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Abstract This paper presents a substrate integrated waveguide (SIW) filter using
electromagnetic band gap (EBG) structure. The periodic EBG structure is etched on
the top metal surface of SIW cavity. These periodic structures create a slow wave
effect on the filter performance to achieve wide pass band at lower frequency in
a small compact size. In the proposed design, Rogers 4350 is used as a dielectric
material with the permittivity(εr) of 3.48 and thickness 1.524 mm. The simulated
results obtained by HFSS 19.1 has a broadband from 3.25 to 6.94 GHz with the
bandwidth of 3.38 GHz in C band used for satellite communication. The insertion
loss is less than 0.5 dB and return loss is better than 18 dB. The size of filter is 48 ×
10 mm2. The fractional bandwidth (FBW) of proposed filter is 68%.

Keywords Substrate integrated waveguide (SIW) filter · Wideband bandpass
(WB-BPF) filter · Electromagnetic band gap (EBG)

1 Introduction

In present time modern communication systems for mobile and satellite applications
required a high-performance RF/microwave filters with some important character-
istics in terms of weight, cost, insertion loss, quality factor and power handling
capability and it is a challenging task to meet all these requirements. SIW tech-
nique is growing candidate to fulfil all these requirements in past few decades. SIW
technique is a transition of non-planar technology to planar technology. Using this
technique, various RF components can be designed such as antenna[1], filter [2],
diplexer [3, 4] power divider [5] etc. Microwave bandpass filter (BPF) is the most
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important component in wireless communication systems because it can control the
spectrum of signals and reduce the interference problem.

U.S. federal communications commission (FCC) authorized the unlicensed use
of ultra-wideband (UWB, from 3.1 to 10.6 GHz) for a variety of applications so
wideband band pass filters are highly required in wireless communication systems.
To design a wideband bandpass filter using SIW technique can be done with the help
of various topologies to achieve required band of frequency. These topologies are
electromagnetic band gap structures (EBGs) [6], defected ground structures (DGSs)
[7–9], perforated sections (PSs) [10, 11] or different types of resonators including
split ring resonators (SRRs) [12–15]. For the band pass behaviour of SIW filter,
we can combine its characteristics as a high pass and a stop band characteristic as
discontinuity. A bandpass filter with fractional bandwidth greater than 20% is known
as wideband bandpass filter. In this paper, the fractional bandwidth is 68%, and it is
in C band that can be used for satellite communication.

The SIW filter is based on dielectric filled waveguide shown in Fig. 1 with the
difference of metal via as the side wall of waveguide to confine the electric field
within the waveguide. The cut-off frequency of dielectric filled waveguide is shown
in Eq. (1) [17].
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For the fundamental mode TE10 the frequency is

fc = c

2a
(2)

The width of dielectric filled waveguide is calculated by Eq. (3)

a = ad√
εr

(3)

Fig. 1 Dielectric filled waveguide with SIW configuration. [16]
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Fig. 2 Top and side view of proposed SIW filter with its dimension

From the Ref. [18] the SIW width is calculated by Eq. (4)

as = a − d2

0.95s
(4)

In order to reduce, the radiation loss and return loss due to gap between via the
following condition are required for SIW filter [18] shown in Eqs. (5) and (6), where
d is the diameter of via and s is the pitch, i.e. distance between two via.

d ≤ λg

5
(5)

s ≤ 2d (6)

2 Proposed Wideband SIW Filter Configuration

As shown in Fig. 2 the SIW transmission line structure is a basic requirement of
proposed wide band bandpass filter, which is constructed using a series of metallic
via in the side structure with metal top and bottom. SIW structure is a transition of
non-planar technology to planar technology. In this paper, SIW with EBG structure
have been mixed to provide wideband filter at low frequencies. The present design
is in the form of transmission line structure in which EBG structure is created by
etching the periodic structure on the top metal layer of substrate. Figure 2 shows the
top and side view of proposed design with all the parameters. All dimensions are
shown in Table 1. The dielectric substrate used in the designing of filter is Rogers
4350 with the dielectric constant εr = 3.48, a loss tangent tan δ = 0.004 and the
thickness is 1.524 mm. The overall dimension of filter is 48 × 10 mm2.

3 Evolution of Proposed Design

In the above design, the loss less transmission line shown as β = ω(LC)1/2, where L
and C are the series inductance and shunt capacitance. In this EBG structure, a slow
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Table 1 All dimensions of proposed SIW WB-BPF

S. No. Parameter Dimension (mm) S. No Parameter Dimension (mm)

1 lg 48 8 lf 3

2 wg 10 9 wf 1.1

3 hg 0.07 10 lebg 8.5

4 lp 26.5 11 webg 8

5 wp 10 12 lstub 5.5

6 hs 0.508 13 wstub 1

7 d/s 0.25/0.8 14 Circle-rad 1

wave effect is generated due to increase in series inductance and shunt capacitance.
As the evolution of design is started with the simple structure without any horizontal
strips so the losses are more.When the horizontal strips are added in the design better
response can be achieved because the periodic EBG structure create a simple L-C
parallel resonant circuit shown in Fig. 3. The value of capacitance and inductance
can be controlled by the number of horizontal thin lines and gap between the lines
which can produce a stop band with a certain width. This stop band produces a wide
pass band at low frequency. For improving the roll-off rate an open stub is used and
finally a circle is etched in the tapered feed section to reduce the losses and increasing
the bandwidth. In Fig. 4, the evolution of proposed filter is shown. The result of all
designs is compared in Fig. 5 as return loss and Fig. 6 as insertion loss. It is easily
identified that in a simple design without strips and open stub losses are very high
and roll off rate in also very poor.

Fig. 3 L-C parallel resonant
circuit

Fig. 4 Evolution of
proposed SIW Filter
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Fig. 5 Return loss of all
designs
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Fig. 6 Insertion loss of all
designs
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4 Result and Discussion

A wideband SIW BPF was designed in this paper with the help of periodic EBG
structure, the initial specifications are shown in Table 1. Figure 7 shows the final
simulation result of proposed design in which the insertion loss is less than 0.5 dB
and the return loss is better than 18 dB. The proposed design is simulated usingHFSS
19.1. The proposed design has a group delay of 0.46 ns in the passband which is very
small as compared to previous published work shown in Fig. 8.

The result of proposed design is compared with the published work for the vali-
dation in Table 2. It is observed in this table that the fractional bandwidth (FBW)
is 68% for the proposed design, whilst in other designs it is maximum 61%. The
insertion loss is also very low for proposed design.
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Fig. 7 Return loss and
insertion loss of proposed
design
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Fig. 8 Group delay of
proposed design
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Table 2 Comparison between the designed SIWWB-BPFwith other SIWBPF implemented using
EBG, DGS and resonators

References Type-No. of
cell

Design
method

f O (GHz) FBW (%) IL (dB) RL (dB) Size (λO ×
λO)

[6] EBG-11 Periodic
structure

12.2 61.2 1.3 10 0.52 ×
1.24

[19] DGS-4 Band pass
resonator

5.88 5.1 1.38 15 0.42 ×
2.05

[20] DGS-2 Band pass
resonator

4.9 9.2 1.1 18 0.39 ×
0.39

[21] DGS-3 Stop band
resonator

10 23 1.2 20 0.22 ×
0.45

[11] PS-5 Band pass
resonator

3.65 17.7 1.31 18 0.21 ×
0.98

This Work EBG-3 Periodic
structure

4.95 68 0.5 16 0.11 ×
0.52
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5 Conclusion

A wideband bandpass substrate integrated waveguide (SIW) filter using periodic
electromagnetic band gap (EBG) structure has been designed and simulated in this
paper. The proposed design has a broad band extends from 3.25 GHz to 6.94 GHz
with the bandwidth of 3.38 GHz and a centre frequency of 5 GHz. The group delay
is 0.46 nS in the passband. Due to the mixed feature of EBG and SIW a compact
wideband band pass filter is designed with the fractional bandwidth (FBW) of 68%.
This passband is coming in C band used for satellite communication.
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