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Abstract

A recent surge of interest in the building
energy consumption has generated a tremen-
dous amount of energy data, which boosts the
data-driven algorithms for broad application
throughout industry. This chapter reviews the
prevailing data-driven approaches used in
building energy analysis under different arche-
types and granularities including those for
prediction (artificial neural networks, support
vector machines, statistical regression, deci-
sion tree and genetic algorithm) and those
for classification (K-mean clustering,
self-organizing map and hierarchy clustering).
To be specific, we introduce the fundamental
concepts and major technical features of each
approach, together summarizing its current
R&D status and practical applications while

pointing out existing challenges in their
development for prediction and classification
of building energy consumption. The review
results demonstrate that the data-driven
approaches, although they are constructed
based on less physical information, have well
addressed a large variety of building energy
related applications, such as load forecasting
and prediction, energy pattern profiling,
regional energy-consumption mapping,
benchmarking for building stocks, global
retrofit strategies and guideline making etc.
Significantly, this review refines a few key
tasks for modification of the data-driven
approaches in the contexts of application to
building energy analysis. The conclusions
drawn in this review could facilitate future
micro-scale changes of energy use for a
particular dwelling through appropriate retrofit
in building envelop and inclusion of renew-
able energy technologies. They also pave an
avenue to explore potential in macro-scale
energy-reduction with consideration of cus-
tomer demands. All these will be useful to
establish a better long-term strategy for urban
sustainability.
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2.1 Introduction

2.1.1 The Need for Energy
Consumption Analysis

The global contribution from buildings towards
energy consumption has steadily increased
reaching figures between 20 and 40% in devel-
oped countries and about 1/3 of greenhouse gas
emission. The case of China is particularly
striking-the country only takes two decades to
double its building energy consumption at an
average growing rate of 3.7% (Pérez-Lombard
et al. 2008; UNEP 2013). These facts demon-
strate that to facilitate energy efficiency of
building is a cost-effective resource for reducing
energy consumption and carbon emission from
building (Mathew et al. 2015). Also, large
potential saving in economy has been anticipated
by a large variety of previous studies. For
instance, Nikolaidis et al. have shown that among
various energy saving measures for common
building types, isolation of roof constitutes the
most superiority nearly €5000 economic benefit
during 30 years (Nikolaidis et al. 2009). As the
central approaches transmitting to energy effi-
ciency, prediction and classification of energy
consumption in building are significantly neces-
sary with the aim to improve building perfor-
mance, reduce environmental impact, and
estimate economical potential for further energy
conservation and renewable energy program
(Zhao and Magoulès 2012).

Energy consumption in building has been
heavily analyzed by substantial studies during
the entire building lifecycle, with different focu-
ses on identifying the sub-component energy use
at the building level (Kang and Jin 2014; Bojić
and Lukić 2000) or measuring energy perfor-
mance in a nationwide analysis (Farahbakhsh
et al. 1998; Huang 2000; Shimoda et al. 2004).
This comprehensive set of analyses on different
levels could help us not only optimize the energy
use of a particular dwelling through appropriate
retrofit in building envelop or inclusion of state-
of-the-art renewable energy technologies (at the
microscale), but also explore possible energy

reduction opportunities and establish better
urban-sustainability strategies (at the
macroscale).

2.1.2 Advantage and Motivation

However, it is recognized that realization of a
precise energy consumption analysis is a for-
midable task at the current stage. As an alterna-
tive, great efforts have been paid to developing
models to predict and classify approximately
energy consumption. Generally, these models
possess some prominent functions. They includes
(1) taking measures for energy conservation
based on accurate prediction, (2) implementing
demand-side management (DSM) after profiling
electricity consumption, (3) outlining/mapping
energy on the urban level, (4) establishing
benchmark database of multi-scale building
communities, and (5) integrating the processes of
design, operation, retrofit of contemporary
building (Perino et al. 2015; Hong et al. 2014).
The results simulated by these models can not
only offer essential information about energy
footprint in regional building stocks, but also
facilitate estimations of financial return on
investment. It is thus not surprising energy sim-
ulation has become a favourable tool for stake-
holders throughout building industry including
policymakers, building owners, investors, oper-
ators and engineers (Mathew et al. 2015).

2.1.3 Usage of Building Energy
and Performance Data

Management and optimization of building
energy consumption call for a full understanding
of building performance, which should first
identify energy resources and major end-uses of
a building. Energy resources in a building usu-
ally refer to electricity, natural gas and district
heating supply. The corresponding major end-
uses include heating, ventilation and air-
conditioning (HVAC) system, domestic hot
water, lighting, plug-loads, elevators, kitchen
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equipment, ancillary equipment and appliances.
Figure 2.1 illustrates a representative classifica-
tion of building energy use adopted in ISO
Standard 12655:2013 (ISO 2013). Note that on
top of the above building energy resources and
major end-uses, HVAC operation schedule and
indoor/outdoor conditions are also two important
contributing factors to be considered in a build-
ing performance analysis.

Generally, reliability of a building perfor-
mance analysis relies heavily on the datasets in
use, which should contain sufficient energy con-
sumption information of the buildings under
investigation. Utility bills for electricity and nat-
ural gas from power supply companies are the
common type of databases of building energy
consumption. Facility managers or research
institutes also collect information via survey and
questionnaire for large-scale buildings, such as

the residential sector (Residential Energy Con-
sumption Survey (RECS), EIA 2009) and com-
mercial buildings (Commercial Building Energy
Consumption Survey (CBECS), EIA 2012)
(Hong et al. 2014). In addition, in today’s build-
ing performance analyses, virtual building data-
base (VBD) developed from simulation software
(e.g. TRNSYS and EnergyPlus) and energy dis-
closure laws (Mathew et al. 2015; Nikolaou et al.
2012) (e.g., US Energy Information Administra-
tion database) are the other two possible data
resources. It is particularly worth mentioning that
the empirical datasets taking advantage of smart
meters and building energy system have emerged
in recent years. These databases substantially
improved accuracy and reliability of the related
analyses (Mathew et al. 2015) despite their
expensive costs and technical complexity
involved for many practical commercial-uses.

Fig. 2.1 The usage of energy in buildings (ISO 2013)
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2.1.4 Proposed Methodologies
for Building Energy
Consumption

It is a challenging task to precisely describe
energy consumption in a building as such an
energy performance depends on a wide range of
factors, such as weather condition, thermal prop-
erties of building envelope, occupancy behaviour,
sub-level components’ (lighting, HVAC and plug
equipment) performance and schedules (Zhao and
Magoulès 2012). A large number of efforts have
been paid in the literature to ascertain the com-
plexity pertinent to building energy consumption
and strive to a precise depiction of building energy
performance. Currently, these approaches used
for building energy simulation are categorized
roughly as: (1) white-box based approaches,
(2) grey-box based approaches and (3) black-box
based approaches, whose main features are sum-
marized in Table 2.1.

White-box based approaches are physical-
based approaches, which require detailed infor-
mation of complex building phenomena. This
basic characteristic determines their simulations
will be rather computationally expensive.
Recently, a series of attempts have made to
simplify the white-box based approaches. How-
ever, these simplifications are error-prone and
usually overestimate energy-saving of buildings

(Al-Homoud 2001; Barnaby and Spitler 2005).
Grey-box based approaches are a modification of
these white-box based approaches through use of
statistical methods combining the simplified
physical information with historical data to sim-
ulate building energy. One primary issue in
current grey-box version is computational inef-
ficiency as the approaches involve uncertain
inputs and complex interactions among elements
and stochastic occupant behaviours (Paudel et al.
2015; Li et al. 2014). To circumvent the above
shortfalls of white- and grey box based approa-
ches, black-box based approaches are developed
which are able to conduct a building energy
consumption analysis only based on historical
data without the detailed knowledge of on-site
physical information. This essential change
enable black-box based approaches fast calcula-
tions in high accuracy in comparison to their
white- and grey-box counterparts (Zhao and
Magoulès 2012). In many practical scenarios, the
black-box based approaches are also called as
data-driven approaches due to the statistical
algorithm structures and a large amount of data
in use. We will follow this convention and use
the data-driven approaches throughout the fol-
lowing discussion in this review.

The remainder in this review is organized as
follows: we will introduce various mainstream
data-driven approaches and summarize their

Table 2.1 Comparison among white-box, grey-box and black-box approaches for building energy consumption

Approaches building
simulation

Inputs needed Typical software methods Easy
to
use

Running
speed

Accuracy

White-
box
based

Elaborated
simulation

Detailed
physical
information

DOE-2, EnergyPlus, TRYSYS,
ESP-r

No Low High

Simplified
simulation

Degree day method,
temperature frequency method,
residential load factor method

Yes High Fairly
high

Data-
driven
models

Grey-box
based

Physical
information
and historical
data

RC network No Low Fairly
high

Black-box
based

Historical data ANNs, SVMs, statistical
regression, GA, cluster
algorithms

No High
except
SVM

High
except
regression
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applications in prediction and classification of
building energy consumption in Sects. 11.2.2
and 11.2.3, respectively. In Sect. 11.2.4, a few
promising future directions in data-driven
approaches with applications to building energy
will be proposed. Finally, we draw our salient
conclusions in Sect. 11.2.5.

2.1.5 Data-Driven Approaches

Data-driven models are constructed based on a
group of datasets consisting of historical data
records. These historical data will be used as
benchmarks to justify the model’s performance
and guide its algorithm design. To be specific, all
the parameters in a data-driven model will be
carefully selected and modified through system-
atical comparisons between the model outputs
and the historical data. This is the so-called
learning process and only when the output errors
fall within the required threshold, the corre-
sponding data-driven models are deemed to be
qualified for practical applications with fresh
input data. Currently, the data-driven models is
very prevailing in medical diagnosis (Kuo et al.
2001), political campaigns (Sides 2014) and
commerce (Alhamazani et al. 2015) because of
their low costs with no need of expensive
equipment and audit activity. As to the building
energy consumption studies, data-driven models
are widely applied to either estimate the building
energy demands (i.e., data-driven prediction
models) or profile the energy consumption pat-
terns (i.e., data-driven classification models),
which are grouped in Fig. 2.2.

2.1.6 Data-Driven Prediction Models

Among the most popular data-driven prediction
models are artificial neural networks (ANNs),
support vector machine (SVM), statistical
regression, decision tree (DT) and genetic algo-
rithm (GA). This subsection will introduce each
of these models.

2.1.6.1 Artificial Neural Networks
ANNs are designed mimicking the basic archi-
tecture of human brain, whose basic element is
called as processing unit modelling a biological
neuron. The network consists of a large number
of these process units arrayed in layers, and
process units in different layers are connected
with one another via connections, shown in
Fig. 2.3.

Each process unit, say l, will deal with signals,
xil i ¼ 1; 2; . . .;mð Þ, from units connected with it
in the other layers. These signals are input
through the incoming connections with a weight
wil i ¼ 1; 2; . . .;mð Þ. The process unit then takes
two basic operations on the input signals: sum-
mation and activation, and delivers an output yl
(Magoules and Zhao 2016).

yl ¼ f
Xm
i¼1

wilxi þ bl

 !
ð2:1Þ

where bl is a bias set specifically for each
process unit and f is the activation function,
commonly defined as the sigmoid function
(Magoules and Zhao 2016).

f xð Þ ¼ 1
1þ e�x

ð2:2Þ

The output yl will be used as an input signal
for the process units in the next layer connecting
to the process unit l.

As we discussed, all the process units in
ANNs are arranged in a layer-structure and pro-
cess units in different layers are interconnected
based on a designed architecture. Figure 2.3b
shows a simple example: feed-forward ANNs
where process units are arrayed in the input,
hidden and output layers and the information
flows in one direction throughout these layers. In
today’s ANNs studies, ANNs models also take
other architectures to more effectively approxi-
mate human brain activities. Two representative
are back-propagation neutral network (BPNN)
and recurrent neutral network (RNN), see
Fig. 2.4. The former computes the error of output
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every time, and then propagates this information
as a negative feedback to tune the incoming
connection weight and bias. This manipulation
offers flexibility to modify the output error to a
minimum, and thus improving accuracy of ANN
calculation. As to RNN, it involves the backward
connections feeding back the outputs themselves
as the inputs to the process units in the former-
layer or even the current unit to capture tempore

behaviours. Such a recurrent design makes RNN
deal with time series datasets without random
data, which leads it to being particularly wel-
come for sequence events (Kalogirou and Bojic
2000).

No matter what kind of network architecture
is in use, an ANNs model must experience a
training (learning) process to specify all needed
connection weights and biases before real

Fig. 2.2 Different data-driven models for building energy consumption

(a) (b)

Fig. 2.3 Schematic of ANN. a A single process unit; b Artificial neural networks
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applications. This training process will take
advantage of available historical data records,
which will used as benchmarks to cultivate the
proper response of the ANNs model for given
inputs. Therefore, ANNs are capable of learning
the relationship among input signals, and cap-
turing key information through a training process
based on historical data records. On top of that, it
also possesses a number of other advantages,
such as fault tolerance, robustness and noise
immunity. Thanks to these favourable features,
ANNs have achieved great success in solving
non-linear problems so far. On the other hand,
meanwhile, it should be also pointed out that the
architecture choice and learning-rate optimiza-
tion in the current ANNs are still developed on
an ad hoc base. This implies ANNs applications
are usually case-dependent nonetheless. They
have to be designed and validated for every and
each time for different applications (Kalogirou
2001).

2.1.6.2 Support Vector Machine
Supported vector machine (SVM) is another
popular artificial intelligent method (Vapnik
et al. 1996), which deals with n data records, i.e.,
xi; Yið Þf gni¼1, with the input xi 2 RN and the

target Yi 2 R. (Note that Yi could also be in
binary for some applications (Zhao and
Magoulès 2010)). Nowadays, this method has
been widely applied to solve regression problems
to estimate an underlying relationship between
the nonlinear inputs to the continuous real-valued
target. The SVM used for regression is called as
support vector regression (SVR), which has

become a particularly important data-driven
approach for predicting building energy
consumption.

The core task in SVR is to construct a deci-
sion function, FðxiÞ, by use of a training process
based on historical data. It is required that for a
given input xi, the result estimated by this func-
tion should not deviate from the actual target Yi

larger than the predefined threshold. In SVR,
such a function is usually assumed in the form of

FðxiÞ ¼ w;uðxiÞh iþ b ð2:3Þ

where the bias b 2 R. �; �h i and w represent
the dot product and weight defined in RN. uðxiÞ
is a non-linear mapping of the input space to a
high-dimensional feature space (Dong et al.
2005). w and b are two unknown in Eq. (2.3),
and need to be estimated through minimizing the
regularized risk function (Dong et al. 2005).
In SVM theory, the latter is easily solved in its
dual formulation by an introduction of a Lagra-
nian L (Magoules and Zhao 2016),

L :¼ 1
2

w2
�� ��þ c

Xn
i¼1

ni þ n�i
� ��Xn

i¼1

gini þg�
i n

�
i

� �

�
Xn
i¼1

ai eþ ni � yi � w;uðxiÞh i � bð Þ

�
Xn
i¼1

a�i eþ n�i � yi � w;uðxiÞh i � b
� �

ð2:4Þ

where ai; a�i ;gi;g
�
i � 0

� �
are the Lagrange

multiplier. wk k is the Euclidean norm.

(a) (b)

Fig. 2.4 Schematic of a two-
layer BPNN and b two-layer
RNN. White cycles: process
units in different layers. Solid
arrows: connections; dashed
arrows: feedbacks

2 Data-Driven Approaches for Prediction and Classification … 17



ni; n
�
i � 0

� �
are two slack variables to copy with

some infeasible optimization constraints. The
constant c[ 0 is defined to determine the trade-
off between the training error (over-fitting) and
model flatness (under-fitting). It should be noted
that the Lagrange multipliers are all independent.
They are gi ¼ c� ai and g�

i ¼ c� a�i , and
ai; a�i
� �

can be determined by the corresponding
dual optimization (Dong et al. 2005),

MaximizeW ai; a
�
i

� � ¼ � 1
2

Xn
i¼1

Xn
j¼1

ai � a�i
� �

aj � a�j
� �

uðxiÞ � uðxjÞ
� �

þ
Xn
j¼1

ai � a�i
� �

yi � e
Xn
j¼1

ai þ a�i
� �

subject to

Pn
j¼1

ai � a�i
� � ¼ 0

ai; a�i 2 0; c½ �

8><
>:

ð2:5Þ

With the computed ai; a�i , the weight w can be
written a function of ai; a�i ; xi

� �n
i¼1. This gives

rise to the decision function in SVR

F xð Þ ¼
X
xi2SV

ai � a�i
� �

K x; xið Þþ b ð2:6Þ

where K x; xið Þ ¼ u xð Þ � uðxiÞ. In SVR, this is
called as the kernel function, having different
formulas for various applications in the literature,
e.g., K x; xið Þ ¼ exp �c x� x2i

�� ��� �
. It should be

pointed out the sum in Eq. (2.6) does not cover
all inputs. Instead, only those (i.e., support vec-
tors xi 2 SV) corresponding to ai � a�i

� � 6¼ 0 are
included. Moreover, the bias b in Eq. (2.6) is also
computed by these support vectors

b ¼ 1
N1

X
ai2 0;Cð Þ

Yi �
X
xj2SV

aj � a�j
� �

E xi; xj
� �� e

2
4

3
5

8<
:

þ
X

a�j 2 0;Cð Þ
Yi �

X
xj2SV

aj � a�j
� �

K xi; xj
� �þ e

2
4

3
5
9=
;

ð2:7Þ

Here, N1 is the number of support vectors with
either ai 2 0; cð Þ; a�i ¼ 0

� �
or ai ¼ 0; a�i 2

�
0; cð Þg. Once the decision function, i.e.,

Eq. (2.6), is fully specified by the training data-
set, the SVR model can be used as a predicting
tool for a new input x.

It is worth emphasizing that the superiority of
SVR, or more generally SVM, to other models
are that its framework is easily generalized for
different problems and it can obtain globally
optimal solutions. Its capability of dealing with
nonlinear relations by transferring them into
high-dimensional linear problem is also impres-
sive for practical applications. Nonetheless, the
method is rather time-consuming for large-scale
problems (Zhao and Magoulès 2010; Li et al.
2009a). Recently, immerse efforts has been paid
to developing possible ways to optimize its
computational efficiency.

2.1.6.3 Statistical Regression
Prediction of building energy-consumption relies
on a regression analysis to devise a relationship
linking an output (i.e. response, Yi, i ¼ 1; 2. . .n)
to the contributing inputs (i.e., predictors, xi;j,
i ¼ 1; 2. . .n; j ¼ 1; 2. . .m). In the previous sec-
tion, we have discussed a regression process
based on the SVM theory-SVR. On top of that,
there still exist other regression models, e.g.,
statistical regression, used for predicting building
energy consumption. Statistical regression
investigates the relationship among different
variables in a probabilistic framework, which
formulate the output as

Multiple : Yi ¼ ai þ b1xi;1 þ b2xi;2 þ . . .þ bmxi;m þ ei ð2:8Þ

or

Polynomial : Yi ¼ ~ai þ ~b1xi;1 þ ~b2x
2
i;2 þ . . .þ ~bmx

m
i;m þ ei ð2:9Þ

where ei represents a random error assumed to

be normally distributed, and ai, ~ai, bj and ~bj
j ¼ 1; . . .. . .mð Þ are the parameters to be esti-
mated. Note that both Eqs. (2.6) and (2.7) are
linear with respect to these parameters whilst
they are not necessarily linear with respect to the
contributing predictors, as seen as Eq. (2.7). Like
other data-driven approach for prediction, the
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statistical regression equations make use of the
finite number of historical data to estimate the
involved parameters. For demonstration, we
choose the multiple linear regression Eq. (2.6) as
an example, in which the estimates of all
parameters will derived using the least squares
(LS). To be specific, the sum of squared errors
(SSE) is first defined

SSE ¼
Xn
i¼1

yi � Ai � B1xi;1 � B2xi;2 � . . .� Bmxi;m
� �2

i

ð2:10Þ

In Eq. (2.8) Ai and Bj j ¼ 1; . . .. . .mð Þ are the
corresponding LS estimates of ai,
bj j ¼ 1; . . .. . .mð Þ in Eq. (2.6). SSE is then mini-
mizedwhich gives rise tomþ 1 equations. Each of
these equations includes one of partial derivatives
of SSE with respect to Ai and Bj j ¼ 1; . . .. . .mð Þ,
to be set zero, respectively. It is these equations
that are used to solve Ai and Bj j ¼ 1; . . .. . .mð Þ
directly subject to the given historical dataset
xi;j;Yi; i ¼ 1; 2. . .n; j ¼ 1; 2. . .m

� �
. Finally,

the prediction equation with the estimated
parameters in multiple linear regression is speci-
fied as

yi ¼ Ai þB1xi;1 þB2xi;2 þ � � � þBmxi;m

ð2:11Þ

In statistical regression, there is another vari-
able introduced to quantify the goodness of fit of
the regression line by Eq. (2.9), that is the
coefficient of determination R2,

R2 ¼ 1� SSE
SStot

ð2:12Þ

where SStot ¼
Pn
i¼1

Yi � Y
� �2

, with the mean value

Y ¼Pn
i¼1

Yi. Generally, a regress equation with a

larger R2 indicates it can better fit the original
data.

Based on the above discussion, it is seen that
statistical regression is an easy-to-use approach

for predicting building energy consumption. In
particular, it was popular to predict average
consumption over a long period in the early
studies. However, the regress models require a
large number of historical data for training, and
the resulting accuracy of a short-term prediction
is yet poorer than that of other data-driven
approaches, such as ANN or SVM. It is also
challenging for statistical regression to select a
set of plausible predictors and an appropriate
time scale to well fit energy consumption for
buildings under a wide range of environment and
weather conditions. Worse, the selected predic-
tors in some cases may not be literally indepen-
dent. The unforeseen correlations among them
would result in uncertain inaccuracy in the
regression outputs (Swan and Ugursal 2009).

2.1.6.4 Decision Tree
Decision tree (DT) is a technique to partition data
into groups using a tree-like flowchart. In this
sense, a DT model manifest itself as a graph con-
sisting of a root node and a couple of branch nodes.
ADT starts from the root nodewhere the input data
are split into different groups based on some pre-
dictor variables predefined as splitting criteria.
These split data are then disseminated to sub-
nodes as branches emanating from the root node.
The data on sub-nodes will undergo either further
or no splits. The former are the internal nodes
where the subsequent data split is conducted to
form new subgroups as son-branches emanated
graphically at the next level. Whereas the latter are
leaf nodes which treat the corresponding data
group at the current level as their final outputs.
Figure 2.5 illustrates a DT representation used for
medium annual source energy consumption per
unit floor (kWh/m2/yr) of a commercial building.
In this case, the gross floor area and building use
ratio are chosen as predictor variables in the root
node and internal node, respectively, and amixture
of data about energy consumption has been puri-
fied into a hierarchy of groups.

Significantly, in a DT analysis the information
entropy is an important concept used to quantify
data group homogeneity. It is defined by
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E ¼
Xn
i¼1

�Pilog2Pi ð2:13Þ

where E is the information entropy. n and Pi are
the number of different target values and the
probability of a dataset taking the ith target value,
respectively. This entropy is used to calculate the
information grain or gain ratio, based on which a
DT structure linking the top root node to each
branch node is specified. Readers can refer to
Quinlan (1986) for detailed splitting procedure
using the gain ratio or information gain.

In comparison to other data-driven approa-
ches, DT’s tree-like structure is easy to under-
stand and its implementation does not involve
complex computation knowledge. However, its
deficiency is also evident—the targets used in a
DT are primarily based on expectations. This
usually leads to significant deviations of its pre-
dictions from the real results. The DT

architecture is also a restriction so as the method
is unable to deal well with time-series and non-
linear data.

2.1.6.5 Genetic Algorithms
Genetic algorithms (GAs) are stochastic opti-
mization inspired by natural evolution based on
the idea of “survival of the fittest” (Goldberg
1986). Many GAs in building energy prediction
formulate three kinds of algebraic equations to
compute the output (as solution) according to the
given inputs:

Linear : y ¼ w1x1 þ � � � þwmxm; ð2:14Þ
Quadratic : y ¼ w 1ð Þ

1 x1 þ � � � þw 1ð Þ
m xm þw1;2x1x2

þ � � � þw1;mx1xm þw2;3x2x3þ � � �
þwm�1;mxm�1xm þw 2ð Þ

1 x21þ � � � þw 2ð Þ
m x2m;

ð2:15Þ

Fig. 2.5 Decision tree illustration of a medium annual source energy consumption per unit floor of a commercial
building
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Exponential : y ¼ w0 þw1x
ew1
1

þw2x
ew2
2 þ . . .þwmx

ewm
m ;

ð2:16Þ

where x1; x2; . . .; xmð Þ are m independent inputs

contributing to the output, y, and wi, w
1;2ð Þ
i and

~wi are the real-valued weights. In GAs, different
sets of weights compose a search space where a
point represents a feasible solution to the prob-
lem under investigation. The core task of a GA is
to model an evolution process to identify the best
among all feasible solutions in this space. In
implementation, a GA first randomly chooses n
sets of weights and encode each weight as a l bit

binary string, e.g. wi ¼ 100. . .01
zfflfflfflfflffl}|fflfflfflfflffl{1

. In so doing, a
set of weights is then represented as a chromo-

some Xj ¼ 100. . .01
zfflfflfflfflffl}|fflfflfflfflffl{w1

000. . .11
zfflfflfflfflffl}|fflfflfflfflffl{w2

::: 100. . .10
zfflfflfflfflffl}|fflfflfflfflffl{wm

, and
the n chromosomes form an initial population r.
Importantly, every chromosome Xj in the popu-
lation r is mapped to a fitness h Xj

� �
(a real value)

and assigned a probability Pj. In most cases,
these two variables are defined by

h Xj
� � ¼ y x1; x2; . . .; xmjXj

� �
� Y

� �
ð2:17Þ

and

Pj ¼
h Xj
� �

P
r h Xkð Þ ð2:18Þ

where Y is the targeted output from historical
datasets and the Greek letter “R” denotes a sum
of the fitness of all chromosomes in the popula-
tion r. Next, pairs of chromosomes are selected
as parents to reproduce the offspring (still chro-
mosomes). Generally, the better fitness the
chromosomes have, the more possible they are
selected. The chosen parents then proceed
crossover and mutation. One simple crossover
operation is to randomly choose a crossover
point and exchange the alleles up to this point of
the two parent chromosomes. As to mutation, a
few of bits in the chromosome after crossover,

again chosen randomly, are switched between 0
and 1 (e.g. 10001 ! 10011). Selection, cross-
over and mutation will be repeated to generate
sufficient new offspring to form a new popula-
tion, r0, at the next level. It should be pointed out
that the fitness of all offspring chromosomes in
this new generated population will be computed
and compared with the user’s requirements.
Generally, a GA will continue further runs of the
above evolution process unless a chromosome
(i.e., a set of weights) with satisfactory fitness is
reproduced.

The aforementioned introduction of GAs
indicates this method is a powerful optimization
tool in dealing with complex multi-modal prob-
lems (Beyer 2000). The algorithms can obtain
suitable solutions based on either the objective
functions or subjective judgements when large
and sophisticated input data are given. Mean-
while, two major deficiencies in the current GAs
are also noted—non-unique results and large
computation time. In the literature, attempts to
combine a GA with other data-driven approaches
(e.g. ANN) have been made to mitigate the
negative impacts arisen from the deficiencies.

2.1.7 Data-Driven Classification
Approaches

Besides great success in predicting building
energy consumption, data-driven approaches
have been extensively used to attack building
energy classification over the last several dec-
ades, among which K-means algorithm, self-
organizing map (SOM), hierarchical clustering
and regression are the most popular choices.

2.1.7.1 K-Means Cluster
The K-means clustering algorithm is a classifi-
cation approach quite popular in building load
analysis. Technically, this algorithm partitions a
set of data into a number of non-hierarchical
groups of similar data points, i.e., clusters. The
similarity among data points is quantified by the
Euclidean distance, based on which a K-mean
clustering procedure includes the following
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steps. A data set xi; i ¼ 1; 2. . .nð Þ is first input
with the cluster centers lj; j ¼ 1; 2. . .K

� �
being

specified randomly. The Euclidean distances
between each data point and each cluster center
are then computed. A datum xi is set to belong to
a cluster Cj if its distance to the cluster center lj
is shorter than those to any other center. As a
consequence, this classification forms K clusters
in the input dataset, and the center of each cluster
is re-calculated as a mean based on new data
grouping. The K mean clustering algorithm will
repeat the above distance computation, data
classification and center relocation till all the K
cluster centers do not move their locations with
further iterations (Magoules and Zhao 2016). In
many cases, a squared error function J is intro-
duced to characterize this convergence,

J ¼
XK
j¼1

X
x jð Þ
i 2Cj

x jð Þ
i � lj

� �2
ð2:19Þ

where x jð Þ
i represents a data point belonging to

the cluster Cj (Panapakidis et al. 2014). In the K
mean clustering algorithm, a priori specifications
of the cluster number K and initial positions of
the cluster centers are required. This results in the
algorithm has to be conducted several times in
practice with these parameters with different
values. Only the best results after comparison
will be deemed as the algorithm’s ultimate
outcomes.

It is worth mentioning to improve its feasi-
bility, the K-means clustering algorithm has been
modified using the fuzzy methods. The modified
version, in contrast to the aforementioned dis-
cussion, allows soft clustering, i.e., every data
point can potentially belong to multiple clusters
and a degree of membership is defined to char-
acterize such relationships (Dunn 1973). Niko-
laou et al. (2012) discusses one widely-used
fuzzing cluster approach in building energy
projects, i.e., fuzzy C-means (FCM) cluster.
Interested readers can refer to it for more details.

2.1.7.2 Self-organizing Map
Self-organizing map (SOM) is developed from
ANNs which transfers an incoming signal pattern
in arbitrary dimensions into a one- or two- ormulti-
dimensional topographicmap (Magoules andZhao
2016). The method is trained by an unsupervised
learning process and capable of classifying new
inputs into clusters with different features in a
neurobiological-like manner. Figure 2.6 illustrates
a frequently-used network architecture of SOM
consisting of a one-dimensional input layer and a
two-dimensional computational layer. In this
computational layer, a number of process units,
i.e., neurons j ¼ 1; 2. . .mð Þ, are arranged in rows
and columns, each of which connects all input
signals xi; i ¼ 1; 2. . .nð Þwith connectionweights
wij. The output of the neuron j is sometimes given

by yj ¼
Pn
i¼1

wijxi.

In SOM, a squared Euclidean distance
between all the input signals and connection
weights pertinent to every neuron is computed

dj ¼
Xn
i¼1

xi � wij
� �2

j ¼ 1; 2. . .mð Þ ð2:20Þ

This distance is termed as the discriminant
function, and the neuron with the smallest dis-
criminant function is designated as the winner for
a given set of input signals. Typically, a SOM
iteration starts from initializing all correction
weights with small random numbers and choos-
ing a set of input signals from historical database
at random to form the input layer. Computation
of the discriminant function for each neuron in
the computational layer is then performed. Only
the neuron with the smallest discriminant func-
tion is identified as the winner at this iterative
level. Immediate to this, a topological neighbor-
hood centered at the selected winner is defined,
in which the connection weights linking every
neuron to the input signals are adjusted subject to

wij nþ 1ð Þ ¼ wij nð Þþ gj xi � wij nð Þ
 � ð2:21Þ
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where n represents the current iterative level,
gj is the learning rate depending on n and the
distance between the winner and the neighboring
neuron j. The next iteration at nþ 1 will be
conducted with these adjusted correction weights
and the new randomly-chosen input signals. Note
that while the SOM iteration proceeds, both the
learning rate and the size of the winner’s
neighborhood will decrease. The whole iteration
will terminate once a threshold is met, e.g.,
gj � gj;min or only the winner itself or none being
included in the neighborhood. After training, a
particular neuron (i.e., winner) in SOM will be
activated the most for a particular type of input
signals. This correspondence ensures SOM to be
effective means used for clustering new input
signals.

In sum, SOM can effectively reduce the
dimensions of a high-dimensional signal pattern
to a feature map in which the similarities and
differences among input objects are easily dis-
cerned. Moreover, its outputs can be directly
followed by further classification using other
clustering algorithms. This will lead to more
mutually exclusive and well-separated groups.
On the other hand, it is also noted that SOM
clustering suffers from oscillation if a rambling
dataset without any pretreatments is used as the
input. Importantly, its computational cost will
dramatically increase with the increasing
dimension of the data. Therefore, a good SOM
should be equipped with a well-designed tuning
process and a clear parametric analysis on the
impacts of different parameters. These

parameters usually include the learning rate,
neighborhood function, number of process units,
and et al.

2.1.7.3 Hierarchical Clustering
Hierarchical clustering in building energy con-
sumption commonly uses the bottom-up fashion
to organize data points into a tree-like hierarchy
of clusters (Nikolaou et al. 2012). Such cluster-
ing is known as the agglomerative algorithm
starting with n data points. xi; i ¼ 1; 2; . . .. . .nð Þ,
each of which is treated as a singleton cluster. To
characterize the inter-cluster similarity, the dis-
tances among different clusters are computed,
and form a n� n matrix

H ¼
0 � � � D Cn;C1ð Þ
..
. . .

. ..
.

D C1;Cnð Þ � � � 0

2
64

3
75 ð2:22Þ

In the above matrix, the distance between two
clusters D Ci;Cj

� �
is defined by

D Ci;Cj
� � ¼ min d xi; xj

� �
, with xi 2 Ci and xj

2 Cj;

where d xi; xj
� �

is the distance (i.e., Euclidean
distance) between two data points in these two
cluster and D Ci;Cj

� � ¼ 0 when i ¼ j (Nikolaou
et al. 2012). In the literature, there are the other
ways to define the distance between two clusters.
Interested readers can refer to Vesanto and
Alhoniemi (2000) for more details. After com-
puting the inter-cluster distances, the next step is

Fig. 2.6 Schematic of SOM.
White cycles: process units;
Solid lines: connections
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to merge two closest clusters having the minimal
D Ci;Cj
� �

, and then update the corresponding
distance matrix. This merging manipulation will
proceed iteratively till all data points have been
included in a single cluster.

In hierarchical clustering, merging can be
conducted in different ways and terminated at
different levels provided the similarity criterion
requires. Figure 2.7 illustrates an example where
two distinct sets of three clusters are obtained in
different merging routes based on different
merging criteria. In building energy studies,
hierarchical clustering has been proven that it can
reveal the data internal structure and generate
useful knowledge about energy consumption in a
building (Magoules and Zhao 2016).

2.2 Practical Application of Data-
Driven Approaches

2.2.1 R & D Works and Practical
Applications

All the aforementioned data-driven approaches
are widely applied to a large variety of prediction
or classification applications of load prediction,
energy pattern profile of specific use-cases,
regional energy consumption mapping, energy
benchmark for building stock, retrofit strategies

and guideline making, see a summary in
Table 2.2. This broad range of applications covers
micro-scale and macro-scale studies that provide
useful information and instructive suggestions for
different stakeholders, including government,
investors, engineers and occupants throughout the
building life cycle from the early planning/design
stage to later operation/retrofit stage.

2.2.1.1 Prediction
Originally, many data-driven approaches were
established to predict the energy consumption of
building, in particular electricity usage. It is well
recognized that estimations of energy usage in
the long-, medium- and short-term (i.e., annual,
monthly and daily) are of importance for energy
market planning and investments. Especially, a
very short-term (hours or minutes ahead) esti-
mation of electricity usage can exert a vital
influence on the final dispatch for national elec-
tricity market (Setiawan et al. 2009). Therefore, a
precise prediction in these scenarios would lead
to more efficient energy management and direct
to considerable reduction in operational cost for
both energy suppliers and end-users in buildings
(Setiawan et al. 2009; Mathieu et al. 2011; Neto
and Fiorelli 2008). At the current stage, ANN
and SVM are the two favourable data-driven
approaches used for prediction of building
energy consumption.

Fig. 2.7 Schematic of
hierarchical clustering
algorithm. The partitive
clusters can be obtains at
different levels of similarity
(Vesanto and Alhoniemi
2000)
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Prediction Application of ANNs
ANNs have been extensively used as a prediction
means in diverse areas (Kalogirou 2001). In
building sector, ANNs excels in predicting
building energy consumption, electricity
demand, heating/cooling loads, important energy
parameters and even assessment of software etc.
Table 2.3 has centrally summarized these appli-
cations of ANNs in the literature.

In terms of energy consumption, ANNs are the
popular candidate for both the short-term and long-
term prediction. Kalogirou and Bojic (2000) used
ANNs to predict energy consumption in a holiday
passive solar building, where engineers working in
the HVAC field were not included. In their study,

the RNN model based on the back-propagation
architect was applied for the training process. In so
doing, such a model could detect features in the
raw data of previous knowledge, e.g., the changing
rules of operating conditions along different time
epochs. In addition, Sözen and Arcaklioglu (2007)
even derived an ANN model to shed light on
causality link behind economic indicators, popu-
lation and net energy consumption. Their study
suggested economic indicators (e.g. gross national
product (GNP) and gross domestic product
(GDP) etc.), rather than conventional energy
indicators (e.g. gross generation, installed capacity
and years), are playing a more important role for
an accurate prediction of energy consumption.

Table 2.2 Summary of data-driven approach for applications in building energy consumption

Data-driven
approaches

Applications prediction classification

ANN (Kalogirou 2001; Kalogirou and Bojic 2000;
Neto and Fiorelli 2008; Sözen and Arcaklioglu
2007; Yang et al. 2005; Canyurt et al. 2005; An
et al. 2013; Yezioro et al. 2008; Yan and Yao
2010; Yokoyama et al. 2009; Olofsson and
Andersson 2002; Aydinalp-Koksal and Ugursal
2008; Aydinalp et al. 2002; Yalcintas 2008;
Asadi et al. 2014)

(Yalcintas 2006; Yalcintas and Ozturk 2006)

SVM (Zhao and Magoulès 2012, 2010; Magoules
and Zhao 2016; Dong et al. 2005; Li et al.
2009a, 2010, 2009b; Setiawan et al. 2009)

N/A

Regression (Zhao and Magoulès 2012; Amjady 2001;
Mejri et al. 2011; Wauman et al. 2013;
Tiedemann 2007; Aydinalp-Koksal and
Ugursal 2008; Larivière and Lafrance 1999;
Mastrucci et al. 2014; Howard et al. 2011;
Nikolaou et al. 2011; Chung et al. 2005;
Yalcintas and Ozturk 2006)

N/A

DT (Tso and Yau 2007; Yu et al. 2010) (Park et al. 2016)

GA (Canyurt et al. 2005; Sadeghi et al. 2011;
Azadeh et al. 2007; Li and Su 2010; Juan, et al.
2009; Asadi et al. 2014)

N/A

K-means
cluster

N/A (Nikolaou et al. 2012; Panapakidis et al. 2014;
Tsekouras et al. 2007; Heidarinejad et al. 2014;
Arambula Lara et al. 2014; Jones et al. 2007;
Fonseca and Schlueter 2015; Santamouris et al.
2007; Wang 2015; Lannon et al. 2050)

SOM N/A (Nikolaou et al. 2012; Panapakidis et al. 2014)

Hierarchical
cluster

N/A (Tsekouras et al. 2007; Xiao et al. 2012; Wang
2015)
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Table 2.3 Summary of ANNs in predicting building energy consumption

Type of
house

Scale Inputs Output Data source Measure
length

Algorithm

Holiday
passive
house
(Kalogirou
and Bojic
2000)

Single Season,
insulation
function,
wall
thickness,
heat transfer
coefficient,
time of day

Energy
consumption

Measured
data: ZigBee
Input Device
(ZID)

Two
seasons

RNN
combined
with BPNN

Multiple
(Sözen and
Arcaklioglu
2007)

National Economic
indicators
(GNP and
GDP),
population

Net energy
consumption

World
Energy
Council

37 years
(1968–
2005)

BPNN

Office
building
(Yang et al.
2005)

Single Outdoor dry-
bulb
temperature,
outdoor
humility,
water
temperature
of chiller,
compressor
status etc

Dynamic chiller
electric demand

Simulated
data (DOE
2.1E) and
measured
data

1 year Sliding
window ANN
and
accumulative
ANN

Office
building
(Canyurt
et al. 2005)

Single Previous
load,
temperatures
of previous
day,
occupancy
condition, sin
and cosine of
the hour

One day ahead
electric power
consumption

Great
building
energy
predictor
shootout I
and measured
data

1 year
and a half

BPNN

Multiple An
et al. 2013)

Reginal Previous
electricity
consumption

Half-hour ahead
electricity
demand

Australian
Energy
Market
Operator

9 weeks Multi-output
BPNN

Residential
(Yan and
Yao 2010)

7
builidngs

18 building
envelope
parameters,
heating
degree day,
cooling
degree day

Heating and
cooling energy
consumption

Simulated
data (DeST)

1 year BPNN

Commercial
(Yokoyama
et al. 2009)

Single Previous
cooling
demand, air
temperature
and relative
humidity

Cooling demand Measured
data

45
weekdays

BPNN

(continued)
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As to electricity demand, the majority of ANN
models focus on dynamic and short-term pre-
dictions, which require careful selection and pre-
treatment of input data. One example is Yang
et al. (2005) where an on-line chiller electricity
prediction model was established through use of
both the simulated data and measured data. Their
results recommends the sliding-window ANN,
which constantly drops the oldest data and adds
new measurements during training process,
showed better performance than the accumula-
tive ANN based on measured data. Besides,
Karatasou et al. has reported one-day ahead
prediction of electricity consumption, called a
24-steps predictor, in Canyurt et al. (2005). The
predictor used previous energy consumption data
records with time delays larger than 24 h as
inputs to train the network to perform next day’s
prediction. Interestingly, An et al. (2013) further
developed an (EMD)-based signal filtering which
is able to forecast half-hour electricity demand
ahead. Such an EMD-based signal filtering can
decompose an incoming signal into a series of
pure modes and residues. The results revealed
that the EMD-based filter a critically-functioned

component in the ANNs prediction model. In
fact, ANNs also play an important role in pre-
diction of heating/cooling loads. In this particular
type of applications, the ANN models usually
require to input detailed climate information,
envelop parameters and occupancy schedules
(Yezioro et al. 2008; Yan and Yao 2010).
Besides reliable input data, algorithm optimiza-
tion is the other way to promote the prediction
accuracy. To minimize the drawback of BPNN
(e.g. local optimization of model parameters in
training process), a global optimization called
“Modal Trimming Method” was proposed by
Yokoyama et al. (2009). This method was com-
posed of two steps, shown as Fig. 2.8: (1) search
for local optimal solution of input variables in an
objective function xfso ! xlo1

� �
, Normally, the

objective function is defined as calculation error
between predicted and measured values;
(2) search for another feasible solution of the
same objective function value with previous
local optimization xlo1 ! xfs1

� �
. These two steps

were repeated xfs1 ! xlo2 ! xfs2
� �

until tentative
global optimal one xlo3 is found. They validated

Table 2.3 (continued)

Type of
house

Scale Inputs Output Data source Measure
length

Algorithm

Residential
(Olofsson
and
Andersson
2002)

7 single
family-
building

Supplied
heating
demand,
electricity
domestic
demand, flag
parameter

Indoor-outdoor
temperature
difference

Measured
data

2 years BPNN

Solar house
(Yezioro
et al. 2008)

Single Outdoor
temperature,
relative
humility, set
point
temperature,
occupancy
schedule

Heating/cooling
consumption

Measured
data

2 days BPNN

Office
building
(Neto and
Fiorelli
2008)

Single Outdoor dry-
bulb
temperature,
day type
(working day
or weekend)

Daily total
consumption

Measured
data: energy
demand
measurement
system

54 days BPNN
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this method and concluded that significant error
of predicted cooling demand from measured data
was reduced compared to traditional local opti-
mization method.

On top of the above applications, ANNs’
application is also extended to predicting the key
parameters of energy performance of building.
For instance, Olofsson and Andersson (2002)
proposed a use of the BPNN model to estimate
the total heat loss coefficient (HLC) and domestic
energy gain factor of inhabited single-family
buildings. Here, the total HLC characterizes heat
loss resulted from transmission and air-flow
while the domestic energy gain factor focuses
on the gain of heating or cooling from inside
sources. In this kind of ANN model, flag
parameter of each measured case was introduced
to distinguish non-linear dependences among
various predictors, instead of average depen-
dency from previous experience.

It is worth mentioning that ANNs are some-
times used as tools to assess simulation software
for building performance. Neto and Fiorelli
(2008) compared the BPNN against EnergyPlus
by using both to predict building energy con-
sumption. The latter is recognized a mainstream
simulator in building sector which can deliver
much more accurate results than Energy_10,
Green Building Studio web tool, and eQuest
(Yezioro et al. 2008). Interestingly, Neto et al.
found that when building and climate data were
just briefly described, the used BPNN model
works much better in daily energy demands

prediction than EnergyPlus does. Importantly,
especially for hourly prediction, all these simu-
lation tools in current market give rather poor
results in comparison to ANNs. This finding
equips ANNs a new function as a benchmark to
test accuracy of commercial software for esti-
mating building energy performance.

Prediction Application of SVM
Prediction is also a primary function of SVM use
in building energy simulation. Table 2.4 lists the
up-to-data studies on SVM-prediction applications.
Generally speaking, SVM works in high accuracy
in the medium-term (Dong et al. 2005) and short-
term (Setiawan et al. 2009) prediction. Signifi-
cantly, the method only requires a few model-
parameters to implement its calculation. On the
other hand, however, computing speed of SVM is
slower than that of other approaches, such as linear
regression and the ANNs. Currently, how to
optimize SVM algorithm is regarded as the core
task for its future development.

Many efforts were actually made on SVM
optimization in recent years. To save the computer
memory and expedite the time-consuming train-
ing process, Zhao and Magoulès (2010) proposed
targeted solutions for dual optimization process
(see Eq. (2.5)) and Kernel function calculation.
The main idea was to divide the entire dual opti-
mization problem into sub-problems and calculate
them in parallel. Then, the Kernel function matrix
would be updated for each sub-problem calcula-
tion. This parallelized training process could be
stopped until convergence. The modified SVM
gains a capability of dealing with a large amount
of data to predict energy consumption of multiple
buildings. Another possible optimization solution
is to develop a hybrid SVM. For example, Li et al.
(2010) presented a hybrid approach combining
SVM and FCM clustering algorithm to forecast
building cooling loads. In this research, FCM was
first employed to extract valid data records from
the pool of raw data, and then the SVM followed
with a training procedure based on the extracted
valid data records. Clearly, such a pretreatment of
data records effectively reduce the noise of inputs
for SVM calculation. It should be pointed out the
SVM is compatible with diverse input

Fig. 2.8 Concept of modal trimming method
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information. Besides the conventionally-used
energy loads and climate conditions, Zhao and
Magoulès (2012) also used energy load charac-
teristics and hidden inertial effects of building as
their SVM inputs. The energy load characteristics
were described as operation level of HVAC sys-
tem and the occupancy profile, the hidden inertial
effects were provided as fluctuation of internal
temperature. The block diagram of such a model
for predicting building energy consumption is
shown in Fig. 2.9. As we can see, partial selection
of input data called dynamic time warping

(DTW) was adopted during prediction process,
which measures on the outdoor temperature dif-
ference between training days and prediction
days. The minimal difference between two time
series was chosen as optimal path for solution.
Similarly, the previous energy load database was
also partially selected by DTW as inputs to con-
sider the most recent data rather than whole data.
The result showed that the designed training leads
to higher accuracy and better computational effi-
ciency in comparison to that based on the whole
input data.

Table 2.4 Summary of SVM in predicting building energy consumption

Type of
house

Scale Inputs Output Data source Measure
length

Algorithm

Commercial
(Dong et al.
2005)

4 single
buildings

Outdoor
temperature,
relative humility,
global solar
radiation, previous
electricity
consumption

Building
energy
consumption
per month

Survey:
monthly
utility bill,
National
Environment
Agency

3 years SVM

Multiple
(Setiawan
et al. 2009)

Regional Historical
electricity
consumption data

5-min ahead
electricity
load

Australian
electricity
operator

3 years SVM,
statistical
regression,
and BPNN

Office
buildings
(Zhao and
Magoulès
2010)

100
buildings

Heating
consumption,
electrical
consumption

Heating
demand,
electrical
load

Simulated
data
(EnergyPlus)

5 months Parallel
SVM

Campus
building (Li
et al. 2010)

Single Cooling load Cooling load Measured
data

4 months Fuzzy
SVM
combined
FCM
clustering

Office
buildings
(Zhao and
Magoulès
2012)

Single Previous energy
load, building
dynamic
characteristics,
outdoor
temperature,
occupancy
schedule

Building
energy
demand

Measured
data: data
acquisition
system

7 months SVM with
pseudo
dynamic
approach

Office
buildings (Li
et al. 2009b)

Single Previous cooling
load, air
temperature,
relative humidity,
solar radiation
intensity

Hourly
cooling load

Simulated
data (DeST)

Half year SVM,
BPNN
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Prediction Application of Statistical
Regression
Statistical regression is well treated as a simple
tool for prediction for a long time (Zhao and
Magoulès 2012). However, this approach suffers
from low-accuracy in its prediction results, and
such a deficiency has greatly limited its appli-
cations in building energy consumption analysis.
This motivates a great deal of modification and
optimization in statistical regression, which are
briefly illustrated in Table 2.5. Among various
modifications are multiple linear regression
(MLR) proposed by Li and Huang (2013) for
short-term prediction. This model utilized not
only climate data, room temperature set point,
but also the cooling loads of previous four hours
as its inputs. The obtained prediction results
achieved very impressive accuracy higher than
that of conventional ANN models. Moreover,
autoregressive, integrated and moving average
(ARIMA) model under the statistical regression
framework was designed to correlate time-series
data. Amjady’s study (2001) has well examined
the exactitude of ARIMA model for predicting

daily peak and hourly load based on national
power net. He further extended ARIMA model
with use of the estimated electricity load as an
extra input. The accuracy of his model reach a
higher level even compared to original ARIMA
and ANNs.

In most cases, statistical regression models are
adopted to estimate important parameters char-
acterizing energy performance. For instance,
Mejri’s et al. (2011) investigated statistical
regression modelling for predicting indoor air
temperature. In their study, they analyzed the
similarity in dynamic behaviours among different
thermal zones for HVAC system design. Another
example goes to Wauman’s et al. (2013), where
they used statistical regression to explore corre-
lation between heat balance ratio and heat gain
factor of some school buildings exemplified in
their research. These obtained correlations are
regarded of crucial significance for designing,
tracing and analyzing building thermal beha-
viours. They are also important supportive
materials for drafting heating control strategy for
energy saving.

Fig. 2.9 Block diagram of SVM in prediction of energy demand using pseudo dynamic approach (Zhao and Magoulès
2012)
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Prediction Application of Decision Tree
In the large family of data-driven approaches for
building energy consumption prediction, DT is a

relatively new member, but involves much sim-
ple techniques. Tso and Yau (2007) compared
statistic regression method, BPNN and DT by

Table 2.5 Summary of statistic regression, DT and GA in predicting building energy consumption

Type of
house

Scale Inputs Output Data source Measure
length

Algorithm

Office
building (Li
and Huang
2013)

Single Dry bulb outdoor air
temperature, solar
horizontal radiation,
and room
temperature set
point, cooling load
of previous 4 h

Cooling load Simulated
data from
TRNSYS

60
measured
case

MLR,
ANN,
grey-box
approach

Multiple
(Amjady
2001)

National Previous load,
estimated current
load, temperature

Hourly
electricity
load and
daily peak

National
dispatching
center

1 year ARIMA

Office
building
(Mejri et al.
2011)

Single Indoor temperature
of four rooms

Room
temperature

Measured
data

2 months Statistical
regression

Multiple
(Tso and
Yau 2007)

Groups Power rating of
appliance,
consumption time

Average
weekly
electricity
consumption

Survey Two
seasons

BPNN,
Least-
squares
regression,
DT

Residential
(Yu et al.
2010)

80
buildings

Outdoor
temperature,
building
characteristics,
appliance energy
source and usage
(10 inputs)

Energy use
intensity

Survey and
research
committee

3 years DT

residential-
commercial
(Canyurt
et al. 2005)

National GDP, population,
import, export,
house production,
basic house
appliance
consumption figures

Future
energy
demand
(2003–2030)

World
Energy
Council and
State
Statistics
Institute

8 years GA

Residential
(Sadeghi
et al. 2011)

National GDP, real price of
electricity and
natural gas in
residential sector

Future per-
capita
consumption
of electricity
(2009–2025)

Iran
Statistics
Center,
Central
Bank of
Iran

39 years GA

Hotel (Li
and Su
2010)

Single Outdoor
temperature of past
2 days, air
conditioning
consumption of past
3 days

Daily air
conditioning
consumption

Measured 7 months GA-
HANFIS
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predicting the electricity consumption in summer
and winter periods. Results showed that DT used
in their study performed as well as BPNN, both
of which deliver accurate results than statistical
regression did. Yu et al. (2010) also applied the
DT approach to predict energy use intensity
(EUI) of residential buildings. They designed ten
predictor variables concerning indoor tempera-
ture, building envelop, appliance types and
occupant number in the DT framework. Their
result clearly demonstrated that DT is able to
well predict building energy consumption level
as high/medium/low. The significances of these
predictor variables were ranked in terms of
degree of closeness to the outdoor temperature
(predictor variable of root node), which is the
most important determinant of EUI. The results
showed that several building parameters, e.g.
heat loss coefficient and equivalent leak area,
deserve more attention at early design stage and
benefit energy conservation in retrofit.

Prediction Application of Genetic Algorithms
GA has been regarded as a powerful prediction
approach in building energy consumption. As
shown in Table 2.5, most applications of GA
models are national analysis. One typical exam-
ple is prediction model of energy consumption
for residential-commercial building section in
Canyurt et al. (2005). Three different scenarios
were proposed in order to find out the best fit
solution. The result showed that GA model,
which considers residential housing production,
house appliances of washing machine, television,
vacuum cleaner and refrigerator as the input
parameters, can obtain the most accurate quad-
ratic prediction model of energy consumption.
Sadeghi et al. (2011) developed prediction model
of electricity consumption using GA on national
level. It was found out that exponential equation
had the more accurate results compared to linear
and quadratic forms.

Hybrid methods of GA and ANNs are widely
used in electricity prediction application (Azadeh
et al. 2007). Li and Su (2010) predicted the daily
air-conditioning consumption by using the
genetic algorithm-hierarchical adaptive network-
based fuzzy inference system (GA-HANFIS).

Before developing prediction model, clustering
algorithm was applied to identify the nature
groups and qualities of a large data set, and GA
was used to optimize the unknown cluster-
parameters through minimizing the error of pre-
dicting result. Figure 2.10 shows the architecture
of GA-HANFIS, in which the outdoor tempera-
ture of predicted day T kð Þ, the air-conditioning
consumption of past two days y k� 1ð Þ and
y k� 2ð Þ were identified as more significant
inputs of network layer 1. These less significant
variables T k� 1ð Þ, y k� 3ð Þ, T k� 2ð Þ and
T k� 3ð Þ were selected as inputs of network
layer 2 and layer 3. Output y kð Þ was air-
conditioning consumption of predicted day. The
rule base of each layer contained two if–then
rules; readers can refer to Tsekouras et al. (2007)
for more details. Moreover, the calculation rules
were different according to different clusters.
This hybrid method outperformed regular BPNN
in prediction accuracy.

2.2.1.2 Profile
The energy consumption profile in building is to
quantify the total consumption contribution to
sub-components, or further distinguish the usage
characteristics. Regarding the positive influence
for end-users, the capability of profiling the
energy use as the feedback can educate the
occupants on how to consume and change the
consumption behaviours to certain extent. As for
utility companies, DSM measures are implied
after extracting load profiles in order to reach a
proper load-shape objective, i.e. “peak clipping”,
“valley filling”, “strategic conservation”, “flexi-
ble load shape”, “load building” and “load
shifting” (Panapakidis et al. 2014). The
commonly-used methods for energy and elec-
tricity profiling are clustering based method,
which is detailed in Table 2.6.

Profile Application of Cluster Method
As one application of cluster method, analyzing
electricity behaviour through pattern recognition
and load curve classification has been investi-
gated by massive researches. Tsekouras et al.
(2007) developed a two-stage pattern recognition
for customer’s classification. The first stage was
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to pattern load curves of each customer; the
second stage was to cluster the customers
according to pattern features. In their research,
K-means cluster was proven by adequacy

measures as the most appropriate approach
compared to other methods. The function of
adequacy measures is to evaluate the within-
group similarity and between-group dissimilarity,

Fig. 2.10 Architecture of
GA-HANFIS model with 3
layers (Li and Su 2010)

Table 2.6 Summary of data-driven approaches in building energy consumption profiling

Type of house Scale Inputs Data
source

Measure
length

Algorithm

Multiple
(Tsekouras et al.
2007)

94
buildings

Daily electricity
consumption

Meters 10 months K-means cluster,
fuzzy K-means
cluster, seven
hierarchical cluster

University
building
(Panapakidis et al.
2014)

27
buildings

Daily electricity
consumption

Meters 2 years SOM combined with
K means++

National office
buildings (Xiao
et al. 2012)

24
provinces

Annual electricity
consumption

Survey 1 year Hierarchical cluster

High performance
buildings
(Heidarinejad
et al. 2014)

134
buildings

Energy end use Simulated
data

3 year K-means cluster

Campus buildings
(Arambula Lara
et al. 2014)

85
buildings

Heating demand School
manage
service

5 years K-means cluster
combined with MLR

Residential
buildings
(Tiedemann 2007)

791
customers

Weather data and
energy consumption
of residential
appliances

Survey 2 years Statistical regression

Residential
buildings
(Aydinalp-Koksal
and Ugursal 2008)

8767
customers

Weather data and
energy consumption
of residential
appliances

Survey 1 years Statistical regression
and ANN

Residential
buildings
(Aydinalp et al.
2002)

8767
customers

Appliance, lighting,
cooling loads, space
heating, domestic heat
water

Survey 1 year PBNN

2 Data-Driven Approaches for Prediction and Classification … 33



in order to obtain a well-separated classification.
Panapakidis et al. (2014) incorporated K-means+
+ cluster within SOM to reduce the number of
centers and increase the accuracy. The data
records including vast of load curves were
aggregated from various buildings, SOM was
thus an appropriate approach to map high-
dimensional database into low-dimensional pat-
terns. As the improvement of the basic K-means
clustering algorithm, K-means++ algorithm tries
to initialize the centroids that far from each other
rather than random selection. The combination of
SOM and K-means++ resulted in small errors in
all cases.

Recently, cluster method becomes prevailing
to profile EUI of buildings on large-scale. Xiao
et al. (2012) conducted a study on EUI (exclud-
ing district heating) of business office buildings
in China. Each data point was defined as
x1i; x2ið Þ in which x1i and x2i refer to EUI and
gross floor area of corresponding building.
Eventually, two clusters were formed by using
hierarchical cluster and the frequency distribu-
tion of EUI is illustrated in Fig. 2.11. The cluster
results revealed the unique “dual section distri-
bution” pattern which is different from developed
countries. Heidarinejad et al. (2014) used K-
means cluster algorithm to classify the EUI of
134 U.S. high-performance buildings (HPBs) by
the squared Euclidean distance. These HPBs
were well separated into three clusters, as
high/medium/low EUI. Studies showed that
unregulated loads which include various equip-
ment and uncategorized loads, accounted for 30–
40% total energy consumption that should be
reduced specifically through effective programs
and modification. It can be found out that studies
mentioned above that analyze building energy
issues on large scale, are greatly dependent on
the clustering methodology.

Clustering technology can be also applied for
heating/cooling demand classification. K-means
cluster analysis combined with MLR were pro-
posed by Arambula et al. (2014) to analysis the
heating demand of 85 high schools. In their
model, MLR analysis was firstly conducted to
select 6 significant building thermal indicators

according to R2 value Eq. (2.12). Three clusters
were developed by K-means cluster analysis
based on these 6 indicators, while later R2 was
calculated for each cluster. The regression anal-
ysis showed that cluster 3 need to be further
divided by clustering analysis since its low
within-group similarity ( R2\0:5). Finally, more
reasonable classification results could be
obtained after such twice MLR analysis and
twice clustering analysis when comparing to the
sole clustering.

Profile Application of Regression
One regression method specialized for profiling
energy consumption of residential buildings is
conditional demand analysis (CDA). The basic
idea of the CDA model is that total household
consumption is the sum of various end-use
consumptions.

CDA is frequently used to profile building
energy consumption at national level (Tiedemann
2007). Aydinalp-Koksal and Ugursal (2008)
used CDA to profile residential end-use energy
consumption at national level, large-scale data-
base including the surveys from occupants,
weather conditions as well as historical energy
bills were used. Their CDA model adopts 6
electricity end-uses including main and supple-
mentary space heating, domestic heating water,
space cooling, lighting, major and minor appli-
ances. Meanwhile, they also developed neutral
network model for comparison purpose (Aydi-
nalp et al. 2002). In their research, BPNN out-
performed CDA model in evaluating the effects
of socio-economic factors, such as income,
dwelling ownership and area sizes of residence.
Because these socio-economic factors were
considered as input variables in BPNN while
CDA cannot not include comprehensive vari-
ables due to the limitation of statistical
regression.

2.2.1.3 Energy Mapping
Energy mapping methods, usually based on the
Geographic Information System (GIS) city
building database, consider using data-driven
technology for pre-and post-progressive
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operation (Caputo et al. 2013). Thanks to the
capabilities of GIS, immediate updating of
energy evaluation and visual representation via
maps are both permitted in a user-friendly model,
to provide energy consumption distribution
within the city. Among the massive technologies
for energy mapping, statistical regression
(MLR) and clustering algorithm are the mostly

utilized data-driven methods, as displayed in
Table 2.7.

MLR is a traditional used approach in energy
mapping of building section at zip-code level
(Larivière and Lafrance 1999). Mastrucci et al.
(2014) applied MLR model to map the energy
consumption of dwellings in a city of Dutch. The
contributing inputs included floor area, number

Fig. 2.11 Frequency distribution and polynomial fitting plot of EIU in office buildings. a US climate zone-1. b Certain
city of China (excluding district heating) (Xiao et al. 2012)

Table 2.7 Summary of data-driven approaches in energy mapping

Type of
house

Scale Energy consumption Inputs Data source Measure
length

Algorithm

Multiple
(Larivière and
Lafrance
1999)

45
cities

Annual electricity, population
density, age of inhabitants,
weather condition, living
expenditure

Organizations
involved in city
affairs

1 year MLR

Multiple
(Howard
et al. 2011)

City Annual electricity
consumption, natural gas,
steam, and fuel oil
consumption

Utility company,
RECS, CBECS, geo-
rectified database

1 year MLR

Residential
buildings
(Mastrucci
et al. 2014)

City Yearly consumption of natural
gas and electricity

GIS database, Royal
Netherlands
Meteorological
Institute, metering

Nearly
50 years

MLR

Residential
buildings
(Jones et al.
2007)

City Energy consumption and
carbon dioxide emission

GIS database,
electricity map,
surveys

18 months Clustering
algorithm

Multiple
(Fonseca and
Schlueter
2015)

City Electricity load, thermal loads, GIS database,
simulated and
measured data,
building standards

1 year K-means
cluster
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of occupants and type of house defined for each
combination of type of dwelling and period of
construction during 50 years. The predicted nat-
ural gas consumption was apportioned into space
heating, domestic hot water and cooking. The
results observed that space heating is the biggest
contribution (average 50%) in energy consump-
tion. After 50 years tracking from 1965, they
assumed the percentage of energy reduction is
nearly zero for dwellings after 2005. Besides
single building function of residential family,
energy mapping model has been expended to
profile the building energy consumption of
multiple functions. For example, Howard et al.
(2011) calculated the annual EUI in New York
City through MLR analysis, both the tax lot
designations and building area categories were
used to place the buildings into n building
functions (e.g. residential family, office, ware-
house, education and et al.). The MLR analysis is
explained in Eq. (2.16), yi is the energy con-
sumption of ith zip-code, xin is the total building
area of each building function in ith zip-code. bi
is the coefficient need to be determined in MLR.
On top of that, it was found out extra contribut-
ing inputs are needed in some regions to distinct
the unique characteristics of energy consump-
tion. However, the research excluded energy
consumption for cooking, electrical heating and
other end-uses, which inevitably causes errors in
energy mapping.

yi ¼ b1xi1 þ b2xi2 þ � � � þ bnxin ð2:23Þ

Clustering algorithm is typically used as
subsidiary approach for mapping the energy
consumption at urban scale. In Jones et al. (2007)
research, cluster analysis technique was adopted
to classify 55,000 dwellings with similar energy
consumption and carbon dioxide emission in a
Local Authority of UK. The energy rating results
and carbon dioxide emission results were pro-
filed on the regional map for further retrofit
purpose. Clustering algorithm is not limited to
classification of energy consumption, also uti-
lized to develop geographical clusters. Instance,
Yamaguchi et al. (2007) proposed a district
clustering model for commercial buildings in

Osaka city. Firstly, clustering of district were
presented by small grid cells, each of them was
classified to certain representative building-type
category. Then, EUI was used as evaluation for
the district typology. Fonseca and Schlueter
(2015) proposed a model for mapping the spa-
tiotemporal building energy consumption in a
city district of Switzerland. The model involved
K-means cluster for spatial grouping in the band
of 50–200 m, where spatial association of every
variable of interesting buildings was strongly
persistent (e.g. infrastructure types and tempera-
ture requirements). Two significant variables
were used to measure the intensity of spatial
clusters and similarity of groups. GIS framework
gathered overall results and enabled 4D visual-
ization that provides understandable display. The
peak space heating demand of buildings in four
zones at 10–11 am (April 1st, 2010) is presented
as Fig. 2.12. The height and color code of
buildings represent the demand level in relation
to their associated zones.

2.2.1.4 Benchmarking of Buildings
Different from individual building energy anal-
ysis, benchmarking was used to address large-
scale building energy related issues. Two fun-
damental issues in benchmarking are: (1) ascer-
taining the current energy performance of certain
building (good, average or poor) compared to
same types of building stock; (2) identifying the
previous/current energy performance for energy
saving potential and retrofit changes (Nikolaou
et al. 2011). Regression based model, ANNs,
cluster algorithms and DT are the typical data-
driven techniques for building energy bench-
marking. Table 2.8 provides the benchmarking
pilots that usually adopt EUI as the single
benchmarking index.

Regression technique is one popular method in
building energy performance benchmarking.
Chung et al. (2005) benchmarked the EUI of 30
supermarkets in Hong Kong. MLR model was
established to calculate EUI based on nine sig-
nificant variables. By using bootstrapping func-
tion (Efron and Tibshirani 1993) for the empirical
sample EUI 1ð Þ; EUI 2ð Þ. . .EUI 30ð Þ

� �
, they
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obtained the estimation of EUI cumulative dis-
tribution as percentiles EUI10; EUI20. . .EUI90f g.
Although conducting on small-scale samples,
they formed a benchmarking table through the
percentiles. The results showed that average value
of energy consumption is greater than UK energy
benchmarking. They also raised the suggestions
that only unmanageable factors (e.g. building
thermal characteristics) should be considered
during benchmarking process while all manage-
able variables (e.g. occupancy behaviour) were
set into average values, in order to present clearer
improvement suggestions for government.

ANNs method in energy benchmarking was
initially presented by Yalcintas (2006). He
developed three sub-models to predict EUIs as
output for the plug load, lighting and HVAC
components over 60 mix-used buildings. The
information from questionnaire includes lighting
types, floor area, equipment types and hours were
used as inputs. The elaborated ANNs model
could identify the EUI if new data is entered. The
most outstanding advantage of ANNs bench-
marking method is to renew the algorithm itself
rather than manual update. Yalcintas and Ozturk
(2006) also developed a national energy bench-
marking model for commercial buildings based
on ANNs. Different from abovementioned ANN

model which included continuous value of
inputs/output, both input variables and output
EUI were standardized into categorical forms for
classification purpose in this model. In order to
avoid inappropriate benchmarking results, data-
base was firstly divided into 9 geographic
regions. The results showed that ANN model
provides more accurate EUI estimation and rea-
sonable benchmarking result than MLR model in
all cases except one.

Fuzzy cluster algorithm is a frequently-used
methodology for energy benchmarking for
buildings. Santamouris et al. (2007) proposed an
energy rating system for 340 schools based on
fuzzy clustering technology. Five classes of total
and thermal energy consumption had been
defined. Compared to frequency distribution
rating system, fuzzy clustering rating system is
more reasonable to avoid unbalanced classifica-
tion, such as too small or too large range. Apart
from building energy consumption benchmark-
ing, thermal comfort rating system was also
proposed by Nikolaou et al. (2012) based on
FCM cluster. The predicted mean vote index,
which represents mean response about thermal
comfort from a larger group of people, was used
as thermal comfort indicator. In their study, the
thermal comfort of each climate zone was

Fig. 2.12 Spatio-temporal energy map of space heating demand of a city district in Switzerland (Yamaguchi et al.
2007)
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classified as three clusters, respectively. The
majority commercial buildings in Greek were
belong to class 2, while “best practice office
buildings” were belong to class 1.

Another energy benchmarking method for
improving energy efficiency of office building is
DT. Park et al. (2016) developed DT model to
benchmark the energy consumption of 1072
office buildings in South Korea. Gross floor area
and building use ratio were identified as two
significant predictor variables by correlation
analysis, source EUI was defined as target vari-
able. As the result, six rating groups of EUI were
developed for each type of building use. After
establishment of benchmarking model, analysis
of variance was utilized to test the difference

among groups. DT model was believed to
improve the conventional baseline benchmarking
system via a more reasonable and fair
classification.

Although most benchmarking projects are
developed based on single EUI indicator, there is
much effort for the multi-criteria benchmarking
indicators. Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) based
energy efficiency benchmarking approach using
seven indicators was developed by Wang et al.
(Wang 2015). The illustration of TOPSIS of two
indicators (energy use per occupant and EUI) is
showed as Fig. 2.13. When building A and
building B have the same distances to the most
energy efficient condition IP, distances to the

Table 2.8 Summary of data-driven approach in building energy benchmarking

Type of house Scale Benchmarking variables Data source Measure
length

Algorithm

Supermarkets
(Chung et al.
2005)

30
buildings

Building age, occupancy condition,
indoor temperature, energy system
type and et al.

Survey 45 year MLR

mix-used
buildings
(Yalcintas
2006)

60
buildings

plug load, lighting, HVAC Questionnaire 1 year BPNN

Commercial
buildings
(Yalcintas and
Ozturk 2006)

National building-operation hours, age
category, building-area, cooling
category, lighting category, CDD,
number of floors category

CBECS 1 year ANNs,
MLR

School
buildings
(Santamouris
et al. 2007)

340
buildings

Heating demand, electricity
demand, total energy consumption

Energy bills 3 years Fuzzy
cluster

office buildings
(Nikolaou
et al. 2012)

30,000
buildings

Heating load, cooling load, thermal
comfort

Simulated
data: VBD

1 year K-means
cluster,
SOM,
FCM
cluster

Residential
buildings
(Wang 2015)

324
buildings

EUI, CDD efficiency, HDD
efficiency, bath room oriented, total
room oriented efficiency and etc

Panel dataset 3 years TOPSIS,
PCA, K-
means
cluster

Commercial
buildings (Park
et al. 2016)

1072
buildings

EUI, gross floor area, building use
ratio

Official
building
register,
Korea
Appraisal
Board

3 years DT
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least energy efficient condition IN were used to
evaluate A and B. Since MLR cannot easily
produce reliable weights among highly correlated
indicator, principle component analysis
(PCA) was adopted to weight the importance of
seven energy indicators. PCA can transform a
high-dimensional dataset consisting of possibly
correlated variables into a less number of their
linear combinations. Finally, K-means cluster
was adopted to classify the TOPSIS space into
six categories as benchmarking table. Without a
doubt, the benefits were obvious compared to
single-criteria benchmarking which is observed
with collision during evaluation process.

2.2.1.5 Retrofit of Buildings
Retrofit is based on the knowledge of energy
profiling and benchmarking on existing build-
ings, presenting the largest potential of incorpo-
ration of renewable energy technology and
energy conservation after efficiency retrofit
measures. ANNs and GA are the main data-
driven approaches in building retrofit projects,
within a brief introduction in Table 2.9.

ANNs are usually applied to predict energy-
saving potential for single retrofit project. Yal-
cintas et al. (2008) developed BPNN model for
two hotel equipment-retrofit projects. Energy

usage data, weather data and occupancy data of
post-retrofit period were used to train the neutral
network model. It then estimated the energy
consumption of pre-retrofit equipment as output.
The difference between recorded and predicted
energy consumption was regarded as the energy
saving.

As a powerful optimization algorithm, GA has
been frequently adopted as the evaluation tool in
building retrofit project. Juan et al. (2009) pre-
sented a GA-based on-line decision support
system to offer residents a series of optimal
refurbishment actions considering two objec-
tives, cost and quality. In GA, each chromosome
represented a set of retrofit solutions, the distance
between chromosome and trade-off curve of cost
and quality was used as fitness function to select
the parents for generation. With the process of
evolution, the trade-off curve would gradually
converge to the best retrofit solutions with higher
quality and acceptable cost.

Developed based on two-objective optimiza-
tion, multi-objective optimization model was
conducted by Asadi et al. (2014). They adopted
GA associated ANNs to study the interaction
between three main conflicting target variables,
including energy consumption (EC), retrofit cost
(EC), thermal discomfort hours (TDH) and

Fig. 2.13 Illustrative
example of TOPSIS for
building energy
benchmarking (Wang 2015)
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assess their trade-offs in school retrofit project.
First, the database was created in simulation tool
for training and validating ANN model. BPNN
model adopted in this study was composed of
input layer representing different retrofit mea-
sures, one hidden layers and one output layer of
energy consumption and thermal discomfort
indicator. Then, the GA tool was used for mini-
mize these three target variables as Eq. (2.17)
and provide optimal combinations of retrofit
measures.

min y1 ¼ EC Xð Þ ð2:24aÞ
min y2 ¼ RC Xð Þ ð2:24bÞ
min y3 ¼ TDH Xð Þ ð2:24cÞ

X ¼ xWALL; xROOF; xWINDOW; xCOLLECTOR; xHVACf g

where x represent different materials/types of
alternative retrofit choices. The treat-off curves of
multi-objective optimization could be available
on 3D visualization. The proposed approach
presented variety of recommendations with high
computation efficiency. However, simultaneous
optimizations of conflicting variables gave large
diversity of retrofit choices, which are difficult to
understand the impact of each retrofit action at
whole level.

Cluster algorithm is usually adopted to make a
distinction of retrofit measures among different
buildings on large scale. Lannon et al. (2050)
developed model of 55,000 houses over 50-year
performance via cluster analysis, aiming to

investigate the retrofit pathways to UK govern-
ment’s ambitious target of 80% reduction
greenhouse gases emission by 2050. 100 clusters
were developed to identify the dwelling with
similar energy consumption and built age. Dif-
ferent combinations of retrofit measures were
proposed and analyzed in the simulation tool.
Overall, challenges and barriers in aggregate are
still difficulties for individual family house.

2.2.2 Analyses of the Review Works

Data-driven approaches for predicting and clas-
sifying building energy consumption typically
focus on total energy consumption, electricity
demand, heating/cooling load and important
energy parameters. The scopes of these resear-
ches are from sub-system level to single building
level or even to national level.

Substantial up-to-date mythologies are pro-
posed in order to enhance the accuracy and
reliability of data-driven models, such as algo-
rithm optimization and data pretreatment. As for
algorithm optimization, micro-scale researches
based on individual buildings are proposed with
considerations to develop variants of basic
algorithms and hybrids of several approaches
(Zhao and Magoulès 2012; Kalogirou and Bojic
2000; Yang et al. 2005; Li et al. 2010; Li and Su
2010). The improvements of macro-scale analy-
ses of building energy performance are invested
to increase calculation efficiency when the raw
data is large and chaos (Zhao and Magoulès

Table 2.9 Summary of data-driven approach in building retrofit

Type of house Retrofit measures Algorithm

Hotels (Yalcintas 2008) Install energy management systems and Variable Frequency Drives
(VFDs) on the air-handling units. New cooling towers and VFDs on
motor fans

BPNN

Residential buildings
(Juan et al. 2009)

More than twenty retrofit measures under six main criterion,
including safety, usage, convenient, comfortable, utility and health

GA

School (Asadi et al.
2014)

External wall insulation materials, roof insulation materials, the
windows type, solar collector type, the HVAC systems

ANNs and GA

Residential buildings
(Lannon et al. 2050)

Lower the carbon dioxide emission of grid, renewable resources,
improve energy efficiency, and change occupancy behaviour

K-means
cluster
algorithm
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2010; An et al. 2013; Tsekouras et al. 2007;
Wang 2015). In addition to algorithm optimiza-
tion, data pretreatment is another focus for many
researches (Yokoyama et al. 2009; Li et al. 2010;
Amjady 2001; Arambula Lara et al. 2014).
Appropriate pretreatment layered on the top of
data-driven approach is the premise of accurate
results and high computation efficiency. In short,
high similarity between training and testing
dataset is important for establishing a good
model.

Meanwhile, substantial studies applied the
simulated database to test model performance
rather than the measured data. The analysis
results of these models cannot be regarded per-
suasive enough since simulated data records are
less fluctuant than real situation. In these sce-
narios, the question arises for reliability of sim-
ulated data again with no clear answer.

So far, the researches on residential buildings
are not elaborated as researches of commercial
buildings. The main reasons are including
(1) lack of energy-use database from family-
houses; (2) more freedom of occupancy beha-
viour in residential buildings. Hence, most
researches on residential buildings are at low
granularity, such as roughly profile energy con-
sumption on regional level (Yu et al. 2010;
Sadeghi et al. 2011; Mastrucci et al. 2014; Wang
2015; Lannon et al. 2050).

2.3 Opportunities for Further
Works

As effective and useful techniques providing
profound insights and possible strategic solutions
in policy and management of building energy
consumption, data-driven approaches have been
deemed as favorable means for facilitate future
in-depth studies on building energy performance.
In this section, we tailor a few promising
research directions of data-driven approaches
applied in building energy.

The first direction suggested is to modify the
framework of the current data-driven algorithms
in the contexts of building performance to better
fulfill the calculation of building energy

consumption. This necessitates special opti-
mization of the data-driven approaches respond-
ing to unique requirements of prediction and
classification of building energy consumption. It
also calls for reliable and sufficient data source to
yield training in high quality. Well-designed
pretreatments particularly compatible with data
collection in buildings and high-granularity
measurement from smart meters are strongly
recommended.

Another direction is to enrich the applications
of the current data-driven versions, enabling
them to be viable for building energy character-
ization at different scales and various climate
conditions. In the literature, a great number of
efforts in this direction are limited to small-scale
building stocks. Future focuses should be placed
on energy-use evaluation of a large amount of
building population. To be specific, the next
generation of data-driven approaches in building
industries should cover more building thermal
characteristics and climate conditions, and are
able to perform energy mapping and bench-
marking at the macro-scale.

Furthermore, it has been widely noted that
most building energy consumption models at the
present stage only offer short-term analyses.
They fail to discuss the long-term profiles and
predictions, nonetheless. Therefore, strong drive
exists to extend data-driven approaches with
applications to building energy consumption
with climate changes in a large temporal scale.
This will play an important role in future build-
ing retrofitting, where long-term energy con-
sumption is a crucial contributing factor for new
HPB design when used to replace old buildings.

As pointed out above, building performance
evaluation nowadays strives for high efficiency
in building energy consumption. However, other
factors, such as indoor air quality, occupant
thermal comfort, occupancy behaviour interac-
tion and equipment energy-performance coeffi-
cient, are also equally important. This indicates
an ideal data-driven model should make use of
multiple indexes to provide a comprehensive
analysis of building performance, instead of the
current single output of energy consumption or
heating/cooling loads. Significantly, apart from
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the basic functions (i.e., prediction and classifi-
cation) discussed in this review, future outlook of
data-driven techniques targets decision-making
machine, such as occupancy behaviour recom-
mender and equipment operation instructor.
These data-driven based developments in build-
ing industries would offer real-time on-site
information for thermo-comfortable accommo-
dation with minimum energy consumption.

2.4 Conclusion

Given that the growing concerns about natural
resource shortages and eco-environment deterio-
ration, today’s building industry necessitates
strongly innovative techniques to better optimize
energy consumption in buildings. Data-driven
approaches are one of the most effective advanced
means to fulfill this goal in function of more
accurate prediction and clearer classification.

This chapter reviewed the mainstream data-
driven techniques currently applied in building
energy studies. A comprehensive summary of
each approach, including their basic thought,
algorithm structure, strengths and weaknesses,
was elaborated. In the category of data-driven
approaches for prediction, ANNs gains a primary
position in a large number of applications rang-
ing from load forecasting, retrofit potential esti-
mation. The challenges in this method are to
choose an appropriate architecture and learning
rate. As to SVM, the method has a simple
training process requiring a few inputs whereas
low calculation efficiency has become a road-
block in its application, especially for large-scale
building energy analysis and high granularity. To
shorten its calculation time, recent tremendous
efforts have made to optimize SVM structure and
develop hybrid models combing the method with
clustering algorithms, DTW and et al. Statistical
regression plays an important role in significant
parameters evaluation, energy mapping and
benchmarking at the urban scale. However,
inaccuracy in short-term prediction and possible
unforeseen correlations among the selected pre-
dictors greatly undermine the effectiveness of the
regression models in practical applications. As to

DT, it is regarded as a feasible technique for
energy consumption prediction and building
energy benchmarking provided that these cases
do not involve sequence and nonlinear data. The
major concern is DT results are primarily based
on expectations, and thus validity of many DT
models being questioned. GA excels in coping
with sophisticated data and can provide optimal
and multi-objective solutions, but GA suffers
from low computational efficiency and non-
unique deliveries. As far as data-driven approa-
ches for classification are concerned, K-means
clustering, self-organizing map and hierarchy
clustering were exemplified with focuses on
pattern recognition of load curves, energy map-
ping, benchmarking and retrofit at macro-scale.
The K-means clustering algorithm achieves
highly accurate data partition in many applica-
tions. A fundamental deficiency in this classifi-
cation approach is its framework lacks a priori to
specify the number of clusters and centroids yet
when the classifying features are unavailable.
Self-organizing map can effectively reduce the
dimensions of input data to a feature map, but its
accuracy relies on a careful parameter selection
and an appropriate design of its algorithmic
structure. As to hierarchical clustering, it is
usually implemented by a number of diverse
merging and terminating ways, which could lead
to multiple clustering results even subject to the
same similarity criterion. This greatly influences
its accuracy and effectiveness when performed
for many clustering problems.

Based on the above analysis, this review
points out several future directions for data-
driven approaches to better underpin building
energy analysis. They include (1) modifying the
frameworks of different data-driven approaches
in the context building performance features to
more accurately respond specific demands from
building energy calculation; (2) enriching appli-
cations of data-driven approaches to cover
building energy uses at different scales under a
wide spectrum of weather conditions; (3) ex-
tending data-driven approaches serving building
energy consumption investigation and in both the
short- and long-term; (4) integrating multiple
target indices in the data-driven framework to
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deliver a more balanced evaluation on building
energy performance. It is believed that data-
driven techniques with progress along these
routes will offer more efficient and reliable sup-
port for energy management and optimization in
future building industries.
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