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Abstract Quantum computers are capable of very fast computation as compared
to the classical counterpart. Problems impossible for the classical computer are effi-
ciently solved on a quantum computer. Shor’s factoring algorithm (SFA) calculates
the prime factors of a given number exponentially quicker than the available clas-
sical algorithm. The paper deals with a vivid explanation of the methodology and
various other future possibilities related to the development of the SFA. The paper
also emphasizes the three-qubit realization of the quantum Fourier transform on the
IBM Q experience.
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1 Introduction

In the early 1980s, quantum prototype for the turing machine was proposed by
physicist Paul Benioff that lead to the beginning of quantum computing [1]. Later,
Richard Feymann and Yuri Manin suggested that quantum computers can outperform
classical computers [2]. Then, Shor came up with a quantum algorithm for factoring
integer with the capacity to decrypt all possible secured systems [3]. The classical
computer works on the classical bits- 0 and 1, while the quantum computer makes
use of qubits—|0) and |1). Various objects used as a qubit (electrons, protons, and
nucleus). Researchers are using outermost electrons in phosphorus as qubits.

Quantum computing makes use of two basic phenomena of quantum mechanics—
quantum superposition and quantum entanglement [4].
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Quantum superposition refers to the uncertainty of the particle to be in several
states at once. For example, an electron can be either in ground state or in the excited
state. By the principle of superposition, the electron is in the state which is a linear
combination of both the states by|0) + b;|1) where by and b; are the coefficients can
be complex numbers which are adding to 1.

Quantum entanglement is interpreted as the exchange of quantum information
between two particles at a distance. It means that when the particles are separated,
the quantum states of each particle is dependent of the state of other particle and
cannot be defined independently.

SFA is one of the well-known application of the quantum computers. It takes
0] ((log N )3) time to factor a number faster than its classical equivalent. The error
introduced due to the use of physical qubits and large number of gates, and the
algorithm is still far away from the real-time implementation.

The most difficult case of factorization is when a number is the product of two odd
primes which are equal in length. This is the outline of RSA cryptosystem, which
uses a public key N, the product two large odd primes. RSA cryptography is based
on the fact that it is difficult to factor a very large number. In order to crack the RSA
cryptosystem, Shor proposed a quantum factoring algorithm which is polynomial in
time.

2 Basic Concepts of Shor’s Algorithm

Kitaev replaced a fully coherent QFT by the semi-classical quantum Fourier trans-
form (sc-QFT) in the Shor’s algorithm. In sc-QFT, each time one of the qubits of the
period register is measured [5]. The measurement on the second qubit is determined
by the result of measurement on the first qubit. So the 21log, N qubits required for
the period register can be replaced by a single qubit. Hence, the number of qubits is
now reduced to execute the Shor’s algorithm. For example, for N = 15, 21, 35, the
number of qubits required is n = 5, 6, 7. The scalable algorithm has been realized
with an ion-trap quantum computer that provides success probabilities above 90%.

In 2017, WANG Yahui et al. proposed a quantum algorithm capable of breaking
the public key cryptosystem like RSA [6]. It has some essential outlines like—(1)
without factoring a number the plaintext can be recovered from the ciphertext, (2)
even order of the elements to be avoided, (3) with better probability of success than
Shor’s algorithm, (4) equal complexity compared to Shor’s algorithm.

The algorithm proposed by Peter Shor works iff (if and only if) the period is even.
If the period is odd, the factors cannot be found, and the algorithm is relaunched using
distinct a values for the function a®* mod N = 1. For the square coprimes, the factors
can be found using odd orders [7]. This somehow increases the possibility of success
by considering odd orders. The rate of success of the algorithm can be improved
by avoiding square coprimes rather than to consider the odd orders. Earlier author
considered factoring 21 with the coprime four giving order three. In spite of odd order,
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the factors are successfully calculated by the algorithm, 3 = gcd (4% + 1, 21), and

7 =gcd (4% -1, 21). As coprime is square, the factors o are integers, but coprimes
do not always serve the purpose. For example, factoring 21 with coprime 16. The
paper analyzes the role of odd orders in factoring a number, and it should not be
ignored directly.

The recent research in SFA, Amico et al. [8] discussed the implementation of the
compiled form of SFA for the specific case of N = 15, 21, and 35 on the ibmgx5
superconducting chip. Using the sc-QFT, the algorithm is implemented using small
number of physical bits as compared to a large qubits required using the coherent
quantum Fourier transform. The similarity between the theoretically obtained values
(distribution of phase) and experimentally calculated values gives the quantitative
measure for which square of statistical overlap is used.

Nene et al. [9] presented the simulation of the algorithm on MATLAB using
quantum computing function tool box. Development and commercialization of
quantum computer are still far away; so, the paper produced a standardized method
for the implementation of SFA on a classic computer. The analysis of the periodicity
of the function upto 3-digit of N is presented where the result of simulations are
collaborated with the theoretical results.

Vivid description about the methodology and mathematical analysis of the
different parts of Shor’s algorithm is clearly explained by Loceff [10]. It also deals
with the basic concepts of quantum mechanics and explanation of other quantum
algorithm like Simon’s algorithm, Deutsch’s algorithm, and quantum teleportation
that leads to clear understanding of the SFA.

3 Methodology

The algorithm composed of two parts:

e C(lassically processing the problem by changing the factoring problem to period
finding problem.

e A quantum algorithm to find the period of the function responsible of quantum
speedup.

Steps involved in the process of SFA are [11]:

Step 1  Choose a random integer ‘a’ such that (@ < N)

Step2 Compute the ged(a, N), the greatest common divisor of N. This can be
done using Euclidean algorithm.

Step3 If gcd(a, N) # 1, signifies there is non-trivial factors of N. Then the func-
tion f(x) = a* mod (N) is used to find the unknown number ‘r’ which
gives the period.

Step 4  If the period ‘r’ found to be odd, go back to Step 1;

Step 5  If the period ‘7’ found to be even, then go to Step 6
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Fig.1 General circuit of Shor’s factoring algorithm. Reproduced from [10]

Step6 ged(% + 1, N) and ged(% — 1, N) are the non-trivial factors of N. The
process is now over.

In order to find the factor of a number, we need to find the power x of integer a
for which the function ¢* mod N = 1 where a is some random number which is
less than N and exponent x is the order or period of a (Fig. 1).

Two quantum registers are required for the implementation of the algorithm. First
register, known as the period register or A-register for storing period values. Second
register, known as the computational register or B-register, is used to store the result
of the modular exponentiation function (MEF) given by a* mod N [10]. Depending
on the number N, the size of the registers varies. The qubits in a period register
should be in the range log,(N?) < n, < log,(2N?) while n, = log, N qubits in
the computational register.

Two separable states are prepared |00..0),|00..1), where the notation p and ¢
signifies the period register and computational register [8]. All possible x values
are stored in the period register which gives the approximate value of the period.
When |OO O) passes through the multi-dimensional Hadamard gate it results in

Z p» Which is the equal superposition of all qubits, where Q = 2"».

As soon as the n-qubit passes through the Hadamard gate, the concept of quantum
parallelism comes into effect which suggests that if we apply the unitary transfor-
mation to all the possible 2"» inputs, it will produce the superposition of the results
of applying f to them in parallel [10].

After the first step, the qubits are now in the tensor product which
When passed through the uniform transformation function (Uy) result in
f ZQ o [X)pla*mod N),. Now, to find the period, QFT is used. As a result of
QFT, mterference between different possible states occurs, and it produces different
superposition states as the output [12]. This interference either makes the signal
stronger or weaker depending upon the type of interference depending upon their
phase and amplitude.

Now both the registers are measured, but the order of measurement is the trick.
How? Let us see....

If we measure the A-register, then the B-register would collapse into its normalized
partner, | f(x))"
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If we measure the B-register first, then the A-register would also disintegrate due
to the property of entanglement, but in this case that would be g = m, not one,
pre-images x for every f(x) values.

Now we choose to measure the B-register first, and later on, the A-register is
measured. The measurement of A-register after the B-register would result in one of
the m values, xo+ jr, but we have no way to extract r (period) from the measurement,
so we do not measure A-register yet. Now, apply QFT to the period register or the
A-register and measure the qubits later [10].

The measurement obtained in the quantum part is classically processed
contributing to the final part of the algorithm. The period value r can be found
using the continued fraction algorithm [13] or get direct estimation of the period
value by running the algorithm several times [8].

The algorithm proposed by Shor’s in 1994 known as the factorization algorithm
can be implemented using n, = log, N qubits in the computational registers that are
used for the MEF and n, = 2log, N qubits in the period registers for QFT. Thus,
the entire algorithm would require a total of 3 log, N qubits which is still a challenge
for present quantum computer is N is large [5].

4 Three-Qubit Implementation of QFT

In order to find the period of the function f, the function values are calculated at every
interval or points (x, X7, ... x,) simultaneously. When measured, it will give one of
the possible values and neglect all others by the property of entanglement. QFT differs
as it operates on superposition state and produces different superposition state as the
output [12]. The component interferes constructively or destructively depending on
their amplitude and phase.

The three-qubit implementation of QFT is implemented on IBM Q experience
as shown in Fig. 3. If the QFT operates on any basis state alone, the output is the
superposition of all the possible states. Change of phase of various states can be
seen using QFT. QFT makes use of two gates-Hadamard gate (single qubit) and the
controlled rotation gate (two-qubit) as shown in Fig. 2. QFT is an essential part of
Shor’s algorithm. On the other hand, the MEF can also be implemented using the
IBM Q experience platform for the complete implementation of the Shor’s factoring
algorithm.

5 Conclusion

Due to various properties of quantum mechanics like quantum superposition, entan-
glement, and parallelism, the various public-key cryptographic systems (RSA, ECC,
etc.) are no longer secure and can be breached shortly. The new cryptographic
system needs to be introduced for cyberspace security shortly. Since Shor proposed a
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Fig. 2 Three-qubit QFT implementation using Hadamard gate and phase controlled gate.
Reproduced from [10]
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Fig. 3 Superposition of all states of three-qubit input as the result of QFT; x-axis-state and y-axis-
probability

factoring quantum algorithm in 1994, various techniques of implementing different
versions of the algorithm have been suggested. Also, various other facts like the
consideration of odd periods are taken into use and cannot be denied straight away.
New quantum algorithm breaking cryptography without factoring is also studied.
Though, reducing number of qubits is still a challenge in the field of quantum.
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