Luo [25], for t ∈ [tk−1, tk], Eq. (2) is discretized by a midpoint scheme and
a mapping Pk (k = 1, 2, 3, · · · ) as

Pk : xk−1 → xk ⇒ xk = Pkxk−1 (3)

where xk = (xk, yk)T is the node ofmotion in the van der Pol oscillator. The algebraic
equations of discrete implicit mapping for Pk (k = 1, 2, · · · , N ) are

xk = xk−1 + 1
2h(yk + yk−1),

yk = yk−1 + h{ 18 [4α1 − α2(xk + xk−1)
2](yk + yk−1)

− 1
2β(xk + xk−1) + Q0 cosΩ(tk−1 + 1

2h)} (4)

where h = tk − tk−1 is the time step, and t0 is the initial time.
For the semi-analytical solutions of period-mmotions in the van der Pol oscillator,

the mapping in Eq. (3) becomes for k = 1, 2, · · ·mN
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P (m)
k : x(m)

k−1 → x(m)
k ⇒ x(m)

k−1 = P (m)
k x(m)

k , (5)

where x(m)
k = (x (m)

k , y(m)
k )T (k = 1, 2, · · · ,mN ). The mapping structure of period-m

motions of the van der Pol oscillator is

P (m) : x(m)
0 → x(m)

mN ⇒ x(m)
mN = P (m)x(m)

0 (6)

where P (m) = P (m)
mN ◦ P (m)

mN−1 ◦ · · · ◦ P (m)
2 ◦ P (m)

1 (m = 1, 2, · · · ). The corresponding
algebraic equations for P (m)

k (k = 1, 2, · · · ,mN ) are

x (m)
k = x (m)

k−1 + 1
2h(y(m)

k + y(m)
k−1),

y(m)
k = y(m)

k−1 + h{ 12 (y(m)
1,k + y(m)

1,k−1)[α11 − 1
4α12(x

(m)
1,k + x (m)

1,k−1)
2]

− 1
2β11(x

(m)
1,k + x (m)

1,k−1) + Q0 cosΩ(tk−1 + 1
2h)} . (7)

The periodicity conditions are

x (m)
mN = x (m)

0 , y(m)
mN = y(m)

0 . (8)

Based on Eqs. (7) and (8), the periodic solutions of a period-m motion in the
van der Pol oscillator can be obtained by solving 2(mN + 1) equations. Thus, the
nodes x(m)∗

k (k = 0, 1, 2, · · · ,mN ) give the semi-analytical solution of the period-m
motion.

For the mapping structure in Eq. (5), consider a small disturbance �xk−1 in the
vicinity of x(m)∗

k−1 (i.e., x
(m)
k−1 = x(m)∗

k−1 + �x(m)
k−1, k = 1, 2, · · · ,mN ). With the variation

of �x(m)
k , Eq. (7) can be linearized by

∂fk
∂x(m)

k−1

|
(x(m)∗

k−1 ,x(m)∗
k )

�x(m)
k−1 + ∂fk

∂x(m)
k

|
(x(m)∗

k−1 ,x(m)∗
k )

�x(m)
k = 0 (9)

where fk = ( f1,k, f2,k)T with

f1,k = x (m)
k − x (m)

k−1 − 1
2h(y(m)

k + y(m)
k−1),

f2,k = y(m)
k − y(m)

k−1 − h{ 18 [4α1 − α2(x
(m)
k + x (m)

k−1)
2](y(m)

k + y(m)
k−1)

− 1
2β(x (m)

k + x (m)
k−1) + Q0 cosΩ(tk−1 + 1

2h)}. (10)

Equation (8) gives

�x(m)
k = −

[
∂fk

∂x(m)
k

]−1[
∂fk

∂x(m)
k−1

]
(x(m)∗

k−1 ,x(m)∗
k )

�x(m)
k−1 = DP (m)

k �x(m)
k−1 (11)
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where

DP (m)
k =

[
∂x(m)

k

∂x(m)
k−1

]
(x(m)∗

k ,x(m)∗
k−1 )

=
⎡
⎣ ∂x (m)

k

∂x (m)
k−1

∂x (m)
k

∂y(m)
k−1

∂y(m)
k

∂x (m)
k−1

∂y(m)
k

∂y(m)
k−1

⎤
⎦

(x(m)∗
k−1 ,x(m)∗

k )

(12)

for k = 1, 2, · · · ,mN and

∂x (m)
k

∂x (m)
k−1

= 8 − h2(α2�1 − 2β + 4hβ) + �2

8 + h2α2�1 + 2h2β + �2
,

∂x (m)
k

∂y(m)
k−1

= [(16 + �2) − (2β − �2)h2]h
2(8 + h2α2�1 + 2h2β + �2)

,

∂y(m)
k

∂x (m)
k−1

= − 4h(α2�1 + 2hβ)

8 + h2α2�1 + 2h2β + �2
,

∂y(m)
k

∂y(m)
k−1

= 8 − h2(α2�1 + 4β − �2)

8 + h2α2�1 + 2h2β + �2
,

�1 = (x (m)
k + x (m)

k−1)(y
(m)
k + y(m)

k−1),

�2 = −4α1 + α2(x
(m)
k + x (m)

k−1)
2. (13)

The resultant variation �x(m)
mN with variation �x(m)

0 is given by

�x(m)
mN = DP (m)�x(m)

0 = DP (m)
mN · DP (m)

mN−1 · . . . · DP (m)
2 · DP (m)

1︸ ︷︷ ︸
mN−multiplication

�x(m)
0 . (14)

where

DP (m) =
[

∂x(m)
mN

∂x(m)
0

]
(x(m)∗

0 ,x(m)∗
1 ,··· ,x(m)∗

mN )

= DP (m)
mN · DP (m)

mN−1 · . . . · DP (m)
2 · DP (m)

1

=
1∏

k=mN

[
∂x(m)

k

∂x(m)
k−1

]
(x(m)∗

0 ,x(m)∗
1 ,··· ,x(m)∗

mN )

(15)

The stability and bifurcation of period-m motion are determined by the eigen-
values, i.e.,

∣∣DP (m) − λI2×2

∣∣ = 0 (16)

From Luo [25], the stability of period-m motion can be determined as follows.



68 Y. Xu and A. C. J. Luo

i. If themagnitudes of all eigenvalues ofDP arewithin the unit cycle (i.e.,|λi | < 1,
i = 1, 2), the periodic solution is stable.

ii. If at least onemagnitude of the eigenvalues is out of the unit cycle (i.e.,|λi | > 1,
i ∈ {1, 2}), the periodic solution is unstable.

iii. The boundaries between stable and unstable periodicmotionswith higher order
singularity generate bifurcation conditions.

The bifurcation conditions are determined as follows.

iv. If λi = 1 with |λ j | < 1 (i, j ∈ {1, 2}, i �= j), the saddle-node bifurcation (SN)
occurs.

v. If λi = −1with |λ j | < 1 (i, j ∈ {1, 2}, i �= j), the period-doubling bifurcation
(PD) occurs.

vi. If |λi, j | = 1 (i, j ∈ {1, 2}, λi = λ̄ j ), the Neimark bifurcation (NB) occurs.

3 Finite Fourier Series

Since the discrete node vectors x(m) = (x (m)
k , y(m)

k ) (k = 1, 2, · · · ,mN ) of period-m
motions are obtained, the period-m motions can be approximately expressed by the
finite Fourier series. i.e.,

x(m)(t) ≈ a(m)
0 +

M∑
j=1

[b j/ m cos(
j

m
Ωt) + c j/ m sin(

j

m
Ωt)]. (17)

Setting M = mN
/
2, the node vectors x(m) for the period-mmotion are expressed

with t ∈ [0,mT ] as

x(m)(tk) = x(m)
k ≈ a(m)

0 +
mN/ 2∑
j=1

b j/ m cos(
j

m
Ωtk) + c j/m sin(

j

m
Ωtk)

≈ a(m)
0 +

mN/ 2∑
j=1

b j/ m cos(
j

m

2πk

N
) + c j/ m sin(

j

m

2πk

N
) (18)

where �t = T/N = 2π/(ΩN ), tk = t0 + k�t = 2πk/(ΩN ) for (t0 = 0, j =
0, 1, · · · ,mN ). The coefficients of a(m)

0 , b j/ m and c j/ m( j = 1, 2, · · · ,mN
/
2) are

computed by

a(m)
0 = 1

mN

mN−1∑
k=0

x(m)
k
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b j/ m = 2

mN

mN−1∑
k=0

x(m)
k cos(

j

m

2πk

N
),

c j/ m = 2

mN

mN−1∑
k=0

x(m)
k sin(

j

m

2πk

N
) (19)

where

a(m)
0 = (a(m)

1,0 , a(m)
2,0 )T,

b j/ m = (b1, j/m, b2, j/m)T,

c j/m = (c1, j/m, c2, j/m)T. (20)

The harmonic amplitudes and phases for the period-m motion are

A1, j/m =
√

(b1, j/m)2 + (c1, j/m)2, ϕ1, j/m = arctan
c1, j/m
b1, j/m

,

A2, j/m =
√

(b2, j/m)2 + (c2, j/m)2, ϕ2, j/m = arctan
c2, j/m
b2, j/m

. (21)

The periodic solutions of the period-m motion in Eq. (17) is

{
x (m)

y(m)

}
≈

{
a(m)
1,0

a(m)
2,0

}
+

mN/ 2∑
j=1

{
A1, j/m cos( j

mΩt − ϕ1, j/m)

A2, j/m cos( j
mΩt − ϕ2, j/m)

}
. (22)

The displacement for the period-m motion is

x (m)(t) ≈ a(m)
0 +

mN/ 2∑
j=1

b j/m cos(
j

m
Ωt) + c j/m sin(

j

m
Ωt) (23)

Thus,

x (m)(t) ≈ a(m)
0 +

mN/ 2∑
j=1

A j/m cos(
j

m
Ωt − ϕ j/m) (24)

where

A j/m =
√

(b j/m)2 + (c j/m)2, ϕ j/m = arctan
c j/m
b j/m

. (25)
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4 Semi-analytical Solutions

Tokeep periodic solutions of the accuracy of 10−9, h = �t < 10−3 for such a discrete
scheme. N = T/�t = 2π/Ωh. For period-mmotions, the Poincarémapping section
is defined as

∑
m

=

⎧⎪⎨
⎪⎩(x (m)

k , y(m)
k )

∣∣∣∣∣∣∣
tk = t0 + kT

/
N , t0 = 0, T = 2π

/
Ω

k = 0, 1, 2, · · · ,mN , mod(k, N ) = 0

m = 1, 2, · · ·

⎫⎪⎬
⎪⎭. (26)

Period-m motions in the van der Pol oscillator are presented through (x (m)
k , y(m)

k )

with mod(k, N ) = 0. In all the plots, the solid and dashed curves represent the
stable and unstable solutions of periodic motions, respectively. The acronym “SN”
is used for the saddle-node bifurcation.

For sequent periodic motions to chaos in the van der Pol oscillator, consider the
parameters as

α1 = 16, α2 = 1, β = 5, Q0 = 100. (27)

In Fig. 1, a sequence of symmetric period-m motions is presented within Ω ∈
(0, 21). Eight independent periodic motions of symmetric period-1 to period-19
motion is presented in this frequency range. In Figs. 1i, ii, a global view of displace-
ment x (m)

k and velocity y(m)
k (mod(k, N ) = 0) of periodic solutions is presented.

In Fig. 2iii, iv, the zoomed windows for the displacement x (m)
k and velocity y(m)

k is
presented for a better view of periodic motions in such a sequence. The period-17 to

Table 1 Saddle-node bifurcation points of period-m motions (α1 = 16, α2 = 1, β = 5, Q0 =
100, Ω ∈ (0, 18.6), m = 1, 3, · · · , 19)

Frequency range SN(L) SN(R) Branches

P-1 (0, 2.645) – 2.64 1 (S)

(2.645, +∞) 2.64 – 1 (U)

P-3 (2.449, 4.462) 2.449 4.462 3 (S,U)

P-5 (4.441, 6.205) 4.441 6.205 5 (S,U)

P-7 (6.333, 7.902) 6.333 7.902 7 (S,U)

P-9 (8.248, 9.574) 8.248 9.574 9 (S,U)

P-11 (10.229, 11.239) 10.229 11.239 11 (S,U)

P-13 (12.219, 12.920) 12.219 12.920 13 (S,U) (S,U)branches

P-15 (14.190, 14.637) 14.190 14.637 15 (S,U) (S,U)branches

P-17 (16.136, 16.405) 16.136 16.405 17 (S,U) branches

P-19 (18.063, 18.220) 18.063 18.220 19 (S,U) (S,U)branches

U-unstable periodic motion, S- stable periodic motion
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Fig. 1 Period-mmotions varyingwith excitation frequency.Global view (Ω ∈ (0, 21)): (i) displace-
ment x (m)

k , (ii) velocity y(m)
k . The zoomed view (Ω ∈ (15.8, 18.5)): (iii) displacement x (m)

k , (iv)

velocity y(m)
k . α1 = 16, α2 = 1. β = 5, Q0 = 100. (mod(k, N ) = 0, k = 0, 1, · · · ,mN − 1,

m = 1, 3, · · · , 19)
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Fig. 1 (continued)

period-19 motions are presented, and the branches of displacement and velocity are
clearly presented for the slow varying portions in the periodic motion in the van der
Pol oscillator. The frequency ranges and bifurcations are listed in Table 1.

From the global view, a sequential order of periodic motions is

1(S) � 3(S) � 5(S) � · · · � (2 j − 1)(S) � · · · ( j = 1, 2, · · · ) (28)

From the periodic motion sequence in Eq. (28), the symmetric period-1 motion
appears first,which is represented by 1(S).When the stable period-1motion vanishes,
the symmetric period-3 motion appears (i.e., 3(S)) numerically from the period-
1 motion through jumping or chaotic transient motions. The symmetric period-3
motion occurs in a frequency interval. With another two stable branches adding, the
period-3 motion turns to a symmetric period-5 motion (i.e., 5(S)). After symmetric
period-5 motion, with two new branches of stable solutions adding, the symmetric
period-5 motion becomes symmetric period-7 motion. Such periodic motion evolu-
tion continues to period-(2l − 1) motion toward chaos when l → +∞. The bifur-
cation points and frequency range of period-(2l − 1) (i.e., P - (2l − 1)) motions are
tabulated in Table 1. When the periodic motion switches to another periodic motion,
only saddle-node bifurcations exist. The jumping or chaotic transient motion exists
between the two adjacent symmetric periodic motions.

For the period-1 motion, the saddle-node bifurcation occurs at Ωcr ≈ 2.645. The
period-1 motion is stable in Ω ∈ (0, 2.645) and unstable in Ω ∈ (2.645,+∞).
The symmetric period-3 motion exists in Ω ∈ (2.449, 4.462). Thus, from the
period-1 to period-3 motion, the jumping phenomenon is observed. The symmetric
period-5 motion exists in Ω ∈ (4.441, 6.205). The frequency intervals for the
period-3 and period-5 motions overlap partially each other. Thus, the jumping
phenomenon will be observed numerically. The symmetric period-7 motion is
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Fig. 2 Period-1 motion in the van der Pol oscillator (Ω = .77): (i) displacement, (ii) velocity,
(iii) trajectory, (iv) harmonic amplitudes, (v) harmonic phases. (IC: x0 ≈ 8.6315, ẋ0 ≈ 4.5216)
(α1 = 16, α2 = 1, β = 5, Q0 = 100). SV-slow varying, FV-fast varying
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Fig. 2 (continued)

in Ω ∈ (6.333, 7.902). The frequency intervals between period-5 and period-
7 motions do not overlap each other. Thus, the switching between the period-5
and period-7 motions are chaotic in frequency range of Ω ∈ (6.205, 6.333). The
symmetric period-9, period-11 to period-19 motions exist in the frequency inter-
vals of Ω ∈ (8.248, 9.574), (10.229, 11.239), (12.219, 12.920), (14.190, 14.637),
(16.136, 16.405) and (18.063, 18.220), respectively. The frequency intervals of the
adjacent periodic motions do not overlap each other. Thus the frequency interval gap
exists for the two adjacent periodic motions in the motion sequence. The switching
between the two adjacent periodic motions are chaotic. The saddle-nodes occur on
the boundaries of the frequency intervals of a symmetric periodic motion.
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5 Numerical Illustrations

For illustration of periodicmotions complexity in the van der Pol oscillator, numerical
simulations of periodic motions are completed herein with the midpoint integration
method. The initial conditions for numerical solutions are obtained from the semi-
analytical solutions. In all the following plots, circular symbols and solid curves
represented analytical and numerical solutions, respectively. The acronym “I.C.”
means the initial condition.

In Fig. 2, displacement and velocity, trajectory and harmonic amplitude spectrum
of a period-1 motion are presented with Ω = 0.77. As in Eq. (27), the system
parameters (α1 = 16, α2 = 1, β = 5, Q0 = 100) are used. The initial condition
for such a numerical simulation is x0 ≈ 8.6315 and ẋ0 ≈ 4.5216 from the semi-
analytical prediction. In Fig. 2i, the displacement response has a one-quarter wave
for each slowly-varying zone and two fast-varying spikes. In Fig. 2ii, the velocity
response has a slowly-varying zone and two fast-varying spikes. For each slowly-
varying segment zone, there is a one-quarter wave. The circular symbols are very
dense for slowly-varying segments but very sparse for fast-varying spikes. In Fig. 2iii,
the corresponding phase trajectory of the stable period-1 motion in the van der Pol
oscillator is presented. To measure the slow-fast varying van der pol oscillator, the
harmonic amplitudes distributions are presented in Fig. 2iv. For harmonic amplitudes,
a(1)
0 = 0, A2l = 0 and A(2l−1) �= 0 (l = 1, 2, · · · ). The main harmonic amplitudes
are A1 ≈ 11.3397, A3 ≈ 2.9291, A5 ≈ 1.6138, A7 ≈ 1.0805, A9 ≈ 0.7932,
A11 ≈ 0.6144, A13 ≈ 0.4927, A15 ≈ 0.4049, A17 ≈ 0.3387, A19 ≈ 0.2872,
A21 ≈ 0.2461, A23 ≈ 0.2128, A25 ≈ 0.1852, A27 ≈ 0.1621, A29 ≈ 0.1426,
A31 ≈ 0.1259, and A33 ≈ 0.1115. The rest harmonic terms are A(2l−1) < 10−2

(l = 18, 19, · · · ) with A749 ≈ 3.4e−15. To keep the accuracy of ε = 10−13, 375
odd harmonic terms are used to approximately describe the period-1 motion. Such
fast-varying spikes are strongly dependent on A1 ≈ 11.3397. To fully determine the
complex motions, the harmonic phase should be presented, as shown in Fig. 2v. The
corresponding solution of period-1 motion is expressed by

x(t) ≈
375∑
k=1

A(2l−1) cos[(2l − 1)Ωt − ϕ2l−1]. (29)

To show motion complexity, period-9 motion with Ω = 8.5 is simulated with an
initial condition of x0 ≈ −4.7470 and ẋ0 ≈ 8.5784. In Fig. 3i, the displacement
response has four small slowly-varying waves for each slowly-varying zone and two
fast-varying spikes. In Fig. 3ii, the velocity response has a slowly-varying zone and
two fast varying spikes. The two fast-varying spike almost forms a wave to complete
9-periods. In Fig. 3iii, the corresponding phase trajectory (x, y) of the stable period-9
motion is presented. There are eight slowly-varyingwaves plus two-half, fast-varying
spikes. To know such wavy in the slowly-varying zones, the harmonic amplitude
distributions should be presented for such period-9 motions. a(9)

0 = 0, A2l/9 = 0 and
A(2l−1)/9 �= 0 (l = 1, 2, · · · ). The main harmonic amplitudes are A1/9 ≈ 8.4456,
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Fig. 3 Period-9 motion in the van der Pol oscillator (Ω = 8.5): (i) displacement, (ii) velocity, (iii)
trajectory, (iv) harmonic amplitudes. (IC: x0 ≈ −4.7470, ẋ0 ≈ 8.5784) (α1 = 16, α2 = 1, β = 5,
Q0 = 100). SV-slowly varying, FV-fast varying
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Fig. 3 (continued)

A1/3 ≈ 2.4779, A5/9 ≈ 1.4995, A7/9 ≈ 1.2066, A1 ≈ 0.9641, A11/9 ≈ 0.5259,
A13/9 ≈ 0.3846, A5/3 ≈ 0.3147, A17/9 ≈ 0.2982, A19/9 ≈ 0.2459, A7/3 ≈ 0.2038,
A23/9 ≈ 0.1662, A25/9 ≈ 0.1379, A3 ≈ 0.1199 and A29/9 ≈ 0.1043. The other
harmonic terms are A(2l−1)/9 < 10−2(l = 15, 16, · · · ) with A51 ≈ 1.4988e−12. To
keep the accuracy of ε = 10−12, 230 odd harmonic terms are used to approximately
describe the period-9 motion. The slowly-varying waves are strongly dependent on
and other way on the small waves are dependent on A1/9 ≈ 8.4456, A1/3 ≈ 2.4779,
A5/9 ≈ 1.4995, A7/9 ≈ 1.2066 and A1 ≈ 0.9641.Theharmonic phases are presented
in Fig. 3v. The analytical expression of period-9 motion is

x (9)(t) ≈
202∑
l=1

A(2l−1)/9 cos[ (2l−1)
9 Ωt − ϕ(2l−1)/9] (30)

Period-19 motions is simulated in Fig. 4 for Ω = 18.15 with an initial condition
(x0 ≈ −4.1403031, ẋ0 ≈ 5.630878). In Fig. 4 i, the displacement response has
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Fig. 4 Period-19 motion in the van der Pol oscillator (Ω = 18.15): (i) displacement, (ii) velocity,
(iii) trajectory, (iv) harmonic amplitudes. (IC: x0 ≈ −4.1403031, ẋ0 ≈ 5.630878) (α1 = 16,
α2 = 1, β = 5, Q0 = 100). SV-slow varying, FV-fast varying
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Fig. 4 (continued)

two-segments for slowly varying zones and two fast varying spikes. Its velocity
response has a slowly varying zone and two fast varying spikes. In Fig. 4iii, the
phase trajectory (x, y) of a stable period-19 motion is presented. There are 18 slowly
varying waves plus two-half, fast varying spikes. For harmonic amplitudes, a(19)

0 =
0,A2l/19 = 0 and A(2l−1)/19 �= 0 (l = 1, 2, · · · ). The main harmonic amplitudes
are A1/19 ≈ 8.4876, A3/19 ≈ 2.4879, A5/19 ≈ 1.3857, A7/19 ≈ 0.9289, A9/19 ≈
0.6816, A11/19 ≈ 0.5277, A13/19 ≈ 0.4220, A15/19 ≈ 0.3401, A17/19 ≈ 0.2546,
A1 ≈ 0.1263, A21/19 ≈ 0.1590, A23/19 ≈ 0.1370 and A25/19 ≈ 0.1170. The other
harmonic terms are A(2l−1)/9 < 10−2(l = 14, 15, · · · ) with A20 ≈ 1.2893e−11. To
keep the accuracy of ε = 10−11, 180 odd harmonic terms are used to approximately
describe period-19 motion in the van der Pol oscillator possessing the slow-fast
movements. In Fig. 4v, the corresponding harmonic phase are presented.
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6 Conclusions

In this chapter, periodic motions in the periodically forced van der Pol oscillator were
studied for a better understanding of motion complexity. From the semi-analytical
method, the discrete maps of the van der Pol oscillator were obtained and developed
via the discretization of the corresponding differential equations. Through mapping
structures of periodic motions, stable and unstable periodic motions are achieved.
Presented is a sequence of symmetric periodic motions to chaos with 1(S) � 3(S) �
· · · � (2l − 1)(S) � · · · in the van der Pol oscillator. For such a slow-fast oscillator,
many super-harmonic and sub-harmonic terms should be included to describe the
complexity of periodic motions.
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Hidden Periodic Motions for Brushless
Motor with Unsteady Torque Excitation

Jianzhe Huang and Fuhong Min

Abstract Due to the coupling between the direct-axis current, quadrature-axis
current and rotor speed, the dynamic response could be strongly nonlinear. Besides,
if the working condition is severe, the loading is no longer constant and multiple
harmonics could be introduced. In this chapter, a 3-D model for brushless motor is
discussed, and an excitation with single harmonic will be considered. With discrete
implicit maps algorithm, complex dynamical behaviors can be obtained for such a
brushless motor. With bifurcation analysis, the parameter sensitivity can be obtained
which can be a suggestion for design and operation. This chapter is dedicated to
Valentin Afraimovich for his fabulous achievement in the scientific world.

1 Introduction

A brushless motor is an important power source which can be used in various fields
such as robotics and aerospace. The vibration of such a motor could affect the perfor-
mance of the loading, the comfort of the environment, the fatigue life of the entire
system etc. Therefore, vibration issues should be considered in the design stage of a
brushless motor. Due to the variation of the rotor speed, it could cause the torsional
vibration of the rotor system and then affect the vibration of the whole structure.
Hemati [1, 2] formulated a mathematical model for a brushless motor in a rotating
coordinate frame through Park’s transformation to investigate the global and local
dynamics of such a direct-drive brushless motor. Such a model of brushless motor
is a set of three dimensional first order autonomous differential equations system.
Kang et al. [3] applied nonideal trapezoidal back EMF to attenuate the undesired
torque fluctuation for the brushless dc motor, and a high precision encoder was used
to measure the instantaneous torque ripple. Rubaai et al. [4] constructed a three-
layer feedforward network to identify and control brushless dc motor drives. The
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differential equations for the stator current were transformed to a single second-
order nonlinear differential equation, and the solution was worked out by second-
order central difference approximation. In 2003, Ge and Chang [5] transformed the
brushless motor system into a compact form to study the chaos synchronization of
identical systems through four methods such as the adaptive control, the backstep-
ping design method, the Gerschgorin theorem and the addition of a monitor. Lee
and Ehsani [6] effectively analyzed the speed, torque, voltages and currents of PWM
inverter components using a developed model based onMATLAB environment. The
trapezoidal back EMF waveforms were modeled as a function of rotor position.
Jabbar et al. [7] introduced a methodology of modeling and numerical simulation of
BLDCMwith time-stepping approach. Finite elementmethod (FEM)was considered
to be practical to compute the performance of electrical machines. The simulation
results correlated well with the experimental results which indicated that the model
was significant. Luo [8, 10] studied the application of the combination of dynamic
surface control (DSC) technology, radial basis function (RBF) neural network, and
adaptive method, in the control of chaos for the BLDCM system. The same model
with Hemati was applied, and the tangent barrier Lyapunov function (TBLF) was
used for a time-delay nonlinear system. Zhang et al. [9] investigated the boundedness
solutions of BLDCM. The generalized Lyapunov function stability theory and the
extremum principle of function were used to analyze global attractive and positively
invariant sets. The efficiency has been verified through the numerical simulations.
Jagiea and Gwozdz [11] introduced a time-periodic finite element model of a brush-
less dc motor to evaluate the machine characteristic and the power losses. Cho et al.
[12] analyzed the vibration characteristics of a brushless direct current motor through
an entire finite element model, and electromagnetic-structural weak coupled analysis
was carried out to give the transient response.

In this chapter, a brushless motor will be expressed with a set of three-dimensional
nonlinear different equations. The electrical states (quadrature-axis current and
direct-axis current) and mechanical state (rotor speed) are coupled. In the history
of development of techniques for solving the steady-state response analytically of a
nonlinear system, perturbation method [13] and harmonic balance method [14] are
two of themost famousmethods, but small parameter assumption for nonlinear terms
was made. In order to remove such a limitation and deal with systems with strong
nonlinearity, a generalized harmonic balanced method was developed and the effec-
tiveness of such a method was verified with the Duffy oscillator [15], nonlinear Jeff-
cott oscillator [16] etc. Further, a semi-analytic methodology called discrete implicit
maps was introduced [17] to give the analytic solution of periodic motions for any
type of nonlinear system which possesses ordinary differential equations. With such
a method, the bifurcation of analytic steady state solution for nonlinear systems such
as piston in a high pressure gas cylinder [18], hardening Duffing oscillator with
time-delay [19] and Parametrically Excited Pendulum [20] etc. have been obtained.

Since such a discrete implicit mapmethod can be easily applied to solve nonlinear
systems, and the stability and bifurcation condition can also be accurately calculated
with which a large dimension of sparse Jacobian matrix is avoided, the analytic
solution of periodic motions for nonlinear equations for brushless motor system will
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be calculated using such a technique herein. Additionally, the number of harmonic
terms does not need to be determined before the calculation, thus the accuracy of the
analytic solution can be guaranteed. For a brushless motor with loading, the loading
can cause the torque fluctuation when the loading increases which may dramatically
change the dynamic characteristics for brushless motor dramatically, for instance the
steady state motion may become other type of periodic motion or chaos when the
periodical torque is introduced.

2 Motion Discretization and Mapping Reconstruction
for Periodic Motions

In Fig. 1, a three-phase brushless motor with drive circuit is illustrated. The rela-
tionship between the input voltage and the back EMF in the motor will be expressed
as

ua = Ria + L
dia
dt

+ ea,

ub = Rib + L
dib
dt

+ eb,

uc = Ric + L
dic
dt

+ ec. (1)

Through Park transformation and a periodical torque excitation is considered,
the dynamical equations for such a brushless motor in the d-q coordinates can be
expressed as

diq
dt

= L−1(vq − Riq − npLωid − npktω),

ua

uc

ub

R

R

R

L

L

L

ea

eb

ec

Fig. 1 Illustration of three-phase brushless motor with drive circuit
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did
dt

= L−1(−Rid + npLqωiq + vd),

dω

dt
= J−1(npkt iq − bω+TL0 + TL cosΩt) (2)

where iq and id are the quadrature-axis and direct-axis current; vq and vd are the
quadrature-axis and direct-axis voltage; L is the fictitious inductance; R is winding
resistance; n is number of pole pairs; ω is the rotor speed; J is the inertia of rotor; b
is the viscous damping coefficient; TL is the torque due to external load; TL and �

are the magnitude and frequency of the torque fluctuation due to the external load;

kt =
√

3
2ke and ke is the permanent-magnet flux constant.

One define the state variables for such a motor as

x � (x, y, z) ≡ (iq , id , ω) (3)

For a period-1 motion of such a brushless motor system, it can be discretized into
multiple mappings with constant time step. For a certain map Pk (k = 0, 1, 2, …),
it maps from one state (xk−1, yk−1, zk−1) at t = tk−1 to another (xk, yk, zk) at t = tk
with a mapping criteria based on the midpoint algorithm given as follows.

Pk : (xk−1, yk−1, zk−1) → (xk, yk, zk) ⇒ (xk, yk, zk) = Pk(xk−1, yk−1, zk−1). (4)

xk = xk−1 + hL−1
[
vq − R(xk−1 + xk)/2 − npL(yk−1 + yk)

(zk−1 + zk)/4 − npkt (zk−1 + zk)/2
]
,

yk = yk−1 + hL−1
[−R(yk−1 + yk)/2

+npLq(xk−1 + xk)(zk−1 + zk)/4 + vd
]
,

zk = zk−1 + h J−1[npkt (xk−1 + xk)/2 − b(zk−1 + zk)/2

+TL0 + TL cos�(t + dt/2)]. (5)

where h = tk − tk−1.
Then the mapping structure for such a period-m motion which is divided into mN

partitions becomes

P = PmN ◦ PmN−1 ◦ · · · ◦ P2 ◦ P1 : (x0, y0, z0) → (xmN , ymN , zmN ). (6)

Due to periodicity, the initial position for the first map and the final position of
the final map should be overlapped, and the time span equals the time period of the
external torque.



Hidden Periodic Motions for Brushless Motor … 87

x0 = xN , y0 = yN and tN = t0 + 2πm

Ω
(7)

For a period-mmotionwithmN maps, it has 3mN equations and the state variables
for those nodes are unknown, the number ofwhich is 3mN + 3. Butwith the constraint
given in Eq. (7), three more equations are added such that the node points for such
a period-1 motion can be solved analytically through Newton-Raphson method.

To determine the stability of a period-1 motion, the small neighborhood of the
node point x∗

k can be written as xk = x∗
k +�xk , (k = 0, 1, 2, · · · , N ). Then linearize

Eq. (6) at the equilibrium and the first order of the Taylor’s expansion is kept, it gives

�xN = DP�x0 = DPmN · DPmN−1 · . . . · DP2 · DP1︸ ︷︷ ︸
mN−multiplication

�x0 (8)

where

DPk =
[

∂xk
∂xk−1

]

(x∗
k ,x

∗
k−1)

, for k = 1, 2, · · · , N (9)

Solve the Jacobian matrix DP, and it gives three eigenvalues such as λi (i =
1, 2, 3). According to theory of the continuous system, the periodic motion is stable
only if all of magnitudes of the eigenvalues are less than 1, e.g. |λi | < 1 (i = 1 and
2 and 3). Otherwise, the motion is unstable. At the boundary between the stable and
unstable motions, it is the bifurcation point, of which the magnitude of one of the
eigenvalues is 1:

I. If one of the eigenvalues is 1, the saddle-node bifurcation of period-1 motion
occurs;

II. If one of the eigenvalues is −1, the period-doubling bifurcation of period-1
motion occurs;

III. If a pair of eigenvalues are complex withmagnitude equating to 1, the Neimark
bifurcation of period-1 motion occurs.

For a given resolution mN, a period-m motion can be divided into mN segments
with constant time interval ofmT /N where T is one period of excitation (T = 2π/ω).
Then a set of node points of periodic motions with (mN + 1) points per one period
of excitation can be expressed as. Furthermore, the set of node points of period-m
motion with (mN + 1) node points for one period can be expressed as

	 = { (xk, yk, zk)|tk = t0 + 2kπ

N�
; t0 = 0; k = 0, 1, 2, . . . ,mN } (10)

Instead of presenting all node points of periodic motions, the node points per
each period of excitation frequency are collected in the Poincaré mapping section
for period-1 motions. Such Poincaré mapping is defined as
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	PM = { (xk, yk, zk)| mod (k, N ) = 0, τk = τ0 + kT

N
;

τ0 = 0; k = 0, 1, 2, . . . ,mN } (11)

By analyzing the aforementioned set Ξ via Discrete Fourier Transform, the
analytic solution for such a period-m motion can be recovered as

x(t) ≈ a(m)
0 +

mN/2∑
j=1

b j/m cos( j
mΩt) + c j/m sin( j

mΩt) (12)

and

a(m)
0 = 1

mN

mN−1∑
k=0

xk,

b j/m = 2

mN

mN−1∑
k=0

xk cos(
j
mΩtk),

c j/m = 2

mN

mN−1∑
k=0

xk sin(
j
mΩtk),

tk = 2kπ

ΩmN
, (13)

where a(m)
0 = (a(m)

01 , a(m)
02 , a(m)

03 ), b j/m = (b j/m(1), b j/m(2), b j/m(3)) and c j/m =
(c j/m(1), c j/m(2), c j/m(3)).

The highest order of the harmonic depends on the number of the partition which
the motion is divided into. The amplitude and phase for each order of harmonic for
the period-1 motion are expressed by

Ak/m =
√
b2k/m + c2k/m, ϕk/m = arctan

ck/m
bk/m

(14)

3 Analytical Bifurcation

For an eight-pole brushless motor, the system parameters are given as

R = 0.9, np = 4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047 (15)
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For the loading condition, it is assumed as TL0 = 0, TL = 0.2 and Ω = 10. The
quadrature-axis voltage vq is set to be zero and direct-axis voltage vd is varied from
−9.0 V to −6.0 V. The analytical bifurcation diagram of node point sets of period-1
motion, which is expressed as in Eq. (10), for such a brushless motor is illustrated in
Fig. 2. The solid curve is stable motion and the dashed curved is unstable motion. For
the upper branch of the stable period-1 solution, the periodic nodes of the states for
such a brushless motor system (such as quadratic-axis current, direct-axis current,
and rotation speed) are almost invariant when the direct-axis voltage increases. The
period-doubling bifurcation (“PD”) of the period-1 motion occurs at vd = −7.769 V,
and the saddle-node bifurcation (“SN”) of the period-1 motion is at vd = −7.752 V.

Since the rotor speed is the mechanical state, by which the vibration of such a
brushless motor can be affected it can reflect the vibration characteristics of such a
brushless motor, the harmonic amplitudes of rotor speed for such a motor when the
direct-axis varies in the range of vd ∈ [−9,−6] are presented In Fig. 3. The constant
terms a03 gives the average value of the rotor speed versus direct-axis voltage, which
is shown in Fig. 3a. For constant term a03 which is nonzero, the periodic motion
is asymmetric to the rotor speed. Otherwise, the periodic motion is symmetric to
the rotor speed. In Figs. 3b–d, the first three orders of the harmonic amplitudes are
illustrated. For the analytical solution of the periodic motion which is symmetric to
the rotor speed, the even orders of the harmonic amplitude forAk(3) (k= 2, 4, 6,…) are
all zero. It can be seen that the third order of the harmonics for the period-1 motions
still has a quantity level of 101, which indicates that higher orders of harmonic are
required. The harmonic amplitude of A2(3) goes to zero at vd = −7.557 V which is
the unstable saddle-node bifurcation, and the unstable periodic solution has jump
phenomenon when the direct-axis voltage continues to increases. In Figs. 3e, f, the
harmonic amplitudes of A59(3) and A60(3) are shown, respectively. The quantity level
of harmonic amplitude for stable period-1motion which is asymmetric to rotor speed
has dropped to 10−4 when the order increases to 60, and the quantity level of harmonic
amplitude for stable period-1 motion which is symmetric to rotor speed has dropped
to 10−2 when the order increases to 59.

For period-2 motion, it only exists in a very narrow range. The periodic nodes
for period-2 motion in the range of vd = [−7.764, −7.745] are shown in Fig. 4.
The period-doubling bifurcation occurs at vd = −7.752408 V and −7.754412 V.
In Fig. 5a, for the constant term a03 of stable period-2 motion, it increases and then
decreases when the direct-axis voltage increases. But the average rotation speed only
varies from 9.452250 to 10.632700 rad/s. For the period-2 motion, the subharmonic
terms of Ak/2(3) (k = 1, 3, 5, …) is non-zero, as shown in Fig. 5b–g. For k = 6, the
harmonic amplitude still has a quantity level of 101. For k = 94 and 95 which is
shown in Fig. 5h, i, the quantity level decreases to 10−2, and it becomes 10−3 when
k = 96 as is given in Fig. 5j.
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Fig. 2 Analytical bifurcation of periodic nodes of period-1 motion for brushless motor (R =
0.9, n p = 4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047) with working condition
TL0 = 0, TL = 0.2, � = 10 and vq = 0: a quadrature-axis current, b direct-axis current and c rotor
velocity
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Fig. 3 Harmonic amplitude of rotor speed for brushless motor (R = 0.9, n p = 4, L =
0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047) with working condition TL0 = 0, TL =
0.2, � = 10 and vq = 0: a constant term, b–d first three orders of harmonics, e harmonic amplitude
of A59(3) and f harmonic amplitude of A60(3)

4 Periodic Motions

In this section, periodic motions in the brushless motor with loading fluctuation will
be discussed. The initial conditions are calculated by the analytical solution which
is obtained through implicit discrete map method at the phase t = 0 which is given
by the green solid circle (“I.C.”). The solid curve is the numerical prediction, and
the red fork symbols are the analytical solution.



92 J. Huang and F. Min

(a) 

(b) 

(c) 

Direct-axis Voltage, vd (V)

-7.765 -7.760 -7.755 -7.750 -7.745

Pe
rio

di
c 

N
od

e,
 Q

ua
dr

at
ur

e-
ax

is
 C

ur
re

nt
 i q

m
od

(k
, N

)

-3.0

-1.2

0.6

2.4

4.2

6.0
PD

-7.765 -7.755 -7.745

-2.65

-2.50

PD

Direct-axis Voltage, vd (V)

-7.765 -7.760 -7.755 -7.750 -7.745

Pe
rio

di
c 

N
od

e,
 D

ire
ct

-a
xi

s C
ur

re
nt

 i d
m

od
( k

,N
)

-9.0

-7.2

-5.4

-3.6

-1.8

0.0

-7.765 -7.755 -7.745

-6.84

-6.80

PD PD

Direct-axis Voltage, vd (V)

-7.765 -7.760 -7.755 -7.750 -7.745

Pe
rio

di
c 

N
od

e,
 R

ot
or

 V
el

oc
ity

 ω
m

od
( k

,N
)

-10.0

5.0

20.0

35.0

50.0
PD PD

-7.765 -7.755 -7.745
-8.8

-8.6

-8.4

Fig. 4 Analytical bifurcation of periodic nodes of period-2 motion for brushless motor (R =
0.9, n p = 4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047) with working condition
TL0 = 0, TL = 0.2, � = 10 and vq = 0: a quadrature-axis current, b direct-axis current and c rotor
velocity
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Fig. 5 Harmonic amplitude of rotor speed of period-2motions for brushlessmotor (R = 0.9, n p =
4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047) with working condition TL0 = 0, TL
= 0.2, � = 10 and vq = 0: a constant term, harmonic amplitudes of b A1/2(3), c A1(3), d A3/2(3),
e A2(3), f A5/2(3), g A3(3), h A47(3), i A95/2(3), j A48(3)
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Fig. 5 (continued)

A stable period-1 motion at vd = −7.73 V is presented in Fig. 6a–c, and the initial
conditions are (iq0, id0, ω0)≈ (−2.558350,−6.994479,−7.567532). It can be found
that the numerical simulation correlates with the analytical solution very well. In
Fig. 6b, the rotor speed versus time is illustrated and one period is labeled. For the
harmonic amplitudes of the rotor speed, which are presented in Fig. 6c, the constant
term is zero and the first harmonic is 25.9979 rad/s. The amplitudes of even orders
(Ak(3) for k = 2, 4, 6, …) for such a stable period-1 motion are all zero, and the
amplitudes of the order orders drop asymptotically with the increase of the order.
The harmonic amplitude stay above 1 for k < 21, and the quantity level drops to 10−2

until k = 39. The quantity level goes to 10-4 when k increases to 73. With the same
system parameters, there is another unstable motion coexisted which is presented in
Figs. 6d–f. The initial conditions for such a unstable period-1 motion are given as
(iq0, id0, ω0) ≈ (−2.779143, −6.624351, −9.195011), for which the initial current
for quadratic-axis and direct-axis is very close to those for the aforementioned stable
period-1 motion. As shown in Fig. 6e, the numerical prediction stay on the unstable
period-1 orbit for the first half cycle and then leaves due to the error accumulation
of the numerical simulation and the strong attraction of the stable orbit. In order to
illustrate all the coexisting periodic motions at vd = −7.73, the analytical solutions
of the stable and unstable motions are plotted in Fig. 7. The black solid curve is the
stable period-1 motion, and there are other six unstable period-1 motions which are
represented by the color dashed curves.

InFig. 8, a stable andunstable period-2motion at vd =−7.754Vare demonstrated.
As shown in Fig. 8c, f, the frequency spectrum for period-2 motions becomes more
dense than that for period-1 motion since the subharmonics such as Ak/2(3) (k = 1,
3, 5, …) are introduced. There are one stable period-2 motion and eight unstable
period-2 motions coexisting at vd = −7.754 V which is plotted in Fig. 9. It can be
found that the lower part of all the periodic motions is almost overlapped.
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ω

Fig. 6 Period-1 motion for vd = −7.73: stable motion a 3-D trajectory b time history of rotation
speedω, c harmonic amplitude of Ak(3) (initial conditions: (iq0, id0,ω0)≈ (−2.558350,−6.994479,
−7.567532); unstable motion d 3-D trajectory e time history of rotation speed ω, c harmonic
amplitude of Ak(3) (initial conditions: (iq0, id0, ω0) ≈ (−2.779143, −6.624351, −9.195011), (R =
0.9, n p = 4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047)
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ω
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Fig. 6 (continued)
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Fig. 7 Coexisting analytical orbits for period-1 motions for vd = −7.73 (R = 0.9, n p = 4, L =
0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047)

5 Conclusions

In this chapter, the discrete implicit maps method is adopted to investigate the
nonlinear dynamic behavior of a brushless motor. A periodic torque is introduced
to model the loading fluctuation. Period-m motion is discretized and mappings are
described using a set of algebraic equations. Through Newton-Raphson method, the
node points of mappings of period-1 motion for such a brushless motor can be easily
solved and the eigenvalue analysis has been carried out through the reduced system.
By selecting specific parameters, analytic bifurcation for Poincaré section and solu-
tion of period-1 motion varying direct-axis voltage have been presented. A strong
nonlinear characteristic for such a brushless motor with periodically excited loading
can be observed, and higher orders of harmonics should be kept in the solution which
may be difficult to solve for traditional analytical method of solving nonlinear prob-
lems such as harmonic balance method. With such a technique, many coexisting
unstable periodic motions can be obtained, and with proper control such unstable
periodic motions can be altered to be stable if the motions are desired for operation.
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Fig. 8 Period-2 motion for vd = −7.754: stable motion a 3-D trajectory b time history of rotation
speed ω, c harmonic amplitude of Ak(3) (initial conditions: (iq0, id0, ω0) ≈ (2.557057, -3.437199,
31.922249); unstable motion d 3-D trajectory e time history of rotation speed ω, c harmonic ampli-
tude of Ak(3) (initial conditions: (iq0, id0, ω0) ≈ (−.582655, −8.315973, 5.041553),R = 0.9, n p =
4, L = 0.01425, kt = 0.031, ξ = 0.0162, J = 0.000047)
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Chunking Rhythmic Synchronization:
Bellerophon States and Quantized
Clusters of Globally Coupled Phase
Oscillators

S. Boccaletti, H. Bi, T. Qiu, I. Bonamassa, and S. Guan

Abstract The emergence of phase coherence in interacting oscillators is one of
the main phenomena for the coordination of events that make a system to behave
cooperatively. Examples range from rhythmic physiological processes to the col-
lective behaviors of technological and natural networks. We concentrate here on
Bellerophon states, which are coherent states of rhythmic synchrony occurring in
globally coupled oscillators close to the point where the transition from disorder to
phase order converts from abrupt to continuous. Within Bellerophon states, oscil-
lators form quantized clusters, where their instantaneous phases and frequencies
are unlocked. Within each cluster, the oscillators’ instantaneous frequencies form
a characteristic cusped pattern and, more importantly, they behave periodically in
time, so that their long-time average values are the same. Along the manuscript, we
give analytical and numerical description of these states, and we discuss their general
appearance behind the collective rhythms reported in other systems of interacting
oscillators.

1 Introduction

The authors are honored of having written the present manuscript in memory of
Valentin S.Afraimovich, a fantastic person and a great scientist whose contributions
to dynamical systems and complexity theory inspired literally hundreds of nonlinear
physicists and applied mathematicians in the world. Together with being protagonist
behind some of the most important accomplishments of the last 40 years in complex
systems theory, Valentin was a man always open to share new ideas with his col-
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leagues, always curious and excited to learn about the mechanisms underlying the
phenomenawhich emerge from interacting objects in nature, and as so he represented
a real mentor for at least three generations of complexity scientists.

One of those phenomena which intrigued Valentin along his career is certainly the
emergence of coherent phases in interacting oscillators, which very often is observed
in nature and represents the basis for the cooperative functioning of a wealth of
different systems. On the same line of Valentin’s pioneering work on stochastic
synchronization in dissipative systems [1], physicists always tried to gather insights
and understanding on the mechanisms and reasons underlying synchronization by
means of simplified models, as the Kuramoto [2] and Kuramoto-like [3–5] models,
where a variety of collective states were described, as e.g. full synchronization [6,
7], or cluster [8] and explosive synchronization (ES) [5, 9].

In recent years, interest has been devoted to the coexistence of coherent and
incoherent domains in locally coupled identical oscillators, a state which has been
termed as Chimera state (CS) [10–12]. Various types of CSs have been described
theoretically, such as the breathing CS [13], the clustered CS [14] and the multi-
CS [15], and also experimental evidence of CSs has been given [16]. Furthermore,
CSs had attracted the attention of Valentin Afraimovich, during his last years of
activity [17].

We here report on a novel coherent phase of global synchrony which is proper of
nonidentical oscillators having widely different frequencies. We find that such states
generally emerge in the presence of first-order synchronization phase transitions, as
soon as the forward threshold characterizing the explosive branch precedes the back-
ward one. At this point, which for the model system discussed below coincides with
a tricritical point, a novel non-stationary rhythmic states spontaneously emerge. In
this phase, oscillators form quantized clusters, and in each cluster the oscillators are
neither phase- nor frequency-locked. On the contrary, each of the oscillators’ instan-
taneous frequency is different within the clusters, but the instantaneous frequencies
form a time dependent cusped pattern, similar to the stationary one characterizing the
average frequencies within the incoherent domain of CSs. This means that the instan-
taneous frequencies of the oscillators behave periodically in time, so that their long
time average values are the same. These new phases and their attributes are hence
intrinsically specular to those characterizing CSs and, as such, they were termed as
Bellerophon states [18], since Bellerophon was the name of the great hero who, in
the Greek mythology, confronted with (and eventually killed) the monster Chimera.

In what follows we will discuss our main results characterizing the microscopic
and macroscopic attributes of these states in a particular model system of interacting
phase oscillators. In this path, we will follow four main steps: (1) after presenting
the model, we will describe the numerical results and unveil the phase diagram of
the model and its phase transitions; (2) we will seek for an analytic solution of
the forward critical threshold for the explosive phase transition and characterize
it in terms of the control parameters of the system; (3) after gaining control on
the choice of parameters where Bellerophon states emerge, we characterize their
small-to-large scale organization, unveiling the self-organization of these rhythmic
states into quantized clusters of mode-locked oscillators; (4) finally we complete
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Fig. 1 Explosive and continuous transitions to synchronization. (Color online). R versus. κ for
model (1). Δ = 1 and ω0 = 0.5 (a), 1.5 (b), 1.74 (c), 2.0 (d), 2.5 (e), and 3.0 (f). Simulations have
been performed by adopting a fourth order Runge-Kutta integration method with step size 0.005,
and system’s size N = 10, 000. Notice that all other parameters used in the numerical simulations
are specified in the text. Reprinted from Ref. [18]

our discussion by comparing these states with other phases reported in interacting
oscillators, together with their potential relevance in the theoretical study of rhythmic
synchronization.

2 Results

We start by considering a system of N globally coupled phase oscillators, whose
dynamics is ruled by a generalized Kuramoto model of the form:

θ̇i = ωi + κ|ωi |
N

N∑

j=1

sin(θ j − θi ), i = 1, ..., N , (1)

where θi and ωi are, respectively, the instantaneous phase and the natural frequency
of the i th oscillator. Furthermore, in Eq. (1) the dot symbol denotes a temporal
derivative, and κ is the coupling strength, hereafter assumed to be positive.
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The level of synchrony can bemonitored bymeasuring theKuramoto order param-
eter

R = 1

N

〈∣∣∣
N∑

j=1

eiθ j

∣∣∣
〉

T

,

where | · | and 〈·〉T stand for module and time average, respectively.
In general, the set of natural frequencies {ωi } is taken from a given frequency dis-

tribution (FD) g(ω), which is here assumed to be an even function [g(ω) = g(−ω)],
smooth, and centered at 0. A common representative of such class of frequency
distributions which we will consider in this study is the bimodal Lorentzian

g(ω) = Δ

2π

[
1

(ω − ω0)2 + Δ2
+ 1

(ω + ω0)2 + Δ2

]
,

whereΔ is the width parameter (half width at half maximum) of each peak, and±ω0

are the center frequencies. Depending on the ratio ω0/Δ, the frequency distribution
can be either uni-modal (for ω0/Δ ≤ √

3/3) or bimodal (for ω0/Δ >
√
3/3), and

such crossover between the two regimes has dramatic effects on the synchronization
transitions of the system. It is important to stress here that both the particular model
and the specific frequency distribution that are discussed here have been adopted for
the sake of illustration. Bellerophon states, in fact, are not limited to these arrange-
ments and are instead observed in a variety ofmodels and arrangements of interacting
oscillators featuring phases of periodic synchronization [19].

As a first step of our analysis, we study numerically the transition to synchro-
nization in Eq. (1). For the sake of simplicity, we start by considering a fixed value
of the half-width parameter Δ ≡ 1 and let ω0 to increase, which corresponds to
a progressive growth of the distance between the two peaks of the frequency dis-
tribution. Physically speaking, this could be interpreted as the progressive forma-
tion of two, say, energetically equivalent ground states, around which the system’s
oscillators tend to settle. As summarized in Fig. 1, when ω0 is small one observes
a first-order synchronization phase transition [Fig. 1a] featuring an hysteresis area
of width d = κb − κ f , where κb and κ f being the critical points for the backward
(hybrid) and forward (explosive) transitions, respectively. As shown in Figs. 1b–c,
increasing values of ω0 result into a progressive shrinking of the hysteresis area,
which occurs throughout an adiabatic decrease of the forward threshold κ f . When
instead ω0 is large enough [as it is the case of Figs. 1d–f], a two-stage continuous
phase transition – first from a stationary incoherent state to a non-stationary one, and
then from the latter one towards a coherent stationary phase – is observed. Therefore,
the model system Eq. (1) sustains both a first- and second-order-like synchronization
phase transitions. Inspecting more in depth the features of the first-order transitions
reported for low values ofω0, it turns out that the backward threshold is always given
by κb = 2 [4] for symmetric FDs, as confirmed by our simulations [see panels (a)-(c)
of Fig. 1]. The forward critical threshold (κ f ) varies instead with ω0 (atΔ = 1). This



Chunking Rhythmic Synchronization: Bellerophon States … 107

fact induces the hysteresis area to shrink, and leads eventually to a conversion from
an explosive to a continuous transition to synchronization at ω0 ≈ 1.7.

The second step of our study is to seek an analytic solution for the forward critical
threshold κ f . Following the approach of Refs. [4, 6], a linear stability analysis of the
model Eq. (1) can be performed, leading to the secular equation

1 = κ

2

+∞∫

−∞

λ|ω|
λ2 + ω2

g(ω)dω, (2)

relating the coupling strength κ to the eigenvalue λ [4]. From Eq. (2), one obtains

1 = k

2π

+∞∫

0

λω

λ2 + ω2

[
Δ

(ω − ω0)2 + Δ2
+ Δ

(ω + ω0)2 + Δ2

]
dω. (3)

By further setting ω/Δ → ω, ω0/Δ → δ, and λ/Δ → λ, Eq. (3) becomes

1 = kλ

2π

⎡

⎣
+∞∫

0

ω

λ2 + ω2 · 1

(ω − δ)2 + 1
dω +

+∞∫

0

ω

λ2 + ω2 · 1

(ω + δ)2 + 1
dω

⎤

⎦ = kλ

2π
(I1 + I2),

(4)

where I1 and I2 denote the two integrals, respectively. Performing the integration,
one gets:

I1 = kλ

2π

+∞∫

0

1

4i

(
1

ω − iλ
+ 1

ω + iλ

) (
1

ω − δ − i
− 1

ω − δ + i

)
dω

= 1

4

[
1

1 − λ − iδ
ln

δ + i

iλ
+ 1

1 + λ − iδ
ln

−δ − i

iλ
+ 1

1 − λ + iδ
ln

−δ + i

iλ
+ 1

1 + λ + iδ
ln

δ − i

iλ

]
,

= 1

4

{ (
ln

√
1 + δ2

λ
− iθ

)
(1 − λ) + iδ

(1 − λ)2 + δ2
+

[
ln

√
1 + δ2

λ
+ i(π − θ)

]
(1 + λ) + iδ

(1 + λ)2 + δ2

+
(
ln

√
1 + δ2

λ
+ iθ

)
(1 − λ) − iδ

(1 − λ)2 + δ2
+

[
ln

√
1 + δ2

λ
− i(π − θ)

]
(1 + λ) − iδ

(1 + λ)2 + δ2

}

= 1

4

{
2

(1 − λ)2 + δ2

[
(1 − λ)ln

√
1 + δ2

λ
+ θδ

]
+ 2

(1 + λ)2 + δ2

[
(1 + λ)ln

√
1 + δ2

λ
− (π − θ)δ

] }

≡ F(δ), (5)

where θ = arctan(δ), with δ > 0.
One should notice that I2 = I1(δ → −δ), and therefore Eq. (4) becomes
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1 = kλ

2π
[F(δ) + F(−δ)] = kλ

2π

{
ln

√
1 + δ2

λ
[ 1 − λ

(1 − λ)2 + δ2
+ 1 + λ

(1 + λ)2 + δ2
]
}

.

(6)
Substituting what above in Eq. (3), one arrives at the secular equation

2π

κ
= f (λ, δ) = λ

[
1 − λ

(1 − λ)2 + δ2
+ 1 + λ

(1 + λ)2 + δ2

]
ln

√
1 + δ2

λ
. (7)

Generally, the eigenvalue λ is a complex number, and the transition occurs when
the eigenvalues cross the imaginary axis. Thus, we set λ = iy and substitute it into
f (λ, δ). From Eq. (7), the following two equations are obtained:

Im[ f (λ, δ)] = 2[y(1 + δ2 − y2) + 2y3]
(1 + δ2 − y2)2 + 4y2

· (ln
√
1 + δ2 − ln y) = 0, (8)

and

Re[ f (λ, δ)] = π · y(1 + δ2 − y2) + 2y3

(1 + δ2 − y2)2 + 4y2
= 2π

k
. (9)

From Eq. (8), one can solve y as y = √
1 + δ2. Then, from Eq. (9), the critical point

of the forward transition comes out to be:

κ f = 4√
1 + (ω0/Δ)2

. (10)

Looking at Eq. (10), one immediately sees that the forward critical threshold is
uniquely determined by the dimensionless ratio ω0/Δ. In particular, when ω0 = 0,
the frequency distribution becomes the typical unimodal Lorentzian distribution, and
one has κ f = 4 in agreement with what reported in Ref. [4]. In Fig. 2, the reader can
see that Eq. (10) is remarkably well verified by numerical simulations (at all values
of Δ and within the entire range of ω0/Δ).

Equation (10) also explains the conversion from the first- to the second-order-like
transition observed in Fig. (1). Indeed, as it can be seen in Fig. (2), κ f decreasesmono-
tonically as ω0/Δ increases, thus causing (as κb = 2 always) a monotonic shrinking
of the hysteresis area. For ω0/Δ = √

3 one has κ f = κb = 2, and the forward and
backward transition points coincide [visible in Fig. 1c]. When ω0/Δ exceeds

√
3,

the hysteresis area does not immediately disappear [see the inset of Fig. 1d], and
a Hopf bifurcation occurs at ω0/Δ = √

3 for both the forward and backward pro-
cesses (and both bifurcations are continuous). For the forward direction, the system
first undergoes a continuous transition, and then it undergoes an explosive transition
as κ further increases. A similar scenario of transitions characterizes also the back-
ward direction. A regime (ω0/Δ >

√
3) then exists, where the system undergoes a

two-stage transition, first continuous and then explosive, during both (forward and
backward) processes. Eventually, a further increase of ω0/Δ causes the hysteresis
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area observed in the upper branches to disappear [see Figs. 1e, f], leading to a situ-
ation where only continuous transitions occur in the system. It is in this regime, i.e.
close to a tricritical point in parameter space, that Bellerophon states emerge.

The third step of our analysis is devoted to fully characterizing such a novel state,
and to discuss the relevant differences that exist between them and other typical
coherent states emerging in Kuramoto-type models. For the sake of exemplification,
let us focus on the case of ω0/Δ = 3 [see Fig. 1f]. In these conditions, the system
features two continuous transitions at κ1 = 4/

√
10 ≈ 1.26 and κ2 = 2, respectively.

As a consequence, three parameter regions can be defined: κ < κ1 (regime I), κ1 <

κ < κ2 (regime II), and κ > κ2 (regime III). In regime I, the system exhibits the
trivial incoherent state, as the coupling strength is small. In regime III, instead, the
coupling is so strong that the system reaches the fully synchronized state, in which
all oscillators split into two fully synchronized clusters. Bellerophon phases are
steady states emerging in the middle regime II, i.e. along the path leading the system
from decoherence to its synchronized behaviour. In Fig. 3 four typical conditions
are illustrated, that correspond to the κ values denoted by letters A, B, C, and D in
Fig. 1f. The emerging states are characterized by three quantities: the instantaneous
phases θi , the instantaneous frequencies (or speed) θ̇i , and the long time average
frequency 〈θ̇i 〉. The panel (a) of Fig. 3 reports the results for κ = 1.28. One can
see that, as κ just exceeds κ1 = 1.26, two small symmetric clusters emerge, with
average frequencies that are equal to each other in absolute value, but opposite in
sign. Oscillators belonging to the two clusters rotate with the same average speed, but
with different instantaneous phases and frequencies. At κ = 1.60 [see panel (b) of
Fig. 3] a state emerges made of multiple clusters. The number of clusters increases

0 1 2 3 4
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1.5
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2.5
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3.5
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4.5
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/Δ
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Δ = 1
Δ = 0.5
Δ = 2

√
3
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Fig. 2 The critical point for the forward transition. (Color online) κ f versus ω0/Δ. The black
curve corresponds to the analytic solution Eq. (10). The purple dashed line marks the backward
transition point. Notice that the theoretical prediction for the forward critical threshold and the
numerical results coincide perfectly. Reprinted from Ref. [18]
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Fig. 3 The main features of Bellerophon states. (Color online). Snapshots of the instantaneous
phase θi (upper plots), the average speed 〈θ̇i 〉 (middle plots), and the instantaneous speed θ̇i (lower
plots) versus natural frequencies {ωi } of the oscillators. κ = 1.28 (a), 1.60 (b), 1.80 (c), and 2.10 (d,
the fully synchronized state). All the other parameters are specified in the text. Bellerophon states
are those reported in panels (a)–(c). Reprinted from Ref. [18]

(in pairs) as κ increases, and each pair contains oscillators which are symmetric
in terms of their natural frequencies. Oscillators inside each cluster have the same
average frequency [see the staircase structure of Fig. 3b2], but different instantaneous
frequencies [Fig. 3b3]. The set of clusters coexists with a thermal bath of drifting
oscillators that are not synchronized. In Fig. 3c, one has the results for κ = 1.80.
This is also a Bellerophon state, but different from that of Fig. 3b. The coherent
clusters now occupy almost all the range of natural frequencies, except for a small
narrow zone around the central frequency. Finally, Fig. 3d (κ = 2.10) refers to the
fully coherent phase, where two giant clusters are formed. In each cluster, oscillators
with positive or negative frequencies coincide with each other totally: they feature
now the same instantaneous speed, so that the whole system behaves like two giant
oscillators.

The final step consists in gathering information on the system’s macroscopic and
microscopic details related to the emergence of Bellerophon states. This is partly
unveiled in Fig. 4a, which shows that the staircases of coherent clusters at κ = 1.60
satisfy in fact a certain rule: all clusters’ frequencies are quantized, and they can
be expressed as ±(2n − 1)Ω1, n = 1, 2, ... [23], where Ω1 is the lowest frequency,
i.e., the principle (or base) frequency of the system. Accordingly, depending on
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Fig. 4 Microscopic properties of the state of Fig. 3(b). (Color online). a The average frequencies
for each coherent clusters, arranged in a staircase structure. Notice that each plateau is located at an
odd-numbered multiple of a principle frequency Ω1. b Time series of the instantaneous speeds of
clustered oscillators. In the panel, two sample oscillators are arbitrarily chosen for clustersC1 (top),
C3 (middle), and C5 (bottom). Straight lines mark the average speed. c Order parameters for all
oscillators with positive (blue oval) and negative (red oval) frequency, and order parameter for all
oscillators (green lines). The insets represent the evolution of the global coherence R(t) and average
phase 
(t), respectively, which are typically oscillatory. d Time series of the instantaneous phases
corresponding to (b). The parameters’ choices are described in the text. Reprinted from Ref. [18]

their multiple to Ω1, clusters can be named as C1,C3,C5, ..., respectively. The
fundamental point here is that, although the average speeds of oscillators inside each
cluster are equal to each other, their instantaneous frequencies are generally different
and quite heterogeneous, forming the characteristic cusped pattern totally analogous
to that featured by the average frequencies of the oscillators within the CS. Within
each cluster, therefore, oscillators are “mode locked”, but their instantaneous phases
and frequencies are fully unlocked.

On the other hand, Fig. 4b shows that the instantaneous frequencies of oscillators
inside the same cluster evolve periodically, while different oscillators follow different
periodic patterns. In other words, the instantaneous frequency of each oscillator
evolves uniquely. This makes Bellerophon states essentially different with respect
to other coherent states observed in Kuramoto-like models, such as the partially
coherent state [7], the standing wave state [20, 21], the traveling wave state [20,
22], and the CS [10, 11], where oscillators inside the coherent cluster are typically
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Fig. 5 Microscopic properties of the state of Fig. 3(c). (Color online). The panels report the same
quantities as in the caption of Fig. 4. In panel (b), negative instantaneous speeds are observed during
certain time intervals, and the phases decrease accordingly as in (d). This implies that although some
oscillators go positively on average, they do go back for certain time intervals during one loop, just
like shuttle-run. Reprinted from Ref. [18]

frequency-locked. Moreover, even though the instantaneous speed of the clusters’
oscillators varies non-uniformly during one period (particularly for those clusters
with large n), the average speeds during one period for all oscillators in a certain
cluster turn out to be the same, i.e., an odd-numbered multiple of Ω1.

Since the instantaneous frequencies characterize the rotations of oscillators along
the unit circle, Bellerophon states correspond to collective behaviors having intrigu-
ing topological features [visible in Fig. 4d]: during one period T1 = 2π/Ω1, the
oscillators in C1 perform all one loop along the unit circle, and in the mean time, the
oscillators in C3 and C5 rotate three loops and five loops, respectively. In analogy,
oscillators in C2n−1 will perform 2n − 1 loops. Looking more deeply into the results
shown in Fig. 4b, one further finds that the instantaneous speeds for all coherent
oscillators experience in fact two periods during one loop, i.e. each oscillator repeats
its motion during the two half periods. In panel (a) of Fig. 4, we report the local
value of the order parameter (the value contributed by only those oscillators in a
certain cluster) in the complex plane, for C1, C3 and C5. Due to the complicated
phase relationships among oscillators in each cluster [as it can be seen in Fig. 4d],
the resulting value is typically periodic or quasi-periodic, and follows a rather com-
plicated orbit. Essentially, each cluster can be seen as a mesoscopic oscillator, with
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properties described by the Kuramoto order parameter averaged over the oscilla-
tors belonging to that cluster. Figure4c reports the order parameters for all positive
and negative frequencies (including the drifting oscillators). In phase space, orbits
appear as two smeared ovals, reflecting the quasi-periodic motion of the total order
parameter, as shown in the insets of Fig. 4c.

Figure5 reports the main features of the Bellerophon state which is observed at
κ = 1.80. The emerging multi-clustered state shares a lot of traits and peculiarities
with that of Fig. 4, but it also displays other new properties. One of these [visible
in Fig. 5a] is that all oscillators join here the synchronized clusters, except for a
small fraction localized in a narrow frequency area around 0. A second important
point is that, although the average speed is positive, some oscillators have a negative
instantaneous speed within two time intervals in one period [as it can be seen in
Fig. 5b], meaning that those units rotate inversely twice during one loop. Figure5d
shows the behavior of two time intervals in one period, during which the phases
of those oscillators decrease. A further peculiar trait is that the principle period T1
becomes larger and larger as κ increases, with T1 → ∞ as κ → 2, where the system
enters a fully synchronized state of two static clusters [see Fig. 3d]. In other words,
for moderately large values of κ the system is made of multi-cluster oscillatory
coherent states, whose averaged frequencies are multiples of the principle frequency
Ω1 of the system. Besides the situations observed in Figs. 1e, f, such oscillatory states
occur also during explosive synchronization as, for instance, one can see in Fig. 1d
(1.7 < κ < 2). In these states, oscillators form symmetric synchronized cluster pairs,
with quantized average frequencies. Oscillators having the same average speed have
different instantaneous speeds, forming a characteristic cusped pattern and leading
to very complicated (yet collectively organized) motions along the unit circle.

3 Discussion

Let us start by remarking that Bellerophon states are generic states of partial coher-
ence occurring in globally coupled nonidentical oscillators, when frequencies are
widely distributed. Along this Manuscript, we concentrated on a specific model sys-
tem [that of Eq. (1)] and on a particular frequency distribution. Such a choice (which
was originally adopted by us in Ref. [18]) is only due to the need of having a well
defined framework where the novel states could be properly illustrated. However,
far from being limited to these circumstances, Bellerophon states occur also in other
Kuramoto-like models where either the coupling strengths are properly weighted, or
the ensemble is made of two competing populations [19].

In summary, Bellerophon states constitute a novel, asymptotic, coherent phase of
globally coupled oscillators. Such a coherent phase is essentially different from all
previous phases described in Kuramoto-like models. Within this novel state, oscilla-
tors form quantized clusters, where their instantaneous frequencies are not locked,
but they behave periodically. Most importantly, their average values are the same.
Bellerophon states represent therefore a higher-order form of coherence: individ-
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ual oscillators inside each cluster do effectively influence each other, at the same
time at which they still have a relative freedom. Due to their unconditional and
ubiquitous appearance, our study paves the possibility that the quantized features
of Bellerophon states are actually the fundamental building blocks behind the spon-
taneous emergence of collective rhythms in more general systems of interacting
oscillators.
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Chatter Dynamics and Stability
of the Impulsive van der Pol Equation

Shasha Zheng and Xilin Fu

Abstract As a classical model of nonlinear vibration, van der Pol equation has been
widely used in the field of natural science and engineering. However, the effect of
instantaneous mutations on the system exists objectively. The impulsive van der Pol
equation becomes a special kind of discontinuous system due to the emergence of
impulse which exhibits complex dynamic behaviors. In this chapter, we consider it as
a switched system and adopt the flow theory of discontinuous systems to deal with
the effect of impulse, and investigate its dynamics including chatter and stability
criteria. By analyzing features from discontinuous point of view, several concepts
of flow theory are briefly reviewed. Then several stability criteria for equilibrium
are presented, based on various metric functions. Finally, we apply our analysis and
criteria to a practical impulsive problem and illustrate different motions as well as
the periodic oscillation under the stimulation of impulse.

1 Introduction

Nonlinear phenomena, which can not be described by linear models, widely exist
in the field of natural science and engineering technology, such as the swing phe-
nomenon of pendulum, oscillation mechanism of self-excited circuit and other prac-
tical applications closely related to our life. Therefore, nonlinear dynamics arise as
tools in various interdisciplinary fields for scientific research and further analysis.
H. Poincaré’s qualitative theory in ordinary differential equations and quantitative
calculations in celestial theory lead the earliest development of nonlinear science [1].
From early twentieth century, radio technology promoted the nonlinear vibration the-
ory [2], and several famous nonlinear differential equations appeared in succession
[3]. Especially when damping or resistances exist, second-order differential equation
plays an important role in providing mechanical models for many practical nonlin-
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ear vibration problems, which can be transformed into a general form as the famous
Lienard equation

x
′′ + g(x)x

′ + f (x) = 0, (1)

where f (x) is an odd function and g(x) is an even function representing the damping
item, or a specific form of Eq. (1), named the van der Pol equation

x
′′ − ε(1 − x2)x

′ + x = 0, (2)

where ε > 0 is the damping coefficient parameter.
As we know, the van der Pol oscillator model Eq. (2) was proposed by Balthasar

van der Pol [4]. Subsequently, van der Pol continued his research by adding a har-
monic forcing term to demonstrate oscillation in the study of circuits containing
vacuum tubes [5], and proved that such model could also be applied to a broad range
of circumstances [6].With respect to damping and perturbation, the van der Pol equa-
tion could be employed as a general mathematical model to understand the complex
nonlinear phenomena of physical systems. From the 50s of twentieth century, some
systemical research on the qualitative analysis of the isolated closed trajectory for
Eq. (2) have been done in the field of electronics and mathematical dynamics [7–9].

However, the above research all relied ongeometric theory for continuous systems.
Once the state was varied or switched, the dynamics and qualitative analysis of
oscillation would require new method. It was shown that, if the damping coefficient
ε was positive, as the value of ε increased, the system would first encounter a limit
cycle and then be heavily damped, especially when certain ε lead to an irregular
noise, it was one of the first reported discoveries of deterministic chaos; when ε ≤ 1,
the negative damping oscillation phenomenon showed a stronger trend, which might
cause unsteadiness even bifurcations. For the complex oscillation when the state was
interrupted with a threshold, in 2014, we optimized the LC oscillator circuit model
with a second-order vibration switched system and took a different approach to its
dynamical analysis [10]. In order to solve the problem of energy consumptions and
instability in application, current tracking control technology was used to sustain the
free vibrations of triode, and an impulsive switched van der Pol equationwas given as

⎧
⎨

⎩

x ′′ − μ f (x)x ′ + p20x = 0, ϕ(t, x, x ′) �= 0,
x(t+) = h1(x(t)), ϕ(t, x, x ′) = 0,
x ′(t+) = h2(x(t), x ′(t)), ϕ(t, x, x ′) = 0,

(3)

where μ is the damping coefficient parameter as ε, f (x) is the general nonlinear
damping item, and p0 is the perturbation parameter, ϕ ∈ C

′
(R+ × R2, R) in t is

the threshold function, h1 and h2 are impulse functions, x(t+) = lim
ε→0+

x(t + ε) and

x ′(t+) = lim
ε→0+

x ′(t + ε) are the right limits of the state at discontinuity point.

The van der Pol equation with such impulsive effects becomes a special kind of
discontinuous system due to the emergence of impulse, and it owns more practi-
cal significants to research on its complex dynamical behaviors in many practicing
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fields, such as switchability, chatter, grazing motion, stick motion, sliding motion
and fragmentation. Moreover, when complex dynamical behavior appears its stabil-
ity analysis needs new techniques different with continuous and traditional methods
of impulsive differential equation.

As an important tool for nonlinear dynamics, discontinuous system has been
investigated systemically over the past few decades, from the non-smooth theory of
Filippov [11] to the flow switchability theory of Luo [12–15]. To overcome the lim-
itations of continuous methods in dealing with impulse, this chapter adopts methods
of discontinuous dynamical system to research on the complex dynamical behaviors
of impulsive van der Pol equation. That is, the flow theory around the time-varying
impulsive surface boundary can be used to discuss chatter dynamics. Based on such
analysis, attractors including equilibrium point and periodic motion can be studied
through the method of local singularity theory and mapping theory in discontinuous
dynamical system, in which the latter has been studied in [16]. Therefore, subsequent
sections are arranged as follows. In Sect. 2, we will review the chatter dynamics of
impulsive van der Pol equation, analyze the model’s features from discontinuous
point of view, and introduce several criteria making chatter phenomenon appear or
not. In Sect. 3, several basic conceptions of stability will be given, and the analyt-
ical conditions for the stability of equilibrium will be discussed based on various
metric functions in discontinuous systems. General stability condition based on the
G-functionwill be presented,which is equivalent to the traditional Lyapunov stability
condition. In addition, another stability condition based on the L-function will also
be presented. In Sect. 4, the complex dynamical analysis will be applied on a practical
impulsive problem in engineering. Section5 is the conclusion and further work.

2 Chatter Dynamics

Many evolution processes are characterized by the fact that the state would expe-
rience a sudden change at certain moments, especially in the field of engineering.
Nowadays, it is universal for a dynamical system to experience transient phenomena
in practical problems involving thresholds, in which impulse provides an adequate
description of such sharp system change [17–19]. In 2013, we established a link
between the pulse phenomena and chatter phenomena in an impulsive dynamical
system by discuss the collision times of the flow and the impulsive surface bound-
ary, viewed the impulsive system as a global discontinuous one consisting of several
uniquely-continuous subsystems and investigated its chatter dynamics [20, 21]. That
is, pulse phenomena means the motion would hit the same impulsive surface finite
number of times, which is just like the significant chatter phenomena of mechanical
systems provided in [22].

In practical, chatter arises fromvibro-impactswhen themoving parts of amechan-
ical system repeatedly contact with each other, and causes the system to exhibit
complex nonlinear dynamics, especially discontinuity [23]. Unfortunately, various
properties of the discontinuity bringmore complex dynamical behaviors to the global
discontinuous system than those separately continuous subsystems. Owing to the
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Fig. 1 A self-excited
oscillator includes a triode in
LC circuit and a pulse
controller

convenience of the theory of flow switchability in handling discontinuous systems
presented in [12], Fu and Zheng also extended a typical machining model into a
second-order impulsive equation and utilized such theory into the practical chatter
dynamics [24, 25]. By analyzing the energy change at the discontinuous separation
boundary, without restricting the global rigorous conditions for system, the previous
work was definitely simplified .

For the van der Pol equation with interrupted state provided in [10], its chatter
dynamic analysis can be given by flow theory as well.

For Eq. (3), the continuous part

x
′′ − μ f (x)x

′ + p20x = 0 (4)

is a more generalized typical motion form of Eq. (2), where x originally portrays the
oscillation voltage across the LC circuit (including inductor, capacitor and nonlinear
resistance) and the triode (including plate electrode P, grid electrode and the base
electrode) as shown in Fig. 1, the damping item f (x) can represent different kinds of
systems by modulating parameters and function expressions, and p0 represents the
perturbation for fixed frequency of the circuit. On the other hand, the discrete part
of Eq. (3) plays an important role when the plate electrode P is saturated. Once the
oscillationvoltage satisfies certain conditions, that is, at those discontinuousmoments
satisfying switching control law ϕ(t, x, x ′) = 0(which is proceeded from the critical
state for x when the base electrode emits electronswith a fixed acceleration), the pulse
controller in Fig. 1 will work according to impulse functions h1 and h2, inducing x
into h1(x(t)) and x ′ into h2(x(t), x ′(t)). Therefore, the original continuous system
Eq. (4) becomes an impulsive switched system Eq. (3) due to the impact effect
of the pulse controller, in which equation ϕ(t, x, x ′) = 0 portrays several obstacle
time-varying surfaces named impulse surface [18] and denoted by �.

For a standard format, introduce the state vector x = (x1, x2)T ∈ Ω ⊂ R × R,
where x1 = x, x2 = x ′, and the equivalent form of Eq. (3) can be given as

{
ẋ = F(t, x), ϕ(t, x) �= 0,
x(t+) = h(x(t)), ϕ(t, x) = 0,

(5)



Chatter Dynamics and Stability of the Impulsive van der Pol Equation 119

where the vector function F = (x2, μ f (x1)x2 − p20x1)
T and h = (h1, h2)T.

As analyzed before, the implicit function generated by ϕ or itself represents a
dynamical time-varying boundary in state space in R × R, dividing (x1, x2)-space
into following two domains varying as time passes,

Ω1 = {x|ϕ(t, x) > 0}, and
Ω2 = {x|ϕ(t, x) < 0}.

And the time-varying separation boundary is defined as

S = {x|ϕ(t, x) = 0},

which can be seen as the impulse surface.
As for different domains in state space, given any x(i) = (x (i)

1 , x (i)
2 )T ∈ Ωi ⊂

R × R, i = 1, 2, the behaviors for different solutions in different domains can be
described as a Cri -continuous system(ri ≥ 1) with the form of

ẋ(i) = F(i)(t, x(i)), (6)

where x(i) = (x (i), x (i)′)T is a point in i th sub-domain of phase space for Eq. (5),
F(i)(t, x(i)) is the vector field for the state x(i) and all time t inΩi , and the continuous
solution for Eq. (6) given by

x(i)(t) = �(t0, x(i)(t0), t) (7)

is Cri+1-continuous with initial point (t0, x(i)(t0)). On the other hand, from the per-
spective of dynamics, such solution can be treated as an intra-domain flow

x(i)
t = �(x(i)

0 , t − t0),

where �(x(i)
0 , t − t0) satisfies initial condition

x(i)(t0) = �(x(i)
0 , 0).

And for comparison, the reference flow xt which always lies on the boundary is
determined regarding to the intra-domain flow x(i)

t , satisfying

{
ϕ(t, xt ) = 0,
ẋt = F(0)(t, xt ),

(8)

where function F(0) comes from the derivative condition for the reference flow.
To discuss the chatter phenomena of the system, conceptions of collision point in

flow theory will be given.
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Definition 1 Consider a solution x(t) = �(t0, x0, t) of dynamical system Eq. (5)
with initial condition (t0, x0). We call point (t∗, x(t∗)) is a collision point of the
solution x(t) for the impulse surface S in the whole space, if there is a t∗, such that
ϕ(t∗, x(t∗)) .= ϕ(t∗) = 0.

Then, we state definitions of absence and presence of chatter phenomena based
on the numbers of the collision points.

Definition 2 For dynamical system Eq. (5), the absence of chatter phenomena is
that, there is at most only one collision point of any solution starting from state space
Ωα (α ∈ {1, 2}) for the impulse surface S, i.e., there is at most only one t∗, such
that (t∗, x(t∗)) ∈ Σ ; the presence of chatter phenomena is that, there are at least
two collision points of any solution starting from state space Ωα (α ∈ {1, 2}) for the
impulse surface S.

Here we give three different sufficient conditions to make the chatter phenomena
absent by using the idea of flow theory.

Lemma 1 Consider dynamical systems Eqs. (5) and (8) with corresponding flows
x(α)
t (α ∈ {1, 2}) and xt . Suppose that for the impulse surface S, the corresponding
normal vector isnS(t, xt ). For any solution of Eq. (5) starting from (t0, x0) inΩα(α ∈
{1, 2}), there is at most only one collision point for the impulse surface S, i.e., the
chatter phenomena of Eq. (5) is absent, if any one of following conditions is satisfied,
(H1) for ∀t ≥ t0, there exists a B(t) ∈ L

′
(R+, R+), such that

nT
S(t, xt ) · F(λ) ≥ B(t), for λ ∈ {0, α}, α = 1, 2,

where
∫ ∞
t B(s)ds = ∞, and

F(α) = F(α)(t, x(α)
t ), in Ωα,

F(0) = F(0)(t, xt ) = ẋt , on S;
}

(H2)

for nT
S · (x(α) − x) < 0, G(α)

S (t, x(α)) ≥ 0; or,

for nT
S · (x(α) − x) > 0, G(α)

S (t, x(α)) �= 2V ′(t),

where α = 1, 2;
(H3) for nT

S · (x(α) − x) < 0,

G(α)
S (t, x(α)) ≥ 0; or,

for nT
S · (x(α) − x) > 0, when G(α)

S (t, x(α)) = 2V ′(t),

G(1,α)
S (t, x(α)) > 0,
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where α = 1, 2.

Here G(α)
S (t, x(α)) = nT

S(t, x) · ẋ(α) and G(1,α)
S (t, x(α)) = DG(α)

S (t, x(α)) are G-
functions, andnS(t, xt ) = (∇ϕ)T is correspondingnormal vector on the time-varying
separation boundary S, where ∇ = (∂/∂x1, ∂/∂x2)T is the Hamiltonian operator.
V (t) comes from Y = x ′ − V (t) showing the critical state for x . The proof and more
details of the chatter dynamic analysis can be referred in [10].

3 Stability Analysis

With the guarantee of the absent of chatter, corresponding flow behaviors including
periodic motion and the stability of equilibrium could be investigated as similar as
a continuous system. However, once the conditions of lemma could not be satisfied,
the dynamics will be more complicated. Due to the changes of characters brought
by discontinuity, it is far from an easy task to the systematic qualitative work of such
system. Up to now, we have discussed the periodic motion with specific periodic
impulsive excitations, and presented analytical conditions for such periodic motion
from certain mapping structures [17]. In this chapter, further investigations about the
stability of equilibrium will be carried out on dynamics of such switched discontin-
uous system Eq. (3). As such system possesses both the continuous characteristics
of differential systems and discrete characteristics of impact discontinuity, we will
apply the flow theory in discrete and switching dynamical systems provided in [26],
and investigate corresponding stability properties by various metric functions, which
is different from the traditional Lyapunov stability condition.

3.1 Preliminaries

In actual operation, because of the periodic property of the van der Pol oscillation, sat-
uration current will appear regularly in Fig. 1. Suppose those switching moments for
critical state in Eq. (3) could be calculated explicitly from equation ϕ(t, x, x ′) = 0 as
t = tk(k = 1, 2, ...), bywhich the impulse surface�k could be regarded as a sequence
of surfaces in the whole space. That is to say, it is at fixed switching moments tk that
the plate electrode P is saturated and aborted. Furthermore, tk = kT (k = 1, 2, ...),
where T is the period of oscillation. So that, the pulse controller will work cyclically
as well, complementing electrons, smoothing the abrupt change of state, and finally
modulating the system by the Newton’s law of restitution, which can be applied
as the effect of impulsive control strategy in general mechanical problems [27]. To
be specific, when critical state is reached, the pulse controller will excite the sys-
tem based on certain impulse functions h1 and h2, making the stimulation adhere to
impulse-momentum law andNewton’s law.And the impulse functions can be applied
as h1(x(t)) = e1x(t) and h2(x(t), x ′(t)) = e2x ′(t), where e1 and e2 are coefficients
of restitution, representing the ratio for electron’s velocity and acceleration after
and before each stimulation, respectively, which can be determined through experi-
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ments. In this way, the state of Eq. (3) will experience a relative perturbation acting
instantaneously, in other words, a specific form of impulse, inducing discontinuity.

Thus, to analyze the complex qualitative property of practical oscillation for Eq.
(3), we just need to investigate on the following certain case

⎧
⎨

⎩

x ′′ − μ f (x)x ′ + p20x = 0, t �= tk,
x(t+) = e1x(t), t = tk,
x ′(t+) = e2x ′(t), t = tk,

(9)

where tks(k ∈ Z) are switching moments.
Just like a traditional impulsive differential system at fixed moments, Eq. (9) can

be seen as a hybrid system that is composed of a family of continuous subsystems
and corresponding discrete jumps between each two subsystems. And in application,
it originally gives the evolution process of the oscillation circuit subject to impulsive
effects, that is, atmoments except those tks cyclically, the solution ofEq. (9)willmove
in accordance with the self-excited oscillation Eq. (4); when at switching moments
t = tk (k ∈ Z), the solution will experience an instantaneous switch in obedience to
the impulse functions, which is left continuous, and assume that it will not encounter
another changing immediately after one jump, that is, for an arbitrary δ > 0, there
will be a moment s, such that, tk < s < δ and s �= tl, ∀l ∈ Z . Thus, in the following
discussion, we will pay attention to the right limits of the state at switching moments.

Recently, some geometric and theoretical work about discontinuous limit cycle
have been obtained for quantitative results of Eq. (9) [28]. While to analyze and
predict the precise motion of a solution especially when impulse occurs, there are
still many work to do. Here, we will focus on the system’s dynamical behaviors
near the switching moments and apply the flow theory to investigate on the stability
of equilibrium. As we know, trivial solution is the equilibrium of Eq. (4), which
behaves the same way in Eq. (9) according to special impulse functions. We denote
such equilibrium as x(t0, 0, t)

.= x∗.
As mentioned above, such discontinuous dynamical system caused by impacts

can be deemed as a global discontinuous one consisting of several sub-switching
systems, with its state-space of motion consisting of many continuous sub-domains.
Hence, on account of those switchingmoments t = tk(k = 1, 2, ...), there is a division
about the phase space (x, x ′) ∈ Ω ⊂ R × R into several sub-domains and adjacent
boundaries varying as time passes, with the following definitions.

For dynamical system Eq. (9) with finite number of times impulses, where the
impulse time is tk(k ∈ Z ), the sub-domain between i th and (i + 1)th impulse for
motion of Eq. (9) without any impulse when t ∈ (ti , ti+1) is given as

Ωi = {(x(t), x ′(t))|x ′(t) �= V, t ∈ (ti , ti+1), ti = kT, k ∈ Z}, i = 1, 2, ...,m,

where V is the threshold for x ′(t) derived from the acceleration of electrons; and the
j th impulse surface as separation boundary at t j is given as

∂Ω j = {(x j , x
′
j )|x ′

j = V, t = t j , t j = kT, k ∈ Z}, j = 1, 2, ..., n,
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where x j = x(t j ), x ′
j = x ′(t j ).

Thus, the universal phase space for total motion with several sub-domains and
adjacent boundaries can be given as

Ω =
( m⋃

i=1

Ωi

)

∪
( n⋃

j=1

∂Ω j

)

,

onwhichEq. (9) is a switched systemwith respective subsystems in each sub-domain.
As described in Sect. 2, the vector form of Eq. (9) can be given as

{
ẋ = F(t, x), t �= tk,
x(t+) = h(x(t)), t = tk,

(10)

where the vector function F = (x2, μ f (x1)x2 − p20x1)
T and h = (e1x1, e2x2)T. The

vector form for its continuous part Eq. (4) and the intra-domain flow can be given as
Eqs. (6) and (7), where i extends to i ∈ {1, 2, ...,m} instead of i ∈ {1, 2}.

Meanwhile, given any (x j , x ′
j ) ∈ ∂Ω j ⊂ Ω, according to the definition of sepa-

ration boundary ∂Ω j , the transport law at time t = t j is governed by equation

g( j, j+1)(x( j)
j , x( j+1)

j ) = 0, (11)

where the superscript ( j, j + 1) represents the intra-flowchanging fromx( j) tox( j+1),
and here x( j)

j = x( j)(t j ), while x( j+1)
j = x( j+1)(t+j ) is the right limit of the state,

without causing ambiguity. Governing function Eq. (11) for behaviors of motion on
the separation boundary ∂Ω j can be derived from corresponding transport law of
switching in Eq. (10).

Therefore, with the combination of the subsystems Eq. (6) in sub-domain Ωi s
and the transport laws Eq. (11) on separation boundary ∂Ω j s, Eq. (9) (or its vector
form Eq. (10)) could be investigated separately according to each vector field and
governing function. Specifically, the discontinuous flow of switching system Eq.
(9) can be separated into several continuous intra-flows according to Eq. (7). As a
whole, the union of all the intra-flows of the subsystems in a certain queue series

on Ω = (
m⋃

i=1
Ωi ) ∪ (

n⋃

j=1
∂Ω j ) can be considered as a resultant flow (or resultant

solution) γ (t0, t) given by

γ (t0, x0, t)
.= γ (t0, t) =

m0−1⋃

i=1

γ (i)(ti−1, ti )
⋃

γ (m0)(tm0−1, t), (12)

where t ∈ (tm0−1, tm0), m0 ∈ {1, 2, ...,m}, x0 represents initial point which can be
omitted when the initial condition is not emphasized, and each

γ (i)(ti−1, ti ) = {x(i)(t)|x(i)(t) = �(ti−1, x
(i)
i−1, t) in Ωi for all t ∈ [ti−1, ti ]},
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with x(i)
i−1 = x(i)(ti−1).

From the above discussion, any global flow of the switching system Eq. (9) can
be managed by various continuous intra-flows in different sub-domains, while the
resultant flow keep them together in union, which can be adopted in study of stability
properties. In the following, we will introduce several basic concepts and metric
functions for stability.

3.2 Basic Conceptions

To investigate the stability in the vicinity of equilibrium for the switching system
consisting of several subsystems in phase space, corresponding metric functions are
defined by relative displacement function provided in [26] as follows.

Definition 3 For switched dynamical system Eq. (9) and the equilibrium point x∗

in phase space, consider a division Ω = (
m⋃

i=1
Ωi ) ∪ (

n⋃

j=1
∂Ω j ) on account of impulse

moments tks(k = 1, 2, ...) and a flow x of Eq. (9). The relative displacement function
for the flow x to the point x∗ is defined by

d(x, x∗) = ‖x − x∗‖. (13)

If there is a monotonically increasing or decreasing metric function of the relative
displacement function

V (x, x∗) = V (d(x, x∗)) .= E, (14)

with the property of

V (x, x∗) = min(or max), if d(x, x∗) = 0,

such monotonic function V (x, x∗) is called a generalized measuring function of Eq.
(9) in the neighbourhood of x∗.

If E = C ≡ const , there will be a surface in the phase space, demonstrated by

V (x, x∗) = E = C, (15)

which is called the equi-measuring function surface of x∗.

In addition, for different values of E = Ei (i = 1, 2, ...), we can get a set of the
equi-measuring function surfaces, filling the entire domain of the neighbourhood of
x∗. And for each E = Ei , the normal vector of the equi-measuring function surface
V (x, x∗) = Ei is expressed by

nv(x, x∗) = ∇V (x, x∗),
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where the subscript v represents equi-measuring function surface, and the Hamilto-
nian operator symbol ∇ can be calculated as Sect. 2.

Based onmeasuring functions and equi-measuring function surfaces, correspond-
ing G-function can be defined as another metric function useful for analysis across
time-varying boundary. In virtue of the discontinuity of global flow, such metric
function can be given in each subsystem as follows.

Definition 4 For switched dynamical system Eq. (9) with equilibrium point x∗ in
phase space, and the i-th subsystem Ωi with vector field F(i)(t, x(i)) in Eq. (6),
consider an intra-flow x(i) of Eq. (9) approaches the equi-measuring function surface
with corresponding constant E = C in Eq. (15) at time t . The metric G-function at
the constant measuring function level about point x∗ is defined as

Gv(x(i), x∗, t) = [nv(x(i), x∗)]T · F(i)(t, x(i)). (16)

Remark 1 ThemetricG-function is the dot product of vector fieldF(i)(t, x(i)) for the
i-th subsystem Ωi and the normal vector nv(x(i), x∗), with a geometric meaning of
the component for flow’s vector field in normal direction of equi-measuring function
surfaces at different moment, which is a metric parameter to measure dynamical
behaviors of any subsystems to the equi-measuring function surfaces.

Followed by themetricV-functions andG-functions, additional functions describ-
ing increments between different moments about the measuring function will be
proposed as follows.

Definition 5 For an intra-flow x(i) of switched dynamical system Eq. (9) in the i-th
subsystem Ωi with vector field F(i)(t, x(i)) in Eq. (6), x∗ is the equilibrium point in
phase space, V (x(i), x∗) in Eq. (14) is corresponding measuring function with the
relative displacement function d(x(i), x∗) in Eq. (13). For any time t ∈ (ti−1, ti ], the
total change of the measuring function for time interval [ti−1, t] in the vicinity of
point x∗ is defined as

L(i)(x∗, ti−1, t) = ∫ t
ti−1

dE (i)(t)
dt

= ∫ t
ti−1

Gv(x(i), x∗, t)dt
= ∫ t

ti−1
[nv(x(i), x∗)]T · F(i)(t, x(i))dt

= V (x(i)(t), x∗) − V (x(i)
i−1, x

∗),

(17)

where x(i)
i−1 = x(i)(t+i−1).

When t = ti in Eq. (17), the total change of the measuring function between ti−1

and ti is the increment of the measuring function about the i-th subsystem Ωi in Eq.
(6) as follows

L(i)(x∗, ti−1, ti ) = ∫ ti
ti−1

Gv(x(i), x∗, t)dt
= ∫ ti

ti−1
[nv(x(i), x∗)]T · F(i)(t, x(i))dt

= V (x(i)
i , x∗) − V (x(i)

i−1, x
∗),

(18)
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where x(i)
i = x(i)(ti ) and x(i)

i−1 = x(i)(t+i−1).
FromEq. (18), we can obtain the total change of the measuring function in the i-th

subsystem, which can be regarded as the quantity increment of the equi-measuring
function surface.

On the other hand, once a flow arrives adjacent boundary from a subsystem,
according to Eq. (9), it will jump and change into another intra-flow abruptly, causing
a different kind of increment. Such quantity increment of the equi-measuring function
surface for the switching from subsystem Ωi to adjacent subsystem Ωi+1 through
separation boundary ∂Ωi+1 at time t = ti according to transport law Eq. (11) is
defined as

L(i,i+1)

 (x∗, ti ) = V (x(i+1)

i , x∗) − V (x(i)
i , x∗), (19)

where the subscript 
 represents the incremental quantity, and the superscript
(i, i + 1) represents the intra-flow changing from x(i) to x(i+1), in addition, here
x(i)
i = x(i)(ti ), while x

(i+1)
i = x(i+1)(t+i ) is the right limit of the state, without caus-

ing ambiguity.
It is shown that, the above increment functions L-functions are all pertaining to

the averaging of a intra-flow or different passable intra-flows to the equi-measuring
function surface V (x(i), x∗) = C for a certain time interval. To determine the global
increase or decrease for a switching system, we have to refer to the case of global
flow. Consider the global resultant flow γ (t0, t)(t ∈ (tm0−1, tm0), m0 ∈ {1, 2, ...})
given in Eq. (12), we can define corresponding resultant L-function along γ (t0, t) as

L(x∗, t0, t) =
m0−1∑

i=1

[L(i)(x∗, ti−1, ti ) + L(i,i+1)

 (x∗, ti )] + L(m0)(x∗, tm0−1, t). (20)

Note that each quantity increment of the equi-measuring function surface for a
time interval or at certain switching moment are computed as Eqs. (18) and (19),
together with the change of the measuring function Eq. (17) within sub-domain, Eq.
(20) can be computed out and reduced into a simple form of

L(x∗, t0, t) = V (x(m0)(t), x∗) − V (x0, x∗), (21)

where x0 is the initial point, and t ∈ (tm0−1, tm0), m0 ∈ {1, 2, ...}.
Take the above definitions as the basis, we will give definition of various stability

for equilibrium of the switched dynamical system Eq. (9) as follows.

Definition 6 For switched dynamical system Eq. (9), the trivial solution x∗ is said
to be
(i) stable, if for every ε > 0, t0 ≥ 0, there exists a δ = δ(t0, ε) > 0, such that for
every resultant solution γ (t0, x0, t) of initial problem Eq. (9), ‖x0‖ < δ implies that
‖γ (t0, x0, t)‖ < ε, when t ≥ t0;
(i i) uniformly stable, if δ in (i) is independent of t0;
(i i i) asymptotically stable, if for every ε > 0, t0 ≥ 0, there exists a η = η(t0) > 0
and a moment T = T (t0, ε) > 0, such that for every resultant solution γ (t0, x0, t) of
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initial problem Eq. (9), ‖x0‖ < η implies that ‖γ (t0, x0, t)‖ < ε, when t ≥ t0 + T ;
(iv) uniformly asymptotically stable, if for every ε > 0, there is some η > 0, for
∀t0 ≥ 0, there exists a moment T = T (η, ε) > 0, such that for every resultant solu-
tion γ (t0, x0, t) of initial problem Eq. (9), ‖x0‖ < η implies that ‖γ (t0, x0, t)‖ < ε,

when t ≥ t0 + T .

3.3 Stability Criteria

In this section, unlike the traditional Lyapunov stability condition, on account of the
special properties of equi-measuring function surfaces and various metric functions,
wewill give the following theories to investigate the stability of discontinuous system
Eq. (9).

Theorem 1 For switched dynamical system Eq. (9) with impulsive effect on domain

Ω = (
m⋃

i=1
Ωi ) ∪ (

N⋃

j=1
∂Ω j ), consider the i-th dynamical subsystem Ωi with vector

fieldF(i)(t, x(i)) in Eq. (6), and the resultant flow γ (t0, t) in Eq. (12). If the measuring
function V (x, x∗) in Eq. (14) monotonically increases with the relative displacement
function d(x, x∗) in Eq. (13), and for any time t ≥ t0, the following conditions are
satisfied,
(C1) for intra-flow x(k) ∈ γ (k)(tk−1, tk) with t ∈ [tk−1, tk],

Gv(x(k), x∗, t) = [nv(x(k), x∗)]T · F(k)(t, x(k)) < 0,

and
(C2) for transport law from intra-flow x(k) to x(k+1) at switching moment t = tk ,

L(k,k+1)

 (x∗, tk) ≤ 0,

where k = 1, 2, ...,m.

Then the trivial solution x∗ of Eq. (9) is uniformly asymptotically stable.
Proof Suppose the resultant solution of Eq. (9) starting from (t0, x0) is denoted as
γ (t0, x0, t) for t ≥ t0. For an arbitrary ε > 0, suppose that ε < a0, where a0 is a
certain small positive number. In virtue of the condition that the measuring function
in Eq. (14) monotonically increases with the relative displacement function in Eq.
(13), it is obvious that,

V (x, x∗) = min, if d(x, x∗) = 0.

Without loss of generality, denote l = minε≤d(x,x∗)≤a0 V (x, x∗), which is a positive
number.

Consider condition (C1), for the resultant solution γ (t0, x0, t)(t ∈ (tm0−1, tm0),

m0 ∈ {1, 2, ...,m}), we can find a positive number M small enough, satisfying
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Gv(γ (t0, x0, t), x∗, t) ≤ −M < 0.

By integration term by term, and together with condition (C2), according to Eqs.
(16), (17) and (19), it gives

V (γ (t0, x0, t), x∗) − V (x0, x∗)
= L(x∗, t0, t)
= ∑m0−1

i=1 [L(i)(x∗, ti−1, ti ) + L(i,i+1)

 (x∗, ti )] + L(m0)(x∗, tm0−1, t)

= ∑m0−1
i=1 [∫ ti

ti−1
Gv(x(i), x∗, t)dt] + ∫ t

tm0
Gv(x(m0), x∗, t)dt

+∑m0−1
i=1 [L(i,i+1)


 (x∗, ti )]
≤ −M(t − t0).

On the other hand, there exists a certain positive number η > 0, when ‖x0‖ < η,
it gives

V (x0, x∗) < V (η, x∗),

in virtue of the condition that the measuring function is monotonically increasing
with the relative displacement function.

Therefore, taking T = 1
M [V (η, x∗) − l], it is obtained for t ≥ t0 + T that,

V (γ (t0, x0, t), x∗) < l = min
ε≤d(x,x∗)≤a0

V (x, x∗),

which implies
‖γ (t0, x0, t)‖ < ε,

and finally leads to the completion of proof.

Theorem 2 For switched dynamical system Eq. (9) with impulsive effect, under
the same notation of Theorem 1. If the measuring function V (x, x∗) in Eq. (14) is
minimum when d(x, x∗) = 0 in Eq. (13), and for any time t ≥ t0, (C2) is kept while
(C1) is replaced by
(C

′
1) for intra-flow x(k) ∈ γ (k)(tk−1, tk) with t ∈ [tk−1, tk],

Gv(x(k), x∗, t) = [nv(x(k), x∗)]T · F(k)(t, x(k)) ≤ 0,

where k = 1, 2, ...,m.

Then the trivial solution x∗ of Eq. (9) is uniformly stable.

Proof Suppose the solution of Eq. (9) starting from (t0, x0) is denoted as γ (t0, x0, t)
for t ≥ t0. For an arbitrary ε > 0, suppose that ε < a0, where a0 is a certain small
positive number. In virtue of the condition that the measuring function V (x, x∗) in
Eq. (14) is minimum when d(x, x∗) = 0, in the bounded closed set [ε, a0], denote

l = min
ε≤d(x,x∗)≤a0

V (x, x∗) > 0, (22)



Chatter Dynamics and Stability of the Impulsive van der Pol Equation 129

therefore, for the positive number l > 0, there exists a certain positive number δ > 0,
when ‖x‖ < δ, it gives

V (x, x∗) <
l

2
. (23)

Next, we will show that for every resultant solution γ (t0, x0, t) of initial problem
Eq. (9), once the condition ‖x0‖ < δ was satisfied, it would be implied that

‖γ (t0, x0, t)‖ < ε,

for t ≥ t0.
Or else, assume there exists a resultant solution γ (t0, x0, t) of Eq. (9) satisfying

the initial condition ‖x0‖ < δ, and there exists a moment t1 > t0, which is not a
switching moment, such that

‖γ (t0, x0, t)‖ < ε,

for t ∈ [t0, t1), but
‖γ (t0, x0, t1)‖ = ε. (24)

Suppose the moment t1 satisfies tm1−1 < t1 < tm1 for a certain m1 ∈ {1, 2, ...,m},
and for the measuring function V (x, x∗), make integration from t0 to t1 for every
intervals. According to Eqs. (16), (17) and (19), together with (C

′
1) and (C2), it gives

V (γ (t0, x0, t1), x∗) − V (x0, x∗)
= L(x∗, t0, t1)
= ∑m1−1

i=1 [L(i)(x∗, ti−1, ti ) + L(i,i+1)

 (x∗, ti )] + L(m1)(x∗, tm1−1, t1)

= ∑m1−1
i=1 [∫ ti

ti−1
Gv(x(i), x∗, t)dt] + ∫ t

tm1
Gv(x(m1), x∗, t)dt

+∑m1−1
i=1 [L(i,i+1)


 (x∗, ti )]
≤ 0,

i.e.,
V (γ (t0, x0, t1), x∗) ≤ V (x0, x∗). (25)

Therefore, as ‖x0‖ < δ, in virtue of the relation of Eq. (23), it is obtained that

V (x0, x∗) <
l

2
.

On the other hand, in Eq. (24), as ‖γ (t0, x0, t1)‖ = ε, which is consistent with
the range for Eq. (22) of the minimum of the measuring function, together with Eq.
(25), it is implied that

l ≤ V (γ (t0, x0, t1), x∗) ≤ V (x0, x∗) <
l

2
,
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which comes to a contradiction against the positive number and the proof is com-
pleted.

Theorem 3 Under the same assumptions of Theorem 1, if the measuring function
V (x, x∗) in Eq. (14) monotonically increases with the relative displacement function
d(x, x∗) in Eq. (13), and (C1) and (C2) are replaced by

(C3) for global resultant solutionγ (t0, x0, t) in domainΩ =
m∗
⋃

i=1
Ωi , t ∈ (tm∗−1, tm∗),

m∗ ∈ {1, 2, ...},
L(x∗, t0, t) ≤ Vmin − V (x0, x∗),

where Vmin is the minimum of the measuring function, and (t0, x0) is the initial point
of Eq. (9).

Then the trivial solution x∗ of Eq. (9) is uniformly stable.

Proof For the resultant solution γ (t0, x0, t) and an arbitrary ε > 0, take δ = ε
2 > 0.

In virtue of the condition that the measuring function in Eq. (14) monotonically
increases with the relative displacement function, when initial condition ‖x0‖ < δ is
satisfied, we can get

V (x0, x∗) < V (δ, x∗). (26)

As Vmin is the minimum of the measuring function, when ‖x0‖ < δ, it is obvious
that

V (x0, x∗) ≥ Vmin . (27)

On the other hand, based on (C3) and the former equivalent form of corre-

sponding resultant L-function Eq. (21) along γ (t0, x0, t) in domain Ω =
m∗
⋃

i=1
Ωi for

t ∈ (tm∗−1, tm∗), m∗ ∈ {1, 2, ...}, it implies that

V (γ (m∗)(tm∗−1, t), x∗) − V (x0, x∗) ≤ Vmin − V (x0, x∗),

in which γ (m∗)(tm∗−1, t) ⊂ γ (t0, x0, t) is the last portion of the resultant flow inΩm∗ ,
according to the definition in Eq. (12).

Together with Eqs. (26) and (27), it gives that

V (γ (m∗)(tm∗−1, t), x∗) ≤ V (δ, x∗).
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Take the condition of the monotonicity of the measuring function and the value
of δ = ε

2 into account, the above relation gives

‖γ (m∗)(tm∗−1, t)‖ <
ε

2
,

for t ∈ (tm∗−1, tm∗), m∗ ∈ {1, 2, ...}, that is,

‖γ (t0, x0, t)‖ <
ε

2
,

which finally leads to the completion of proof.

Remark 2 Based on the resultant L-function along the resultant solutionγ (t0, x0, t),
we can get a stability criterion with weaker conditions than Theorems 1 and 2 with
metric G-function and several quantity increment functions, which are all more sim-
plified than traditional Lyapunov stability criteria requiring rigorous global condi-
tions.

Next, we will present another benefit of the resultant L-function L(x∗, t0, t) of
the resultant solution in investigating periodic dynamics as follows.

Corollary 1 For switched dynamical system Eq. (9) with impulsive effect on domain

Ω = (
m⋃

i=1
Ωi ) ∪ (

N⋃

j=1
∂Ω j ), if there is a periodic motion with period of T0 in the

vicinity of equilibrium x∗, then the resultant L-function L(x∗, t0, t0 + T0) = 0.

Here, we omit the proof of this corollary, which can be found out in our periodic
work.

4 Applications

In this section, the stability criteria will be applied in a practical problem with a
specific impulsive model at fixed points, and the analytical prediction for equilibrium
and periodic motions will be illustrated.

In the first place, we consider the van der Pol oscillation Eq. (9) which is subdued
to specific impulse functions modeled by the Newton’s law of restitution, and take
f (x) = 1 as a specific damping item.As a special case of the single freedomvibration
system, its vector form is given as follows

{
ẋ = F(t, x), t �= tk,
x(t+) = h(x(t)), t = tk,

(28)

where tk(k ∈ Z) are impulse moments, x = (x1, x2)T ∈ Ω ⊂ (R × R) with x1 = x
and x2 = x ′, the vector function F = (x2, μx2 − p20x1)

T and h = (e1x1, e2x2)T, and
it is obvious that the trivial solution x∗ is its equilibrium.



132 S. Zheng and X. Fu

Note that the general solution of the differential equation without impulse effect
in Eq. (28) is given by

x(t) = e
μ

2 t (C1sin(

√

4p20 − μ2

2
t) + C2cos(

√

4p20 − μ2

2
t)), (29)

where the integral constants Ci (i = 1, 2) depend on initial conditions.
And for the particular solution of initial problem, for simplicity, suppose the first

impact occurs at t0 = kT (k ∈ Z), in which T is the period of the pulse controller.
Suppose (t0, x0, x ′

0) is some point on a certain switching boundary. By integration
for the continuous part, a particular solution for Eq. (28) with the initial condition
(t0, x

+
0 , x

′+
0 ), where x(t+0 ) = x+

0 , x ′(t+0 ) = x
′+
0 , is given as

x(t, x+
0 , x

′+
0 , t0) = e

μ
2 (t−t0){ 2√

4p20−μ2
sin(

√

4p20−μ2

2 (t − t0))x
′+
0

+
[

−μ√

4p20−μ2
sin(

√

4p20−μ2

2 (t − t0)) + cos(

√

4p20−μ2

2 (t − t0))

]

x+
0 },
(30)

in which C1 = 2x ′
0√

4p20−μ2
, C2 = 0, and most important, t ∈ (t0, t0 + T ] represents

the continuous motion within one sub-domain. And the derivative gives as

x ′(t, x+
0 , x

′+
0 , t0) = e

μ
2 (t−t0){

[

μ√

4p20−μ2
sin(

√

4p20−μ2

2 (t − t0)) + cos(

√

4p20−μ2

2 (t − t0))

]

x
′+
0

− 2p20√

4p20−μ2
sin(

√

4p20−μ2

2 (t − t0))x
+
0 },

(31)
where t ∈ (t0, t0 + T ] as well.

As discussed in Sect. 3, take V (x, x∗) = V (d(x, x∗)) = d2 = x21 + x22 as themea-
suring function, and the normal vector of the equi-measuring function surface is
expressed by

nv(x, x∗) = ∇V (x, x∗)
= ∂V (x,x∗)

∂x
= ( ∂V (x,x∗)

∂x1
, ∂V (x,x∗)

∂x2
)T

= (2x1, 2x2)T.

Therefore, suppose such intra-flow for t ∈ (t0, t0 + T ] is kept in sub-domain Ωi0 ,
according to the definition of themetricG-function at the constantmeasuring function
level about x∗ and the component of Eq. (28) in Ωi0 , Eq. (16) gives

Gv(x(i0), x∗, t) = [nv(x(i0), x∗)]T · F(i0)(t, x(i0))

= 2(1 − p20)x1x2 + 2μx22 .
(32)
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Fig. 2 The original continuous motion for an intra-flow for Eq. (28) without the impulsive effect
with certain parameters showing instability of equilibrium

With the application of theorems in Sect. 3, we can get the critical parameters of
μ for stability of equilibriumwith Eq. (32), that is,μ ∈ (0, μS(p0))whereμS(p0) =
x0
x ′
0
(1 − p20). Actually, when we portray the original curve of Eqs. (29)–(31), certain

parameters and initial conditions will show instability phenomena after some time
scale as shown in Fig. 2. Consider following parameters for numerical illustrations
of the original continuous motion for Eq. (28) without the effect of impulse with
t f = 16.100, and

μ = 1.001, p0 = 1.118, t0 = 0, x0 = 0.200, x ′
0 = 0.002,

where the initial condition (0.200, 0.002) and μ > μS(p0) indicate the increase of
amplification and final instability of equilibrium after certain time scale, which con-
form to the results in Sect. 3. The solid and dashed curves in the left figure represent
the original continuous oscillation response x and its derivative, respectively; and the
phase diagram for the original trajectory is shown on the right with a smooth border
but an unstable tendency after certain time scale.

By contrast, consider the effect of impulsewhen pulse controller works aswe have
presented in [10] and a global specific periodic motion can be obtained by taking
appropriate initial conditions and coefficients of restitution. Choose T = 4π√

4p20−μ2

such that once the intra-flow comes to the boundary, a modified state will be guaran-
teed, extending to a global piecewise motion as Fig. 3 shown with initial conditions
and parameters as

x0 = 1.000, x ′
0 = 0.100, e1 = 0.990, e2 = 1.730, T = 6.283, t f = 29.050.
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Fig. 3 Optimized motion of solution for Eq. (28) showing periodic oscillation response to the
stimulation of impulse

As the optimized curve shown in Fig. 3, it is because at those switching moments
the pulse controller works with impulse functions generating sinusoidal signals to
the system, we can easily observe a periodic motion but a sightly abrupt decrease
when the oscillator reaches limits for switching. Meanwhile, the equilibrium still
shows instability because of the value of μ.

Besides, once the intra-flow comes to the boundary ∂Ωi0+1, the quantity increment
of the equi-measuring function surface at time t = ti0 according to transport law Eq.
(19) and the impulse functions in Eq. (28) is given by

L(i0,i0+1)

 (x∗, ti0) = V (x(i0+1)(t+i0 ), x

∗) − V (x(i0)(ti0), x
∗)

= (e21 − 1)x21 + (e22 − 1)x22 ,

satisfying L(i0,i0+1)

 (x∗, ti0) = 0 when the above initial conditions and coefficients of

restitution are taken, which conforms to the corollary in Sect. 3.

5 Conclusions

The dynamics of a kind of van der Pol equationwith impulsive effect are investigated.
For the equation with interrupted state, due to the changes of characters brought by
discontinuity, we take a different approach to its dynamical analysis and utilize the
flow theory in discontinuous dynamical systems. Viewing the hybrid system as a
global one consisting of every subsystem in each sub-domains, we focus on the
local singularity of the switched system. Especially by constructing various metric
functions, stability criteria of equilibriumare discussed.Different from the traditional
geometric theory for continuous van der Pol equation, local properties governed by
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transport law near the time-varying boundaries are investigated bymetricG-function,
L-function, etc., without considering the global rigorous conditions of Lyapunov
stability criteria. The results are more general than the previous work especially
when impulse occurs. We also find that it is beneficial for periodic motion research
to utilize metric functions. Applying the analysis and criteria to a specific impulsive
model, different motions as well as the periodic oscillation under the stimulation of
impulse are illustrated as well. More complex motions and systematic qualitative
work of the switched van der Pol equation, as well as bifurcations are investigated
at present and will be reported in the future.
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Complex Motions in an Inclined Impact
Pair with a Periodic Excitation

Xilin Fu and Yanyan Zhang

Abstract Using the flow switchability theory of the discontinuous dynamical sys-
tems, the complex dynamics of an inclined impact oscillator under periodic excitation
are investigated in this chapter. According to impact discontinuity different domains
and boundaries are defined. And then the occurrence and vanishing conditions of
stick motions and grazingmotions are obtained analytically. Furthermore the generic
mapping structure of periodic motions are given, and the existence conditions of two
periodic motions without stick are investigated in detailed.

1 Introduction

The complex dynamics of the discontinuous dynamical systems have been draw-
ing many researchers’ attentions, among them complicated dynamical behaviors of
vibro-impact systems are one of foci, because impact is one of two basic forms of
interaction between two or more moving parts in mechanical engineering.

In 1966, Masri and Caughey [1] investigated the theoretical exact solutions of
symmetric two-impact-per-cycle periodic motion in a horizontal impact damper, and
obtained their asymptotically stable regions. Bapat et al. [2, 3] investigated an impact
pair under periodical excitation by experimental observations and theoretical analy-
sis, periodic motions were analytically predicted using the closed form solution, and
verified that the effect of small higher frequency components on the periodic motion
were negligible. Shaw and Holmes [4] studied periodic motions and chaotic motions
of a single-degree-of-freedom piecewise linear oscillator by digital simulation. Luo
and coworkers [5, 6] studied periodic motion and their period-doubling bifurcations
in a horizontal impact pair under sinusoidally periodic excitation, obtained exis-
tence conditions and stability results analytically and numerically. The analytical
conditions for stick motions and grazing motions of such pair were investigated by
the theory of flow switchability for the discontinuous dynamical systems in Guo
and Luo [7] and Luo and Guo [8], the generic mapping structure of period motions
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were obtained. Yue [9] studied dynamical behaviors of a symmetric impact oscil-
lator between two rigid stops, stability and bifurcations of the symmetric periodic
motion were obtained using symmetric Poincaré map. Wen et al. [10] used the spec-
trum of the largest Lyapunov exponent in parameter plane to investigate a peculiar
discontinuous bifurcation phenomenon derived from grazing bifurcation. The above
discussions investigated intensively dynamical behaviors of the horizontal impact
systems, however the bouncing ball, whose dynamics were influenced by gravity,
were also one of the studied foci. In 1982, Holmes [11] investigated the dynami-
cal behavior of a ball bouncing vertically on a periodically vibrating table using a
difference equation derived. Furthermore, Luo and Han [12] predicted stability and
bifurcation of periodic motions for such bouncing ball using differential equations
derived, and the analytical predictions for stick motions and grazing motions were
developed in Guo and Luo [13] and Luo and Guo [8], periodic motions with or with-
out stick were also studied by mapping dynamics of the discontinuous dynamical
systems. In Luo and Guo [8], the complex dynamics of a generalized Fermi acceler-
ation oscillator were also studied. Using Poincaré maps, Okniński and Radziszewski
[14, 15] investigated dynamics of a bouncing ball colliding with a table movingly
under different periodical excitation by analytical and numerical investigation. Based
on Peterka’s approach, the stable periodic solutions of a cantilever beammodel with a
mass impacting against a harmonically moving frame were investigated analytically
and numerically in Czolczynski et al. [16]. The inclined impact oscillators, which
affected by gravity and inclination, had more rich and complicated dynamical behav-
iors, however there were less paper to study it. Bapat [17] investigated the dynamical
motions of an inclined impact damper with friction under sinusoidal force theoret-
ically and numerically. Heiman et al. [18, 19] investigated periodic motions with
one, two, three impacts per cycle and their bifurcations in an inclined impact pair
under horizontal periodic excitation using Poincaré maps, and digital simulations in
the forms of stability plots were given to illustrate theoretical results. The periodic
motions with two alternative impacts per cycle in such pair were investigated using
the discrete maps theory of discontinuous dynamical systems in Zhang and Fu [20],
the period-n motions after period-doubling of periodic motions with two alternative
impacts per cycle are investigated in Zhang and Fu [21], the analytical prediction for
these periodic motions were obtained.

The results aforementioned on the inclined impact pair paid less attentions to the
motion switchability, stick motions and grazing motions. This paper is to give ana-
lytical conditions of stick motions and grazing motions in such inclined impact pair
with periodical excitation using the flow switchability theory of the discontinuous
dynamical systems in Fu and Zhang [22], and on this basis the generalized mapping
structure of periodic motion with or without stick will be obtained, finally the exis-
tence conditions of two specific periodic motions with impacts only on one side of
the inclined slot are to be presented. About such oscillator, more detailed stability
and bifurcation trees or parameter maps are being discussed.
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2 Physical Model

An inclined impact pair is shown in Fig. 1, which consists of a base with mass M and
a ball with mass m. An inclined rectangular slot is in the base, which has inclined
angle θ and length d, and the ball moves freely without friction in such clearance.
The base is driven under periodical displacement excitation X (t) = A sin(ωt + τ)

in the horizontal direction, where A, ω and τ are excitation amplitude, excitation
frequency and phase angle of the base, respectively. When the ball reaches the side
of the slot, impact between the ball and the base can occur, so the impact restitution
coefficient e (0 < e < 1) is supposed. Assume m � M , the repeated impacts can
not change the motion of the base. The origin of the absolute coordinates is set at the
middle point of the clearance while the base is at the equilibrium position. For the
ball, (x, t) is its absolute displacement, and (y, t) is its relative displacement to the
base, that is y = x − X cos θ .

The motions of the ball in such pair can be divided into two cases, one is non-stick
motion or free-flight motion, another is stick motion. Non-stick motion is the motion
that the ball moves freely between two sides of the slot and does not move together
with the base. In such case, the equation of the motion for the ball is described as

ẍ = −g sin θ, (1)

where g is the gravitational acceleration. At the same time the motion of the base
remains

Ẍ = −Aω2 sin(ωt + τ). (2)

From (1) and (2), for t ∈ (tk, tk+1) we have

x = − 1
2g sin θ(t2 − t2k ) + (g sin θ tk + ẋ+(tk))(t − tk) + x+(tk),

ẋ = −g sin θ(t − tk) + ẋ+(tk),
(3)

or

Fig. 1 Physical model of the
inclined impact pair
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y = −A cos θ [sin(ωt + τ) − sin(ωtk + τ)] − 1
2g sin θ(t2 − t2k )+(ẏk + g sin θ tk + Aω cos θ cos(ωtk + τ))(t − tk) + y+

k ,

ẏ = −Aω cos θ [cos(ωt + τ) − cos(ωtk + τ)] − g sin θ(t − tk) + ẏ+
k ,

(4)

where ()+ shows the state immediately after an impact, x+(tk) and ẋ+(tk) are absolute
displacement and velocity of the ball, y+(tk) and ẏ+(tk) are relative displacement
and velocity of the ball to the base.

According to the conservation law of momentum andm � M , the impact process
between the ball and the frame is described as

x+ = x−, X+ = X−, |x+ − X+ cos θ | = d/2;
Ẋ+ = Ẋ−, ẋ+ = [(m − Me)ẋ− + M(1 + e)Ẋ− cos θ ]/(M + m),

or

y+ = y− = ±d

2
, ẏ+ = −eẏ−,

where ()− denote the state before an impact.
The stick motion is the motion that the ball comes to one side of the slot and

moves together with the base. Such motion of the ball can be shown as

ẍ = − M

M + m
Aω2 sin(ωt + τ) cos θ, (5)

and the equation of the motion for the base is

Ẍ = − M

M + m
Aω2 sin(ωt + τ). (6)

3 Flow Switchability

Using the theory of flow switchability of the discontinuous dynamical systems, the
switching complexity for the motions of the ball in such oscillator will be developed
in this section.

3.1 Domains and Boundaries

Due to impacts between the ball and the base, domains and boundarieswith orwithout
stick in absolute coordinates are shown in Fig. 2 and Fig. 3, respectively.

For non-stick motion of the ball, domain Ω0 is defined as



Complex Motions in an Inclined Impact Pair with a Periodic Excitation 141

Fig. 2 Absolute domain and
boundaries without stick

.

Fig. 3 Absolute domains
and boundaries with stick

.

Ω0 = {(x, ẋ)| x ∈ (X cos θ − d

2
, X cos θ + d

2
), ẋ ∈ (−∞,+∞)}.

The corresponding impact boundaries are defined as

∂Ω0(+∞) = {(x, ẋ)| ϕ0(+∞) ≡ x − X cos θ − d/2 = 0, ẋ �= Ẋ cos θ},
∂Ω0(−∞) = {(x, ẋ)| ϕ0(−∞) ≡ x − X cos θ + d/2 = 0, ẋ �= Ẋ cos θ}, (7)

where equation ϕαβ = 0 determines boundary ∂Ωαβ in phase space. Herein α = 0
and β = ±∞ represent the boundary, on which no flow in a subdomain can pass
into another one without any transport law. The domain and boundaries for motions
of the ball without stick are sketched in Fig. 2. Domain Ω0 is represented by dotted
area and impact boundaries ∂Ω0(+∞), ∂Ω0(−∞) are depicted by dashed curves.
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The appearance and vanishing of stick motion will form new domains and bound-
aries. For stick motion of the ball, domains Ω0 and Ω1, Ω2 are defined as

Ω0 = {(x, ẋ)| x ∈ (Xcr cos θ − d/2, Xcr cos θ + d/2), ẋ �= Ẋ cos θ},
Ω1 = {(x, ẋ)| x ∈ (−∞, Xcr cos θ − d/2), ẋ = Ẋ cos θ, x = X cos θ − d/2},
Ω2 = {(x, ẋ)| x ∈ (Xcr cos θ + d/2,+∞), ẋ = Ẋ cos θ, x = X cos θ + d/2}.

(8)
The corresponding stick boundaries are defined as

∂Ω01 = ∂Ω10 = {(x, ẋ)| ϕ10 ≡ x − Xcr cos θ + d/2 = 0, ẋ = Ẋcr cos θ},
∂Ω02 = ∂Ω20 = {(x, ẋ)| ϕ20 ≡ x − Xcr cos θ − d/2 = 0, ẋ = Ẋcr cos θ}, (9)

where Xcr and Ẋcr represent the displacement and velocity of the base for appearance
and vanishing of stick motion. As sketched in Fig. 3, domain Ω0 is represented
by dotted area, Ω1,Ω2 are represented by shaded regions, the corresponding stick
boundaries ∂Ω01, ∂Ω02 are depicted by dashed curves.

Based on the above domains and boundaries, the equations of the motion for the
ball in absolute coordinates is rewritten in vector form of

ẋ(λ) = f(λ)(x(λ), t), λ = 0, 1, 2, (10)

where x(λ) = (x(λ), ẋ(λ))
T , f(λ) = (ẋ(λ), f(λ))

T ,
and for non-stick motion (λ = 0),

f(0)(x(0), t) = −g sin θ, (11)

and for stick motion (λ = 1, 2),

f(λ)(x(λ), t) = − M

M + m
Aω2 sin(ωt + τ) cos θ. (12)

The corresponding motion for the base in absolute coordinates are also revised in
vector form of

Ẋ(λ) = F(λ)(X(λ), t), λ = 0, 1, 2,

where X(λ) = (X(λ), Ẋ(λ))
T , F(λ) = (Ẋ(λ), F(λ))

T , and

F(0)(X(0), t) = −Aω2 sin(ωt + τ), F(λ)(X(λ), t) = − M

M + m
Aω2 sin(ωt + τ).

Developing analytical switching conditions in absolute coordinates is more diffi-
cult because the discontinuous boundaries in absolute coordinates are time-varying,
however in relative coordinates, such problem can become simpler.
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Relative domains Ω0 and Ω1, Ω2 for the motions of the ball are defined as

Ω0 = {(y, ẏ)| y ∈ (−d/2,+d/2), ẏ ∈ (−∞,+∞)},
Ω1 = {(y, ẏ)| y = −d/2, ẏ = 0},
Ω2 = {(y, ẏ)| y = +d/2, ẏ = 0}.

(13)

Relative impact boundaries ∂Ω0(+∞), ∂Ω0(−∞) are defined as

∂Ω0(+∞) = {(y, ẏ)| ϕ0(+∞) ≡ y − d/2 = 0, ẏ �= 0},
∂Ω0(−∞) = {(y, ẏ)| ϕ0(−∞) ≡ y + d/2 = 0, ẏ �= 0}, (14)

and relative stick boundaries ∂Ω0i , ∂Ωi0 (i = 1, 2) are determined by

∂Ω01 = ∂Ω10 = {(y, ẏ)| ϕ10 ≡ ẏcr = 0, ycr = −d/2},
∂Ω02 = ∂Ω20 = {(y, ẏ)| ϕ20 ≡ ẏcr = 0, ycr = d/2}, (15)

where ∂Ω01, ∂Ω02 represent lower and upper stick boundaries, respectively. ycr , ẏcr
represent relative displacement and velocity of the ball for appearance and vanishing
of stick motion.

Figure4 shows relative domains and boundaries for themotion of the ball. Domain
Ω0 is shown by dotted area, impact boundaries ∂Ω0(+∞), ∂Ω0(−∞) are represented by
dashed lines, stick domains and boundaries become two solid dots on line y = ±d/2.

In relative coordinates, the equation of relative motion for the ball is

ẏ(λ) = g(λ)(y(λ),X(λ), t) with Ẋ(λ) = F(λ)(X(λ), t), λ = 0, 1, 2, (16)

where y(λ) = (y(λ), ẏ(λ))
T , g(λ) = (ẏ(λ), g(λ))

T .

Fig. 4 Relative domains and
boundaries
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For non-stick motion (λ = 0),

g(0)(y(0),X(0), t) = −g sin θ + Aω2 sin(ωt + τ) cos θ, (17)

and for stick motion (λ = 1, 2),

g(λ)(y(λ),X(λ), t) = 0. (18)

3.2 Switching Results

According to the theory on flow switchability of the discontinuous dynamical system
in [23] and [24], the switching conditions of stick motions and grazing flows in the
inclined impact oscillator will be investigated in relative coordinates.

From Eqs. (14) and (15), the normal vectors of relative boundaries n∂Ω01 , n∂Ω02

and n∂Ω0(+∞)
, n∂Ω0(−∞)

are determined, as

n∂Ω01 = n∂Ω02 = (0, 1)T , n∂Ω0(+∞)
= n∂Ω0(−∞)

= (1, 0)T . (19)

Theorem 1 When the ball comes to stick boundary ∂Ω0i (i = 1, 2) at time tm, stick
motion on corresponding boundary appears iff the following conditions can be
obtained

mod(ωtm + τ, 2π) ∈ (0, arcsin g tan θ

Aω2 )
⋃

(π − arcsin g tan θ

Aω2 , 2π) if g tan θ ≤ Aω2,

mod(ωtm + τ, 2π) ∈ (0, 2π) if g tan θ > Aω2

⎫
⎬

⎭
on ∂Ω01, (20)

or
mod(ωtm + τ, 2π) ∈ (arcsin g tan θ

Aω2 ,

π − arcsin g tan θ

Aω2 ) if g tan θ < Aω2,

no stick−motion if g tan θ ≥ Aω2

⎫
⎬

⎭
on ∂Ω02. (21)

Proof For the impact pair, when the flow in domain Ω0 passes over boundary ∂Ω0i

into domain Ωi (i = 1, 2), stick motion appears. So such flow is the semi-passable
flow, which can be determined by Theorem 2.1 in [23], then 0−order G−functions
for stick boundaries are needed.

From Definition 3.5 in [24], the 0−order G−functions for stick boundaries are

G(0,i)
∂Ω0i

(y(i), tm±) = nT
∂Ω0i

· g(i)(y(i),X(i), tm±),

G(0,0)
∂Ω0i

(y(0), tm±) = nT
∂Ω0i

· g(0)(y(0),X(0), tm±),
(22)

where i = 1, 2 indicate stickmotion on lower and upper side of the clearance, respec-
tively, tm is switching time on corresponding boundary.
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Using Eqs. (17) and (18), (22) can be computed as

G(0,i)
∂Ω0i

(y(i), tm±) = g(i)(y(i),X(i), tm±) = 0,
G(0,0)

∂Ω0i
(y(0), tm±) = g(0)(y(0),X(0), tm±) = −g sin θ + Aω2 sin(ωtm + τ) cos θ.

(23)
By Theorem 2.1 in [23], the switching conditions for stick motion can be obtained

as
(−1)iG(0,0)

∂Ω0i
(y(0), tm−) > 0 and (−1)iG(0,i)

∂Ω0i
(y(i), tm+) > 0.

Therefore

(−1)i g(0)(y(0),X(0), tm−) > 0 and (−1)i g(i)(y(i),X(i), tm+) > 0. (24)

The onset conditions of stick motions are determined from Eqs. (23) and (24) as

(−1)i · (−g sin θ + Aω2 sin(ωtm + τ) cos θ) > 0. (25)

Solving inequality (25) obtains occurrence conditions for the ball to stick with the
base on lower or upper side of the slot as Eqs. (20) and (21). �

Theorem 2 Once stick motion exists in domain Ωi (i = 1, 2), such stick motion will
vanish at time tm iff the following conditions can be satisfied

mod(ωtm + τ, 2π) = arcsin g tan θ

Aω2 if g tan θ ≤ Aω2,

no vanishing exists if g tan θ > Aω2.

}

on ∂Ω10, (26)

or

mod (ωtm + τ, 2π) = π − arcsin
g tan θ

Aω2
if g tan θ < Aω2 on ∂Ω20. (27)

Proof Stick motion vanishes, which means the flow will move back into non-stick
domain, that is the flow in domain Ωi (i = 1, 2) passes through boundary ∂Ωi0 into
domainΩ0. So such flow is also the semi-passable flow. Due toG(0,i)

∂Ω0i
(y(i), tm±) = 0,

high order G-functions are needed.
From Definition 3.6 in [24], 1−order G−functions for stick boundaries are

G(1,i)
∂Ω0i

(y(i), tm±) = nT
∂Ω0i

· Dg(i)(y(i),X(i), tm±),

G(1,0)
∂Ω0i

(y(0), tm±) = nT
∂Ω0i

· Dg(0)(y(0),X(0), tm±).
(28)

From (17) and (18), the above G-functions can be computed as

G(1,i)
∂Ω0i

(y(i), tm±) = d
dt g(i)(y(i),X(i), tm±) = Aω3 cos(ωtm + τ) cos θ,

G(1,0)
∂Ω0i

(y(0), tm±) = d
dt g(0)(y(0),X(0), tm±) = Aω3 cos(ωtm + τ) cos θ.

(29)
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Using Theorem 2.1 in [23], the criteria for vanishing of stick motion are given for
∂Ωi0 by

G(0,i)
∂Ω0i

(y(i), tm−) = 0, G(0,0)
∂Ω0i

(y(0), tm+) = 0,
(−1)iG(1,i)

∂Ω0i
(y(i), tm−) < 0, (−1)i G(1,0)

∂Ω0i
(y(0), tm+) < 0.

}

(30)

Substituting (23) and (29) into (30) leads to

g(i)(y(i),X(i), tm−) = 0,
g(0)(y(0),X(0), tm+) = −g sin θ + Aω2 sin(ωtm + τ) cos θ = 0,

(−1)i d
dt g(i)(y(i),X(i), tm−) = (−1)i · (Aω3 cos(ωtm + τ) cos θ) < 0,

(−1)i d
dt g(0)(y(0),X(0), tm+) = (−1)i · (Aω3 cos(ωtm + τ) cos θ) < 0.

⎫
⎪⎪⎬

⎪⎪⎭

(31)

Further simplification of the above equations yields the vanishing conditions of stick
motions as (26) and (27). �

For such pair, when the ball reaches the boundary from a domain and just touches
this boundary with zero relative velocity or no interaction force, and then moves
back into this domain, grazing phenomenon occurs. Thus grazing motion is tangen-
tial flow, its analytical conditions can be developed using Theorem 2.9 in [23].

Theorem 3 (1) The flow for the motion of the ball in domain Ωi (i = 1, 2) reaches
stick boundary ∂Ωi0 at time tm without interaction force between the ball and the
base, grazing motion on such stick boundary will occur iff

mod(ωtm + τ, 2π) ∈ (π/2, 3π/2) on ∂Ω10,

or
mod(ωtm + τ, 2π) ∈ (−π/2, π/2) on ∂Ω20.

⎫
⎬

⎭
(32)

(2) The flow for the motion of the ball in domain Ω0 reaches stick boundary ∂Ω0i

at time tm with relative velocity and acceleration being zero, grazing motion on such
stick boundary will occur iff

mod(ωtm + τ, 2π) = arcsin g tan θ

Aω2 if g tan θ < Aω2

no grazing motion exists if g tan θ ≥ Aω2

}

on ∂Ω01,

or
mod(ωtm + τ, 2π) = π − arcsin g tan θ

Aω2 if g tan θ < Aω2

no grazing motion exists if g tan θ ≥ Aω2

}

on ∂Ω02.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(33)
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Proof From Theorem 2.9 in [23], the occurrence of grazing motion on stick bound-
aries requires

G(0,i)
∂Ω0i

(y(i), tm±) = 0, (−1)iG(1,i)
∂Ω0i

(y(i), tm±) > 0 for ∂Ωi0,

G(0,0)
∂Ω0i

(y(0), tm±) = 0, (−1)iG(1,0)
∂Ω0i

(y(0), tm±) < 0 for ∂Ω0i .

}

(34)

Substituting (23) and (29) into (34) leads to

(−1)i · (Aω3 cos(ωtm + τ) cos θ) > 0 for ∂Ωi0,

(−1)i · (−g sin θ + Aω2 sin(ωtm + τ) cos θ) = 0,
(−1)i · (Aω3 cos(ωtm + τ) cos θ) < 0

}

for ∂Ω0i .

⎫
⎬

⎭
(35)

Further simplification of (35) yields the occurrence conditions of grazing motion on
stick boundaries as (32) and (33). �

Theorem 4 The flow for the motion of the ball in domainΩ0 reaches impact bound-
ary ∂Ω0(±∞) at time tm, grazing motion on such impact boundary is to occur iff the
following conditions are obtained

ẋ(0)(tm) − Aω cos(ωtm + τ) cos θ = 0, and
mod(ωtm + τ, 2π) ∈ (arcsin g tan θ

Aω2 ,

π − arcsin g tan θ

Aω2 ) if g tan θ < Aω2,

no grazing motion exists if g tan θ ≥ Aω2.

⎫
⎬

⎭
on ∂Ω0(−∞)

or
mod(ωtm + τ, 2π) ∈ (0, arcsin g tan θ

Aω2 )
⋃

(π − arcsin g tan θ

Aω2 , 2π) if g tan θ ≤ Aω2,

mod(ωtm + τ, 2π) ∈ (0, 2π) if g tan θ > Aω2.

⎫
⎬

⎭
on ∂Ω0(+∞)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36)

Proof From Definition 3.5 and Definition 3.6 in [24], the 0−order and 1−order
G−functions for impact boundaries ∂Ω0(±∞) are determined by

G(0,0)
∂Ω0(+∞)

(y(0), tm±) = nT
∂Ω0(+∞)

· g(0)(y(0),X(0), tm±),

G(0,0)
∂Ω0(−∞)

(y(0), tm±) = nT
∂Ω0(−∞)

· g(0)(y(0),X(0), tm±),

G(1,0)
∂Ω0(+∞)

(y(0), tm±) = nT
∂Ω0(+∞)

· Dg(0)(y(0),X(0), tm±),

G(1,0)
∂Ω0(−∞)

(y(0), tm±) = nT
∂Ω0(−∞)

· Dg(0)(y(0),X(0), tm±).

(37)

By (17), (37) can be computed as

G(0,0)
∂Ω0(±∞)

(y(0), tm±) = ẏ(0) = ẋ(0) − Aω cos(ωtm + τ) cos θ,

G(1,0)
∂Ω0(±∞)

(y(0), tm±) = −g sin θ + Aω2 sin(ωtm + τ) cos θ.
(38)
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FromTheorem2.9 in [23], the appearance of grazingmotion on impact boundaries
requires

G(0,0)
∂Ω0(−∞)

(y(0), tm±) = 0, G(1,0)
∂Ω0(−∞)

(y(0), tm±) > 0 for ∂Ω0(−∞),

G(0,0)
∂Ω0(+∞)

(y(0), tm±) = 0, G(1,0)
∂Ω0(+∞)

(y(0), tm±) < 0 for ∂Ω0(+∞).

}

(39)

Combining (38) into (39) yields

ẋ(0)(tm) − Aω cos(ωtm + τ) cos θ = 0, and
−g sin θ + Aω2 sin(ωtm + τ) cos θ > 0 for ∂Ω0(−∞),

−g sin θ + Aω2 sin(ωtm + τ) cos θ < 0 for ∂Ω0(+∞).

}
(40)

Solving (40) obtains the graze conditions on impact boundaries as (36). �

To demonstrate the analytical conditions of stick motions and grazing flows in
the inclined impact pair, the motions will be shown through time histories of dis-
placement and velocity, corresponding trajectory in phase space. The starting points
of motions are depicted by asterisk, the switching points are represented by hollow
points or solid points. The component of displacement curves or velocity curves
of the base in the inclined direction are represented by dashed curves, and for the
motions of the ball, the curves of displacement or velocity and the corresponding
trajectories are shown by solid curves.

Consider system parameters as A = 10, ω = 1, θ = π/6, g = 9.81, e = 0.8,
τ = 0, d = 20, M = 1, m = 0.0001 to illustrate a stick motion on lower side of
the slot in Fig. 5. The initial conditions are t0 = 5.356754, x0 = −16.923712, ẋ0 =
5.202136. The time histories of displacement is depicted in Fig. 5a, and the time
histories of velocity is in Fig. 5b. It can be seen that stick motion occurs in such
initial conditions. The solid point stands for vanishing points of stick motion. The
corresponding trajectory of stickmotion are shown in Fig. 5c. After vanishing of stick
motion on lower side of the slot, the ball moves freely and impacts such boundary
again.

Changing the above parameters as e = 0.4, d = 1 can demonstrate a graz-
ing motion on lower side of the slot in Fig. 6. The initial conditions are t0 =
0.699899, x0 = 6.078421, ẋ0 = 4.537097. The initial point on upper side of the
slot, and then the ball contacts lower side of the slot as shown in Fig. 6a. However
Fig. 6b shows that solid point is the point of intersection between solid curve and
dashed one, that is, the relative velocity of the ball to the base is zero at the solid point.
And then the ball leaves this boundary again. So the solid point is grazing point, a
grazing motion on lower side of the slot appears. Figure6b, c also demonstrate that
the velocity of the ball is continuous at the solid point.
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Fig. 5 Numerical simulation of a stickmotion on lower side of the slot: a displacement-time history,
b velocity-time history, c phase trajectory. (A = 10, ω = 1, θ = π/6, g = 9.81, e = 0.8, τ =
0, d = 20, M = 1, m = 0.0001, t0 = 5.356754, x0 = −16.923712, ẋ0 = 5.202136.)

4 Mapping Structures and Periodic Motions

In this section, the switching sets on the discontinuous boundarieswill be defined, and
then basic mappings and mapping structures can be obtained. Two specific periodic
motions without stick are investigated in relative coordinates.

4.1 Periodic Motions with Stick

From (7), the switching sets without stick are defined as

Ξ0(−∞) = {(xk, ẋk, tk)|xk = Xk cos θ − d/2, ẋk �= Ẋk cos θ},
Ξ0(+∞) = {(xk, ẋk, tk)|xk = Xk cos θ + d/2, ẋk �= Ẋk cos θ}, (41)

where Ξ0(−∞), Ξ0(+∞) are defined on ∂Ω0(−∞) and ∂Ω0(+∞), respectively.
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Fig. 6 Numerical simulation of a grazing motion on lower side of the slot: a displacement-time
history, b velocity-time history, c phase trajectory. (A = 10, ω = 1, θ = π/6, g = 9.81, e =
0.4, τ = 0, d = 1, M = 1, m = 0.0001, t0 = 0.699899, x0 = 6.078421, ẋ0 = 4.537097.)

The basic mappings without stick are defined as

P1 : Ξ0(−∞) → Ξ0(+∞), P2 : Ξ0(+∞) → Ξ0(−∞),

P3 : Ξ0(−∞) → Ξ0(−∞), P4 : Ξ0(+∞) → Ξ0(+∞).
(42)

The switching sets and generic mappings defined above are sketched in Fig. 7.
From (7) and (8), the switching sets with stick are defined as

Ξ01 = {(xk, ẋk, tk)|xk = Xk cos θ − d/2, ẋk = Ẋk cos θ},
Ξ02 = {(xk, ẋk, tk)|xk = Xk cos θ + d/2, ẋk = Ẋk cos θ},
Ξ0(−∞) = {(xk, ẋk, tk)|xk = Xk cos θ − d/2, ẋk �= Ẋk cos θ},
Ξ0(+∞) = {(xk, ẋk, tk)|xk = Xk cos θ + d/2, ẋk �= Ẋk cos θ},

(43)

where the switching sets Ξ0i (i = 1, 2) are defined on ∂Ω0i .
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Fig. 7 The switching sets
and basic mappings without
stick

Fig. 8 The switching sets
and basic mappings with
stick

The basic mappings with stick are defined as

P1 : Ξ01 → Ξ0(+∞), orΞ0(−∞) → Ξ02,

P2 : Ξ02 → Ξ0(−∞), orΞ0(+∞) → Ξ01,

P3 : Ξ0(−∞) → Ξ01, P4 : Ξ0(+∞) → Ξ02,

P5 : Ξ01 → Ξ01, P6 : Ξ02 → Ξ02,

(44)

where P1 and P2 are global mappings, P3, P4 and P5, P6 are local mappings. The six
generic mappings are shown in Fig. 8.

Based on the above discussions, the governing equations of generic mappings
Pj ( j = 1, 2, 3, 4) can be expressed by

{
f ( j)
1 (xk, ẋk, tk, xk+1, ẋk+1, tk+1) = 0,
f ( j)
2 (xk, ẋk, tk, xk+1, ẋk+1, tk+1) = 0,

(45)
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where

xk = Xk cos θ − d/2, xk+1 = Xk+1 cos θ + d/2 for P1,
xk = Xk cos θ + d/2, xk+1 = Xk+1 cos θ − d/2 for P2,
xk = Xk cos θ − d/2, xk+1 = Xk+1 cos θ − d/2 for P3,
xk = Xk cos θ + d/2, xk+1 = Xk+1 cos θ + d/2 for P4.

The governing equations of stick mappings P5, P6 can be expressed by

{
f (α)
1 (xk, ẋk, tk, xk+1, ẋk+1, tk+1) = 0,
f (α)
2 (xk+1, ẋk+1, tk+1) = g(0)(0,Xk+1, tk+1) = 0,

with α = 5, 6, where

xk = Xk cos θ − d/2, ẋk = Ẋk cos θ,

xk+1 = Xk+1 cos θ − d/2, ẋk+1 = Ẋk+1 cos θ,

mod(ωtk + τ, 2π) ∈ (0, arcsin g tan θ

Aω2 )
⋃

(π − arcsin g tan θ

Aω2 , 2π),

mod(ωtk+1 + τ, 2π) ∈ (0, π/2)

⎫
⎪⎪⎬

⎪⎪⎭

for mapping P5,

and

xk = Xk cos θ + d/2, ẋk = Ẋk cos θ,

xk+1 = Xk+1 cos θ + d/2, ẋk+1 = Ẋk+1 cos θ,

mod(ωtk + τ, 2π) ∈ (arcsin g tan θ

Aω2 , π − arcsin g tan θ

Aω2 ),

mod(ωtk+1 + τ, 2π) ∈ (π/2, π)

⎫
⎪⎪⎬

⎪⎪⎭

for mapping P6.

To study the periodic motion or chaos with or without stick in the inclined impact
pair, the generalized mapping structure is introduced as

Pnk ···n2n1 ≡ Pnk ◦ · · · ◦ Pn2 ◦ Pn1 , (46)

where Pn j (n j ∈ {1, 2, · · · , 6}, j = 1, 2, · · · , k) are defined in (44).
The mapping structure of the motion with m−times repeated mapping structure

(46) can be expressed as

P (m)
nk ···n2n1 ≡ (Pnk ◦ · · · ◦ Pn2 ◦ Pn1) ◦ · · · ◦ (Pnk ◦ · · · ◦ Pn2 ◦ Pn1)︸ ︷︷ ︸

m−items

. (47)

Considering a motion with specific mapping structure

P ≡ P2k4l 6k3l 4ml 1k2l 5k1l 3nl ◦ · · · ◦ P2k41 6k31 4m1 1k21 5k11 3n1︸ ︷︷ ︸
l−items

= P2k4l 6k3l 4ml 1k2l 5k1l 3nl ···2k41 6k31 4m1 1k21 5k11 3n1 ,

(48)

where k j ∈ {0, 1}, ms, ns ∈ N (s = 1, 2, · · · , l).
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Define vectors Yk = (ẋk, tk)T . The motions of mapping structure (48) can be
determined by

Y
k+

l∑

s=1
(k4s+k3s+ms+k2s+k1s+ns )

= PYk

= P2k4l 6k3l 4ml 1k2l 5k1l 3nl ···2k41 6k31 4m1 1k21 5k11 3n1Yk .

(49)

Based on the algebraic equations for mapping (46)–(49), a set of nonlinear alge-
braic equations for mapping structure (48) can be obtained as

f (3)(Yk,Yk+1) = 0, · · · , f (5)(Yk+n1 ,Yk+n1+1) = 0, · · · ,

f (1)(Yk+k11+n1 ,Yk+k11+n1+1) = 0, · · · ,

f (2)(Y
k+

l∑

s=1
(k4s+k3s+ms+k2s+k1s+ns )−1

,Y
k+

l∑

s=1
(k4s+k3s+ms+k2s+k1s+ns )

) = 0.
(50)

The periodic motions pertaining to such mapping structure requires

Y
k+

l∑

s=1
(k4s+k3s+ms+k2s+k1s+ns )

= Yk . (51)

Solving (50) and (51) can generate all switching sets of periodic motions (48). Once
the results of switching points for a specific periodic motions are obtained, its local
stability and bifurcations analysis can be completed through the corresponding Jaco-
bianmatrix and its eigenvalues (referring [22]). However, the occurrence or vanishing
of stick motions and graze motions can’t be predicted by eigenvalue analysis, which
should be determined by the flow switchability theory of the discontinuous dynamical
systems, that is, Theorems 1–4 should be used.

4.2 Periodic Motions Without Stick

If only periodic motions without stick and grazing are considered, it is simpler to
investigate such motions in relative coordinates. The periodic motions with two
alternative impacts on two side of slot have be done in [20, 21]. Next we will study
periodic motions P = P4 with one impact on lower side of the slot.

From (4), the governing equations of mapping P = P4 in relative coordinates are

ẏi+1 = −Aω cos θ [cos(ωti+1 + τ) − cos(ωti + τ)] − g sin θ(ti+1 − ti ) − eẏi ,
0 = yi+1 − yi = −A cos θ [sin(ωti+1 + τ) − sin(ωti + τ)]

− 1
2 g sin θ(t2i+1 − t2i ) + (−eẏi + g sin θ ti + Aω cos θ cos(ωti + τ))(ti+1 − ti ).

(52)

where (ti , ẏi ) is initial value, (ti , ẏi ), (ti+1, ẏi+1) are on the lower side of the slot,
and for briefness, the notations ′′ +′′′′ −′′ are deleted.
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The period-1 motion P = P4 under N cycles of base motion should satisfy

ti+1 = ti + 2 Nπ

ω
, ẏi+1 = ẏi , ẏi ≤ 0. (53)

Substituting (53) into (52) obtains

ẏi = −g sin θ

1 + e
· 2Nπ

ω
, (54)

and

eẏi − Aω cos θ cos(ωti + τ) + g sin θ · Nπ

ω
= 0. (55)

Further simplifying (55) leads to

cos(ωti + τ) = 1 − e

1 + e
· gNπ · tan θ

Aω2
. (56)

Result 1 For the inclined impact pair, when one impact period-1 motion P = P4
occurs, the initial velocity and parameters satisfy (54) and (56).

It is can be seen that the initial velocity has nothing to dowith excitation amplitude
and initial phase angle when periodic motion P = P4 appears.

Similar to (46), for periodic motion after period doubling of period-1 motion
P = P4, the mapping becomes

P = P4 ◦ P4 ◦ · · · ◦ P4︸ ︷︷ ︸
k

, (57)

that is the ball impacts continuously lower side of the slot under N cycles of base
motion, ẏi+k = ẏi , ti+k = ti + NT, T = 2π/ω are needed. When k → ∞, the
chaotic motions will appear.

In order to study period-k periodic motion (57), the impact time interval param-
eters q j ( j = 1, 2, . . . , k) are introduced as

0 ≤ q j ≤ 1,
k∑

j=1

q j = 1, ti+ j − ti+ j−1 = q j NT . (58)

Substituting (58) into (52) leads to
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ẏi+ j = −Aω cos θ cos(ωti + τ)[cos(
j∑

s=1

qs NTω) − cos(
j−1∑

s=1

qs NTω)]

+ Aω cos θ sin(ωti + τ)[sin(
j∑

s=1

qs NTω) − sin(
j−1∑

s=1

qs NTω)]

− g sin θq j NT − eẏi+ j−1,

0 = −A cos θ cos(ωti + τ)[(sin(
j∑

s=1

qs NTω) − sin(
j−1∑

s=1

qs NTω))

− cos(
j−1∑

s=1

qs NTω)q j NTω]

− A cos θ sin(ωti + τ)[(cos(
j∑

s=1

qs NTω)

− cos(
j−1∑

s=1

qs NTω)) + sin(
j−1∑

s=1

qs NTω)q j NTω]

− 1

2
g sin θ(q j NT )2 − eẏi+ j−1q j NT .

(59)

Using mathematical induction and (59) gives

ẏi+ j = −Aω cos θr ( j)
1 cos(ωti + τ) + Aω cos θr ( j)

2 sin(ωti + τ)

− g sin θr ( j)
3 NT + (−1) j e j ẏi ,

0 = −A cos θ cos(ωti + τ)[S( j) − S( j−1) − ωq j NT (er ( j−1)
1 + C ( j−1))]

− A cos θ sin(ωti + τ)[C ( j) − C ( j−1) + ωq j NT (er ( j−1)
2 + S( j−1))]

+ g sin θq j (NT )2(−1

2
q j + er ( j−1)

3 ) + (−1) j−1e j−1 ẏi q j NT,

(60)

where

r ( j)
1 =

j∑

m=1

(−e) j−m[C (m) − C (m−1)], r ( j)
2 =

j∑

m=1

(−e) j−m[S(m) − S(m−1)],

r ( j)
3 =

j∑

m=1

(−e) j−mqm, C ( j) = cos(
j∑

s=1

qs NTω), S( j) = sin(
j∑

s=1

qs NTω).

From (60), we have

cos(ωti + τ) = (D( j)
1 + D( j)

2 ẏi+ j + D( j)
3 ẏi )/(Aω cos θD( j)),

sin(ωti + τ) = (D( j)
4 + D( j)

5 ẏi+ j + D( j)
6 ẏi )/(Aω cos θD( j)),

(61)
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where

D( j) = a( j)
11 a

( j)
22 − a( j)

12 a
( j)
21 , D( j)

1 = a( j)
13 a

( j)
22 − ωa( j)

12 a
( j)
23 , D( j)

2 = a( j)
22 ,

D( j)
3 = a( j)

14 a
( j)
22 − ωa( j)

12 a
( j)
24 , D( j)

4 = ωa( j)
11 a

( j)
23 − a( j)

21 a
( j)
13 , D( j)

5 = −a( j)
21 ,

D( j)
6 = ωa( j)

11 a
( j)
24 − a( j)

21 a
( j)
14 ,

and

a( j)
11 = −r ( j)

1 , a( j)
21 = S( j) − S( j−1) − ωq j NT (er ( j−1)

1 + C ( j−1)),

a( j)
12 = r ( j)

2 , a( j)
22 = C ( j) − C ( j−1) − ωq j NT (er ( j−1)

2 + S( j−1)),

a( j)
13 = g sin θNTr ( j)

3 , a( j)
14 = −(−e) j ,

a( j)
23 = g sin θq j (NT )2(−1

2
q j + er ( j−1)

3 ), a( j)
24 = (−e) j−1q j NT .

For period-k motions P = P4 ◦ P4 ◦ · · · ◦ P4︸ ︷︷ ︸
k

, ẏi+k = ẏi is satisfied, and from

(61), we have

cos(ωti + τ) = (D(k)
1 + (D(k)

2 + D(k)
3 )ẏi )/(Aω cos θD(k)),

sin(ωti + τ) = (D(k)
4 + (D(k)

5 + D(k)
6 )ẏi )/(Aω cos θD(k)).

(62)

Thus, the existence conditions of period-k motions P = P4 ◦ P4 ◦ · · · ◦ P4︸ ︷︷ ︸
k

are

A = 1

ω cos θD(k)

√

[D(k)
1 + (D(k)

2 + D(k)
3 )ẏi ]2 + [D(k)

4 + (D(k)
5 + D(k)

6 )ẏi ]2, (63)

and solving (61) and (62) obtains

ẏi = ẏi+k = b( j)
11 − b( j)

21

b( j)
12 − b( j)

22

, j = 1, 2, · · · , k − 1, (64)

where

b( j)
11 = D( j)

2

D( j)
· D(k)

4

D(k)
− D( j)

2

D( j)
· D( j)

4

D( j)
, b( j)

21 = D( j)
5

D( j)
· D(k)

1

D(k)
− D( j)

5

D( j)
· D( j)

1

D( j)
,

b( j)
12 = D( j)

3

D( j)
· D( j)

6

D( j)
− D( j)

3

D( j)
· D(k)

5 + D(k)
6

D(k)
, b( j)

22 = D( j)
5

D( j)
· D( j)

3

D( j)
− D( j)

5

D( j)
· D(k)

2 + D(k)
3

D(k)
.

Result 2 For the inclined impact pair, the existence of k impacts period-k motion
P = P4 ◦ P4 ◦ · · · ◦ P4︸ ︷︷ ︸

k

requires all parameters satisfying (63) and (64).
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Fig. 9 Periodic motion P = P4

The stability and bifurcations of periodic motion P = P4 and P =
P4 ◦ P4 ◦ · · · ◦ P4︸ ︷︷ ︸

k

can be developed using the eigenvalue analysis, which are com-

pleted through the linearization of Poincaré mapping of periodic motions (referring
[20, 21]).

To help one understand the analytical results, periodic motion with only impact
on lower side of the slot are demonstrated in Figs. 9 and 10 in form of the time-
displacement curves, the time-velocity curves and the phase diagram.

In Fig. 9, period-1 motion P = P4 is demonstrated, parameters A = 0.7, ω =
π, θ = π/6, τ = 0.538, e = 0.5, g = 9.81, d = 4 are chosen, the initial conditions
are t0 = 0, ẏ0 = −6.54. From the parameters relations and stability analysis, it can
be seen: the initial velocity ẏ0 is not affected by the change of excitation phase
and amplitude when P = P4 occurs; when A < 0.601, P = P4 can not appear;
when A = 0.601, the saddle-node bifurcation occurs; when A ∈ (0.601, 0.604),
P = P4 is stable node; when A ∈ (0.604, 0.831), P = P4 is stable focus; when
A ∈ (0.831, 0.876), P = P4 is stable node; when A = 0.876, the period-doubling
bifurcation of P = P4 occurs and period-2 motion P = P4 ◦ P4 appears.

Changing the parameters in Fig. 9 as A = 1.5, τ = 5.712, d = 8 depicts periodic
motion P = P4 ◦ P4 in Fig. 10. Periodic motion P = P4 ◦ P4 is periodic motion
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Fig. 10 Periodic motion P = P4 ◦ P4

with both two impacts on lower side of the clearance. The initial conditions are
t0 = 0, ẏ0 = −8.06. It can be seen that the time between impacts is different, that is
the impact time parameters q �= 1/2, which is similar to the case of period-1 periodic
motion P = P1 ◦ P2 in [20].

5 Conclusions

In this chapter, the complex motions of an inclined impact oscillator with an external
excitation were investigated using the theory of flow switchability for the discontin-
uous dynamical systems. Based on domains and boundaries defined, the occurrence
or vanishing conditions of stick motions and grazing flows on various discontinuous
boundaries were presented. Then periodic motions were investigated by mapping
dynamics of the discontinuous dynamical systems, the generic mappings and gen-
eralized mappings structures were shown, the analytical existence conditions of two
periodic motions without stick were obtained. The numerical simulations were pre-
sented to provide a better understanding of complicated dynamics of such pair.
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Nonlinear Dynamics of Deep
Open-Ocean Convection: An Analytical
Approach

Dmitry V. Kovalevsky and Igor L. Bashmachnikov

Abstract Deep open-ocean convection is a complexmultiscale nonlinear dynamical
phenomenon observed in few localized regions of the World Ocean. The results of
Whitehead’s ‘tank model’ [Whitehead, Stratified convection with multiple states,
Ocean Modelling, 2(3–4), 109–121, 2000] show that the dynamic system, that
includes a deep convection in a localized convective site and water exchange with a
neighboring ocean basin, can exist in multiple steady states. We generalize this ‘tank
model’ for the case of non-zero salinity of the upper layer, which brings the model
closer to the real ocean conditions. We then derive exact analytical solutions of the
nonlinear transitional dynamics for different model dynamic regimes, and discuss
oceanographic implications of the modified model.

1 Introduction

Nonlinearity is a fundamental feature of ocean dynamics throughout the entire spec-
trum of their spatial and temporal scales—from large-scale ocean circulation to
oceanic turbulence [4, 12, 15, 16, 22, 32, 36]. Consequently, the majority of ocean
dynamics models, especially realistic computational models, are substantially non-
linear.

Strongly nonlinear ocean dynamics can result in abrupt changes that, dependent
on the characteristic timescales, might often be considered as discontinuous transi-
tions. Particularly, models allowing multiple steady states are often prone to abrupt
transitions [10, 15, 33, 34, 37, 41].
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Bistability of the Earth’s climate system, manifested in the past as series of transi-
tions between glacial and inter-glacial periods, can be related to bistability of certain
ocean phenomena, including deep open-ocean convection [7, 9, 13]. This deep mix-
ing of ocean water to 1000–2000m depth has been observed only in a few localized
regions of the World Ocean. One of the most important regions is located in the
Greenland Sea. In this region the largest volume of water of the meridional overturn-
ing circulation cell of the Atlantic Ocean is formed [1, 2, 9, 11, 14, 19, 25, 29].

The Atlantic meridional overturning circulation (AMOC) represents a simplified
concept of the ocean current system, integrally describing the oceanic mass and heat
exchange between the polar and the tropical regions [7]. In this conceptual system the
warm and saline tropicalwater flows in the upper ocean layer to theArctic through the
Atlantic gateway. Intensively releasing heat to the atmosphere in the subpolar regions,
part of the water sinks down as the water column becomes gravitationally unstable,
and further returns southwards as the deep ocean flow, at the depths of 1000-4000m.
Therefore, the regions of deep convection in the subpolar North Atlantic form a link
between the upper and the lower limbsof theAMOC.Another link, closing the loop, is
a gradual upwardwater flux as a result of the vertical turbulent exchange in the tropics
andwind-induced upwelling in the Southern Ocean [9]. Being an intrinsic part of this
circulation cell, variations of the intensity of deep ocean convection should modify
the intensity of the meridional overturning circulation, affecting the Earth climate
system [24, 26]. However, due to a number of positive and negative feedbacks, the
inter-dependence of the intensity of deep convection and of the intensity of AMOC
is not straightforward [9, 30].

The intensity of the deep convection, in particular, is affected by heat and
haline/freshwater fluxes to the deep convection sites. For example, a model study
suggests that a decrease of salinity in the Greenland Sea can decrease and totally
stop the deep convection in the region [35].

The multi-scale dynamic process of deep open-ocean convection has been stud-
ied within different, primarily nonlinear, ocean general circulation and box models
[3, 8, 10, 15, 27, 28, 33, 34, 37, 41].

The Whitehead’s ‘tank model’ [37] might be seen as an interesting hybrid of two
classes of ocean models, where a one-dimensional mixed layer model is fused with a
box model. This simplified dynamic system can be used to model inter-dependence
between the intensity of the deep convection and that of cross-basin fluxes at different
levels (a proxy for the AMOC). It is also important that this model allows multiple
steady states, and that the theoretical results [37] were later confirmed in series of
laboratory experiments [38–40]. The model regimes were originally studied by [37]
who combined analytical and numerical methods. The full analytical description of
the model’s steady states in the particular case of a constant (time-independent) heat
flux from the ocean to the atmosphere was obtained in our previous study [5].

However, in the original version of Whitehead’s ‘tank model’ above, an assump-
tion of zero salinity of the upper layer restrain applying the model results to the real
ocean. In the present chapter we generalize the Whitehead’s ‘tank model’ to account
for a realistic salinity of the upper water layer (Sect. 2), derive exact analytical solu-
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tions for the transitional dynamics of the modified nonlinear model (Sect. 3), and
discuss oceanographic implications of the model (Sect. 4).1

2 Whitehead’s ‘Tank Model’ with Saline Upper Layer

In the present section,we describe the setup of themodifiedWhitehead’s ‘tankmodel’
(Sect. 2.1), which includes realistic salinity of the upper layer of the ‘big basin’. This
brings the model closer to the real ocean conditions (see a discussion and numerical
estimates in Sect. 4), as compared to its original version described in [37], as well
as our recent analytical study [5], where fresh upper layer was used (zero salinity).
Further on, we discuss the model equations (Sect. 2.2).

2.1 Model Description

TheWhitehead’s ‘tankmodel’ [37]was developed to describe laboratory experiments
in a tank composed by two interconnected basins: a ‘big basin’ and a ‘small basin’
(Fig. 1). As both the laboratory apparatus and the related mathematical model were
designed to simulate development of deep open-ocean convection and its effect on the
cross-basin exchange, the ‘small basin’ should represent a localized ocean convective
region (Fig. 1, to the left), while the ‘big basin’—a much larger neighbouring ocean
region (Fig. 1, to the right).

In the present model configuration, water structure in the ‘big basin’ is charac-
terized by the upper layer of depth d, temperature T0 and salinity S1 and the lower
layer of the same temperature T0 and salinity S0 (S0 > S1). As mentioned above, we
generalize the model by [37] by considering the upper layer salinity S1 to be different
from zero: 0 ≤ S1 < S0.

The water exchange between the basins takes place at three levels: the upper level
(zero depth in the mathematical model), the mid-depth level (depth D/2) and the
bottom level (depth D). We will always assume that the upper layer in the ‘big basin’
is shallower than the mid-depth level, i.e.

d <
D

2
. (1)

The flow between the basins at i-th depth will be denoted as Qi (i = 1, 2, 3). We
will assume that the flow Qi is positive (Qi > 0) when it is directed from the ‘big

1 In a subsequent paper [23] written well after submission of the present book chapter, we make
further generalizations of the Whitehead’s ‘tank model’ by extending its analytical treatment to the
case of an arbitrary temperature and salinity of the layers in the ‘big basin’ for both constant and
temperature-dependent heat fluxes to the atmosphere in the ‘small basin’.
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Fig. 1 The ‘tank model’ setup. The system under study consists of two water basins, a big one
and a small one. The ‘big basin’ has time-independent water temperature T0 and salinity S = S0 of
the lower layer and T0 and S = S1 of the upper layer. The depth of the upper layer (d) is fixed. In
the ‘small basin’, exposed to the surface cooling, the convective upper layer has a varying depth δ,
temperature T0 + T (T < 0) and salinity S. The exchange between the basins is at depths 0, D/2,
and D. See Sect. 2.1 for further detail

basin’ to the ‘small basin’, and is negative (Qi < 0) when the flow is in the opposite
direction.

Temperature (T0) and salinity (S0, S1) for both layers in the ‘big basin’ are assumed
to be maintained at the constant level, not affected by water exchange with the ‘small
basin’.

The ‘small basin’ is exposed to surface cooling, with the surface heat flux H
maintained at the constant level (we assume that H > 0). Here surface cooling and
water exchange with the ‘big basin’ lead to development of a convective layer of
depth δ. These processes also modify the temperature anomaly of the convective
layer (T ), i.e. the temperature difference between the ‘small basin’ and the ‘big
basin’, as well as the salinity of the convective layer (S) in the ‘small basin’. Note
that the temperature anomaly is always negative (T < 0).

2.2 Model Equations and Non-Dimensional Variables

In the spirit of hydraulic models, we assume that the flow Qi is proportional to the
pressure difference between the ‘big’ and the ‘small’ basin at the depth level i ,

Qi = Ci (p0i − pi ) , i = 1, 2, 3, (2)
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where p0i is the pressure in the ‘big’ basin, pi is the pressure in the ‘small’ basin, and
Ci is the ‘inverse hydraulic resistance’, characterizing the intensity ofwater exchange
between the basins for a unit pressure difference. In the model we assume that the
‘inverse hydraulic resistance’ at the second (mid-depth) and the third (bottom) level
are identical, while the inverse hydraulic resistance at the first (upper) level is smaller
than either of them,

C1 = γC, C2 = C3 = C, (3)

where γ is a positive scaling factor, less than unity,

0 < γ < 1. (4)

The linear equation of state for seawater is used,

ρ (T, S) = ρ0 (1 + βS − αT ) , (5)

where ρ0 is the reference density at T = 0, S = 0 (recall that T is the temperature
deviation from T0, not the water temperature itself), α is the coefficient of thermal
expansion and β is the coefficient of haline contraction (we assume α = const, β =
const).

Performing a quasi-hydrostatic analysis for the present version of the model with
the saline upper layer, analogous to the analysis made by [37] for the case of the
fresh upper layer, we identify three threshold levels of the temperature anomaly T ,

Tnil = −β (S0 − S1)

α

[
1 − 2

d

D

]
, (6)

Tc = −β (S0 − S1)

α

[
1 − 2γ

1 + 2γ

d

D

]
, (7)

Tcc = −β (S0 − S1)

α

[
1 + 2γ

1 − γ

d

D

]
. (8)

Tnil is the upper boundary of the temperature anomalies compatible with a steady
water exchange between the basins, Tc separates dynamic Regime A from Regime B,
and Tcc separates dynamic Regime B from Regime C. Here for Regime A there is
no flow at the bottom level; for Regime B there is a water exchange at all the three
levels, with an outflow to the ‘big’ basin at the mid-depth level; and for Regime C
there is again a water exchange at all the three levels, now with an inverse flow (to
the ‘small’ basin) at the mid-depth level.

It is convenient to rewrite the problem using non-dimensional variables. To do
this, we introduce the characteristic temperature Ts (in ◦C),

Ts = β (S0 − S1)

α
, (9)
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and the characteristic flow Qs (in m3/s),

Qs = γ

γ + 2
Cρ0gβ (S0 − S1) D. (10)

We also define the characteristic rate of the heat flux between the basinsWs (inW),
the characteristic sea-surface heat flux Hs (inW/m2), and the characteristic timescale
ts (in s),

Ws = ρ0cpTsQs, Hs = Ws

A0
, ts = A0δ

Ws
. (11)

In (10)–(11) g is the gravity acceleration, cp is the specific heat capacity of water,
A0 is the surface area of the ‘small’ basin, and δ is the equilibrium depth of the upper
layer in the ‘small’ basin (regarding calculation of δ, see [37] and a brief discussion
in [5]).

Then, we introduce a non-dimensional parameter d̃ defining the geometry of the
problem: d̃ is the ratio of the depth d of the upper layer to the depth D,

d̃ = d

D
. (12)

(Hereafter, the non-dimensional variables and parameters will be marked with tilde.)
In view of (1),

0 < d̃ <
1

2
. (13)

The state variables of the system, the non-dimensional temperature anomaly T̃
and the scaled salinity anomaly S̃, are now defined as

T̃ = T

Ts
, S̃ = S − S1

S0 − S1
(14)

and are often referred below just as temperature and salinity.
After introducing the non-dimensional inter-basin flows Q̃i and the sea-surface

heat flux H̃ ,

Q̃i = Qi

Qs
, H̃ = H

Hs
, (15)

and also defining the non-dimensional time

t ′ = t

ts
(16)

(below the prime in t ′ will be omitted), we can finally write the non-dimensional
dynamic system describing an evolution of the state variables (14) as
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˙̃T = −H̃ + T̃
[
Q̃1 · 1 (−Q̃1

) + Q̃2 · 1 (−Q̃2
) + Q̃3 · 1 (−Q̃3

)]
, (17a)

˙̃S = Q̃2
[
S̃ · 1 (−Q̃2

) + 1
(
Q̃2

)] + Q̃3
[
S̃ · 1 (−Q̃3

) + 1
(
Q̃3

)]
. (17b)

Here the unit step function 1(x) is defined as

1(x) ≡
{
1, x ≥ 0,
0, x < 0.

(18)

In particular, the three non-dimensional thresholds for T̃ corresponding to (6)–(8)
take the form

T̃nil = − [
1 − 2d̃

]
, (19)

T̃c = −
[
1 − 2γ

1 + 2γ
d̃

]
, (20)

T̃cc = −
[
1 + 2γ

1 − γ
d̃

]
. (21)

The dependence of three temperature thresholds (19)–(21) from the parameter
γ is visualized in Fig. 2 for a particular case of d̃ = 0.1. The upper boundary for
temperature (T̃nil) does not depend on γ . The threshold separating Regimes A and
B (T̃c) steadily and moderately increases with γ , while the threshold separating
Regimes B andC (T̃cc) steadily decreases with γ , demonstrating a singular behaviour
for γ = 1 (T̃cc → −∞ when γ → 1 − 0). T̃c and T̃cc coincide for γ = 0.

From mathematical standpoint, generalizing the Whitehead’s ‘tank model’ to the
case of the saline upper layer results in multiplying the formulae by the salinity
difference (S0 − S1) appearing in (6)–(10), while in the case of the fresh upper layer
the formulae are multiplied by S0 only [5, 37]. Also, an expression for the scaled
salinity S̃ in (14) becomes somewhat more complex than before. However, it should
be stressed that all expressions with non-dimensional parameters retain the same
form as in the previous publications [5, 37].

In Sect. 3.2 below the dynamic system (17), its fixed points and its nonlinear
transitional dynamics for Regimes A-C will be considered in detail.

3 Transitional Dynamics: Exact Analytical Solutions

Thedynamic system (17) is nonlinear.However, it can be treated analytically in depth.
In our previous work [5] we derived exact analytical expressions for the fixed points,
and also studied their stability within the Lyapunov theory. By solving the linearized
dynamic system, wemight also explore the transitional dynamics of the ‘tank’ model
in the linear approximation, generally, valid for small perturbations from equilibria.
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Fig. 2 Dependences of three non-dimensional temperature thresholds, T̃nil, T̃c, and T̃cc, on γ for
d̃ = 0.1. See Sect. 2.2 for further details

However, this nonlinear model, quite surprisingly, allows, in many cases, derivation
of exact closed-form solutions of the system of nonlinear equations. Therefore, we
can go beyond the linear dynamics and explore rigorously the dynamics of finite
perturbations.

In Sect. 3.1 below we provide a generic framework for studying the transitional
dynamics of the ‘tankmodel’ in all its three dynamic regimes (Regimes A-C). Mathe-
matically the analysis will be repeatedly reduced to the Riccati equation. An in-depth
analysis of transitional solutions of the ‘tankmodel’will be then provided in Sect. 3.2.

3.1 A Generic Model of Transitional Dynamics

In this section we provide a theory of the Riccati equation that will be extensively
used in Sect. 3.2 below to derive exact analytical solutions for all three dynamic
regimes of the ‘tank model’.

3.1.1 Symmetric Case: A Special Riccati Equation

Consider an ordinary differential equation (ODE)

ẏ + ay2 = b, (22)
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Fig. 3 The (y, ẏ) plane for a special Riccati equation (22). Arrows mark the directions of evolution
of y for finite perturbations near the points of equilibria. The fixed point y− is stable, while the
fixed point y+ is unstable

where both parameters a and b are constant and negative:

a < 0, b < 0. (23)

We will call this ODE a special Riccati equation, although, strictly speaking, this
is only a particular case of a conventional special Riccati equation ẏ + ay2 = btα

with α = 0 [21].
Obviously, Eq. (22) with the sign constraints for its parameters as in (23) has two

fixed points

y− = −
√
b

a
, y+ = +

√
b

a
, (24)

of which the positive one (y+ = +√
b/a) is unstable, while the negative one (y− =

−√
b/a) is stable (Fig. 3). Indeed, for a perturbation

δy = y − y−, (25)

we get the linearized Eq. (22) in the form

δ ẏ = − δy

τlin
, (26)
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where
1

τlin
= 2

√
ab. (27)

From (25)–(26), if the initial condition of the Riccati equation y0 (at t = 0) is close
enough to the stable fixed point y−, the convergence to the equilibrium approximately
obeys the exponential law

y(t) ∼ y− + (y0 − y−) exp

(
− t

τlin

)
. (28)

The Riccati equation (22) can be integrated in a closed form. In the case of sign
constraints (23) and, consequently, of ab > 0, the exact analytical solution of (22)
takes the form [21]

y(t) =
y0

√
ab + b tanh

(√
ab · t

)
√
ab + ay0 tanh

(√
ab · t

) , (29)

that, in view of (24) and (27), can be rewritten as

y(t) = y−
y0 + y− tanh

(
t

2τlin

)

y− + y0 tanh
(

t
2τlin

) . (30)

If the initial condition coincides with the fixed point (y0 = y+), then y(t) ≡ y+
for all t > 0. However, this equilibrium is unstable. For the initial values of y0 less
than y+ (−∞ < y0 < y+) y(t) converges to the stable fixed point y− at t → +∞. On
the contrary, for y0 > y+ the solution manifests a singular behavior reaching infinite
value at finite time. This dependence of asymptotic behavior of y(t) on the initial
condition can be easily seen from (30), given that tanh x → 1 when x → +∞, and
that y− = −y+.

At big t , given

tanh kt ∼ 1 − 2 exp (−2kt) , k > 0, t → +∞, (31)

we can easily derive from (30) the asymptotic law of convergence

y(t) ∼ y−
[
1 + 2

y0 − y−
y0 + y−

exp

(
− t

τlin

)]
, (32)

that is close to (28), as expected, when y0 is close to y−.
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3.1.2 Asymmetric Case: A General Riccati Equation

Consider now an ODE
ẏ + ay2 + dy = b, (33)

where all three parameters are constant and negative:

a < 0, d < 0, b < 0 (34)

(as will always be the case in applications to Regimes A-C below). We will call this
ODE a general Riccati equation, although, again, this is only a particular case of the
conventional general Riccati equation, where the parameters a, d, b entering (33)
may be arbitrary continuous functions a(t), d(t), b(t) [21].

The two fixed points of (33), the roots of a quadratic equation

ay2 + dy − b = 0, (35)

are

y∗
± = −d ± √

d2 + 4ab

2a
. (36)

Given the sign constraints (34), the two roots of (35) are real and have opposite sings:
y∗− < 0, y∗+ > 0.

By substituting the variable,

ỹ = y + d

2a
, (37)

the general Riccati equation (33) is reduced to its special form (22) analysed in
Sect. 3.1.1 above,

˙̃y + a ỹ2 = b + d2

4a
, (38)

where the signs of two effective parameters obey the same constraints as in the
previous section. Therefore, all results derived in Sect. 3.1.1 are applicable for (38)
as well.

In particular, the analogues of Eqs. (24) and (27) take the form

ỹ± = ±
√
b

a
+ d2

4a2
, (39)

1

τ ∗
lin

= 2

√
ab + d2

4
. (40)

The exact analytical solution of (33) is
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y(t) = ỹ−

(
y0 + d

2a

) + ỹ− tanh
(

t
2τ ∗

lin

)

ỹ− + (
y0 + d

2a

)
tanh

(
t

2τ ∗
lin

) − d

2a
, (41)

while the solution of the linearized equation, analogous to (28), takes the form

y(t) ∼ y∗
− + (

y0 − y∗
−
)
exp

(
− t

τ ∗
lin

)
. (42)

3.2 Exact Analytical Solutions for Different Dynamic
Regimes

Basedon the genericmodel of transitional dynamics reducible to theRiccati equation,
we now derive exact analytical solutions for the transitional dynamics in all three
model regimes (Regimes A-C). As we will see, in the case of Regimes A-B, the full
analytical description of the model behavior is possible, while in a more complex
Regime C the rigorous analytical description of the ‘tank model’ can be derived only
partially.

3.2.1 Regime A: Flows at Upper and Mid-Depth Levels Only

In Regime A, there is flow from the ‘big’ basin to the ‘small’ basin at upper level
(Q̃1 > 0) exactly balanced by flow from the ‘small’ basin to the ‘big’ basin at the
mid-depth level (Q̃2 < 0); there is no flow at the bottom level (Q̃3 = 0). For these
constraints on the flows, a general dynamic system (17) takes the form

˙̃T = −H̃ − Q̃1T̃ , (43a)
˙̃S = −Q̃1 S̃. (43b)

As shown by [37], the mutually balancing flows at the upper and the mid-depth
levels take the form

Q̃1 = −Q̃2 = − γ + 2

2 (γ + 1)

[
1 + T̃ − 2d̃

]
. (44)

As follows from (43), also obvious from the design of the model (Fig. 1), the
equilibrium salinity in Regime A is equal to zero, S̃A = 0. (Note that, according
to (14), in the dimensional form this means that the salinity of the mixed layer in the
‘small’ basin, S, is equal to that of the upper layer in the ‘big’ basin, S1.) In view
of the model design, we restrict our analysis of nonlinear transitional dynamics to
finite temperature perturbations. As shown in [5], the exact dynamic equation for T̃
in Regime A takes the form
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˙̃T = γ + 2

2 (γ + 1)
T̃ 2 − γ + 2

2 (γ + 1)
T̃nilT̃ − H̃ , (45)

where T̃nil is provided by (19). The stable fixed point of (45) is

T̃A
− = −1

2

[∣∣T̃nil∣∣ +
√
T̃ 2
nil + 8

γ + 1

γ + 2
H̃

]
. (46)

Regime A with steady flow and the equilibrium (46) is possible for a certain range of
values of the sea-surface heat flux H̃

0 < H̃ < H̃AB, (47)

where a threshold heat flux H̃AB is defined as

H̃AB = − γ + 2

2γ + 1
d̃ T̃c (48)

(note that H̃AB > 0 in view of T̃c < 0, see (20)).
The nonlinear temperature dynamic Eq. (45) takes the form of the general Ric-

cati equation (33) with the signs of parameters as in (34). Therefore, we can now
apply to (45) the theory presented in Sect. 3.1.2. In particular, the characteristic
timescale (40) is explicitly given as

1

τA
lin

= γ + 2

2(γ + 1)

√
T̃ 2
nil + 8

γ + 1

γ + 2
H̃ , (49)

and the exact analytical solution (41) for the nonlinear transitional dynamics of finite
temperature perturbations can be expressed as

T̃A(t)

= −1

2

⎡
⎢⎢⎣

∣∣T̃nil∣∣ −
√
T̃ 2
nil + 8

γ + 1

γ + 2
H̃ ×

(
2T̃0 + ∣∣T̃nil∣∣) −

√
T̃ 2
nil + 8 γ+1

γ+2 H̃ × tanh

(
t

2τAlin

)
√
T̃ 2
nil + 8 γ+1

γ+2 H̃ − (
2T̃0 + ∣∣T̃nil∣∣) × tanh

(
t

2τAlin

)
⎤
⎥⎥⎦ ,

(50)

where T̃0 is the initial condition for T̃ at t = 0, and τA
lin is provided by (49). As

expected, for initial conditions compatible with Regime A (T̃c < T̃0 < T̃nil), the solu-
tion (50) converges to the stable fixed point (46) when t → +∞.

3.2.2 Regime B: Flows at All Levels

In Regime B, there are flows at all three levels. At the upper level, the flow is
directed from the ‘big’ basin to the ‘small’ basin (Q̃1 > 0), while at the mid-depth
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and at the bottom levels the flows are directed from the ‘small’ basin to the ‘big’
basin (Q̃2 < 0, Q̃3 < 0). A general dynamic system (17) takes the same form as in
Regime A (Sect. 3.2.1, (43)). However, the flows Q̃i (i = 1, 2, 3) are now given by
the expressions [37]

Q̃1 = −3

2

[
1 + T̃ − S̃

] + 2d̃, (51)

Q̃2 = 1 − γ −1

2

[
1 + T̃ − S̃

] − d̃, (52)

Q̃3 = 2 + γ −1

2

[
1 + T̃ − S̃

] − d̃, (53)

and the expression for Q̃1 in (43) should be substituted now by (51).
In equilibrium, we again have S̃B = 0 (or S = S1 in the dimensional form), there-

fore we restrict again our analysis of the nonlinear transitional dynamics to finite
temperature perturbations. The exact dynamic equation for T̃ in Regime B takes the
form [5]

˙̃T = 3

2
T̃ 2 +

(
3

2
− 2d̃

)
T̃ − H̃ , (54)

with the stable fixed point of (54)

T̃ B
− = −1

3

⎡
⎣

(
3

2
− 2d̃

)
+

√(
3

2
− 2d̃

)2

+ 6H̃

⎤
⎦ . (55)

The steady flow and the equilibrium (55) for Regime B is possible in the range of
the sea-surface heat fluxes H̃

H̃AB < H̃ < H̃BC, (56)

where the threshold heat flux H̃AB is provided by (48), and the threshold heat flux
H̃BC is equal to

H̃AB = −γ + 2

1 − γ
d̃ T̃cc (57)

(H̃BC > 0 in view of T̃cc < 0, see (21)).
The nonlinear temperature dynamics Eq. (54) takes again the form of the general

Riccati equation (33) with the same signs of the parameters as in (34). Applying
to (54) the results from Sect. 3.1.2, we get the characteristic timescale (40):

1

τB
lin

=
√(

3

2
− 2d̃

)2

+ 6H̃ , (58)
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while the exact analytical solution (41) of the nonlinear transitional dynamics can be
explicitly written as

T̃B(t)

= − 1

3

⎡
⎢⎢⎢⎢⎣

(
3

2
− 2d̃

)
−

√(
3

2
− 2d̃

)2
+ 6H̃ ×

[
3T̃0 +

(
3
2 − 2d̃

)]
−

√(
3
2 − 2d̃

)2 + 6H̃ × tanh

(
t

2τBlin

)

√(
3
2 − 2d̃

)2 + 6H̃ −
[
3T̃0 +

(
3
2 − 2d̃

)]
× tanh

(
t

2τBlin

)

⎤
⎥⎥⎥⎥⎦ , (59)

where τB
lin is given by (58). Like above, for the initial conditions compatible with

Regime B (T̃cc < T̃0 < T̃c), the solution (59) converges to the stable fixed point (55)
for t → +∞.

The difference between the exact nonlinear solution (59) and the approximate
linearized transitional dynamics

T̃ (t) ∼ T̃ B
− + (

T̃0 − T̃ B
−

)
exp

(
− t

τB
lin

)
, (60)

for Regime B is presented in Figs. 4 and 5.
Figure4 corresponds to the case γ = 0.25, d̃ = 0.04. d̃ is chosen as the charac-

teristic ratio of the pycnocline depth to the water depths in the Greenland Sea (see
Sect. 4 for more detail). The value of γ is based on estimates of the oceanic water
transport from the Arctic to the Greenland Sea, which at the mid-depth levels is 4
times that of the fresher upper layer [31]. However, strictly speaking, the real value
of γ is largely uncertain. Figure5 corresponds to the case γ = 0.75, d̃ = 0.1.
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Fig. 4 A linear approximation and the exact nonlinear solution for transitional dynamics for
Regime B with γ = 0.25 and d̃ = 0.04
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Fig. 5 A linear approximation and the exact nonlinear solution for transitional dynamics for
Regime B with γ = 0.75 and d̃ = 0.1

In both examples, the initial conditions for temperature T̃0 are chosen to be very
close (yet a bit lower) than the temperature threshold T̃c(γ, d̃), while the surface heat
fluxes H̃ are chosen in such a way that the equilibrium temperature T̃ B− is very close
(yet a bit higher) than the temperature threshold T̃cc(γ, d̃). This means that, in the
course of convergence to the equilibrium, the temperature will pass virtually through
the whole temperature range T̃cc(γ, d̃) < T̃ < T̃c(γ, d̃), where Regime B is valid.

Figure4 shows that the linear approximation virtually coincides with the exact
nonlinear solution. In Fig. 5, the linear approximation also is found to approximate
the transitional dynamics fairly well, however, some differences between the linear
approximation and the exact nonlinear solution do exist.

3.2.3 Regime C: Flows at All Levels, Inverse Flow at Mid-Depth Level

For Regime C, there are flows at all three levels. However, the flow at the mid-depth
level is now oppositely directed to that in Regime B, i.e. from the ‘big’ basin to the
‘small’ basin. Consequently, the flows at different depth levels have the following
signs: Q̃1 > 0, Q̃2 > 0, Q̃3 < 0. The dynamic system (17) now takes the form

˙̃T = −H̃ + Q̃3T̃ , (61a)
˙̃S = Q̃2 + Q̃3 S̃. (61b)
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The same expressions (51)–(53) for the flows Q̃i forRegime B, are also applicable
for Regime C.

A distinctive feature of Regime C is non-zero salinity in the stable fixed point:
S̃ > 0 or, in the dimensional form, S > S1. Explicitly, as shown in [5], the stable
fixed point

(
T̃ C− , S̃C−

)
is

T̃ C
− = −γ H̃

2

(
3 − 2d̃

) +
√(

3 − 2d̃
)2 + 8

γ

[
(2γ + 1) H̃ − (γ + 2) d̃

]
(2γ + 1) H̃ − (γ + 2) d̃

, (62)

S̃C− = 1

2γ + 1

[
(1 − γ ) + (γ + 2)

d̃

H̃
T̃ C

−

]
. (63)

The steady flow in Regime C with the equilibrium (62)–(63) is possible when

H̃ > H̃BC, (64)

where H̃BC is provided by (57).
In general, it is not possible to analytically integrate this dynamic system (61), and

we cannot provide analytical solutions for temperature and salinity for Regime C.
However, for the transitional dynamics, one can derive exact analytical solutions for
the flows at all three levels: Q̃i (i = 1, 2, 3). The procedure is outlined below.

First, we note that, in view of (51)–(53), any flow can be derived from any other
flow by a simple linear transform. In particular,

Q̃2
(
T̃ , S̃

) = a0 Q̃3
(
T̃ , S̃

) + b0, (65)

where the parameters a0, b0 are equal to

a0 = − 1 − γ

2γ + 1
, b0 = − γ + 2

2γ + 1
d̃. (66)

By substituting (65) into (61), we rewrite the salinity dynamic equation as

˙̃S = b0 + Q̃3
(
S̃ + a0

)
. (67)

We now define a new variable z as the difference between non-dimensional tem-
perature and salinity,

z ≡ T̃ − S̃, (68)

and note that, according to (53), the flow Q̃3 can be expressed as a function of z only:

Q̃3 [z] = 2γ + 1

2γ
[1 + z] − d̃. (69)
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The flows Q̃1 and Q̃2 can, of course, be expressed as linear functions of z in a
similar way.

We now subtract (67) from (61) and obtain the nonlinear ODE of the single
variable z:

ż = Q̃3 [z] (z − a0) −
(
H̃ + b0

)
. (70)

Explicitly, (70) is again the general Riccati equation

ż = 2γ + 1

2γ
z2 +

(
γ + 2

2γ
− d̃

)
z −

(
H̃ − 1 − γ

2γ
− d̃

)
. (71)

Therefore, it is possible to write down an explicit analytical solution for (71), in
a similar way, as it has been done for Regimes A and B (Sects. 3.2.1–3.2.2). We do
not provide here an explicit formula for z(t). However, we note that, as soon as z(t)
is found, the flow Q̃3(t) can be obtained from (69), while the flows Q̃1(t) and Q̃2(t)
can be derived from similar linear expressions.

Having found Q̃3(t) ≡ Q̃3 [z(t)], we return to (61) in order to derive a solution
for T̃ (t) in the closed form. Considering now (61) as a first-order linear ODE with
Q̃3(t) already known,

˙̃T = Q̃3(t)T̃ − H̃ , (72)

we obtain the solution of (72) as [21]

T̃ (t) = exp (−F (t))

[
T̃0 − H̃

∫ t

0
exp (F (τ )) dτ

]
, (73)

where

F(t) = −
∫ t

0
Q̃3(τ )dτ. (74)

However, the integral in the r.h.s of (74) cannot be taken in the closed form, and there-
fore we cannot provide explicit analytical solutions for T̃ (t) and S̃(t) for Regime C.

4 Implications for the Ocean

In this Section we make an attempt to apply the mathematical model above, initially
developed for a laboratory ‘tankmodel’, to deep convection and inter-basin exchange
in the real ocean. Belowwe compare numerical estimates of some dimensionalmodel
parameters to observations during deep convection events in the Greenland Sea.

The subpolar seas (for example, the Greenland Sea) are connected to the Arctic
Ocean (from where they get cold water of low salinity), as well as to the mid-
latitude/tropical Atlantic Ocean (from where they get warm water of high salinity).
In the central areas of the subpolar seas, a mixture of these two water sources form
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the thermohaline properties of the upper ocean (T0 and S1), which influence the deep
convection region (Q1 in the model, Fig. 1). Following the model design, we take
S0 to be the salinity of the deep levels in the Greenland Sea. T0 and S0 in the deep
Greenland Sea are close to those in the adjacent areas of the deep North Atlantic,
which justifies using the same values in the model design. For the deep convective
region in theGreenland Sea (74.5–76◦N, 3◦W–1◦E), thewater depth at the convective
site is taken D = 3600 m.

Themodel parameters, describing thermohalinewater properties and their vertical
structure in the region, are derived from EN4 Hadley Center data base2 (1950–2016,
the gridded data set) and ARMOR data base3 (1993–2016). EN4 data are based on
the commonly usedWorldOcean data-base,4 but pass amore rigorous error-checking
procedure [17]. ARMOR is a novel data-set that merges in situ and satellite-based
data into an optimum interpolation gridding procedure [18]. The analysis of themixed
layer depth using both datasets suggests that the characteristic depth of the upper layer
in the ‘big basin’ (e.g. out of the deep convection region) is d = 150 m (according
to (12), this gives d̃ ∼0.042). The characteristic salinity of the upper layer of the
‘big basin’ is S1 = 34.7 and that of the lower layer is S0 = 34.9. The temperature
in the ‘big basin’ is taken T0 =-0.5 ◦C, which is the mean water temperature below
the seasonal thermocline in the region. The coefficient of thermal expansion (α)
varies significantly with water pressure, temperature and salinity. For salinity 35,
temperature 0 ◦C and pressure from 0m to 2000m, α changes from 0.5 · 10−4 ◦C−1

to 1.1 · 10−4 ◦C−1. For the numerical estimates below we take the values of α =
0.7 · 10−4 ◦C−1. Coefficient of haline contraction only weakly varies with water
salinity and pressure and with a good accuracy can be taken as β = 7.6 · 10−4.

Substituting the model parameters above in (9) and (6), we get the characteristic
temperature Ts ∼2.17 ◦C and the upper threshold for temperature anomaly Tnil ∼-
1.99 ◦C. The latter estimate means that during a deep convective event water temper-
ature in the deep convective site should be at least 2 ◦C lower than in the neighboring
ocean. This agrees fairly well with existing observations. Thus, during deep convec-
tion events in the central Greenland Sea, it has been registered a decrease of potential
temperature from (−0.8)–(−0.5) ◦C to (−1.9)–(−1.3) ◦C, i.e. by 0.5–1.4 ◦C [6, 25].
Also, in [20] it is registered up to 0.5 ◦C temperature drop in the deep convection
chimney in the northern Greenland Sea, compared to the surrounding ocean.

It is worth mentioning that if we make the same estimates for the case of the fresh
upper layer (by setting S1 = 0 and retaining the values of all other parameters), we
get Ts ∼378 ◦C, Tnil ∼-273.15 ◦C—a tremendously low temperature anomaly that
makes the model with the fresh upper layer not directly applicable to the real ocean
phenomena.

Numerical estimates of other model parameters, dependent on the sea-surface
flux H , are more challenging since the derived solutions are sensitive to the values of
the non-dimensional heat flux H̃ , which, in turn, depends on the ‘inverse hydraulic

2 https://www.metoffice.gov.uk/hadobs/en4/.
3 http://marine.copernicus.eu/.
4 https://www.nodc.noaa.gov/OC5/WOD13/.

https://www.metoffice.gov.uk/hadobs/en4/
http://marine.copernicus.eu/
https://www.nodc.noaa.gov/OC5/WOD13/
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resistance’ C (see (10), (11), and (15))—a free phenomenological model parameter
that characterizes the intensity of the upper ocean volume flux relative to that at
mid-depth and in the deep ocean. Estimating of this latter parameter is not a straight-
forward task due to complexity of the Greenland Sea exchange with the surrounding
basins.

5 Conclusions

In the present chapter we performed a generalization of theWhitehead’s ‘tankmodel’
to the case of non-zero salinity of upper ocean layer, which makes the model appli-
cable for real-ocean phenomena. Indeed, while maintaining a fresh water layer in
a laboratory apparatus is a manageable technical task, in particular, successfully
implemented in the tank experiments reported by [38–40], the same assumption is
not applicable for the open-ocean, where the difference in salinity between the upper
and the mid-depth layers in the subpolar regions forms a few percent.

At the same time, the introduction of the saline upper layer did not bring much of
a conceptual change to the model from the purely mathematical standpoint. Indeed,
the results with the non-zero salinity of the upper ocean S1 are equivalent to those
with fresh upper layer, when the parameter S0 in the ‘big basin’ is treated as the
difference between the water salinity of the lower and of the upper layers. As it
was discussed in Sect. 2.2, while the dimensional model equations are modified,
the properly normalized non-dimensional equations are not. Therefore, most of the
results of themodelwith the fresh upper layer reported previously [5, 37] are inherited
in the case of the saline upper layer. Importantly, in the case of the constant (time-
independent) sea-surface heat flux, for a given set of themodel parameters, the steady
state of the model is unique and stable for any of three possible dynamic regimes
(Regimes A-C).

While the theoretical analysis of the ‘tank model’ reported in earlier publications
was primarily focused on its steady states, in the present chapter we explored the
transitional dynamics of the nonlinear model in detail. We derived exact analytical
solutions for the nonlinear model. With high complexity of the hydrodynamic phe-
nomena, deriving exact analytical solutions of dynamic equations is possible only
for a limited number of fluid dynamic models in general, and of ocean dynamic
models in particular. In this respect, we regard this study as a certain contribution to
a collection of analytically tractable fluid dynamics/ocean models.

Although strongly simplifying oceanographic conditions in the subpolar seas, the
presentmodel can be used for exploring a link between the intensity of the convection
in the subpolar basin and the intensity of its exchange with the neighbouring areas of
the North Atlantic. In particular, for a given configuration of the model parameters,
the model provides threshold values for a heat release from the ocean, that results in
a non-zero flux in the lower layer (the transition from Regime A to Regime B), as well
as in a change in the direction of the mid-depth flux (the transition from Regime B to
Regime C). The change from one regime to another results in different dependences
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between the deep convection intensity and the intensity of the AMOC, as well as
of variations of the thermohaline properties of the outflow with intensification of
the heat release from the ocean to the atmosphere in a subpolar basin (see also [5]).
The implications of these results need to be further explored in the oceanographic
framework.

Despite its conceptual simplicity, the ‘tank model’ manifests interesting dynam-
ics with a rich variety of possible dynamic regimes. Analytical methods are appli-
cable not only for the simplest case of the constant surface heat flux studied here.
It is important extending the theoretical analysis to more complex setups with time-
varying heat fluxes. Allowing for the non-linearity of the equation of state of ocean
water by assuming dependence of the coefficient of thermal expansion (α) on tem-
perature and depth is also important, as this will modify the model dynamics in the
areas of deep convection. These modifications will further bring the model closer to
the real ocean conditions and allow for a richer behavior of the dynamic system.
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On the Necessary Conditions
for Preserving the Nonnegative Cone:
Mixed Diffusion

Messoud Efendiev and Vitali Vougalter

Abstract The chapter deals with the easily verifiable necessary condition of the
preservation of the nonnegativity of the solutions of a system of parabolic equations
in the case of the mixed diffusion when the standard Laplacian in the firstm variables
is added to the Laplace operator in the rest of the variables in a fractional power in the
space of an arbitrary dimension. This necessary condition is crucial for the applied
analysis community since it imposes the necessary form of the system of equations
that must be treated mathematically.

1 Introduction

The solutions of various systems of convection-diffusion-reaction equations arising
in biology, physics or engineering describe such quantities as population densities,
pressure or concentrations of nutrients and chemicals. Hence, a natural property to
require for the solutions is their nonnegativity. Models that do not guarantee the
nonnegativity are not valid or break down for small values of the solution. In many
situations, showing that a particular model fails to preserve the nonnegativity leads
to the better understanding of the model and its limitations. One of the first steps in
analyzing ecological or biological or bio-medical models mathematically is to test
whether solutions originating from the nonnegative initial data remain nonnegative
(as long as they exist). In other words, the model under consideration ensures that
the nonnegative cone is positively invariant. We recall that if the solutions (of a given
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evolution PDE) which correspond to the nonnegative initial data remain nonnegative
as long as they exist, we say that the system satisfies the nonnegativity property.

For scalar equations the nonnegativity property is a direct consequence of the
maximum principle (see [2] and the references therein). However, for systems of
equations the maximum principle is not valid. In the particular case of monotone
systems the situation resembles the case of scalar equations, sufficient conditions for
preserving the nonnegative cone can be found in [9, 10]. For systems including the
standard diffusion, transport and general interaction terms (not necessarily mono-
tone) the necessary and sufficient conditions for preserving the nonnegative cones
were obtained in [2].

In the present work we aim to prove a simple and easily verifiable criterion,
that is, the necessary condition for the nonnegativity of solutions of systems of
nonlinear convection-mixed diffusion-reaction equations arising in the modelling of
life sciences. We believe that it could provide the modeler with a tool, which is easy
to verify, to approach the question of positive invariance of the model.

The present article deals with the preservation of the nonnegativity of solutions
of the system of reaction-diffusion equations in the space of an arbitrary dimension
d ∈ N, d ≥ 2, namely

∂u

∂t
= A[α�x,m − β(−�x,d−m)s]u +

d∑

l=1

�l ∂u

∂xl
− F(u), (1.1)

where the Laplace operators

�x,m :=
m∑

l=1

∂2

∂x2l
, �x,d−m :=

d∑

l=m+1

∂2

∂x2l
, 1 ≤ m ≤ d − 1, 0 < s < 1,

A, �l, 1 ≤ l ≤ d are N × N matriceswith constant coefficients, which is relevant to
the cell population dynamics in Mathematical Biology. Here α, β > 0 are constants
as well. The case of β = 0 corresponds to the normal diffusion treated in [2]. The
situation when α = 0 corresponds to the anomalous diffusion studied recently in [3].
As distinct from the present article, the power of the negative Laplace operator in

[3] was restricted to 0 < s <
1

4
due to the solvability conditions for the Poisson type

equation involving the fractional Laplacian in one dimension (see [14]). Note that
the model analogous to (1.1) can be used to study such branches of science as the
DamageMechanics, the temperature distribution in Thermodynamics. In the present
work the space variable x corresponds to the cell genotype, uk(x, t) stands for the
cell density distributions for various groups of cells as functions of their genotype
and time,

u(x, t) = (u1(x, t), u2(x, t), . . . , uN (x, t))T .
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The operator (−�x,d−m)s in system (1.1) describes a particular case of the anomalous
diffusion actively treated in the context of different applications in plasmaphysics and
turbulence [1, 4], surface diffusion [5, 7], semiconductors [8] and so on. Anomalous
diffusion can be described as a random process of particle motion characterized by
the probability density distribution of jump length. The moments of this density
distribution are finite in the case of normal diffusion, but this is not the case for
the anomalous diffusion. Asymptotic behavior at infinity of the probability density
function determines the value s of the power of the negative Laplacian [6]. The
operator (−�x,d−m)s is defined by virtue of the spectral calculus. Front propagation
problems with anomalous diffusion were treated actively in recent years (see e.g.
[11, 12]). The solvability of the single equation involving the Laplacian with drift
relevant to the fluid mechanics was studied in [13]. Let us assume here that (1.1)
contains the square matrices with the entries constant in space and time

(A)k, j := ak, j , (�l)k, j := γ l
k, j , 1 ≤ k, j ≤ N , 1 ≤ l ≤ d

and that the given matrix A is an N × N matrix with a positive symmetric part
A + A∗ > 0 (parabolicity assumption) for the sake of the well posedness of problem
(1.1). Here A∗ denotes the adjoint of matrix A. Hence, system (1.1) can be rewritten
in the form

∂uk
∂t

=
N∑

j=1

ak, j [α�x,m − β(−�x,d−m)s]u j +
d∑

l=1

N∑

j=1

γ l
k, j

∂u j

∂xl
− Fk(u), (1.2)

where 1 ≤ k ≤ N and 0 < s < 1. In the present article the interaction of species
term

F(u) = (F1(u), F2(u), ..., FN (u))T ,

which in principle can be linear, nonlinear or even nonlocal. Let us assume its
smoothness in the theorem below for the sake of the well posedness of our problem
(1.1), although, we are not focused on the well posedness issue in the present work.
From the perspective of applications, the space dimension can be chosen arbitrarily,
d ∈ N, d ≥ 2 since the space variable here corresponds to the cell genotype but not
to the usual physical space. Let us denote the inner product as

( f (x), g(x))L2(Rd ) :=
∫

Rd

f (x)ḡ(x)dx . (1.3)

As for the vector functions, their inner product is defined using their components as

(u, v)L2(Rd ,RN ) :=
N∑

k=1

(uk, vk)L2(Rd ). (1.4)
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Obviously, (1.4) induces the norm

‖u‖2L2(Rd ,RN ) =
N∑

k=1

‖uk‖2L2(Rd ).

By the nonnegativity of a vector function below we mean the nonnegativity of the
each of its components. Our concern is not the study of the existence of solutions but
their qualitative behavior. Hence, in the sequel we assume that for any initial data

u0 ∈ K+ := {u : Rd → R
N | ui (x, t) ≥ 0 a.e. in R

d , i = 1, ..., N }

there exists a unique solution (satisfying the appropriate estimates) to carry out our
calculations. Our main proposition is as follows.

Theorem 1 Let F : RN → R
N , such that F ∈ C1, the initial condition for problem

(1.1) is u(x, 0) = u0(x) ≥ 0 and u0(x) ∈ L2(Rd ,RN ), d, N ∈ N, d, N ≥ 2. Then
in order to preserve the non-negative cone for system (1.1) the necessary condition
is that the matrices A and � are diagonal and for all 1 ≤ k ≤ N

Fk(s1, ..., sk−1, 0, sk+1, ..., sN ) ≤ 0 (1.5)

holds , where sl ≥ 0 and 1 ≤ l ≤ N , l �= k.

Remark 1 In the case of the linear interaction of species, namely when F(u) = Lu,
where L is a matrix with elements bi, j , 1 ≤ i, j ≤ N constant in space and time,
our necessary condition leads to the condition that the matrix L must be essentially
nonpositive, that is bi, j ≤ 0 for i �= j, 1 ≤ i, j ≤ N .

Remark 2 Our proof yields that, the necessary condition for preserving the nonnega-
tive cone is carried over from the ODE (the spatially homogeneous case, as described
by the ordinary differential equation u′(t) = −F(u)) to the case of the anomalous
diffusion and the convective drift term.

Remark 3 In the forthcoming papers we intend to consider the following cases:

(a) the necessary and sufficient conditions of the present work,
(b) the density-dependent diffusion matrix,
(c) the stochastic perturbation of the deterministic case,
(d) the effect of the delay term in the cases (a), (b) and (c).

Remark 4 Note that in the present work as distinct from [3] we do not assume the
nonnegativity of the off diagonal elements of the matrix A.

We proceed to the proof of our main statement.
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2 The Preservation of the Nonnegativity of the Solution
of the System with Mixed Diffusion

Proof of Theorem 1. We note that themaximum principle actively used for the studies
of solutions of single parabolic equations does not apply to systems of such equations.
Let us consider a time independent, square integrable, nonnegative vector function
v(x) and estimate

(
∂u

∂t

∣∣∣∣
t=0

, v

)

L2(Rd ,RN )

=
(
limt→0+

u(x, t) − u0(x)

t
, v(x)

)

L2(Rd ,RN )

.

By virtue of the continuity of the inner product, the right side of the equality above
is equal to

limt→0+
(u(x, t), v(x))L2(Rd ,RN )

t
− limt→0+

(u0(x), v(x))L2(Rd ,RN )

t
. (2.1)

We choose the initial condition for our system u0(x) ≥ 0 and the constant in time
vector function v(x) ≥ 0 to be orthogonal to each other in L2(Rd ,RN ). This can be
achieved, for example for

u0(x) = (ũ1(x), . . . , ũk−1(x), 0, ũk+1(x), . . . , ũN (x)), v j (x) = ṽ(x)δ j,k, (2.2)

with 1 ≤ j ≤ N , where δ j,k is the Kronecker symbol and 1 ≤ k ≤ N is fixed. Hence,
the second term in (2.1) vanishes and (2.1) is equal to

limt→0+

∑N
k=1

∫
Rd uk(x, t)vk(x)dx

t
≥ 0

by means of the nonnegativity of all the components uk(x, t) and vk(x) involved in
the formula above. Hence, we obtain

N∑

j=1

∫

Rd

∂u j

∂t

∣∣∣∣
t=0

v j (x)dx ≥ 0.

By means of (2.2), only the kth component of the vector function v(x) is nontrivial.
This gives us ∫

Rd

∂uk
∂t

∣∣∣∣
t=0

ṽ(x)dx ≥ 0.

Therefore, by means of (1.2) we derive
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∫

Rd

[ N∑

j=1, j �=k

ak, j [α�x,m − β(−�x,d−m)s]ũ j (x) +
d∑

l=1

N∑

j=1, j �=k

γ l
k, j

∂ ũ j

∂xl
−

−Fk(ũ1(x), . . . , ũk−1(x), 0, ũk+1(x), . . . , ũN (x))

]
ṽ(x)dx ≥ 0.

Since the nonnegative, square integrable function ṽ(x) can be chosen arbitrarily, we
arrive at

N∑

j=1, j �=k

ak, j [α�x,m − β(−�x,d−m)s]ũ j (x) +
d∑

l=1

N∑

j=1, j �=k

γ l
k, j

∂ ũ j

∂xl
−

− Fk(ũ1(x), . . . , ũk−1(x), 0, ũk+1(x), . . . , ũN (x)) ≥ 0 a.e. (2.3)

For the purpose of the scaling, we replace all the ũ j (x) by ũ j

(
x

ε

)
in the inequality

above, where ε > 0 is a small parameter. This gives us

N∑

j=1, j �=k

ak, j

[
α

ε2
�y,m − β

ε2s
(−�y,d−m)s

]
ũ j (y) +

d∑

l=1

N∑

j=1, j �=k

γ l
k, j

ε

∂ ũ j (y)

∂yl
−

− Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN (y)) ≥ 0 a.e. (2.4)

Obviously, the
1

ε2
term in the left side of (2.4) is the leading one as ε → 0. In the case

of ak, j < 0 we can choose here ũ j (y) = ey
2
in a neighborhood of the origin, smooth

and decaying to zero at the infinity. A trivial calculation yields that �y,mũ j (y) > 0
near the origin. If ak, j > 0, then we can consider ũ j (y) = e−y2 around the ori-
gin, smooth and tending to zero at the infinity. An easy computation shows that
�y,mũ j (y) < 0 in a neighborhood the origin. Thus, the left side of (2.4) can be made
as negative as possible which will violate inequality (2.4). Note that the last term in
the left side of (2.4) will remain bounded. Therefore, for the matrix A involved in
system (1.1), the off diagonal terms should vanish, such that

ak, j = 0, 1 ≤ k, j ≤ N , k �= j.

Hence, from (2.4) we arrive at

d∑

l=1

N∑

j=1, j �=k

γ l
k, j

ε

∂ ũ j (y)

∂yl
−

− Fk(ũ1(y), ..., ũk−1(y), 0, ũk+1(y), ..., ũN (y)) ≥ 0 a.e. (2.5)



On the Necessary Conditions for Preserving … 191

In the case of γ l
k, j < 0 involved in the sum in the left side of (2.5), we can choose

ũ j (y) = e
√

y2+1 in a neighborhood of the origin, smooth and decaying to zero at the
infinity, such that

∂ ũ j (y)

∂yl
= yl√

y2 + 1
e
√

y2+1 > 0, yl > 0

near the origin. If γ l
k, j > 0, we consider ũ j (y) = e−

√
y2+1 near the origin, smooth

and decaying to zero at the infinity, such that

∂ ũ j (y)

∂yl
= − yl√

y2 + 1
e−

√
y2+1 < 0, yl > 0

in a neighborhood of the origin. By making the parameter ε sufficiently small, we
can violate the inequality in (2.5). This yields for 1 ≤ l ≤ d that

γ l
k, j = 0, 1 ≤ k, j ≤ N , k �= j.

Therefore, by virtue of (2.3) we arrive at

Fk(ũ1(x), ..., ũk−1(x), 0, ũk+1(x), ..., ũN (x)) ≤ 0 a.e.,

where ũ j (x) ≥ 0 and ũ j (x) ∈ L2(Rd) with 1 ≤ j ≤ N , j �= k. �

Remark 5 Let us assume that the components of the reaction term satisfy for all
1 ≤ k ≤ N

Fk(t, s1, ..., sk−1, 0, sk+1, ..., sN ) ≤ 0,

where sl ≥ 0 with 1 ≤ l ≤ N , l �= k and F ∈ C1
t,x , t ∈ [0, τ ], x ∈ R

d for some
τ > 0. Then it is not difficult to see that the analog of Theorem 1 holds.
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Multi-scale Analysis of Urban Spatial
Structures Acquired from
OpenStreetMap

Dimitri Volchenkov and Veniamin Smirnov

In memoriam of Valentin Afraimovich (1945–2018), a visionary
scientist, respected colleague, generous mentor, and loyal friend.

Abstract We propose computationally feasible statistical algorithms for the auto-
mated assessment of isolation and integration of urban locations and neighborhoods
by using maps acquired from the OpenStreetMap service. Integration and isolation
defined by observing the properties of scale-dependent random walks on city street
maps are not always opposites. While isolation worsens economic and social mobil-
ity prospects in sprawling metropolitan areas, some secluded places homing the
wealthiest can be characterized as being in integrated isolation in the city.

1 Introduction

Urbanization has been the dominant demographic trend in the entire world during
the last half century. Rural to urban migration, international migration, and the re-
classification or expansion of existing city boundaries have been among the major
reasons for increasing urban population. The essentially fast growth of cities in the
last decades urgently calls for a profound insight into the common principles stirring
the structure of urban developments all over the world [1, 2].
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A belief in the influence of the built environment on humans was common in
architectural and urban thinking for centuries [2, 3]. Cities generate more interac-
tions with more people than rural areas because they are central places of trade that
benefit those who live there. People moved to cities because they intuitively per-
ceived the advantages of urban life [1]. City residence converted a compact space
pattern into a pattern of relationships by constraining mutual proximity between
people. Spatial organization of a place has an extremely important effect on the way
people moving through spaces and meeting other people by chance [4]. Compact
neighborhoods can foster casual social interactions among neighbors, while creat-
ing barriers to interaction with people outside a neighborhood. Spatial configuration
promotes peoples encounters, as well as making it possible for them to avoid each
other, shaping social patterns [5].

In our work, we propose feasible statistical algorithms for the automated assess-
ment of isolation and integration of urban locations and neighborhoods by using
maps acquired from the OpenStreetMap service, a collaborative project to create a
free editable map of the world. Map data in the project is collected from scratch
by volunteers performing systematic ground surveys using tools such as a handheld
GPS unit, a notebook, digital camera, or a voice recorder. The data is then entered
into the OpenStreetMap database being freely available for downloading.

In our approach, isolation of a place in a complex fabric of a city is quantified
statistically by the relative first-passage time of isotropic random walks (with no
self-intersections) on the city street map measured in the decibel scale. The pro-
posed isolation index helps to detect sprawling, low-density, auto-dependent urban
developments in American cities (see Fig. 2 representing the isolation pattern in the
city of Lubbock wandering across planes of West Texas).

Sociologists think that isolation in sprawlingmetropolitan areas worsens an area’s
economic prospects and fuel poverty and crime by reducing opportunities for com-
merce and engendering a sense of isolation in inhabitants [2, 6]. Suburban sprawl also
hurts social mobility by lowering a poor child’s chances of moving up the economic
ladder as an adult [7]. Although structural isolation defined above can be combated
by constructing the new city belt roads that would encompass the isolated regions
and cut-off neighborhoods, building new roads just makes the problem worse, as
increasing road capacity would lead to more traffic and more sprawl in the future.

The integration index of a place is introduced in our work as a relative share
of infinite paths (assuming all of them are equally probable) hosted by the place
in the city street map measured also in the decibel scale. Places hosting the lion
shares of infinite paths (existing in the connected graphs even if the graphs are small)
play the role of hubs featuring the global mobility patterns in the structure (see
Fig. 3 representing the integration pattern in the city of Lubbock). By comparing the
integration and isolation patterns shown in Figs. 2 and 3, we may see that integration
and isolation defined above are not always opposites. Some secluded places in the
city can be characterized as being in integrated isolation, and this wording is more
than an oxymoron, as the wealthiest people live there.
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In the present work, we report on the patterns of isolation and integration in the
city of Lubbock, TX (USA). Our approachmay be implemented for the detailed auto-
mated expertise illuminating the hidden community structures of any urban pattern
and the associated transport networks that may include many transportation modes.
In Sect. 2, we discuss spatial graphs of urban environments, as well as the software
libraries used by us for getting the urban spatial graph of the city of Lubbock, TX. In
Sect. 3, we introduce the major mathematical tool of our analysis, the infinite family
of anisotropic scale-dependent random walks (ARW) defined on finite undirected
connected graphs. In Sect. 4, we discuss the stationary distributions and balance
equation for the ARWs. in Sect. 5, we describe the family of probabilistic metrics
attributed to ARWs that are used to quantify accessibility of nodes in the spatial
graphs and their roles in hosting the path of different lengths. We apply the proposed
measures of isolation and integration to the urban street map of the city of Lubbock
in Sect. 6. We conclude in the last section.

2 Spatial Graphs of Urban Environments

In traditional urban researches, the dynamics of an urban pattern come from the
landmasses, the physical aggregates of buildings delivering place for people and
their activities [1, 8]. The relationships between certain components of the urban
texture are often measured along streets and routes considered as edges of a planar
graph, while the traffic end points and street junctions are treated as nodes. Such a
primary graph representation of urban networks is grounded on relations between
junctions through the segments of streets. The usual city map based on Euclidean
geometry can be considered as an example of primary city graphs.

In space syntax theory [4, 8], built environments are treated as systems of spaces of
vision subjected to a configuration analysis. Being irrelevant to the physical distances,
spatial graphs representing the urban environments are removed from the physical
space. It has been demonstrated inmultiple experiments that spatial perception shapes
people understanding of how a place is organized and eventually determines the
pattern of local movement [8]. The aim of the space syntax study is to estimate the
relative proximity between different locations and to associate these distances to the
densities of human activity along the links connecting them [9–11].

In our work, we use the graph representation of the transportation system of
Lubbock acquired fromOpenStreetMap file located at https://dataverse.harvard.edu/
dataverse/osmnx-street-networks. We used Python’s lxml library to parse raw data
and to construct an adjacency matrix. The data set was cleaned by removing non
connected parts, such as the Preston Smith International airport that is not a structural
part of the city. There are 10,421 nodes in the spatial graph representing the city street
map of Lubbock, including but not limited to residential, secondary, tertiary roads,
trunk links, highways etc. Both Python’s Numpy library and Matlab were used to
perform calculations, to avoid possible errors, also Matlab was used to draw colored
maps representing the isolation and integration patterns in the city.

https://dataverse.harvard.edu/dataverse/osmnx-street-networks
https://dataverse.harvard.edu/dataverse/osmnx-street-networks


196 D. Volchenkov and V. Smirnov

3 Discrete Time Anisotropic Scale-Dependent Random
Walks

For a finite set V , |V | = N , we denote the space of real functions on V as F(V ).

The inner product ( f, g) = ∑
i∈V f (i)g(i) associates each pair of functions f, g

in the space F(V ) with a scalar quantity. A graph is a collection of ordered pairs
G ⊆ V × V (called edges) with respect to a binary relation of adjacency � defined
on V (called vertices). The linear adjacency operator A is defined on all f ∈ F(V )

by (A f ) (i) = ∑
j�i f ( j), where j � i is whenever i and j are adjacent. The

adjacency operator A can be uniquely represented (with the fixed canonical basis)
by a N × N− matrix A, the adjacency matrix of the graph, such that

Ai j =
{
1, if i and j are adjacent,
0, otherwise.

(1)

The adjacency matrix allows us to analyze graphs and their structure by means of
the well known operations with matrices. The adjacency matrix is non-negative and
irreducible if there is at least a single path from any vertex to any other vertex in the
graph. The entries of its positive integer power, An

i j equal the numbers of walks of
length n ≥ 1 connecting the vertices i and j in the graph G. Let degn ∈ Z

N be the
vector whose elements degn(i), i = 1, . . . , N , are the numbers of paths of length
n ≥ 1 available from i ∈ V . The adjacency operator defines the following dynamical
system [12],

degn+1 = A degn, (2)

mapping the vector degn into the vector degn+1.
The discrete time locally anisotropic (i.e., direction dependent) nearest neighbor

random walks is defined by the following stochastic matrices:

Ti j (n + 1) = Ai j degn( j)

degn+1(i)
= Ai j

∑N
s=1 An

js
∑N

r=1 An+1
sr

, n ≥ 0. (3)

Theorem 1 In the random walk defined by (3), all possible paths of length n ≥ 1
starting at the node i ∈ V of the graph G are chosen with equal probability.

Proof The first order random walk T (1)i j = Ai j/ deg1(i) is locally isotropic, since
all 1-paths available for the random walker at every vertex of the graph are chosen
with equal probability.

For the random walks of order n = 2, the transition probability (3) reads as
following:

Ti j (2) = Ai j
∑N

s=1 A js
∑N

s=1 Ais
∑N

r=1 Asr

, (4)
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so that each walk of length 2 starting at the node i is chosen with equal probability.
Although all walks of length 2 starting at the node i are equiprobable under the
transition operator (4), the probabilities of transition to the nearest neighbors from
the node i might be different. The nearest neighbors providing more opportunities
for lengthy paths than others are more preferable. The resulting random walk (4) is
a direction dependent random walk (locally anisotropic). The further conclusion is
inductive and self evident. ��
Theorem 2 The series of locally anisotropic random walks (3) converges as n → ∞
to a random walk, in which all infinitely long paths starting at every node of the graph
are equally probable, viz.,

lim
n→∞ Ti j (n) = Ti j (∞) = Ai jψ1 j

α1ψ1i
, (5)

where  1 is the completely positive eigenvector of the graph adjacency matrix A
belonging to its maximal eigenvalue α1.

Proof The N eigenvalues of the graph adjacencymatrixA are assumed to be ordered,
such as α1 > α2 ≥ . . .. The n−th order degree of the node i ∈ V is

degn(i) ≡ ∑
j (An)i j = ∑

k αn
kψik

∑

j

ψk j

︸ ︷︷ ︸
γk

≡ ∑
k αn

kγkψik

= αn
1γ1ψi1

(
1 + ∑

k>1

(
αk
α1

)n
γk

γ1

ψk j

ψ1 j

)

n→∞ αn

1γ1ψi1,

(6)

since the last sum in (6) is dominated by the largest eigenvalue α1 of the adjacency
matrix in the limit n � 1. Therefore

lim
n→∞ Ti j (n) = Ai jψ j1γ1α

n−1
1

ψi1γ1α
n
1

= Ai jψ j1

α1ψi1
. (7)

Finally, it is easy to check that thematrix (5) is a stochasticmatrix, since
∑

j Ai jψ j1 =
α1ψi1. ��

4 Stationary Distributions and Balance Equations
of Anisotropic Random Walks

For a random walk defined on a connected undirected graph, the Perron - Frobenius
theorem [13] asserts the unique strictly positive probability vector �π = (π1, . . . ,πN ) ,

which is the left eigenvector of the transition matrix T belonging to the maximal
eigenvalue μ = 1, �π T = 1 · �π, is the stationary distribution of the random walk
on the graph. The condition of detailed balance is defined by
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πi Ti j = π j Tji , (8)

from which it follows that a random walk defined on an undirected graph is time
reversible: it is also a random walk if considered backward.

Theorem 3 For the anisotropic random walk Ti j (n), n ≥ 1, the stationary distribu-
tion is

πi (n) = degn(i) degn−1(i)

2En
, 2En ≡

∑

i

degn(i) degn−1(i). (9)

Proof
∑

i πi (n)
Ai j deg j (n−1)

degi (n)
= ∑

i
degn(i) degn−1(i)

2En

Ai j degn−1( j)
degn(i)

= degn( j) degn−1( j)
2En

= π j (n).
(10)

The detailed balance condition is satisfied by (9):

πi (n)Ti j (n) = π j (n)Tji (n)

= Ai j degn−1(i) degn−1( j)
2En

.
(11)

��
For n = 1, the normalization factor 2E1 = 2E , where E is the total number of
edges in the graph, since deg0(i) = 1. The stationary distribution equals πi (1) =
deg1(i)/2E, 2E = ∑

i deg1(i).

Theorem 4 ([14, 15]) For the limiting anisotropic random walk Ti j (∞), the sta-
tionary distribution is

πi (∞) = ψ2
1i (12)

where ψ1 is the major eigenvector of the graph adjacency matrix A belonging to the
maximal eigenvalue α1.

Proof
∑

i

πi (∞)
Ai jψ1 j

α1ψ1i
= ψ2

1 j = π j (∞). (13)

The detailed balance condition is satisfied by (12):

πi (∞)Ti j (∞) = π j (∞)Tji (∞) = Ai jψ1iψ1 j

α1
. (14)

��
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5 Exploring Graphs with Random Walks

The stationary distribution of random walks (3) of length n ≥ 1 defined on a
connected undirected graph G(V, E) determines a unique measure on V, μn =∑

j∈V πi (n)δ j ,with respect towhich the transition operator (3) becomes self-adjoint,

T̂i j (n) = (
π̂1/2(n) T(n) π̂−1/2(n)

)
i j (15)

where π̂(n) is the diagonal matrix of the densities of nodes πi (n) (9) in the random
walk Ti j (n).

In the present section, we remove the index n (the length of equally probablewalks
in (3)) from our notations. All formulas and conclusions discussed and derived in
this section are equally suitable for any anisotropic random walks.

Diagonalizing the symmetrized transitionmatrix (15), we obtain T̂ = Ψ M Ψ 
,

where Ψ is an orthonormal matrix of eigenvectors, Ψ 
 = Ψ −1, and M is a diag-
onal matrix with entries 1 = μ1 > μ2 ≥ . . . ≥ μN > −1 (here, we do not consider
bipartite graphs, for which μN = −1).

1. The probability to find a random walker in and out of a node: The Perron-
Frobenius eigenvector �ψ1 belonging to the major eigenvalue μ1 = 1, �ψ1T̂ = �ψ1,

determines the density of nodes in the graph G visited by the random walks
[2, 16],

πi = ψ2
1,i , i = 1, . . . , N . (16)

The Euclidean norm of other eigenvectors in the orthogonal complement of �ψ1,∑N
s=2 ψ2

s,i = 1 − πi > 0, is the probability to find a random walker out of i ∈ V .
The inverse density of the node i ,

Ri ≡ 1

ψ2
1,i

, (17)

defines the expected recurrence time to the node i ∈ V [16], characterizing the
(local) connection of the node to the graph.

2. The first-hitting time: The expected number of steps a self-avoiding random
walker (never revisiting any visited node) started from the node i needs to reach
j for the first time is called the first-hitting time, [2, 16]. The first-hitting time
satisfies the following equation, Hi j = 1 + ∑

i∼v Hv j Tvi , withe the boundary
condition Hi i = 0, reflecting the fact that the first step takes a random walker to
a neighbor v ∈ V of the starting node i ∈ V , and then it has to reach the node
j from there. The spectral representation of Hi j [2, 16] is given by

Hi j =
N∑

s=2

1

1 − μs

(
ψ2

s, j

ψ2
1, j

− ψs,iψs, j

ψ1,i ψ1, j

)

. (18)
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3. Random target access time: The random target access time is the expected
number of steps required for a self-avoiding randomwalker to reach a target node
chosen randomly in the graph with the stationary density π [2, 16], viz.,

TG ≡
∑

j ∈ V

π j Hi j =
N∑

s=2

1

1 − μs
=

N∑

k=2

τs, (19)

where τs = (1 − μs)
−1 is the rate parameter describing how quickly the diffusion

mode s undergoes [2]. The random target access time (19) is a global spectral
characteristic of the graph independent of the starting node i ∈ V .

4. First-passage time: The first-passage time is the expected number of steps
required for a self-avoiding random walker to reach the node i ∈ V for the first
time started from a node randomly chosen in the graph with the stationary density
π [2, 16], viz.,

Fi ≡
∑

j ∈ V

π j H j i =
N∑

s=2

1

1 − μs

ψ2
s,i

ψ2
1,i

= Ri

N∑

s=2

ψ2
s,i

1 − μs
. (20)

The last equality in (20) establishes a relation between the recurrence time to a
node Ri (the local connection of the node) and the first-passage time Fi charac-
terizing the (global) connectedness of the node in the graph. Several models were
developed to study the mean first-passage time taken by a walker to move from an
arbitrary source to a target in complex media. For instance, such situations were
usually encountered in predatory animals and biological cells, [17].

5. Commute time: The commute time is the expected number of steps required for a
self-avoiding random walker started at i ∈ V to reach j ∈ V and then to return
back to i [16], viz.,

Ki j ≡ Hi j + H j i =
N∑

s=2

1

1 − μs

(
ψs,i

ψ1,i
− ψs, j

ψ1, j

)2

(21)

that introduces the Euclidean metric in the projective space PR
(N−1) of vectors

associated to the graph nodes. The average of the commute time with respect to
the initial point of randomwalk,

∑
i πiKi j = TG + F j , equals the sum of the first

passage time to j from a random node in the graph and the random target access
time required to reach the random node. The double average of the commute time
equals the doubled random target access time, viz.,

∑
i, j πiKi jπ j = 2TG .

6 The City of Lubbock Is Running Away

Railroad paved way for Lubbock to become a hub [18]. After the first train steamed
into town on Sept. 25, 1909, Lubbock had managed to quadruple its population to
4,000 in a 10-year period. Once town’s dusty roads had been covered with bricks,
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Fig. 1 The city of Lubbock is running away from the lasso of Loop 289 marking the old city
boundaries

Lubbock had been selected as the site of the new Texas Technological College,
and the county’s population had ballooned to almost 40,000 in 1930. Lubbock had
accomplished the journey from town to city when Loop 289 was completed by the
mid-1960s (Fig. 1).

Although railway construction enhanced the city status in early days, its mainte-
nance consumed large budgets, was complicated to organize, and had a considerable
impact on the urban development of Lubbock. Railways barricade streets, cutting
down the number of possible paths people can drive or walk, thus creating neighbor-
hoods isolated from nearby areas. The large urban voids remained in north and east
Lubbock cut off from other parts of the city by rails. Not surprising, the city fabric
pushed away from the angle formed by the veering railway tracks and grew to the
southwest anyhow, running away from the lasso of Loop 289 marking the old city
boundaries (Fig. 1).

The Texas Tech University is still anchored in the center and cannot follow the
city running away. Situated on the boundary of the neighborhoods going downhill,
the University mediates between the isolation and integration patterns in the city of
Lubbock (Fig. 1).
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6.1 Isolation Index

Structural isolation is viewed as one of the top risk factors for area’s economic, social
and environmental prospects [19–24]. The notion of isolation acquires a statistical
interpretation by means of random walks [1–3, 25, 26].

While the recurrence time of random walks to a node (17) depends upon the
degree of connectivity of the node, a local structural characteristic of the node in the
graph, the first-passage time to the node (20) is a global structural characteristic of
the node quantifying its connectedness, since all possible paths to the node existing
in the graph are taken into account by the first-passage time although some paths
are rendered more probable than others [2]. The relatively low recurrence times
are typical for well connected nodes, disregarding their role for the entire graph
structure. For example, a bridge connecting the city districts situated on the opposite
banks of a river is vital for the entire urban transportation system despite its limited
connectivity to the immediate city neighborhoods [1]. The relatively lowfirst-passage
times indicate the high degree of importance of the nodes aggregating many a path
for structural integrity of the entire graph even if their connectivity is low [2]. Being
a global characteristic of a node in the graph, the first-passage time assigns absolute
accessibility scores (20) to all nodes of the graph [3] and can be considered as a
natural statistical centrality measure of the node within the graph [1]. The vertices
of the urban street graph characterized by the shortest first-passage times are easy to
reach by whatever origin-destination (Fig. 2). We introduce the isolation index of a
node in the city street map acquired from the OpenStreetMap service by

ISLi = 10 · log10 (22)

in which Fi (1) is the first- passage time to the node i ∈ V by isotropic random
walks T(1). Isotropic random walks are insensitive to the structural peculiarities and

Fig. 2 Isolation index of
nodes in the city graph of
Lubbock, TX acquired from
the OpenStreetMap service.
The colored bar indicates the
value of isolation index in the
decibel scale—the isolated
neighborhoods are red
colored. The axis labels are
the geographic coordinates
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boundaries of the graph, covering all nodes with respect to their immediate connec-
tivity [2]. The isolation index (22) is calculated as relative measure of accessibility
and measured in the decibel scale. The high values of the isolation index defined
in (22) are attributed to the places, which are difficult to access in comparison to
those in a structural focus of a city. The spatial pattern of isolation in the city of
Lubbock (red colored on Fig. 2) illuminates the sprawling urban areas homing the
low-density communities located out of the old city boundaries. The colored bar in
Fig. 2 indicates the value of isolation index in the decibel scale. The axis labels are
the geographic coordinates.

6.2 Integration Index

We define the integration index of a node in the graph based on its accessibility by
the ARW T(∞) introduced by (5). This random walks are extremely sensitive to
structural defects and graph boundaries [2, 14, 15]. Our definition is based on the
idea of that well integrated places should host the majority of infinitely long paths
possible in the spatial graph, eventually determining feasible movement patterns in
the city (see Fig. 3).

We introduce the integration index of a node in the city street map acquired from
the OpenStreetMap service by

Inti = 10 · log10
min j∈V F j (∞)

Fi (∞)
(d B) (23)

in which Fi (∞) is the first- passage time to the node i ∈ V by ARW T(∞). The
walks T(∞) are statistically bounded to the nodes hosting the lion share of infinite

Fig. 3 Integration index of
nodes in the city graph of
Lubbock, TX acquired from
the OpenStreetMap service.
The colored bar indicates the
value of integration index in
the decibel scale—the
integrated neighborhoods are
red colored. The axis labels
are the geographic
coordinates
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paths and repelling from defects and boundaries in the graph. By definition, the index
(23) is somewhat opposite to the isolation index (22), but calculated with respect to
anisotropic, direction sensitive walks T(∞), not T(1). The index (23) is measured in
the decibel scale, so that places weakly integrated into the city fabric are character-
ized by large negative numbers. It is evident from Fig. 3 that sprawling areas (apart
from the northeastern part of the city cut off the downtown by railways dramatically
reducing the number of possible infinitely long paths) are able to statistically accu-
mulate essentially long paths and shift the mobility patterns in the city of Lubbock
from the downtown to the southwest periphery.

7 Discussion and Conclusion

We have proposed the novel concepts and related computationally feasible statistical
algorithms for the automated assessment of isolation and integration of the places in
the urban street maps acquired directly from the OpenStreetMap service. We have
introduced the isolation and integration indices of a place in the complex urban fabric
based on the first-passage times of isotropic and anisotropic random walks defined
on the spatial graph of the city. While the isolation index (22) allows for detecting
sprawling areas (Fig. 3), the integration index (23) reveals the areas hosting the
essentially long paths in the city graph attributed to the major mobility patterns
possible in the urban structure (Fig. 2).

Encompassing a big share of possible movements, urban sprawl pulls the highly
integrated places in the city of Lubbock out of the downtown, fostering the process
of urban decay in the north-eastern parts of the city and at the center. In Fig. 4, we
have summarized the distributions of social and economic variables over the city of
Lubbock, TX. Lack of structural integration in the north-eastern areas of the city
(blue colored) reduce opportunities for commerce, fuel poverty and crime, foster
disparity of land prices and social inequality, in the long run. The highest crime rates

Fig. 4 The distribution of social and economic variables in the city of Lubbock, TX. a The racial
composition of neighborhoods in Lubbock accordingly the US Census Bureau. The area of white
population concentration are dark colored; b Lubbock crime rates and statistics density heat map
(downloaded on 6/29/2018) from the Turlia website [27]. Trulia uses crime reports to provide
valuable information on the relative safety of homes in the US; c Unemployment Rate in Lubbock,
TX in Oct. 2018 accordingly the US Bureau of Labor Statistics
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in the city of Lubbock are observed in the northeastern part of the city barricaded by
railways, cutting down the number of paths people can drive or walk dramatically.

Interestingly, the isolation pattern in the city of Lubbock assessed by means of the
isolation index (22) and shown in Fig. 2 does not visually match the distributions of
the social and economic variables represented on Fig. 4. Furthermore, by comparing
the integration and isolation patterns shown in Figs. 2 and 3, we see that statistically
defined integration and isolation are not always opposite, since some secluded places
in sprawling areas in the wealthy south-western part of Lubbock can be isolated
although integrated.

The further development of the city road system (e.g., the new Loop 88 that will
lasso the running awaycity ofLubbock inWolfforthby2030)would alleviate isolation
(22) by improving accessibility to the south-western sprawls, yet encouraging further
sprawl and more road travel and worsening the social and economic conditions in
the downtown and on the north-western periphery. The city of Lubbock will keep
running southwest.
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