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Preface

The integration of data-driven analytics can be a solution to the challenges of
energy transition, sustainable economic growth and mitigated climate change
in built environment and city context. Buildings, communities and cities can
be more vibrant, efficient and resilient if they are analysed and optimized as a
complex multi-physics system based on big data sets.

This book explores the interdisciplinary and transdisciplinary fields of
energy systems, occupant behaviour, thermal comfort, air quality and
economic/business modelling across levels of building, communities and
cities, through various data analytical approaches. It highlights the complex
interplay of heating/cooling, ventilation and power systems in different
processes, such as design, renovation and operation, for buildings, commu-
nities and cities. Methods from classical statistics, machine learning and
artificial intelligence (e.g. regression/correlation, reinforcement learning,
neural networks, genetic algorithm, clustering, agent-based modelling) are
applied into the analyses for different building/urban components and sys-
tems. Knowledge from this book will assist to accelerate sustainability of the
society, which would contribute to a prospective improvement through data
analysis in the liveability of both built and urban environment.

This book targets at a broad readership with specific experience and
knowledge in data analysis, energy system, built environment and urban
planning. As such, it will appeal to researchers, graduate students, data sci-
entists, engineers, consultants, urban scientists, investors and policymakers,
with interests in energy flexibility, building/city resilience and climate
neutrality.

Stockholm, Sweden Xingxing Zhang
December 2020
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1The Evolving of Data-Driven
Analytics for Buildings and Cities
Towards Sustainability

Xingxing Zhang

Abstract

Buildings, communities and cities are now
undergoing an accelerated transition in order
to achieve goals of sustainability, security and
resilience. Smart buildings and cities are
generating a great amount of data by a very
wide variety of sources. Data from these
sources can be used to understand occupancy
behaviour, evaluate energy performance,
improve RES market competitiveness,
enhance overall resources efficiency and so
on. The emergence of the internet of things,
improved data standards, big data analytical
technologies and visualisation techniques are
increasingly enabling the comprehensive
applications in building and cities, allowing
decision makers to understand and interrogate
complex data from a variety of sources. The
integration of data-driven analytics in building
and cities could be a solution to the achieve-
ment of Sustainable Development Goals
(SDGs). This chapter introduces background,
motivation and structure for the whole book.

1.1 Introduction

1.1.1 Background

The global contribution from buildings towards
energy use has steadily increased, reaching fig-
ures between 20 and 40% and about 1/3 of
greenhouse gas emission. For instance, in Swe-
den, buildings account for roughly 30% of the
total energy and for about 7% of its total emis-
sions of greenhouse gases. The Swedish gov-
ernment has set the target for enable energy use
in buildings to be reduced by 20% by 2020 and
50% by 2050 compared with 1995 (Swedish
Sustainable Building 2017). Progress in energy
and buildings represent the biggest challenge or
have insufficient steps so far. In addition, cities
are the largest and most complex systems, and
also the most resource-intensive and waste-
producing ones.

It is no doubt that buildings, communities and
cities are now undergoing an accelerated transi-
tion in order to achieve goals of sustainability,
security and resilience. The main drivers for
these transitions are the emergence of climate
change, pandemic as Covid-19, renewable-
energy-source solutions, building renovation
requirements, digitalization, automation, smart
mobility, circular economic models, carbon
emission reduction, and policy/regulation
change. These facts are significantly motivating
the increase of comfort/health needs, energy and
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recourse efficiency at both building and city
levels, as well as decarbonized economy for the
aid in transition to sustainable economic growth
and social welfare (International Energy Agency
2013; UNEP 2017). In September 2015, the
United Nations (UN) General Assembly adopted
the 2030 Agenda for Sustainable Development
that includes 17 Sustainable Development Goals
(SDGs) (The United Nations 2021), where
health, energy, buildings/cities and climates are
the main issues for us to endeavour. This book
thus focuses on different ways to proceed
towards several SDGs, such as Good Health and
Well-being, Affordable and Clean Energy, Sus-
tainable Cities and Communities, and Climate
Action. Figure 1.1 illustrates total SDGs and the
focused goals by this book.

In the framework of buildings: the goal of
‘Good Health and Well-being’ are influenced
greatly by occupanty behaviour and indoor
environmental quality (IEQ), such as thermal
comfort and air quality. Different occupancy
condition causes various issues in air stagnation
that may concentrate airborne viruses or dust
indoor, which will decrease the indoor air quality
and influence occupants’ health. There are usually
two ways to investigate IEQ and occupant's
health: (i) analysis of IEQ from indoor air pollu-
tant factors and indoor climate factors; and
(ii) analysis of the occupant's health for both
mental health and physical health (Kim et al.
2020). In the first approach, indoor air pollutant
factors and indoor climate factors are further
divided into different subcategories. Toxic
chemical, soil gases, CO2 concentration,

suspended particles and microbes are the primary
factors of indoor air pollution in our homes.
While humidity, ventilation, and temperature are
the main factors of indoor climate. In the second
theory, occupants’mental health can be evaluated
by psychological responses, such as verbal scale
of ‘comfort’ feeling, which usually include the
main indices of thermal comfort vote, thermal
satisfaction, thermal sensation vote and thermal
preference. Their physical health can be repre-
sented by the physiological responses (i.e., blood
pressure) to check if homeostasis is maintained
(Budd and Warhaft 1996). Both physiological
and psychological impacts on occupants by dif-
ferent IEQ index. Therefore, buildings play an
important role in supporting our health and well-
being, especially in response to global health
challenges, such as the COVID-19. During the
normal periods, individuals spend more than 85%
of their total time in indoor environments for
home stay and work. In the special period of
COVID-19 or similar crisis, this percentage is
even higher up to 100% for a fully lock-off sce-
nario. In addition, future climate change, partic-
ularly in temperature and humidity, will
exacerbate the uncertainty in IEQ and the related
impact on human’s health and well-being. It is
critical to investigate the impact and the effective
means to improve IEQ in response to this SDG.

During the progress of achieving ‘Affordable
and Clean Energy’ goal, the emergence of
renewable-energy-source (RES) envelope solu-
tions, building retrofit requirements and advanced
energy technologies are bringing challenges to the
existing paradigm of energy systems at both

Fig. 1.1 Connection of UN’s sustainable development goals
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building and city scales. This growth is predomi-
nantly due to the success and popularity of adap-
tive building envelope solutions, such as building
integrated photovoltaics (BIPV) or building inte-
grated photovoltaics/thermal, solar thermal
façade, heat pump components and their accom-
panying power storage or thermal storage systems
(Zhang et al. 2018). The emergence of these RES
envelope solutions not only indicates a shift in the
energy landscape towards more sustainable and
resilient practices, but also entails an evolution in
city energy planning, modelling techniques,
operation/control intelligence and management
schemes for matching of energy supply and
demand across various system scales. Buildings
are becoming prosumers, rather than purely stand-
alone energy consuming units of the grid. They
are increasingly turning into active elements of the
energy network by consuming, producing, storing
and supplying energy. Thus, they transform the
energymarket characterized by centralized, fossil-
fuel based national systems to a decentralized,
renewable, interconnected and viable system.

Above transitions then accelerate the
achievements in the goal of ‘Sustainable Cities
and Communities’. They lead to the development
of novel approaches that address buildings and
their energy systems at different scales: from
single buildings to cluster, district and city levels.
It is envisioned that sustainable energy strategy
should combine energy efficiency retrofit and
local RES supply, through the enhancement of
district energy systems and decentralized energy
supply. As a result, sustainable energy planning
could foster the economic effectiveness and the
operation feasibility to maximize the distributed
RES harvesting and match with the respective
energy demand and supply. It is essential to
determine which RES solutions are synergic, and
where the they should be implemented for
operation in order to fully utilize the potential of
distributed RES harvesting, storage, distribution,
load aggregation and demand side management.
The shift from the single building to the city is
crucial for the improvement of local energy
resource efficiency, through the interaction
between the buildings and the energy infras-
tructure domain.

Buildings nowadays are able to erect for more
than 100 years, and cities are even lasted for
centuries. But they are vulnerable to the climate
challenges, which can be observed from rise in
the average environmental temperature and
humidity levels to extreme and severe events
(such as strong wind, floods, sea level rise and
wildfires). When climate changes, the IEQ and
energy performance will be different. Although
many strategies are now implemented to mitigate
the tread of climate change, it is changing now
and will change in the future. Therefore, future
climate projections need to be considered when
studying building and cities by integrating cli-
mate change measures into design strategies,
modelling and planning, which then leads to the
contribution to ‘Climate Action’ goal.

1.1.2 Data-Driven Analytics
for Sustainability Goals

The ‘data’ represents discrete facts. Data can be
used to deliver information, analysed to produce
knowledge and applied to give guidance in built
and urban environment, such as planning energy
infrastructure (Designing Buildings Ltd. 2021).
When computational power and data storage
capabilities increase, and the cost of sensors
reduces, the amount of data has risen signifi-
cantly in recent decades.

Nowadays, smart buildings and smart cities
are generating a great amount of data by a very
wide variety of sources, such as design and
construction, post occupancy evaluation, utilities,
building services, operational/building manage-
ment systems, energy infrastructure and transport
systems (e.g. electrical vehicle), maintenance and
replacement systems etc. Data from these sources
can be used to understand occupancy behaviour,
evaluate energy performance, improve RES
market competitiveness, enhance overall resour-
ces efficiency and so on. The emergence of the
internet of things, improved data standards, big
data analytical technologies and visualisation
techniques are increasingly enabling the com-
prehensive applications in building and cities,
allowing decision makers to understand and
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interrogate complex data from a variety of
sources.

The integration of data-driven analytics in
building and cities could be a solution to the
achievement of SDGs. The concept of data-
driven analytics for buildings and cities refers to
the development of different analytical models to
simulate, predict and optimize the performance
of buildings and cities as a complex multi-
physics system based on big data sets. These
approaches usually integrate traditional physics
and engineering solutions with internet of things,
artificial intelligence, machine learning and
software analytical tools to discover the poten-
tials and unknowns from data point of view.
With the assistance by data-driven analytics, we
could tackle the challenges of energy transition,
sustainable economic growth and mitigated cli-
mate change in built environment and city con-
text. Buildings, communities and cities can be
more vibrant, efficient and resilient if they are
analysed and optimized as a complex multi-
physics system based on big data sets.

Data-driven analytics for buildings and cities
enables a revolutionary way to accelerate sus-
tainability goals of the society. For more and more
buildings and cities, sensors will be set up to
collect all kind of information towards digital
twins, such as occupancy (mobility), temperature,
moisture, energy consumption, renewable pro-
duction, CO2 concentration, costs, waste, carbon
footprint, etc. With such big data sets, various
data-analytical models can be developed and used
to assess energy demand/supply/storage, indoor
air quality, CO2 emissions, expenses for operating
& maintenance, building renovation/replacement
needs (including recycle of waste construction
material), carbon emissions and payback periods
of energy saving measures over lifetimes of
buildings and cities.

As a result, data-driven analytics are becom-
ing more and more important in achieving the
United Nations’ SDGs. They could highgly
enables the realization of high-value buildings
and districts/cities over life span, where people
live and work to facilitate social interactions,
foster communities, and could thus improve
individual outcomes, drive loyalty, build a brand,

and create healthier, happier, and more resilient
society. So buildings and districts/cities are able
to maximize the wellbeing of their inhabitants,
and achieve real sustainability.

1.2 Aim and Objectives

This book aims to explore the interdisciplinary
and transdisciplinary fields of energy systems,
occupant behaviour, thermal comfort, air quality,
and economic/business modelling across levels
of building, communities and cities, through
various data analytical approaches. It highlights
the complex interplay of heating/cooling, venti-
lation, and power systems in different processes,
such as design, renovation and operation, for
buildings, communities and cities.

The book has comprehensive objectives as
improving thermal comfort and air quality,
maximizing benefits of local renewable energy
system, developing new business models, opti-
mizing energy system at different scales, and
mitigating the impact of future climate change on
buildings and cities. All these objectives are
connected further with the focused SDGs as
explained in above section.

Methods from classical statistics, machine
learning and artificial intelligence (e.g. regression/
correlation, reinforcement learning, neural net-
works, genetic algorithm, clustering, agent-based
modelling) are applied into analyses for different
building/urban components and systems.

Knowledge from this book will assist to
accelerate sustainability of the society, which
would contribute to a prospective improvement
through data analysis in the liveability of both
built and urban environment.

1.3 Motivations and Novelties

Buildings and cities are complex, stochastic and
multi-disciplinary under diverse cultural and
geographical contexts. It is a common challenge
to precisely describe the performance of build-
ings and cities through traditional modelling
engines since it depends on a wide range of
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factors, i.e. weather condition, building envelope,
system components’ performance, operating
schedules, energy sharing, and economic figures
etc. It thus requires novel approaches to have in-
depth quantitative analysis by integrating
physical/engineering, statistical, machine learn-
ing, business models, to facilitate the transition in
design, construction, operation, and retrofit of
buildings and cities.

A few books have started to touch the related
topics, e.g., ‘Energy Simulation in Building
Design’ (Clarke 2001), ‘Building Performance
Simulation for Design and Operation’ (Henson
and Lambers 2011), ‘Building Performance
Analysis’ (Wilde 2018), ‘Data Mining and
Machine Learning in Building Energy Analysis’
(Magoules and Zhao 2016) and ‘Data-driven
Multivalence in the Built Environment’ (Biloria
2019). These books mostly highlight forward
modelling methods, design strategies or energy
performance of individual building, while very
few on data-driven methods for predicting
occupant schedules and behaviours, nor on
community and urban scales.

There are also other existing studies that
addresses the sustainability issues on data and
cities. For instance, ‘Data Cities’ (Jackson 2019)
explains how Satellite data are transforming
architecture and design. Similarly, ‘ArcGIS and
the Digital City’ (Huxhold et al. 2004) shows how
a city goes digital and use geographic information
systems (GIS) to store and access information.
‘Data and the City’ (Kitchin et al. 2018) considers
the social and political ramifications of data-
driven urbanism. ‘The Responsive City’ (Gold-
smith and Crawford 2014) provides a guide to
civic engagement and governance in the digital
age that will help leaders link important break-
throughs in technology and data analytics with
age-old lessons of small-group community input
to create more agile, competitive, and economi-
cally resilient cities. In the book of ‘Big Data
Science and Analytics for Smart Sustainable
Urbanism’ (Bibri 2019), the author gives the
systemic implications for smart sustainable
urbanism in light of big data science and analytics.
Moreover, ‘Smart and Sustainable Cities and
Buildings’ (Roggema and Roggema 2020)

collects a few conference papers and it is promi-
nently featured in the design and planning of
buildings and cities. In ‘Urban Energy Systems for
Low Carbon Cities’ (Eicker 2018), indicators to
evaluate urban energy performance are introduced
and the status quo of monitoring and efficiency
valuation schemes are discussed. The author
focuses on a bottom-up modelling approach used
for the simulation of energy consumption, energy
conversion systems and distribution networks
using engineering methods. It is obvious that these
books are mainly from the perspective of sociol-
ogy, policy building design, urban planning and
traditional engineering modelling, while few evi-
dence on data analytical approaches and their
applications in energy systems, occupant beha-
viour, thermal comfort, air quality, and
economic/business modelling across different
levels of building, communities and cities. Thus, it
is desired to have a book to further cover the
suitable methods and case studies in this area.

This book focuses on data-driven modelling
and analysing methods of both individual build-
ing and buildings in community and urban
scales. Due to the complex, dynamic and non-
linear characteristics of buildings, communities
and cities, data-driven methods (such as rein-
forcement learning, artificial neural networks,
support vector machines, genetic algorithm,
clustering, regressing etc.) can be applied into
analyses of energy use, thermal comfort, indoor
environment and grid interaction of buildings.

This book presents the up-to-date data-driven
modelling methods and their application in sus-
tainable buildings and cities, concerning not only
the energy performance but also the thermal
comfort and air quality of buildings. It will offset
the gap of interdisciplinary fields of building,
occupant behaviour, thermal comfort, air quality,
energy system etc., using various data analytical
methods.

1.4 Structure and Contents

Apart from the first chapter, this book consists of
three main parts. Part I covers the data analytics
(i.e. artificial neural networks, clustering,
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statistics) for energy systems in buildings, while
Part II highlights the application of data analysis
for thermal comfort and air quality in buildings
using regression, reinforcement learning, support
vector machines and clustering methods. Part III
discusses machine learning and artificial intelli-
gence (AI) methods (genetic algorithm, agent-
based modelling and digital mapping etc.) for
sensitivity analysis and energy performance in
community/urban/city scale.

In Part I, there are six chapters. Chapter 2 starts
with a comprehensive review about data-driven
approaches for prediction and classification of
building energy consumption. In Chap. 3, it pre-
sents a case study in prediction of occupancy
level and energy consumption in office building
using blind system identification and neural net-
works. The next chapter shows the cluster anal-
ysis for occupant-behaviour based electricity load
pat-terns in buildings. In Chap. 5, a data-driven
model predictive control for lighting system is
studied based on historical occupancy in an office
building. Chapter 6 considers the statistical
analysis in future climate for building energy
simulation. A solar photovoltaic/thermal (PV/T)
concentrator for building application is covered in
Chap. 7 using Monte Carlo method, in order to
address the potential of solar energy application
for buildings.

Another six chapters are considered in Part II.
Chapter 8 estimates the influencing factors for
occupants’ window-opening behaviour in an
office building through logistic regression and
Pearson correlation approaches. Reinforcement
learning method is reviewed in Chap. 9 and
applied for improving occupant comfort via win-
dow opening and closing in Chap. 10. An adap-
tation table is developed in Chap. 11 to enhance
the accuracy of the predicted mean vote model. In
addition, a prediction accuracy weighted voting
ensemble method is proposed in Chap. 12 for
thermal sensation evaluation. In Chap. 13, it car-
ries an analysis and interpretation of the particu-
late matter concentrations at the subway stations
by general linear model (GLM) and correlation
analysis.

Part III contains final eight chapters. Genetic
Algorithm is applied for transforming a

residential building cluster into electricity pro-
sumers in Chap. 14, which is also studied in
Chap. 15 for a coordinated control to improve
performance for a building cluster with energy
storage, electric vehicles, and energy sharing.
Chapter 16 displays how to use Genetic Algo-
rithm and Mont Carlo method for global sensi-
tivity analysis of key parameters identification of
net zero energy buildings towards power grid
interaction optimization. In Chap. 17, the agent-
based modelling is investigated in a peer-to-peer
(P2P) business model for individual PV pro-
sumers in a local electricity market. Chapters 18
and 19 tackle the building energy consumption at
district/city level based on auto-encoder algo-
rithm and digital mapping respectively. Chapter
20 gives an overview about digital twin approach
to accelerate sustainability in positive energy
districts. In Chap. 21, digital mapping is applied
again for the techno-economic analysis of a solar
photovoltaic/thermal collector over large geo-
graphical cities.

All the chapters are interlinked and well cat-
egorised to tackle the challenges in different
aspects within built environment, communities
and cities. The overall contents are derived from
the techno-economic point of view, which are
supplementary to the existing books regarding
the sustainable transition of buildings and cities.
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2Data-Driven Approaches
for Prediction and Classification
of Building Energy Consumption

Yixuan Wei, Xingxing Zhang,
and Yong Shi

Abstract

A recent surge of interest in the building
energy consumption has generated a tremen-
dous amount of energy data, which boosts the
data-driven algorithms for broad application
throughout industry. This chapter reviews the
prevailing data-driven approaches used in
building energy analysis under different arche-
types and granularities including those for
prediction (artificial neural networks, support
vector machines, statistical regression, deci-
sion tree and genetic algorithm) and those
for classification (K-mean clustering,
self-organizing map and hierarchy clustering).
To be specific, we introduce the fundamental
concepts and major technical features of each
approach, together summarizing its current
R&D status and practical applications while

pointing out existing challenges in their
development for prediction and classification
of building energy consumption. The review
results demonstrate that the data-driven
approaches, although they are constructed
based on less physical information, have well
addressed a large variety of building energy
related applications, such as load forecasting
and prediction, energy pattern profiling,
regional energy-consumption mapping,
benchmarking for building stocks, global
retrofit strategies and guideline making etc.
Significantly, this review refines a few key
tasks for modification of the data-driven
approaches in the contexts of application to
building energy analysis. The conclusions
drawn in this review could facilitate future
micro-scale changes of energy use for a
particular dwelling through appropriate retrofit
in building envelop and inclusion of renew-
able energy technologies. They also pave an
avenue to explore potential in macro-scale
energy-reduction with consideration of cus-
tomer demands. All these will be useful to
establish a better long-term strategy for urban
sustainability.
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2.1 Introduction

2.1.1 The Need for Energy
Consumption Analysis

The global contribution from buildings towards
energy consumption has steadily increased
reaching figures between 20 and 40% in devel-
oped countries and about 1/3 of greenhouse gas
emission. The case of China is particularly
striking-the country only takes two decades to
double its building energy consumption at an
average growing rate of 3.7% (Pérez-Lombard
et al. 2008; UNEP 2013). These facts demon-
strate that to facilitate energy efficiency of
building is a cost-effective resource for reducing
energy consumption and carbon emission from
building (Mathew et al. 2015). Also, large
potential saving in economy has been anticipated
by a large variety of previous studies. For
instance, Nikolaidis et al. have shown that among
various energy saving measures for common
building types, isolation of roof constitutes the
most superiority nearly €5000 economic benefit
during 30 years (Nikolaidis et al. 2009). As the
central approaches transmitting to energy effi-
ciency, prediction and classification of energy
consumption in building are significantly neces-
sary with the aim to improve building perfor-
mance, reduce environmental impact, and
estimate economical potential for further energy
conservation and renewable energy program
(Zhao and Magoulès 2012).

Energy consumption in building has been
heavily analyzed by substantial studies during
the entire building lifecycle, with different focu-
ses on identifying the sub-component energy use
at the building level (Kang and Jin 2014; Bojić
and Lukić 2000) or measuring energy perfor-
mance in a nationwide analysis (Farahbakhsh
et al. 1998; Huang 2000; Shimoda et al. 2004).
This comprehensive set of analyses on different
levels could help us not only optimize the energy
use of a particular dwelling through appropriate
retrofit in building envelop or inclusion of state-
of-the-art renewable energy technologies (at the
microscale), but also explore possible energy

reduction opportunities and establish better
urban-sustainability strategies (at the
macroscale).

2.1.2 Advantage and Motivation

However, it is recognized that realization of a
precise energy consumption analysis is a for-
midable task at the current stage. As an alterna-
tive, great efforts have been paid to developing
models to predict and classify approximately
energy consumption. Generally, these models
possess some prominent functions. They includes
(1) taking measures for energy conservation
based on accurate prediction, (2) implementing
demand-side management (DSM) after profiling
electricity consumption, (3) outlining/mapping
energy on the urban level, (4) establishing
benchmark database of multi-scale building
communities, and (5) integrating the processes of
design, operation, retrofit of contemporary
building (Perino et al. 2015; Hong et al. 2014).
The results simulated by these models can not
only offer essential information about energy
footprint in regional building stocks, but also
facilitate estimations of financial return on
investment. It is thus not surprising energy sim-
ulation has become a favourable tool for stake-
holders throughout building industry including
policymakers, building owners, investors, oper-
ators and engineers (Mathew et al. 2015).

2.1.3 Usage of Building Energy
and Performance Data

Management and optimization of building
energy consumption call for a full understanding
of building performance, which should first
identify energy resources and major end-uses of
a building. Energy resources in a building usu-
ally refer to electricity, natural gas and district
heating supply. The corresponding major end-
uses include heating, ventilation and air-
conditioning (HVAC) system, domestic hot
water, lighting, plug-loads, elevators, kitchen
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equipment, ancillary equipment and appliances.
Figure 2.1 illustrates a representative classifica-
tion of building energy use adopted in ISO
Standard 12655:2013 (ISO 2013). Note that on
top of the above building energy resources and
major end-uses, HVAC operation schedule and
indoor/outdoor conditions are also two important
contributing factors to be considered in a build-
ing performance analysis.

Generally, reliability of a building perfor-
mance analysis relies heavily on the datasets in
use, which should contain sufficient energy con-
sumption information of the buildings under
investigation. Utility bills for electricity and nat-
ural gas from power supply companies are the
common type of databases of building energy
consumption. Facility managers or research
institutes also collect information via survey and
questionnaire for large-scale buildings, such as

the residential sector (Residential Energy Con-
sumption Survey (RECS), EIA 2009) and com-
mercial buildings (Commercial Building Energy
Consumption Survey (CBECS), EIA 2012)
(Hong et al. 2014). In addition, in today’s build-
ing performance analyses, virtual building data-
base (VBD) developed from simulation software
(e.g. TRNSYS and EnergyPlus) and energy dis-
closure laws (Mathew et al. 2015; Nikolaou et al.
2012) (e.g., US Energy Information Administra-
tion database) are the other two possible data
resources. It is particularly worth mentioning that
the empirical datasets taking advantage of smart
meters and building energy system have emerged
in recent years. These databases substantially
improved accuracy and reliability of the related
analyses (Mathew et al. 2015) despite their
expensive costs and technical complexity
involved for many practical commercial-uses.

Fig. 2.1 The usage of energy in buildings (ISO 2013)
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2.1.4 Proposed Methodologies
for Building Energy
Consumption

It is a challenging task to precisely describe
energy consumption in a building as such an
energy performance depends on a wide range of
factors, such as weather condition, thermal prop-
erties of building envelope, occupancy behaviour,
sub-level components’ (lighting, HVAC and plug
equipment) performance and schedules (Zhao and
Magoulès 2012). A large number of efforts have
been paid in the literature to ascertain the com-
plexity pertinent to building energy consumption
and strive to a precise depiction of building energy
performance. Currently, these approaches used
for building energy simulation are categorized
roughly as: (1) white-box based approaches,
(2) grey-box based approaches and (3) black-box
based approaches, whose main features are sum-
marized in Table 2.1.

White-box based approaches are physical-
based approaches, which require detailed infor-
mation of complex building phenomena. This
basic characteristic determines their simulations
will be rather computationally expensive.
Recently, a series of attempts have made to
simplify the white-box based approaches. How-
ever, these simplifications are error-prone and
usually overestimate energy-saving of buildings

(Al-Homoud 2001; Barnaby and Spitler 2005).
Grey-box based approaches are a modification of
these white-box based approaches through use of
statistical methods combining the simplified
physical information with historical data to sim-
ulate building energy. One primary issue in
current grey-box version is computational inef-
ficiency as the approaches involve uncertain
inputs and complex interactions among elements
and stochastic occupant behaviours (Paudel et al.
2015; Li et al. 2014). To circumvent the above
shortfalls of white- and grey box based approa-
ches, black-box based approaches are developed
which are able to conduct a building energy
consumption analysis only based on historical
data without the detailed knowledge of on-site
physical information. This essential change
enable black-box based approaches fast calcula-
tions in high accuracy in comparison to their
white- and grey-box counterparts (Zhao and
Magoulès 2012). In many practical scenarios, the
black-box based approaches are also called as
data-driven approaches due to the statistical
algorithm structures and a large amount of data
in use. We will follow this convention and use
the data-driven approaches throughout the fol-
lowing discussion in this review.

The remainder in this review is organized as
follows: we will introduce various mainstream
data-driven approaches and summarize their

Table 2.1 Comparison among white-box, grey-box and black-box approaches for building energy consumption

Approaches building
simulation

Inputs needed Typical software methods Easy
to
use

Running
speed

Accuracy

White-
box
based

Elaborated
simulation

Detailed
physical
information

DOE-2, EnergyPlus, TRYSYS,
ESP-r

No Low High

Simplified
simulation

Degree day method,
temperature frequency method,
residential load factor method

Yes High Fairly
high

Data-
driven
models

Grey-box
based

Physical
information
and historical
data

RC network No Low Fairly
high

Black-box
based

Historical data ANNs, SVMs, statistical
regression, GA, cluster
algorithms

No High
except
SVM

High
except
regression
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applications in prediction and classification of
building energy consumption in Sects. 11.2.2
and 11.2.3, respectively. In Sect. 11.2.4, a few
promising future directions in data-driven
approaches with applications to building energy
will be proposed. Finally, we draw our salient
conclusions in Sect. 11.2.5.

2.1.5 Data-Driven Approaches

Data-driven models are constructed based on a
group of datasets consisting of historical data
records. These historical data will be used as
benchmarks to justify the model’s performance
and guide its algorithm design. To be specific, all
the parameters in a data-driven model will be
carefully selected and modified through system-
atical comparisons between the model outputs
and the historical data. This is the so-called
learning process and only when the output errors
fall within the required threshold, the corre-
sponding data-driven models are deemed to be
qualified for practical applications with fresh
input data. Currently, the data-driven models is
very prevailing in medical diagnosis (Kuo et al.
2001), political campaigns (Sides 2014) and
commerce (Alhamazani et al. 2015) because of
their low costs with no need of expensive
equipment and audit activity. As to the building
energy consumption studies, data-driven models
are widely applied to either estimate the building
energy demands (i.e., data-driven prediction
models) or profile the energy consumption pat-
terns (i.e., data-driven classification models),
which are grouped in Fig. 2.2.

2.1.6 Data-Driven Prediction Models

Among the most popular data-driven prediction
models are artificial neural networks (ANNs),
support vector machine (SVM), statistical
regression, decision tree (DT) and genetic algo-
rithm (GA). This subsection will introduce each
of these models.

2.1.6.1 Artificial Neural Networks
ANNs are designed mimicking the basic archi-
tecture of human brain, whose basic element is
called as processing unit modelling a biological
neuron. The network consists of a large number
of these process units arrayed in layers, and
process units in different layers are connected
with one another via connections, shown in
Fig. 2.3.

Each process unit, say l, will deal with signals,
xil i ¼ 1; 2; . . .;mð Þ, from units connected with it
in the other layers. These signals are input
through the incoming connections with a weight
wil i ¼ 1; 2; . . .;mð Þ. The process unit then takes
two basic operations on the input signals: sum-
mation and activation, and delivers an output yl
(Magoules and Zhao 2016).

yl ¼ f
Xm
i¼1

wilxi þ bl

 !
ð2:1Þ

where bl is a bias set specifically for each
process unit and f is the activation function,
commonly defined as the sigmoid function
(Magoules and Zhao 2016).

f xð Þ ¼ 1
1þ e�x

ð2:2Þ

The output yl will be used as an input signal
for the process units in the next layer connecting
to the process unit l.

As we discussed, all the process units in
ANNs are arranged in a layer-structure and pro-
cess units in different layers are interconnected
based on a designed architecture. Figure 2.3b
shows a simple example: feed-forward ANNs
where process units are arrayed in the input,
hidden and output layers and the information
flows in one direction throughout these layers. In
today’s ANNs studies, ANNs models also take
other architectures to more effectively approxi-
mate human brain activities. Two representative
are back-propagation neutral network (BPNN)
and recurrent neutral network (RNN), see
Fig. 2.4. The former computes the error of output
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every time, and then propagates this information
as a negative feedback to tune the incoming
connection weight and bias. This manipulation
offers flexibility to modify the output error to a
minimum, and thus improving accuracy of ANN
calculation. As to RNN, it involves the backward
connections feeding back the outputs themselves
as the inputs to the process units in the former-
layer or even the current unit to capture tempore

behaviours. Such a recurrent design makes RNN
deal with time series datasets without random
data, which leads it to being particularly wel-
come for sequence events (Kalogirou and Bojic
2000).

No matter what kind of network architecture
is in use, an ANNs model must experience a
training (learning) process to specify all needed
connection weights and biases before real

Fig. 2.2 Different data-driven models for building energy consumption

(a) (b)

Fig. 2.3 Schematic of ANN. a A single process unit; b Artificial neural networks
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applications. This training process will take
advantage of available historical data records,
which will used as benchmarks to cultivate the
proper response of the ANNs model for given
inputs. Therefore, ANNs are capable of learning
the relationship among input signals, and cap-
turing key information through a training process
based on historical data records. On top of that, it
also possesses a number of other advantages,
such as fault tolerance, robustness and noise
immunity. Thanks to these favourable features,
ANNs have achieved great success in solving
non-linear problems so far. On the other hand,
meanwhile, it should be also pointed out that the
architecture choice and learning-rate optimiza-
tion in the current ANNs are still developed on
an ad hoc base. This implies ANNs applications
are usually case-dependent nonetheless. They
have to be designed and validated for every and
each time for different applications (Kalogirou
2001).

2.1.6.2 Support Vector Machine
Supported vector machine (SVM) is another
popular artificial intelligent method (Vapnik
et al. 1996), which deals with n data records, i.e.,
xi; Yið Þf gni¼1, with the input xi 2 RN and the

target Yi 2 R. (Note that Yi could also be in
binary for some applications (Zhao and
Magoulès 2010)). Nowadays, this method has
been widely applied to solve regression problems
to estimate an underlying relationship between
the nonlinear inputs to the continuous real-valued
target. The SVM used for regression is called as
support vector regression (SVR), which has

become a particularly important data-driven
approach for predicting building energy
consumption.

The core task in SVR is to construct a deci-
sion function, FðxiÞ, by use of a training process
based on historical data. It is required that for a
given input xi, the result estimated by this func-
tion should not deviate from the actual target Yi

larger than the predefined threshold. In SVR,
such a function is usually assumed in the form of

FðxiÞ ¼ w;uðxiÞh iþ b ð2:3Þ

where the bias b 2 R. �; �h i and w represent
the dot product and weight defined in RN. uðxiÞ
is a non-linear mapping of the input space to a
high-dimensional feature space (Dong et al.
2005). w and b are two unknown in Eq. (2.3),
and need to be estimated through minimizing the
regularized risk function (Dong et al. 2005).
In SVM theory, the latter is easily solved in its
dual formulation by an introduction of a Lagra-
nian L (Magoules and Zhao 2016),

L :¼ 1
2

w2
�� ��þ c

Xn
i¼1

ni þ n�i
� ��Xn

i¼1

gini þg�
i n

�
i

� �

�
Xn
i¼1

ai eþ ni � yi � w;uðxiÞh i � bð Þ

�
Xn
i¼1

a�i eþ n�i � yi � w;uðxiÞh i � b
� �

ð2:4Þ

where ai; a�i ;gi;g
�
i � 0

� �
are the Lagrange

multiplier. wk k is the Euclidean norm.

(a) (b)

Fig. 2.4 Schematic of a two-
layer BPNN and b two-layer
RNN. White cycles: process
units in different layers. Solid
arrows: connections; dashed
arrows: feedbacks

2 Data-Driven Approaches for Prediction and Classification … 17



ni; n
�
i � 0

� �
are two slack variables to copy with

some infeasible optimization constraints. The
constant c[ 0 is defined to determine the trade-
off between the training error (over-fitting) and
model flatness (under-fitting). It should be noted
that the Lagrange multipliers are all independent.
They are gi ¼ c� ai and g�

i ¼ c� a�i , and
ai; a�i
� �

can be determined by the corresponding
dual optimization (Dong et al. 2005),

MaximizeW ai; a
�
i

� � ¼ � 1
2

Xn
i¼1

Xn
j¼1

ai � a�i
� �

aj � a�j
� �

uðxiÞ � uðxjÞ
� �

þ
Xn
j¼1

ai � a�i
� �

yi � e
Xn
j¼1

ai þ a�i
� �

subject to

Pn
j¼1

ai � a�i
� � ¼ 0

ai; a�i 2 0; c½ �

8><
>:

ð2:5Þ

With the computed ai; a�i , the weight w can be
written a function of ai; a�i ; xi

� �n
i¼1. This gives

rise to the decision function in SVR

F xð Þ ¼
X
xi2SV

ai � a�i
� �

K x; xið Þþ b ð2:6Þ

where K x; xið Þ ¼ u xð Þ � uðxiÞ. In SVR, this is
called as the kernel function, having different
formulas for various applications in the literature,
e.g., K x; xið Þ ¼ exp �c x� x2i

�� ��� �
. It should be

pointed out the sum in Eq. (2.6) does not cover
all inputs. Instead, only those (i.e., support vec-
tors xi 2 SV) corresponding to ai � a�i

� � 6¼ 0 are
included. Moreover, the bias b in Eq. (2.6) is also
computed by these support vectors

b ¼ 1
N1

X
ai2 0;Cð Þ

Yi �
X
xj2SV

aj � a�j
� �

E xi; xj
� �� e

2
4

3
5

8<
:

þ
X

a�j 2 0;Cð Þ
Yi �

X
xj2SV

aj � a�j
� �

K xi; xj
� �þ e

2
4

3
5
9=
;

ð2:7Þ

Here, N1 is the number of support vectors with
either ai 2 0; cð Þ; a�i ¼ 0

� �
or ai ¼ 0; a�i 2

�
0; cð Þg. Once the decision function, i.e.,

Eq. (2.6), is fully specified by the training data-
set, the SVR model can be used as a predicting
tool for a new input x.

It is worth emphasizing that the superiority of
SVR, or more generally SVM, to other models
are that its framework is easily generalized for
different problems and it can obtain globally
optimal solutions. Its capability of dealing with
nonlinear relations by transferring them into
high-dimensional linear problem is also impres-
sive for practical applications. Nonetheless, the
method is rather time-consuming for large-scale
problems (Zhao and Magoulès 2010; Li et al.
2009a). Recently, immerse efforts has been paid
to developing possible ways to optimize its
computational efficiency.

2.1.6.3 Statistical Regression
Prediction of building energy-consumption relies
on a regression analysis to devise a relationship
linking an output (i.e. response, Yi, i ¼ 1; 2. . .n)
to the contributing inputs (i.e., predictors, xi;j,
i ¼ 1; 2. . .n; j ¼ 1; 2. . .m). In the previous sec-
tion, we have discussed a regression process
based on the SVM theory-SVR. On top of that,
there still exist other regression models, e.g.,
statistical regression, used for predicting building
energy consumption. Statistical regression
investigates the relationship among different
variables in a probabilistic framework, which
formulate the output as

Multiple : Yi ¼ ai þ b1xi;1 þ b2xi;2 þ . . .þ bmxi;m þ ei ð2:8Þ

or

Polynomial : Yi ¼ ~ai þ ~b1xi;1 þ ~b2x
2
i;2 þ . . .þ ~bmx

m
i;m þ ei ð2:9Þ

where ei represents a random error assumed to

be normally distributed, and ai, ~ai, bj and ~bj
j ¼ 1; . . .. . .mð Þ are the parameters to be esti-
mated. Note that both Eqs. (2.6) and (2.7) are
linear with respect to these parameters whilst
they are not necessarily linear with respect to the
contributing predictors, as seen as Eq. (2.7). Like
other data-driven approach for prediction, the
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statistical regression equations make use of the
finite number of historical data to estimate the
involved parameters. For demonstration, we
choose the multiple linear regression Eq. (2.6) as
an example, in which the estimates of all
parameters will derived using the least squares
(LS). To be specific, the sum of squared errors
(SSE) is first defined

SSE ¼
Xn
i¼1

yi � Ai � B1xi;1 � B2xi;2 � . . .� Bmxi;m
� �2

i

ð2:10Þ

In Eq. (2.8) Ai and Bj j ¼ 1; . . .. . .mð Þ are the
corresponding LS estimates of ai,
bj j ¼ 1; . . .. . .mð Þ in Eq. (2.6). SSE is then mini-
mizedwhich gives rise tomþ 1 equations. Each of
these equations includes one of partial derivatives
of SSE with respect to Ai and Bj j ¼ 1; . . .. . .mð Þ,
to be set zero, respectively. It is these equations
that are used to solve Ai and Bj j ¼ 1; . . .. . .mð Þ
directly subject to the given historical dataset
xi;j;Yi; i ¼ 1; 2. . .n; j ¼ 1; 2. . .m

� �
. Finally,

the prediction equation with the estimated
parameters in multiple linear regression is speci-
fied as

yi ¼ Ai þB1xi;1 þB2xi;2 þ � � � þBmxi;m

ð2:11Þ

In statistical regression, there is another vari-
able introduced to quantify the goodness of fit of
the regression line by Eq. (2.9), that is the
coefficient of determination R2,

R2 ¼ 1� SSE
SStot

ð2:12Þ

where SStot ¼
Pn
i¼1

Yi � Y
� �2

, with the mean value

Y ¼Pn
i¼1

Yi. Generally, a regress equation with a

larger R2 indicates it can better fit the original
data.

Based on the above discussion, it is seen that
statistical regression is an easy-to-use approach

for predicting building energy consumption. In
particular, it was popular to predict average
consumption over a long period in the early
studies. However, the regress models require a
large number of historical data for training, and
the resulting accuracy of a short-term prediction
is yet poorer than that of other data-driven
approaches, such as ANN or SVM. It is also
challenging for statistical regression to select a
set of plausible predictors and an appropriate
time scale to well fit energy consumption for
buildings under a wide range of environment and
weather conditions. Worse, the selected predic-
tors in some cases may not be literally indepen-
dent. The unforeseen correlations among them
would result in uncertain inaccuracy in the
regression outputs (Swan and Ugursal 2009).

2.1.6.4 Decision Tree
Decision tree (DT) is a technique to partition data
into groups using a tree-like flowchart. In this
sense, a DT model manifest itself as a graph con-
sisting of a root node and a couple of branch nodes.
ADT starts from the root nodewhere the input data
are split into different groups based on some pre-
dictor variables predefined as splitting criteria.
These split data are then disseminated to sub-
nodes as branches emanating from the root node.
The data on sub-nodes will undergo either further
or no splits. The former are the internal nodes
where the subsequent data split is conducted to
form new subgroups as son-branches emanated
graphically at the next level. Whereas the latter are
leaf nodes which treat the corresponding data
group at the current level as their final outputs.
Figure 2.5 illustrates a DT representation used for
medium annual source energy consumption per
unit floor (kWh/m2/yr) of a commercial building.
In this case, the gross floor area and building use
ratio are chosen as predictor variables in the root
node and internal node, respectively, and amixture
of data about energy consumption has been puri-
fied into a hierarchy of groups.

Significantly, in a DT analysis the information
entropy is an important concept used to quantify
data group homogeneity. It is defined by
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E ¼
Xn
i¼1

�Pilog2Pi ð2:13Þ

where E is the information entropy. n and Pi are
the number of different target values and the
probability of a dataset taking the ith target value,
respectively. This entropy is used to calculate the
information grain or gain ratio, based on which a
DT structure linking the top root node to each
branch node is specified. Readers can refer to
Quinlan (1986) for detailed splitting procedure
using the gain ratio or information gain.

In comparison to other data-driven approa-
ches, DT’s tree-like structure is easy to under-
stand and its implementation does not involve
complex computation knowledge. However, its
deficiency is also evident—the targets used in a
DT are primarily based on expectations. This
usually leads to significant deviations of its pre-
dictions from the real results. The DT

architecture is also a restriction so as the method
is unable to deal well with time-series and non-
linear data.

2.1.6.5 Genetic Algorithms
Genetic algorithms (GAs) are stochastic opti-
mization inspired by natural evolution based on
the idea of “survival of the fittest” (Goldberg
1986). Many GAs in building energy prediction
formulate three kinds of algebraic equations to
compute the output (as solution) according to the
given inputs:

Linear : y ¼ w1x1 þ � � � þwmxm; ð2:14Þ
Quadratic : y ¼ w 1ð Þ

1 x1 þ � � � þw 1ð Þ
m xm þw1;2x1x2

þ � � � þw1;mx1xm þw2;3x2x3þ � � �
þwm�1;mxm�1xm þw 2ð Þ

1 x21þ � � � þw 2ð Þ
m x2m;

ð2:15Þ

Fig. 2.5 Decision tree illustration of a medium annual source energy consumption per unit floor of a commercial
building
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Exponential : y ¼ w0 þw1x
ew1
1

þw2x
ew2
2 þ . . .þwmx

ewm
m ;

ð2:16Þ

where x1; x2; . . .; xmð Þ are m independent inputs

contributing to the output, y, and wi, w
1;2ð Þ
i and

~wi are the real-valued weights. In GAs, different
sets of weights compose a search space where a
point represents a feasible solution to the prob-
lem under investigation. The core task of a GA is
to model an evolution process to identify the best
among all feasible solutions in this space. In
implementation, a GA first randomly chooses n
sets of weights and encode each weight as a l bit

binary string, e.g. wi ¼ 100. . .01
zfflfflfflfflffl}|fflfflfflfflffl{1

. In so doing, a
set of weights is then represented as a chromo-

some Xj ¼ 100. . .01
zfflfflfflfflffl}|fflfflfflfflffl{w1

000. . .11
zfflfflfflfflffl}|fflfflfflfflffl{w2

::: 100. . .10
zfflfflfflfflffl}|fflfflfflfflffl{wm

, and
the n chromosomes form an initial population r.
Importantly, every chromosome Xj in the popu-
lation r is mapped to a fitness h Xj

� �
(a real value)

and assigned a probability Pj. In most cases,
these two variables are defined by

h Xj
� � ¼ y x1; x2; . . .; xmjXj

� �
� Y

� �
ð2:17Þ

and

Pj ¼
h Xj
� �

P
r h Xkð Þ ð2:18Þ

where Y is the targeted output from historical
datasets and the Greek letter “R” denotes a sum
of the fitness of all chromosomes in the popula-
tion r. Next, pairs of chromosomes are selected
as parents to reproduce the offspring (still chro-
mosomes). Generally, the better fitness the
chromosomes have, the more possible they are
selected. The chosen parents then proceed
crossover and mutation. One simple crossover
operation is to randomly choose a crossover
point and exchange the alleles up to this point of
the two parent chromosomes. As to mutation, a
few of bits in the chromosome after crossover,

again chosen randomly, are switched between 0
and 1 (e.g. 10001 ! 10011). Selection, cross-
over and mutation will be repeated to generate
sufficient new offspring to form a new popula-
tion, r0, at the next level. It should be pointed out
that the fitness of all offspring chromosomes in
this new generated population will be computed
and compared with the user’s requirements.
Generally, a GA will continue further runs of the
above evolution process unless a chromosome
(i.e., a set of weights) with satisfactory fitness is
reproduced.

The aforementioned introduction of GAs
indicates this method is a powerful optimization
tool in dealing with complex multi-modal prob-
lems (Beyer 2000). The algorithms can obtain
suitable solutions based on either the objective
functions or subjective judgements when large
and sophisticated input data are given. Mean-
while, two major deficiencies in the current GAs
are also noted—non-unique results and large
computation time. In the literature, attempts to
combine a GA with other data-driven approaches
(e.g. ANN) have been made to mitigate the
negative impacts arisen from the deficiencies.

2.1.7 Data-Driven Classification
Approaches

Besides great success in predicting building
energy consumption, data-driven approaches
have been extensively used to attack building
energy classification over the last several dec-
ades, among which K-means algorithm, self-
organizing map (SOM), hierarchical clustering
and regression are the most popular choices.

2.1.7.1 K-Means Cluster
The K-means clustering algorithm is a classifi-
cation approach quite popular in building load
analysis. Technically, this algorithm partitions a
set of data into a number of non-hierarchical
groups of similar data points, i.e., clusters. The
similarity among data points is quantified by the
Euclidean distance, based on which a K-mean
clustering procedure includes the following
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steps. A data set xi; i ¼ 1; 2. . .nð Þ is first input
with the cluster centers lj; j ¼ 1; 2. . .K

� �
being

specified randomly. The Euclidean distances
between each data point and each cluster center
are then computed. A datum xi is set to belong to
a cluster Cj if its distance to the cluster center lj
is shorter than those to any other center. As a
consequence, this classification forms K clusters
in the input dataset, and the center of each cluster
is re-calculated as a mean based on new data
grouping. The K mean clustering algorithm will
repeat the above distance computation, data
classification and center relocation till all the K
cluster centers do not move their locations with
further iterations (Magoules and Zhao 2016). In
many cases, a squared error function J is intro-
duced to characterize this convergence,

J ¼
XK
j¼1

X
x jð Þ
i 2Cj

x jð Þ
i � lj

� �2
ð2:19Þ

where x jð Þ
i represents a data point belonging to

the cluster Cj (Panapakidis et al. 2014). In the K
mean clustering algorithm, a priori specifications
of the cluster number K and initial positions of
the cluster centers are required. This results in the
algorithm has to be conducted several times in
practice with these parameters with different
values. Only the best results after comparison
will be deemed as the algorithm’s ultimate
outcomes.

It is worth mentioning to improve its feasi-
bility, the K-means clustering algorithm has been
modified using the fuzzy methods. The modified
version, in contrast to the aforementioned dis-
cussion, allows soft clustering, i.e., every data
point can potentially belong to multiple clusters
and a degree of membership is defined to char-
acterize such relationships (Dunn 1973). Niko-
laou et al. (2012) discusses one widely-used
fuzzing cluster approach in building energy
projects, i.e., fuzzy C-means (FCM) cluster.
Interested readers can refer to it for more details.

2.1.7.2 Self-organizing Map
Self-organizing map (SOM) is developed from
ANNs which transfers an incoming signal pattern
in arbitrary dimensions into a one- or two- ormulti-
dimensional topographicmap (Magoules andZhao
2016). The method is trained by an unsupervised
learning process and capable of classifying new
inputs into clusters with different features in a
neurobiological-like manner. Figure 2.6 illustrates
a frequently-used network architecture of SOM
consisting of a one-dimensional input layer and a
two-dimensional computational layer. In this
computational layer, a number of process units,
i.e., neurons j ¼ 1; 2. . .mð Þ, are arranged in rows
and columns, each of which connects all input
signals xi; i ¼ 1; 2. . .nð Þwith connectionweights
wij. The output of the neuron j is sometimes given

by yj ¼
Pn
i¼1

wijxi.

In SOM, a squared Euclidean distance
between all the input signals and connection
weights pertinent to every neuron is computed

dj ¼
Xn
i¼1

xi � wij
� �2

j ¼ 1; 2. . .mð Þ ð2:20Þ

This distance is termed as the discriminant
function, and the neuron with the smallest dis-
criminant function is designated as the winner for
a given set of input signals. Typically, a SOM
iteration starts from initializing all correction
weights with small random numbers and choos-
ing a set of input signals from historical database
at random to form the input layer. Computation
of the discriminant function for each neuron in
the computational layer is then performed. Only
the neuron with the smallest discriminant func-
tion is identified as the winner at this iterative
level. Immediate to this, a topological neighbor-
hood centered at the selected winner is defined,
in which the connection weights linking every
neuron to the input signals are adjusted subject to

wij nþ 1ð Þ ¼ wij nð Þþ gj xi � wij nð Þ
 � ð2:21Þ
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where n represents the current iterative level,
gj is the learning rate depending on n and the
distance between the winner and the neighboring
neuron j. The next iteration at nþ 1 will be
conducted with these adjusted correction weights
and the new randomly-chosen input signals. Note
that while the SOM iteration proceeds, both the
learning rate and the size of the winner’s
neighborhood will decrease. The whole iteration
will terminate once a threshold is met, e.g.,
gj � gj;min or only the winner itself or none being
included in the neighborhood. After training, a
particular neuron (i.e., winner) in SOM will be
activated the most for a particular type of input
signals. This correspondence ensures SOM to be
effective means used for clustering new input
signals.

In sum, SOM can effectively reduce the
dimensions of a high-dimensional signal pattern
to a feature map in which the similarities and
differences among input objects are easily dis-
cerned. Moreover, its outputs can be directly
followed by further classification using other
clustering algorithms. This will lead to more
mutually exclusive and well-separated groups.
On the other hand, it is also noted that SOM
clustering suffers from oscillation if a rambling
dataset without any pretreatments is used as the
input. Importantly, its computational cost will
dramatically increase with the increasing
dimension of the data. Therefore, a good SOM
should be equipped with a well-designed tuning
process and a clear parametric analysis on the
impacts of different parameters. These

parameters usually include the learning rate,
neighborhood function, number of process units,
and et al.

2.1.7.3 Hierarchical Clustering
Hierarchical clustering in building energy con-
sumption commonly uses the bottom-up fashion
to organize data points into a tree-like hierarchy
of clusters (Nikolaou et al. 2012). Such cluster-
ing is known as the agglomerative algorithm
starting with n data points. xi; i ¼ 1; 2; . . .. . .nð Þ,
each of which is treated as a singleton cluster. To
characterize the inter-cluster similarity, the dis-
tances among different clusters are computed,
and form a n� n matrix

H ¼
0 � � � D Cn;C1ð Þ
..
. . .

. ..
.

D C1;Cnð Þ � � � 0

2
64

3
75 ð2:22Þ

In the above matrix, the distance between two
clusters D Ci;Cj

� �
is defined by

D Ci;Cj
� � ¼ min d xi; xj

� �
, with xi 2 Ci and xj

2 Cj;

where d xi; xj
� �

is the distance (i.e., Euclidean
distance) between two data points in these two
cluster and D Ci;Cj

� � ¼ 0 when i ¼ j (Nikolaou
et al. 2012). In the literature, there are the other
ways to define the distance between two clusters.
Interested readers can refer to Vesanto and
Alhoniemi (2000) for more details. After com-
puting the inter-cluster distances, the next step is

Fig. 2.6 Schematic of SOM.
White cycles: process units;
Solid lines: connections
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to merge two closest clusters having the minimal
D Ci;Cj
� �

, and then update the corresponding
distance matrix. This merging manipulation will
proceed iteratively till all data points have been
included in a single cluster.

In hierarchical clustering, merging can be
conducted in different ways and terminated at
different levels provided the similarity criterion
requires. Figure 2.7 illustrates an example where
two distinct sets of three clusters are obtained in
different merging routes based on different
merging criteria. In building energy studies,
hierarchical clustering has been proven that it can
reveal the data internal structure and generate
useful knowledge about energy consumption in a
building (Magoules and Zhao 2016).

2.2 Practical Application of Data-
Driven Approaches

2.2.1 R & D Works and Practical
Applications

All the aforementioned data-driven approaches
are widely applied to a large variety of prediction
or classification applications of load prediction,
energy pattern profile of specific use-cases,
regional energy consumption mapping, energy
benchmark for building stock, retrofit strategies

and guideline making, see a summary in
Table 2.2. This broad range of applications covers
micro-scale and macro-scale studies that provide
useful information and instructive suggestions for
different stakeholders, including government,
investors, engineers and occupants throughout the
building life cycle from the early planning/design
stage to later operation/retrofit stage.

2.2.1.1 Prediction
Originally, many data-driven approaches were
established to predict the energy consumption of
building, in particular electricity usage. It is well
recognized that estimations of energy usage in
the long-, medium- and short-term (i.e., annual,
monthly and daily) are of importance for energy
market planning and investments. Especially, a
very short-term (hours or minutes ahead) esti-
mation of electricity usage can exert a vital
influence on the final dispatch for national elec-
tricity market (Setiawan et al. 2009). Therefore, a
precise prediction in these scenarios would lead
to more efficient energy management and direct
to considerable reduction in operational cost for
both energy suppliers and end-users in buildings
(Setiawan et al. 2009; Mathieu et al. 2011; Neto
and Fiorelli 2008). At the current stage, ANN
and SVM are the two favourable data-driven
approaches used for prediction of building
energy consumption.

Fig. 2.7 Schematic of
hierarchical clustering
algorithm. The partitive
clusters can be obtains at
different levels of similarity
(Vesanto and Alhoniemi
2000)
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Prediction Application of ANNs
ANNs have been extensively used as a prediction
means in diverse areas (Kalogirou 2001). In
building sector, ANNs excels in predicting
building energy consumption, electricity
demand, heating/cooling loads, important energy
parameters and even assessment of software etc.
Table 2.3 has centrally summarized these appli-
cations of ANNs in the literature.

In terms of energy consumption, ANNs are the
popular candidate for both the short-term and long-
term prediction. Kalogirou and Bojic (2000) used
ANNs to predict energy consumption in a holiday
passive solar building, where engineers working in
the HVAC field were not included. In their study,

the RNN model based on the back-propagation
architect was applied for the training process. In so
doing, such a model could detect features in the
raw data of previous knowledge, e.g., the changing
rules of operating conditions along different time
epochs. In addition, Sözen and Arcaklioglu (2007)
even derived an ANN model to shed light on
causality link behind economic indicators, popu-
lation and net energy consumption. Their study
suggested economic indicators (e.g. gross national
product (GNP) and gross domestic product
(GDP) etc.), rather than conventional energy
indicators (e.g. gross generation, installed capacity
and years), are playing a more important role for
an accurate prediction of energy consumption.

Table 2.2 Summary of data-driven approach for applications in building energy consumption

Data-driven
approaches

Applications prediction classification

ANN (Kalogirou 2001; Kalogirou and Bojic 2000;
Neto and Fiorelli 2008; Sözen and Arcaklioglu
2007; Yang et al. 2005; Canyurt et al. 2005; An
et al. 2013; Yezioro et al. 2008; Yan and Yao
2010; Yokoyama et al. 2009; Olofsson and
Andersson 2002; Aydinalp-Koksal and Ugursal
2008; Aydinalp et al. 2002; Yalcintas 2008;
Asadi et al. 2014)

(Yalcintas 2006; Yalcintas and Ozturk 2006)

SVM (Zhao and Magoulès 2012, 2010; Magoules
and Zhao 2016; Dong et al. 2005; Li et al.
2009a, 2010, 2009b; Setiawan et al. 2009)

N/A

Regression (Zhao and Magoulès 2012; Amjady 2001;
Mejri et al. 2011; Wauman et al. 2013;
Tiedemann 2007; Aydinalp-Koksal and
Ugursal 2008; Larivière and Lafrance 1999;
Mastrucci et al. 2014; Howard et al. 2011;
Nikolaou et al. 2011; Chung et al. 2005;
Yalcintas and Ozturk 2006)

N/A

DT (Tso and Yau 2007; Yu et al. 2010) (Park et al. 2016)

GA (Canyurt et al. 2005; Sadeghi et al. 2011;
Azadeh et al. 2007; Li and Su 2010; Juan, et al.
2009; Asadi et al. 2014)

N/A

K-means
cluster

N/A (Nikolaou et al. 2012; Panapakidis et al. 2014;
Tsekouras et al. 2007; Heidarinejad et al. 2014;
Arambula Lara et al. 2014; Jones et al. 2007;
Fonseca and Schlueter 2015; Santamouris et al.
2007; Wang 2015; Lannon et al. 2050)

SOM N/A (Nikolaou et al. 2012; Panapakidis et al. 2014)

Hierarchical
cluster

N/A (Tsekouras et al. 2007; Xiao et al. 2012; Wang
2015)

2 Data-Driven Approaches for Prediction and Classification … 25



Table 2.3 Summary of ANNs in predicting building energy consumption

Type of
house

Scale Inputs Output Data source Measure
length

Algorithm

Holiday
passive
house
(Kalogirou
and Bojic
2000)

Single Season,
insulation
function,
wall
thickness,
heat transfer
coefficient,
time of day

Energy
consumption

Measured
data: ZigBee
Input Device
(ZID)

Two
seasons

RNN
combined
with BPNN

Multiple
(Sözen and
Arcaklioglu
2007)

National Economic
indicators
(GNP and
GDP),
population

Net energy
consumption

World
Energy
Council

37 years
(1968–
2005)

BPNN

Office
building
(Yang et al.
2005)

Single Outdoor dry-
bulb
temperature,
outdoor
humility,
water
temperature
of chiller,
compressor
status etc

Dynamic chiller
electric demand

Simulated
data (DOE
2.1E) and
measured
data

1 year Sliding
window ANN
and
accumulative
ANN

Office
building
(Canyurt
et al. 2005)

Single Previous
load,
temperatures
of previous
day,
occupancy
condition, sin
and cosine of
the hour

One day ahead
electric power
consumption

Great
building
energy
predictor
shootout I
and measured
data

1 year
and a half

BPNN

Multiple An
et al. 2013)

Reginal Previous
electricity
consumption

Half-hour ahead
electricity
demand

Australian
Energy
Market
Operator

9 weeks Multi-output
BPNN

Residential
(Yan and
Yao 2010)

7
builidngs

18 building
envelope
parameters,
heating
degree day,
cooling
degree day

Heating and
cooling energy
consumption

Simulated
data (DeST)

1 year BPNN

Commercial
(Yokoyama
et al. 2009)

Single Previous
cooling
demand, air
temperature
and relative
humidity

Cooling demand Measured
data

45
weekdays

BPNN

(continued)
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As to electricity demand, the majority of ANN
models focus on dynamic and short-term pre-
dictions, which require careful selection and pre-
treatment of input data. One example is Yang
et al. (2005) where an on-line chiller electricity
prediction model was established through use of
both the simulated data and measured data. Their
results recommends the sliding-window ANN,
which constantly drops the oldest data and adds
new measurements during training process,
showed better performance than the accumula-
tive ANN based on measured data. Besides,
Karatasou et al. has reported one-day ahead
prediction of electricity consumption, called a
24-steps predictor, in Canyurt et al. (2005). The
predictor used previous energy consumption data
records with time delays larger than 24 h as
inputs to train the network to perform next day’s
prediction. Interestingly, An et al. (2013) further
developed an (EMD)-based signal filtering which
is able to forecast half-hour electricity demand
ahead. Such an EMD-based signal filtering can
decompose an incoming signal into a series of
pure modes and residues. The results revealed
that the EMD-based filter a critically-functioned

component in the ANNs prediction model. In
fact, ANNs also play an important role in pre-
diction of heating/cooling loads. In this particular
type of applications, the ANN models usually
require to input detailed climate information,
envelop parameters and occupancy schedules
(Yezioro et al. 2008; Yan and Yao 2010).
Besides reliable input data, algorithm optimiza-
tion is the other way to promote the prediction
accuracy. To minimize the drawback of BPNN
(e.g. local optimization of model parameters in
training process), a global optimization called
“Modal Trimming Method” was proposed by
Yokoyama et al. (2009). This method was com-
posed of two steps, shown as Fig. 2.8: (1) search
for local optimal solution of input variables in an
objective function xfso ! xlo1

� �
, Normally, the

objective function is defined as calculation error
between predicted and measured values;
(2) search for another feasible solution of the
same objective function value with previous
local optimization xlo1 ! xfs1

� �
. These two steps

were repeated xfs1 ! xlo2 ! xfs2
� �

until tentative
global optimal one xlo3 is found. They validated

Table 2.3 (continued)

Type of
house

Scale Inputs Output Data source Measure
length

Algorithm

Residential
(Olofsson
and
Andersson
2002)

7 single
family-
building

Supplied
heating
demand,
electricity
domestic
demand, flag
parameter

Indoor-outdoor
temperature
difference

Measured
data

2 years BPNN

Solar house
(Yezioro
et al. 2008)

Single Outdoor
temperature,
relative
humility, set
point
temperature,
occupancy
schedule

Heating/cooling
consumption

Measured
data

2 days BPNN

Office
building
(Neto and
Fiorelli
2008)

Single Outdoor dry-
bulb
temperature,
day type
(working day
or weekend)

Daily total
consumption

Measured
data: energy
demand
measurement
system

54 days BPNN
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this method and concluded that significant error
of predicted cooling demand from measured data
was reduced compared to traditional local opti-
mization method.

On top of the above applications, ANNs’
application is also extended to predicting the key
parameters of energy performance of building.
For instance, Olofsson and Andersson (2002)
proposed a use of the BPNN model to estimate
the total heat loss coefficient (HLC) and domestic
energy gain factor of inhabited single-family
buildings. Here, the total HLC characterizes heat
loss resulted from transmission and air-flow
while the domestic energy gain factor focuses
on the gain of heating or cooling from inside
sources. In this kind of ANN model, flag
parameter of each measured case was introduced
to distinguish non-linear dependences among
various predictors, instead of average depen-
dency from previous experience.

It is worth mentioning that ANNs are some-
times used as tools to assess simulation software
for building performance. Neto and Fiorelli
(2008) compared the BPNN against EnergyPlus
by using both to predict building energy con-
sumption. The latter is recognized a mainstream
simulator in building sector which can deliver
much more accurate results than Energy_10,
Green Building Studio web tool, and eQuest
(Yezioro et al. 2008). Interestingly, Neto et al.
found that when building and climate data were
just briefly described, the used BPNN model
works much better in daily energy demands

prediction than EnergyPlus does. Importantly,
especially for hourly prediction, all these simu-
lation tools in current market give rather poor
results in comparison to ANNs. This finding
equips ANNs a new function as a benchmark to
test accuracy of commercial software for esti-
mating building energy performance.

Prediction Application of SVM
Prediction is also a primary function of SVM use
in building energy simulation. Table 2.4 lists the
up-to-data studies on SVM-prediction applications.
Generally speaking, SVM works in high accuracy
in the medium-term (Dong et al. 2005) and short-
term (Setiawan et al. 2009) prediction. Signifi-
cantly, the method only requires a few model-
parameters to implement its calculation. On the
other hand, however, computing speed of SVM is
slower than that of other approaches, such as linear
regression and the ANNs. Currently, how to
optimize SVM algorithm is regarded as the core
task for its future development.

Many efforts were actually made on SVM
optimization in recent years. To save the computer
memory and expedite the time-consuming train-
ing process, Zhao and Magoulès (2010) proposed
targeted solutions for dual optimization process
(see Eq. (2.5)) and Kernel function calculation.
The main idea was to divide the entire dual opti-
mization problem into sub-problems and calculate
them in parallel. Then, the Kernel function matrix
would be updated for each sub-problem calcula-
tion. This parallelized training process could be
stopped until convergence. The modified SVM
gains a capability of dealing with a large amount
of data to predict energy consumption of multiple
buildings. Another possible optimization solution
is to develop a hybrid SVM. For example, Li et al.
(2010) presented a hybrid approach combining
SVM and FCM clustering algorithm to forecast
building cooling loads. In this research, FCM was
first employed to extract valid data records from
the pool of raw data, and then the SVM followed
with a training procedure based on the extracted
valid data records. Clearly, such a pretreatment of
data records effectively reduce the noise of inputs
for SVM calculation. It should be pointed out the
SVM is compatible with diverse input

Fig. 2.8 Concept of modal trimming method
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information. Besides the conventionally-used
energy loads and climate conditions, Zhao and
Magoulès (2012) also used energy load charac-
teristics and hidden inertial effects of building as
their SVM inputs. The energy load characteristics
were described as operation level of HVAC sys-
tem and the occupancy profile, the hidden inertial
effects were provided as fluctuation of internal
temperature. The block diagram of such a model
for predicting building energy consumption is
shown in Fig. 2.9. As we can see, partial selection
of input data called dynamic time warping

(DTW) was adopted during prediction process,
which measures on the outdoor temperature dif-
ference between training days and prediction
days. The minimal difference between two time
series was chosen as optimal path for solution.
Similarly, the previous energy load database was
also partially selected by DTW as inputs to con-
sider the most recent data rather than whole data.
The result showed that the designed training leads
to higher accuracy and better computational effi-
ciency in comparison to that based on the whole
input data.

Table 2.4 Summary of SVM in predicting building energy consumption

Type of
house

Scale Inputs Output Data source Measure
length

Algorithm

Commercial
(Dong et al.
2005)

4 single
buildings

Outdoor
temperature,
relative humility,
global solar
radiation, previous
electricity
consumption

Building
energy
consumption
per month

Survey:
monthly
utility bill,
National
Environment
Agency

3 years SVM

Multiple
(Setiawan
et al. 2009)

Regional Historical
electricity
consumption data

5-min ahead
electricity
load

Australian
electricity
operator

3 years SVM,
statistical
regression,
and BPNN

Office
buildings
(Zhao and
Magoulès
2010)

100
buildings

Heating
consumption,
electrical
consumption

Heating
demand,
electrical
load

Simulated
data
(EnergyPlus)

5 months Parallel
SVM

Campus
building (Li
et al. 2010)

Single Cooling load Cooling load Measured
data

4 months Fuzzy
SVM
combined
FCM
clustering

Office
buildings
(Zhao and
Magoulès
2012)

Single Previous energy
load, building
dynamic
characteristics,
outdoor
temperature,
occupancy
schedule

Building
energy
demand

Measured
data: data
acquisition
system

7 months SVM with
pseudo
dynamic
approach

Office
buildings (Li
et al. 2009b)

Single Previous cooling
load, air
temperature,
relative humidity,
solar radiation
intensity

Hourly
cooling load

Simulated
data (DeST)

Half year SVM,
BPNN
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Prediction Application of Statistical
Regression
Statistical regression is well treated as a simple
tool for prediction for a long time (Zhao and
Magoulès 2012). However, this approach suffers
from low-accuracy in its prediction results, and
such a deficiency has greatly limited its appli-
cations in building energy consumption analysis.
This motivates a great deal of modification and
optimization in statistical regression, which are
briefly illustrated in Table 2.5. Among various
modifications are multiple linear regression
(MLR) proposed by Li and Huang (2013) for
short-term prediction. This model utilized not
only climate data, room temperature set point,
but also the cooling loads of previous four hours
as its inputs. The obtained prediction results
achieved very impressive accuracy higher than
that of conventional ANN models. Moreover,
autoregressive, integrated and moving average
(ARIMA) model under the statistical regression
framework was designed to correlate time-series
data. Amjady’s study (2001) has well examined
the exactitude of ARIMA model for predicting

daily peak and hourly load based on national
power net. He further extended ARIMA model
with use of the estimated electricity load as an
extra input. The accuracy of his model reach a
higher level even compared to original ARIMA
and ANNs.

In most cases, statistical regression models are
adopted to estimate important parameters char-
acterizing energy performance. For instance,
Mejri’s et al. (2011) investigated statistical
regression modelling for predicting indoor air
temperature. In their study, they analyzed the
similarity in dynamic behaviours among different
thermal zones for HVAC system design. Another
example goes to Wauman’s et al. (2013), where
they used statistical regression to explore corre-
lation between heat balance ratio and heat gain
factor of some school buildings exemplified in
their research. These obtained correlations are
regarded of crucial significance for designing,
tracing and analyzing building thermal beha-
viours. They are also important supportive
materials for drafting heating control strategy for
energy saving.

Fig. 2.9 Block diagram of SVM in prediction of energy demand using pseudo dynamic approach (Zhao and Magoulès
2012)
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Prediction Application of Decision Tree
In the large family of data-driven approaches for
building energy consumption prediction, DT is a

relatively new member, but involves much sim-
ple techniques. Tso and Yau (2007) compared
statistic regression method, BPNN and DT by

Table 2.5 Summary of statistic regression, DT and GA in predicting building energy consumption

Type of
house

Scale Inputs Output Data source Measure
length

Algorithm

Office
building (Li
and Huang
2013)

Single Dry bulb outdoor air
temperature, solar
horizontal radiation,
and room
temperature set
point, cooling load
of previous 4 h

Cooling load Simulated
data from
TRNSYS

60
measured
case

MLR,
ANN,
grey-box
approach

Multiple
(Amjady
2001)

National Previous load,
estimated current
load, temperature

Hourly
electricity
load and
daily peak

National
dispatching
center

1 year ARIMA

Office
building
(Mejri et al.
2011)

Single Indoor temperature
of four rooms

Room
temperature

Measured
data

2 months Statistical
regression

Multiple
(Tso and
Yau 2007)

Groups Power rating of
appliance,
consumption time

Average
weekly
electricity
consumption

Survey Two
seasons

BPNN,
Least-
squares
regression,
DT

Residential
(Yu et al.
2010)

80
buildings

Outdoor
temperature,
building
characteristics,
appliance energy
source and usage
(10 inputs)

Energy use
intensity

Survey and
research
committee

3 years DT

residential-
commercial
(Canyurt
et al. 2005)

National GDP, population,
import, export,
house production,
basic house
appliance
consumption figures

Future
energy
demand
(2003–2030)

World
Energy
Council and
State
Statistics
Institute

8 years GA

Residential
(Sadeghi
et al. 2011)

National GDP, real price of
electricity and
natural gas in
residential sector

Future per-
capita
consumption
of electricity
(2009–2025)

Iran
Statistics
Center,
Central
Bank of
Iran

39 years GA

Hotel (Li
and Su
2010)

Single Outdoor
temperature of past
2 days, air
conditioning
consumption of past
3 days

Daily air
conditioning
consumption

Measured 7 months GA-
HANFIS
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predicting the electricity consumption in summer
and winter periods. Results showed that DT used
in their study performed as well as BPNN, both
of which deliver accurate results than statistical
regression did. Yu et al. (2010) also applied the
DT approach to predict energy use intensity
(EUI) of residential buildings. They designed ten
predictor variables concerning indoor tempera-
ture, building envelop, appliance types and
occupant number in the DT framework. Their
result clearly demonstrated that DT is able to
well predict building energy consumption level
as high/medium/low. The significances of these
predictor variables were ranked in terms of
degree of closeness to the outdoor temperature
(predictor variable of root node), which is the
most important determinant of EUI. The results
showed that several building parameters, e.g.
heat loss coefficient and equivalent leak area,
deserve more attention at early design stage and
benefit energy conservation in retrofit.

Prediction Application of Genetic Algorithms
GA has been regarded as a powerful prediction
approach in building energy consumption. As
shown in Table 2.5, most applications of GA
models are national analysis. One typical exam-
ple is prediction model of energy consumption
for residential-commercial building section in
Canyurt et al. (2005). Three different scenarios
were proposed in order to find out the best fit
solution. The result showed that GA model,
which considers residential housing production,
house appliances of washing machine, television,
vacuum cleaner and refrigerator as the input
parameters, can obtain the most accurate quad-
ratic prediction model of energy consumption.
Sadeghi et al. (2011) developed prediction model
of electricity consumption using GA on national
level. It was found out that exponential equation
had the more accurate results compared to linear
and quadratic forms.

Hybrid methods of GA and ANNs are widely
used in electricity prediction application (Azadeh
et al. 2007). Li and Su (2010) predicted the daily
air-conditioning consumption by using the
genetic algorithm-hierarchical adaptive network-
based fuzzy inference system (GA-HANFIS).

Before developing prediction model, clustering
algorithm was applied to identify the nature
groups and qualities of a large data set, and GA
was used to optimize the unknown cluster-
parameters through minimizing the error of pre-
dicting result. Figure 2.10 shows the architecture
of GA-HANFIS, in which the outdoor tempera-
ture of predicted day T kð Þ, the air-conditioning
consumption of past two days y k� 1ð Þ and
y k� 2ð Þ were identified as more significant
inputs of network layer 1. These less significant
variables T k� 1ð Þ, y k� 3ð Þ, T k� 2ð Þ and
T k� 3ð Þ were selected as inputs of network
layer 2 and layer 3. Output y kð Þ was air-
conditioning consumption of predicted day. The
rule base of each layer contained two if–then
rules; readers can refer to Tsekouras et al. (2007)
for more details. Moreover, the calculation rules
were different according to different clusters.
This hybrid method outperformed regular BPNN
in prediction accuracy.

2.2.1.2 Profile
The energy consumption profile in building is to
quantify the total consumption contribution to
sub-components, or further distinguish the usage
characteristics. Regarding the positive influence
for end-users, the capability of profiling the
energy use as the feedback can educate the
occupants on how to consume and change the
consumption behaviours to certain extent. As for
utility companies, DSM measures are implied
after extracting load profiles in order to reach a
proper load-shape objective, i.e. “peak clipping”,
“valley filling”, “strategic conservation”, “flexi-
ble load shape”, “load building” and “load
shifting” (Panapakidis et al. 2014). The
commonly-used methods for energy and elec-
tricity profiling are clustering based method,
which is detailed in Table 2.6.

Profile Application of Cluster Method
As one application of cluster method, analyzing
electricity behaviour through pattern recognition
and load curve classification has been investi-
gated by massive researches. Tsekouras et al.
(2007) developed a two-stage pattern recognition
for customer’s classification. The first stage was
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to pattern load curves of each customer; the
second stage was to cluster the customers
according to pattern features. In their research,
K-means cluster was proven by adequacy

measures as the most appropriate approach
compared to other methods. The function of
adequacy measures is to evaluate the within-
group similarity and between-group dissimilarity,

Fig. 2.10 Architecture of
GA-HANFIS model with 3
layers (Li and Su 2010)

Table 2.6 Summary of data-driven approaches in building energy consumption profiling

Type of house Scale Inputs Data
source

Measure
length

Algorithm

Multiple
(Tsekouras et al.
2007)

94
buildings

Daily electricity
consumption

Meters 10 months K-means cluster,
fuzzy K-means
cluster, seven
hierarchical cluster

University
building
(Panapakidis et al.
2014)

27
buildings

Daily electricity
consumption

Meters 2 years SOM combined with
K means++

National office
buildings (Xiao
et al. 2012)

24
provinces

Annual electricity
consumption

Survey 1 year Hierarchical cluster

High performance
buildings
(Heidarinejad
et al. 2014)

134
buildings

Energy end use Simulated
data

3 year K-means cluster

Campus buildings
(Arambula Lara
et al. 2014)

85
buildings

Heating demand School
manage
service

5 years K-means cluster
combined with MLR

Residential
buildings
(Tiedemann 2007)

791
customers

Weather data and
energy consumption
of residential
appliances

Survey 2 years Statistical regression

Residential
buildings
(Aydinalp-Koksal
and Ugursal 2008)

8767
customers

Weather data and
energy consumption
of residential
appliances

Survey 1 years Statistical regression
and ANN

Residential
buildings
(Aydinalp et al.
2002)

8767
customers

Appliance, lighting,
cooling loads, space
heating, domestic heat
water

Survey 1 year PBNN
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in order to obtain a well-separated classification.
Panapakidis et al. (2014) incorporated K-means+
+ cluster within SOM to reduce the number of
centers and increase the accuracy. The data
records including vast of load curves were
aggregated from various buildings, SOM was
thus an appropriate approach to map high-
dimensional database into low-dimensional pat-
terns. As the improvement of the basic K-means
clustering algorithm, K-means++ algorithm tries
to initialize the centroids that far from each other
rather than random selection. The combination of
SOM and K-means++ resulted in small errors in
all cases.

Recently, cluster method becomes prevailing
to profile EUI of buildings on large-scale. Xiao
et al. (2012) conducted a study on EUI (exclud-
ing district heating) of business office buildings
in China. Each data point was defined as
x1i; x2ið Þ in which x1i and x2i refer to EUI and
gross floor area of corresponding building.
Eventually, two clusters were formed by using
hierarchical cluster and the frequency distribu-
tion of EUI is illustrated in Fig. 2.11. The cluster
results revealed the unique “dual section distri-
bution” pattern which is different from developed
countries. Heidarinejad et al. (2014) used K-
means cluster algorithm to classify the EUI of
134 U.S. high-performance buildings (HPBs) by
the squared Euclidean distance. These HPBs
were well separated into three clusters, as
high/medium/low EUI. Studies showed that
unregulated loads which include various equip-
ment and uncategorized loads, accounted for 30–
40% total energy consumption that should be
reduced specifically through effective programs
and modification. It can be found out that studies
mentioned above that analyze building energy
issues on large scale, are greatly dependent on
the clustering methodology.

Clustering technology can be also applied for
heating/cooling demand classification. K-means
cluster analysis combined with MLR were pro-
posed by Arambula et al. (2014) to analysis the
heating demand of 85 high schools. In their
model, MLR analysis was firstly conducted to
select 6 significant building thermal indicators

according to R2 value Eq. (2.12). Three clusters
were developed by K-means cluster analysis
based on these 6 indicators, while later R2 was
calculated for each cluster. The regression anal-
ysis showed that cluster 3 need to be further
divided by clustering analysis since its low
within-group similarity ( R2\0:5). Finally, more
reasonable classification results could be
obtained after such twice MLR analysis and
twice clustering analysis when comparing to the
sole clustering.

Profile Application of Regression
One regression method specialized for profiling
energy consumption of residential buildings is
conditional demand analysis (CDA). The basic
idea of the CDA model is that total household
consumption is the sum of various end-use
consumptions.

CDA is frequently used to profile building
energy consumption at national level (Tiedemann
2007). Aydinalp-Koksal and Ugursal (2008)
used CDA to profile residential end-use energy
consumption at national level, large-scale data-
base including the surveys from occupants,
weather conditions as well as historical energy
bills were used. Their CDA model adopts 6
electricity end-uses including main and supple-
mentary space heating, domestic heating water,
space cooling, lighting, major and minor appli-
ances. Meanwhile, they also developed neutral
network model for comparison purpose (Aydi-
nalp et al. 2002). In their research, BPNN out-
performed CDA model in evaluating the effects
of socio-economic factors, such as income,
dwelling ownership and area sizes of residence.
Because these socio-economic factors were
considered as input variables in BPNN while
CDA cannot not include comprehensive vari-
ables due to the limitation of statistical
regression.

2.2.1.3 Energy Mapping
Energy mapping methods, usually based on the
Geographic Information System (GIS) city
building database, consider using data-driven
technology for pre-and post-progressive
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operation (Caputo et al. 2013). Thanks to the
capabilities of GIS, immediate updating of
energy evaluation and visual representation via
maps are both permitted in a user-friendly model,
to provide energy consumption distribution
within the city. Among the massive technologies
for energy mapping, statistical regression
(MLR) and clustering algorithm are the mostly

utilized data-driven methods, as displayed in
Table 2.7.

MLR is a traditional used approach in energy
mapping of building section at zip-code level
(Larivière and Lafrance 1999). Mastrucci et al.
(2014) applied MLR model to map the energy
consumption of dwellings in a city of Dutch. The
contributing inputs included floor area, number

Fig. 2.11 Frequency distribution and polynomial fitting plot of EIU in office buildings. a US climate zone-1. b Certain
city of China (excluding district heating) (Xiao et al. 2012)

Table 2.7 Summary of data-driven approaches in energy mapping

Type of
house

Scale Energy consumption Inputs Data source Measure
length

Algorithm

Multiple
(Larivière and
Lafrance
1999)

45
cities

Annual electricity, population
density, age of inhabitants,
weather condition, living
expenditure

Organizations
involved in city
affairs

1 year MLR

Multiple
(Howard
et al. 2011)

City Annual electricity
consumption, natural gas,
steam, and fuel oil
consumption

Utility company,
RECS, CBECS, geo-
rectified database

1 year MLR

Residential
buildings
(Mastrucci
et al. 2014)

City Yearly consumption of natural
gas and electricity

GIS database, Royal
Netherlands
Meteorological
Institute, metering

Nearly
50 years

MLR

Residential
buildings
(Jones et al.
2007)

City Energy consumption and
carbon dioxide emission

GIS database,
electricity map,
surveys

18 months Clustering
algorithm

Multiple
(Fonseca and
Schlueter
2015)

City Electricity load, thermal loads, GIS database,
simulated and
measured data,
building standards

1 year K-means
cluster
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of occupants and type of house defined for each
combination of type of dwelling and period of
construction during 50 years. The predicted nat-
ural gas consumption was apportioned into space
heating, domestic hot water and cooking. The
results observed that space heating is the biggest
contribution (average 50%) in energy consump-
tion. After 50 years tracking from 1965, they
assumed the percentage of energy reduction is
nearly zero for dwellings after 2005. Besides
single building function of residential family,
energy mapping model has been expended to
profile the building energy consumption of
multiple functions. For example, Howard et al.
(2011) calculated the annual EUI in New York
City through MLR analysis, both the tax lot
designations and building area categories were
used to place the buildings into n building
functions (e.g. residential family, office, ware-
house, education and et al.). The MLR analysis is
explained in Eq. (2.16), yi is the energy con-
sumption of ith zip-code, xin is the total building
area of each building function in ith zip-code. bi
is the coefficient need to be determined in MLR.
On top of that, it was found out extra contribut-
ing inputs are needed in some regions to distinct
the unique characteristics of energy consump-
tion. However, the research excluded energy
consumption for cooking, electrical heating and
other end-uses, which inevitably causes errors in
energy mapping.

yi ¼ b1xi1 þ b2xi2 þ � � � þ bnxin ð2:23Þ

Clustering algorithm is typically used as
subsidiary approach for mapping the energy
consumption at urban scale. In Jones et al. (2007)
research, cluster analysis technique was adopted
to classify 55,000 dwellings with similar energy
consumption and carbon dioxide emission in a
Local Authority of UK. The energy rating results
and carbon dioxide emission results were pro-
filed on the regional map for further retrofit
purpose. Clustering algorithm is not limited to
classification of energy consumption, also uti-
lized to develop geographical clusters. Instance,
Yamaguchi et al. (2007) proposed a district
clustering model for commercial buildings in

Osaka city. Firstly, clustering of district were
presented by small grid cells, each of them was
classified to certain representative building-type
category. Then, EUI was used as evaluation for
the district typology. Fonseca and Schlueter
(2015) proposed a model for mapping the spa-
tiotemporal building energy consumption in a
city district of Switzerland. The model involved
K-means cluster for spatial grouping in the band
of 50–200 m, where spatial association of every
variable of interesting buildings was strongly
persistent (e.g. infrastructure types and tempera-
ture requirements). Two significant variables
were used to measure the intensity of spatial
clusters and similarity of groups. GIS framework
gathered overall results and enabled 4D visual-
ization that provides understandable display. The
peak space heating demand of buildings in four
zones at 10–11 am (April 1st, 2010) is presented
as Fig. 2.12. The height and color code of
buildings represent the demand level in relation
to their associated zones.

2.2.1.4 Benchmarking of Buildings
Different from individual building energy anal-
ysis, benchmarking was used to address large-
scale building energy related issues. Two fun-
damental issues in benchmarking are: (1) ascer-
taining the current energy performance of certain
building (good, average or poor) compared to
same types of building stock; (2) identifying the
previous/current energy performance for energy
saving potential and retrofit changes (Nikolaou
et al. 2011). Regression based model, ANNs,
cluster algorithms and DT are the typical data-
driven techniques for building energy bench-
marking. Table 2.8 provides the benchmarking
pilots that usually adopt EUI as the single
benchmarking index.

Regression technique is one popular method in
building energy performance benchmarking.
Chung et al. (2005) benchmarked the EUI of 30
supermarkets in Hong Kong. MLR model was
established to calculate EUI based on nine sig-
nificant variables. By using bootstrapping func-
tion (Efron and Tibshirani 1993) for the empirical
sample EUI 1ð Þ; EUI 2ð Þ. . .EUI 30ð Þ

� �
, they
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obtained the estimation of EUI cumulative dis-
tribution as percentiles EUI10; EUI20. . .EUI90f g.
Although conducting on small-scale samples,
they formed a benchmarking table through the
percentiles. The results showed that average value
of energy consumption is greater than UK energy
benchmarking. They also raised the suggestions
that only unmanageable factors (e.g. building
thermal characteristics) should be considered
during benchmarking process while all manage-
able variables (e.g. occupancy behaviour) were
set into average values, in order to present clearer
improvement suggestions for government.

ANNs method in energy benchmarking was
initially presented by Yalcintas (2006). He
developed three sub-models to predict EUIs as
output for the plug load, lighting and HVAC
components over 60 mix-used buildings. The
information from questionnaire includes lighting
types, floor area, equipment types and hours were
used as inputs. The elaborated ANNs model
could identify the EUI if new data is entered. The
most outstanding advantage of ANNs bench-
marking method is to renew the algorithm itself
rather than manual update. Yalcintas and Ozturk
(2006) also developed a national energy bench-
marking model for commercial buildings based
on ANNs. Different from abovementioned ANN

model which included continuous value of
inputs/output, both input variables and output
EUI were standardized into categorical forms for
classification purpose in this model. In order to
avoid inappropriate benchmarking results, data-
base was firstly divided into 9 geographic
regions. The results showed that ANN model
provides more accurate EUI estimation and rea-
sonable benchmarking result than MLR model in
all cases except one.

Fuzzy cluster algorithm is a frequently-used
methodology for energy benchmarking for
buildings. Santamouris et al. (2007) proposed an
energy rating system for 340 schools based on
fuzzy clustering technology. Five classes of total
and thermal energy consumption had been
defined. Compared to frequency distribution
rating system, fuzzy clustering rating system is
more reasonable to avoid unbalanced classifica-
tion, such as too small or too large range. Apart
from building energy consumption benchmark-
ing, thermal comfort rating system was also
proposed by Nikolaou et al. (2012) based on
FCM cluster. The predicted mean vote index,
which represents mean response about thermal
comfort from a larger group of people, was used
as thermal comfort indicator. In their study, the
thermal comfort of each climate zone was

Fig. 2.12 Spatio-temporal energy map of space heating demand of a city district in Switzerland (Yamaguchi et al.
2007)
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classified as three clusters, respectively. The
majority commercial buildings in Greek were
belong to class 2, while “best practice office
buildings” were belong to class 1.

Another energy benchmarking method for
improving energy efficiency of office building is
DT. Park et al. (2016) developed DT model to
benchmark the energy consumption of 1072
office buildings in South Korea. Gross floor area
and building use ratio were identified as two
significant predictor variables by correlation
analysis, source EUI was defined as target vari-
able. As the result, six rating groups of EUI were
developed for each type of building use. After
establishment of benchmarking model, analysis
of variance was utilized to test the difference

among groups. DT model was believed to
improve the conventional baseline benchmarking
system via a more reasonable and fair
classification.

Although most benchmarking projects are
developed based on single EUI indicator, there is
much effort for the multi-criteria benchmarking
indicators. Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) based
energy efficiency benchmarking approach using
seven indicators was developed by Wang et al.
(Wang 2015). The illustration of TOPSIS of two
indicators (energy use per occupant and EUI) is
showed as Fig. 2.13. When building A and
building B have the same distances to the most
energy efficient condition IP, distances to the

Table 2.8 Summary of data-driven approach in building energy benchmarking

Type of house Scale Benchmarking variables Data source Measure
length

Algorithm

Supermarkets
(Chung et al.
2005)

30
buildings

Building age, occupancy condition,
indoor temperature, energy system
type and et al.

Survey 45 year MLR

mix-used
buildings
(Yalcintas
2006)

60
buildings

plug load, lighting, HVAC Questionnaire 1 year BPNN

Commercial
buildings
(Yalcintas and
Ozturk 2006)

National building-operation hours, age
category, building-area, cooling
category, lighting category, CDD,
number of floors category

CBECS 1 year ANNs,
MLR

School
buildings
(Santamouris
et al. 2007)

340
buildings

Heating demand, electricity
demand, total energy consumption

Energy bills 3 years Fuzzy
cluster

office buildings
(Nikolaou
et al. 2012)

30,000
buildings

Heating load, cooling load, thermal
comfort

Simulated
data: VBD

1 year K-means
cluster,
SOM,
FCM
cluster

Residential
buildings
(Wang 2015)

324
buildings

EUI, CDD efficiency, HDD
efficiency, bath room oriented, total
room oriented efficiency and etc

Panel dataset 3 years TOPSIS,
PCA, K-
means
cluster

Commercial
buildings (Park
et al. 2016)

1072
buildings

EUI, gross floor area, building use
ratio

Official
building
register,
Korea
Appraisal
Board

3 years DT
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least energy efficient condition IN were used to
evaluate A and B. Since MLR cannot easily
produce reliable weights among highly correlated
indicator, principle component analysis
(PCA) was adopted to weight the importance of
seven energy indicators. PCA can transform a
high-dimensional dataset consisting of possibly
correlated variables into a less number of their
linear combinations. Finally, K-means cluster
was adopted to classify the TOPSIS space into
six categories as benchmarking table. Without a
doubt, the benefits were obvious compared to
single-criteria benchmarking which is observed
with collision during evaluation process.

2.2.1.5 Retrofit of Buildings
Retrofit is based on the knowledge of energy
profiling and benchmarking on existing build-
ings, presenting the largest potential of incorpo-
ration of renewable energy technology and
energy conservation after efficiency retrofit
measures. ANNs and GA are the main data-
driven approaches in building retrofit projects,
within a brief introduction in Table 2.9.

ANNs are usually applied to predict energy-
saving potential for single retrofit project. Yal-
cintas et al. (2008) developed BPNN model for
two hotel equipment-retrofit projects. Energy

usage data, weather data and occupancy data of
post-retrofit period were used to train the neutral
network model. It then estimated the energy
consumption of pre-retrofit equipment as output.
The difference between recorded and predicted
energy consumption was regarded as the energy
saving.

As a powerful optimization algorithm, GA has
been frequently adopted as the evaluation tool in
building retrofit project. Juan et al. (2009) pre-
sented a GA-based on-line decision support
system to offer residents a series of optimal
refurbishment actions considering two objec-
tives, cost and quality. In GA, each chromosome
represented a set of retrofit solutions, the distance
between chromosome and trade-off curve of cost
and quality was used as fitness function to select
the parents for generation. With the process of
evolution, the trade-off curve would gradually
converge to the best retrofit solutions with higher
quality and acceptable cost.

Developed based on two-objective optimiza-
tion, multi-objective optimization model was
conducted by Asadi et al. (2014). They adopted
GA associated ANNs to study the interaction
between three main conflicting target variables,
including energy consumption (EC), retrofit cost
(EC), thermal discomfort hours (TDH) and

Fig. 2.13 Illustrative
example of TOPSIS for
building energy
benchmarking (Wang 2015)
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assess their trade-offs in school retrofit project.
First, the database was created in simulation tool
for training and validating ANN model. BPNN
model adopted in this study was composed of
input layer representing different retrofit mea-
sures, one hidden layers and one output layer of
energy consumption and thermal discomfort
indicator. Then, the GA tool was used for mini-
mize these three target variables as Eq. (2.17)
and provide optimal combinations of retrofit
measures.

min y1 ¼ EC Xð Þ ð2:24aÞ
min y2 ¼ RC Xð Þ ð2:24bÞ
min y3 ¼ TDH Xð Þ ð2:24cÞ

X ¼ xWALL; xROOF; xWINDOW; xCOLLECTOR; xHVACf g

where x represent different materials/types of
alternative retrofit choices. The treat-off curves of
multi-objective optimization could be available
on 3D visualization. The proposed approach
presented variety of recommendations with high
computation efficiency. However, simultaneous
optimizations of conflicting variables gave large
diversity of retrofit choices, which are difficult to
understand the impact of each retrofit action at
whole level.

Cluster algorithm is usually adopted to make a
distinction of retrofit measures among different
buildings on large scale. Lannon et al. (2050)
developed model of 55,000 houses over 50-year
performance via cluster analysis, aiming to

investigate the retrofit pathways to UK govern-
ment’s ambitious target of 80% reduction
greenhouse gases emission by 2050. 100 clusters
were developed to identify the dwelling with
similar energy consumption and built age. Dif-
ferent combinations of retrofit measures were
proposed and analyzed in the simulation tool.
Overall, challenges and barriers in aggregate are
still difficulties for individual family house.

2.2.2 Analyses of the Review Works

Data-driven approaches for predicting and clas-
sifying building energy consumption typically
focus on total energy consumption, electricity
demand, heating/cooling load and important
energy parameters. The scopes of these resear-
ches are from sub-system level to single building
level or even to national level.

Substantial up-to-date mythologies are pro-
posed in order to enhance the accuracy and
reliability of data-driven models, such as algo-
rithm optimization and data pretreatment. As for
algorithm optimization, micro-scale researches
based on individual buildings are proposed with
considerations to develop variants of basic
algorithms and hybrids of several approaches
(Zhao and Magoulès 2012; Kalogirou and Bojic
2000; Yang et al. 2005; Li et al. 2010; Li and Su
2010). The improvements of macro-scale analy-
ses of building energy performance are invested
to increase calculation efficiency when the raw
data is large and chaos (Zhao and Magoulès

Table 2.9 Summary of data-driven approach in building retrofit

Type of house Retrofit measures Algorithm

Hotels (Yalcintas 2008) Install energy management systems and Variable Frequency Drives
(VFDs) on the air-handling units. New cooling towers and VFDs on
motor fans

BPNN

Residential buildings
(Juan et al. 2009)

More than twenty retrofit measures under six main criterion,
including safety, usage, convenient, comfortable, utility and health

GA

School (Asadi et al.
2014)

External wall insulation materials, roof insulation materials, the
windows type, solar collector type, the HVAC systems

ANNs and GA

Residential buildings
(Lannon et al. 2050)

Lower the carbon dioxide emission of grid, renewable resources,
improve energy efficiency, and change occupancy behaviour

K-means
cluster
algorithm
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2010; An et al. 2013; Tsekouras et al. 2007;
Wang 2015). In addition to algorithm optimiza-
tion, data pretreatment is another focus for many
researches (Yokoyama et al. 2009; Li et al. 2010;
Amjady 2001; Arambula Lara et al. 2014).
Appropriate pretreatment layered on the top of
data-driven approach is the premise of accurate
results and high computation efficiency. In short,
high similarity between training and testing
dataset is important for establishing a good
model.

Meanwhile, substantial studies applied the
simulated database to test model performance
rather than the measured data. The analysis
results of these models cannot be regarded per-
suasive enough since simulated data records are
less fluctuant than real situation. In these sce-
narios, the question arises for reliability of sim-
ulated data again with no clear answer.

So far, the researches on residential buildings
are not elaborated as researches of commercial
buildings. The main reasons are including
(1) lack of energy-use database from family-
houses; (2) more freedom of occupancy beha-
viour in residential buildings. Hence, most
researches on residential buildings are at low
granularity, such as roughly profile energy con-
sumption on regional level (Yu et al. 2010;
Sadeghi et al. 2011; Mastrucci et al. 2014; Wang
2015; Lannon et al. 2050).

2.3 Opportunities for Further
Works

As effective and useful techniques providing
profound insights and possible strategic solutions
in policy and management of building energy
consumption, data-driven approaches have been
deemed as favorable means for facilitate future
in-depth studies on building energy performance.
In this section, we tailor a few promising
research directions of data-driven approaches
applied in building energy.

The first direction suggested is to modify the
framework of the current data-driven algorithms
in the contexts of building performance to better
fulfill the calculation of building energy

consumption. This necessitates special opti-
mization of the data-driven approaches respond-
ing to unique requirements of prediction and
classification of building energy consumption. It
also calls for reliable and sufficient data source to
yield training in high quality. Well-designed
pretreatments particularly compatible with data
collection in buildings and high-granularity
measurement from smart meters are strongly
recommended.

Another direction is to enrich the applications
of the current data-driven versions, enabling
them to be viable for building energy character-
ization at different scales and various climate
conditions. In the literature, a great number of
efforts in this direction are limited to small-scale
building stocks. Future focuses should be placed
on energy-use evaluation of a large amount of
building population. To be specific, the next
generation of data-driven approaches in building
industries should cover more building thermal
characteristics and climate conditions, and are
able to perform energy mapping and bench-
marking at the macro-scale.

Furthermore, it has been widely noted that
most building energy consumption models at the
present stage only offer short-term analyses.
They fail to discuss the long-term profiles and
predictions, nonetheless. Therefore, strong drive
exists to extend data-driven approaches with
applications to building energy consumption
with climate changes in a large temporal scale.
This will play an important role in future build-
ing retrofitting, where long-term energy con-
sumption is a crucial contributing factor for new
HPB design when used to replace old buildings.

As pointed out above, building performance
evaluation nowadays strives for high efficiency
in building energy consumption. However, other
factors, such as indoor air quality, occupant
thermal comfort, occupancy behaviour interac-
tion and equipment energy-performance coeffi-
cient, are also equally important. This indicates
an ideal data-driven model should make use of
multiple indexes to provide a comprehensive
analysis of building performance, instead of the
current single output of energy consumption or
heating/cooling loads. Significantly, apart from
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the basic functions (i.e., prediction and classifi-
cation) discussed in this review, future outlook of
data-driven techniques targets decision-making
machine, such as occupancy behaviour recom-
mender and equipment operation instructor.
These data-driven based developments in build-
ing industries would offer real-time on-site
information for thermo-comfortable accommo-
dation with minimum energy consumption.

2.4 Conclusion

Given that the growing concerns about natural
resource shortages and eco-environment deterio-
ration, today’s building industry necessitates
strongly innovative techniques to better optimize
energy consumption in buildings. Data-driven
approaches are one of the most effective advanced
means to fulfill this goal in function of more
accurate prediction and clearer classification.

This chapter reviewed the mainstream data-
driven techniques currently applied in building
energy studies. A comprehensive summary of
each approach, including their basic thought,
algorithm structure, strengths and weaknesses,
was elaborated. In the category of data-driven
approaches for prediction, ANNs gains a primary
position in a large number of applications rang-
ing from load forecasting, retrofit potential esti-
mation. The challenges in this method are to
choose an appropriate architecture and learning
rate. As to SVM, the method has a simple
training process requiring a few inputs whereas
low calculation efficiency has become a road-
block in its application, especially for large-scale
building energy analysis and high granularity. To
shorten its calculation time, recent tremendous
efforts have made to optimize SVM structure and
develop hybrid models combing the method with
clustering algorithms, DTW and et al. Statistical
regression plays an important role in significant
parameters evaluation, energy mapping and
benchmarking at the urban scale. However,
inaccuracy in short-term prediction and possible
unforeseen correlations among the selected pre-
dictors greatly undermine the effectiveness of the
regression models in practical applications. As to

DT, it is regarded as a feasible technique for
energy consumption prediction and building
energy benchmarking provided that these cases
do not involve sequence and nonlinear data. The
major concern is DT results are primarily based
on expectations, and thus validity of many DT
models being questioned. GA excels in coping
with sophisticated data and can provide optimal
and multi-objective solutions, but GA suffers
from low computational efficiency and non-
unique deliveries. As far as data-driven approa-
ches for classification are concerned, K-means
clustering, self-organizing map and hierarchy
clustering were exemplified with focuses on
pattern recognition of load curves, energy map-
ping, benchmarking and retrofit at macro-scale.
The K-means clustering algorithm achieves
highly accurate data partition in many applica-
tions. A fundamental deficiency in this classifi-
cation approach is its framework lacks a priori to
specify the number of clusters and centroids yet
when the classifying features are unavailable.
Self-organizing map can effectively reduce the
dimensions of input data to a feature map, but its
accuracy relies on a careful parameter selection
and an appropriate design of its algorithmic
structure. As to hierarchical clustering, it is
usually implemented by a number of diverse
merging and terminating ways, which could lead
to multiple clustering results even subject to the
same similarity criterion. This greatly influences
its accuracy and effectiveness when performed
for many clustering problems.

Based on the above analysis, this review
points out several future directions for data-
driven approaches to better underpin building
energy analysis. They include (1) modifying the
frameworks of different data-driven approaches
in the context building performance features to
more accurately respond specific demands from
building energy calculation; (2) enriching appli-
cations of data-driven approaches to cover
building energy uses at different scales under a
wide spectrum of weather conditions; (3) ex-
tending data-driven approaches serving building
energy consumption investigation and in both the
short- and long-term; (4) integrating multiple
target indices in the data-driven framework to
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deliver a more balanced evaluation on building
energy performance. It is believed that data-
driven techniques with progress along these
routes will offer more efficient and reliable sup-
port for energy management and optimization in
future building industries.
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3Prediction of Occupancy Level
and Energy Consumption in Office
Building Using Blind System
Identification and Neural Networks

Jinshun Wu, Yixuan Wei, and Xingxing Zhang

Abstract

Occupancy behaviour plays an important role
in energy consumption in buildings. Currently,
the shallow understanding of occupancy has
led to a considerable performance gap between
predicted and measured energy use. This
chapter presents an approach to estimate the
occupancy based on blind system identifica-
tion (BSI), and a prediction model of electric-
ity consumption by an air-conditioning system
is developed and reported based on an artificial
neural network with the BSI estimation of the
number of occupants as an input. This starts
from the identification of indoor CO2 dynam-
ics derived from the mass-conservation law
and venting levels. The unknown parameters,
including the occupancy and model parame-
ters, are estimated by using a frequentist

maximum-likelihood algorithm and Bayesian
estimation. The second phase is to establish the
prediction model of the electricity consump-
tion of the air-conditioning system by using a
feed-forward neural network (FFNN) and
extreme learning machine (ELM), as well as
ensemble models. To analyse some aspects of
the benchmark test for identifying the effect of
structure parameters and input-selection alter-
natives, three studies are conducted on (1) the
effect of predictor selection based on principal
component analysis, (2) the effect of the
estimated occupancy as the supplementary
input, and (3) the effect of the neural network
ensemble. The result shows that the occupancy
number, as the input, is able to improve the
accuracy in predicting energy consumption
using a neural-network model.

Keywords

Occupancy estimation � Blind system
identification (BSI) � Prediction model for
energy consumption � Feedforward neural
network � Extreme learning machine

3.1 Introduction

The shortage of natural resources has compelled
many countries to focus on reducing energy
consumption as well as greenhouse gas emis-
sions. Improving energy efficiency of buildings
has become a priority for many nations.
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Improvement of the energy efficiency of a
building can only be achieved with the accurate
prediction of the building’s energy consumption.
Various physical-based and data-driven models
have been proposed for predicting the cooling/
heating load of heating, ventilating, and air-
conditioning (HVAC) systems. Physical-based
models, for example, EnergyPlus, IES, and
TRYSYS, require comprehensive and detailed
information about the complex thermal beha-
viour of the HVAC system and building enve-
lope. However, the realisation of precise energy
consumption analysis is still a formidable task, as
it involves uncertain and complex interactions
among weather conditions and stochastic occu-
pant behaviours (Li et al. 2014; Cui et al. 2017).

Data-driven approaches are used to predict a
building’s energy consumption with limited
physical information but with enormous opera-
tional data of the building’s thermal perfor-
mance. To further categorise the data-driven
approach, there are black-box and grey-box
models. The grey-box model is a hybrid model
that combines a machine-learning algorithm and
physical model. Grey-box models have been
widely applied to estimate the heating/cooling
load of buildings (Fux et al. 2014; Dong et al.
2016). The black-box model is a purely machine-
learning approach that defines the relationships
among different parameters. Historical data
should be available for training the black-box
model. Through the use of black-box models, the
building energy behaviour can be analysed. The
algorithm is excellent in illustrating the nonlinear
relationship between input and output parame-
ters; therefore, establishing explicit physical
models to describe the complex interaction is
unnecessary (Ahmad et al. 2014). In recent years,
many practical researchers have identified that
black-box models are cable of rapid and accurate
calculation compared to physical models
(Yezioro et al. 2008; Zhao and Magoulès 2012;
Turhan et al. 2014).

3.1.1 State of the Art

Different statistical methods can be adopted for
black-box approaches. The artificial neural net-
work (ANN) is one popular data-driven approach
for the purpose of electricity-consumption pre-
diction for long-term (Günay 2016), short-term
(Hooshmand et al. 2013) and mid-term applica-
tions (Hassan et al. 2015; Jovanović et al. 2015),
as well as retrofitting (Asadi et al. 2014; Ascione
et al. 2017; Gossard et al. 2013), fault detection
and diagnoses (Du et al. 2014; Guo et al. 2017),
control of air-conditioning (AC) systems (Afram
et al. 2017; Magoulès et al. 2013), etc. In order to
predict the energy consumption accurately using
an ANN model, significant effort has been made
to optimise the model parameters or select the
suitable input parameters. For example, the
modal trimming method (Yokoyama et al. 2009;
Li et al. 2011), particle-swarm optimisation
(Jiang et al. 2013), and genetic algorithm (Cas-
telli et al. 2015) are usually used to find feasible
solutions of ANN model parameters. Roldán-
Blay et al. (2013) introduced a model to predict
the outdoor temperature at each moment. It
provides benefits when selecting the training
days and improves the relationship between the
outdoor temperature and energy consumption. In
reference (Jetcheva et al. 2014), load and tem-
perature clustering were carried out to develop
the corresponding neural network model for each
group; the suitable model was selected for each
time point during the forecasting phase. Hence,
the set of these forecasts (one for each time point
during the day) forms the load forecast for the
entire day. Signal filtering was introduced by
Shao et al. (2015) to reduce the noise from the
time-series data based on ensemble empirical
mode decomposition. As expected, some poten-
tially important and hidden characteristics of the
original consumption data were extracted before
input to the neural network. The forecasting
accuracy was improved at the same time. In order
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to solve the problem of the vanishing/exploding
gradient of recurrent neural networks, Rahman
et al. (2018) adopted long short-term memory
(LSTM) activation functions to remember/forget
values at previous time steps, where long-term
dependencies are considered. Comparison among
regression analysis, neural networks, and least-
squares support vector machine (SVM) were
conducted by Kaytez et al. (2015) in predicting
national energy consumption in Turkey. The
analysed results suggested that both SVM and
ANN were powerful forecasting tools for long-
term electricity consumption. More dedicated
predictive modelling for energy use in US com-
mercial buildings was proposed by Deng et al.
(2018). According to their analysis, SVM has
superior performance to ANN, while the perfor-
mance of ANN reflects the importance of regu-
larisation for a generalised prediction model.

However, the downside of fundamental ANN
and SVM is the long training time required for
excessively large amounts of data. Another lim-
itation of ANN and SVM is due to the difficulty
in the determination of model parameters and
kernel function. There is no uniform standard to
select suitable model parameters and kernel
functions. Researchers must make decisions
based on the characteristics of the data and/or
their experience. The ELM, as an emergent
technology that overcomes the challenges faced
by fundamental ANN and SVM, has been pro-
posed recently. Unlike the fundamental ANN,
the hidden layer of ELM does not need to be
tuned. This approach is capable of solving the
problem without a back-propagation training
process. Naji et al. (2016) and Li et al. (2017)
have developed a building energy estimating
model based on ELM, the results revealed the
robustness of the ELM method.

Many researchers have analysed the influence
of input parameters on prediction accuracy and
observed that the indoor occupancy plays a
critical role in energy prediction model. A fixed
occupancy schedule or simple day type
(weekdays/weekends) was usually adopted as an
input parameter by some models (Li et al. 2017;
Neto and Fiorelli 2008; Cui et al. 2016). These
results indicated that the fixed profile of the

occupancy was able to increase the prediction
accuracy compared to that of the cases without
consideration of the occupancy schedule. Other
approaches to simulate dynamic internal load
variance caused by occupants were based on the
time factor (Wong et al. 2010; Zuo et al. 2016)
and historical load of electricity consumption
(Osman et al. 2009; Mena et al. 2014). For
example, a multi-layered feedforward network
with Bayesian regularisation was adopted by
Chae et al. (2016) to predict the sub-hourly
energy consumption. In their work, both the day
type and time of day were selected as input ele-
ments. As for the large-scale campus building,
the fit of a load-forecasting model was dramati-
cally improved when time of day and day of
week were introduced as inputs (Powell et al.
2014). In another study (Leung et al. 2012;
Kwok et al. 2011), three kinds of factors were
introduced to represent the internal load features:
the operating schedules of air units, hour of day,
and occupancy space power demand. Although
use of the occupancy space power demand would
enhance the model accuracy, the prediction was
not sufficiently accurate for winter. Concerning
implementation of historical load as an influential
factor of internal load, An et al. (2013) used
previous electricity consumption as the input of a
multi-output prediction model to forecast the
energy demand for the next half hour. In Paudel
et al. (2014), transitional characteristics and
power-level characteristics of the heating system
were adopted as the input variables of the ANN
for load prediction. These variables were vali-
dated using a precise description of transitional
delay for fluctuation of occupancy in buildings.
In recent research (Deb et al. 2016), the authors
concluded that the ANN was able to be used for
forecasting the next day’s energy use based on
the five previous days’ data with acceptable
accuracy. In all the above studies, the fixed
occupancy schedule, time factor, and historical
internal load were considered as input parameters
of the energy-prediction models.

However, variance of the internal load
aroused by randomness due to occupancy varia-
tion cannot be represented comprehensively and
accurately with a fixed occupancy schedule, time
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factor, or historical load. Most previous works
show that there is a considerable performance
gap between the predicted and measured energy
use. One cause of poor performance is the
interaction between occupancy and building
systems. By introducing occupant information as
a component of building performance, energy
consumption can be very different according to
the various occupant actions (Feng et al. 2016).
Therefore, introducing a real occupant schedule
into the building energy-prediction model has
been brought to the forefront. Some energy-
prediction models have been proposed based on
the estimated occupancy profile (Virote and
Neves-Silva 2012). However, in reality, few
energy-prediction models use true occupant
presence or interactions (adjusting thermostats,
lighting control, etc.) as the inputs to the model
design because the key parameters regarding
occupancy is difficult to collect. Some basic
models were proposed based on a few test
buildings, such as an airport terminal (Huang
et al. 2015) or single office room (Gruber et al.
2014).

The number of occupants is not easy to count
and should be measured by intrusive sensors,
such as cameras and pattern recognition
(Labeodan et al. 2015; Liu et al. 2013). Personal
privacy is one problem during implementation.
The non-intrusive types of sensors, such as
pyroelectric infrared (PIR), ultrasonic, and
acoustic sensors, can only be used to determine
whether the room is occupied, rather than
determining the actual number of occupants (ul
Haq et al. 2014; Sun et al. 2014). As an indirect
estimation, the amount of the total energy con-
sumed to supply fresh air was applied to simulate
the occupancy area and occupancy rate in a
commercial building (Kwok and Lee 2011).
According to Hailemariam et al. (2011) and
Amayri et al. (2016), occupancy-detection accu-
racy was improved when various sensors were
associated with a motion sensor. However,
overfitting is one problem for the occupancy-
detection model. Probabilistic models have been
usually adopted for the development of an
accurate dynamic occupancy model, which use
statistical data to predict the probability of certain

behaviour, such as the stochastic presence of
occupancy. Researchers proposed many proba-
bilistic approaches to estimate the number of
occupants based on the heterogeneous Markov
chain model (Page et al. 2008; McKenna et al.
2015), inhomogeneous Markov chain model
(Chen et al. 2015), and semi-Markov model
(Dong and Lam 2014), which generate a time
series of the state of occupancy. According to Li
and Dong (2017), the inhomogeneous Markov
chain model outperformed ANN and SVM for
short-term prediction of occupancy in residential
buildings. In addition, long-vacancy activities,
e.g., vacations or absences greater than one
week, were described by Stoppel and Leite
(2014) using a probabilistic method. The simu-
lation result was integrated with EnergyPlus for
energy-consumption prediction. Liao and Bar-
ooah (2010 and Liao et al. (2012) conducted a
study on occupancy modelling, and an agent-
based model was developed to simulate the
arbitrary behaviour of individual occupants. The
survey and sensor data were collected as the
initial agents’ states (occupied/unoccupied).
Apart from probabilistic models, a stochastic
model was also utilised by researchers. Tah-
masebi and Mahdavi (2015) generated daily
occupancy data based on year-long observational
data on occupancy. The results suggested that
stochastic presence modelling could offer a better
representation of occupants’ presence rather than
distribution and peak values (Sun et al. 2014;
Mahdavi and Tahmasebi 2015). Unlike the
probabilistic model and agent-based model, the
random walking approach was proposed by Ahn
and Park (2016). They regarded occupant pres-
ence as unpredictable in certain cases. Recently,
a logistic regression model is proposed by Shi
et al. (2017) to forecast the building’s occupancy
state. The proposed model has been validated
with higher accuracy than the Markov chain
algorithm. It should be noted that most models
mentioned above require people-counting data as
necessary known parameters, which is difficult
collect due to the implementation cost and ease
of constancy.

Many strategies have been proposed to esti-
mate the indoor occupancy by utilising

50 J. Wu et al.



environmental sensors. As for a CO2-based
detection model, (Mumma et al. 2004; Ansanay-
Alex 2013) developed an equation to calculate
the number of occupants by using CO2 concen-
tration measurement, which is regarded the ana-
lytical method. However, the slow response with
a delay and difficulty of physical parameter
identification were the main drawbacks of this
equation. Similarly, Yang et al. (2014) has
pointed out that late responses of the CO2 sensor
is one limitation when applying CO2 sensor for
occupancy number calculation. The reliable
correlating CO2 level with actual occupancy is
difficult when the office spaces are irregular and
open (Meyn et al. 2009). When the CO2 sensors
are suitably installed and details about observed
rooms (room volume and air flow rate) are
known, this method performs well for the
detection of indoor occupancy in closed-space
offices. Latterly, more accurate methods were
developed to compensate for these drawbacks.
A CO2-detection sensor network was installed to
measure the gas concentration of 19 locations.
SVMs, neural networks, and hidden Markov
models were introduced as possible techniques
for studying the occupancy detection (Dong et al.
2010). The autocorrelation function was applied
by Szczurek et al. (2016) to examine the regu-
larities in the CO2 concentration and to identify
the pattern related to each occupancy profile.
They also found that the CO2 variation corre-
sponding to a fixed occupancy profile could be
quite different in the same building. Hence, local
receptive fields (LRF) with random weights were
adopted as feature learning by Zhu et al. (2017),
and later, a classifier was trained for division of
the occupancy level. Díaz and Jiménez (2017)
reported the trend of CO2 concentration in the
office building and compared different ways to
estimate occupancy. The result indicated that the
estimation errors for occupancy were higher
using moving averages than with raw data. Jin
et al. (2015) utilised sensing by proxy to develop
an occupancy-estimation algorithm. The con-
vection effect and dispersion rate of the CO2

concentration and indoor air were considered in
their algorithm. As for the probabilistic models,
simulation was conducted by generating a grey-

box model based on CO2-concentration mea-
surement to estimate the number of occupants in
a multi-room case (Ebadat et al. 2015). In the
model, the physical parameters and occupancy
were estimated by using the maximum likelihood
and regularised deconvolution approach. Similar
work was proposed and compared to black-box
methods in Ebadat et al. (2013). The Bayesian
approach was used by Bottegal et al. (2015a) to
estimate the occupancy signal; other unknown
parameters are estimated by the expectation–
maximisation algorithm.

The application of the above-mentioned
model in occupancy estimation requires a care-
ful training process wherein both people-
counting data and environmental parameters are
necessary. Collection of comprehensive data
might be expensive or infeasible, especially for
small time intervals.

3.1.2 Statements of Contribution

After reviewing peer research, a few key points
are identified:

• Despite the extensive application of ANNs in
prediction, ANN training is time-consuming
and greatly affected by model parameters. It is
necessary to improve the generality and pre-
diction performance of the fundamental ANN
models.

• As one of the leading influential factors for
energy consumption in buildings, the occu-
pancy factor is usually introduced as a fixed
occupancy schedule, time factor, or historical
load as an input parameter of the energy-
prediction model. Few studies have focused
on using a dynamic occupancy profile to
predict the building load with ANN. The
neglect of occupancy presence and behaviour
is one cause of the performance gap between
the predicted and measured energy use.

• As mentioned above, some occupancy-
detection models, although providing precise
prediction of the indoor occupancy level,
depend on people-counting data or various
sensors. Collection of comprehensive data

3 Prediction of Occupancy Level and Energy Consumption … 51



might be expensive or infeasible, especially
for small time intervals, because installation
of new sensors is difficult due to privacy issue
for most buildings in operation. Most fre-
quently found sensors are temperature,
humidity and CO2 sensors. Hence, investi-
gating the occupancy pattern from environ-
mental parameters is a challenging but
significant task. However, the occupancy-
estimation algorithm developed based on the
analytical method is not as accurate as other
models because the identification of physical
parameters is not evaluated during calculation.

Hence, the objects of this study are manifold.
First, the blind system identification (BSI) models
are proposed to blindly compute the number of
occupants based on CO2 concentration. Unlike
the aforementioned occupancy-estimation mod-
els, the BSI models require no prior knowledge of
people-counting data or extra training steps. In
addition, the estimation result is more accurate
than that by using the analytical method because
the measured error is eliminated and prior expe-
rience parameters are considered during calcula-
tion. Second, fundamental ANN models, ELM
models, and ensemble models are constructed as
the prediction performance of building energy
consumption. Finally, we compare the perfor-
mance of these three models with the different
supplementary inputs, i.e., true occupancy, esti-
mated occupancy from BSI models, and without

inputs of occupancy. Overall, this chapter focuses
on bridging the gap between energy-prediction
models and the dynamic occupancy profile esti-
mated from indoor CO2 concentration.

The primary contribution of this chapter the
presentation of an integrated approach to esti-
mate the occupancy level based on BSI and
develop a prediction model of the electricity
consumption of an AC system based on an ANN
with the occupancy input from the BSI estima-
tion. As shown in Fig. 3.1, the estimation model
of the current occupancy has been carried out
based on measured CO2 concentration and elec-
tricity consumption of the fresh-air system at tier
1. At tier 2, the prediction models are established
based on the ANN model to predict the elec-
tricity consumption of the AC system at the next
time step. The superiority of the ANN model
with the supplementary input of estimated cur-
rent occupancy is verified by comparing the
ANN model results without the input occupancy.

The paper is structured as follows. In
Sect. 3.2, we identify the occupancy-estimation
model based on BSI. In Sect. 3.3, we provide an
introduction to the energy demand-prediction
model using ELM and FFNN. The reference
room and datasets and the parameter analysis are
introduced in Sect. 3.4 and Sect. 3.5, respec-
tively. In Sect. 3.6, we discuss the results of the
energy-consumption estimation with and without
occupancy estimation as an input parameter.
Finally, in Sect. 3.7, conclusions are made.

Fig. 3.1 Outline of the
research methodology
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3.2 Occupancy Estimation
Methodologies

BSI is a technology aimed at retrieving a system’s
unknown information from its outputs only. The
word blind means that the system’s inputs are not
available for analysis. The task of BSI is to
identify the inputs or the system function from
outputs as well as other available data obtained
from the system (Abed-Meraim et al. 1997).

Usually, the occupant number can be roughly
estimated from the mass-conservation equation
of CO2 concentration based on the analytical
method. In this chapter, however, the measured
error term and prior experience of parameters are
considered in our model. The calculation process
can be regarded as an optimisation process that is
repeated iteratively until an accurate solution is
found for optimisation. The superiority of BSI is
that the calculations are completed automatically
without parameter tuning or training process. In
addition, the estimation result is more accurate
than that of the analytical method because the
measured error term and prior experience of
parameters are considered during calculation
(Abed-Meraim et al. 1997). Among different
estimation approaches, ML and Bayesian esti-
mation are adopted to the BSI problems.

3.2.1 Frequentist Maximum
Likelihood (ML) Approach

The variation of indoor CO2 concentration was,
based on the mass-conservation law, mathemat-
ically derived as in Ebadat et al. (2013). We
discretise the continuous-time model by standard
backward Euler discretisation, and the indoor
measured CO2 concentration can be expressed as

y kð Þ � y k� 1ð Þ
T

¼
_Q
vent

kð Þþ _Q
leak

kð Þ
V

C� y k� 1ð Þð Þ

þ g
V
O k� 1ð Þþ e k� 1ð Þ;

ð3:1Þ

where y is the measured CO2 concentration, T is
the sampling time, and k is the discrete time

domain. _Q
vent

kð Þ is the supply fresh air rate,
_Q
leak

kð Þ is the air leakage, C is the outdoor air
CO2 concentration and assumed equal to
450 ppm, and V is the volume of considered
room.g is the CO2-generation rate per person and
assumed to be 0.005 L/s, O tð Þ is the number of
occupants at time t, and O tð Þ 2 Nþ .e tð Þ is the
measurement error following the Gaussian dis-
tribution Nð0;r2Þ.

Then, Eq. (3.1) can be rewritten as

I� aDð Þy ¼ 1� að ÞCþ boDOþ e, ð3:2Þ

y :¼
y 1ð Þ
y 2ð Þ
..
.

y nð Þ

2
6664

3
7775;O :¼

O 1ð Þ
O 2ð Þ
..
.

O nð Þ

2
6664

3
7775; e :¼

e 1ð Þ
e 2ð Þ
..
.

e nð Þ

2
6664

3
7775;

ð3:3Þ

where a ¼ 1� _Q
vent

kð Þþ _Q
leak

kð Þ
V T, bo ¼ g

V T; I is the
n-dimensional identity matrix, and D is the n-1-
dimentional identify matrix.

It should be noted that Eq. (3.1) is a simplified
governing equation that does not account for the
changes in parameters a and bo due to human
activities with time variations. In this study, the
simplification is reasonable, as the human activ-
ity of all office workers does not vary greatly.
However, in other types of buildings, these non-
ideal issues would need to be considered. In this
model, yielding the unknown parameters, which
reflect the air leakage, CO2-generation rate per
person, measurement noise, and occupancy,
correspond to h as

h :¼ abor
2O 1ð ÞO 2ð Þ. . .O nð Þ� �T ð3:4Þ

We assume that measured CO2 concentration
described in model (1) follows the distribution
function as the normal distribution Nðl;r2Þ. As
Eq. (3.2) follows the form as y ¼ AþBe and
the measurement error e is assumed as Nð0;r2Þ,
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the measured CO2 concentration y must also
follow the normal distribution functionNðl; r2Þ,
which is expressed as

p y; hð Þ ¼ N my; covy
� �

; ð3:5Þ

where my is the expected value and covy is the
variance value, which are expressed as

my ¼ I� aDð Þ�1 1� að ÞCþ I� aDð Þ�1boDO
covy ¼ r2 I� aDð Þ�1 I� aDð Þ�T

�

ð3:6Þ
When using a normal distribution to describe

a given independent vector, the log-likelihood
function is adopted to estimate the unknown
parameters:

logL hð Þ ¼ log covy
� �þ 1

2r2
eTe: ð3:7Þ

Thus, the realisation of ML estimation can be
regarded as the optimisation problem of
Eq. (3.7). The execution of the operation can be
carried out by iterating of following two steps:
(1) assign the initial values for parameter
[a; bo;r2] and calculate the occupancy O by
ML estimation; (2) fix the occupancy O and

recalculate the parameter [a; bo;r2]. Calculation
is terminated when the required minimum cost
function is reached.

3.2.2 Bayesian Estimation Approach

In the Bayesian estimation, we consider the
occupancy-estimation problem as a multiple-
input and single-output (MISO) linear time-
invariant discrete-time dynamic system, as
shown in Fig. 3.2 and Eq. (3.8).

y tð Þ ¼
Xþ1

i¼1

gyiy t�ið Þ þ
Xþ1

i¼1

guiu t�ið Þ þ
Xþ1

i¼1

goio t�ið Þ þ e tð Þ;

ð3:8Þ

where
Pþ1

i¼1 gyi,
Pþ1

i¼1 gui and
Pþ1

i¼1 goi are the
transfer functions reflecting the dynamics of the
model driven by the input signals. yðtÞ is the
measured CO2 concentration, uðtÞ is the actual
level of the fresh-air system, which is presented
as electricity consumption in kWh. oðtÞ represents
the number of occupants in the room at each time
instant and eðtÞ is the zero-mean Gaussian white

noise with unknown variance r2.

Fig. 3.2 Block scheme of the
MISO model
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After revising all the input signals y,u, and o
into the Toeplitz matrix as Tn yð Þ, Tn uð Þ, and
Tn oð Þ, we reserve the symbols Y, U, and O for
matrices Tn yð Þ, Tn uð Þ, and Tn oð Þ respectively.
Therefore, Eq. (3.8) can be rewritten as

y ¼ Ygy þUgu þOgo þ e ð3:9Þ

The transfer functions gy,gu, and go follow the
Gaussian distribution (Rasmussen 2004):

gy �N 0; kyKby
� �

;

gu �N 0; kuKbu

� �
;

ð3:10Þ

go �N 0; koKbo

� �

where Kby, Kbu, and Kbo are n� n covariance
matrices obeying the Weibull distribution, whose
structure depends on the shaping parameters by,
bu, and bo, respectively, which regulate how fast
the signal decays in the time series. by, bu, and
bo are scalars in the interval ½0; 1Þ. The scaling
factors ky, ku, and ko tune the amplitude of the
responses from the corresponding input signals.

Then, the unknown parameters are defined as

h :¼ o tð Þ by bu bo ky ku ko r
2

� �T ð3:11Þ

gy follows the posterior distribution of a given
y and h as a Gaussian distribution, namely,

Pðgyjy; hÞ ¼ N Cy; Py
� �

; ð3:12Þ

where Py ¼ ðYTY
r2 þKby

�1Þ�1
, Cy ¼ Py YT

r2 . In
Eq. (3.12), the transfer function gy can be esti-
mated as

ĝy ¼ E gyjy; h
� � ¼ Cyy ð3:13Þ

Similarly, the other two transfer functions, gu
and go, can also be derived as in Eq. (3.13).
Clearly, such estimators are determined based on
the function of h.Thus, the initialisation of the
unknown parameter h is fundamental in the
Bayesian estimation algorithm.

The method to estimate h is to maximise the
marginal likelihood (Labeodan et al. 2015) as
follows.

ĥ ¼ arg max
h logpðyjhÞ ð3:14Þ

However, solving the nonlinear Eq. (3.14) in
that form is difficult, because y, u, and o and gy,
gu, and go obey the Gaussian distribution. For
this reason, an iterative solution is adopted by
maximising the complete log-likelihood:

L y; gjhð Þ ¼ logP y; gjhð Þ
¼ logPðyjg; hÞþ logP gjhð Þ: ð3:15Þ

The expansion of Eq. (3.13) is composed of
eight components, leading to differentiable

equations to update bhkþ 1
from bhk. For relevant

calculation details, refer to Bottegal et al.
(2015b).

3.2.3 Evaluation Criterion

The performance of BSI for occupancy estima-
tion described in the previous section is evalu-
ated. To assess the performance of the proposed
models of the occupancy estimators, we consider
the normalised root-mean-square error (NRMSE)
(Yang et al. 2014) as the performance index,
defined as

NRMSE ¼
ffiffiffiffiffiffiffiffi
ô�o22
T

q
omax � omin

; ð3:16Þ

where bo 2 R
n is the estimated number of occu-

pants in n sampling time, o represents the true

occupant count, k�k22 is the l2-norm, and T is the
number of samples per day. However, the esti-
mation error would be underestimated when
using abovementioned NRMSE in this case
study because the maximum occupant number
omax is relatively large compared with other
studies. Hence, NRMSE adopted in this chapter
is revised as:
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NRMSE� ¼
ffiffiffiffiffiffiffiffi
ô�o22
T

q
omean

; ð3:17Þ

where omean is the mean value of occupants
number.

Because the measured CO2 concentration
with spikes cannot correctly reflect the real
environmental situation of the whole room, data
smoothing for CO2 concentration is conducted as
important pre-treatment before calculating the
number of occupants. Three methods have been
adopted to smooth the CO2 concentration,
including two-hour moving average, two-hour
bin, and globally smooth (Cho and Lee 2016).

3.3 Energy-Consumption
Prediction Methodologies

Energy-consumption prediction is an important
research topic in building energy management,
which means to forecast future energy demand
based on historical load data, weather data, social
factors, etc. It is well recognised that the prediction
of energy consumption in the long, medium, and
short term are important for energy market plan-
ning and investments. In particular, a very-short-
term (hours or minutes ahead) estimation of elec-
tricity demand is prerequisite to the anticipatory
controlmodel, which is able to improve the system
performance of buildings. Therefore, a precise
prediction in these scenarios would lead to more
efficient energy management and result in con-
siderable reduction in the operational cost for both
energy suppliers and end users in buildings.

In this study, FFNN and ELM are the two
neural networks used as very-short-term models
to predict the electricity consumption of the AC
system installed in the reference room. The
structures of these neural networks are described
in this section.

3.3.1 Architecture of FFNN Model

FFNNs were designed based on the biological
nervous system, which deals with complex

external things (Meyn et al. 2009). The network
consists of a large number of neurons arrayed in
layers, where the neurons in different layers are
connected. Figure 3.3 (Yan and Yao 2010)
shows a representative model that is used to map
the relationship between the input and output.
The whole problem can be described to find the
function F F : x ! zð Þ, which estimates the out-
put z based on input x.

The training process of FFNN contains two
stages. In the first stage, a set of inputs xilði ¼
1; 2; . . .. . .;mÞ and the desired output zqðq ¼
1; 2; . . .. . .; nÞ are used. The summed output Il of
neuron l in the FFNN is determined by using
Eq. (3.18).

Il ¼ f
Xm
i¼1

wilxi þ bl

 !
; ð3:18Þ

where bl is a bias set specifically for each neuron,
wil i ¼ 1; 2; . . .. . .;mð Þ is the weight, and f
denotes the activation function, commonly
defined as the sigmoid function described by
Eq. (3.19).

f xð Þ ¼ 1
1þ e�x

ð3:19Þ

The output Il will be used as an input signal
for the neurons in the next layer connecting to
this neuron l. The input signals are transmitted
from the input layer to the output layer through
the network to determine the network outputs. In
the second stage, the network output of network

Fig. 3.3 The architecture of FFNN (Wei et al. 2018)
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bzq is compared with the desired output, i.e., zq.
The comparison error is used to adjust the
weights and biases during the back-propagation.
Naturally, the sum of the error can be reduced
after the iterative training process.

In this study, we use an FFNN with one
hidden layers of neurons and a single linear
output to predict the electricity consumption of
an AC system. The number of hidden neurons is
determined when the accuracy is satisfied as
changing the structure of the FFNN. The acti-
vation function is a sigmoid function for all
layers. During the back-propagation training
process, the gradient-descent algorithm has been
used to decrease the sum-of-the-squares of error
to tune the weights and biases.

3.3.2 Architecture of ELM Model

As mentioned before, it is known that funda-
mental ANN faces some challenging issues, such
as slow learning speed and necessity of human
intervention (Huang et al. 2011). Compared with
those traditional computational intelligence
techniques, ELM provides better generalisation
performance at a much faster learning speed and
with less intervention. Unlike fundamental ANN,
ELM not only tends to reach the smallest training
error, but also the smallest norm of the output
weights. According to the neural network theory
(Bartlett 1997), the generalisation performance of
the model would be improved when the smaller
training error and smaller norm of weights are
both considered.

ELM is a tool of learning algorithm for the
single-layer FFNN architecture (Huang et al.
2006). The essence of ELM is that the hidden
layer need not be tuned. Therefore, this algorithm
requires less calculation time compared to the
traditional FFNN because it determines the net-
work weights and minimises the sum of the error
simultaneously without iterative training. In the
ELM, the least-squares method is adopted to
optimise the output weighting matrix b.

A set of inputs xiði ¼ 1; 2; . . .. . .;mÞ corre-
sponds to a known representation rkðxiÞ. The
desired output is represented aszqðq ¼ 1;
2; . . .. . .; nÞ. The estimated output bzq is expected
to be calculated to minimise the estimation error to
zero. The process can be expressed as

Xn
q¼1

ẑq � zq ¼ 0: ð3:20Þ

The problem can be described as

rk xið Þb ¼ zq ð3:21Þ

where rkðxiÞ is the input matrix of the ELM,
which is represented as

rk xið Þ ¼ rk x1ð Þ;rk x2ð Þ. . .. . .rk xmð Þ½ �
f bk1 þwk

1f . . .w2
1f b11 þw1

1 x1
� �� �� �

f bk1 þwk
1f . . .w2

1f b11 þw1
1 x2

� �� �� �
..
.

f bk1 þwk
1f . . .w2

1f b11 þw1
1 xm

� �� �� �

0
BBBBB@

1
CCCCCA

T

m�n

;

ð3:22Þ
b ¼ b1; b2. . .. . .bm½ �T ; ð3:23Þ
zq ¼ z1; z2. . .. . .zn½ �T : ð3:24Þ

According to matrix theory (Li et al. 2005),
the optimal matrix b in Eq. (3.21) is derived as

b ¼ rk xið Þþ zq ð3:25Þ

where rkðxiÞþ is the Moore–Penrose gener-
alised inverse of rkðxiÞ.

Hence, the extreme learning of the weighting
matrix takes place of the iterative training pro-
cess of traditional back-propagation neural
networks, such like FFNN. ELM tends to obtain
the least training error at once. Ease of use,
compatibility with various types of activation
functions, fast calculating speed, and supe-
rior performance are the advantages of this
algorithm.
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3.3.3 Architecture of Ensemble
Model

Engineering problems such as energy-use pre-
diction is perhaps difficult for a single neural
network. An ensemble of results from two neural
networks is conducted for the possible
improvement of prediction accuracy. In this
research, the neural-network ensemble is devel-
oped based on the average value of model out-
puts from FFNN and ELM. In Fig. 3.4, the
neural-network ensemble in this study is shown.

3.3.4 Evaluation Criteria

To evaluate the obtained results from prediction
model and compare the performance of different
FFNN models, the coefficient of determination
(R2), root-mean-square error (RMSE), and mean
absolute percentage error (MAPE) are usually
adopted as evaluating criteria. These coefficients
are defined as

R2 ¼
Pn

q¼i ŷq � yq
� �2

Pn
q¼i yq
� �2 ; ð3:26Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
q¼i ŷq � yq
� 	2
n

vuut
� 100; ð3:27Þ

MAPE ¼ 1
n

Xn
q¼1

ŷq � yq
yq












� 100%: ð3:28Þ

In addition toMAPE, defined byEq. (3.28), two
other indices are adopted for evaluate the model
performance: MAPEpeak and MAPEsimple�peak.

MAPEpeak ¼ Lmpl � L̂mpl
Lmpl










� 100; ð3:29Þ

where Lmpl and bLmpl are the actual and predicted
electricity consumption of the AC system.
MAPEpeak is introduced to locate the actual daily
consumption peak and its occurrence time, and to
compare the magnitude to the predicted value at
the same time. The relative error is calculated as
the performance index.

Then, the MAPEsimple�peak is adopted to
compare the daily peak value of the actual and
predicted electricity consumption, without con-
sidering the occurrence time, defined as

MAPEpeak ¼ Lopl � L̂ppl
Lopl










� 100; ð3:30Þ

where Lopl and bLppl are the peak values of the
actual and predicted electricity consumption of
the AC system.

3.4 Reference Room and Dataset

The reference room, in this investigation, is
located in a commercial building in Beijing. The
performance of the occupancy-estimation model
and that of the energy-prediction model are
evaluated using a 36-seat office room with a floor
area of 152 m2 and height of 2.9 m, as depicted
in Fig. 3.5. Ventilation of the office room is
provided by an independent fresh-air system
combined with a variable-refrigerant-volume
(VRV) AC system. According to the design
standard, the indoor temperature and relative

Fig. 3.4 The neural-network ensemble structure
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humidity are required to be maintained within the
range of 26–28 �C and 50–65%, respectively.
The occupancy schedule on weekdays is from
9:00 a.m. to 17:00 p.m., Monday–Friday. The
door is kept closed most of time due to the
entrance guard system.

Real-time measurements of the CO2 concen-
tration, indoor temperature, and indoor relative
humidity are continuously recorded and fed into
a database. In addition to thermal-comfort-related
parameters, additional measurements, including
the energy consumption of the appliances,
lighting, and AC system, are also recorded. In
this work, we did not measure the flow rate of the
fresh air, but the corresponding value is obtained
indirectly from the electricity consumption of the

fresh-air system. For example, when the fresh-air
system is set to the medium, high, or off state, the
corresponding flow rate of each state is estimated
to be 400 ; 700, and 0m3=h, respectively. The
climatic parameters are obtained from meteoro-
logical data acquisition system. The data set
covers the period of 06/2017–09/2017 with a
resolution time of 10 min. Table 3.1 presents the
main features of the monitoring sensors.

The output value of sigmoid function is 1.0
when the input is a large negative number and
0.0 for a large positive input (Krarti et al. 1998).
All inputs and outputs are therefore normalised
to the interval [0,1] and fed into the FFNN. This
is done to give all inputs an equal chance for
contribution in model development.

Fig. 3.5 Reference office room for model test
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3.5 Parameter Selection Analysis

In this section, we discuss the effect of different
parameter choices on the prediction accuracy of
our model, including the number of input param-
eters and structure parameters of the FFNNmodel.

3.5.1 Principal Component Analysis

In this study, a full-scale site measurement on the
environment parameters, energy-consumption
data, and estimated number of occupants, includ-
ing 12 variables, for the reference office room is
conducted. In reality, it is not always possible to
obtain all the variables that are collected in this
study. Hence, the importance is that prediction of
the energy consumption with acceptable accuracy
is still achievable even if using only a few of the
most influencing parameters.

In order to identify the most important factors
which have large influences on the power con-
sumption of AC system, principal component
analysis (PCA) has been used to assess these
factors. PCA is a popular multivariate statistical
analysis (Jackson 2005) method and has been
successfully adopted in various applications (Qin

and Wang 2005; Platon et al. 2015). The analysis
result is shown in Table 3.2. The contribution
rate and cumulative contribution rate of PCA are
displayed in Fig. 3.6. It is indicated that the four
principal components explain 81.479% of the
total variance. Hence, these four components are
used to represent the raw variables.

Based on the PCA result, these 12 indepen-
dent variables are listed with the most significant
at the top in Table 3.3. The values of the com-
ponent matrix are shown in Table 3.4. Variables
having coefficients with absolute values greater
than 0.7 from these top 5 components were
considered significant. In this study, the former
six independent variables, including electricity
consumption of appliances, number of occu-
pants, electricity consumption of lighting, solar
radiation, electricity consumption of the fresh-air
system, and outdoor temperature are selected as
the inputs to the predication model. The reason
for omitting the other six variables is that certain
variables have less effect on building energy
consumption and too many predictors that are
highly correlated may cause a decrease in the
accuracy.

Furthermore, the electricity consumption of
the AC system with three time-step delays are
also parameterised as inputs to predict the energy

Table 3.1 Monitoring
equipment

Parameter Range Accuracy Brand

Temperature −40 – 125 °C ± 0.5 °C SHT20

Humidity 0–100% RH ± 3% RH SHT20

CO2 0–5000 ppm ± 75 ppm Telaire T6703

Occupancy – >90% –

Table 3.2 Principal
component analysis results

Component Eigenvalues Contribution rate
(%)

Cumulative contribution rate
(%)

1 5.474 45.615 45.615

2 2.369 19.742 65.357

3 1.059 8.822 74.179

4 0.876 7.300 81.479

5 0.656 5.470 87.060
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consumption at the current time. Additionally,
the hour of the day is coded by a sine value,
as below, and fed into the energy-prediction
model.

sh ¼ sin
pt
48

� 	
ð3:31Þ

3.5.2 Effect of Structure Parameters
of FFNN Model

To save computational time, an FFNN model
with fewer neurons in the hidden layer is more
favourable if it can meet the requirement of
accuracy. The values of the structure parameters

Fig. 3.6 The contribution
rate and cumulative
contribution rate of PCA

Table 3.3 Variable
importance ranked by PCA

Variables Unit/index

Electricity consumption of appliances (P) kWh

Number of occupants (O) 0� 36

Electricity consumption of lighting (L) kWh

Solar radiation (S) W=m2

Electricity consumption of fresh air system (F) %

Outdoor dry-bulb temp. (T) �C

Indoor relative humidity (r) %

Indoor dry-bulb temp. (b) �C

Outdoor relative humidity (R) %

Indoor carbon dioxide (C) ppm

Electricity consumption of fan (A) kWh

Wind speed (W) m=s
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are identified by changing the neurons in the
hidden layer.

In order to find the effect of the FFNN
structure on its accuracy in prediction, we
investigate the performance of different neuron
sizes. We start from three-layer FFNNs, for
which the number of neurons in the hidden layer
increases from 10 to 160. Each network

configuration has been tested by repeating 10
times to evaluate the robustness of the perfor-
mance, which should eliminate the effect of the
randomness of the initial setting of weights and
bias on the prediction accuracy. The performance
of these FFNNs is identified by using the value
of MAPE after 1500 iterations. Figure 3.7 shows
the value of MAPE in training (80% datasets)

Table 3.4 Component matrix

Components

1 2 3 4 5

Electricity consumption of appliances (P) 0.928 0.170 −0.031 0.002 0.095

Number of occupants (O) 0.925 0.212 0.032 −0.043 0.105

Electricity consumption of lighting (L) 0.859 −0.142 0.144 0.052 −0.164

Solar radiation (S) 0.822 −0.041 0.248 0.019 0.179

Electricity consumption of fresh air system (F) 0.817 −0.416 −0.086 0.039 0.090

Outdoor dry-bulb temp. (T) 0.754 0.382 −0.221 −0.277 0.109

Indoor relative humidity (r) −0.156 0.643 0.179 0.342 0.145

Indoor dry-bulb temp. (b) −0.556 0.552 0.147 0.219 0.150

Outdoor relative humidity (R) −0.138 −0.543 −0.032 0.305 0.549

Indoor carbon dioxide (C) 0.458 0.626 −0.460 −0.078 0.159

Electricity consumption of fan (A) 0.653 0.082 0.669 0.061 −0.089

Wind speed (W) 0.583 −0.069 −0.363 0.632 −0.310

Fig. 3.7 MAPE performance with different number of neurons in the hidden layer
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and validating (20% datasets) for all these
FFNNs. It is shown that MAPE is the lowest
(6.43% for training, 7.29% for validation) when
the hidden-neuron size is 120, which is regarded
as the best structure of the model.

3.6 Prediction Results

In this section, the aforementioned FFNN and
ELM are applied to predict the electricity con-
sumption of the AC system. To highlight some
aspects of the benchmark test and introduce
occupancy as the input of the energy-prediction
model, we conduct following three studies:
(1) Occupancy-estimation results.
(2) Energy-prediction result with the input of

true occupant counts.
(3) Energy-prediction result with the input of

estimated occupant counts.

3.6.1 Occupancy-Estimation Results

Table 3.5 shows the NRMSE of two BSI models,
where the average daily results are reported. The
Bayesian estimation outperforms frequentist ML
in all cases except Thursday, yielding a low error

ranging from 0.177 to 0.2782 in NRMSE*,
whereas the NRMSE* of the frequentist ML
model ranges from 0.1874 to 0.3228. Smoothing
the CO2 concentration data by the moving-
average approach and globally smoothing
approach can reduce the estimation errors of both
BSI models. However, the binned CO2 data fails
to provide an improvement in terms of NRMSE*
with Bayesian estimation.

The visualisation comparisons of the occu-
pancy estimated by two BSI models are pre-
sented in Fig. 3.8. Figure 3.8 indicates that the
two models have satisfactory accuracy. It also
needs to be mentioned that there are several
spikes in the true occupancy that are not identi-
fied by either BSI model. These spikes represent
a sudden change in the number of occupants in
short time, such as stopping by or temporary
departures. In addition, the indoor CO2 concen-
tration is a cumulative parameter with time lags;
it is difficult to track every spike in the occu-
pancy profile. As for Monday and Thursday, the
estimated profiles present the smoothed version
of true occupancy. Furthermore, the two BSI
models fail to track the time of departure on
Monday evening, because occupants may work
overtime occasionally.

Because the experimental data reported in the
literature is not available and the metering

Table 3.5 NRMSE of frequentist ML and Bayesian estimation

Methods CO2 concentration
data

NRMSE Average

Mo Tu We Th Fr

Frequentist ML Raw data 0.3026 0.2210 0.3028 0.2282 0.2368 0.2582

Moving average data 0.2798 0.1978 0.2912 0.1952 0.2324 0.2392

Binned data 0.3228 0.2216 0.2966 0.1926 0.2156 0.2498

Globally smoothed
data

0.3124 0.2138 0.2808 0.1874 0.2086 0.2406

Average 0.3044 0.2134 0.2928 0.2008 0.2232 0.2470

Bayesian
estimation

Raw data 0.2782 0.1834 0.2046 0.2596 0.1856 0.2228

Moving average data 0.2324 0.2060 0.2062 0.2624 0.1738 0.2160

Binned data 0.2818 0.2202 0.2290 0.2504 0.1628 0.2288

Globally smoothed
data

0.2380 0.1950 0.2130 0.2422 0.1864 0.2250

Average 0.2576 0.2010 0.2258 0.2536 0.1770 0.2230
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condition and equipment are not the same, it is
not possible to fully compare all the models and
their performance indices. Several proposed
models [74, 76 and 83] report an NRMSE
between 0.1912 and 0.2509, which is similar
with those of the frequentist ML model (0.2470)
and the Bayesian estimation (0.2230). In sum-
mary, BSI produces the accurate estimation for
real-time occupancy. The dynamic occupancy
level is regarded as the significant indicator that
can affect the indoor load variance. Thus, the
simulation result obtained from the Bayesian
estimation model is adopted as the input variable
to predict the electricity consumption of the AC
in the room.

3.6.2 Energy-Prediction Result
with True Occupant
Counts

In order to investigate the prediction performance
of the models with the input of true occupant
counts, other models without the input of occu-
pant number are also constructed for comparison.
Additionally, the effects of PCA pre-treatment on
prediction accuracy are analysed, and a total of
twelve models are proposed to predict the energy

consumption of the AC system in the next time-
step z kþ 1ð Þ shown in Table 3.6. As shown in
Table 3.6, the model named FFNN10 refers to
the energy-prediction model with 10 inputs that
adopts FFNN as the neural-network structure.

In Table 3.6, z kð Þ; z k � 1ð Þ, and z k � 2ð Þ are
the electricity consumption of the AC system at
times k, k � 1; and k-2. O kð Þ is the true occupant
count and sh is the sine value representing the
hour of the day.

Electricity consumption of the AC system and
true occupancy profile during the workday is
depicted in Fig. 3.9. From Fig. 3.9, the occu-
pancy profile provides major information about
electricity-consumption variances. However, the
electricity consumption is not in accordance with
the occupancy profile at 18:00. Thus, it further
shows that occupancy cannot be regarded as the
only indicator to predict energy demand; other
parameters such as time indicator and electricity
consumption of the appliance might be consid-
ered as indicators as well.

Tables 3.7 and 3.8 show the comparison of
the performance of the proposed models,
including FFNN, ELM, and the ensemble models
in training datasets and validation datasets,
respectively. Average results from cross valida-
tion are reported to avoid the biased condition. It

Fig. 3.8 The occupancy estimation results of the five working days by using moving-average data of CO2

concentration
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Table 3.6 Input parameters of prediction models (with true occupant counts)

Model Input parameters Output
parameter

FFNN10,
ELM10,
Ensemble10

P kð Þ;O kð Þ;L kð Þ; S kð Þ; F kð Þ;T kð Þ; z kð Þ; z k� 1ð Þ; z k� 2ð Þ; sh z k � 1ð Þ

FFNN9,
ELM9,
Ensemble9

P kð Þ;L kð Þ;S kð Þ; F kð Þ;T kð Þ; z kð Þ; z k� 1ð Þ; z k� 2ð Þ; shÞ

FFNN15,
ELM15,
Ensemble15

P kð Þ;L kð Þ;S kð Þ; F kð Þ;T kð Þ;W kð Þ; r kð Þ; b kð Þ;R kð Þ;C kð Þ;A kð Þ; z kð Þ; z k� 1ð Þ; z k� 2ð Þ; sh

FFNN16,
ELM16,
Ensemble16

P kð Þ;O kð Þ;L kð Þ; S kð Þ; F kð Þ;T kð Þ;W kð Þ; r kð Þ; b kð Þ;R kð Þ;C kð Þ;A kð Þ; z kð Þ; z k� 1ð Þ; z k� 2ð Þ; sh

Fig. 3.9 Measured electricity consumption of AC system and true occupancy profile during workday

Table 3.7 R2; MAPE, and RMSE of the prediction models in the training datasets

R2 MAPE (%) RMSE

Number of
inputs

9 10 16 15 9 10 16 15 9 10 16 15

FFNN 0.9035 0.9463 0.9329 0.9268 8.9297 5.3017 6.4489 7.4219 4.2430 2.3001 3.3053 3.3711

ELM 0.9222 0.9773 0.9542 0.9466 7.8592 4.1950 4.4273 7.7359 3.7112 1.5749 2.6393 4.0630

Ensemble 0.9363 0.9831 0.9624 0.9048 5.7525 3.0384 3.8203 7.1314 3.2596 1.5230 2.3353 3.3028
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is clear that the ensemble models generate the
best prediction results and validation results with
10 inputs. The reason may be that the data of true
occupant counts is necessarily close to the elec-
tricity consumption of AC system and hence
improves the prediction performance. It could be
seen from the result that models developed using
the PCA selection slightly outperform the models
using all the inputs. In addition, it is validated
that the ensemble model in general can improve
the prediction accuracy more than the individual
neural-network model.

If we look more deeply into the performance
indices of prediction models, the boxplots of
Tables 3.7 and 3.8 are plotted in Fig. 3.10a and b
according to the different numbers of input
parameters and prediction models, respectively.
The predictions are evaluated based on the min-
imum, maximum, median, 25th-percentile, and
75th-percentile values of the performance indi-
ces. By considering the variance of the R2;

MAPE, and RMSE, the prediction models with
10 inputs yields the least variance. Furthermore,
it is obvious from Fig. 3.10a that better predic-
tion is obtained by the prediction models with 16
inputs rather than those with 9 inputs. This
means that models with 10 inputs > models with
16 inputs > models with 9 inputs > models with
15 inputs, where > indicates ‘performs better
than’. The results illustrate that the model per-
formance is more sensitive to the number of
occupants rather than the PCA selection. As for
the performance of different prediction models
shown in Fig. 3.10b, it can be easily seen that
FFNN models provide the lowest R2 value and
highest MAPE and RMSE. However, it is diffi-
cult to draw the conclusion for the best-
performing method between the ELM model

and ensemble model from Fig. 3.10b, as ELM
models provide more stable performance with
smaller variances of R2 and MAPE.

3.6.3 Energy Prediction Result
with Estimated Occupant
Counts

In Sect. 3.6.2, the ensemble model with the input
of true occupant counts has been validated with
high accuracy compared to other models. How-
ever, the real-time data of occupant counts is not
always available for an office building. By using
the BSI model, the number of occupants is
blindly estimated through a non-intrusive
method. In this section, the prediction perfor-
mance of the prediction models with the input of
the estimated number of occupants is investi-
gated. Twelve models with different input
parameters are proposed to predict the energy
consumption of the AC system in the next time-
step, as shown in Table 3.9.

Tables 3.10 and 3.11 show the R2, MAPE,
and RMSE of the proposed models in the train-
ing and validation datasets. The best training
performance with the highest R2 (0.9594) and
lowest MAPE (4.7972%) and RMSE (2.3977) is
obtained with the ensemble model, which out-
performs FFNN and ELM in all configurations.
As illustrated in Table 3.10, the overall training
performance of ELM is superior to all FFNNs
with different numbers of input variables. Fur-
thermore, when using 10 variables, including the
estimated number of occupants, as inputs, the
FFNN, ELM, and ensemble models yield better
training qualities than when using 9, 15, or 16
inputs. It is suggested in this research that using

Table 3.8 R2; MAPE, and RMSE of the prediction models in the validation datasets

R2 MAPE (%) RMSE

Number of
inputs

9 10 16 15 9 10 16 15 9 10 16 15

FFNN 0.9174 0.9398 0.9072 0.8758 7.7964 6.9675 8.6625 10.3566 3.9548 2.1590 2.7754 4.9012

ELM 0.9170 0.9501 0.9355 0.9330 7.2806 5.8652 7.7034 8.1813 3.8555 2.2792 2.9170 3.4351

Ensemble 0.9315 0.9639 0.9384 0.9231 6.6259 4.7923 5.6668 8.4668 3.4996 1.9179 2.6227 3.7502
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a

b

Fig. 3.10 a Boxplot R2 (left), MAPE (middle), and RMSE (right) according to different number of input parameters.
b Boxplot R2 (left), MAPE (middle), and RMSE (right) according to different prediction models
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too many predictors that are highly correlated is
likely to cause a decrease in the accuracy.

In the validation dataset shown in Table 3.11,
adding the estimated number of occupants as an
input variable leads to higher prediction accuracy
as well. For example, R2, MAPE, and RMSE
corresponding to the ensemble model with 10
input variables are 0.9435, 6.1852%, and 3.1280,
respectively, whereas using only 9 input vari-
ables gives performance indices as 0.9315,
6.6259%, and 3.4996. Additionally, the predic-
tion accuracy decreases with increasing numbers

of input variables. It is shown that the predictor
selection conducted by PCA plays a crucial role
in the energy-prediction model. Therefore, using
fewer input variables has several advantages,
such as high accuracy and simple measurement.
In addition, it is validated that the ensemble
model can compensate for the predicting error of
the single-FFNN or ELM model.

Tables 3.8 and 3.11 show the comparison of
the performance of prediction models with the
input of true occupant counts and the prediction
models with the input of estimated number of

Table 3.9 Input parameters of prediction models (with estimated number of occupants)

Model Input parameters Output
parameter

FFNN10,
ELM10,
Ensemble10

P kð Þ; bO kð Þ;L kð Þ; S kð Þ; F kð Þ;T kð Þ; z kð Þ; z k� 1ð Þ; z k� 2ð Þ; sh z k� 1ð Þ

FFNN9,
ELM9,
Ensemble9

P kð Þ;L kð Þ; S kð Þ; F kð Þ;T kð Þ; z kð Þ; z k� 1ð Þ; z k� 2ð Þ; shÞ

FFNN15,
ELM15,
Ensemble15

P kð Þ;L kð Þ; S kð Þ; F kð Þ;T kð Þ;W kð Þ; r kð Þ; b kð Þ;R kð Þ;C kð Þ;A kð Þ; z kð Þ; z k� 1ð Þ; z k� 2ð Þ; sh

FFNN16,
ELM16,
Ensemble16

P kð Þ; bO kð Þ;L kð Þ; S kð Þ; F kð Þ;T kð Þ;W kð Þ; r kð Þ; b kð Þ;R kð Þ;C kð Þ;A kð Þ; z kð Þ; z k� 1ð Þ; z k� 2ð Þ; sh

*bO kð Þ is the estimated number of occupants

Table 3.10 R2 MAPE, and RMSE of the prediction models in the training datasets

R2 MAPE (%) RMSE

Number of
inputs

9 10 16 15 9 10 16 15 9 10 16 15

FFNN 0.9035 0.9350 0.9326 0.9273 8.9297 6.4329 8.0790 7.4219 4.2430 3.3526 3.2626 3.3711

ELM 0.9222 0.9682 0.9400 0.9466 7.8592 5.2422 6.3590 7.7359 3.8555 3.1633 3.2824 3.4351

Ensemble 0.9363 0.9594 0.9607 0.9048 5.7525 4.7972 6.0657 7.1314 3.2596 2.3977 2.8677 3.3028

Table 3.11 R2 MAPE, and RMSE of the prediction models in the validating datasets

R2 MAPE (%) RMSE

Number of
inputs

9 10 16 15 9 10 16 15 9 10 16 15

FFNN 0.9174 0.9224 0.8884 0.8758 7.7964 7.2981 8.7161 10.3566 3.9548 3.7841 4.5786 4.9012

ELM 0.9170 0.9412 0.9412 0.9330 7.2806 7.0690 7.8973 8.1813 3.7112 2.4239 4.4015 4.0630

Ensemble 0.9315 0.9435 0.9272 0.9231 6.6259 6.1852 7.6433 8.4668 3.4996 3.1280 3.6373 3.7502
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occupants. Although the neural-network models
using the estimated number of occupants as input
have improved the prediction accuracy to some
extent, the R2 of the ensemble model with true
occupant counts is higher (0.9639), which is
strong evidence supporting that the indoor
occupancy is an important factor for the
electricity-consumption prediction of the AC
system.

Figure 3.11a and b show an overview of R2,
MAPE, and RMSE of the prediction models in
the training and testing datasets. It can be seen
that the variance of the RMSE value is the largest
among these three indices. When the number of
inputs is relatively large, such as 15 or 16, the
RMSE value of FFNN models is extremely large
in testing datasets. The results show that FFNN
models probably suffer an overfitting problem
when the number of inputs is large.

Figure 3.12a shows the comparison results of
the measured and predicted electricity con-
sumption of AC system for training process (27
Aug. 2017 to 31 Aug. 2017). The measurement
and prediction are in good agreement for the
three comparative methods during the training
process. However, the measured data fluctuates
uncertainly during the day, especially on the
mornings of the second, third, and fourth days.
Hence, the absolute error between the measured
and predicted values sometimes becomes large.
This is because some unexpected sudden changes
in input variables deteriorate the prediction per-
formance of the models, especially when the
electricity consumption becomes zero or suffers
unpredictable spikes. For example, the electricity
consumption of the VRV system became zero at
18:20 on the second training day, when the
indoor lighting was not switched off until 18:50.
Therefore, the prediction value of the electricity
consumption of the VRV system fluctuated
slightly and was non-zero during this half hour,
because the electricity consumption of lighting
was adopted as one input parameter.

Figure 3.12b shows the comparison of the
measured and predicted electricity consumption
of the AC system for the validation process (1
Sep. 2017). It is shown that the predicted result

of the ensemble model is in the best accordance
with the actual target, even though there are some
fluctuations (e.g., from 11:00 to 14:00).
Table 3.12 lists the actual electricity consump-
tion, predicted electricity consumption, and pre-
dicted error in detail. The improvement is
expected because the ensemble model combines
outputs from different networks, which may be
offset; hence, the average error, which is the error
for ensemble network, is the lowest, as shown in
Fig. 3.13. Hence, a better result with higher
accuracy is provided by the ensemble model.

In order to demonstrate the merits of the
proposed ensemble model on a more definite
basis, Fig. 3.14 depicts the overall validation
performance of ensemble models with various
numbers of input variables. Compared to
ensemble models with 9 and 10 inputs, the
ensemble models with 15 and 16 inputs fail to
offer highly accurate prediction of electricity
consumption. Specifically, the estimated energy
uses of these two models are lower than the
actual measurement during the day. Although
high correlation of the measured and predicted
results is verified by using an ensemble model
with 10 inputs, the peaks observed at samples 17,
21, and 35 are not captured effectively by this
model. This suggests that unusual data spikes in
the testing day that were not observed during the
training days are more difficult for prediction
models to manage.

As for the peak forecasting shown in
Table 3.13 and Fig. 3.12b, it is evident that the
peak value (0.61 kWh) of measured electricity
consumption is captured effectively by the ELM
model. Additionally, the improvements are more
dramatic with ELM models, such that the
MAPEpeak/MAPEsimple�peak is the lowest, i.e.,
1.9770%.

As in the case of overall performance, the
ELM models are more able to learn peak beha-
viour than the FFNN and the ensemble models,
whereas ensemble models provide best prediction
performance in evaluating criteria, such as R2,
MAPE, and RMSE. In summary, the advantages
of the various network models are different; the
model selection should be determined case by
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a

b

Fig. 3.11 a Graphic representation of R2 (left), MAPE
(middle), and RMSE (right) of the prediction models in
the training datasets. b Graphic representation of R2 (left),

MAPE (middle), and RMSE (right) of the prediction
models in the testing datasets
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case. For example, the ELM models could be
used to predict the peak electricity demand. Based
on the load forecasting of regional buildings, the
energy market operator could determine the dis-
patch strategy of electricity to match the maxi-
mum supply capacity of generators and regional
peak demand. In addition, the estimation of
electricity usage at off-peak hours could be con-
ducted based on ensemble models. This infor-
mation is also important to guide consumers to
develop their own energy-saving plans and

improve the reliability of the power network at
the same time.

Figure 3.15 shows the comparison of the
measured and predicted electricity consumption
of the twelve proposed models. It can be noted
that, for ensemble models, 97.8% of the datasets
have been included in the error range of ± 10%,
whereas 93.5% and 86.9% of the datasets are
within the range for ELM models and FFNN
models, respectively. Specifically, the validation
datasets of the ensemble model with 10 inputs all

a

b

Fig. 3.12 a Comparison of measured and predicted electricity consumption for training process (10 input variables).
b Comparison of measured and predicted electricity consumption for validation process (10 input variables)
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Table 3.12 The actual value, predicted value, and predictor error on 1 Sep. 2017 (10 input variables)

Time Actual value (kWh) Predicted value (kWh) Predicted error (kWh)

ELM FFNN Ensemble ELM FFNN Ensemble

00:30 0.206 0.210 0.204 0.207 −0.004 0.002 −0.001

01:00 0.204 0.209 0.204 0.207 −0.005 0.000 −0.003

01:30 0.206 0.211 0.204 0.207 −0.005 0.002 −0.001

02:00 0.206 0.207 0.203 0.205 −0.001 0.003 0.001

02:30 0.206 0.210 0.204 0.207 −0.004 0.002 −0.001

03:00 0.206 0.204 0.203 0.204 0.002 0.003 0.002

03:30 0.204 0.201 0.204 0.203 0.003 0.000 0.001

04:00 0.206 0.202 0.203 0.203 0.004 0.003 0.003

04:30 0.206 0.206 0.204 0.205 0.000 0.002 0.001

05:00 0.206 0.200 0.203 0.201 0.006 0.003 0.005

05:30 0.206 0.199 0.204 0.201 0.007 0.002 0.005

06:00 0.204 0.195 0.203 0.199 0.009 0.001 0.005

06:30 0.206 0.198 0.204 0.201 0.008 0.002 0.005

07:00 0.206 0.206 0.205 0.205 0.000 0.001 0.001

07:30 0.206 0.236 0.210 0.223 −0.030 −0.004 −0.017

08:00 0.206 0.238 0.216 0.227 −0.032 −0.010 −0.021

08:30 0.204 0.241 0.225 0.233 −0.037 −0.021 −0.029

09:00 0.288 0.329 0.340 0.334 −0.041 −0.052 −0.046

09:30 0.232 0.252 0.304 0.278 −0.02 −0.072 −0.046

10:00 0.204 0.235 0.255 0.245 −0.031 −0.051 −0.041

11:30 0.242 0.276 0.303 0.290 −0.034 −0.061 −0.048

11:00 0.438 0.455 0.466 0.461 −0.017 −0.028 −0.023

11:30 0.610 0.598 0.560 0.579 0.012 0.050 0.031

12:00 0.492 0.473 0.565 0.519 0.019 −0.073 −0.027

12:30 0.532 0.519 0.535 0.527 0.013 −0.003 0.005

13:00 0.506 0.490 0.523 0.506 0.016 −0.017 0.000

13:30 0.520 0.511 0.519 0.515 0.009 0.001 0.005

14:00 0.538 0.518 0.540 0.529 0.020 −0.002 0.009

14:30 0.514 0.499 0.550 0.525 0.015 −0.036 −0.011

15:00 0.570 0.547 0.553 0.550 0.023 0.017 0.020

15:30 0.554 0.512 0.516 0.514 0.042 0.038 0.040

16:00 0.522 0.492 0.535 0.514 0.030 −0.013 0.008

16:30 0.520 0.490 0.525 0.507 0.030 −0.005 0.013

17:00 0.466 0.428 0.452 0.440 0.038 0.014 0.026

17:30 0.324 0.303 0.305 0.304 0.021 0.019 0.02

18:00 0.406 0.363 0.266 0.315 0.043 0.140 0.091

18:30 0.204 0.172 0.219 0.195 0.032 −0.015 0.009

19:00 0.206 0.195 0.212 0.204 0.011 −0.006 0.002

19:30 0.206 0.200 0.217 0.209 0.006 −0.011 −0.003

(continued)
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Table 3.12 (continued)

Time Actual value (kWh) Predicted value (kWh) Predicted error (kWh)

ELM FFNN Ensemble ELM FFNN Ensemble

20:00 0.206 0.201 0.213 0.207 0.005 −0.007 −0.001

20:30 0.206 0.206 0.212 0.209 0.000 −0.006 −0.003

21:00 0.204 0.200 0.210 0.205 0.004 −0.006 −0.001

21:30 0.206 0.206 0.213 0.209 0.000 −0.007 −0.003

22:00 0.206 0.202 0.210 0.206 0.004 −0.004 0.000

22:30 0.206 0.206 0.213 0.210 0.000 −0.007 −0.004

23:00 0.206 0.202 0.212 0.207 0.004 −0.006 −0.001

23:30 0.206 0.206 0.214 0.210 0.000 −0.008 −0.004

Fig. 3.13 Predicted errors of different models for validation process (10 input variables)

Fig. 3.14 Comparison of measured and predicted electricity consumption for ensemble models
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fall within the error range. However, the
ensemble models with 9, 15, and 16 inputs are
not good compared to that with 10 inputs. The
results show that the electricity-consumption
prediction model requires the predictor selec-
tion conducted by PCA and the input of occupant
numbers so as to capture the characteristic of the
indoor load variance, which has significant
influence on the energy consumption of the
building.

In order to demonstrate the effects of estima-
tion error of occupant counts on the accuracy of
energy-prediction models in a more tangible
way, the predicting performance of ensemble
model with estimated occupancy as input
parameter was compared to the predicting

performance of ensemble model with true occu-
pancy, which was used as benchmark model.
Figure 3.16 graphically shows the comparison
results for the testing day. Differences can be
noticed between the ensemble models and the
benchmark model at morning peak, noon break
and afternoon peak (point 1, 2 and 3). Con-
cretely, the estimated occupant number is less
than true value at 9:30 (point 1) and 18:30 (point
3), corresponding energy consumption predicted
by ensemble model is slightly smaller than the
benchmark model and the true value. Moreover,
the time lag of occupancy estimation at noon
break is obvious, hence the energy-prediction
result of ensemble model is not satisfying as
benchmark model during lunch time.

Table 3.13 MAPEpeak and MAPEsimple�peakv of the prediction models in the validating datasets

MAPEpeak/MAPEsimple�peak

Number of inputs 9 10 16 15

FFNN 14.7253/10.0687 8.2606/7.4109 15.8267/15.8267 13.6686/12.2969

ELM 2.0219/2.0219 1.9770/1.9770 3.8770/3.8770 2.3503/2.3503

Ensemble 6.2041/6.2041 2.6054/2.6054 5.9748/5.9748 5.6591/5.6591

Fig. 3.15 Comparison between the measured and predicted electricity consumption of twelve models
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3.6.4 Limitations

One limitation of this study is that the there is
only one indoor sensor measuring the indoor
CO2 concentration. However, it is difficult for
one sensor to capture the dynamics of the entire
indoor environment. A comprehensive sensor
network covering centre and corners of the room
should be installed to supply sufficient informa-
tion about the real-time variance of the indoor
environment. The estimation result in this study
is acceptable because the test-bed office is a
closed and regular space, which is easily mea-
sured by a single sensor. A similar study con-
ducted with a comprehensive sensor network
may produce better results. Because the place-
ment of sensors is vital, we shall investigate the
optimal placement of sensors in our future works.

The second limitation of this study is that the
application of the energy-prediction model
combining the dynamic occupant profile is only
validated during the summer. The model per-
formance should be deeply investigated for a
one-year period, as the occupancy interactions
with the building system and energy profiles of
subcomponents would vary according to the
season. A comprehensive study and more elab-
orate approaches should be carried out to inves-
tigate the model’s prediction performance.

3.7 Conclusion

In this chapter, we present an integrated approach
to estimate the occupancy level based on BSI and
develop a prediction model of electricity con-
sumption of an AC system based on a neural
network with an input of the occupancy deter-
mined by BSI estimation. At tier 1, the model
starts from the identification of indoor CO2

dynamics, which is derived from the mass-
conservation law and venting level. The
unknown parameters, including the model
parameters and occupancy level, are estimated by
BSI models. The calculation results show that
both frequentist maximum likelihood and Baye-
sian estimation can provide reliable and accurate
estimation in a real-time and non-iterative way.

After estimation of the occupancy, tier 2 is to
establish the prediction model of the electricity
consumption of the AC system using feed-
forward neural network, extreme learning
machine, and ensemble models. To analyse some
aspects of the benchmark test for the effect of
structural parameters and input-selection alter-
natives, three studies are conducted: (1) the effect
of the predictor selection conducted by principal
component analysis, (2) the effect of the esti-
mated occupancy as the supplementary input,
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and (3) the effect of the neural-network ensem-
ble. The following are the main results obtained:

• When using 10 variables, including the esti-
mated number of occupants, as inputs, the
feed-forward neural network, extreme learn-
ing machine, and ensemble models provide
the best performance than when using 9, 15,
or 16 inputs. It is shown that consideration of
too many supplemental input variables is
likely to deteriorate the accuracy of predic-
tion. Predictor selection conducted by princi-
pal component analysis plays crucial role in
the energy-prediction model.

• The consideration of extra inputs of occu-
pancy can improve the accuracy of training
and validation for the proposed models.
Hence, the electricity-consumption prediction
model requires the occupant number to be
input so as to capture the characteristic of the
indoor load variance, which has a significant
influence on the energy consumption of the
building.

• The best performance with the highest R2 and
lowest MAPE and RMSE can be obtained
with the ensemble model, which is better than
the feed-forward neural network and extreme
learning machine in all neural-network struc-
tures. As for the peak forecasting, the extreme
learning machine is better able to learn peak
behaviour than the feed-forward neural net-
work and ensemble models.

From this work, it is generally concluded that
occupancy greatly impacts the electricity con-
sumption of the AC system. Further optimisation
of building system operation should be guided by
occupant interaction. The present work is the first
step in addressing a challenging problem in
short-term prediction models for electricity con-
sumption of HVAC system with occupant pro-
file. Prediction of energy consumption of air
conditioner is an important part of prediction of
the total building energy consumption. Prediction
of energy consumption of air conditioner offers
us an index to evaluate the performance of air
condition and check the operation status of air

conditioner. The prediction of the energy con-
sumption is also applied in designing optimal
control strategy for air conditioner, contributing
to reduction of building energy consumption and
environment protection. In future work, the
results obtained in this study can be beneficial
toward developing a predictive controller of
HVAC systems for energy conservation and
thermal comfort. Compared with the traditional
feedback controller, the predictive controller is
designed to maintain the indoor temperature with
lower thermal violations and minimizing the
energy consumption. Although the time step of
current prediction model is 10 min, the selection
of control period for improving the operating
performance of HVAC system would be inves-
tigated in the future work. As for energy usage in
large-scale buildings, utility companies could
apply demand-side management measures after
extracting load forecasting to reach a proper
load-shape objective, such as load shifting and
strategic conservation. Hence, dedicated energy-
prediction models with consideration of occu-
pancy provide an opportunity to couple the
electric grid and the building’s control actions,
and to be utilised by buildings and utility com-
panies to simultaneously optimise their
performance.
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4Cluster Analysis for Occupant-
Behaviour Based Electricity Load
Patterns in Buildings: A Case Study
in Shanghai Residences

Song Pan, Da Yan, Xingxing Zhang,
and Yixuan Wei

Abstract

In building performance simulation, occupant
behaviour contributes to large uncertainties,
which often lead to considerable discrepancies
between actual energy consumption and sim-
ulation results. This chapter aims to extract
occupant-behaviour related electricity load
patterns using classical K-means clustering
approach at the initial investigation stage.
Smart-metering data from a case study in
Shanghai, China, was used for the load pattern
analysis. The electricity load patterns of
occupants were examined on a daily/weekly/
seasonal basis. According to their load pat-

terns, occupants were categorized as (a)
white-collar workers, (b) poor or older fam-
ilies and (c) rich or young families. The daily
patterns indicated that electricity use was
much more random and fluctuated over a
wide range. Most households of the monitored
communities consumed relatively-low elec-
tricity; the characteristic double peak with
higher level of consumption in the morning
and evening were only apparent in a relatively
small subset of residents (mostly white-collar
workers). The weekly analysis found that
significant load shifting towards weekend
days occurred in the poor or old family
group. The electricity saving potential was
greatest in the white-collar workers and the
rich or young family groups. This study
concludes with recommendations to stake-
holders utilizing our load profiling results. The
research provides a rare insight into the
electricity-use-related occupant behaviours of
Shanghai residents through the case study of
two communities. The findings of the study
are also presented in a meaningful way so that
they can directly aid the decision-making of
governments and other stakeholders interested
in energy efficiency. The research results are
also relevant to the building energy simulation
community as they are derived from observa-
tions, and thus can have the potential to
improve the efficiency and accuracy of numer-
ical simulation results.
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Keywords

Occupancy behavior � K-means cluster �
Electricity � Load profile � Residential
building

Nomenclature
C Cluster
CV Coefficient of variation
d Euclidean distance
K Number of clusters
N Number of input vector
MLR Multiple linear regression
RMSD Root-mean-square deviation
t Time
x Object in a Euclidean n-space
y Object in a Euclidean n-space

4.1 Introduction

The building sector is responsible for the largest
share of energy consumption and greenhouse
emissions in the world. Achieving high energy-
efficiency in buildings has become a primary
objective that many stakeholders strive for
(Mathew et al. 2015). Apart from the advance-
ment of energy technologies, another challenge in
achieving higher energy-efficiency in buildings is
influencing occupant behaviour, which is a key
driver of building energy consumption. Past
studies demonstrated that changes in occupant-
behaviour have a large energy-saving potential
during the life-cycle of buildings, i.e. about 7.4%
in US (Dietz et al. 2009), 9.1% in China (Zhang
et al. 2016) and 11.3% in UK (Philip et al. 2014).

Over the last decades, significant research
effort has been devoted to energy load prediction
and pattern profiling/classification. In this regard,
IEA Annex 66 participants achieved a break-
through in defining and predicting the occupant-
behaviour related energy loads in buildings (they
defined and standardized the energy impact of

actions such as the adjustment of thermostats for
comfort, switching lights, opening/closing win-
dows, pulling up/down window blinds, and
moving between spaces (Yan et al. 2017; Zhao
et al. 2014; Wang et al. 2016; Reinhart 2004;
D’Oca and Hong 2014). However, it is still a long-
way to fully understand how energy is used by the
end user on the demand side, since the phe-
nomenon is complex, stochastic and requires a
multi-disciplinary approach. Profiling the energy
load of occupants qualitatively and quantitatively
is another way to improve load prediction (Tsek-
ouras et al. 2007; Chicco et al. 2006; Nikolaou
et al. 2012; Ayodele et al. 2017; López et al.
2011). The identification of characteristic energy
load patterns could make occupants aware of their
energy-intensive behaviours, and provide the
social-technological basis for leveraging the eco-
nomic benefits and enhance the competitiveness
of utility companies.

For this purpose, the application of clustering
algorithms to analyze and classify the energy
consumption behaviour of a building was pro-
posed (Tsekouras et al. 2007). Owing to their
effectiveness, the most common clustering meth-
ods in load profiling are the K-means, the self-
organizing map (SOM), the minimum variance
criterion (MVM), and the fuzzy C-means
(FCM) (Tsekouras et al. 2007). Other less used
approaches include the Hopfield neural network
(López et al. 2011), the ISODATA algorithm and
the Support Vector Clustering (SVC). In addition,
different combinations of these algorithms are also
found in past studies (Tsekouras et al. 2007).

Since load profiling in residential buildings are
generally hindered by privacy concerns, most
research has only focused on office and public
buildings—despite the fact that residential occu-
pant behaviour is more complex and characterized
by randomness (Chen et al. 2012). Due to the
recent surge of interest in residential energy con-
sumption, the amount of energy data harvested
through the growing installation of smart meters
has also increased. Consequently, it is now nec-
essary to develop valid and beneficial methods for
presenting such data in meaningful ways to both
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the occupants and other stakeholders. This
information is of great importance to developing
countries, such as China, where residential
occupant behaviour is more diverse and also
contributes to considerable carbon emissions.

As a result, this chapter aims to fill the research
gap of load profiling in residential buildings by
exploring the situation in a developing country
utilizing long-term electricity. At the initial
investigation stage, this study characterized resi-
dential electricity load pattern utilizing the stan-
dard K-means clustering approach through a case
study in Shanghai, China. This research presents
the complex electricity behaviour of two resi-
dential communities in Shanghai in a meaningful
way and provides recommendations for different
stakeholders based on the findings.

Procedures for generating profiles of other
energy loads—i.e. hot water, space heating, etc.
—from empirical data could be developed in a
similar fashion and applied to synthetic activity
patterns without much modification. The activity
patterns can also be applied to occupant beha-
viours in various types of building simulation by
considering the unique energy characteristics of
occupants. The research results could also be
utilized to gauge the energy load pattern of a
district or the entire city by appropriately
weighing the different occupancy groups and
superimposing the results.

4.2 Cluster Concept

Cluster analysis is defined by Han, et al.
(2006) as a process of partitioning a set of
observations into subsets (clusters) in a way that
objects belonging to the same cluster have high
similarity, while objects belonging to different
clusters have low similarity. The clusters are
established according to a “dissimilarity func-
tion” based on distances, so as to achieve both
maximum internal cohesion within each cluster
and maximum external separations among dif-
ferent clusters. The clustering analysis has the
main objective to obtain sets of occupants and
load patterns. Cluster algorithms are generally

divided into six families: K-means, fuzzy clus-
tering, ISODATA, hierarchical clustering,
follow-the-leader clustering and self-organizing
map clustering (Aldenderfer and Blashfield
1985), among which K-means is recognized as
one of the most solid cluster analysis methods.
With a large number of variables, K-means can
be computationally faster as it doesn't require the
calculation all of distances between each obser-
vation and every other observation. Since it can
be written to efficiently deal with large data sets,
it is efficient for initial-stage investigations.

The classical K-means clustering method
groups a dataset of N input vectors to C clusters
using an iterative procedure. Initially the weights
of the C clusters are determined and a random
selection among the N input vectors is made for
the cluster centroids (Tsekouras et al. 2007). The
estimated centroids are then used to classify
occupants into clusters through Euclidean dis-
tance, expressed by

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � y1ð Þ2 þ x2 � y2ð Þ2 þ . . .þ xn � ynð Þ2

q
ð4:1Þ

where x ¼ x1; x2; . . .; xnð Þ; y ¼ y1; y2; . . .; ynð Þ
are two objects in a Euclidean n-space.

In the next step, the Euclidean distances of
each object of the centroid are recalculated in
such a way that each object of the centroid is the
average of the object of the load patterns within
the cluster. The procedure is repeated until the
stabilization of the cluster centroids. The optimal
number of clusters is not known a priori, and the
clustering quality depends on the value of
K (Tsekouras et al. 2007; Anderberg 1973).

The initial selection of cluster centroids is of
high importance as it influences whether con-
vergence of the algorithm will occur to a (local)
optima. Similarly, since a different number of
clusters leads to different kinds of occupancy
patterns, choosing an appropriate K value with
some knowledge of the application domain is
critical to obtaining meaningful results. Conse-
quently, different centroid and K values should
be tested to achieve the highest intra-cluster
similarity and the most suitable cluster result.
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4.3 Case Study of Occupant
Behaviour Patterns
in Residential Buildings

4.3.1 Data Source

The meteorological data for the period May 2013
to December 2015 was obtained from two public
housing communities in Shanghai:

• Community A was built in 2012 and is located
in Yangpu District. The 2 air-conditioning
units (671 W), the washing machine, and the
refrigerator (0.49kWh per day) were pre-
installed. There are 40 metered households
in this community with 2–3 residents and 70
m2 floor area on average.

• Community B was built in 2013 and is located
in Putuo District. Here too, the basic domestic
appliances were pre-installed and the house-
holds were equipped the same appliances as
Community A. There are 132 metered house-
holds in this community with two apartment
configurations of 45 m2 and 60 m2 size and
with an average of 2–3 residents per household.

According to the Köppene-Geiger climate
classification, Shanghai has a humid subtropical
climate with four distinct seasons. Hence,
Shanghai’s climate corresponds well to the rules
specified in the Energy Efficiency Design Stan-
dards for Residential Buildings in the Hot Sum-
mer and Cold Winter Zone. The set-point heating
temperature is about 18 °C and the heating sea-
son is from December to February. The set-point
cooling temperature is around 26 °C and the
cooling season is from June to August. The
average outdoor temperature in July and January
is 27.8 °C and 3.7 °C, respectively. Neither of
the observed districts are supplied with central-
ized heating systems.

Considering the complexity of the energy
performance of an actual building, it is difficult to
separate the influence of the occupant behaviour
from other factors, such as the climate, the
physical characteristics of the building, and the
type of the installed appliances. However, since

our data is obtained from the same city, the effect
of climate is expected to be weak. Likewise,
since both communities were built about the
same time with similar technologies, their
building characteristics (such as house type, floor
area, equivalent leakage areas and heat loss
coefficient) can be assumed to be similar as well.
Additionally, as appliances were uniformly pre-
installed, their impact on the electricity loads due
to their technological differences is expected to
be also marginal. Consequently, our collected
dataset enables us to examine the influence of
end-use behaviours on energy use patterns.

4.3.2 Methodology

Our analytical approach consists of three steps
(pre-processing, cluster analysis and correlation
analysis), which are described in detail below.

Pre-processing, the first step, is aimed at
restructuring the dataset and eliminating invalid
data. First, the original data collected at 15-min
intervals was processed in MATLAB and struc-
tured into hourly electricity consumption from
0:00 till 23:00 for each household. Then, the
datasets were analyzed with MATLAB and 34
curves were discarded as corrupted data (due to
noise and network failures). At the end,
36,318 days of data from 138 households were
deemed suitable for further analysis.

The second step encompassed the K-means
cluster analysis. Deciding the number of clusters
(the K value) is of great importance, as too few
clusters would affect the accuracy and too many
clusters would reduce the calculation efficiency.
Consequently, we tested several K values and
selected 10 as the most reasonable for our pur-
pose. Root-mean-square deviation (RMSD) was
used to test the difference between the measured
data and the centroid data, whereas the coeffi-
cient of variation (CV) was used to compare
several datasets with different sample sizes.

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

x1;t � x2;t
� �2

=n

s
ð4:2Þ
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CV RMSDð Þ ¼ RMSD=x ð4:3Þ

The initial centroids of K clusters were ran-
domly chosen by MATLAB from the electricity
consumption dataset. In Eq. (4.2), x1,t, is the
measured data and x2,t is the cluster centroid data
for epoch t, respectively, and x is the mean value
of within-cluster data. K-means clustering used
RMSD to minimize the distance between mea-
sured data with their cluster centroids. Figure 4.1
shows CV (RMSD) values against different
cluster number. It is worth noting that the rate of
decrease in the case of CV (RMSD) is gradual,
while the calculation time doubles as the cluster
number exceeded 15. As a result, we decided to
adopt a 10-cluster approach, as this configuration
performed well both in terms of efficiency and
accuracy (Tsekouras et al. 2007).

In step three, correlation analysis was used to
find relationship between the clusters and other
influencing factors (such as time of the day, week
or season) and to test the influence of different
factors on occupant electricity consumption pat-
terns. When two variables did not have normal
distributions, Spearman's rank correlation coeffi-
cient was applied as a nonparametric measure of
rank correlation. The correlation analysis was
performed with SPSS software.

4.3.3 Results and Analysis

4.3.3.1 Analysis of Daily Consumption
Figure 4.2 presents the centroids of hourly elec-
tricity consumption patterns over a day for each

cluster. The 10 clusters, derived from the 138-
household data, represent 10 different electricity
consumption behaviours. The breakdown distri-
bution of the ten clusters is illustrated in Fig. 4.3.
C2 represents 51% of residents, followed by C9
and C8 with 23% and 6%, respectively.

Daily electricity load profiles are shown in
Fig. 4.4. A double peak, with low morning and
pronounce evening consumption levels, charac-
terizes the electricity use profiles of the C1, C3
and C8 clusters—categorized as the clusters of
mostly white-collar workers. They regularly use
lighting and other appliances in kitchens, bath-
rooms and living rooms in the morning and
evening, before and after office hours. In con-
trast, the households of C2, C5, C7 and C9—
believed to be predominantly poor or older
families—exhibit pronounced mid-day energy
demand that extends well into the evening. These
occupants demonstrate energy-conscious beha-
viour owing to their culture. Particularly, the load
profiles of C2 and C9 (poor and/or elderly
occupants) are distinguished by their relatively
evenly distributed low electricity consumption
levels. In addition, load curves from C4, C6 and
C10 clusters—exemplifying rich and/or young
families—have extremely high nighttime elec-
tricity consumption levels due to air condition-
ing. Differences between the 10 identified
clusters are large owing to the diversity of
occupant behaviours. Consequently, consider-
able energy-saving potential can be identified
among these groups. Unlike to residential com-
munities in developed countries—with compa-
rable social status, climate and time of
construction, which are characterized by fully

Fig. 4.1 CV(RMSD) value
at different number of clusters
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automatized control systems and full-time, full-
space mode of operation—occupant behaviour is
extremely random and fluctuates over a wide
range in emerging economies.

As part of demand-side management
(DSM) measures, a few load shaping strategies
could be recommended on the basis of each
clusters’ diurnal load profile. Some profiles have
low load values (according to Fig. 4.2), in which
case load shifting, valley filling, conservation
and peak clipping are suitable measures to

smooth the profile shape, and hence to improve
the building energy efficiency. The prolonged
high daytime consumption pattern charactering
C5 and C7 could be addressed both by peak
clipping or conservation methods. Compared to
compulsive peak clipping measures that gener-
ally impair the quality of life by reducing the
thermal comfort of residents, visible smart
metering could encourage occupants to improve
their energy efficiency. Besides behaviour
change, replacing old plug-in equipment with
high efficiency appliances is also an effective
DSM approach. However, when it comes to
necessary loads during morning and evening
periods that cannot be reduced further—as in the
case of in C1, C3, C6 and C10—load shifting
and valley filling might be appropriate measures.
In these cases, dynamic Time-Of-Use (TOU)
pricing plays a critical role in DSM, as it enables
residents to optimize their energy use by select-
ing appropriate periods/tariffs for operating their
appliances.

4.3.3.2 Analysis of Seasonal
Consumption

Table 4.1 shows the correlation analysis of dif-
ferent months and clusters. In order to minimize
the influence of different amount of days and thus
data in each month and to perform a more direct
evaluation of seasonal impacts, the collected data

Fig. 4.2 The diurnal pattern of hourly electricity consumption as described by the centroids of the 10 identified clusters

C1
5%

C2
51%

C3
2%

C4
4%

C5

C6

C8
6%

C9
23%

C10
1%

Fig. 4.3 The percentage shares of the 10 clusters
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Fig. 4.4 Results of the 10
cluster analysis
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was normalized to percentage values. As pre-
sented in Table 4.1, seasonal changes in elec-
tricity consumption are indicated by increased
heating and cooling demands. Based on their
seasonal energy usage, the consumption patterns
of the 10 clusters can be categorized as: domi-
nated by the heating period (C1, C3, C6, C7 and
C10), dominated by the cooling period (C4, C5
and C8), no distinguished features (C2) and
dominated by the transitional-seasons (C9).
According to the clustering results, the overall
electricity consumption in the two communities
was slightly higher in winter than in summer.

The lifestyle and behaviour of southern Chi-
nese residents are unique. According to a rele-
vant survey (Hartkopf et al. 1986), it is common
to use air conditioning combined with partially
heating. In residential buildings, the percentage
of effective heating (when the air-conditioning
system is turned on) to occupancy period is
around 20% in winter. In other words, residents
rarely keep their AC running all the time for
heating. Furthermore, nearly 85% of occupants
prefer to open their windows for fresh air
(Hartkopf et al. 1986). Jian’s (2011) research
showed that summertime electricity consumption
from AC is strongly influenced by occupancy

patterns. The seasonal electricity consumption
within the 10 clusters ranges from less than 0.1
kWh /m2 to 7.4 kWh /m2. Figure 4.5 depicts
each cluster’s electricity load in the form of
boxplots based on the seasonal energy use levels.
The centroid values of the 10 clusters are regar-
ded as reference values, while minimum and
maximum consumptions are given in average
values. The average seasonal electricity load in
the identified clusters varies significantly, from
nearly 0.01kWh to 3.5 kWh. These diverse
energy consumption levels indicate great poten-
tials for electricity saving by improved occupant
behaviour, especially for clusters belonging to
the white-collar workers and rich and/or young
family category.

4.3.3.3 Analysis of Weekly
Consumption

Table 4.2 shows the correlation analysis between
the energy consumption of each cluster and dif-
ferent periods of the week. Because weekend
days comprise 28.57% (2/7) of a week and
weekdays comprise 71.4% (5/7), C5, C7 and C9
indicate significant load shifting to weekend
days. A comprehensive summary of the elec-
tricity consumption characteristics is shown in

Table 4.1 Adjusted percentage of correlation analysis between cluster and month

Month\Cluster 1 2 3 4 5 6 7 8 9 10

1 19% 5% 27% 17% 10% 31% 24% 16% 6% 35%

2 15% 7% 24% 11% 12% 21% 20% 13% 5% 33%

3 9% 8% 8% 7% 5% 8% 8% 11% 9% 6%

4 3% 10% 3% 5% 1% 0 1% 2% 11% 0

5 1% 11% 0% 1% 1% 0 0 1% 9% 0

6 2% 11% 0 1% 2% 0 0 1% 9% 0

7 13% 4% 2% 24% 30% 9% 15% 19% 7% 0

8 9% 7% 1% 15% 20% 3% 4% 12% 9% 0

9 4% 10% 1% 3% 3% 0 0 3% 10% 0

10 1% 12% 0% 0% 0% 0 0 0% 8% 0

11 4% 10% 1% 2% 3% 0% 2% 4% 11% 0

12 21% 4% 32% 13% 13% 27% 27% 17% 6% 27%

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Characteristics W&S \ W S&W S&W W&S W&S W = S \ W
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Table 4.3. The combination of K-means cluster-
ing and statistical analysis presents a viable
approach to identifying and characterizing dif-
ferent electricity load patterns. The cooling sea-
son in Shanghai lasts from July to August.
However, according to our results, typical cool-
ing season characteristics are not reflected in C2.
This can be partly explained by the fact that
community B is located near a campus and most
of its residents are lecturers who are generally
away for holiday in August. Another possible
explanation is the occupants’ strong energy
conservation awareness. These observations
indicate that even a limited amount of informa-
tion can affect the assumed electricity load pat-
tern and hence the accuracy of the predicted
energy demand. Therefore, future studies should
place more emphasis on gathering additional
information about the occupants.

In order to balance the effects of the seasonal
variability of electricity intensity distribution
owing to varying heating and cooling loads (see

Tables 4.1 and 4.3), electricity suppliers should
improve the reliability of the national grid and
avoid compulsory peak clipping measures. In
general, energy use associated with heating and
cooling in residential buildings has the greatest
potential for conservation, since different set-
point temperatures resulting from distinct occu-
pant behaviours and preferences can cause
markedly different energy consumption patterns.
Hence, energy awareness education and outreach
programs aiming to increasing building energy
efficiency without negatively affecting the ther-
mal comfort of residents should be widely
implemented to reduce peak demands.

4.4 Further Work

The results of the daily/weekly/seasonal elec-
tricity consumption patterns derived by K-mean
clustering and statistical analysis provides ave-
nues for future research in occupant-behaviour.

Fig. 4.5 Boxplot of seasonal
electricity load of each cluster

Table 4.2 Correlation analysis between cluster and weekday/weekend

Day/Cluster 1 2 3 4 5 6 7 8 9 10 Total

Weekday 1449 13,394 573 1006 947 579 306 1788 5256 128 25,426

Percentage 75% 73% 75% 71% 57% 73% 58% 76% 63% 70%

Weekend 488 4949 187 404 715 215 226 563 3090 55 10,892

Percentage 25% 27% 25% 29% 43% 27% 43% 24% 37% 30%

Total 1937 18,343 760 1410 1662 794 532 2351 8346 183 36,318

Percentage 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Characteristics Weekend Weekend Weekend
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On one hand, this study was subject to some
limitations, which should be addressed by addi-
tional benchmarking research. Possibilities for
improvements include: (1) optimizing the place-
ment of the first centroids—which in our case
were automatically positioned and then moved in
MATLAB and might have affected the cluster
results; (2) the isolation of occupant behaviours
from other influencing factors—in this regard,
further information needs to be collected about
the physical characteristics of buildings; and
(3) increasing the size of the dataset to enhance
the accuracy and reliability of model predictions.
On the other hand, future research should focus
on the quantification of each end-users’ contri-
bution and on the identification of other param-
eters that significantly influence occupant
behaviour (e.g. thermal comfort, social and eco-
nomic factors, etc.).

Building energy simulation plays a significant
role in predicting the energy performance for
domestic buildings and in assessing the efficacy
of specific policy targets. Occupant behaviour
influences energy consumption greatly. How-
ever, there is often a mismatch between calcu-
lated and real energy savings due to a

performance gap that is frequently caused by the
“Prebound Effect” (Sunikka-blank and Galvin
2012)—which refers to the difference between
the standardized/projected and the actual energy
use. In building performance simulation, inac-
curate results and mismatched policy targets are
the outcomes of too many assumptions about the
occupant behaviour. One possible solution is to
introduce energy use patterns derived from field
data instead of relying on generic assumptions
about the behaviour of occupants, which is usu-
ally the case in numerical simulations. Thus,
characterizing the clustering-analysis-derived
occupant behaviour patterns of various energy
sources (such as electricity, hot water, space
heating etc.) and integrating them into building
simulation software should be a future goal. In
this regard, different levels of simplifications
should be tested to identify the appropriate level
of smart metering required to balance accuracy
and efficiency.

Clustering analysis could also be used with
different levels of design and planning targets,
especially during the initial stage. Firstly, in the
thermal retrofit of single-family homes, the ana-
lyst could use the clustering benchmarking

Table 4.3 Electricity consumption characteristics of each cluster

Cluster Night period Morning peak During daytime Night peak Characteristics

1 3kWh@7:00 4kWh@22:00 Normal weekday

2 No significant
consumption

3 4kWh@7:00 5kWh@21:00 Normal weekday, higher
than c1

4 Constant Winter/summer, weekday

5 Peak at different
time

Weekend

6 Constant 3kWh@7:00 5kWh@23:00 Winter/summer, weekday

7 Constant Peak at different
time

Winter/summer, weekend

8 2.5kWh@7:00 3kWh@23:00 Normal weekday, later
peak

9 Peak at different
time

Weekend, lower than c5

10 Constant, and
high

5kWh@23:00 Winter/summer, extreme
weather
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results of the household in question to test the
cost-effectiveness of different retrofit plans under
different scenarios and thus customize their
design and recommendations. Secondly, in the
design of low-carbon communities, the analyst
could use clustering results from similar groups
of residents to test different design alternatives
and control strategies.

4.5 Conclusion

This chapter presented a systematic approach to
characterizing the electricity load patterns of two
residential communities in Shanghai on the basis
of occupant behaviours using the standard
K-means clustering method. Daily/weekly/
seasonal electricity consumption patterns have
been profiled and analyzed.

Occupants were categorized as white-collar
workers, poor or older families and rich or young
families owing to their load patterns. In our
study, the group of poor or older families con-
stituted the largest group, accounting for nearly
80% of the total sample. In our case, the
observed occupant behaviours were much more
random and fluctuated over a wide range. The
majority of metered households are characterized
by continuous low consumption levels. Only a
small proportion of households displayed the
dual peak pattern with increased morning and
evening consumption levels. The weekly analysis
found significant load shifting towards weekend
days in the case of the poor or old family
group. Based on the seasonal electricity loads
patterns, the clusters could be classified as
dominated by heating period, dominated by
cooling period, no distinguished features and
dominated by energy use during the transitional
seasons. The seasonal electricity consumption
ranged from less than 0.1 kWh /m2 to 7.4 kWh /
m2. The overall electricity consumption of the
observed communities was slightly higher in
winter than in summer. Great electricity-saving
potential was observed within the group of
white-collar workers and among the rich or
young families as the individual loads varied a
lot.

Based on the load profiling results, our rec-
ommendations to stakeholders for smoothing the
load shape and improving building energy effi-
ciency include approaches such as load shifting,
valley filling, conservation, peak clipping and
TOU.

Future works should characterize load curves
of various energy sources (such as electricity, hot
water, space heating) and integrate them with
building energy simulation engines to aid the
effective formulation of design and planning
targets at different levels. Out research is
expected to provide a valid and systematic
approach to profiling occupant behaviour in
selected residential settings and therefore to
improve the efficiency and accuracy of building
energy simulation in the contemporary energy-
conscious environment.
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5A Data-Driven Model Predictive
Control for Lighting System Based
on Historical Occupancy in an Office
Building: Methodology Development

Yuan Jin, Da Yan, Xingxing Zhang,
Jingjing An, and Mengjie Han

Abstract

The lighting system accounts for 8% of the
total electricity consumption in commercial
buildings in the United States and 12% of
the total electricity consumption in public
buildings globally. This consumption
share can be effectively reduced using the
demand-response control. The traditional
lighting system control method commonly
depends on the real-time occupancy data

collected using the passive infrared (PIR) sen-
sor. However, the detection inaccuracy of the
PIR sensor usually results in false-offs. To
diminish the false-error frequency, the exist-
ing lighting system control simply deploys a
delayed reaction period (e.g., 5–20 min),
which is not sufficiently accurate for the
demand-response operation. Therefore, in this
research, a novel data-driven model predictive
control (MPC) method that is based on the
temporal sequential-based artificial neural
network (TS-ANN) is proposed to overcome
this challenge using an updated historical
occupancy status. Using an office as case
study, the proposed model is also compared
with the traditional lighting system control
method. In the proposed model, the occu-
pancy data was trained to predict the occu-
pancy pattern to improve the control. It was
found that the occupancy prediction mainly
correlates with the historical occupancy ratio
and the time sequential feature. The simula-
tion results indicated that the proposed method
achieved higher accuracy (97.4%) and fewer
false-offs (from 79.5 with traditional time
delay method to 0.6 times per day) are
achieved by the MPC model. The proposed
TS-ANN-MPC method integrates the analysis
of the occupant behaviour routine into on-site
control and has the potential to further
enhance the control performance practice for
maximum energy conservation.
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5.1 Introduction

Lighting is one of the prominent power-demand
end-use (Mandil 2006). Grid-based electric
lighting consumption accounts for 8% of the total
electricity consumption in commercial buildings
in the United States (EIA, Annual Energy
Outlook 2019) and 12% of the total energy use
in public buildings globally (IEA, ENERGY
TECHNOLOGY PERSPECTIVES 2017). Rela-
ted research shows that lighting accounts for
20%–45% of the energy consumption in office
buildings (Dubois and Blomsterberg 2011). In
the US, lighting accounts for approximately 14%
of the total electricity consumption in residential
and commercial buildings (Yin et al. 2017).
However, significant energy conservation can be
achieved by improving the energy efficiency of
the lighting system (IEA, Energy Efficiency
2017). Besides the popularization of LED light-
ing (Magno et al. 2015) and dimming illumi-
nance levels (Beccali et al. 2019), the demand-
response lighting system control can contribute
to energy conservation significantly. One of the
effective ways of achieving demand-response
control is by reducing the illumination time.

For this purpose, information on occupant
behaviour pattern is essential. Li (2006) point out
that even in the same building, the occupant
behaviour with different household induces large
discrepancy among energy consumption.
The IEA (International Energy Agency) EBC
(Energy in Buildings and Communities Pro-
gramme) ANNEX 66 (Yan et al. 2017) gives
standard definition and simulation methods for
occupant behaviour. Yan (2015) and Hong
(2017) have summarized the current state and
future challenge of occupant behaviour research.
Hong (2018) also conduct a critical review to
analyze and emphasize the implementation and
representation approaches of occupant behaviour

models in building performance simulation
programs.

As for the occupancy routine in office build-
ings, besides the arriving and leaving time, the
intermediate activities also affect the control
strategy of lighting system. According to the
research of Tabak (2010), there are several
intermediate activities during office time, such as
having lunch, sport, get a drink/break or smoke,
the duration of which lasts from 3 to 40 min. The
intermediate activities bring about stochastic
vacancy during office time, which needs careful
analysis and helps to guide control. Chen (2018)
also proposed an agent-based stochastic occu-
pancy simulator to simulate the status transition
events, random moving events and meeting
events in office buildings. If combined with
occupant behaviour based control, the lighting
system may have great potentials in energy
conservation together with greater precision. The
data analysis of measured lighting energy con-
sumption data from 15 large office buildings in
Beijing and Hong Kong shows that that the 24-
hourly variation in lighting energy use was
mainly driven by the schedules of the building
occupants (Zhou et al. 2015). Tetlow (2014)
conduct experiments by setting visual prompt to
avoid inadvertent lighting consumption. Man-
zoor (2012) use both PIR sensors as RFID tags to
control lighting, with which they achieved an
accuracy of 91.43%. Chenaru (2019) develop a
virtualized sensor network architectural model
for behaviour identification regarding lighting
control. With the development of digital analysis,
camera-based occupant behaviour recognition is
also used for lighting control (Pham et al. 2019).
Furthermore, each lighting circuit can be oper-
ated separately in office buildings, according to
the occupant behaviour (Galasiu et al. 2007). The
lighting control system based on the occupant
behaviour is expected to save energy by
approximately 60% (Bakker et al. 2017).

Many studies demonstrate the potential of
energy conservation for occupancy-based light-
ing control. The future smart lighting scheme
shall integrate smart algorithm and grasp the
opportunity of Internet-of-Things (Chew et al.
2017). Bourgeois proposes a control model based
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on real-time occupancy data to compare both
manual and automatic lighting system controls
(Bourgeois et al. 2006); they note that their
method achieves a lower energy consumption
compared to the lighting system control with the
fixed schedule. Following these findings, many
researchers started to consider the lighting sys-
tem control based on occupancy data (Guo et al.
2010). Nagy (2015) present an adaptive control
strategy for lighting control in office buildings
and realize 37.9% energy saving compared with
the standard settings. Araji (2012) conduct a
survey and discover that the lighting energy
saving by occupant sensors in office buildings
varies from 7 to 45%. A case study of split three
lamps control presents 40% energy saving than
the baseline (Rubinstein and Enscoe 2010).
Aghemo (2014) conduct a case study of ten
offices by both occupancy-based and dimming-
based control, to proof the energy conservation
potential for lighting system.

Occupancy data is obtained using different
sensors, such as passive infrared sensor (PIR),
ultrasonic sensor, microwave sensor, acoustic
control sensor, and pressure sensor. The PIR is
the most commonly used for occupancy detec-
tion in commercial buildings, because of sensor
precision, robustness, stability, cost, and privacy.
In recent years, there have been a proliferation of
occupancy motion sensors based on PIR princi-
ples (Kumar 2017). Most of these methods utilize
the algorithm of time-delay judgment. For
instance, when it is determined that the room is
occupied, the light will be turned on directly;
however, if the room is determined to be unoc-
cupied, the light is turned off until a certain delay
period has passed. In view of this, Richman
studied the impact of different values of delay
period on energy conservation in relation to the
lighting system (Richman et al. 1996). Maniccia
and Von Neida conduct a similar research
(Maniccia et al. 2001), and conclude that when
the delay period varies from 20 to 5 min, the
energy conservation changes from 28 to 38% for
the private office room, while it ranges from 17 to
60% for the open office area.

However, the current lighting control, which is
based on the occupancy state from PIR sensor,
may not always preserve energy consumption.
Tetlow (2014) point out that this kind of
automation may make people consider PIR
sensor-based control as an alternative of turning
off the light, thus the delay period of lighting will
lead to extra consumption. Furthermore, many
on-site measurements and evaluation of lighting
control systems expose an inevitable bottle-neck,
the frequent false-offs. According to the motion-
sensor performance study, when single PIR sen-
sors are used, there is the tendency for occupancy
to go unrecognized, almost as much as 20% of the
time, leading to frequent false-offs (Guo 2007).
This is attributable to the limited motion-sensing
precision. The sensing range of the PIR sensor is
shown in Fig. 5.1 (Benya 2001), and as may be
observed, as the range of movement decreases,
the detectable range of motion sensor also
shrinks. The detectable range of the PIR sensor
for whole body movements is 12 m; this range
shrinks to 6 m for upper body or arm movements.
Furthermore, in the practical application, the
detection range tends to be even less. This will
result in a high percentage of false-offs.

Thus, the research gap has been identified.
There are stochastic intermediate activities

Fig. 5.1 Passive infrared sensor (PIR)’s precision and
coverage illustration (Benya 2001)
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during office time, which will cause vacancy of
different durations. The occupancy routine may
change with different periods or occupants, and
with the prevailing decentralized personal light-
ing system development, it is crucial to update
and learn occupancy routine for lighting system
control. What’s more, previous studies merely
apply the control algorithm of the delay period.
This strategy still cannot avoid several false-offs,
because of the current lack of sensor precision,
thereby resulting in the discomfort of the occu-
pants. The mentioned research gap can be solved
by harnessing the insight of occupancy routine to
incorporate occupancy prediction into the light-
ing system control. Extensive research has been
conducted on occupancy prediction, mostly for
the heating, ventilation, and air controlling
(HVAC) system control. Model predictive con-
trol is a comprehensive optimal control strategy
to use prediction method taking occupancy and
other factors into consideration. It compute
optimal control actions by reducing the energy
consumption and ensuring the thermal comfort as
well as IAQ (indoor air quality) (Goyal et al.
2013). Kwok (2011) emphasize that occupancy
routine play a critical role in cooling-load pre-
diction, and they propose a probabilistic entropy-
based neural (PENN) model for predicting the
occupancy and cooling load of a building. Peng
(2018) propose an occupant-behaviour-based
model to increase the efficiency of HVAC sys-
tems, whereby occupancy prediction is achieved
using the k-nearest neighbor algorithm (KNN).
Kim (2018) propose a multinomial logistic
regression model to classify the occupancy status
in the room as “away, active, and inactive
(sleep)”. Kim (2019) propose a recurrent neural
network (RNN) with long short-term memory
(LSTM) units for predicting the number of
occupants in a large exhibition hall. Qiu (2019)
establish a data mining based framework to
identify rule based operation strategies for
buildings with power metering system, including
lighting system on/off control, chiller sequencing
control, and coordinated control between chiller
and pump.

Therefore, this study investigates the histori-
cal occupancy state, and proposes a data-driven

model predictive control (MPC) for lighting
system based on occupancy prediction (Mir-
akhorli and Dong 2016; Oldewurtel et al. 2013;
Wanjiru et al. 2016). The research utilized only
the PIR sensor for cost effectiveness. A data-
driven approach using the temporal sequential-
based artificial neural network (TS-ANN) was
proposed to discover the temporal sequential
patterns of the occupancy state. By incorporating
the occupancy prediction into the PIR sensor
detection, it is anticipated that control will be
improved, and result in fewer false-offs. It should
be noted that this study will concentrate on the
development and analysis of the TS-ANN MPC
method for lighting system control.

The rest of this chapter is structured as fol-
lows. First, the methodology of the research,
concerning the prediction, control algorithm, and
evaluation index will be introduced. The details
of an experiment conducted to present the control
performance of the proposed method is presented
next. Then, the results of the parameter opti-
mization for the different methods are discussed.
Finally, the conclusion and recommendation for
future research directions are presented.

5.2 System Description
and Research Methodology

5.2.1 Description of the Proposed
Control System

To implement the PIR-MPC lighting system, the
occupants, sensors, controllers, and lighting
system interact, as shown in Fig. 5.2. The gen-
eral working principle can be elaborated as fol-
lows. The PIR sensor detects occupancy through
the occupant’s movement and transmits the data
to the controller, where the occupancy data is
stored as the historical data. The occupancy data
is subsequently processed and used for occu-
pancy prediction for the lighting system control.
Then the lighting system is controlled according
to the ON/OFF signal transmitted from the con-
troller. Meanwhile, the operation and status of
the lighting system also have an impact on the
occupant. If a false-off occurs, the occupant may
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act by waving his hand to turn on the lighting
system once again. This is defined as the occu-
pant’s feedback to the lighting control system.

The false-off occurs because the occupancy
data from the PIR sensor may deviate from the
actual occupancy data. Hence, in this research, the
work is divided into two aspects. Firstly, the
occupancy data from the PIR sensor will be
revised to represent the real occupancy state of the
room as the basis of occupancy prediction. Sec-
ondly, the occupancy will be predicted to enhance
the control accuracy and reduce false-offs.

5.2.2 Overall Methodology

5.2.2.1 Data Composition
For better understanding, the data composition is
firstly explained (Fig. 5.3). The data has mainly
three compositions, (1) real occupancy data,

(2) occupancy data from the PIR sensor, and
(3) predicted occupancy data.

The real occupancy data refers to the true
occupancy condition of the room, and it can be
used to evaluate and validate the control algo-
rithm. In this research, an on-site survey was
conducted to obtain the real occupancy data.
A camera was used to obtain image data, and the
occupants were requested to take notes that
included the time point and the events (arrival or
departure).

The occupancy data from the PIR sensor
refers to the occupancy state as recorded by the
PIR sensor. The raw occupancy data from the
PIR sensor are not temporally equidistant.
Through preprocessing, the occupancy data were
in a temporal resolution of 30 s. The data quality
of the sensor can be analyzed by comparing the
occupancy data from the PIR sensor and the real
occupancy data. This will contribute to the data

Fig. 5.2 Illustration of
lighting system control
working principle

Fig. 5.3 Illustration of data composition of this study
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processing of the historical occupancy routine of
the room.

The lighting system control is implemented
using the predicted real-time occupancy data.
The data is the prediction results of the proposed
control method. The predicted occupancy data is
directly used to control the lighting system; thus,
the control algorithm can be evaluated and vali-
dated using a combination of the predicted
occupancy data and real occupancy data.

After data process, the occupancy data from the
PIR sensor and the real occupancy data are divided
as training set and testing set. The training set is
used to analyze the temporal sequential routine
and train the prediction model for lighting control.
The prediction model uses the testing set to gen-
erate the predicted occupancy data, which is fur-
ther used for prediction evaluation.

5.2.2.2 Overall Methodology
Elaboration

The methodology of this research is divided into
four parts (Fig. 5.4):
(1) Data acquisition and preprocessing: In

implementing the lighting system control,
the occupancy data is drawn from one PIR
sensor. The ground truth data is collected
from the on-site survey. The camera is
installed, and the occupancy are recorded
manually from the video, and the occupants
were also requested to take notes for the
presence as assistance data. The privacy

issue has been noticed and avoided. The on-
site survey is only conducted during the
experiment and validation test. The objective
of the data processing is to obtain the his-
torical occupancy routine of the room.

(2) Model establishment: These methods, unlike
the traditional time-delay method, utilize
both the historical occupancy condition and
the real-time occupancy data obtained using
the PIR sensor. In this research, the TS-ANN
(temporal sequential-based artificial neural
network) model was proposed. The model
takes historical occupied routine as inputs
(such as time point, occupied state ratio,
historical data, and number of continuous
timestep for (un)occupied states) and takes
MLP (multi-layer perceptron) network as the
model format.

(3) Prediction-based control: turn on the lighting
system when the room is detected as occu-
pied by the PIR sensor; once the room is
detected to be unoccupied, the occupancy
prediction was triggered, if the room is pre-
dicted to be unoccupied, the lighting system
will be turned off.

(4) Model evaluation: The main target of this
research is to reduce or avoid false-offs.
Therefore, the control evaluation focuses on
the frequency of false-offs under the different
control methods. The accuracy from confu-
sion matrix is also calculated for each
method.

Fig. 5.4 Methodology of TS-ANN method for lighting system control
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5.2.3 Data Acquisition
and Processing

5.2.3.1 PIR Sensor Calibration
The quality of the occupancy data was analyzed
using two types of PIR sensors to avoid distinct
difference of accuracy among PIR sensors.
A preliminary experiment was conducted with
both sensors. The occupancy data in one office
room was recorded using both types of PIR
sensor simultaneously. The real occupancy data
from the sensors was saved as well. The ground
truth occupancy data was obtained through the
on-site survey conducted with the aid of the
camera and notes. The confusion matrix (Powers
2011) can be used to describe the data quality of
the PIR sensors. ‘Condition occupied’ means the
room is actually occupied. Thus, if the room is
(un)occupied, the PIR sensor detects it accord-
ingly. Consequently, the sensor is considered to
be accurate. In other circumstances, the sensor is
considered inaccurate.

From Tables 5.1 and 5.2, the two types of PIR
sensors perform similarly in terms of occupancy
detection. According to the measurement data,
the accuracy of Type 1 is 81.9%, while that of
Type 2 is 80.2%. Hence, the following case
studies are all made using Type 1 because it is
slightly more accurate.

5.2.3.2 Noise Removal
The comparison of the real occupancy condition
and the occupancy condition as detected by the
PIR sensor is illustrated in Fig. 5.5. The mea-
surement duration was one hour, during which
the room was continuously occupied. However,
the PIR sensor continually reported that the room
was unoccupied.

Based on this data feature from the PIR sen-
sor, the duration of both the occupied condition
and the unoccupied conditions, as detected, are
defined. As is shown in Fig. 5.6, Duration
(a) represents the former, and Duration (b) rep-
resents the latter.

Furthermore, from the statistical analysis, the
frequent occupied–unoccupied switch was
demonstrated. The cumulative distribution of
Durations (a) and (b) from the PIR sensor, for the
original data, is shown in Fig. 5.7. Here the
cumulative distribution means the frequency of
different duration values for duration (a) and (b) in
the original PIR occupancy data. There was a
tendency for the ‘occupied’ and ‘unoccupied’
durations in themeasured office to condense to less
than 3 min, which is unusually small for a regular
office. The occupied-state data from the PIR sensor
is considered to include white noise. Thus, noise
removal during data processing was proposed.

According to the routine of official business as
a processing parameter, it is assumed that the
lighting system is unnecessarily turned off if the
room is unoccupied for merely less than 5 min.
Thus, the noise removal method involved revis-
ing the occupancy data to read occupied: if the
room was unoccupied for less than 5 min, the
occupancy data will be revised to be occupied.

5.2.3.3 Occupant Feedback
During the on-site lighting system control, in the
event of a false-off, the occupant reacted and
turned on the lights immediately. This feedback
was also taken into consideration to revise the
real-time occupancy data during the on-site
control.

According to the judgment algorithm, false-
off was considered to have occurred if the

Table 5.1 Confusion matrix results for PIR sensor Type 1

Condition occupied (%) Condition unoccupied (%)

Occupied, according to PIR sensor 48.4 2.4

Unoccupied, according to PIR sensor 51.6 97.6

Ratio 32.0 68.0

5 A Data-Driven Model Predictive Control for Lighting System … 99



lighting system goes from off to on between two
consecutive time steps, and the historical occu-
pancy data was revised to read occupied.

5.2.4 Model Predictive Control
Method

In this study, the TS-ANN method, which takes
MLP as the basic algorithm, was applied
(Gardner and Dorling 1998). Based on the

historical occupancy routine, this method can
effectively predict the real-time occupancy con-
dition of the room. Using the updated prediction
of the occupancy state, the lighting system can
then be controlled accurately. After data pro-
cessing, the occupancy data for several days
before was obtained, and the historical occu-
pancy routine was analyzed. The historical
occupied rate was used to determine the histori-
cal occupancy routine. The control method ret-
rospected the historical occupancy state or the

Table 5.2 Confusion matrix results for PIR sensor Type 2

Condition occupied (%) Condition unoccupied (%)

Occupied, according to PIR sensor 41.7 1.8

Unoccupied, according to PIR sensor 58.3 98.2

Ratio 31.9 68.1

Fig. 5.5 Real occupancy condition and PIR sensor occupancy data comparison

Fig. 5.6 Duration definitions during PIR occupancy data processing: a, duration of occupied time according to PIR
sensor, b, duration of unoccupied time according to PIR sensor
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momentary occupied rate, thereby making it
possible to instruct the lighting system control
using a prediction about the real-time occupancy.

It is possible for the PIR sensor to constantly
erroneously detect the room to be unoccupied;
this is a critical issue of detection. Therefore, the
control algorithm commonly contains the logic
of the lighting system on-and-off represented as
follows: (1) turn on the lighting system when the
room is detected as occupied by the PIR sensor;
(2) once the room is detected to be unoccupied,
the occupancy prediction was triggered to avoid
false-off, if the room is predicted to be unoccu-
pied, the lighting system will be turned off.

In the subsequent subsections, the basic multi-
layer algorithm and the TS-ANN method for the
lighting system control are introduced. In this
study, the dataset is divided into training and
testing sets. The indicator of the accuracy rate is
selected according to the criteria of parameter
optimization for better occupancy prediction
performance and lighting system control.

5.2.4.1 Multi-layer Perceptron
Algorithm

Neutral networks are a series of artificial intelli-
gence; the MLP, defined as a feed-forward neural
network is one of the most useful types of net-
work (Schalkoff 1992; Jain et al. 1996). The
model of the MLP neutral network also contains
inputs and outputs, and it is necessary to train the
relationship of the variables using different

algorithms. The model can be adapted to non-
linear functions and accurately trained. It consists
of a series of inner system with connected neu-
rons. With multiple input and output variables,
the neurons in-between are called the hidden
layers. The connection refers to different simple
nonlinear transfer functions, with different con-
nection weight coefficients. The function can be
depicted as follows:

o1; :::½ � ¼ f ð i1; i2; i3; :::½ �Þ ð5:1Þ

here, the input and output variables can be rep-
resented as vectors. During the model training,
the data of transfer function and connection
weight coefficients are repeatedly determined and
modified to optimize the input–output mapping.

The process of optimization involves mini-
mizing the error values. The most basic training
algorithm is back-propagation based on the gra-
dient descent (GD) procedure, the most compu-
tationally straightforward algorithm for training
the MLP, to locate the global minimum of the
error surface (Rummelhart 1986).

In this study, three solvers are chosen for error
optimization, the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) method
(Le et al. 2011; Liu and Nocedal 1989),
stochastic gradient descent (SGD) method (Bot-
tou 2010), and optimized SGD (adaptive moment
estimation (ADAM)) method (Kingma and Ba
2015). Although the L-BFGS method is highly

Fig. 5.7 Cumulative distribution of durations (a) and (b) according to the PIR sensors
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preferable for low-dimensional problems,
ADAM, an optimization of the SGD method, is
more applicable to high-dimensional problems
where it outperforms the L-BFGS solver.

L-BFGS Method
The L-BFGS method is a limited-memory quasi-
Newton method (Buckley and LeNir 1985);
however, in addition to utilizing the combination
of the BFGS cycle, it conjugates gradient steps.
The convergence process is considered a smooth
nonlinear function f : Rn ! R;

min f ðxÞ ð5:2Þ

The gradient, denoted by g, is available. The
iterates are denoted by xk; it is defined as follows:
sk ¼ xkþ 1 � xk, and yk ¼ gkþ 1 � gk. The inverse
BFGS formula is approximated using the sparse
symmetric and positive definite matrix, H. The
method uses the inverse BFGS formula in the
following form:

Hkþ 1 ¼ VT
k HkVk þ qksks

T
k ð5:3Þ

where qk ¼ 1=yTk sk, and Vk¼I � qkyks
T
k .

The difference between the BFGS and L-
BFGS methods lies in the matrix update. The L-
BFGS method stores the corrections to the initial
matrix separately to avoid using the O(n2) stor-
age. When the available storage is used up, the
oldest correction is deleted to create space for the
new one.

SGD Method
In the process of model training and parameter
fitting, a loss function lðŷ; yÞ is used to depict the
cost of predicting the output y. A set of functions
fxðxÞ are parametrized using the weight vector,
x. Hence, the objective of model training is to
minimize the loss function, Qðz;xÞ ¼ lðfxðxÞ; yÞ.
It is necessary that the model training minimizes
the empirical risk, Enðf Þ, which measures the
performance of the training set:

Enðf Þ ¼ 1
n

Xn
i¼1

lðf ðxiÞ; yiÞ ð5:4Þ

Rummelhart (1986) used the GD to minimize
the empirical risk, Enðf Þ; the updated weight
factor is generated from the gradient of EnðfxÞ:

xtþ 1 ¼ xt � c
1
n

Xn
i¼1

rxQðzi;xtÞ ð5:5Þ

where c is an adequately chosen gain.
Based on the GD method, the SGD algorithm

(Bottou 2010) does not compute the gradient of
EnðfxÞ precisely, but estimates the gradient from
a single randomly picked example zt at each
iteration:

xtþ 1 ¼ xt � ctrxQðzt;xtÞ ð5:6Þ

The stochastic algorithm does not remember
the examples from the previous iterations, which
improves the ability of processing data on a lar-
ger scale.

ADAM Method
ADAM method, a gradient-based optimization,
is an algorithm for first-order gradient-based
optimization of stochastic objective functions.
This method is straightforward to implement, and
computationally efficient. This method has little
memory requirements; thus, it is suitable for
large data size problems (Kingma and Ba 2015).

The update of the exponential moving average
at time step, t (vt), can be represented as the
gradient function of all previous time steps:

vt ¼ ð1� b2Þ
Xt

i¼1

bt�i
2 � g2i ð5:7Þ

where b2 is the decay rate, g indicates gradient.
In case of sparse gradients, for a reliable

estimate of the second moment, it is necessary to
find the average of many gradients by choosing a
small value of decay rate, b2.

5.2.4.2 Temporal Sequential-Based
ANN Method

In this study, the ANN method was combined
with the temporal sequential routine. Based on
the unaltered sensor technique, the study focused
on the temporal sequential routine of the
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occupancy state. The proposed TS-ANN method
achieved real-time room occupancy prediction,
and the prediction result further contributed to
the lighting system control. One program pack-
age from Python (Pedregosa et al. 2011) was
introduced to perform the neutral network
learning.

In this study, five inputs of the prediction
model were proposed. To determine the suitable
ones, the prediction and control performance of
the input combinations were compared and ana-
lyzed. The inputs are:

• Historical occupancy state for several time
steps

• Time point of each time step
• Historical occupied ratio of each time step
• The continuous time steps for occupied state
• The continuous time steps for unoccupied

state.

The proposed TS-ANN method is as shown in
Fig. 5.8.

As for the model and parameter optimization,
five dimensions were considered, and the most
optimal for the model were determined using the
grid search method. The prediction model was
optimized from solver type, model inputs, L2

penalty parameter (a), layer number of the net-
work, and neuron size of each layer (Fig. 5.9).
The dataset was divided into two equal parts, the
training and testing sets. The model was trained
using the data from the training set, following
which the model was used to predict the occu-
pancy state, and instruct the lighting system
control using the data the from testing set. The
accuracy rate was selected as the criteria for
determining the best model.

5.2.5 Evaluation of Predictive Control

The PIR-MPC lighting system was evaluated
according to the control accuracy. The control
accuracy was evaluated in the formation of the
confusion matrix (Fawcett 2006):

True positive False positive
False negative True negative

� �
ð5:8Þ

where the occupancy state is the judgment con-
dition. “True positive” refers to when the room is
rightly determined to be occupied, and lighting
system is properly turned on. “False negative”
refers to when the room is erroneously adjudged
to be unoccupied, resulting in lighting system
false-offs. “True negative” refers to when the

Fig. 5.8 Structure illustration
of TS-ANN method
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room is rightly determined to be unoccupied, and
lighting system is properly turned off, and “false
positive” refers to when the room is wrongly
adjudged to be occupied, and the lighting system
remains on while the room is unoccupied.

The ratio of the confusion matrix is written as
follows:

TPR FPR
FNR TNR

� �
ð5:9Þ

where TPR refers to the true positive ratio, FNR
refers to the false negative ratio, FPR refers to the
false positive ratio, and TNR refers to the true
negative ratio. From the confusion matrix, the
accuracy rate can be computed to evaluate the
control performance:

accuracy ¼ TPþ TN

TPþFN þFPþ TN
ð5:10Þ

Furthermore, the frequency of false-offs is
evaluated to represent the comfort of the occu-
pants depending on choice of lighting system
control.

5.3 Case Study of an Office Building

An office in the campus of Tsinghua University,
China, was selected as the case study for the
purpose of comparing the performance of the

traditional time-delay method and PIR-MPC
methods based on historical occupancy state.
This office room supplies the working conditions
for three colleagues with regular working
schedule. The room is approximately 20 m2, and
has no work partition, with one PIR sensor
installed.

The PIR sensor (offset by the red box) was
installed on the ceiling of the office (Fig. 5.10).
The sensor was connected to the controller,
which can store the occupancy data and control
algorithms. The processed data is in 30-s tem-
poral resolution.

5.3.1 Historical Occupancy Data

The occupancy detection work began from
August 2017. In the beginning, the PIR sensor
was calibrated. The occupancy database was
established using occupancy data from Novem-
ber 1, 2017 to December 31, 2017. The occu-
pancy dataset was divided evenly into training
and testing sets. The training set was used for
analyzing the historical occupied characteristic
and model training. The original occupied ratio
was computed from the historical occupancy data
of the training set, and only the weekdays were
considered.

After preprocessing, we can obtain the origi-
nal occupied ratio for the data in the training set

Fig. 5.9 Five dimensions of model optimization
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(Fig. 5.11). The routine of this office can be
inferred from this figure. The working hours are
between 8.00 am and some minutes short of
7.00 pm. The occupied ratio increases and
decreases sharply, indicating that the working
routine is quite regular. Another remarkable
feature may be observed at the noon time when
the occupants go out for lunch. In the working
period, the occupied ratio fluctuates, indicating
that the occupants were not continuously in the
room for reasons such as going to restroom or
having a meeting. The historical occupied ratio
depicts the working characteristic of the office
room and contributes to the occupancy prediction
for lighting system control.

5.3.2 Control Method

In this experiment, the occupancy data from the
training set was used for model training. The
study deploys the testing set as the ground-truth
data to compare the control performance of dif-
ferent control methods and different model
settings.

Two control methods were compared:

• Traditional time-delay method
• Machine learning method using different

model input combinations.

For the traditional time-delay method, the
delay period was 5 min. Each potential combi-
nation of the model inputs was evaluated. In this
study, the input combination of “time
point + occupied ratio + continuous time steps
for occupied and unoccupied states was deter-
mined to be the optimized method. It was named
the “time point-ratio-continuous method”,
abbreviated as PRC-TS-ANN. The detailed
optimized parameters are summarized and listed
in Table 5.3. In terms of the input of the time
point, the time sequence number in each day was
used to depict the time point and the temporal
sequence characteristic of the occupancy state.

5.3.3 Control Performance
Comparison

The following control performance results were
obtained from the control of the occupancy data
from the testing set. The occupant’s feedback
during the implementation of the lighting system
control was taken into consideration.

Figure 5.12 illustrates the occupancy data
collected over the course of one day and the
lighting control results with two methods in a 30-
s temporal resolution. From the real occupancy
data, the main office hours were divided into

Fig. 5.10 Illustration of installed PIR sensor

Fig. 5.11 Historical occupied ratio from occupancy data
processing
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morning and afternoon. The occupancy data
obtained from the PIR sensor frequently changed
from the occupied (1) to the unoccupied state (0).
The control results for one day of implementing
the traditional and newly proposed PRC-TS-
ANN methods were compared. From the com-
parison, the proposed machine learning method
achieved better control performance, with less
false-offs during the office hours.

Table 5.4 illustrates the confusion matrix
results of the traditional time-delay control
method and the newly proposed method. False-
offs occurred less frequently while proposed
method was being utilized. The false-off rate, at
0.05%, was much lower in the case of the newly

proposed method, compared to that of the tradi-
tional time-delay method at approximately
6.92%. The higher FPR means the longer dura-
tion of the lighting system turning on under
vacancy conditions. Compared with traditional
time delay method, the FPR of the proposed
method is 3% higher. Actually, the FPR and
FNR are two contradictory reacting variables, the
proposed method tries to avoid false-off of
lighting system by decreasing FNR and to bal-
ance the rising duration and false-off. The per-
formance of the two methods shall be
comprehensively compared according to the
evaluation metrics. The accuracy of the time-
delay method was 96.4%, while the proposed

Table 5.3 Input and parameter setting selected for optimized TS-ANN method

Input Solver a Neuron
size

Time point + Occupied ratio + Continuous time steps for occupied and
unoccupied states

LBFGS 0.001 (100, 70)

Fig. 5.12 Occupancy data of (1) real occupancy data, and (2) occupancy data from PIR sensor; and (3) lighting control
results with time-delay method and proposed PRC-TS-ANN method
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method achieved up to 97.4% accuracy. The
comparison of the false-off frequency and illu-
mination duration under both methods are shown
in Table 5.5. False-offs occurred 79.5 times per
day under the time-delay method; the proposed
method effectively enhances the operation accu-
racy by decreasing the occurrence of false-offs to
0.6 times per day. The illumination duration
under the time-delay method was 9.1 h per day,
the proposed duration extends it to 10.2 h per
day. The lower illumination duration with the
time-delay method is attributable to the frequent
false-offs. Thus, the proposed method outper-
formed the traditional time-delay method by
enhancing the accuracy of the lighting system
control, and decreasing the frequency of the
false-offs.

5.4 Discussion and Further Work

The proposed TS-ANN method considers the
temporal sequential characteristic of the occu-
pancy state, and attempts to incorporate this into

occupancy prediction. This consequently consti-
tutes the basis of the model predictive control of
lighting system. From the former experiment, the
TS-ANN method achieves better control perfor-
mance than the traditional time-delay method.
During the model optimization, it was discovered
that the occupancy state prediction has different
outcomes according to the different temporal
sequential elements inputted into the predictive
model. In this section, three different methods of
TS-ANN are discussed, and their prediction and
control performance are compared.

Besides the PRC method used in the experi-
ment, there are two other TS-ANN methods
according to the different temporal sequential
elements through which they achieve the occu-
pancy prediction. The detailed inputs are shown
in Table 5.6.

In terms of the historical occupancy state, the
last time step of the historical occupied state is
selected. The control performance of different
input combinations and parameter settings were
simulated and compared. The control perfor-
mance was also demonstrated from two

Table 5.4 Confusion matrix of lighting system control performance for time-delay method and TS-ANN method

Method TPR (%) FNR (%) FPR (%) TNR (%)

Time-delay method 93.08 6.92 1.32 98.68

PRC-TS-ANN method 99.95 0.05 4.34 95.66

(Remarks: TPR—true positive rate, referring to light on under occupied condition; FNR—false negative rate, referring
to light off under unoccupied condition; FPR—false positive rate, referring to light on while the room is unoccupied;
TNR—true negative rate, referring to light off when the room is unoccupied)

Table 5.5 False-off frequency and illumination duration for both methods

Method Frequency of false-offs (number of times per day) Duration (hour per day)

Time-delay method 79.5 9.1

PRC-TS-ANN method 0.6 10.2

Table 5.6 Input detail of three TS-ANN methods

Methods Inputs

PR-TS-ANN Time point + occupied ratio

PRC-TS-ANN Time point + occupied ratio + continuous time steps for occupied and unoccupied states

PRH-TS-ANN Time point + occupied ratio + historical occupied state data
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perspectives: occupancy prediction accuracy and
false-off frequency of lighting system control.
During the grid search for model optimization,
there are four variables. For better visualization,
the 3D plot (Hunter 2007) was used for every
two variables, while the other two variables are
kept constant. In the following figures, Fig. 5.13
illustrates the control performance results of the
PR-TS-ANN method. Figures 5.14 and 5.15
illustrate the performance result of the PRC-TS-
ANN and the PRH-TS-ANN methods, respec-
tively. From the figures of optimization results,
the neural network size and penalty parameter a
have stronger influence on the model perfor-
mance compared with optimization algorithm.
However, the optimization algorithm affects the
speed of convergence during optimization.

It is apparent that the three models, with dif-
ferent inputs, solvers, penalty a, and sizes of
neuron network, present different control per-
formances. Of the three TS-ANN methods, the
accuracy of the PR-TS-ANN method was the
highest. The accuracy rate reflects the

performance of each at occupancy state predic-
tion; thus, it was used as the indicator of the
parameter selection. Table 5.7 shows the results
of parameter optimization. The detailed opti-
mized parameters are summarized and listed in
Table 5.8.

In Fig. 5.16, data obtained over the course of
one day are presented to illustrate the control
performance of the three TS-ANN methods in
with 30-s temporal resolution. As seen from the
visualization results, all the three methods can
predict the occupancy state. However, the PR-
TS-ANN method contains more details, such as
the short leave of occupant in the morning. The
PRC-TS-ANN and PRH-TS-ANN methods can
effectively distinguish morning from afternoon.
The confusion matrix results are shown in
Fig. 5.17, together with detailed data. Compared
with the traditional time-delay method, the newly
proposed TS-ANN methods have lower false
negative rate, which means the new method
could effectively reduce the “false-off” condi-
tions. While the false positive rate of TS-ANN

(a) Accuracy (LBFGS, ) (b) False-off frequency (LBFGS, 
) 

(c) Accuracy (neuron size: 120,120) (d) False-off frequency (neuron size: 
120,120) 

Fig. 5.13 Control
performance results of
PR-TS-ANN method
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(a) Accuracy (LBFGS, ) (b) False-off frequency (LBFGS, 
) 

(c) Accuracy (neuron size: 100,70) (d) False-off frequency (neuron size: 
100,70) 

Fig. 5.14 Control
performance results of
PRC-TS-ANN method

(a) Accuracy (LBFGS, ) (b) False-off frequency (LBFGS, 
) 

(c) Accuracy (neuron size: 60,110) (d) False-off frequency (neuron size: 
60,110) 

Fig. 5.15 Control
performance results of
PRH-TS-ANN method
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methods is higher than time-delay method, and
this will induce more consumption than time-
delay method, but still conserve energy com-
pared to static schedule operation. The evaluation
of the control performance for three TS-ANN
methods should also be conducted from the
control accuracy, false-off frequency as well as
the total duration of lighting. The evaluation
results are summarized in Table 5.7 and
Fig. 5.18. The PR-TS-ANN method predicts
occupancy state with greater precision. However,
the false-off frequency is significantly higher.
Although the false-off frequency of the PRC-TS-
ANN method is less than that of the PR-TS-ANN
method, of its ability to distinguish short-term
departure is also less pronounced. The PRH-TS-
ANN method achieves remarkable prediction
performance; however, in practice, its perfor-
mance is not stable or reliable enough at present.
In a lighting system, the accuracy and perfor-
mance of the PRC-TS-ANN method is satisfac-
tory in practice. Furthermore, it achieves less
false-off times, and yields more reliable perfor-
mance. In general, different temporal sequential
characteristic can be fitted for different require-
ments of the occupancy state prediction and
application scenario. The introduction of tem-
poral analysis is proven to be useful to the
occupancy state prediction.

In this research, the temporal sequential
characteristic of occupancy in the office was
thoroughly analyzed and incorporated into the

occupancy prediction. Following the model
establishment and parameter optimization, the
occupancy in the office room can be well pre-
dicted. Different model inputs yield different
performance under different evaluation indica-
tors. The incorporation of occupancy prediction
into the PIR sensor-based lighting system control
greatly improved the control performance and
accuracy of the lighting system.

In this article, we only collect an occupancy
profile for a decentralized personal lighting sys-
tem in one office. The occupancy profile seems
simple and does not change greatly, while the
detailed occupancy/non-occupancy in the whole
periods is actually different, and varies with
different intermediate activities. The purpose of
this chapter is trying to develop the model and
compare against the existing controls. Including
the use of more dynamic occupancy profile in
the future work is promising to further improve
the model.

The research needs further work in the fol-
lowing directions. The parameter of the control
method was from the trial experiment and model
optimization; in the future study, the parameters
may be adjustable with the on-site control. With
the introduction of self-learning, the control
could be made generalizable to other application
fields, such as integrated building system control,
including HVAC control. The energy saving
potential will be accessed by utilizing the pro-
posed method on building system control.

Table 5.7 Results of
parameter optimization

Results PR method PRC method PRH method

Accuracy (%) 98.13 97.37 97.34

“False-off” frequency (day−1) 17.1 0.6 0.2

Table 5.8 Parameter
setting for optimized model

Method Solver a Neuron size of Layer 1 Neuron size of Layer 2

PR LBFGS 0.001 120 120

PRC LBFGS 0.001 100 70

PRH LBFGS 0.001 60 110
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Fig. 5.16 Occupancy data of (1) real occupancy data, (2) occupancy data from PIR sensor; and (3) lighting control
results with time-delay, PR-, PRC-, and PRH-TS-ANN method
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5.5 Summary

This research focused on enhancing the occupancy
prediction accuracy of the predictive lighting
system control with the goal of eliminating the
discomfort arising from false offs for a room
through the TS-ANN method. The proposed TS-
ANN-MPC method incorporated the occupant
behaviour routine analysis into on-site control, and
was demonstrated to further enhance the control
performance for maximum energy efficiency.

The methodology fully described how the
consideration of historical occupancy contributes to
occupancy prediction, establishing the feasibility of

using the developed model to achieve lighting
control based on the existing PIR sensors. The
overall model incorporated the temporal relation-
ship and characteristic of the occupancy patterns by
utilizing the time point and historical occupancy
state as inputs.

A comparison between the proposed control
method and the traditional time-delay method
was conducted. From the experiment, the overall
accuracy of the occupancy state prediction was
enhanced from 96.4% (traditional time-delay
method) to 97.4% (TS-ANN method). Mean-
while, the frequency of the false-offs significantly
decreased from 79.5 times per day to 0.6 times
per day. Thus, it was established that the

Fig. 5.17 Confusion matrix of lighting system control performance for time-delay method and three

Fig. 5.18 False-off frequency and illumination duration for time-delay method and three TS-ANN methods
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proposed control method outperformed the tra-
ditional method in terms of accuracy as well as
human comfort.

A comparison among three different inputs for
the proposed TS-ANN MPC method was carried
out, and the parameter optimization process was
conducted and illustrated. Different model inputs
yielded different performances in terms of accu-
racy and false-off frequency.
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6Tailoring Future Climate Data
for Building Energy Simulation

Jiale Chai, Pei Huang, Jingchun Shen,
and Xingxing Zhang

Abstract

Net-zero energy building (NZEB) is widely
considered as a promising solution to the
current energy problem. The existing NZEBs
are designed using the historical weather data
(e.g. typical meteorological year-TMY). Nev-
ertheless, due to climate change, the actual
weather data during a NZEB’s lifecycle may
differ considerably from the historical weather
data. Consequently, the designed NZEBs
using the historical weather data may not
achieve the desired performances in their
lifecycles. Therefore, this study investigates
the climate change impacts on NZEB lifecycle
performance (i.e., energy balance, thermal
comfort and grid interaction) in different
climate regions, and also evaluates different
measures’ effectiveness in mitigating the

associated impacts of climate change. In the
study, the multi-year future weather data in
different Chinese climate regions are firstly
generated using the morphing method. Then,
using the generated future weather data, the
lifecycle performances of the NZEBs,
designed using the TMY data, are assessed.
Next, to mitigate the climate change impacts,
different measures are adopted and their
effectiveness is evaluated. The study results
can improve understanding of the climate
change impacts on NZEB lifecycle perfor-
mance in different climate regions. They can
also help select proper measures to mitigate
the climate change impacts in the associated
climate regions.

Keywords

Net-zero energy building � Climate change �
Lifecycle performance � Mitigation measures

6.1 Introduction

Building sector accounts for 40% of primary
energy use worldwide. Thus, it plays an impor-
tant role in addressing the problem of energy-
saving. Utilizing on-site renewable energy to
meet its own energy demand, net-zero energy
building (NZEB) is a promising solution to the
energy problem. Many countries have

J. Chai (&)
Institute of Textiles and Clothing, The Hong Kong
Polytechnic University, 999077 Hong Kong SAR,
People’s Republic of China
e-mail: jiale.chai@polyu.edu.hk

P. Huang � J. Shen � X. Zhang
Department of Energy and Community Buildings,
Dalarna University, 79188 Falun, Sweden
e-mail: phn@du.se

J. Shen
e-mail: jih@du.se

X. Zhang
e-mail: xza@du.se

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
X. Zhang (ed.), Data-driven Analytics for Sustainable Buildings and Cities,
Sustainable Development Goals Series, https://doi.org/10.1007/978-981-16-2778-1_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2778-1_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2778-1_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2778-1_6&amp;domain=pdf
mailto:jiale.chai@polyu.edu.hk
mailto:phn@du.se
mailto:jih@du.se
mailto:xza@du.se
https://doi.org/10.1007/978-981-16-2778-1_6


established clear targets to promote the practical
applications of NZEBs (Recast 2010; Lu et al.
2015a; Crawley et al. 2009). For instance, The
European Union has set up nearly zero-energy
targets for all the new residential buildings from
2020 (Recast 2010). The U.S. set a target that all
commercial buildings should achieve zero-
energy by 2050 (Crawley et al. 2009).

In recent decade, existing NZEB studies
mainly focused on: NZEB definitions (Marszal
et al. 2011; Sartori et al. 2012), energy-efficiency
technologies in NZEBs (Sharma et al. 2009;
Alizadeh and Sadrameli 2016), NZEB system
design and optimization (Zhang et al. 2016; Sun
et al. 2015), NZEB system control and opti-
mization (Lu et al. 2015a, b), and NZEB lifecycle
performance assessment and improvement
(Huang et al. 2018; Deng et al. 2014). In par-
ticular, NZEB lifecycle performance attracted
increasing attention due to its significance and
complexity. Within a NZEB’s lifecycle, many
different factors can affect its performance,
including human behaviour, affluence and
affordability, building and system efficiency, and
climate change, etc. Human behaviour, such as
window opening, temperature set-point reset, and
occupant rate change, has been proved to have
significant impacts on building energy use
(Heinonen and Junnila 2014). The factors of
affluence and affordability could cause the
change of the operation time of the air-
conditioning system and the indoor temperature
set-point, and thus change associated building
cooling load (Sivak 2009). In a NZEB’s lifecy-
cle, the degradation of building and system effi-
ciencies may lead to a large difference between
its actual energy use and the expected one based
on original design efficiency. A latest study has
explored the impacts of system performance
degradation on NZEB from a lifecycle perspec-
tive (Huang et al. 2018). Meanwhile, climate
change can directly influence a NZEB’s perfor-
mance in terms of energy use, thermal comfort
and renewable generation (Lucena et al. 2009;
Wan et al. 2012; Wang and Chen 2014; Zhai and
Helman 2019).

In existing studies, the NZEB system is
mainly sized using the historical weather data

(e.g. typical meteorological year-TMY) (Shen
and Lior 2016); while the weather data during the
NZEB system operation can be different from the
historical weather data. As the existing NZEBs
are expected to serve for more than fifty years
(Deng et al. 2014; Cui et al. 2015, 2017), climate
change can have adverse impacts on their life-
cycle performance in terms of energy balance,
thermal comfort and grid interaction. Energy
balance refers to how the local energy generation
meet the building electrical load (Voss et al.
2010); thermal comfort indicates the user’s sat-
isfaction with the indoor thermal environment
(Huang et al. 2015); grid interaction measures the
energy exchange between a NZEB and a power
grid, which is caused by the unstable and inter-
mittent features of renewable energy (Salom
et al. 2011).

Regarding the energy balance, climate change
can affect both the building energy demand and
renewable energy supply. Olonscheck et al.
(2011) found that due to climate change, the
heating energy demands of residential buildings
in Germany decreased by 44–75% while the
associated cooling energy demands increased by
28–59% as the period 2031–2060 was compared
with the period 1961–1990. Santamouris et al.
(2015) reported building energy use increased at
a rate of 0.5–8.5%/°C in response to outdoor
temperature rise under climate change. Robert
and Kummert (2012) showed that in comparison
with 1961–1990, the average wind speed
increased by 7.4% in winter and decreased by
9.2% in summer in 2050s, thereby leading to
surplus wind energy in winter but insufficient
wind energy in summer. Lucena et al. (2009)
pointed out both biodiesel and hydropower
decreased by 5–10% in the northeast of Brazil
under climate change, thus resulting in insuffi-
cient renewable energy generation. As climate
change affects both NZEB energy demand and
supply, NZEB may not achieve the energy-
balance target in future years. Investigation of
climate change impacts on NZEB energy
demand and supply could help improve the
energy balance.

Regarding the thermal comfort, climate
change can have significant impacts on NZEB’s
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indoor thermal comfort due to the variations of
future extreme weather conditions (e.g. increase
of extreme hot days in future summers).
Kikumoto et al. (2016) predicted that the
extremely hot days in summer dramatically
increased in the future of Japan. As the existing
heating, ventilation and air-conditioning
(HVAC) system failed to provide sufficient
cooling, the total hours with unsatisfactory
thermal comfort largely increased. Gupta and
Gregg (2012) found that due to outdoor temper-
ature rise in summer, the unmet hours increased
from 12 under current climate to 474 under 2030s’
climate in a residential building of UK. Coley
et al. (2012) concluded that due to climate change,
the indoor overheating hours increased by 70
when the maximum ambient temperature raised
by 1 °C in summer. Climate change causes the
variations of extreme weather conditions in future
and thus affects the indoor thermal comfort. This
study will explore the climate change impacts on
thermal comfort.

Regarding the grid interaction, climate change
can influence NZEB’s energy consumption and
generation, and thus worsen the fluctuations and
increase peak value of the energy exchange
between a NZEB and a grid. Consequently, it
poses more stress on the grid power balance and
even damages the power-supply quality. Ref.
(Zhang et al. 2016) showed that increased solar
radiation led to more irregular renewable energy
exported to the grid, which increased the distur-
bance of grid power supply and posed stress on
grid power balance. Ref. (Shen and Sun 2016)
illustrated that due to the increased building
energy use under climate change, the grid inter-
action index could increase by 18%. A larger
grid interaction index meant increased fluctua-
tions of energy exchange between a NZEB and a
grid, thereby resulting in poor power-supply
quality. Meanwhile, Salom et al. (2014) proved
that the peak power delivered to the grid
increased by 10–13% under climate change.
A larger peak power increased the grid stress and
damaged the power-supply quality. Climate
change affects the NZEB’s energy consumption
and generation and thus leads to poor grid
friendliness. To gain a better understanding of

climate change impacts, this study will investi-
gate the NZEB’s grid interaction under climate
change.

Meanwhile, climate change impacts on NZEB
performance vary in different climate regions.
Wang and Chen (2014) summarized that due to
climate change, the building energy use
increased in subtropical region while it decreased
in cold region. Lam et al. (2005) concluded that
the frequency of extreme hot weather conditions
in summer in inland area was less than that in
coastal area under climate change, which caused
more unmet hours in air-conditioned buildings in
inland area. Ref. (Salom et al. 2014) indicated
that due to climate change, the peak power
delivered to the grid increased in heating-
dominated region while it decreased in cooling-
dominated region. Climate change showed
diverse impacts on NZEB performance in dif-
ferent climate regions. Neglecting the diversity of
climate change impacts, the decision-makers may
take non-effective measures to improve the
NZEB performance in different climate regions.
The NZEB performance in different climate
regions will also be investigated under climate
change.

Existing studies have utilized various mea-
sures to mitigate the climate change impacts.
Wong et al. (2010) proposed that raising room
temperature set point by 1.5 °C effectively
reduced the building energy use under climate
change. Thus, it can help improve the energy
balance. Gupta and Gregg (2012) found that
under climate change the unmet hours can be
decreased significantly by adding thermal insu-
lation (i.e., 65 mm) to the external walls. Chow
et al. (2013) concluded that under climate change
the cooling energy use can be decreased by 40%
through reducing the U-value of building envel-
ope (e.g. changing the window U-value from 5.7
to 2.5 W/m2K). It was helpful to offset the
renewable energy shortage and improve the grid
power balance. Nevertheless, these studies
merely evaluated a measure’s effectiveness with
a specific case while neglecting the effectiveness
variations of the measure under climate change.
For instance, the effectiveness of thermal insu-
lation was evaluated with 65 mm (Gupta and
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Gregg 2012) but it was not further evaluated
within 65–150 mm. Meanwhile, these studies
merely evaluated the effectiveness of mitigation
measures under future average weather condi-
tions (e.g. future TMY) while neglecting the
measures’ effectiveness under year-to-year vari-
ations. Last, as different climate regions have
their own climatic features, the effectiveness of a
specified measure is not systematically evaluated
in improving NZEB lifecycle performance in
diverse climate regions.

Limited studies consider the climate change
impacts on NZEB lifecycle performance in typ-
ical climate regions, and the evaluation of miti-
gation measures is also lacking. Therefore, this
study will investigate the climate change impacts
on NZEB lifecycle performance in typical cli-
mate regions. Meanwhile, the effectiveness of
different measures in mitigating the climate
change impacts is also evaluated. This chapter is
organized as follows. First, the morphing method
is employed to generate the future hourly
weather data. Second, the NZEB lifecycle per-
formance is assessed using the generated weather
data. Third, the effectiveness of various mitiga-
tion measures is evaluated as climate change
considered. Conclusive remarks are drawn in the
last part.

6.2 Methodology

6.2.1 Overview

This study aims at investigating the climate
change impacts on NZEB lifecycle performance
in typical climate regions and evaluating the
effectiveness of mitigation measures on NZEB
lifecycle performance under climate change.
Figure 6.1 shows the basic idea of this study.
The proposed study contains three steps.

The first step is to generate the future weather
data using the morphing method (Belcher et al.
2005). Due to its simplicity and flexibility,
morphing method is widely adopted to evaluate
the building energy performance under climate

change worldwide (Wang and Chen 2014;
Mourshed 2011). The principle of the method is
to combine a “baseline” hourly weather data file
with the future monthly weather variables pre-
dicted by a global climate model (GCM). In the
second step, the NZEB lifecycle performance is
investigated using the future weather data
regarding energy balance, thermal comfort and
grid interaction. Note that the existing NZEB
systems (i.e., HVAC system, renewable energy
system) are sized by the TMY weather data. In
the third step, the effectiveness of different
measures is evaluated in mitigating the climate
change impacts on NZEB performance. Two
mitigation measures are taken for each NZEB
performance aspect. For instance, the renewable
system size increase and free cooling use are
adopted to mitigate the climate change impacts
on energy balance. At last, conclusive remarks
on the effectiveness of mitigation measures are
drawn for each performance aspect.

6.2.2 Generation of Future Weather
Using the Morphing
Method

6.2.2.1 Typical Meteorological year
(TMY)

In the morphing method, a “baseline climate” is
prerequisite, which is defined as the present-day
weather sequence average over a number of
years. As TMY weather data is considered as the
average weather conditions over a long-term
period (Hall et al. 1978), it is adopted in the
morphing process as the baseline climate. Due to
the accessibility and completeness, the TMY
weather data files can be downloaded from the
website (https://energyplus.net/weather) for all
the selected cities (i.e., Harbin, Beijing, Shang-
hai, Kunming, Hong Kong) in this study.
The TMY data of Harbin, Beijing, Shanghai and
Kunming were derived from the datasets of
International Weather for Energy Calculations
from the ASHRAE Research Project 1015
(Thevenard and Brunger 2001). The TMY data
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of Hong Kong was derived from the datasets of
the Hong Kong Observatory (Chan et al. 2006).
Note that the datasets used in the study have also
been adopted by the commercial software
including EnergyPlus (Crawley et al. 2001) and
Trnsys (Klein 2007). Meanwhile, it should be
mentioned that the latest weather data can help
improve future weather prediction results and the
researchers are recommended to use their avail-
able latest data for the climate change modelling.

6.2.2.2 Global Climate Model
(GCM) Selection

The GCMs are combined with emission scenar-
ios to obtain a prediction of the future climate. In
this study, the CNRM-CM5 model (Voldoire
et al. 2013) is employed to generate the future
weather data files, and it is chosen here for two
reasons. First, it has a much higher spatial reso-
lution of 1.4° � 1.4° (latitude by longitude) over
land grids than most of other GCMs in the

Step 1 Generate future weather using the morphing method(Section 2.2)

Baseline weather data (i.e. TMY)

Selected global climate model
Future weather data

Step 2 Investigate climate change impacts on NZEB lifecycle performance (Section 2.3)
Building simulation 

platform

Morphing
method

Climate change impacts on Thermal comfort

Hybrid energy system use

Electrical energy storage system use

Adding thermal insulation to the external 
walls

HVAC system size increase

Free cooling use

Renewable energy system size increase

Measures effectiveness on Energy balance

NZEB system (i.e. CAPAC, CAPRES) sized by TMY weather data 

Step 3 Evaluate different mitigation measures’  effectiveness on NZEB performance (Section 2.4)

Measures effectiveness on Thermal comfort

Measures effectiveness on Grid interaction

Conclusive remarks of effectiveness measurs on energy balance, thermal comfort and grid 
interaction

Climate change impacts on Energy balance

Climate change impacts on Grid interaction

Fig. 6.1 Basic idea of the NZEB lifecycle performance evaluation under climate change
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IPCC’s Fifth Assessment Report (AR5)
(Pachauri et al. 2014). Note that a higher reso-
lution leads to more accurate weather prediction.
Second, the CNRM-CM5 model can predict
more than 50-year weather data in the 21th
century, which is suitable for evaluating the
NZEB lifecycle performance in this study.
Meanwhile, a set of emission scenarios is
assigned to each GCM according to IPCC for
future weather prediction. In the latest IPCC
report (i.e., AR5), these emission scenarios are
described by the Representative Concentration
Pathways (RCPs), which mainly represent the
greenhouse gas emissions in the future (Solomon
2007). In this study, RCP 4.5 was selected
mainly because the existing studies indicated that
it was the most possible scenario as compared
with others due to its consideration of a broader
set of anthropogenic emissions, the usage of the
updated historical data and the employment of a
more sophisticated land-use and land-cover
model (Kikumoto et al. 2016; Thomson et al.
2100; Zhu et al. 2016).

6.2.2.3 Morphing Method
As the future weather data obtained from a
selected GCM are usually in monthly interval,
the morphing method (Belcher et al. 2005) is
commonly applied to downscale the monthly
changes from a GCM to the hourly weather data
in the baseline climate (i.e., TMY). There are
three operations in the morphing process: (1) a
shift; (2) a linear stretch; (3) a shift and a stretch.
Equations (6.1)–(6.3) describes the three opera-
tions for different weather variables.

x ¼ x0 þDxm ð6:1Þ
y ¼ amy0 ð6:2Þ

z ¼ z0 þDzm þ bm z0 � z0ð Þm
� � ð6:3Þ

where,

– x, y and z are the future hourly weather data;
– x0, y0 and z0 are the TMY weather data;
– Dxm and Dzm are the absolute monthly chan-

ges of x and z from the selected GCM in the
mth month;

– am and bm are the fractional monthly changes
of y and z from the selected GCM in the mth
month;

– z0ð Þm is the monthly mean value of z in TMY
in the mth month.

6.2.3 Investigation of Climate
Change Impacts on NZEB
Lifecycle Performance

6.2.3.1 NZEB System Sizing Using TMY
Data

The NZEB systems (i.e., HVAC system and
renewable energy system) are sized by the TMY
weather data. The cooling and heating load pro-
files of the buildings are obtained using the
associated TMY weather data. Then, the HVAC
system size (i.e., CAPHVAC) is determined by the
larger value between the peak heating load and
peak cooling load (Wang and Wang 2000). With
the given HVAC system size and building load
profiles, the annual building energy use is esti-
mated. Next, the renewable energy system (i.e.,
CAPRES) is sized to meet the annual energy
demand of a NZEB. To avoid duplication,
detailed NZEB system sizing can be found in the
existing studies (Marszal et al. 2011; Sartori et al.
2012).

6.2.3.2 Performance Indicators

Energy-Balance Indicator
With respect to the energy-balance evaluation,
the number of years (Nzero) achieved the energy-
balance target (i.e.,Uenergy � 0) is used (Salom
et al. 2014) and it was calculated as follows.

Nzero ¼
X

ai
ai ¼ 1; if Uenergy;i � 0
ai ¼ 0; if Uenergy;i\0

�
ð6:4Þ

Uenergy;i ¼ Egen;i � Econ;i ð6:5Þ

where,

– ai represents the value of energy balance in
the ith year;
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– Uenergy;i is the energy difference in the ith
year;

– Egen,i and Econ,i are the annual energy gener-
ation and consumption in the ith year,
respectively.

Thermal-Comfort Indicator
With respect to the thermal-comfort evaluation,
the comfort index developed in Huang et al.
(2015) was used. The comfort index (Nfailure)
considers the total failure time in which the
supplied heating/cooling cannot meet the actual
heating/cooling load, as shown in Eqs. (6.6 and
6.7).

Nfailure ¼
Xn

i¼1

Uhi ð6:6Þ

Uhi ¼
X

sj
sj ¼ 1; if Lsup;j\Lj
sj ¼ 0; if Lsup;j � Lj

�
ð6:7Þ

where,

• n is the number of future years;
• Uhi is the annual failure time in the ith year;
• sj represents the value of failure time at the jth

hour in a year;
• Lsup and L are hourly heating/cooling supply

load and actual building load, respectively.

Grid-Interaction Indicator
In recent years, smart grid has been drawing
attention especially when renewable energy
generations are integrated with buildings (Wang
et al. 2014). Due to its unstable and intermittent
nature, the renewable energy generation at par-
ticular hours could be far more than the associ-
ated building energy demand (e.g. PV generation
in sunny summer noon period), and the surplus
part needs to be exported to the grid. In contrast,
in other particular hours, the renewable energy
generation could be far less than the building
energy demand, and the insufficient part will be
met by the energy imported from the grid.
Existing studies (Voss et al. 2010; Salom et al.
2014) have shown that in comparison with the
imported energy, the exported energy has much
larger impacts on the grid power balance and its

power supply quality. Referring to the existing
studies (Voss et al. 2010; Salom et al. 2014), this
research used the total amount of the annual
exported energy to evaluate the grid impacts
from a NZEB. Thus, with respect to the grid-
interaction evaluation, the number of years
(Ngrid) that exports less energy to the grid than
that of TMY (i.e., Egrid annual �Egrid annual;TMY )
is employed and it is calculated as follows.

Ngrid ¼
X

bi
bi ¼ 1; if Egrid annual;i �Egrid annual;TMY

bi ¼ 0; if Egrid annual;i [Egrid annual;TMY

�

ð6:8Þ
Egrid annual ¼

X
Eþ
j ð6:9Þ

where,

• bi is the value of grid interaction in the ith
year;

• Egrid_annual,i and Egrid_annual,TMY are the annual
energy exported to the grid in the ith year and
TMY respectively;

• Ej is the power mismatch (i.e., difference
between building energy generation and con-
sumption) in the jth hour in a year; and the
plus sign means only the energy exported to
the grid is calculated.

6.2.4 Evaluation of Different
Mitigation Measures’
Effectiveness on NZEB
Performance

Different measures are adopted to mitigate the
climate change impacts on NZEB performance
and these measures’ effectiveness is also evalu-
ated. The required levels of measures for
achieving the desired performances are used for
the effectiveness evaluation. For instance, when
the energy-balance indicator (Nzero) reach the
desired performance (e.g., nzero = 50 years), the
PV system sizes increase by 1% and 5% in
Harbin and Beijing respectively. Thus, PV sys-
tem size increase is considered more effective in
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mitigating the climate change impacts on energy
balance in Harbin.

In terms of energy balance, the renewable
energy shortages could be offset by increasing
the renewable energy generation or decreasing
the building energy use. In terms of thermal
comfort, the total failure time could be reduced
by increasing the HVAC system size or
decreasing the building loads. In this study the
grid-interaction indicator means the number of
years that the annual exported energy is smaller
than TMY. In terms of grid interaction, the
annual exported energy could be decreased by
reducing the energy exchange between NZEB
and the grid or reducing the surplus renewable
energy. In this study, two commonly used mea-
sures were chosen to evaluate their effectiveness
differences in mitigating climate change impacts
on the considered performance in the five typical
climate regions, as shown in Table 6.1. Such
evaluation results will help users select their
proper/effective mitigation measures according to
their climate regions.

6.3 Study Platform

6.3.1 Climate Regions and Selected
Cities

In China, there are five typical climate regions,
namely severe cold region, cold region, hot-
summer cold-winter region, warm region and

hot-summer warm-winter region (China 2008).
A representative city is chosen from each climate
region and they are Harbin, Beijing, Shanghai,
Kunming and Hong Kong (Wan et al. 2012). In
this study, TRNSYS (Klein 2007) is used to
build the simulation platform including a build-
ing model, an air-conditioning system model and
a renewable energy system model for each city.

6.3.2 Building Model

Using the multi-zone model (i.e., Type 56) in
TRNSYS, a three-story office building is built
and each floor has the same size (i.e., 20 m long,
10 m wide). The building has two windows
facing north and south on each floor and the
window to wall ratio is 0.25. The key design data
of building envelope for the five cities is shown
in Table 6.2 (Ministry of Housing and Urban-
Rural Development of the People’s Republic of
China G-Dsfeeop 2015). The room temperature
heating and cooling set points are 20 °C and 24 °
C, respectively. The ventilation rate is set as 1
ACH (Air Change per Hour) and the lighting
load is set as 10 W/m2. The occupant density is
set as 12 m2/person in Hong Kong and it is 10
m2/person in other four cities (Ministry of
Housing and Urban-Rural Development of the
People’s Republic of China G-Dsfeeop 2015;
Electrical Mechanical Services Department
(EMSD) of Hong Kong. Guidelines on the
performance-based building energy code

Table 6.1 Mitigation measures considered in this study

Performance Mitigation measures Potential benefits

Energy
balance

Renewable energy system size
increase

Increase the renewable energy generation to offset the
renewable energy shortage

Free cooling use Decrease the cooling energy use to offset the renewable energy
shortage

Thermal
comfort

HVAC system size increase Increase the HVAC system capacity to reduce the failure time

Adding thermal insulation to the
external walls

Decrease the building load to reduce the failure time

Grid
interaction

Electrical energy storage system
use

Reduce the energy exchange between NZEB and the grid to
decrease the exported energy

Hybrid energy system use Reduce the surplus renewable energy to the grid
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ehwegheepes). A computer with a power of
80 W is assigned to each person and it is on–off
controlled according to the regular occupancy
schedule (i.e., from 8:00 am to 18:00 pm). The
heating is not needed in Hong Kong while
heating and cooling are both needed in other four
cities.

6.3.3 Air-Conditioning System Model

In Harbin, Beijing, Shanghai and Kunming, since
both heating and cooling are needed, the ground
source heat pump systems are adopted in the air-
conditioning systems. While in Hong Kong,
since only cooling is needed, chiller and cooling
tower system is used in the air-conditioning
system. The schematics of air-conditioning sys-
tems are shown in Fig. 6.2. A constant speed
pump is adopted in the ground side water loop
(or cooling water loop). In the supplied water
side, a constant speed pump is equipped in the
primary water loop while a variable speed pump
is equipped in the secondary water loop which
delivers changeable water flow rate to satisfy the
varying building load. The air-conditioning ter-
minal is an air handling unit (AHU) and a supply

fan was used to deliver the heated/cooled air to
the room. The following section shows the cal-
culation process for the main energy consumers
in the air-conditioning systems in the five cities
(Sun et al. 2015; Klein 2007; Li et al. 2016).

In heating mode of the heat pump, its energy
consumption Wheating;HP is calculated based on
the fraction of full load power (FFLPH,HP), the
nominal energy efficiency ratio of the heat pump
(EERnom,HP) and the rated heating capacity
(QH;HP), as shown in Eq. (6.10). In cooling mode
of the heat pump, its energy consumption
Wcooling;HP is calculated based on the fraction of
full load power (FFLPC,HP), the coefficient of
performance of the heat pump (COPnom,HP) and
the rated cooling capacity (QC;HP), as shown in
Eq. (6.11).

Wheating;HP ¼ FFLPH;HP � QH;HP

EERnom;HP
ð6:10Þ

Wcooling;HP ¼ FFLPC;HP � QC;HP

COPnom;HP
ð6:11Þ

The power consumption of the chiller Wchiller

can be calculated according to the fraction of full
load power (FFLP), rated cooling capacity

Table 6.2 Key design
data of the building
envelope for the five cities
(Ministry of Housing and
Urban-Rural Development
of the People’s Republic
ofChina G-Dsfeeop 2015)

City Climates Building element U-value (W/m2K)

Harbin Severe cold Wall 0.46

Window 1.40

Roof 0.38

Beijing Cold Wall 0.52

Window 2.80

Roof 0.55

Shanghai Hot-summer cold-winter Wall 0.89

Window 2.80

Roof 0.69

Kunming Warm Wall 1.15

Window 2.80

Roof 0.86

Hong Kong Hot-summer warm-winter Wall 2.70

Window 5.70

Roof 0.89
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(Qrated,chiller) and nominal coefficient of perfor-
mance of the chiller (COPnom), as shown in
Eq. (6.12).

Wchiller ¼ FFLP� Qrated;chiller

COPnom
ð6:12Þ

The power consumption of the
variable/constant speed pump can be calculated
according to the water flow rate _mr;w and the
associated water head DPw, as shown in
Eq. (6.13).

Wpump ¼ _mr;w � DPw ð6:13Þ

The power consumption of the AHU fan can
be estimated by the air flow rate _Vair and the
associated pressure drop of the air flow, as shown
in Eq. (6.14).

Wfan ¼ _Vair � DPair ð6:14Þ

6.3.4 Renewable Energy System
Model

As solar radiation is one of the most reliable
renewable energy sources (Das et al. 2018), the
PV panel is utilized to generate the renewable
energy in this study. The PV panel model (i.e.,
Type 562) in TRNSYS is used to estimate the
energy generation. Equation (6.15) shows the PV
energy output (i.e., WPV) with a selected size
(i.e., CAPPV). The parameters adopted in the PV
system model were shown in Table 6.3.

WPV ¼ s� a� IAM � IT � g� CAPPV

ð6:15Þ

RoomAHUChillerCooling
 tower

Heat
pump

Ground-
coupled

 heat 
exchanger

Heating&Cooling water 
supplied system

Cooling water 
supplied system

Primary
loop

Secondary
loop Air loop

(a) (b)

Supply fan

Variable
Speed
pump

Constant
Speed
pump

Constant
Speed
pump

Constant
Speed
pump

Bypass

Fig. 6.2 Schematics of air-
conditioning systems in a the
four cities, i.e., Harbin,
Beijing, Shanghai, Kunming;
b Hong Kong

Table 6.3 Parameters
used in the PV system
model

Parameter Unit Value

Absorptance coefficient – 0.9

Top emissivity coefficient – 0.9

Back emissivity coefficient – 0.9

Refractive index – 1.526

Extinction coefficient 1/m 4

Back resistance m2K/W 0.28

Cover conductivity KJ/(hrmK) 5.04

Cover thickness m 0.00635
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where, s and a are the transmittance and
absorptance coefficients of the PV cover respec-
tively; IAM is the overall incidence angle modi-
fier; IT is the total incident solar radiation and g is
the overall efficiency of PV panel. The detailed
parameter settings of the PV panel can be found
in our previous work (Zhang et al. 2016; Sun
et al. 2015).

6.4 Results and Discussions

6.4.1 Future Weather Analysis

Using the morphing method introduced in
Sect. 4.2.3, the 60-year (i.e., 2021–2080) future
weather files were generated for the five cities.
Due to the data availability and completeness,
this study took 18–25 years’ historical data as
baseline for climate change modelling in the five
cities. In details, the TMY weather file of Hong
Kong was based on the period 1979–2003 and
the TMY weather files of other four cities (Har-
bin, Beijing, Shanghai and Kunming) were based
on the period 1982–1999 (https://energyplus.net/
weather). It should be mentioned that more
years’ historical data can improve the climate
change modelling as well as future weather pre-
dictions. Under climate change, the outdoor
temperature gradually increased and thus resulted
in increased cooling loads and decreased heating
loads. As the heating degree day (HDD) and
cooling degree day (CDD) are widely used to
estimate the building heating loads and cooling
loads respectively (Xu et al. 2012), this study
presented the changes of outdoor temperature in
the forms of heating degree day changes and
cooling degree day changes (compared with
TMY). For simplicity, the balance point tem-
perature was assumed to be 18 °C in the calcu-
lation of heating degree day and cooling degree
day in the five cities (Büyükalaca et al. 2001).

Figure 6.3 shows the heating degree day
changes (DHDD) and cooling degree day chan-
ges (DCDD) from 2021 to 2080 in the five cities.
Meanwhile, the fitting curves obtained from lin-
ear regression are also presented. Note that since

heating was not needed in Hong Kong, the
heating degree day of Hong Kong was not cal-
culated. As shown in Fig. 6.3, the heating degree
day changes of the four cities (except Hong
Kong) showed downward trends while the
cooling degree day changes of the five cities
showed upward trends in the future 60 years. In
addition, in Harbin the decreasing rate of heating
degree day changes outweighed the increasing
rate of cooling degree day changes, which may
lead to a downward trend of future total building
load. In other three cities (i.e., Beijing, Shanghai,
Kunming), the decreasing rate of heating degree
day changes were smaller than the increasing rate
of cooling degree day changes, which may lead
to upward trends of total building loads.

To more clearly show the overall changes of
the two degree days, Table 6.4 summarizes the
average heating degree day changes (DHDD) and
cooling degree day changes (DCDD) from 2021
to 2080 in the five cities. In Harbin and Beijing,
the decrease of average heating degree day out-
weighed the increase of average cooling degree
day, and this may lead to reduction of the total
building loads in the future (Verbai et al. 2014).
For instance, In Beijing, as the heating degree
day decreased by 348 °C and the cooling degree
day increased by 224 °C, climate change may
lead to reduced total building loads. In compar-
ison, in other three cities, the increase of average
cooling degree day outweighed the decrease of
average heating degree day, and this may lead to
increased total building loads in the future.

In this study, the low outdoor temperatures
(TLow) and high outdoor temperatures (THigh)
were introduced to represent the extreme cold
and hot weather conditions, respectively. The
low outdoor temperatures were the ones below
the minimum outdoor temperature in TMY (Tmin,

TMY) while the high outdoor temperatures were
the ones above the maximum outdoor tempera-
ture in TMY (Tmax,TMY). Note that the low/high
outdoor temperatures may produce the
heating/cooling loads exceeding the HVAC sys-
tem heating/cooling capacity, and thus caused
thermal discomfort (Sun et al. 2015). To more
clearly illustrate the variations of future extreme
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weather conditions, the low/high outdoor tem-
peratures were compared with the
minimum/maximum outdoor temperatures in
TMY for each city. The deviations (i.e.,
DTLow¼TLow�Tmin; TMY and DTHigh¼THigh�
Tmax; TMY ) were presented in histograms, as
shown in Fig. 6.4. The frequency of low outdoor
temperatures and high outdoor temperatures were
marked as nLow and nHigh respectively. A few
features were observed in Fig. 6.4. Firstly, the
frequency of low outdoor temperatures was
much smaller than that of high outdoor temper-
atures in each city (except Hong Kong). It indi-
cated that the number of heating load exceeding
the HVAC system heating capacity may be

smaller than the number of cooling load
exceeding the HVAC system cooling capacity,
which means the thermal discomfort may mainly
appear in future cooling seasons. Secondly,
Kunming had the largest frequency of high out-
door temperatures, and thus it may have the
largest number of cooling load exceeding HVAC
system cooling capacity. In comparison, Shang-
hai has the smallest frequency of high outdoor
temperature, and thus it may have the smallest
number of cooling load exceeding HVAC system
cooling capacity. Thirdly, the statistics of high
outdoor temperature deviations were different
among these cities, and they may also result in
different statistics of excessive cooling load (the

Fig. 6.3 a heating degree day changes (DHDD) and b cooling degree day changes (DCDD) from 2021 to 2080 in the
five cities

Table 6.4 Average heating degree day changes (DHDD) and cooling degree day changes (DCDD) from 2021 to 2080
in the five cities

City DHDD(°C) DCDD(°C)

Harbin −541 168

Beijing −348 224

Shanghai −267 359

Kunming −186 241

Hong Kong – 267
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amount of cooling load exceeding HVAC system
cooling capacity). For example, in Hong Kong as
more than half of the outdoor temperature devi-
ations were close to 0 °C, most of the corre-
sponding excessive cooling loads may be smaller
than other cities under climate change.

Figure 6.5 shows the annual average solar
radiation changes from 2021 to 2080 in the five
cities (compared with their TMY cases). The
changes of solar radiation fluctuated in a relatively
small range [−20, 20] W/m2. The solar radiation
stays relatively stable under climate change, and
this is consistent with findings of other studies
(Chow et al. 2013; Wan et al. 2011).

6.4.2 Climate Change Impacts
on NZEB Lifecycle
Performance

This section mainly investigated the climate
change impacts on the NZEB lifecycle perfor-
mance regarding energy balance, thermal com-
fort and grid interaction in the five cities (i.e.,
Harbin, Beijing, Shanghai, Kunming and Hong
Kong).

6.4.2.1 Climate Change Impacts
on Energy Balance

Since the electrical loads of lighting and equip-
ment are relatively constant during NZEB life-
cycle, the total energy use changes are mainly

Fig. 6.4 Statistics of temperature deviations of the five cities in the future 60 years a low outdoor temperature
deviations (DTLow); b high outdoor temperature deviations (DTHigh)
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attributed to the heating and cooling energy use
changes. Figure 6.6 shows the heating energy
use changes (DEheating), cooling energy use
changes (DEcooling), and total energy use changes
(DEtotal) from 2021 to 2080 in the five cities,
compared with TMY. The varying trends of
heating/cooling energy use changes were similar
to those of heating/cooling degree day changes
(Fig. 6.3). In Harbin and Beijing, since the
reduction of heating energy use outweighed the
increase of cooling energy use, the total energy
use decreased in most years. In contrast, in other
three cities as the reduction of heating energy use
was smaller than the increase of cooling energy
use, the total energy use increased in most years.

Figure 6.7 shows the total energy use changes
(DEtotal), renewable energy generation changes
(DEgeneration) and energy difference (Uenergy)
from 2021 to 2080 in the five cities. The energy
difference was the deviation between renewable
energy generation change and total energy use
change. If the energy difference was non-
negative (i.e.,Uenergy;i � 0) in the ith year, the
NZEB was considered to achieve the energy-

balance target in this year. As shown in Fig. 6.7,
climate change had various impacts on energy
balance (evaluated by Nzero in (Eq. 6.4) in the
five cities. In Harbin and Beijing, the impacts
were small (more than 45 years achieved energy-
balance targets out of 60 years); In Shanghai, the
impacts were medium (25 years achieved
energy-balance targets out of 60 years); and in
Kunming and Hong Kong, the impacts were
large (less than 5 years achieved energy-balance
targets out of 60 years). The reasons were
explained below: (i) In Harbin and Beijing, the
decrease of total energy use was larger than the
decrease of renewable energy generation in most
years. As a whole, the renewable energy gener-
ations can meet the energy demand during most
years. (ii) In Shanghai, in the first 30 years, the
increase of total energy use outweighed the
increase of renewable energy generation in most
years. As a result, the renewable energy genera-
tions cannot meet the energy demands in most
years. In the later 30 years, the increase of
renewable energy generation can offset the
increase of total energy use, thus the energy

Fig. 6.5 Annual average solar radiation changes from 2021 to 2080 in the five cities (compared with their TMY cases)
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balance becomes better. (iii) In Kunming and
Hong Kong, the increase of total energy use was
larger than the increase of renewable energy
generation in most years. Thus, the renewable
energy generations cannot meet the energy
demands in most years.

6.4.2.2 Climate Change Impacts
on Thermal Comfort

In this study, the comfort index (Eq. 6.6) repre-
sented the total failure time (Nfailure) in which the
HVAC system heating/cooling capacity cannot
meet the actual heating/cooling loads. Here a
smaller total failure time indicated better indoor
thermal comfort. The failure time under climate
change can be gradually reduced with the
increase of HVAC system size. Figure 6.8 shows
the statistics of the failure time with the increase

of HVAC system capacity in the five cities.
A few features were observed in Fig. 6.8. Firstly,
the failure time occurred in cooling seasons in
Beijing, Shanghai, Kunming and Hong Kong,
while it occurred in heating seasons in Harbin.
Secondly, climate change had various impacts on
thermal comfort in the five cities. In Kunming
and Beijing, the impacts were large (total failure
time was more than 2200 h); In Shanghai and
Hong Kong, the impacts were medium (total
failure time was around 1100 h); and in Harbin,
the impacts were small (total failure time was
11 h). This was because the total failure time was
mainly determined by the low/high outdoor
temperatures (the low/high outdoor temperatures
may produce heating/cooling loads exceeding
HVAC system heating/cooling capacity, as dis-
cussed in Sect. 4.1). Thirdly, the required HVAC

Fig. 6.6 Heating energy use changes (DEheating), cooling energy use changes (DEcooling) and total energy use changes
(DEtotal) from 2021 to 2080 in the five cities
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system size increases (DCAP�
cooling) were differ-

ent among the four cities (except Harbin) when
the total failure time (N�

failure) was reduced to the
desired performance (e.g., nfailure = 200 h in
Fig. 6.8). This was mainly attributed to the dis-
tribution of high outdoor temperature deviations
under climate change (Fig. 6.4). For instance, in
Hong Kong as more than half of the outdoor
temperature deviations were close to 0 °C, most
of the excessive cooling loads (the amount of
cooling load exceeding HVAC system cooling
capacity) were smaller than other cities under
climate change. Thus, a smaller HVAC system
size increase was required to mitigate the corre-
sponding failure time (caused by the excessive
cooling loads).

6.4.2.3 Climate Change Impacts
on Grid Interaction

Figure 6.9 shows the exported energy changes in
the cooling period (DEgrid_cooling), in the heating

period (DEgrid_heating), and annual exported
energy changes (DEgrid_annual) from 2021 to 2080
in the five cities (compared with TMY). Here the
annual exported energy was the sum of exported
energy in both cooling and heating periods. If the
annual exported energy was smaller than TMY
(i.e.,DEgrid annual � 0) in ith year, then the NZEB
was considered to achieve improved grid inter-
action in this year. As shown in Fig. 6.9, climate
change had different impacts on grid interaction
(evaluated by Ngrid in Eq. 6.8) in the five cities.
In Harbin, Beijing and Shanghai, the impacts
were medium (around 30 years had improved
grid interaction out of 60 years); In Kunming and
Hong Kong, the impacts were small (more than
50 years had improved grid interaction out of
60 years). The reasons were explained below:
(i) In Harbin, Beijing and Shanghai, the building
energy use increased in cooling periods, while
the increase of renewable energy generations was
negligible compared with the increase of energy

Fig. 6.7 Total energy use changes (DEtotal), renewable
energy generation changes (DEgeneration) and energy
difference (Uenergy) from 2021 to 2080 in the five cities.

Note Eshortage was the average renewable energy shortage
in the years failing to achieve energy-balance targets
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demand (Fig. 6.7). Thus, more renewable energy
would be consumed and less energy would be
exported to the grid in most years. Meanwhile, as
the building energy use decreased in the heating
periods and the renewable energy generations
increase slightly (Fig. 6.7). Therefore, less
renewable energy would be consumed and more
energy would be exported to the grid in most
years. (ii) In Kunming and Hong Kong, in both
heating and cooling periods the building cooling
energy use increased under climate change, while
the increase of renewable energy generations
were negligible compared with the increase of

energy demand (Fig. 6.7). Thus, more renewable
energy would be consumed and less energy
would be exported to the grid in most years.

6.4.3 Different Mitigation Measures’
Effectiveness on NZEB
Performance

In typical climate regions, climate change can
worsen the NZEB performance in different
magnitudes. This section evaluated different
measures’ effectiveness in mitigating the climate

Fig. 6.8 Statistics of the
failure time with the increase
of HVAC system capacity in
the five cities [DCAP�

cooling

was the required HVAC
system cooling capacity
increase for achieving the
desired thermal comfort (i.e.,
N�
failure = nfailure)]
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change impacts on NZEB performance regarding
energy balance, thermal comfort and grid
interaction.

6.4.3.1 Effectiveness of Mitigation
Measures on Energy
Balance

Two measures were taken to mitigate the climate
change impacts on energy balance (Shen and
Lior 2016; Ascione et al. 2014), namely PV
system size increase and free cooling use. In this
study the energy-balance indicator (Nzero) meant
the number of years that the annual renewable
energy generation can meet the annual energy
demand; and a larger Nzero represented better
energy balance. Here, the desired energy balance
(nzero) was 54 years.

Figure 6.10a shows the effectiveness of PV
system size increase on energy balance in the five
cities. When the energy-balance indicator increased
to 54 years, the PV system size increases of Harbin
(0.5%) and Beijing (2.3%) were small; while the
PV system size increases of Kunming (8.8%) and
Hong Kong (9.8%) were large. In Shanghai, the
increase of PV system size (4.0%) was between
these two extreme regions. The differences of PV
system size increase were mainly attributed to the
different renewable energy shortages (Eshortage in
Fig. 6.7) among these cities under climate
change. For instance, In Harbin and Beijing, the
renewable energy shortages were relatively small
(smaller than 1050 KWh) and thus smaller PV
system size increases were required to offset the
associated renewable energy shortages.

Fig. 6.9 Exported energy changes in cooling period
(DEgrid_cooling) and heating period (DEgrid_heating), and
annual exported energy changes (DEgrid_annual) from 2021

to 2080 in the five cities Note DEexport was the average
increase of exported energy in the years exporting more
energy than TMY
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Figure 6.10b presents the effectiveness of free
cooling use on energy balance in the five cities.
In Hong Kong, the energy-balance indicator
merely increased to 7 as the ventilation rate
increased. The reason was that in the cool sea-
sons, the outdoor temperature of Hong Kong was
high (24.6 °C) and thus increasing the ventilation
rate could not effectively reduce the building
energy use. In contrast, in other four cities, the
energy-balance indicator could reach 54 years
with the increase of ventilation rate. In details,
the required ventilation rate increases of Harbin
(0.5 ACH) and Beijing (1.2 ACH) were much
smaller than those of Shanghai (4.8 ACH) and
Hong Kong (7.8 ACH). The main reason was
that in the cool seasons, the outdoor temperature
of Harbin (12.3 °C) and Beijing (14.7 °C) were
lower than those of Shanghai (18.0 °C) and
Kunming (17.5 °C). Here even the outdoor
temperature of Shanghai was higher than that of
Kunming, the required ventilation rate increase
of Shanghai was lower than that of Kunming.
The main reason was that the renewable energy
shortage of Shanghai (1316 KWh) was much less
than that of Kunming (2441 KWh).

6.4.3.2 Effectiveness of Mitigation
Measures on Thermal
Comfort

Two measures were taken to mitigate the climate
change impacts on thermal comfort (Gupta and
Gregg 2012; Coley et al. 2012), namely HVAC
system size increase and adding thermal insula-
tion to the exterior walls. In this study the
thermal-comfort indicator (Nfailure) meant the
total failure time in which the HVAC system size
cannot meet the actual building load; and a
smaller Nfailure represented better thermal com-
fort. Here, the desired thermal comfort (nfailure)
was 200 h. Note that as climate change had small
impact on thermal comfort in Harbin (Nfail-

ure = 11 h), the evaluation process was not con-
ducted in this city.

Figure 6.11a presents the effectiveness of
HVAC system size increase on thermal comfort
in the five cities (Harbin was not considered).
When the total failure time decreased to 200 h,
the required HVAC system size increase was the
largest in Beijing (6.3 KW), smallest in Hong
Kong (1.9 KW), and medium in Shanghai (4.3
KW) and Kunming (5.0 KW). To avoid

Fig. 6.10 Energy balance using the two mitigation measures in the five cities a PV system size increase; b Free cooling
use
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duplication, the detailed explanations can be
found in Sect. 4.2.2. In addition, in the two
groups of cities presenting the similar thermal
comfort (Beijing and Kunming; Hong Kong and
Shanghai, see Sect. 4.2.2), the total failure time
of Kunming decreased faster than that of Beijing;
and the total failure time of Hong Kong
decreased faster than that of Shanghai. This was
mainly attributed to the statistic distribution of
failure time with the increase of HVAC system
size (Fig. 6.8). For example, in Kunming and
Beijing when the HVAC system size increased
by 1.4 KW, the total failure time of Kunming
decreased by 1627 h while that of Beijing
decreased by 776 h. Thus, the decreasing rate of
total failure time in Kunming was larger than that
in Beijing.

Figure 6.11b presents the effectiveness of
adding thermal insulation to the exterior walls on
thermal comfort in the five cities (Harbin was not
considered). In Hong Kong, when the insulation
thickness increased by 17 mm, the total failure
time decreased to 200 h. In Beijing and Shang-
hai, the total failure time decreased from 2253 to
2167 h and from 989 to 580 h respectively with
the increase of insulation thickness (from 0 to
120 mm). It meant that adding thermal insulation
was not so effective in Beijing and Shanghai
(especially in Beijing). While in Kunming, the

thermal comfort even became worse (the total
failure time further increased) by adding the
thermal insulation. The reasons were explained
as follows. In Kunming (warm region), as the
outdoor temperature was lower than the indoor
temperature in most time of summer, adding
thermal insulation would reduce the heat trans-
ferred from the indoor to outdoor, thereby
increasing the cooling load and deteriorating the
thermal comfort. In contrast, in other three cities
(i.e., Hong Kong, Beijing and Shanghai), as the
outdoor temperature was higher than the indoor
temperature in most time of summer, adding
thermal insulation would reduce the heat trans-
ferred from the outdoor to indoor, thereby
decreasing the cooling load and improving ther-
mal comfort. Furthermore, as the building
envelopes were different in the diverse regions,
the associated heat transfer was also different
after adding thermal insulation. For instance, as
the wall thickness was large in Beijing (cold
region), the U-value of exterior walls decreased
little by adding thermal insulation (e.g., the U-
value decreased from 0.52 W/(m2K) to 0.34 W/
(m2K) after adding a 40 mm thermal insulation).
Thus, the cooling load decreased slightly and the
thermal comfort was improved little. In com-
parison, as the wall thickness was small in Hong
Kong (hot-summer warm-winter region), the U-

Fig. 6.11 Thermal comfort using the two mitigation measures in the five cities a HVAC system size increase;
b Adding thermal insulation to the external walls
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value of exterior walls decreased sharply by
adding thermal insulation (e.g., the U-value
decreased from 2.70 W/(m2K) to 0.85 W/(m2K)
after adding a 40 mm thermal insulation). Thus,
the cooling load decreased much and the thermal
comfort was improved significantly.

6.4.3.3 Effectiveness of Mitigation
Measures on Grid
Interaction

Two measures were taken to mitigate the climate
change impacts on grid interaction (Sun et al.
2015; Yu et al. 2016), namely electrical energy
storage system use and hybrid energy system use
(PV and wind turbine systems combination). In
this study the grid-interaction indicator (Ngrid)
meant the number of years that the annual
exported energy was smaller than that of TMY;
and a larger Ngrid represented better grid inter-
action. Here, the desired grid interaction (ngrid)
was 54 years. Note that as climate change had
small impacts on grid interaction in Kunming
(Nfailure = 60 years), the evaluation process was
not conducted in this city.

Figure 6.12a presents the effectiveness of
electrical energy storage system use on grid
interaction in the five cities (Kunming was not
considered). The electrical energy storage system
can help mitigate the power mismatch between
the energy supply and demand through charging

and discharging (Chow et al. 2013). In this study,
when more renewable energy was generated than
the demand, the excessive part can be charged in
the storage system, thereby decreasing the
exported energy and improving the grid interac-
tion. As shown in Fig. 6.12a, when the grid-
interaction indicator increased to 54 years, the
required electrical energy storage system size
was the smallest in Hong Kong (0.6 KWh), lar-
gest in Shanghai (3.4 KWh); and medium in
Harbin (1.9 KWh) and Beijing (2.3 KWh). The
differences of electrical energy storage system
were mainly attributed to the different increases
of exported energy (DEexport in Fig. 6.9) in these
cities under climate change. For instance, in
Hong Kong as the increase of exported energy
(435KWh more than TMY) was relatively small
among the four cities, a smaller electrical energy
storage system was required to reduce the
exported energy.

Figure 6.12b presents the effectiveness of
hybrid energy system (PV and wind turbine
(WT) systems combination) use on grid interac-
tion in the five cities (Kunming was not consid-
ered). With the increase of WT energy generation
(from 0 to 100%), the grid-interaction indicator
overall experienced an increase and then a
decrease in the four cities. For example, in
Shanghai the grid-interaction indicator increased
from 28 to 47 (indicating improved grid

Fig. 6.12 Grid interaction using the two mitigation measures in the five cities a Electrical energy storage system use;
b hybrid energy system use (PV and WT systems combination)
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interaction) when the WT energy generation
slightly increased (from 0 to 15%); while it
decreased from 47 to 0 (indicating deteriorated
grid interaction) when the WT energy generation
further increased (from 15 to 100%). For expla-
nation, Fig. 6.13 presents power mismatch using
three representative energy systems (i.e., 100%
PV, 85% PV and 15% WT, and 100% WT) in a
typical day of Shanghai. Note that only the
energy exported to the grid was considered in
this study (i.e., the positive power mismatch
values). As shown in Fig. 6.13a, with a slight
increase of WT energy generation (i.e., from 0 to
15%), the hybrid energy system can help reduce
the surplus renewable energy in the occupied
time (i.e., daytime), thereby decreasing the
exported energy and improving the grid interac-
tion. While in Fig. 6.13b, with a further increase
of WT energy generation (i.e., from 15 to 100%),
the hybrid energy system largely increased the
surplus renewable energy in the unoccupied time
(i.e., nighttime), thereby increasing the exported
energy and deteriorating the grid interaction. In
Hong Kong, the grid-interaction indicator can
reach 54 years when the WT energy generation

slightly increased by 4%. It was mainly because
the increase of exported energy was relatively
small (DEexport in Fig. 6.9) under climate change.
While in other three cities (i.e., Harbin, Beijing
and Shanghai), the hybrid energy system use was
not so effective as the increase of exported
energy was relatively large under climate change.

6.5 Conclusions

This study has investigated the climate change
impacts on NZEB lifecycle performance (i.e.,
energy balance, thermal comfort and grid inter-
action) in typical climate regions of China, and
also evaluated different measures’ effectiveness
in mitigating the climate change impacts. The
main findings are summarized as below.
(1) The climate change impacts on energy bal-

ance and thermal comfort vary largely
among the different climate regions. The
impacts on energy balance and thermal
comfort are mainly determined by the
building energy use changes and the varia-
tions of extreme hot weather conditions

Fig. 6.13 Power mismatch
using three representative
energy systems (i.e., 100%
PV, 85% PV and 15% WT,
and 100% WT) in a typical
day of Shanghai
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(which result in cooling demands larger than
the HVAC system cooling capacity),
respectively. The grid interaction is relatively
stable under climate change, and the associ-
ated impacts are positive as the decrease of
exported energy in the cooling periods can
outweigh the increase of exported energy in
the heating periods.

(2) The effectiveness of mitigation measures
shows distinctive features for each perfor-
mance indicator. Regarding energy balance,
the effectiveness of the free cooling use
heavily depends on the outdoor temperature
in cool seasons (e.g., the free cooling use is
proved to be more effective in severe cold
region). Regarding thermal comfort, adding
thermal insulation to the exterior walls is less
effective (compared with HVAC system size
increase) in the cold region and the hot-
summer cold-winter region, as it slightly
reduces the heat transferred from outdoor to
indoor. While adding thermal insulation is
counter-effective in the warm region as it
prevents the heat transferred from indoor to
outdoor. The hybrid energy system use can
improve the grid interaction to some limited
extent; but it only mitigates the climate
change impacts on grid interaction in the hot-
summer warm-winter region as the corre-
sponding increase of exported energy is
smaller than other regions under climate
change.

These findings will improve the understand-
ing of the climate change impacts on NZEB
lifecycle performance in different climate
regions, and they will also help select proper
measures to mitigate the climate change impacts
in the associated climate regions. It should be
mentioned that the study has not considered the
impacts of the uncertainties/errors of the weather
prediction results from the morphing method.
The associated uncertainty analysis will be con-
sidered as a part of our future studies.
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7A Solar Photovoltaic/Thermal (PV/T)
Concentrator for Building
Application in Sweden Using Monte
Carlo Method

Yaxiu Gu and Xingxing Zhang

Abstract

The solar energy share in Sweden will grow
up significantly in next a few decades. Such
transition offers not only great opportunity but
also uncertainties for the emerging solar
photovoltaic/thermal (PV/T) technologies.
This chapter therefore aims to conduct a
techno-economic evaluation of a reference
solar PV/T concentrator in Sweden for build-
ing application. An analytical model is devel-
oped based on the combinations of Monte
Carlo simulation techniques and multi
energy-balance/financial equations, which
takes into account of the integrated uncertain-
ties and risks of various variables. In the
model, 11 essential input variables, i.e. aver-
age daily solar irradiance, electrical/thermal
efficiency, prices of electricity/heating, opera-
tion & management (OM) cost, PV/T capital
cost, debt to equity ratio, interest rate, dis-
count rate, and inflation rate, are considered,
while the economic evaluation metrics, such

as levelized cost of energy (LCOE), net
present value (NPV), and payback period
(PP), are primarily assessed. According to the
analytical results, the mean values of LCOE,
NPV and PP of the reference PV/T connector
are observed at 1.27 SEK/kW h (0.127 €/kW
h), 18,812.55 SEK (1881.255 €) and 10 years
during its 25 years lifespan, given the project
size at 10.37 m2 and capital cost at 4482–5378
SEK/m2 (448.2–537.8 €/m2). The positive
NPV indicates that the investment on the
selected PV/T concentrator will be profitable
as the projected earnings exceeds the antici-
pated costs, depending on the NPV decision
rule. The sensitivity analysis and the paramet-
ric study illustrate that the economic perfor-
mance of the reference PV/T concentrator in
Sweden is mostly proportional to solar irradi-
ance, debt to equity ratio and heating price,
but disproportionate to capital cost and dis-
count rate. Together with additional market
analysis of PV/T technologies in Sweden, it is
expected that this chapter could clarify the
economic situation of PV/T technologies in
Sweden and provide a useful model for their
further investment decisions, in order to
achieve sustainable and low-carbon eco-
nomics, with an expanded quantitative discus-
sion of the real economic or policy scenarios
that may lead to those outcomes.
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7.1 Market Analysis of Swedish
PV/T Industry

It is likely that the economic results would be
different if the study were performed in another
country or even in the same country today, as
costs, tariffs, and policies are changing. To make
an accurate assessment, it is necessary to clarify
the local policies and market structures (Poppi
et al. 2018).

Currently, the Sweden’s market for solar
energy is very small. Nevertheless, the installa-
tion rate of PV continues to increase. In 2016, a
total of 79.2 MWp were installed, showing the
annual PV market grew with 63% as compared to
the 48.4 MWp installed in 2015. For the PV
market, the off-grid PV application accounts for a
very small share, with only 1.5 MWp installed in
2016; while the market for grid-connected PV
systems has grown rapidly in Sweden, with 77.7
MWp systems installed in 2016 (Lindahl 2016),
as observed in Fig. 7.1. Various market segments
of the yearly installed PV capacity in Sweden are
illustrated. There has been a clear shift from a
market dominated by off-grid systems to a grid-
connected market, in which the grid-connected
distributed PV systems dominates the market,
mainly due to the tax law for large centralized
PV systems. A new policy, published on July
2017, a 98% tax reduction on PV systems over
255 kWp has further removed the major eco-
nomic barriers of PV generation systems—this
will be the main source of increase of PV market.
Under the new policy, the tax would be reduced
from SEK 0.295 (0.0295€) per kW h to SEK
0.005 (0.0005€) per kW h (Clover 2017). The
total cumulative PV capacity installed in Sweden
was approximately 205.5 MWp by the end of
2016. The cumulative PV market grew with 63%
under 2016, which is in line with the marked
development over the last five years where the

cumulative market has grown with 52%, 83%,
84%, 62% and 63%, respectively. The strong
overall growth in recent years started with the
introduction of the direct capital subsidy system
in 2006, and has then been fuelled by the
declining system prices, high popularity among
the public, a growing interest from utilities and
an ongoing reformation work from the Govern-
ment to simplify the rules for micro producers
(Lindahl 2016). According to International
Energy Outlook (Lindahl 2016), solar energy in
Sweden is expected to contribute 5–10% to
electricity generation in 2040, which means the
share of solar electricity production within the
total power generation mix will rise from 0.1% in
2016 to 5–10% in 2040, which is up to 100 times
of current solar power capacity if the total elec-
tricity generation remain stable as past decades.
However, the PV market in Sweden is still
relying much on subsidies, and the PV system
prices must continue to go down, or the elec-
tricity prices to go up if PV needs to contribute to
an appreciable part of the Swedish electricity
generation mix. Moreover, the Swedish PV
industry is becoming broader as more and more
players with other core businesses, such as util-
ities and real estate owners, are taking an
increasing interest in the PV industry. A high
competition in PV industry will be expected in
the near future.

The Swedish solar thermal industry is
decreasing significantly from 2011. The total
number of the installed solar thermal collectors in
2016 was only about 2823, nearly half of the
installed capacity in 2015. The budget was about
€1 million annually, while PV started out much
higher, at €5 to €10 million per year. The whole
solar thermal market faces increasing competi-
tion with other energy technologies, such as
biomass boilers, district heating, heat pumps,
solar PV. It seems as if not even the rather high
national carbon tax can reinvigorate the country’s
solar heat market. Typical solar thermal products
in Sweden are flat plate and vacuum tubes col-
lectors, while the concentrated solar thermal
plants and PV/T products are very rare. Their
application includes the fields of hot water and
space heating, in operation with other energy
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system in the meanwhile. The market price of flat
plate collectors has dropped in line with the
overall development of collector prices across
Europe, while vacuum tube collectors have
become more expensive owing to less and less
players in the area. About half of the market is
now being served by local manufacturers,
according to the country portrait (Baerbel 2017).
IEA SHC (2017) points out that the main market
drivers are the national building code and indi-
rect tax deduction for repair, conversion and
extension work can be made for installing solar
heating systems. In contrast to PV market, there
is no direct financial support to solar thermal
market. Other barriers are the lower prices of
alternative energy technologies and the lack of

information on solar heating systems among
actors and consumers. In general, the Swedish
solar thermal market is disruptive. It has to face
high competition from alternative energy sys-
tems, but with limited indirect policy support.
Great barriers are found for its further
development.

Technology drivers offer opportunities for
disruptive market innovation (Tidd et al. 2005).
Innovative PV/T technology cogenerates of both
electricity and heat from the same area, but with
less installation cost than installing both indi-
vidual PV and solar thermals collector, resulting
in the lower overall cost-to-performance ratio
and enabling the possible development of solar
thermal market along with PV market. As a

Fig. 7.1 a Annual installed
PV capacity in Sweden from
1993 to 2016; b various
market segments’ share of the
yearly installed capacity in
Sweden (Lindahl 2016)
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result, it offers opportunities for disruptive mar-
ket innovation in Swedish solar thermal industry.
Meanwhile, PV/T technology lowers the energy
price per square meter, reducing the dependence
degree of PV on governmental subsidy and thus
making the target set by the government
achievable (Tripanagnostopoulos et al. 2005;
Coventry and Lovegrove 2003). Because PV
market is shifting to the grid-connected dis-
tributed systems, and solar thermal market is
indirectly driven by national codes for low-
energy buildings and nearly zero-energy build-
ings, it is expected that the Swedish PV/T market
will expand mostly in building sector. However,
in order to achieve the success of PV/T market
innovation in Sweden, it is desired to clarify
investment risks, to propose new investing
models, to set appropriate price of PV/T prod-
ucts, and to evaluate operate strategies of players,

which are still not clear and are challenging the
market penetration.

7.2 Development of Techno-
Economic Model

This section will develop a techno-economic
model by considering the present values of both
electricity and heating savings from PV/T con-
centrator as part of the cash flow. A PV/T con-
centrator (X10 PVT) from a Swedish company
(SMHI 2017) is used as a reference system for
application in buildings, where both electricity
and heating supplies are needed. As compared to
the conventional PV and solar thermal devices,
PV/T concentrators have plenty of advantages
for the application in buildings as discussed in
the introduction, i.e. higher electrical conversion

Fig. 7.2 Flow chart of techno-economic analysis method
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efficiency, more energy output per unit area,
efficient use of the building space, larger accep-
tance angle and higher optical efficiency (Xuan
et al. 2017; Li et al. 2015). The selected PV/T
concentrator produces more energy per unit area
than typical PV and solar thermal collectors in a
limited building application space, and could
achieve up to 75 °C heat output in Swedish
scenario (SMHI 2017), suitable for most building
applications. The overall techno-economic mod-
elling method is illustrated in Fig. 7.2.

7.2.1 Reference PV/T Concentrator

The reference PV/T technology is a concentrated
type (named �10) and Fig. 7.3 illustrates its
basic configurations. The X10 PV/T consists of a
cylinder-parabolic reflecting mirror, made by
aluminium, that concentrates 17.8 times the solar
light onto the receiver. Inside the receiver, the PV
component is composed of 166 mono-crystalline
solar cells in series with the size of each cell at
32 � 110 mm. The thermal component is struc-
tured in triangular with a double aluminium
section bar substrate. Each bar is built in with a
fluid channel for counter current flow. On the
two receiver sides, opposite to the parabolic
concentrator, there are laser groove buried con-
tact solar cells on the surface; whereas the top
side of the receiver is covered with a thermal
absorber. The whole PV/T concentrator has a
gross area of 10.91 m2 and an aperture area of
10.37 m2. The tracking of the sun is based on
special electrical custom-designed high quality
linear actuators, which are carried out by rotating
the structure around an axis oriented in the east–
west direction.

According to solar Keymark database and the
published experimental testing results (Croce
2017; Fiorenza et al. 2016), the certified values
of the concentrator’s efficiencies are 9.62%
(±5%) for electrical performance and 47.21–
54.80% for thermal performance, under opera-
tion temperature difference between thermal
medium and surrounding air from 0 to 70 °C.

The stagnation temperature is high to 243 °C and
the maximum operation pressure is around 1
MPa. The effective thermal capacity is almost
6.11 kJ/(m2 K). The thermal efficiency as func-
tion of the average operation temperature (Tm) is
expressed as η = 0.548–0.849(tm − ta)/AGw −
0.003(tm − ta)

2/AGw, with the flow mass rage at
0.01 kg/(s m2).

7.2.2 Energy Generation Model

The energy generation model is simplified by
only considering the impact from three essential
variables, i.e. solar radiation and electrical/
thermal efficiencies, and the concentrator per-
formance degradation over the operating time.
The energy generated by PV/T concentrator is
expressed by equations from (7.1, 7.2 and 7.3).

Et ¼ Eet þEtht ð7:1Þ
Eet ¼ 365� Gt � ge � Að Þ � 1� dgeð Þt ð7:2Þ
Etht ¼ 365� Gt � gth � Að Þ � 1� dgthð Þt

ð7:3Þ

where
Et is the total energy generated by the PV/T

concentrator in the year t, kW h/year.
Eet is the electricity generated by the PV/T

concentrator, kW h/year.
Etht is the thermal energy generated by the

PV/T concentrator, kW h/year.
A is the effective collecting area of PV/T

concentrator, m2.
Gt is the average daily solar irradiation in the

year t, kW h/(m2�day).
ηe is the total concentrator electrical effi-

ciency, %.
ηth is the total concentrator thermal efficiency,

%.
dge and dgth are respectively the degradations

of electrical and thermal parts of the PV/T con-
centrator, %.

t is the index of time in the unit of number of
year, starting from year ‘0’.
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7.2.3 Economical Evaluation Metrics

LCOE weights the overall unit energy costs of
establishing and operating an energy system
throughout its entire life. All costs factors, such
as fuel, financing, incentives, taxes, operational

costs and degradation, should be considered in
levelized cost calculations. Especially for the
PV/T concentrator, LCOE serves a standardized
metric by combining two disparate energy flows
into one bottom-line metric, so that it can ade-
quately compare energy costs of diverse

Fig. 7.3 a Overall structure of X10 PV/T; b cross section
of receiver; c dimension of concentrator (Croce 2017;
http://www.estif.org/solarkeymark/Links/Internal_links/

SP/SC0987-09%202010-01-20%20Absolicon%20X10%
20%2010,14m%20utg%202.pdf)
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generation sources. For solar energy system,
LCOE values are primarily affected by capital
costs (Overbye 2015). The mathematical equa-
tion for LCOE is given in Eq. (7.4).

LCOE ¼
Pðn�1Þ

ðt¼0Þ
C

ð1þ rÞtPðn�1Þ
ðt¼0Þ

Et

ð1þ rÞt
ð7:4Þ

where
n is the number of year in terms of the con-

centrator’s life time.
Ct is the total cost in the year of t, SEK.
r is the discount rate, %.
While the total cost of the PV/T concentrator

in the specific year could be expressed by.

Ct ¼ I0jt ¼ 0ð Þþ Lt þOMt þ Tat ð7:5Þ

where
I0 is the investment expenditures in the initial

year, SEK.
Lt is the financing loan cost in year t,

including annual loan payment and interest SEK.
Tat is the tax paid for the electricity generation

in the year t, SEK.
OMt is the operating & management cost in

year t, SEK.
In above equation, the investment expenditure

for the first year is defined by.

I0 ¼ C0 � 1� DEð Þ ð7:6Þ

where
C0 is the capital cost, SEK.
DE is the debt to equity ratio, %.
The financing loan cost in year t, Lt, is given

as below equation.

Lt ¼ C0 � DE � 1
n
þ 1� t

n

� �
� Itrt

� �
ð7:7Þ

where
Itrt is the interest rate of year t, %.
And the tax is written by equation (Tri-

panagnostopoulos et al. 2005; Coventry and
Lovegrove 2003).

Tat ¼ TR� Eet ð7:8Þ

where
TR is the tax rate per kW h, SEK/kWh.
NPV is defined by Eqs. (7.7–7.9), which is a

measurement of l cumulative profitcalculated by
subtracting the present values of cash outflows
(including initial cost) from the present values of
cash inflows over the PV/T concentrator’s life
time. The investment in a project is profitable
when the NPV is positive.

NPV ¼ �C0 þ
Xðn�1Þ

ðt¼0Þ

CFt

ð1þ rÞ ð7:9Þ

where
CFt is the cash flow of the year t, SEK.
The cash flow in year t is given by equation

(Tripanagnostopoulos et al. 2005; Coventry and
Lovegrove 2003; Xuan et al. 2017; Li et al.
2015).

CFt ¼ Set þ Stht � Ct ð7:10Þ

In addition, the energy savings are respec-
tively from electricity and heating.

Set ¼ EPt � Ifrt � Eet ð7:11Þ
Stht ¼ HPt � Ifrt � Etht ð7:12Þ

where
EPt is the electricity price in year t, SEK/kW h.
HPt is the heating price in year t, SEK/kW h.
Ifrt is the inflation rate of year t, %.
PP is the time in year for a project to break

even or recover its initial investment funds,
where the cash flow starts to turn positive. If PP
is larger than the life-span of the reference PV/T
concentrator, it is considered that PP equals 26 in
this case.

PP ¼ T CFt [ 0ð Þ ð7:13Þ
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7.2.4 Key Input Parameters

The key input parameters for the analysis of the
reference PV/T concentrator are categorized into
technical, financial, and geographical ones.
Table 7.1 displayed the basic parameters that are
included in the analytical model, in which, the
average values of each parameter is estimated
while assuming it follows a probability distribu-
tion. For instance, the average daily irradiation
within different years in a specific location of
Sweden is assumed to fit with the continuous
probability distribution curve. Taking Stockholm
as an example, the average daily solar irradiation
varies between 0.25 kW h/(m2�day) and 5.93 kW
h/(m2�day) from January to December, and the

mean of the annual average daily irradiation is
2.87 kW h/(m2�day), and the standard deviation
(SD) is 2.19 kW h/(m2�day) in most years;
however, there may be years with a higher
average value and others with a lower average
value within the range of deviation. As a result, it
is possible to further run the probabilistic anal-
ysis using Monte Carlo simulation, conducting
different combinations that follow the probability
curves of the average values of different variables
by determining the mean and standard deviation
of the average values of those variables.

The average cost for the whole reference
PV/T concentrator (including other indirect cost,
such as installation, admin charges, system
components etc.,) is around 4500 SEK/m2 (450

Table 7.1 Key input parameters and their ranges for the simulation model

Description Mean Min Max Unit

Geographical parameters

Average daily solar irradiance in Stockholm (http://
solarelectricityhandbook.com/solar-irradiance.html)

2.87 0.25 5.93 kWh/m2-
day

Electricity price (Statista 2010) 1.94 1.54 2.09 SEK/kWh

Heating price (Sköldberg and Rydén 2017) 0.80 0.45 1.02 SEK/kWh

Technical parameters

Effective PV/T area (http://www.estif.org/solarkeymark/Links/
Internal_links/SP/SC0987-09%202010-01-20%20Absolicon%
20X10%20%2010,14m%20utg%202.pdf)

10.37 – – m2

Years of operation (X10 PV/T 2017) 25 – – years

STC nominal electrical efficiency (http://www.estif.org/
solarkeymark/Links/Internal_links/SP/SC0987-09%202010-01-
20%20Absolicon%20X10%20%2010,14m%20utg%202.pdf)

9.62 9.14 10.08 %

Nominal thermal efficiency (http://www.estif.org/solarkeymark/
Links/Internal_links/SP/SC0987-09%202010-01-20%
20Absolicon%20X10%20%2010,14m%20utg%202.pdf)

51.52 47.21 54.80 %

Nominal degradation rate (Overbye 2015) 1.00 – – %/year

Financial Parameters

Capital product cost (include indirect cost) (X10 PV/T 2017) 4482.00 3586.00 5378.00 SEK/m2

Debt to equity (Overbye 2015; X10 PV/T 2017) 60.00 0.00 90.00 %

Interest rate (Overbye 2015; X10 PV/T 2017) 4.00 2.00 6.00 %/year

Loan term (Overbye 2015; X10 PV/T 2017) 25.00 – – years

Effective tax (Clover 2017) 0.01 – – SEK/kWh

Nominal discount rate (Overbye 2015; Koene 2017) 8.00 6.00 10.00 %/year

OM to capital product cost (Overbye 2015; X10 PV/T 2017) 1.00 0.75 2.00 %/year

Inflation rate (Trading economics 2017) 1.20 −1.60 4.40 %/year
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€/m2), with up to 20% price-floating range. There
are different ways to finance the PV/T concen-
trators, for instance, a loan from a bank is pos-
sible at the levels of 0%, 60%, 80% and 90% of
the capital investment (Debt to equity). Mean-
while, the associated interest rate varies from 2 to
6% depending on the loan’s option (flexible or
fixed) and duration. The OM cost of a PV/T
varies in different cases. For instance, Kalogirou
and Tripanagnostopoulos (2006) and Herrando
and Markides (2016) (Oracle Crystal Ball 2017)
estimated at 1% of total system cost by consid-
ering parasitic costs with an increase rate of 1%
per year of the system operation due to the
required energy for circulate system pump. Riggs
et al. (Overbye 2015) reported that OM costs for
PV part and thermal part of a PV/T concentrator
are respectively at 6.5 USD/kWelec (51.41
SEK/kWelec) and 15 USD/kWtherm (118.64
SEK/kWelec) during its life time. By using these
figures in the reference PV/T concentrator, the
OM cost to capital cost is about 1.36%. In
addition, depending on the reference PV/T con-
centrator’s company, the OM cost is assumed in
the range of 0.75% to 2% of the capital cost. In
this chapter, regular labour cost for OM is not
considered as the reference PV/T concentrator is
a standalone system. Basic thermal OM (such as
plumbing, pump power etc.) and electrical OM
(such as inverter replacement, control, etc.) are
taken into account. Mirror cleaning costs are
retained within the OM costs but the reduced
power output due to maintenance downtime is
not included in the model. Further, there are a
variety of business models for smaller scale
installations, in which the installer covers system
specific maintenance. It also increases the varia-
tion extent of OM cost. Over the past 10 years,
both electricity price and oil & gas increased a
lot, so it is also important to consider the inflation
rate of both electricity and heating prices
depending on the general inflation rate in the
range of −1.6 to 4.4%. The normal depreciation
of solar energy panel is estimated at 25–30 years.

By considering the tornado analysis done by
Riggs et al. (Overbye 2015)and the scenarios in
Sweden, there will be 11 essential input variables
considered in this chapter, for further sensitivity

analysis, which are: daily solar irradiance (S),
electrical/thermal efficiency (ηe/ηth), prices of
electricity/heating (EP/HP), OM cost (OM),
concentrator capital cost (C0), debt to equity ratio
(DE), interest rate (Itr), discount rate (r), and
inflation rate (Ifr).These variables are either
affecting largely the result or are rather uncertain,
and their effects on the results are expected.

The total evaluation strategy in the Monte
Carlo model is expressed by input–output vector
in equation (Tripanagnostopoulos et al. 2005;
Coventry and Lovegrove 2003; Xuan et al. 2017;
Li et al. 2015; Croce 2017; Fiorenza et al. 2016;
Overbye 2015; http://www.estif.org/
solarkeymark/Links/Internal_links/SP/SC0987-
09%202010-01-20%20Absolicon%20X10%20%
2010,14m%20utg%202.pdf).

LCOE1NPV1PP1ð Þ
LCOE2NPV2PP2ð Þ
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where,
j is the number of simulation trials.

7.2.5 Simulation Process

The Monte Carlo analytical model is developed
upon Crystal Ball, which is a leading
spreadsheet-based application for predictive
modelling, forecasting, simulation, and opti-
mization. It offers unparalleled insight into the
critical factors affecting risk so that the decision-
makers can make the right tactical decisions
(Oracle Crystal Ball 2017). In this model, the
variables mentioned above were defined as the
triangular probability distribution due to the
limited data of the parameters, ranging between
minimum and maximum given in Table 7.1 and
the highest probability at the mean value.
A range of values for assumptions was randomly
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generated. These inputs were then feed into for-
mulas of evaluation metrics defined in forecast
cells. This was repeated for a large number of
combinations of parameters (10,000 trials in this
work). After simulation, it explored ranges of
outcomes, expressed as graphical forecasts, in
order to exam the sensitivity/reliability of various
input parameters, and to estimate the
probability/certainty of different economic eval-
uation metrics (Oracle Crystal Ball 2017).

7.3 Sensitivity and Reliability
Analysis

A sensitivity analysis was conducted to assess
the sensitivity of the evaluation metrics (LCOE,
NPV, and PP) to the variations in input param-
eters, as displayed in Fig. 7.4. Stockholm was
taken as a basic example for application of the
reference PV/T concentrator. The default forecast
views are shown as the simples’ count of values
(the frequency) for each interval on the x-axis. In
Fig. 7.4a, the mean value of LCOE is observed at
1.27 SEK/kW h (0.127 €/kW h). The LCOE
value that occurred the most frequently is at
around 0.80 SEK/kW h, which has a probability
of around 6.5%, meaning that there is a 6.5%
chance of LCOE values falling near this value.
There is about 88.65% probability of LCOE
values falling between 0.30 and 2 SEK/kW h.
Comparing to the LCOE of other PV/T systems
reviewed in Sect. 7.2 (0.06–0.12 €/kW h or 0.6–
1.2 SEK/kW h), the mean LCOE of X10 PV/T is
more closed to the upper limit owing to the much
less energy generation and energy saving benefits
in Sweden. Similarly in Fig. 7.4b, the reference
concentrator has the mean NPV value of
18,812.55 SEK (1881.255 €) after 25 years
operation, and there is nearly 74.91% probability
for this PV/T concentrator to achieve positive
NPV (valuable investment) when it is operated in
Sweden. Comparing to the NPV values of other
PV/T systems reviewed in Sect. 7.2 (20,000 € or
200,000 SEK), the mean NPV of X10 PV/T is
much lower because both the energy generation
and the electricity/heating prices are so low that
leads to a weak financial benefits in cash flow.

The mean PP, displayed in Fig. 7.4c, is nearly 10
years when the cash flow turns positive, which is
equivalent to the other cases (about 11 years)
reviewed in Sect. 7.2. There is around 80.92%
possibility for this PV/T concentrator to have a
PP less than 15 years. However, there is nearly
12% high risk for the PP over the concentrator’s
operation life span of 25 years.

Figure 7.5 demonstrates the sensitivity of
different variables to different output values. It is
found that the main parameters that determine a
positive outcome of business case are average
daily solar irradiance, concentrator capital cost,
heating price, debt to equity ratio and discount
rate. The average daily solar irradiance accounts
for approximately 91.85%, 91.12% and 84.60%
of the values of LCOE, NPV and PP, respec-
tively. It is therefore considered as the most
important assumption in the model since it
determines energy generation and savings of the
whole concentrator system. The concentrator
capital cost also influences all the three evalua-
tion metrics: 3.64% to LCOE, 1.97% to NPV and
3.00% to PP since it contributes directly to the
annual savings and cash flow. The debt to equity
ratio is another important factor that strongly
connected with the initial investment and the
associated annual cost/cash flow; so it affects the
outputs too, contributing 1.85% impact to LCOE,
and 7.71% to PP. Heating price also influences
NPV and PP to an extent of 4.85% and 4.08%
respectively. This is because the magnitude of
heat generation is relative larger, comparing to
electricity generation. Meanwhile, the product of
heat output and heating price thus contributes
largely to the cash flow. In addition, the discount
rate has slight impact of LCOE while the rest
variables are not so important and their impacts
on the final output are so limited and that can be
ignored.

Additional comparison is also carried out
between two cases using different analytical
methods: (1) Monte Carlo method and (2) aver-
age point value method. In the Monte Carlo case,
it considers the probability distribution of each
input variable and predicts the mean values of
output metrics in a certain range. In the Normal
case, it applies the average point value of each
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Fig. 7.4 Frequency forecast
chart of a LCOE, b NPV, and
c PP
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input variable and calculates the average values
of output metrics. Table 7.2 displays the esti-
mation results of Normal case, and Fig. 7.6
compares the two cases in parallel. It is seen that
in Normal case, the economic performance are
too optimistic, where LCOE is calculated at 1.05
SEK/kW h (0.105 €/kW h) while NPV and PP

are respectively estimated at 22,973.84 SEK
(2297.384 €) and 5 years. However, current
Swedish PV/T market is very poor, mainly
because of the weak practical economic benefits
of PV/T. The results shown in the Normal case
are in great disagreement to real situation. In the
Normal case, the analysis neglects the inherent

Fig. 7.5 Sensitivity and Tornado charts of a LCOE, b NPV and c PP
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uncertainty in the investment and thus overesti-
mates the economic benefits from PV/T. On the
contrast, the analysis in Monte Carlo case chose
the input parameters randomly from pre-defined
distributions for each input variable and per-
formed the calculation for 10,000 times, whose
results seem more realistic by providing more
realistic information about risk and uncertainty.

7.4 Optimization Analysis

In order to measure the potential impact of each
important variable mentioned above, such as
average daily solar irradiance, debt to equity,
heating price, concentrator capital price, and
discounted rate, this section will use the existing
model to predict the values of LCOE, NPV and
PP, by changing the value of each important
variable in a certain range when keeping the
others as the same assumptions. The simulation
results are expected to be useful in further mar-
keting positioning and penetration of the refer-
ence PV/T from the points of views of marketing
location, financial measures and governmental
tariffs.

7.4.1 Impact of Average Daily Solar
Irradiance

When keeping the other assumptions the same,
increasing only the average daily solar irradiance
from 0.5 to 6.5 kW h/m2 day in the existing
model, the impact of the average daily solar
irradiance is illustrated in Fig. 7.7. In this case,
only the average daily solar irradiance data is
considered as the fixed value under each simu-
lation running, instead of the triangular distri-
bution, but other 10 key input variables are still
assumed as the triangular distributions. Increas-
ing the average daily solar irradiance increases
NPV and reduces LCOE and PP. NPV increases
from −35,068.77 SEK (−3506.877 €) to
102,639.38 SEK (10,263.938 €) with increasing
solar irradiance in a purely linear way
(y = 11497x − 46,567; R2 = 1), and NPV starts
to turn positive after the average daily solar
irradiance is greater than about 2.10 kW h/m2

day. LCOE falls down significantly at the
beginning when the average daily solar irradi-
ance starts to increase but then it drops gradually
when solar irradiance becomes larger, presenting
a downwards power trend (y = 5.8109x−0.999,

Case 1 Case 2
0

5000

10000

15000

20000

25000

Case 1: Monte Carlo Case;    Case 2: Normal case using avearge point values
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Mean NPV (SEK) Mean PP (year)Fig. 7.6 Comparison of
economic analytical results
between two cases using
different methods
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R2 = 1) from 5.81 SEK/kW h (0.581 €/kW h) to
0.45 SEK/kW h (0.045€/kW h). PP varies in a
similar way to LCOE, also showing downwards
power trend (y = 23.057x−0.933; R2 = 0.9976).
PP is estimated over 25 years when the average
daily solar irradiance is lower than 1.5 kW h/m2

day, and it achieves minimum 2.52 year when
the average daily solar irradiance is at 6.5 kW
h/m2 day. Such results can be interpreted that
higher solar irradiance leads to more total
electricity/heat generation, and thus increases the
related economic savings and NPV while
decreasing LCOE and PP.

The average daily solar irradiance has a sig-
nificant impact on all the economic indexes; the
higher solar irradiance, the better business out-
comes. The appropriate places for operating the
reference PV/T concentrator are suggested to
have the average daily solar irradiance greater
than 2.40 kW h/m2 day (876 kW h/m2 year) at
least, in order to achieve positive NPV and low
LCOE of 1.20 SEK/kW h (0.12 €/kW h) and PP
of less than 10 years. Figure 7.8 illustrates the
suitable places that meet such criteria in Sweden.
The reference PV/T concentrators are appropriate
to be applied in those representative cities, i.e.
Lund, Göteborg, Norrköping, Stockholm, Bor-
länge and Umeä etc., (Carlund 2013). From the
geographic point of view (SMHI 2017), nearly
two thirds of Sweden is the suitable places to
install this reference PV/T concentrator.

7.4.2 Impact of Debt to Equity Ratio

Varying the debt to equity ratio and keeping the
other assumptions the same, Fig. 7.9 shows the
variation trend of NPV, LCOE and PP under this
circumstance. The debt to equity ratio is set as
the fixed value (instead of the triangular distri-
bution) during each simulation running. The
higher debt to equity ratio results in the higher
LCOE/NPV, but the lower PP. LCOE slightly
increases from 1.01 SEK/kW h (0.101 €/kW h)
to 1.39 SEK/kW h (0.139 €/kW h) with the
increase of debt to equity from 0 to 90% in a
linear way (y = 0.0425x + 0.9493; R2 = 0.994).
The impact of debt to equity ratio to NPV value
is very limited, which is also demonstrated in
Fig. 7.5b. NPV grows from 17,329.53 SEK
(1732.953 €) to 26,418.06 SEK (2641.806 €)
when the debt to equity grows in the range of 0%
to 90% in a linear way (y = 1021.2x + 16,537;
R2 = 0.9928). PP drops against the increase of
debt to equity ratio in a polynomial way
(y = −0.0391 � 2 + 0.0309x + 10.539;
R2 = 0.9947), decreasing from 10.64 year to
6.83 year. These variations are because the
higher debt to equity means the higher loan from
the bank, increasing the annual loan cost and
therefore higher LCOE; on the other hand, high
loan requires less initial investment and PP,
which further increases the present values of cash
flow slightly. However, the impact of debt to

Fig. 7.7 Variations of
LCOE, NPV and PP against
average daily solar irradiance
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equity is not as much as that of the average daily
solar irradiance, which is consistent with the
results in sensitivity/reliability analysis. The

simulation results are meaningful to encourage
Swedish customers to have more loan from the
bank when they decide to invest the PV/T

Fig. 7.8 Appropriate places for the reference PV/T concentrator in Sweden: a representative cities, and b geographic
view
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product, and also useful for development of new
business models among different stakeholders.

7.4.3 Impact of Heating Price
for Household

The variations of LCOE, NPV and PP against the
increase of household heating price are displayed
in Fig. 7.10, when the other parameters are
remained as the same assumptions. The heating
price is treated as the fixed value in the model
(instead of the triangular distribution) during
each simulation running. As concluded in above
sensitivity/reliability analysis section, the impact
of heating price on the LCOE can be ignored,
which is also observed in this parametric study.
By changing heating price from 0.50 SEK/kW h
(0.05 €/kW h) to 1.00 SEK/kW h (0.1 €/kW h),
LCOE almost stays constantly at around 1.20
SEK/kW h (0.12 €/kW h), while NPV increases
greatly from 6805.52 SEK (680.552 €) to
38,450.23 SEK (3845.023 €) linearly
(y = 6323x + 200; R2 = 0.9996);on the contrast,
PP drops from 12.47 year to 6.93 year in a linear
way (y = −1.0949x + 13.239; R2 = 0.9858).
Since the energy savings are only considered into
the present value of cash flow (not in the present
value of system cost), the heating price only has
the impact to NPV and PP but no direct influence
on LCOE. The higher heating price leads to

larger savings due to energy generation, con-
tributing more to cash flows and NPV/PP. The
simulation result has an indication that it would
be more beneficial to apply the reference PV/T
concentrator in those locations or municipalities
with higher heating price in Sweden.

7.4.4 Impact of Concentrator Capital
Price

Considering the change of concentrator price only
and keeping the other assumptions the same, the
variations of LCOE, NPV and PP against the
increase of concentrator capital price are pre-
sented in Fig. 7.11. The concentrator capital price
is regarded as the fixed value (instead of the tri-
angular distribution) during each simulation run-
ning. In previous sensitivity/reliability analysis, it
is observed that the impact of concentrator capital
price on all the three economic indexes is
remarkable, which is also observed in this para-
metric study. Increasing concentrator capital price
from 3000 SEK/m2 (300 €/m2) to 5500 SEK/m2

(550 €/m2), LCOE goes up from 0.81 SEK/kW h
(0.081 €/kW h) to 1.48 SEK/kW h (0.148 €/kW
h) in a linear way (y = 0.1351x + 0.672;
R2 = 0.9989), and similarly, PP increases from
5.63 year to 11.89 year linearly too
(y = 1.2657x + 4.2567; R2 = 0.9987); on the
other hand, NPV falls down from 37,989.16 SEK
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(3798.916 €) to 12,078.33 SEK (1207.833 €)
linearly (y = −5219.5x + 43,373; R2 = 0.9987).
The higher concentrator capital price results in the
higher initial investment and the higher loan cost;
so it has a negative impact on all the three eco-
nomic indexes, lowering NPV and increasing
LCOE/PP simultaneously. The simulation result
indicates that the capital price of the reference
PV/T concentrator is important to the final deci-
sion of investment, and it is suggested that the
concentrator capital price should be controlled as
low as possible for a better market penetration.

7.4.5 Impact of Discount Rate

When changing the discount rate only, its impact
to the LCOE, NPV and PP is illustrated in
Fig. 7.12. It needs to be noted that the discount
rate is set at the fixed value, rather than triangular
distribution, while the rest assumptions are
defined as the same distributions. The discount
rate has certain impact on both LCOE and NPV
but the limited influence on PP. When increasing
the discount rate from 6 to 10%, LCOE increases
from 1.03 SEK/kW h (0.103 €/kW h) to 1.39
SEK/kW h (0.0139 €/kW h) linearly
(y = 0.089x + 0.941; R2 = 0.9991); while NPV
reduces from 30,675.55 SEK (3067.555 €) to
16,353.94 SEK (1635.394 €) in a linear way

(y = −3575.5x + 33,745; R2 = 0.9934). The
variation of PP ranges very limited from 9.15 to
9.28 years. The larger discount rate weakens the
present values of cash flow and the energy
generation/benefits, and it ultimately reduces
NPV and enhances LCOE. According to the
simulation result, the lower discount rate is
beneficial to the investment of the reference
PV/T concentrator in Sweden.

7.5 Future Work to Improve
the Model

Since the main task in this work is to propose a
methodology and develop the relevant model by
using the nominal efficiencies/data, in order to
find out the most influencing variables (sensi-
tivities) on PV/T investment decisions in Sweden
scenario, further work is required to improve this
model’s reliability in practical decision making
process. The average daily solar irradiance has
the highest sensitivity ranking and therefore is
regarded as the most important factor. Further
improvement of the model should apply the
historic real-time solar irradiance data to reduce
its uncertainty and increase model accuracy. As
highlighted by Guarracino et al. (2016), it is
important to use real climate data at high reso-
lution instead of time-averaged data, where the
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yearly energy yields may be discrepant by over
25%. The next important impact factors are the
debt to equity ratio, the concentrator capital
price, local heating prices, and the discount rate.
Further simulation should be based on the actual
financial plan and the location-based product &
energy prices. Additional attention should be
paid to the location-specific real-time PV/T effi-
ciencies. In this chapter, only the nominal PV/T
efficiencies are applied in the model, while future
model should be based on real-time PV/T effi-
ciencies that could be defined as the practical
probability distribution curves in the model.

Fiorenza et al. reported that the peak energy
yield/efficiencies of the same PV/T concentrator
were 15% lower than that in manufacturer’s
technical bulletin (Fiorenza et al. 2016). Fig-
ure 7.13 compared two cases by referring the
PV/T efficiencies’ maximum values as −15%
(Fiorenza et al. 2016) and minimum values as
−25% (Guarracino et al. 2016) respectively, to
the nominal efficiencies according to manufac-
turer’s technical bulletin. A normal distribution
of PV/T efficiencies in case 2 was defined. It
dictates that NPV decreases to 8677.80 SEK
(867.780 €) while LCOE and PP only increase to
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1.51 SEK/kW h (0.151 €/kW h) and 12 years,
respectively. Although the PV/T efficiencies only
influence the overall economic performance to a
certain level, they can result in a more realistic
prediction. Practical PV/T efficiencies vary with
many practical factors, such as seasons, loca-
tions, orientations etc. So it is not easy to simply
foresee the practical efficiencies, and long-term
recording of real-time efficiencies could be one
solution for these data.

It is also important to introduce temperature
production as a parameter in future model,
together with surrounding air temperature and
hot water load profile. For instance, PV electrical
efficiency relies on the output temperature; the
real-time thermal efficiency could be achieved
though using annual temperature production and
annual inlet temperature as essential parameters
to estimate practical thermal output and effi-
ciency. In addition, this chapter assumed both the
thermal and power output are useful for building
services (such as lighting, hot water at 40 °C
level), where it would be possible when grid
connection or electrical storage is available for
the PV output and thermal storage is available for
the thermal output. The estimation from the
model may vary depending on the demand pro-
file at different temperature levels and the nom-
inal capacity installed in practice. Further work
should also involve the integration of high-
resolution demand profile with the existing
model.

7.6 Summary

PV/T technologies offer great opportunities for
solar market innovation in Sweden. In order to
achieve such success, this chapter carries out a
techno-economic evaluation of a reference solar
PV/T concentrator in Sweden based on Monte
Carlo method. The important conclusion can be
summarized as below.

Among the 11 assumptions in the model, the
average daily solar irradiance has the highest
sensitivity ranking and therefore is regarded as

the most important factor. The next important
impact factors are debt to equity ratio, the pro-
duct capital price, local heating prices, and the
discount rate. Further improvement of the model
should apply the historic solar irradiance data
and the location-specific cell efficiency, financial
plan and product & energy prices, to reducing its
uncertainty and increase model accuracy.

The reference concentrator has the mean val-
ues of LCOE, NPV and PP at 1.27 SEK/kW h
(0.127 €/kW h), 18,812.55 SEK (1,881.255 €)
and 10 years, respectively. There is nearly 12%
high risk for the PP over the concentrator’s
operation life span of 25 years.

The higher solar irradiance is, the better
business outcomes. The appropriate places for
operating the reference PV/T concentrator is
suggested to have the average daily solar irradi-
ance greater than 2.40 kW h/m2•day (876 kW
h/m2 year) at least. The reference PV/T concen-
trator could be applied in those representative
cities, such as Lund, Göteborg, Norrköping,
Stockholm, Borlänge and Umeä etc. It is mean-
ingful to encourage Swedish customers to have
more loans from the bank when they decide to
invest the PV/T product. It would be more ben-
eficial to apply such system in those locations or
municipalities with higher heating price or lower
discount rate in Sweden. The concentrator capital
price should be controlled as low as possible for
a better market penetration.

The modelling method presenting in this
chapter considers the integrated uncertainties and
risks of most key input parameters, whose ana-
lytical results are expected to be useful for more
realistic investment decisions of PV/T technolo-
gies applied in Swedish building sector.

References

Baerbel R (2017) Sweden’s solar heat market on hold.
http://www.solarthermalworld.org/content/swedens-
solar-heat-market-hold. Accessed on 16 Oct 2017

Carlund T (2013) 30 years of Swedish solar radiation
observations. In: EGU General Assembly 2013, held
7–12 Apr 2013 in Vienna, Austria

160 Y. Gu and X. Zhang

http://www.solarthermalworld.org/content/swedens-solar-heat-market-hold
http://www.solarthermalworld.org/content/swedens-solar-heat-market-hold


Clover I (2017) Sweden to effectively scrap solar energy
tax: reports. https://www.pv-magazine.com/2016/11/
22/sweden-to-effectively-scrap-solar-energy-tax-
reports_100026987/. Accessed on 28 Nov 2017

Coventry JS, Lovegrove K (2003) Development of an
approach to compare the ‘value’ of electrical and
thermal output from a domestic PV/thermal system.
Sol Energy 75:63–72

Croce SL (2017) Simulazione energetica discenari per la
produzione combinataa ervizio diedificicivili in area
mediterranea. Università degli Studi di Cagliari. http://
veprints.unica.it/1445/1/PhD_Thesis_LaCroce.pdf.
Accessed on 11 Nov 2017

Fiorenza G, Paparo G, Apicella F, Bianco N, Graditi G
(2016) An innovative dynamic model for the perfor-
mance analysis of a concentrating
photovoltaic/thermal (CPV/T) solar collector. In:
Sayigh A (ed) Renewable energy in the service of
mankind Vol II. Springer, Cham, pp 337–351

Guarracino I, Mellor A, Ekins-Daukes NJ, Markides CN
(2016) Dynamic coupled thermal-and-electrical mod-
elling of sheet-and-tube hybrid photovoltaic/thermal
(PVT) collectors. Appl Therm Eng 101:778–795

Herrando M, Markides CN (2016) Hybrid PV and solar-
thermal systems for domestic heat and power provi-
sion in the UK: techno-economic considerations. Appl
Energy 161:512–32

IEA SHC (2017) Status of solar heating/cooling and solar
buildings—2017. http://www.iea-shc.org/country-
report-sweden Accessed on 22 Aug 2017

Kalogirou SA, Tripanagnostopoulos Y (2006) Hybrid
PV/T solar systems for domestic hot water and
electricity production. Energy Convers Manage
47:3368–3382

Koene F (2017) Report on the developed techno-
economic integrated concepts. Accessed on 12 Nov
2017

Li G, Pei G, Ji J, Yang M, Su Y, Xu (2015) Numerical
and experimental study on a PV/T system with static
miniature solar concentrator. Sol Energy 120:565–574

Lindahl J (2016) National survey report of PV power
applications in Sweden—2016. Swedish Energy
Agency

Oracle Crystal Ball. https://www.oracle.com/applications/
crystallball/index.html. Accessed on 12 Nov 2017

Overbye O (2015) An economic valuation of solar energy
potential in Nigeria. In: Power and energy conference
at Illinois (PECI), IEEE, Champaign, IL, USA

Poppi S, Sommerfeldt N, Bales C et al (2018) Techno-
economic review of solar heat pump systems for
residential heating applications. Renew Sustain
Energy Rev 81:22–32

Sköldberg H, Rydén B (2017) The heating market in
Sweden: an overall picture. http://www.
varmemarknad.se/pdf/The_heating_market_in_
Sweden_141030.pdf. Accessed on 8 Dec 2017

SMHI (Swedish Meteorological and Hydrological Insti-
tute) Global radiation in Sweden. http://www.smhi.se/
klimatdata/meteorologi/stralning/normal-
globalstralning-under-ett-ar-1.2927. Accessed on 30
Nov 2017

Solar electricity handbook. Average daily solar irradiance.
http://solarelectricityhandbook.com/solar-irradiance.
html. Accessed on 8 Dec 2017

Statista (2017) Electricity prices for households in
Sweden from 2010 to 2016, semi-annually. https://
www.statista.com/statistics/418124/electricity-prices-
for-households-in-sweden/. Accessed on 8 Dec 2017

Tidd J, Bessant J, Pavitt K (2005) Managing innovation:
integrating technological, market and organizational
change, 3rd edn. Wiley & Sons Ltd

Trading economics. https://tradingeconomics.com/sweden
. Accessed on 30 Sept 2017

Tripanagnostopoulos Y, Souliotis M, Battisti R, Cor-
rado A (2005) Energy, cost and LCA results of PV
and hybrid PV/T solar systems. Progress Photovoltaics
13:235–250

X10 PV/T (2017) http://www.absolicon.se/product/
absolicon-x10-pvt. Accessed on 30 Sept 2017

X10 PV/T testing report. http://www.estif.org/
solarkeymark/Links/Internal_links/SP/SC0987-09%
202010-01-20%20Absolicon%20X10%20%
2010,14m%20utg%202.pdf

Xuan Q, Li G, Pei G, Ji J, Yuehong Su, Zhao B (2017)
Optimization design and performance analysis of a
novel asymmetric compound parabolic concentrator
with rotation angle for building application. Sol
Energy 158:808–818

7 A Solar Photovoltaic/Thermal (PV/T) Concentrator … 161

https://www.pv-magazine.com/2016/11/22/sweden-to-effectively-scrap-solar-energy-tax-reports_100026987/
https://www.pv-magazine.com/2016/11/22/sweden-to-effectively-scrap-solar-energy-tax-reports_100026987/
https://www.pv-magazine.com/2016/11/22/sweden-to-effectively-scrap-solar-energy-tax-reports_100026987/
http://veprints.unica.it/1445/1/PhD_Thesis_LaCroce.pdf
http://veprints.unica.it/1445/1/PhD_Thesis_LaCroce.pdf
http://www.iea-shc.org/country-report-sweden
http://www.iea-shc.org/country-report-sweden
https://www.oracle.com/applications/crystallball/index.html
https://www.oracle.com/applications/crystallball/index.html
http://www.varmemarknad.se/pdf/The_heating_market_in_Sweden_141030.pdf
http://www.varmemarknad.se/pdf/The_heating_market_in_Sweden_141030.pdf
http://www.varmemarknad.se/pdf/The_heating_market_in_Sweden_141030.pdf
http://www.smhi.se/klimatdata/meteorologi/stralning/normal-globalstralning-under-ett-ar-1.2927
http://www.smhi.se/klimatdata/meteorologi/stralning/normal-globalstralning-under-ett-ar-1.2927
http://www.smhi.se/klimatdata/meteorologi/stralning/normal-globalstralning-under-ett-ar-1.2927
http://solarelectricityhandbook.com/solar-irradiance.html
http://solarelectricityhandbook.com/solar-irradiance.html
https://www.statista.com/statistics/418124/electricity-prices-for-households-in-sweden/
https://www.statista.com/statistics/418124/electricity-prices-for-households-in-sweden/
https://www.statista.com/statistics/418124/electricity-prices-for-households-in-sweden/
https://tradingeconomics.com/sweden
http://www.absolicon.se/product/absolicon-x10-pvt
http://www.absolicon.se/product/absolicon-x10-pvt
http://www.estif.org/solarkeymark/Links/Internal_links/SP/SC0987-09%25202010-01-20%2520Absolicon%2520X10%2520%252010,14m%2520utg%25202.pdf
http://www.estif.org/solarkeymark/Links/Internal_links/SP/SC0987-09%25202010-01-20%2520Absolicon%2520X10%2520%252010,14m%2520utg%25202.pdf
http://www.estif.org/solarkeymark/Links/Internal_links/SP/SC0987-09%25202010-01-20%2520Absolicon%2520X10%2520%252010,14m%2520utg%25202.pdf
http://www.estif.org/solarkeymark/Links/Internal_links/SP/SC0987-09%25202010-01-20%2520Absolicon%2520X10%2520%252010,14m%2520utg%25202.pdf


Part II

Thermal Comfort and Air Quality
in Buildings



8Influencing Factors for Occupants’
Window-Opening Behaviour
in an Office Building Through
Logistic Regression and Pearson
Correlation Approaches

Song Pan, Xinru Wang, Xingxing Zhang,
Li Chang, and Yiqiao Liu

Abstract

Occupants often perform many types of
behaviour in buildings to adjust the indoor
thermal environment. In these types,
opening/closing the windows, often regarded
as window-opening behaviour, is more com-
monly observed because of its convenience. It
not only improves indoor air quality to satisfy
occupants’ requirement for indoor thermal
comfort but also influences building energy
consumption. To learn more about potential
factors having effects on occupants’
window-opening behaviour, a field study

was carried out in an office building within a
university in Beijing. Window state
(open/closed) for a total of 5 windows in 5
offices on the second floor in 285 days
(9.5 months) were recorded daily. Potential
factors, categorized as environmental and
non-environmental ones, were subsequently
identified with their impact on
window-opening behaviour through logistic
regression and Pearson correlation
approaches. The analytical results show that
occupants’ window-opening behaviour is
more strongly correlated to environmental
factors, such as indoor and outdoor air tem-
peratures, wind speed, relative humidity, out-
door PM2.5 concentrations, solar radiation,
sunshine hours, in which air temperatures
dominate the influence. While the
non-environmental factors, i.e. seasonal
change, time of day and personal preference,
also affects the patterns of window-opening
probability. This chapter provides solid field
data on occupant window opening behaviour
in China, with high resolutions and demon-
strates the way in analyzing and predicting the
probability of window-opening behaviour. Its
discussion into the potential impact factors
shall be useful for further investigation of the
relationship between building energy con-
sumption and window-opening behaviour.
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8.1 Method of Study

8.1.1 Building Description

The case office building was constructed of
reinforced concrete and brick, which located at a
university in Beijing. The building shape and
office layout were very common for office
buildings in China. Around the building, there
were no tall buildings and trees blocking solar
gains and external noise was ignorable. As
shown in Fig. 8.1a, the building has two stories,
where laboratories were based on the ground
floor, and a total of 9 offices with same size of 10
m2 were placed on the second floor. The typical
internal layout of all offices is shown in
Fig. 8.1b. The geometry information of the

measured offices is shown in Table 8.1. In these
9 offices, 5 offices were applicable and selected
for the experiment.

Each office can accommodate two occupants,
with a south-facing sliding window. During the
experiment, there was only one occupant in
each office. In winter, radiator and natural gas
boiler were used as main heating generator, with
municipal hot water heating as auxiliary heating
occasionally. In summer, split type air condi-
tioners were used to supply cooling. During
transition seasons (the period from 1st October
to 15th November and 15th March to 16th
May), natural ventilation was the main strategy.
To investigate the effect of regional noise on
window-opening behaviour, questionnaires
were developed, delivered and answered. Based
on the answers, the regional noise seems no
significant influence on window-opening beha-
viour in this case. The occupants of all 5 offices
were all non-smoking, consisting of two males
and three females, who had lived in Beijing for
many years and adapted well to the local
climate.

Fig. 8.1 The case study
building (a) and a typical
office (b)

Table 8.1 Basic information of measured offices

The
room

Size
(m2)

The orientation of
windows

Window form The number of
windows

Gate
number

202 11.16 South Push–pull
type

1 1

203 10.23

205 10.23

206 10.23

208 10.23
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8.1.2 Measured Factors

This study covered 2 transition seasons, i.e. from
1st October to 15th November, 2014 and from
15th March to 16th May, 2015, 1 heating season,
i.e. from 15th November, 2014 to 15th March,
2015 and 1 cooling season, i.e. 16th May to 15th
July, 2015. During transition seasons, occupants
mainly adjusted indoor air quality using natural
ventilation. During heating season, circulating
water radiators were used for the indoor air
temperature and split type air conditioners were
designed for the indoor air temperature during
cooling season. In cooling season, occupants
could adjust the setting value via control panel
installed on the interior wall but this was not
flexible in heating season as the heating was
controlled by central plant. During the monitor-
ing, infrared instruments (recording interval:
1 min; induction range: 5 m) were used to record
occupancy of the monitored offices; window
displacement testers were applied to detect and
record the state of office windows (recording
interval: 10 min; induction distance: 3 cm);
indoor air temperature sensors (recording inter-
val: 10 min; precision: ±0.5 °C) were installed
to used to measure and record indoor air tem-
perature. All the above measuring devices have

been shown in Fig. 8.2a–c. A portable outdoor
meteorological sensor (recording interval: 1 min)
was installed at the top of the office building, as
shown in Fig. 8.2d.

In the experiment, PM2.5 measurement was
also considered. It refers to the atmospheric fine
particulate matter with a diameter less than
2.5 µm, which has proven with a direct and
harmful effect on health, especially for the res-
piratory system. The increase in PM2.5 concen-
trations is positively correlated with the death
rate from respiratory diseases (Watterson et al.
2007), and such truth influence a lot on occu-
pant’s decision whether open windows or not. By
considering the indirect influence of high PM2.5
concentrations on window-opening behaviour, a
questionnaire survey was completed before the
experiment about whether people would close
windows when outdoor PM2.5 concentrations
was high. The survey result showed that people
tended to close windows for better indoor air
quality so as to keep healthy when it comes to
high outdoor PM2.5 concentrations. In consid-
eration of serious air pollution in Beijing in
recent years and the inter-linked influence of
outdoor PM2.5 concentrations on window-
opening behaviour, the outdoor PM2.5 concen-
trations were also recorded based on the data

Fig. 8.2 Indoor temperature
measuring device (a);
intelligent human body
inductor (b); the window
displacement tester (c) and
outdoor temperature
measuring device (d)
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measured in the Temple of Heaven which had a
linear distance of 5 km from the investigated
building. In summary, the recorded data of this
study included (I) environmental factors: indoor
and outdoor air temperature (°C), outdoor rela-
tive humidity (%), outdoor wind direction (°),
outdoor wind speed (m/s), solar radiation
(W/m2), outdoor PM2.5 concentrations (µg/m3),
sunshine hours (the hour of daily radiation level
is higher than 120 W/m2), and (II) non-
environmental factors: seasonal change, time of
day, and personal preference.

8.1.3 Measuring Devices

To avoid the impact of radiators/convectors on
temperature measurement, an indoor air temper-
ature sensor TR (v1.2) produced by the China
Architecture Science Institute was placed on a
platform of 1.8 m from the floor, staying a dis-
tance of at least 1 m from the nearest
radiator/convection inverter. By doing so, the
temperature was considered the same as the one
at occupant height after tests over several days
before measurement. All sensors had been cali-
brated by the manufacturer before the measure-
ment, an additional calibration was carried out
every two months during the monitoring period.

The portable outdoor meteorological weather
station was placed on the roof at 1 m height over
the roof to ensure no influence from the heated
generated from the building itself. An infrared
instrument P-100 (v1.0) was installed on the
inside walls of the office at a 2 m height and
close to the office chair. Its role was to detect
infrared wavelengths emitted by the human
body, with a radius of approximately 5 m. The
location of the infrared instrument P-100 was
chosen to avoid any impact on its measurement
results from devices such as computers, water
fountains and radiators.

The state of the window (open/closed) was
measured by a window displacement tester D-
100 which automatically recorded the window
state dynamically. The window displacement

tester recorded the window state by means of the
magnetic induction of two dry spring pipes
positioned on the window. When the magnet
force is approached, the dry reed pipes are con-
nected; while magnet is weakening, the dry reed
pipes are separated. So the opening state of the
window are detected. The shortest time of
induction switch is not less than 3 s, and the
highest distance where measuring devices can be
induced by the magnet is 3 cm.

8.2 Data Processing and Results
Analysis

8.2.1 Environmental Factors

The outdoor and indoor air temperatures have
proven as the dominating influential factors on
window-opening behaviour in many studies
(Haldi and Robinson 2008a, 2009a, b; Ben-David
andWaring 2016; Haldi et al. 2008; Li et al. 2015;
Chen 2009). In this section, the analysis is in turn
to assess the impact from both outdoor and indoor
air temperatures in this case building. Meanwhile,
due to heavy air pollution caused by high PM2.5
concentrations in China, the influence of outdoor
PM2.5 concentrations on window- opening
behaviour has also been investigated.

A logistic regression approach has been used to
analyze the original data by addressing the proba-
bility of the window switch against the
outdoor/indoor air temperature and PM2.5 con-
centrations. Logistic regression analysis (Hosmer
and Lemesbow 2000) is a statistic method that
defines the probability of specific event happening
(e.g. opening a window) based on relevant
influential factors (e.g. outdoor/indoor air temper-
ature or PM2.5 concentrations). When using
logistic regression, a useful method to identify the
contribution of individual factors to the event
happening is called Wald statistic test, which has a
chi-square distribution. Thus, a significant 2 tailed
P-value of a particular predictor reflects that this
predictor plays an important role in the logistic
regression model. The relation is given in Eq. (8.1):
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P ¼ expðaþ bxÞ=½1þ expðaþ bxÞ� ð8:1Þ

where, P refers to window-opening probability,
and x is relevant influential factors, a and b are
constants, which represent the intercept and
regression coefficients, respectively.

8.2.2 Outdoor Air Temperature

Figure 8.3 displays shows the variation of
window-opening probability with increase in
outdoor air temperature. It is observed that the
window-opening probability increases with the
increase of outdoor air temperature. The result
was similar to those obtained from the European
studies (O’Brien and Gunay 2014). In addition,
when outdoor air temperature was lower than
10 °C, indoor occupants generally kept their
windows closed, and when outdoor air tempera-
ture was higher than 10 °C, it started to influence
greatly on window- opening probability. For
instance, when the outdoor air temperature
reached its highest level of 35.2 °C, the maxi-
mum window-opening probability was reached,
which was 65.4%. In Fig. 8.3, the intercept
a = − 1.45 ± 0.04 and the regression
b = 0.045 ± 0.002 in Eq. (8.1) by using the
logistic regression analysis.

8.2.3 Indoor Air Temperature

Figure 8.4 illustrates the window-opening prob-
ability varying with increase in indoor air tem-
perature. The window-opening probability seems
to increase with the higher indoor air tempera-
ture, which is also in consistent with the results
gained by past researchers (O’Brien and Gunay
2014; Karjalainen 2016). When the indoor air
temperature was lower than 22 °C, indoor
occupants generally kept their windows closed,
and when indoor temperature was higher than
27 °C, the indoor air temperature turned to affect
significantly on window-opening probability.
The maximum probability of window-opening
achieved at 62.9% when the intdoor air temper-
ature rose to its highest level of 29.6 °C. By
using the logistic regression for the data in
Fig. 8.4, the intercept: a = − 4.70 ± 0.23, and
the regression: b = 0.171 ± 0.009 in Eq. (8.1).

8.2.4 Outdoor PM2.5 Concentrations

Beijing has seriously suffered from outdoor air
pollution because of high PM2.5 concentrations
in recent years, especially in winter and transition
seasons. Hence, the indirect impact of outdoor
PM2.5 concentrations on window-opening

Fig. 8.3 Relationship
between window-opening
probability and outdoor air
temperature
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behaviour was also investigated when consider-
ing the outdoor air temperature in parallel since it
dominates the influence on window state (Herkel
et al. 2008). The analysis, therefore, was a 3-
dimension problem (probability against PM2.5
concentrations and outdoor air temperature)
rather than a 2-dimension issue. The logistic
regression analysis was applied again to identify
whether outdoor PM2.5 had a significant impact
on window state in the case building. Both out-
door air temperature and PM2.5 concentrations
were set up as predictors of the model and the
observed state of windows was regarded as the
model output. The ultimate regression results
gave that both predictors have a P-value of 0.000,
meaning that both the two predictors had a sig-
nificant influence on the observed window state.

8.2.5 Correlation Analysis for All
Factors

Correlation approach has been widely applied in
the analysis of the correlation between occu-
pants’ window-opening behaviour and its
influential factors. This method is adopted to
analyze the influence of environmental factors on
window-opening behaviour in this study.

In statistics, correlation analysis refers to the
analysis on two or more relevant variables.
A significant feature of correlation analysis is
that all variables are given the same priority in
the analysis. In this chapter, the Pearson corre-
lation coefficient, r, has been introduced to cal-
culate the data of the interval variable, as
presented in Eq. (8.2).

r ¼
Xn

i¼1

ðxi � xÞðyi � yÞ
,

Xn

i¼1

ðxi � xÞ2
Xn

i¼1

ðyi � yÞ2

ð8:2Þ

where, r is the correlation coefficient; x and y are
the mean value of x and y respectively; xi and yi
are the ith observed variable for x and y
respectively.

Because of existing sampling errors, the
correlation coefficient between two variables not
being ‘0’ does not mean that the correlation
coefficient between them in all samples not
being ‘0’. As a result, a test needs to be per-
formed to examine the result of the correlation
coefficient. The null hypothesis of the exami-
nation is that the correlation coefficient between
two variables in all samples is ‘0’. The tool of
Statistical Product and Service Solutions (SPSS)
is hereby applied used in calculating the

Fig. 8.4 Relationship
between window-opening
probability and indoor air
temperature
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probability of the hypothesis correctness, as
defined in Eq. (8.3).

t ¼ rðn� 2Þ=ð1 � r2Þ ð8:3Þ

where, n is the number of sample observa-
tions; n − 2 is degrees of freedom.

When the significance probability, i.e., t, for the
correlation coefficient is less than 0.05, it is indi-
cates that the correlation between the two variables
is significant; when it’s less than 0.01, the corre-
lation between two variables becomes much more
significant; when it is higher than 0.05, there is no
significant correlation between the two variables,
and t is only the probability value.

The results from the correlation analysis are
listed in Table 8.2, illustrating that except wind
direction (t = 0.075), the significance probabilities
of indoor air temperature, outdoor air temperature,
wind speed, relative humidity and outdoor PM2.5
concentrations, solar radiation, and sunshine hours
were all less than 0.05. This means that these fac-
tors have statistical significance and they can be
used to illustrate the relevance of parameter and the
window-opening probability.

The correlation coefficient of outdoor air
temperature parameters was 0.507, indicating its
relatively strong correlation with the window-
opening probability (correlation coefficient
greater than or equal to 0.5 representing rela-
tively strong correlation). The results of correla-
tion analysis demonstrated that the probability of
window being opened would be increasing with
the higher outdoor air temperature, consistent
with existing previous studies (O’Brien and
Gunay 2014). The correlation coefficient of
indoor air temperature parameters was 0.2,
reflecting the weaker correlation comparing to
outdoor air temperature parameters. Except the
wind direction, the correlation coefficients of
other factors had statistical significance but much
weaker comparing to outdoor and indoor air
temperatures. Factors, i.e. outdoor relative
humidity, wind speed, outdoor PM2.5 concen-
trations and the sunshine hours had a rather
negative correlation with window-opening
probability, indicating the values of window
being closed was inversely proportional to these
parameters. It can be interpreted that being
exposed to high humidity, high speed, high

Table 8.2 Correlation between the probability of window being opened and environmental factors

Descriptive statistics Correlation between environmental parameters and
window opening probability

Environmental conditions Mean
value

Standard
deviation

Correlation
coefficient

Significance
probability

Covariance

Indoor temperature (°C) 23.35 2.841 0.200** 0.000 0.268

Outdoor temperature (°C) 15.65 10.734 0.507** 0.000 1.044

Wind speed (m/s) 0.67 0.782 −0.024** 0.000 −0.009

Wind direction (°) 189.51 99.703 0.009** 0.075 0.425

Outdoor relative humidity
(%)

45.91 20.626 −0.012* 0.019 −0.116

Outdoor PM2.5
concentrations (µg/m3)

91.58 98.708 −0.056** 0.000 −2.517

Solar radiation (W/m2) 265.05 291.955 0.063** 0.000 8.609

Sunshine time (h) 12.41 6.012 −0.082** 0.000 −0.233
**Significantly correlated on 0.01 level (bilateral); *significantly correlated on 0.05 level (bilateral)
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PM2.5 concentrations, or long sunshine hours
may cause discomfort to the indoor occupants.

8.3 Non-environmental Factors

This section presented the detailed analysis of the
impacts of non-environmental factors to occu-
pants’ window opening behaviours, including
seasonal change, time of day and personal
preference.

8.3.1 Seasonal Change

Figure 8.5 illustrates the window-opening prob-
ability varying with time, the parameters
including outdoor air temperature, indoor air
temperature. It can be seen that the variation
profile of window-opening probability was sim-
ilar to that of the outdoor air temperature, but not
similar to that of the indoor air temperature. In
winter, when the outdoor air temperature was
lowest, the window-opening probability reached
the minimum nearly at the same time, reflecting
an action of closing windows to prevent cold air
flow going into the room. During this period,
however, the indoor air temperature was almost
keeping unchanged. In summer, the window-
opening probability and the outdoor air temper-
ature almost achieved their maximum values

simultaneously, demonstrating the strong impact
of outdoor air temperature on the operation of
windows. In addition, the variation of year-round
outdoor air temperature exhibited a cosine law,
which presented a strong correlation with
window-opening probability. Such characterized
variation along with the outdoor air temperature
is meaningful for the occupant behaviour mod-
elling buildings.

Figure 8.6 gives the changes in the relation-
ship between window-opening probability and
indoor air temperature during the heating season,
transition seasons and cooling season. As indoor
air temperature raised, the window-opening
probability became higher. When the tempera-
ture was in the range of 21–27 °C, there were
different window-opening probabilities for those
three seasons at the same temperature range.
Besides, window were most likely to be kept
opened during transition seasons. One possible
reason was that natural ventilation was the only
way to improve indoor thermal comfort and
indoor air quality during transition seasons. In
addition, there was a more comfortable outdoor
air temperature when the indoor air temperature
was in the range of 21–27 °C, even lower or
higher during transition seasons. In that case,
indoor occupants would prefer more natural
ventilation to improve the indoor air environ-
ment. On the other hand, comparing to cooling
season, window-opening probabilities for heating

Fig. 8.5 Relationship between window-opening probability and indoor and outdoor air temperature over time
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season were much higher at the same indoor air
temperature range. One possible explanation is
that the indoor heating system was operated
centrally during the heating season, leading to a
higher percentage of uncomfortable indoor tem-
perature, and opening the windows were con-
sidered the only ways to enhance the indoor
thermal comfort.

In Fig. 8.7, the detailed changes in the rela-
tionship between window-opening probability
and outdoor air temperature are illustrated during
heating season, transition seasons and cooling
season. The window-opening probability chan-
ged proportionally to the outdoor air temperature.
There were different window-opening probabili-
ties for those three seasons even at the same
temperature range. In comparison to cooling
season, the probability of window being opened
was higher during transition seasons for the same
outdoor air temperature range of 17–35 °C. This
is probably because only the natural ventilation
was adopted to improve indoor thermal comfort
and indoor air quality during transition seasons.
The probability of window being opened was
lower during transition seasons than that in the
heating season for the same outdoor air temper-
ature range of 2–17 °C. It is mainly the same
reason as the case result in Fig. 8.6, where cen-
tral heating brought forward too much

uncomfortable, resulting in more frequent switch
of window status. In addition, it also reflects that
window-opening behaviour is the result of all
kinds of all comprehensive factors.

8.3.2 Time of Day

Previous studies have shown that the change of
window states often occurred at the time when
occupants arrived or left their offices (Herkel
et al. 2008). This is usually reflected by the factor
called time of day. Figure 8.8 shows the pro-
portion of change of the window state from
opened to closed (a) and from closed to opened
(b). It can be seen that indoor occupants tended
to open their windows when they firstly arrived
at their offices and closed their windows when
they left their offices at the end of the day. Fig-
ure 8.8b reveals an interesting finding that during
cooling season, people preferred to open the
windows to inlet fresh air in the early morning,
although there would be strong direct sunlight for
south-facing windows in the late morning. This
finding proves that people in this case prefer to
open windows to increase the air flow for higher
indoor air quality.

It is well-known that when occupants come to
their offices in one day, their windows may have

Fig. 8.6 Relationship between window-opening probability and indoor air temperature in different seasons
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Fig. 8.7 Relationship between window-opening probability and outdoor air temperature in different seasons

Fig. 8.8 Relationship
between time of day and
window closure (a) and open
(b)
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be already opened or closed. When they feel
uncomfortable, they will change the window
state to adjust the indoor environment. As shown
in Fig. 8.9a, when occupants arrived at their
offices with closed windows, the window state
would not change until they felt uncomfortable.
Then, the window state would been kept at that
state until occupants felt uncomfortable. In most
case, people often close windows when they
leave their offices at the end of day. However,
occupants in this case preferred to keeping win-
dow open until next arrival in order to improve
indoor air quality through natural ventilation. In
addition, the other situation is shown in
Fig. 8.9b.

The variation of the window-opening proba-
bility in the 24 h of each season in all offices is
depicted in Fig. 8.10. The window-opening
probability first increased and then decreased in
the day for all seasons. In addition, it can be seen
that the window-opening probability climbed to
the highest values in core working time till the
late afternoon. One possible reason is that the
solar illumination is strongest for the windows
facing south at noon, and the indoor temperature
is higher than morning or afternoon, when an
improvement for indoor environment is needed.

8.3.3 Personal Preference

Table 8.3 lists some basic information of occu-
pant behaviour differences for all monitored
offices. The percentage of window-opening state
has been used to distinguish the differences in
occupant behaviour. From Table 8.3, it can be
seen that the window-opening rates for all five
offices were between 15.0 and 48.7%, and
Rooms 202, 206 and 208 had more time with
open windows. On the other hand, the average
times for each occupant to open their window in
a week has been used to judge the frequency of
occupant behaviour. The difference in average
time for each occupant can also reflect the con-
tribution of personal preference. It was defined a
low frequency as the times from 0 to 2.4, an
average frequency when the times from 2.4 to
5.6, and a high frequency when the time more
than 5.6. The result in the last column of
Table 8.3 illustrates that Room 205, 206 have the
most frequent occupant behaviour.

It is worth noting that the trend of occupant
behaviour is defined as a predictable case if the
window-opening probability rises with the
increase of indoor and outdoor temperatures.
Figure 8.11 predicts the window-opening

Fig. 8.9 The change of window status in different time periods when it’s closed (a) and open (b) before arrival
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probability against different occupants when
indoor or outdoor air temperature rises. The
behaviour of occupant in Room 208 has been
considered be predictable. Nevertheless, in
regard to a certain occupant, the trend of occu-
pant behaviour referring to indoor air tempera-
ture or outdoor air temperature was not all
consistent with the general trend.

8.4 Conclusions and Discussion

This chapter elaborates a longitudinal field
measurement on occupant window-opening
behaviour and their relevant influential factors
for a period of 9.5 months in an office building in
Beijing. The results show that all these factors,
i.e. indoor and outdoor air temperatures, seasonal
change, personal preference, time of day all have
performed great influences on window-opening
behaviour. Main conclusions are as follows:

(1) Environmental factors that affect window-
opening behaviour are mainly indoor and
outdoor air temperatures, against other fac-
tors. With the increase of indoor and outdoor
air temperatures, the window-opening prob-
ability will gradually rises and the trend is in
line with the logit model with a good
goodness-of-fit: the goodness-of-fit for out-
door temperature is 0.779, and it is 0.863 for
indoor air temperature.

(2) In addition to indoor and outdoor air tem-
peratures, other factors, such as wind speed,
relative humidity, outdoor PM2.5 concen-
trations, solar radiation, sunshine hours
showed statistically significant impact on
window-opening probability.

(3) Seasonal change also has an obvious influ-
ence on window-opening behaviour, reflec-
ted by various different patterns in window-
opening probability in different seasons,
even at similar indoor or outdoor air

Fig. 8.10 The change of
window-opening probability
in different time periods

Table 8.3 The window probability description for each room

Ref Nb. Pers Age Gender Ratio open (%) Actions Smoking Predictive Overall activity

202 1 42 Male 48.7 4.68 No No Average

203 1 39 Female 22.0 2.54 No No Average

205 1 43 Male 15.0 7.80 No No High

206 1 50 Female 43.4 6.98 No No High

208 1 45 Female 31.2 1.76 No Yes Low

Actions: the percentage of the open window per person per week
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temperatures conditions. In the whole year,
the window-opening probability mainly var-
ies with outdoor air temperature.

(4) The window state also varies at different time
of the day. Occupants tend to maintain the
existing state of their windows until they feel
uncomfortable. When they feel dissatisfied
with the environment, they will change the
window state to adjust the indoor comfort
environment. In addition, there is the highest
window-opening probability at the core
working time till the late afternoon. Occu-
pants prefer to open their windows when
they firstly arrived their offices and close the

windows when they left their offices at the
end of the day.

(5) Different people have various personal pref-
erences on using windows. They may prefer
different window states even at similar
indoor or outdoor air temperature conditions.
However, the general trend keeps the same,
which is general proportional to indoor and
outdoor air temperatures.

Owing to the inherent limitations on moni-
tored samples, influences from some other
potential factors cannot been covered in this
study, such as occupancy pattern, gender and age

Fig. 8.11 Relationship
between personal preference
and indoor temperature
(a) and outdoor temperature
(b)
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of users, orientation of the window. Moreover,
windows monitored in this study are equipped
with internal and external blinds, and occupants’
window use may potentially be influenced by the
use of blinds, view from the window, and day-
light illuminance falling on the window and
direct sunlight penetrating through the window
(Zhang and Barrett 2012). In addition, window
opening area has not been taken into account in
this study, due to the limitation of measurement
method. Further studies should be done to
strengthen the influences from the above factors
with a higher number of samples.
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9Reinforcement Learning
Methodologies for Controlling
Occupant Comfort in Buildings

Mengjie Han , Ross May ,
and Xingxing Zhang

Abstract

Classical building control systems are becom-
ing vulnerable with increasing complexities in
contemporary built environments and energy
systems. Due to this, the reinforcement learn-
ing (RL) method is becoming more distinctive
and applicable in control networks for build-
ings. This chapter, therefore, conducts a
comprehensive review of RL techniques
applied in control systems for occupant com-
fort in indoor built environments. The empir-
ical applications of RL-based control systems
are presented, depending on comfort objec-
tives (thermal comfort, indoor air quality, and
lighting) along with other objectives which
invariably includes energy consumption. The
class of RL algorithms and implementation
details regarding how the value functions have
been represented and how the policies are
improved are also illustrated. This chapter
shows there are limited works for which RL

has been explored for controlling occupant
comfort, especially in indoor air quality and
lighting. Relatively few of the reviewed works
incorporate occupancy patterns and/or occu-
pant feedback into the control loop. Moreover,
this chapter identifies a gap with regard to the
performance of implementing cooperative
multiagent RL (MARL). Based on our find-
ings, current challenges and further opportu-
nities are discussed. We expect to clarify the
feasible theory and functions of RL for
building control systems, which would pro-
mote their widespread application in built
environments.

Keywords

Reinforcement learning � Building � Indoor
comfort � Occupant

9.1 Overview of Comfort Control
in Buildings

9.1.1 Background

Around 90% of people spend most of their time in
buildings (Shaikh et al. 2013) and they spend 80–
90% of the day indoors, and consequently occu-
pant comfort becomes more and more important.
Therefore, maintenance of comfort factors is
crucial for improving occupant’s feeling of
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comfort, health, morale, working efficiency as
well as productivity (Li et al. 2016). Thermal
comfort, visual comfort and indoor air quality
(IAQ) seem to be the key parameters that jointly
influence the level of comfort of a building
occupant (Boodi et al. 2018; Park and Nagy 2018;
Frontczak and Wargocki 2011). Thus, reaching a
comfortable indoor environment is a multi-
objective task and needs comprehensive cooper-
ation between different building components.

Building design and the building management
system (BMS) are direct key factors that affect the
comfort level of an occupant. The design of
buildings relates to the occupancy level, ventila-
tion, use of natural resources, etc., which remains
critical for a comfortable indoor climate in future
building development (Wang et al. 2018). How-
ever, it is a difficult task to find sound design
alternatives satisfying different conflicting crite-
ria, such as natural ventilation against heating/
cooling loss (Wang et al. 2005). Compared to the
design of buildings, the BMS considers both the
maintenance and the improvement of the comfort
level of the buildings’ occupants through a
diversity of control methods. A BMS generally
refers to the integrated monitoring, transmitting
and control of the indoor environment based on
various protocols and communication interfaces.
Such a characteristic enables the BMS to have a
wider application in practice.

In a BMS, the essential function is the
building control system (BCS), which is usually
designed to maintain indoor comfort at a certain
level when responding to dynamic climate and
operational conditions. The advanced control
methods are able to, not only take advantage of
realtime data—data available as soon as it is
created—to produce the desired comfort level,
but can also minimise the operational and
maintenance cost, and in turn improve the
building’s energy performance (Marinakis et al.
2013). As a result, there is a high demand for the
development of advanced control methods for
future smart and economic-friendly building
environments.

9.1.2 Necessity of New Methods
for the Building Control
System (BCS)

With the development of diverse building sys-
tems and the movement towards improving
adaptive indoor comfort, buildings are becoming
more and more complex to control. In practice,
advanced realtime control strategies attempt to
make a correct action at a prescribed point in time
within defined time tolerances (Gambier 2004). In
a BCS, the controller uses real-time data, which is
presented as it is acquired, to make decisions,
where its related impact on the indoor habitat is
often delayed in such a dynamic setting. The ideal
real-time control strategies can deliver the signal
so as to avoid the delayed influence on the indoor
surroundings. They work effectively based on the
building models, the building system models,
weather forecast models, and energy tariff fore-
cast models, etc. However, these models are not
as accurate in the sense of prediction, thus leading
to potential inappropriate control in the future.
Therefore, the existing control approaches are
facing a serious challenge in real-time adaption/
influence to/on occupant comfort and may fail to
respond/maintain to/the indoor environment
efficiently.

Reinforcement learning (RL), as one of the
model-free control techniques, can be an alter-
native solution to such challenges when it is
applied together with real-time control strategies.
Model-free control techniques are able to work
independently without having a priori knowledge
of specific models. For instance, a recently rea-
lised Markov-based method, can work in both a
model-based and model-free context where the
former refers to learning a model and using this
to obtain a policy and the latter to learning a
policy without learning a model (Kaelbling et al.
1996). With this approach are the classic learning
algorithms, such as Q-learning, TDðkÞ, Dyna,
and simulation-based search, that make RL much
more attractive and efficient in artificial intelli-
gence applications (Mnih et al. 2015; Silver et al.
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2016, 2017; Sutton and Barto 2018). Moreover,
the efforts made on solving deep RL problems
open up the possibility of working on continuous
large datasets (Gu et al. 2016; Lillicrap et al.
1509). The distinctive property of RL is that the
learner or agent, via a trial-and-error paradigm,
can make optimal actions without having a
supervisor, which essentially fits the goal of a
complex control problem.

In BCSs, performances of using RL for
occupant comfort have not been analysed from
the methodological point of view and the future
tasks in this field are still rare. Relevant review
works examining RL control methods has been
limited (see Table 9.1 and Fig. 9.1). Unlike
energy demand response (Vazquez-Canteli and
Nagy 2019), this chapter considers occupant
comfort as the principal optimisation target.
Therefore, the aim of this chapter is to method-
ologically review the empirical works on how
RL methods have been implemented for comfort
control in buildings, and provide instructive
directions for future research.

This chapter will thus highlight following
issues. Firstly, it summarises the existing relevant
review works in different areas of occupant
comfort control, including thermal control,
indoor air quality (IAQ) control, lighting control,
air velocity control, and visual comfort control,
etc. Secondly, under this control setting, it pro-
vides a comprehensive review of RL being
implemented. Thirdly, it analyses the application
of RL for comfort control in multi-agent envi-
ronments. Fourthly, it highlights the potential of
RL as a sustainable forerunner for truly
occupant-centric building operation in the
evolving smart city. Beyond these, this chapter
finally identifies the current research gaps and
proposes future research from both the applica-
tion and methodology points of view.

9.1.3 Review Methods

In this sub-chapter, we make our search for
articles (Tables 9.1 and 9.2) in the search engi-
nes, Web of Science, ScienceDirect and Google

Scholar. We do not limit the publication time.
For the review articles given in Table 9.1, our
searching keywords are, review and control and
occupant and building; review and control and
“indoor comfort” and building. For the core
articles given in Table 9.2, our searching key-
words are

building sð Þð Þ \ ð
reinforcement learningð Þ [

Markove decision processesÞ [
Q� learning

0
B@

1
CA

2
64

\

comfort [
thermal comfortð Þ [
visual comfortð Þ [

indoor air qualityð Þ [
occupant [

indoor environmentð Þ

0
BBBBBBBB@

1
CCCCCCCCA

3
777777775

[ model free controlð Þ [
intelligent controlð Þ

� �

:

The intersection notation, \ , is the relation
operation, “and”, where the words on both sides
are searched for simultaneously.[ is equivalent
to, “or”, where only one word or phrase on either
side is taken for searching. For example, (building
and “reinforcement learning” and comfort) or
(“model free control”) is one of our searching
records. We also search Markov decision pro-
cesses (MDPs) and Q-learning to guarantee that
the underlying theory of RL and the most popular
algorithm are covered. We also include “model
free control” and “intelligent control” as alterna-
tive keywords because some articles treat RL as a
special case of these control methods. We read
through every search outcome and excluded
irrelevant articles without direct optimisation on
comfort. That is, we only included those core
articles that have clearly optimized for comfort.
Other joint optimisation objectives may have also
been considered in the core articles but our main
interest was in those articles containing at least
one comfort component in the optimization
objectives. Furthermore, only those papers which
empirically investigated their proposed approa-
ches, either through the use of synthetic data or
real data were included. Doing so, we have iden-
tified 33 core articles that are summarised later.
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Table 9.1 Relevant review works

References Comfort
type

Control methods RL
reviewed

Future indications

Galasiu and
Veitch (2006)

Lighting Lighting control; shading
control

No Satisfaction and outdoor conditions
need to be considered in control
system

Royapoor and
Caraiscos
(2009)

Thermal;
visual; IAQ

Conventional control;
intelligent Control; agent-
based control

Yes Future trends: balance between
thermal comfort and energy usage
and random neural networks with
RL

Wenqi and
Zhou (2009)

Thermal ANN; fuzzy logic No More real-time environmental data
and human activity level can be
collected and applied in the system
design

Guo et al.
(2010)

Lighting Occupant- based control No −

Roetzel et al.
(2010)

Thermal;
IAQ
(ventilation)

Occupant-based control No −

Haq et al.
(2014)

Lighting Occupant-based control;
daylight-linked control;
scheduling control

No Development of control algorithm
can be helpful in improving the
effectivity of commissioning and
lead to better user satisfaction

Shaikh et al.
(2014)

Thermal;
visual; IAQ

Conventional control;
intelligent control

No Various other artificial intelligent
techniques need to be future
research objectives

Vesely and
Zeiler (2014)

Thermal Occupant based control No −

Song et al.
(2015)

Thermal;
IAQ; visual

Conventional control;
computational intelligent
control

No Future trends: model-independent
control strategies for general
purpose use which can reduce the
development time for model
matching and parameters tuning

Chenari et al.
(2016)

Thermal;
IAQ;
humidity

Model-based control; rule-
based control; GA

No Study of intelligent window-based
hybrid ventilation strategies for
maintaining IAQ and reducing
energy consumption is missing

Merabti et al.
(2016)

Thermal;
IAQ

PID; fuzzy; fuzzy PID;
adaptive fuzzy PD; NN;
neuro-fuzzy; GA

No Intelligent control system needs to
be upgraded

Enescu
(2017)

Thermal ANN; AR-ANN; fuzzy,
hybrid ANN-fuzzy

No Refined adaptive comfort models in
smart building control systems

Wang et al.
(2017a)

Thermal;
humidity;
CO2; air
velocity

Binary; iterative; PID;
MPC; nonlinear; pole-
placement; optimal; fuzzy;
ANN; adaptive

No Advanced control strategies
combined with HVAC technologies
have been currently becoming a
new trend in building energy
conservation and indoor
environment quality research

Ye et al.
(2017a)

IAQ
(pollutants)

Occupant-based control No −

(continued)
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9.2 Summary of Relevant Review
Works and Their Indications

A summary of previous review works that have
examined building control methods for occupant
comfort factors is shown in Table 9.1 in
chronological order. In addition to examining all
mentioned comfort types and control methods in
those works, we have also checked if RL has
been reviewed and whether there are any future
indications in each work. Herein, we focus on
those indications that point out some possibilities
of implementing RL for comfort control. For
instance, Dounis and Caraiscos suggest using
random neural networks with RL to control
thermal comfort and energy usage (Royapoor
and Caraiscos 2009), while Song et al. indicate
model-independent control strategies for general
purpose use which can reduce the development
time for model matching and parameter tuning
(Song et al. 2015). Similarly, the development of
artificial intelligence control strategies is regar-
ded as an important future task (Shaikh et al.
2014; Merabti et al. 2016). In this sense, the

neglected model-free RL technique has been
regarded as a promising and attractive method for
controlling occupant comfort, and we therefore
have a rationale to highlight it.

In all the 19 review works, thermal comfort
accounts for the majority of all topics and ANN,
model predictive control (MPC) and the fuzzy
method seem to be the most often reviewed
control methods. RL has appeared three times
and only around ten relevant empirical papers
have been investigated (Li et al. 2016; Royapoor
and Caraiscos 2009; Royapoor et al. 2018). To
have an overview of the distribution, we divide
the control methods into classic control (on/off
and PID), hard control (MPC, optimal control,
nonlinear control, adaptive control), soft or
intelligent control (ANN, fuzzy-based), RL con-
trol, agent-based control and occupant-based
control. Considering the frequency, we divide
comfort factors into the four most common
occurring amongst the review articles, namely,
thermal comfort, IAQ, humidity and visual
comfort. Each intersection of control method and
comfort type is counted once if at least one paper
was reviewed. We aggregate them and divide

Table 9.1 (continued)

References Comfort
type

Control methods RL
reviewed

Future indications

Boodi et al.
(2018)

Thermal;
lighting;
IAQ;
humidity

MPC; PID; fuzzy logic;
RL; ANN; rule-based

Yes Future trends: intelligent building
models and adaptive building
controller

Guyot et al.
(2018)

IAQ − No Smart ventilation is still an
emerging technology

Kruisselbrink
et al. (2018)

Lighting
quality

− No −

Park and
Nagy (2018)

Thermal Rule-based; optimisation;
intelligent control; MPC

No Only 5.2 and 15.6% of thermal
comfort and building control
publications cited each other

Royapoor
et al. (2018)

− Classis (binary and PID);
computational

Yes More advanced computational
techniques (ANN or agent-based)
that have so far largely remained in
demonstration stage
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them by nineteen to obtain the average examin-
ing rate. Specifically, Fig. 9.1 gives the average
number of intersections of different comfort
types and control methods reviewed in each
work. For thermal comfort, both hard and soft
control appear most frequently and reach at least
a 50% examining rate. For IAQ and humidity,
the percentage ranges from 19 to 31%. For visual
comfort, the control methods distribute relatively
evenly. Looking at RL, the rates are not more

than 13% among all comfort types. This low
examining rate makes it appealing to investigate
the framework of combining RL with occupant
comfort control.

A recent work reviewed the application of
reinforcement learning for demand response,
which is relevant for integrating renewable
energy sources into the smart grid (Vazquez-
Canteli and Nagy 2019). The authors pointed out
that human comfort and satisfaction in buildings

Fig. 9.1 Average number of intersections of different comfort types and control methods reviewed in each work
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have been mostly studied in single agent sys-
tems. The performance of RL in multi-agent
systems needs to be explored, which is one of our
goals in our study.

9.3 The Reinforcement Learning
Method

The idea of reinforcement learning originated
from the term “optimal control” which emerged
in the late 1950s, where a problem was formu-
lated by designing a controller to minimise a
measure of the behaviour of a system over time
(Sutton and Barto 2018). Bellman (1957a) came
up with the concept of MDPs or finite MDPs, a
fundamental theory of RL, to formulate optimal
control problems.

The learner or agent of RL learns how to map
situations to actions to maximise a numerical
delayed reward signal. It does not have to have a
“teacher” telling it how to take an action but,
rather, makes decisions via implementing a trial-
and-error search, and recognizing the delayed
reward from the environment that the agent
interacts with (Sutton and Barto 2018). RL is
neither supervised learning nor unsupervised
learning; it is a third category of machine learn-
ing. Whereas supervised learning gets signals of
correct actions, RL gets signals from the reward
of an action without knowing if the action was
correct or not. RL, in a sense, is the core of
machine learning techniques. In the context of
artificial intelligence, RL allows the agent to
automatically determine behaviours, which can-
not be achieved by supervised learning or unsu-
pervised learning.

9.3.1 Elements of Reinforcement
Learning and MDPs

In a dynamic sequential decision-making pro-
cess, the state St 2 S refers to a specific condition
of the environment at discrete time steps
t ¼ 0; 1; . . .. By realising and responding to the
environment, the agent chooses a deterministic or
stochastic action At 2 A that tries to maximise
future returns and receives an instant reward
Rtþ 1 2 R as the agent transfers to the new state
Stþ 1. The reward is usually represented by a
quantitative measurement. Figure 9.2 (Sutton
and Barto 2018) shows how a sequence of state,
action, and reward is generated to form an MDP.

The Markov property tells us that the future is
independent of the past and depends only on the
present. In Fig. 9.2, St and Rt are the outcomes
after taking an action and are considered as
random variables. Thus, the joint probability
density function for St and Rt is defined by:

p s0; rjs; að Þ ¼ P½St ¼ s0;Rt ¼ rjSt�1 ¼ s; At�1

¼ a�;
ð9:1Þ

where s; s0 2 S, r 2 R; and a 2 A. It can be seen
from Eq. (9.1) that the distribution of state and
reward at time t depends only on the state and
action one step before. Equation (9.1) implies the
basic rule of how the MDP works and one can
easily determine the marginal transition proba-
bilities p s0js; að Þ:

p s0js; að Þ ¼ P St ¼ s0jSt�1 ¼ s;At�1 ¼ a½ �
¼

X
r2R

p s0; rjs; að Þ: ð9:2Þ

Fig. 9.2 The interaction
between agent and
environment in an MDP

188 M. Han et al.



Equation (9.3) gives the expected reward by
using the marginal distribution of Rt:

r s; að Þ ¼ E RtjSt�1 ¼ s;At�1 ¼ a½ �
¼

X
r2R

r
X
s02S

p s0; rjs; að Þ: ð9:3Þ

Both Eqs. (9.2) and (9.3) are used for solving
the optimal value functions presented in
Sect. 9.3.3.

9.3.2 Policies and Functions

A policy p is a distribution over actions given
states. It fully defines the behaviour of an agent
by telling the agent how to act when it is in
different states. The policy itself is either deter-
ministic or stochastic and the probability of tak-
ing an action, a, in state s is:

p ajsð Þ ¼ P At ¼ ajSt ¼ s½ �: ð9:4Þ

The policy can be considered as a function of
actions. It acts either as a look-up table or in an
approximation form (see Sect. 9.4 for the dis-
cussion). The overall goal of RL is to find the
optimal policy given a state.

An optimal policy tries to maximise the
expected future return from time t: Gt ¼
Rtþ 1 þ cRtþ 2 þ c2Rtþ 3 þ . . ., where 0� c� 1
is the discount parameter. The state-value func-
tion, vp sð Þ; and the action-value function,
qp s; að Þ; are two useful measures in RL that can
be estimated from the data. The literature defines
vpðsÞ, of an MDP, under policy p, as the
expectation of the return starting from state s:

vp sð Þ ¼ Ep GtjSt ¼ s½ �

¼ Ep

X1
k¼0

ckRtþ kþ 1jSt ¼ s

" #
; for all s 2 S:

ð9:5Þ

In practical applications, vpðsÞ is more appli-
cable for model-based problems, whereas the
action-value function, qp s; að Þ; is more useful in
the model-free context. When the full

environment or the model is unknown, episodic
simulations are often used to estimate qp s; að Þ;
that is, under policy p, the expectation of the
return starting from state s and taking the action a:

qp s; að Þ ¼ Ep GtjSt ¼ s;At ¼ a½ �

¼ Ep

X1
k¼0

ckRtþ kþ 1jSt ¼ s;At ¼ a

" #
; for all

s 2 S and a 2 A
ð9:6Þ

The task of finding the optimal policy, p�, is
achieved by evaluating either the optimal state-
value function

v� sð Þ ¼ max
p

vp sð Þ; ð9:7Þ

or the optimal action-value function

q� s; að Þ ¼ max
p

qp s; að Þ: ð9:8Þ

9.3.3 Bellman Optimality Equation

OnewayofoptimisingEqs. (9.7) and (9.8) is tomake
use of the recursive relationships between two states
or actions in a sequential order. Since the procedures
are similar, we only present the relationship starting
from the action-values, i.e. the Bellman optimality
equation for q� s; að Þ (Bellman 1957b).

The backup diagrams in Fig. 9.3 show rela-
tionships between the value function and a state
or state-action pairs. Figure 9.3a considers the
optimal state-value function when taking an
action. The agent looks at each of the possible
actions it might take and selects the action with
maximum action-value that tells the agent how
good the state is. That is,

v� sð Þ ¼ max
a

q� s; að Þ: ð9:9Þ

Similarly, Fig. 9.3b evaluates the dynamic
and stochastic environment when an action is
taken. Each of the states it ends up in has an
optimal value. Thus, the optimal action-value
counts the immediate expected reward, r s; að Þ;
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from Eq. (9.3), and a discounted optimal state-
value:

q� s; að Þ ¼ r s; að Þþ c
X
s02S

p s0js; að Þv� s0ð Þ:

ð9:10Þ

Thus, as shown in Fig. 9.3c, the Bellman
optimality equation for q� s; að Þ is obtained by
substituting Eqs. (9.9) into (9.10):

q� s; að Þ ¼ r s; að Þþ c
X
s02S

p s0js; að Þmax
a0

q� s0; a0ð Þ:

ð9:11Þ

In a similar way, we can derive the Bellman
optimality equation for v� sð Þ. Both of them are
the fundamental expressions for MDPs. The
recursive relationship assists in splitting the
current value function into the immediate reward
and the value of the next action. Some of the
specific learning algorithms, presented in
Sect. 9.3.4, make use of the Bellman optimality
equations to reach optimal policies.

9.3.4 Categorisation of RL Algorithms

The purpose of this sub-chapter is to examine
how current research has methodologically
explored the algorithms and to propose potential

future work. There are many categorisation
methods for RL algorithms. As shown in
Fig. 9.4, an iteration-based classification sug-
gests value-based methods, policy-based meth-
ods and a fusion of value-based and policy-based
methods known as actor-critic methods.

Value-based methods, such as the off-policy
Q-learning algorithm (Watkins 1989), start with
a random value function and update to an
improved value function in an iterative process
until reaching the optimal value function QðS;AÞ.
The optimal policy is made by selecting the
action that optimise value function at a certain
state. For some value-based methods, e.g. the on-
policy SARSA and SARSA(k) algorithms
(Rummery and Niranjan 1994), they evaluate
policies by constructing their value functions and
use these value functions to find improved poli-
cies. The distinguishing feature between
off-policy and on-policy learning is that in the
former the policy being learned is different to the
one being followed whereas the latter approach
follows the policy being learned. One of the
advantages about the former way is that the
optimal policy can be learned whilst following a
different control strategy, for example, an MPC
or rule-based control (RBC) strategy (Sutton and
Barto 2018; Vazquez-Canteli et al. 2019).

In systems with small and discrete state or
state-action sets, it is preferable to formulate the
estimations using look-up tables with one entry

Fig. 9.3 Backup diagrams
for the optimal value
functions
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for each state- or action-value. The tabular
method is straightforward to implement and
guarantees convergence. For large MDP prob-
lems, however, we do not always want to sepa-
rately see the trajectory of each entry of the look-
up table. The parameterized value function
approximation bq s; a;wð Þ � qpðs; aÞ gives a
mapping from the state-action to a function
value, for which there are many mapping func-
tions available, for example, linear combinations,
neural networks, etc. It generates the state-
actions that we cannot observe. For the incre-
mental approximation method, w is updated by
gradient descent:

wtþ 1 ¼ wt þ b qp St;Atð Þ � bq St;At;wtð Þ½ �rbq St;At;wtð Þ:
ð9:12Þ

The learning target qp St;Atð Þ is iteratively
obtained from the Bellman Equation Eq. (9.11).
Whereas the incremental method makes use of
the experience once to update the estimate of the
value function, and then throwing it away before
going to the next step, the batch method is
sample efficient and tries to find the best fit to all
of the data (Ernst et al. 2005; Xu et al. 2002).

Policy-based methods use optimisation tech-
niques to directly search for an optimal policy.
Both the tabular and approximation methods
work in value-based paradigms where the value
functions have to be approximated and the policy
is taken by greedy or �-greedy strategies, whereas
the policy-based method directly searches for the
parametrised policy:

ph ajs; hð Þ ¼ P At ¼ ajSt ¼ s; ht ¼ h½ �: ð9:13Þ

The policy-based method gives better con-
vergence, especially for the continuous state-
action space. In episodic experiments, the
expected value of the start state is used as the
objective function. The gradient ascent technique
iteratively updates h for the optimisation. The
action preference is usually assigned to a prob-
ability to avoid the deterministic policy.

Furthermore, a combination of value-based
and policy-based methods, e.g. the Actor-Critic
algorithm (Grondman et al. 2012; Mnih et al.
2016), is also appealing. The Actor makes an
action when it observes a state. The Critic then
marks the Actor’s performance. The Actor
adjusts the policy, e.g. parameters in ANN
according to the score it obtained and the Critic
adjusts its marking policy by evaluating the
reward. In this way, both the Actor and the Critic
improve themselves from random policies to
better policies.

9.3.5 Multi-agent Systems

As an agent-based technology, the multi-agent
system (MAS) provides promising paradigms in
artificial intelligence (Sycara 1998). The
decomposition of complex systems facilitates
each agent to share a common environment and
work independently on a specific sub-problem.
MAS extends the single agent system by allow-
ing each agent to interact with other agents—not

Fig. 9.4 Classification of RL
algorithms
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simply by exchanging data, but also by engaging
in analogues of social activity: cooperation and
negotiation.

When it comes to a multi-agent control system
(MACS) in buildings, each agent implements
autonomous actions in order to optimally run
building models in a dynamic system. In most of
the studies, the hierarchical central-local agent
structure is embedded in the building models to
balance the energy consumption and the occu-
pants comfort (Yang and Wang 2012, 2013).
A multi-objective optimisation technique is usu-
ally utilized for optimising intelligent manage-
ment. In Fig. 9.5 (Yang and Wang 2013), for
instance, a central agent communicates with
building managers and zone agents to decide the
optimal power distribution for each zone by
considering the comfort demand. A zone agent,
on the other hand, communicates with occupants
and decides power demand. The local agents take
care of temperature control, illumination control,
and air quality control. An occupant-driven

control is studied in MASs including HVAC
agents, occupant agents and meeting agents
(Klein et al. 2012), where the MDP based coor-
dination tries to find the optimal policy by con-
sidering energy consumption, occupant comfort,
and scheduling convenience individually.

The MDP property for multi-agent reinforce-
ment learning (MARL) has been extensively
studied in matrix game playing (Littman 1994)
since both cooperative and competitive as well as
a mixed environment can be modeled and sim-
ulated. The survey work (Buşoniu et al. 2010)
has summarised and explored MARL theory,
algorithms and applications. The benefit of
MARL comes from experience sharing, infor-
mation exchange, and skill learning among
agents. When one or more agents fail to work
in the system, the remaining agents are still able
to react optimally by learning from the new
environment. Generally, the transition probabil-
ity for MARL extends Eq. (9.1) to a multi-action
case:

Fig. 9.5 MAS for building
energy control

192 M. Han et al.



p s0js; að Þ ¼ P St ¼ s0jSt�1 ¼ s; a ¼ a1; . . .; anð Þf g
ð9:14Þ

where n is the total number of agents, s0; s belong
to the set of states S and a 2 A1 � � � � � An is the
joint action of the agents with Ai; i ¼ 1; . . .; n is
the action set for agent i. In Eq. (9.14), the
stochastic transition is a probability distribution
over next states s0 given the current state s and
joint action a of the agents. For the policy
pi 2 Pi, the optimal policy p�i for agent i fulfills
the Nash equilibrium:

X
a1;...;an

q� s; að Þp�1 a1jsð Þ � . . . � p�i aijsð Þ � . . .

� p�n anjsð Þ	
X

a1;...;an

q� s; að Þp�1 a1jsð Þ � . . .

� pi aijsð Þ � . . . � p�n anjsð Þ;
ð9:15Þ

where q�ðs; aÞ is the optimal action-value func-
tion for agent i and p�i ðaijsÞ is the individual
probability of taking action ai given the Nash
equilibrium policy.

9.4 Applications of Reinforcement
Learning Methods for Comfort
Control in Buildings

The following sub-chapter reviews the applica-
tions of RL methods for occupant comfort con-
trol in buildings. We consider the algorithms
implemented, their exploration versus exploita-
tion strategy, and whether the application was
from a single or multi-agent perspective. We
close the sub-chapter by discussing those appli-
cations that were implemented in a physical
setting.

Table 9.2 gives a summary of the reviewed
literature pertaining to RL methods applied to
comfort controls in buildings. We show specific
learning algorithms and the classes (VB for
value-based and AC for Actor-Critic) they
belong to for each publication. We also investi-
gate the representation of value functions to
highlight optimisation techniques. Pre-training

refers to whether or not the agents were imple-
mented with pre-trained policies using existing
data or simplified models of the physical system.
We further distinguish discrete (D) state and
continuous (C) state; single agent (SA) and
multi-agent (MA). Unless otherwise stated, any
reference to RL methods should be assumed to
be model-free methods.

9.4.1 Comfort Factors

In the building literature, there are several well-
established comfort factors (Dalamagkidis and
Kolokots 2008). These are thermal comfort, IAQ,
light, and noise. To ensure the quality of comfort
of the buildings’ occupants, intelligent controls
are seen as an ideal strategy for maintaining the
standards of these environmental factors as out-
lined by, for example, ASHRAE 55 (2017) and
EN 15,251 (CEN 2005). We have thus divided
the articles according to these factors. In the lit-
erature reviewed, we have identified three out of
the four factors, outlined above, in which RL
control has been applied. These are thermal
comfort, IAQ, and light. Among these articles
were some that also optimised over a combina-
tion of these comfort factors. Because of this, we
first analyse those articles in which only a single
comfort objective was considered. Following
this, we then analyse those articles in which at
least two comfort components were included in
the objectives.

9.4.2 Thermal Comfort

Thermal comfort alone has had the most interest
compared to the other comfort factors. Dalam-
agkidis and Kolokotsa implemented an RL con-
trol for an HVAC system with the goal of
maximising both thermal comfort and energy
conservation, where a heavier emphasis on
thermal comfort was made (Dalamagkidis and
Kolokots 2008). They compared the performance
of the RL control to the performance of a fuzzy-
PD and a common on/off control over a 5-year
simulated time period. They found that after
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4 years of simulation the RL control achieved as
good as if not better performance than the other
two controls. They also suggested pre-training
the control before deploying it in a real envi-
ronment to mitigate suboptimal performance due
to policy exploration. For example, Yu and
Dexter used RL to tune a fuzzy rule-based
supervisory control for an HVAC system. They
found that by pre-training the RL control it was
able to improve the performance of a low-energy
building system in an acceptable period of time
(Yu and Dexter 2010). Sato et al., by considering
occupants daily action plans, implemented RL to
maximise both energy conservation and thermal
comfort through controlling the operation of an
air conditioning system (Sato et al. 2012). They
found their proposed method to be effective.
Similarly, Pedro et al., using RL to control an
HVAC system and based on the tenant’s pref-
erences and occupancy patterns, were able to
achieve energy efficiency while maintaining the
tenant's thermal comfort level (Pedro et al. 2014).

A number of comparisons have been made
between RL and other control strategies. Li and
Xia apply RL to optimally control an HVAC
system with respect to minimizing energy con-
sumption while maintaining thermal comfort
inside an acceptable range (Li and Xia 2015).
The objective of the study was biased more
towards energy. Compared to a blank control
with a constant temperature schedule they found
that the RL agent achieved better performance in
operating the system with regards to energy
conservation. In a similar study, Barret and
Linder produced an RL control for an HVAC
system and, through a comparative analysis,
found their RL control outperformed, in terms of
energy cost, two common strategies for control-
ling HVAC systems, namely, the “Always On”
and “Programmable Control” methods. Improved
thermal comfort was also demonstrated by offline
training. Yang et al. compared the performance
of RLCs with typical RBCs using numerical
simulations on the thermal model of a LowEx
full-building system (Yang et al. 2015). They
found the RL controls outperformed the RBCs in
all of the given thermal objectives. Compared
with traditional methods RL control achieved

better thermal comfort results with less energy
consumed (Schmidt et al. 2017; Wang et al.
2017b). The comparison of a model-free method
against model-based bidding strategies shows
that RL gave similar performance to the model-
based bidding strategy of smart thermostats (Sun
et al. 2015b). Urieli and Stone applied RL to
control an HVAC system in a simulated resi-
dential home, with the aim of minimising energy
consumption while maintaining an acceptable
temperature range (Urieli and Stone 2013).
Compared with a default strategy of thermostat
setback, their RL agent learned an effective set-
back strategy that both reduced energy costs and
minimised violations of the temperature con-
straints. Nagy et al. applied a novel RL algorithm
to the problem of controlling a heat pump in a
building (Nagy et al. 2018). The objective of the
controller was to maintain occupant comfort
while reducing energy cost. A higher priority was
given to occupant comfort. They compared their
novel RL method to an RBC, an MPC with
perfect information, and a model-based RL
method. It was concluded that the model-based
controls outperformed the model-free RL
method; however, regarding computational
complexity their novel RL method was much
better. It also outperformed its model-based
counterpart regarding changes to environmental
dynamics. Furthermore, compared to the RBC,
energy and cost savings were observed.

Zhang et al. developed a framework that uses
a whole building energy model for optimal
control of an HVAC system by deep RL
(DRL) (Zhang et al. 2018). They found that the
DRL control consumed 15% less heating energy
with similar thermal comfort as compared to a
base case. In a follow up study the same DRL
control was deployed in a real-life office building
over a period of 3 months (Zhang and Lam
2018). They included a thermal preference
feedback app so that each occupant could state
his/her thermal comfort preference. In conclu-
sion, they found that their DRL control saved
16.6% heating energy consumption in the real
setting. The thermal preference feedback system,
however, had a very low participation rate and
thus was not an accurate representation of the
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thermal comfort level. The comparison of DRL
has also been implemented for maintaining zonal
room temperature within a desired range, while
minimising energy cost (Wei et al. 2017).
Compared with a conventional RL technique (Q-
learning) and a rule-based strategy, DRL was
found to be the most effective in both keeping the
number of temperature violations to a minimum
and reducing energy cost.

9.4.2.1 IAQ
Optimising just IAQ has had the least attention.
Indeed, we have identified only one article,
namely, Baghaee and Ulusoy’s use of RL for
operating an HVAC system (Baghaee and Ulu-
soy 2018). Here, the objective of the control was
to maintain CO2 concentration at an acceptable
range while also minimising energy consump-
tion. In a simulation study they compared their
RL control to an on/off and set point control.
The RL method was found to be superior to the
other two controls regarding energy consumption
and CO2 concentration.

9.4.2.2 Lighting
The earliest RL control on lighting was estab-
lished about a decade ago where hierarchical RL
(HRL) was developed to enable fast convergence
and practical application (Khalili et al. 2010).
The goal was to optimise over both lighting and
energy cost. Compared to regular RL, they found
HRL to be much faster in adapting to ideal light
settings. After a hiatus of six years, lighting
control was reconsidered in the work by, Cheng
et al., who applied RL with a human feedback
mechanism in order to control the blinds and
lights in a single-occupant office of a building
(Cheng et al. 2016). They jointly maximised over
lighting comfort and energy conservation, with a
heavier emphasis on comfort. With respect to the
test environment, they found their results sug-
gested an improvement in luminosity from both a
comfort perspective and an energy saving per-
spective. With regard to the latter, compared to a
manual and a traditional integrated automated
control, their RL method reduced energy
consumption.

In a more recent article, and the last among
those just considering lighting, Park et al.
developed an RL control, LightLearn, with an
occupant feedback mechanism (Park et al. 2019).
The aim of the control was to balance energy
consumption and occupant comfort. They tested
their control framework in five single-occupant
offices in a building over a period of five weeks.
In comparison with schedule-based and
occupancy-based control strategies, LightLearn
saved on energy consumption. Furthermore,
LightLearn achieved good performance regard-
ing occupant comfort. In conclusion, their RL
control outperformed the other two controls in
achieving a good balance between energy saving
and occupant comfort.

9.4.2.3 Combinations of Factors
As can be seen, studies controlling combined
factors are rare in the 1990s. For example, the
earliest work in this area was by Jouffe who used
RL to tune a ventilation controller for controlling
temperature and relative humidity (Jouffe 1997).
The policy obtained from the control was exactly
to the experts’ specifications. In the seminal work
by Mozer, RL was used to control an HVAC and
water heating system (Mozer 1998). The aim of
the control framework was to minimise both
discomfort (heating and lighting) and energy
cost. The RL control was found to outperform
alternative control strategies.

There have been more studies in the 21st
century. Dalamagkidis applied RL to control an
HVAC system (Dalamagkidis et al. 2007). The
objective of the RL control was to minimise
energy consumption and maximise user comfort
where comfort was made up of two components,
namely, thermal comfort and IAQ. In a computer
experiment consisting of a simulated period of
4 years, they compared the performance of the
RL control with an On/Off control and a Fuzzy-
PD control. In terms of occupant comfort, the RL
control was superior. This however came at the
expense of higher energy consumption. Overall,
they found the RL control to have achieved a
level of performance close to that of the other
control strategies. As in their later work
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(Dalamagkidis and Kolokots 2008) they raised
the issue of exploration during deployment in a
real building setting. Their advice on this was to
exhaustively train the controller beforehand,
allowing little to no exploration during
deployment.

Sun et al. implemented a novel RL technique
based on events where an event was defined as a
set of states—as opposed to time, to control an
HVAC system (Sun et al. 2013). The objective of
the control problem was to minimise energy cost
while satisfying thermal comfort and IAQ con-
straints. In a numerical simulation, they com-
pared their RL method to two other optimisation
techniques, namely, backward stochastic
dynamic programming (SDP) and a greedy
method. They found the RL approach to be much
more efficient in solving the given problem while
satisfying the comfort constraints and saving
energy costs. Later, Sun et al. refined their novel
RL method and applied it to the aforementioned
problem (Sun et al. 2015a). In a more detailed
numerical simulation, they compared their RL
technique to the same algorithms as before,
namely, a greedy algorithm and an SDP algo-
rithm. The same conclusions as in their former
paper were reached, namely, they found their
novel RL approach to be more efficient at solving
the given problem as compared to the other
algorithms. Similar topics can also be found in
recent years (Eller et al. 2018; Fu et al. 2018),
especially in MAS (Hurtado et al. 2018).

Apart from IAQ, there have also been articles
studying a combination of thermal comfort along
with the other factors, namely, lighting and
humidity. Bielskis et al. applied RL to control an
HVAC system and a Red–Green–Blue-Yellow
LED lighting system (Bielskis et al. 2013). The
goal of the RL controller was to maximise
occupant comfort conditions, which consisted of
thermal and lighting conditions. They tested their
RL controller in a controlled laboratory experi-
ment and found the performance acceptable.
Chen et al. applied RL to the control problem of
natural ventilation (Chen et al. 2018). In partic-
ular, they used RL to control HVAC and window
systems. The aim of the control was to minimize
both energy consumption and occupant

discomfort. The comfort component consisted of
two parts, namely, a thermal part and humidity
(relative) part. In a numerical simulation over a
simulated period of one year, they compared the
RL control with a rule-based heuristic control
under two different climates. In the two case
studies, the RL control exhibited superior per-
formance compared with the other control
resulting in less energy consumption and occu-
pant discomfort.

9.4.2.4 Algorithm Class
We can classify our learning algorithms accord-
ing to whether they are value-based, policy-
based, or exhibit a combination of these two
classes, known in the literature as Actor-Critic
algorithms. We can see from Fig. 9.6 that value-
based algorithms seem to dominate the building
literature followed by Actor-Critic algorithms.
Furthermore, there does not (at the time of
writing) seem to be any applications of policy-
based algorithms. A couple of reasons for this
may have something to do with the fact that less
is known about this class of algorithms as well as
the fact that policy evaluation is known to be less
efficient with high variance (Silver 2015). In
Fig. 9.6, we include the methods that are missed
in Sutton and Barto’s introduction (Sutton and
Barto 2018) into the group of “Other” for further
discussion: RLS-TD(k), eJAL, MEC, DDNFQI,
MAXQ, simulation based tree search and a
variant of DQN.

9.4.2.5 Value-Based
Figure 9.6 clearly shows that the most popular
value-based algorithm applied to occupant com-
fort optimisation is Q-learning. This is a
temporal-difference (TD) learning method
whereby two policies are used, one for generat-
ing the behaviour and the other being the learned
policy, which eventually becomes the optimal
policy. We call this process off-policy learning,
and it is one of two classes, the other being on-
policy learning, used to address the exploration
vs exploitation dilemma. The simplicity of Q-
learning leads to a majority of studies in comfort
control (Baghaee and Ulusoy 2018; Barrett and
Linder 2015; Bonte et al. 2014; Chen et al. 2018;
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Cheng et al. 2016; Eller et al. 2018; Khalili et al.
2010; Li et al. 2015; Li and Xia 2015; Lu et al.
2019; Pedro et al. 2014; Sato et al. 2012; Sun
et al. 2013, 2015a; Yang et al. 2015). Specifi-
cally, two consecutive studies applied Q-learning
within a Lagrangian relaxation framework (Sun
et al. 2013, 2015a). Moreover, instead of the
usual time-based approach to optimisation, they
took a novel event-based approach in which an
action follows an event (a set of state transitions).
Fazenda and Lima implemented Q-learning in
two contexts, one in which action and states were
discrete and thus tabular Q-learning was used;
another in which the action and states were
continuous. Here they combined Q-learning with
a wire fitted neural network in order to approxi-
mate the Q-values (Pedro et al. 2014). Similarly,
Yang et al. (2015) implemented tabular Q-
learning and batch Q-learning with memory
replay, where in the latter various neural network
architectures were tested with the best perform-
ing being a 5–4 structure. Li and Xia imple-
mented a novel multi-grid Q-learning algorithm.
They compared its performance to standard Q-
learning and found it to be more efficient (Li and
Xia 2015). Yu and Dexter implemented a

simplified version of Q(k) (Yu and Dexter 2010),
which extends Q-learning by including eligibility
traces: these are an efficient technique that allows
information to be propagated backwards over
multiple time steps (Silver 2015). By applying a
fuzzy discretization to the state space they were
able to implement Q(k) in tabular form, reducing
the learning time. Furthermore, by incorporating
a pre-trained policy into their implementation
they were able to reduce the learning time even
further, which they concluded to be essential for
an RL control to be able to improve the operation
of a building system online in an acceptable time
frame.

Hurtado et al. implemented an extended joint
action learning algorithm (eJAL) (Hurtado et al.
2018). The JAL method is an extension of Q-
learning to a cooperative multi-agent setting
whereby the actions of the other competing
agents are included in the optimal policies.
Hurtado et al. extended this algorithm in two
ways, first by defining a conditional action space
over all the other agents, and secondly by
attaching a preference to each agent in a full
cooperative game thereby allowing a joint reward
function to be constructed. They also

Fig. 9.6 Distribution of
algorithms used for indoor
comfort control
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implemented the Q-learning algorithm in a
decentralized non-cooperative setting and com-
pared this to their novel eJAL algorithm and a
Nash n-player game (a game theoretic non-
cooperative approach). Overall eJAL achieved
the highest average fairness index. Furthermore,
they found the Q-learning implementation to be a
good non-cooperative method.

As stated in Sect. 9.3, approximation methods
do not create tables for state-actions. In batch
learning the whole dataset is available for
learning, which is done in an offline fashion
(Sutton and Barto 2018). For example, Ruelens
et al. and Schmidt et al. implemented the sample
efficient batch RL technique, fitted Q-iteration
(FQI) (Ruelens et al. 2015; Schmidt et al. 2017).
In the paper by Ruelens et al., they used past
observations at the end of each episode (a day in
their case) to learn a policy that was then used
online during the next episode with a Boltzmann
exploration strategy. To reduce the state feature
space they used an auto-encoder network which
mapped features to a smaller dimensional sub-
space of the original feature space. In combina-
tion with this feature extraction technique, they
used extremely randomized trees to approximate
the Q-values. A novel variant of FQI, double
deep neural FQI (D-DNFQI), uses deep neural
networks for approximating the Q-values (Nagy
et al. 2018). Here, Nagy et al. used target Q-
networks and prioritised experience replay to
address the problems of convergence and learn-
ing instability and, furthermore, used double Q-
learning to address the upward bias problem of
Q-estimates. This novel algorithm exhibited fas-
ter compute times with the added benefit of
robustness under changes to system dynamics.
The on-policy batch learning recursive least-
squares TD(k) (RLS-TD(k)) is used in adaptive
filtering, system identification and adaptive con-
trol. Its popularity lies in its fast convergence
speed. Along with RLS-TD(k), radial basis
functions (RBFs) can be used to construct the
feature vector used for the approximation of Q-
values (Dalamagkidis et al. 2007; Dalamagkidis

and Kolokots 2008). Similarly, Fu et al. used the
SARSA algorithm, another on-policy TD learn-
ing technique (Fu et al. 2018).

9.4.2.6 Actor-Critic
Actor-only methods work with parameterized
policies and critic-only methods rely exclusively
on value function approximation and aim at
learning an approximate solution to Eq. (9.11).
Actor-Critic methods aim at combining the
strong points of these techniques (Konda and
Tsitsiklis 2000).

A TD(k) Actor-Critic technique is used to
reduce the variance of the policy gradient method
by introducing a baseline function, called the
advantage function. Bielskis et al. used the
backward view of TD(k), which uses indepen-
dent eligibility traces for the actor and critic
(Bielskis et al. 2013). To compute the action
preferences and the state-values, they used a
radial basis neural network. In a much earlier
work, Jouffe also implemented the backward
view of TD(k) Actor-Critic but in a fuzzy logic
network, which he called Fuzzy Actor-Critic
Learning (Jouffe 1997). He defined fuzzy rein-
forcement functions to smooth the distinction
between goal and failure states with the aim to
speed up learning. To further increase the speed
of learning, a priori knowledge was used.

Wang et al. implemented advantage actor-
critic (A2C) (Wang et al. 2017b). This uses the
same advantage function as described before but
instead of using TD(k) for different time scales it
uses Monte Carlo. They combined this with two
long-short-term-memory networks (LSTM), one
for the actor and the other for the critic. These
were used in order to mitigate against noise and
the partial observability of states. Differing from
A2C, asynchronous advantage actor-critic (A3C)
(Mnih et al. 2016) executes multiple agents
asynchronously on multiple instances of the
same environment, independent of each other
(Zhang et al. 2018; Zhang and Lam 2018). This
approach is attractive from a practical point of
view since state-of-the-art results can be
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achieved on, for example, a standard multi-core
CPU as opposed to a GPU, which is the norm for
deep learning.

9.4.2.7 Exploration Versus Exploitation
Strategies

From a value-based perspective, the dilemma of
exploration vs exploitation has to do with, on the
one hand, exploiting current information by
choosing the best (greedy) action-value, and on
the other hand, exploring non-greedy actions. By
exploring, the agent is able to improve on current
estimates of non-greedy action-values and thus,
in the long run, can lead to greater returns. Most
of the works reviewed applied the naive e-greedy
approach to addressing this problem but several
have taken a more sophisticated approach (Kha-
lili et al. 2010; Li et al. 2015; Li and Xia 2015;
Ruelens et al. 2015) with good results. However,
none of these works systematically addressed
this issue, that is, a parameter study of the given
exploration strategies was not investigated.
Given the sensitive nature of this topic on opti-
mal control of buildings’ energy conservation
and, in particular, occupant comfort, further
studies should be carried out on this topic.

Policy-gradient methods, on the other hand,
approach this dilemma from another perspective.
By parameterizing the policy they can learn
suitable levels of exploration and asymptotically
approach deterministic policies, which for action-
value methods is extremely difficult to achieve
and would involve placing strong assumptions
on the problem. We have seen examples of pol-
icy gradient methods in Bielskis et al. (Jouffe
1997; Wang et al. 2017b; Zhang et al. 2018;
Zhang and Lam 2018, 2013) with good results.

9.4.3 Agent Perspectives

Multiple agents can be treated both cooperatively
and non-cooperatively. For non-cooperative
agents, RL collapses to independent learnings
in multiple zones or scenarios (Park et al. 2019;
Wei et al. 2017; Yang et al. 2015). Single-agent
algorithms may apply but the performances have
seldom been compared with cooperative agents.

Nevertheless, Eq. (9.14) depicts a joint action
probability distribution for a Markov game—a
combination of MDPs and matrix games. The
Nash equilibrium is achieved via communication
and interaction among agents. The reward func-
tion for multiple agents has become ri s

0 js; a� �
,

which denotes the reward for agent i in state s
0

given state s and joint action a (Schwartz 2014).
The corresponding joint action learning method
was also extended (Hurtado et al. 2018). Even
though an extensive survey of MARL has been
developed for many years (Buşoniu et al. 2010),
there remains a great number of examples for
occupant comfort control that still need to be
made.

9.4.4 Physical Implementations

Only six out of the thirty-three articles reviewed
involved a case study in an actual real setting
rather than a simulated environment. For practi-
tioners we believe it will be useful to have an
indication of the state of the art of RL control
implementation, given the relatively new adop-
tion of this burgeoning field in building control
methods, and the fact that conventional control
techniques such as On/Off and PID strategies are
still preferred by industry-based experts (Roy-
apoor et al. 2018).

The earliest example of RL being applied to
building control was Mozer’s Neural Network
House (Mozer 1998). In his seminal work, Mozer
implemented a lighting control in a former
school residence. It exhibited good performance
of occupant comfort and conservation of energy.
Much later, Bielskis et al. (2013) implemented
their ACAR-Controller for HVAC and LED
lighting in a laboratory setting. The performance
was deemed acceptable with regard to thermal
and lighting comfort constraints. Cheng et al.
applied RL with a human feedback mechanism in
order to control the blinds and lights in a single
occupant office of a university building in Bei-
jing (Cheng et al. 2016). It achieved good results,
both from an occupant comfort point of view and
an energy saving point of view. They pointed out

9 Reinforcement Learning Methodologies for Controlling Occupant … 199



that to achieve a more accurate comfort model,
the agent would require more exploration which
they saw as infeasible in a working office. Sch-
midt et al. deployed an RL controller on a
Spanish school’s heating system over two zones,
in a building with a low level of thermal insu-
lation (Schmidt et al. 2017). It was successful in
improving thermal comfort with reduced energy
consumption. Park et al. implemented an occu-
pant centric lighting control with an occupant
feedback mechanism at the University of Texas
(Park et al. 2019). They selected five single-
occupant rooms, each with a manually adjustable
blind. The control strategy reduced energy con-
sumption with good performance on occupant
comfort. They pointed out that further research
should be conducted to investigate the adapt-
ability of the control to multi-occupant rooms, as
well as the effect of control hyperparameters such
as the discount factor and the reward structure.
Zhang and Lam deployed an RL control for an
HVAC system in the Intelligent Workplace
(IW) at the University of Pittsburgh (Zhang and
Lam 2018). The case study consisted of a multi-
occupant single office. They included a thermal
preference feedback phone app so that each
occupant could state his/her thermal comfort
preference. The control saved 16.6% heating
energy consumption. However, the feedback
system had a very low participation rate and thus
was not an accurate representation of the thermal
comfort level. They suggested investigating the
effects of hyperparameter tuning on convergence
of DRL since the thermal inertia of IW caused
convergence problems in the DRL training. They
also pointed out that the inertia of the heating
system may have discouraged the occupants
from using the app, which in turn may have
affected the occupants’ psychological feeling of
comfort.

9.5 Discussions

In this sub-chapter, we discuss some challenges
that may be encountered by building designers
and managers. Although this sub-chapter is not
an exhaustive review in building environment

studies, we, nevertheless, convey ideas about
how we might orient ourselves to face these
challenges in the future building comfort control
and management.

There have only been 33 works up to the
current time for which RL has been explored for
controlling occupant comfort, much less than
those for building energy control. In particular,
the studies including comfort factors such as
indoor air quality and lighting are relatively rare
in comparison to thermal comfort. Furthermore,
relatively few of the reviewed works incorporate
occupancy patterns and/or occupant feedback
into the control loop which are crucial for
occupant-centric building operation. Moreover,
there is a gap with regards to the performance of
implementing cooperative MARL.

The majority of our reviewed articles are
found after 2010. This is not to say that people
have not realised RL before 2010. Rather, it
was the learning efficiency (e.g. the curse of
dimensionality) that hindered people from
implementing desirable experiments. Even
though proper discretization of a continuous
state space can make the exploration space more
tractable, the scale of the problem may still be
huge for high dimensional states. Even a long-
term training period does not guarantee an
optimal policy. However, the breakthroughs in
computing power that have occurred since the
2010s have reversed the situation. The change-
over to new hardware and computation plat-
forms affords the chances to conduct complex
computations, which in turn facilitates function
approximation in RL and thus the ability to
generate to unseen states and hence a more
accurate representation of reality. In the process
of designing and constructing smart buildings,
considerations of incorporating real-time big
data computing and learning platforms to BMSs
have become one of the forthcoming challenges.
This requires not only that the agent can gather
real-time data, but also that building automation
systems react in a timely fashion. The integra-
tion of computation infrastructures with BMSs
is not explicitly formulated in most of our
reviewed articles and thus requires more prac-
tical studies on this issue.
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Further challenges originate from the MARL
paradigm (Buşoniu et al. 2010; Ye et al. 2017b).
Firstly, the agents might work independently
instead of cooperatively resulting in sub-optimal
returns. In an ideal framework, the cooperative
agents can communicate immediate actions,
rewards or learning experiences. Any interrup-
tion of the communication among agents makes
the overall goal difficult to achieve. Secondly, the
decision-making process for a single agent in
MARL is non-stationary due to the dynamic
policy changes from other agents. In systems
with incomplete information share, the time may
affect individual decisions. Thirdly, the explo-
ration strategy becomes complex when the
number of agents increases.

In some of our reviewed articles, the learning
strategy for an MAS is still limited by applying
single-agent RL algorithms to the multi-agent
case. Learning depends only on the current
agent’s action and without being aware of the
other agents. This strategy is simple to imple-
ment (Mataric 1994; Sen et al. 1994), but
reaching the Nash equilibrium in Eq. (9.15) is
challenging.

Defining the reward function seems to be an
additional challenge. Apart from energy con-
sumption, people with different personalities
prioritise different comfort factors (Frontczak and
Wargocki 2011; Zalejska-Jonsson and Wil-
helmsson 2013). The magnitude for each factor is
also subjective. There are a number of studies
where researchers tried to optimise other objec-
tives by setting comfort factors as the constraints.
RL implementation in this circumstance is
known as a constrained MDP, which is usually
solved by linear programming. The dynamic
programming techniques that apply in the non-
constrained control problem do not hold any
more and optimal policies need not exist (Altnan
1999). Thus, defining the reward function is not
an easy task.

Successfully incorporating occupancy sched-
ules and human feedback into the control loop is
another challenge and which has drawn only a
handful of studies (Cheng et al. 2016; Park et al.
2019; Pedro et al. 2014; Sato et al. 2012; Zhang
et al. 2018). As occupants have a strong effect on

energy consumption in buildings (Park and Nagy
2018; Park et al. 2019; Oca et al. 2018; Yan et al.
2017) including occupancy patterns as well as
occupant feedback into the control system is
crucial for efficient and occupant-centred build-
ing operation. Including human feedback can be
particularly troublesome since we must be eco-
nomical in our requirement of occupant feedback
for it not to be too intrusive and time costly
(Pedro et al. 2014; Zhang et al. 2018; Christiano
et al. 2017).

Another challenge relates to the development
of a toolkit, such as OpenAI Gym (Brockman
et al. 2016), providing a framework whereby
building simulation and advanced RL control
using one’s favorite machine learning library,
such as, TensorFlow, PyTorch, etc. can be
seamlessly tried and tested in a controlled and
reproducible manner. A move in this direction
can be seen in a recent work (Vazquez-Canteli
et al. 2019).

9.6 Chapter Summary

The indoor environment affects not only working
efficiency and living standards but also influ-
ences the occupants’ health. Apart from building
design, efficient control methods for the indoor
environment not only improve the occupants
comfort, but can also mitigate CO2 emissions
(Vazquez-Canteli et al. 2019). This chapter
briefly examines and analyses empirical articles
regarding the reinforcement learning control
method for occupant comfort in buildings. Based
on our analysis, we conclude our findings and
formulate future works.

Firstly, the cutting-edge RL technique, which
not only can adapt to the dynamic indoor envi-
ronment of a building, but can also simultane-
ously adapt to the buildings’ occupants, has
drawn only limited attention regarding indoor
climate oriented smart building controls, even
though some studies have empirically tested its
feasibility and comparability to other methods.
The promising results lead us to a new frontier of
occupant-centric building control. We have
identified thirty-three empirical articles in this
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field, which is much less than the studies in
building energy control and needs to be exten-
ded. The value-based Q-learning method is easy
and straightforward to implement and it domi-
nates among learning algorithms. This leaves a
question of how policy-based or Actor-Critic
algorithms perform in a practical building envi-
ronment. Secondly, the computation platform
and the ways of interaction with the BMS are
important for conducting real-time control.
Especially in the works with physical tests, the
working paradigms are still vague. For example,
policy-based and Actor-Critic algorithms require
more function approximations and thus the
power of computing resources should be updated
accordingly. Thirdly, while maintaining proper
indoor temperature is the foremost objective to
be considered in BMSs, automation of smart
buildings is an integrated system and studies
about comfort factors like IAQ and lighting are
relatively rare in comparison. Forthly, the
empirical study of MARL for controlling the
indoor environment has been modest. For
example, the performance of implementing
cooperative MARL still needs to be examined
and confirmed through large studies. Fifthly, as
occupants have a significant impact on energy
consumption of buildings, it is important to
include the occupant dimension into the control
system. However, only five of the reviewed
works considered occupancy patterns and/or
human feedback in the control loop. Finally,
model-based RL has had little attention in this
area, appearing only twice among the reviewed
works. The Dyna architecture and simulation-
based search should be further explored in
building applications as these have already been
shown to be effective in other AI applications.

Looking ahead to the future, it is valuable to
identify some future works. These include
engaging in designing and training non-linear
approximation approaches such as deep learning
for RL; exploring algorithms for cooperative
agents in MARL; setting up pre-training para-
digms; stressing strategies for the exploration–
exploitation dilemma; carrying out more studies
for including occupancy patterns and/or human

feedback into the control loop; exploring model-
based RL; finally, further efforts in the direction
of creating a seamless framework combining
building simulation, advanced RL and other
control strategies which can be compared in a
standard and reproducible way. We also antici-
pate some promising practical works in standar-
dising the measurement of indoor comfort, and
integrating computation platforms and the ways
of interacting with the BMS into smart building
systems.
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10A Novel Reinforcement Learning
Method for Improving Occupant
Comfort via Window Opening
and Closing

Ross May, Mengjie Han, and Xingxing Zhang

Abstract

An occupant’s window opening and closing
behaviour can significantly influence the level
of comfort in the indoor environment. Such
behaviour is, however, complex to predict and
control conventionally. This chapter, there-
fore, proposes a novel reinforcement learning
(RL) method for the advanced control of
window opening and closing. The RL control
aims at optimising the time point for window
opening/closing through observing and learn-
ing from the environment. The theory of
model-free RL control is developed with the
objective of improving occupant comfort,
which is applied to historical field measure-
ment data taken from an office building in
Beijing. Preliminary testing of RL control is
conducted by evaluating the control method’s
actions. The results show that the RL control
strategy improves thermal and indoor air
quality by more than 90% when compared

with the actual historically observed occupant
data. This methodology establishes a proto-
type for optimally controlling window open-
ing and closing behaviour. It can be further
extended by including more environmental
parameters and more objectives such as
energy consumption. The model-free charac-
teristic of RL avoids the disadvantage of
implementing inaccurate or complex models
for the environment, thereby enabling a great
potential in the application of intelligent
control for buildings.

Keywords

Markov decision processes � Reinforcement
learning � Control � Indoor comfort �
Occupant

10.1 Introduction

Indoor comfort, for example, thermal comfort
and air quality, have become major concerns for
building designers and operators (Roulet 2006).
The maintenance of these factors is important for
improving the level of an occupant’s comfort,
health, morale, working efficiency, and produc-
tivity (Shaikh et al. 2013; Singh 1996). A survey
shows that more than 80% of occupants are
satisfied with their thermal comfort in only 11%
of the buildings. For indoor air quality (IAQ),
only 26% of the buildings have 80% or more
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satisfied occupants (Huizenga et al. 2006). In
Denmark, 54% of a group of surveyed inhabi-
tants claimed that they have at least one problem
related to indoor comfort. A majority of those
respondents did not try to search for information
on how to solve the problem (Frontczak et al.
2012). Improving the comfort level of occupants
is therefore urgent for a sustainable society, and
the realisation of it seems to be a joint task
between the occupants, the building designers,
and the building management system (BMS).

Thermal comfort is used to manifest the
thermal state of a human within a given envi-
ronment (Enescu 2017). According to ASHRAE-
55, the ambient parameter, temperature, is con-
sidered as the most relevant one for thermal
comfort (ASHRAE Standard 2017). For IAQ, air
quality index (AQI)—which measures the levels
of pollutants in the air—is often used. Kyrkilis
et al. (2007) reported a combination of CO, SO2,
NO2, O3, and PM10 as the five components of
AQI. Cheng et al. (2007) included particulate
matter with less than 2.5 µm diameter (PM2.5)
since it can trigger cardiovascular disease-related
mortality and nonfatal events. Control strategies
for maintaining thermal comfort and IAQ at a
desired level have been mostly implemented on
heating, ventilation, and air conditioning
(HVAC) systems since these have a direct
influence on both the indoor environment and
energy consumption. In a building with natural
ventilation, however, indoor comfort depends
largely on the control of window opening and
closing. Compared to HVAC systems, the con-
trol of windows changes the indoor environment
through naturally exchanging the air with the
outdoor environment and therefore does not
demand additional energy. Nevertheless, arbi-
trary and customary window control by an
occupant does not guarantee the improvement of
the indoor environment. For example, keeping an
open window when the outdoor air quality
becomes poor may increase the discomfort level.
The occupant can easily fail to sense this slow
deterioration of their surroundings. Thus, intel-
ligent automation for window control has sub-
stantial potential to increase the level of comfort
of an occupant.

Machine learning, a subfield of artificial
intelligence (AI), has been used in buildings
research for many years, and has demonstrated
its potential to enhance building performance
(Hong et al. 2020). Indeed, a number of previous
studies have applied logistic regression as a
prediction method for the control of window
opening and closing behaviour. In recent times, a
prevalent machine learning technique known as
model-free reinforcement learning (RL) has
made breakthroughs in intelligent controls and
decision making (Mnih et al. 2013; Silver 2016,
2017). An RL agent learns how to optimally act
given the environment it interacts with. An early
work in this area for buildings is Mozer’s Neural
Network House (Mozer 1998). In this ground-
breaking piece of work, a residential building’s
environmental parameters and observations of
the occupants’ actions are used by an RL agent
for optimally controlling the building system.
Other applications of RL to building energy
systems have followed since this work, for
example, in systems such as HVAC (Chen et al.
2019; Fazenda et al. 2014), lighting (Park et al.
2019), heat pump (Nagy et al. 1805; Ruelens
et al. 2015), water heaters (Ruelens et al. 2014),
and battery and photovoltaic systems (Shi et al.
2017). There are many more such examples of
RL being applied in the building literature,
however, as the scope of this chapter specifically
concerns the application of RL used for window
control, our focus therefore lies in considering
current RL approaches to this building system.

Although there are existing studies using RL
in window operating, for example, in the control
of HVAC systems, particularly for ventilation
purposes (Chen et al. 2018; Dalamagkidis et al.
2007), as well as in a holistic setting among the
four subsystems, HVAC, lighting, blind, and
window systems (Ding et al. 2019), there exists
no research regarding the application of RL in
window opening and closing from the aspect of
occupant behaviour. This chapter, therefore, aims
to fill this research gap.

In this study, we train two RL agents to learn
when to open or close a window in an office
building in Beijing, so as to maximise the com-
fort level of the indoor environment as measured
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by a combination of thermal comfort and IAQ,
where, respectively, ambient temperature and
AQI have been used as proxies. A recurrent
neural network (RNN) is used to predict the
indoor temperature as a result of an action taken
on the window system. This enables the com-
parison of the agent’s window opening/closing
behaviour, with that of the actual observed his-
torical occupant window/opening behaviour,
under the same environmental conditions as
experienced by the occupant at that time. As
shown in Fig. 10.1, the contributions of this
chapter are as follows. We propose a model-free
reinforcement learning method for controlling
windows in office buildings. We optimise the
opening and closing of a window system with
regard to maximising a combination of thermal
comfort and air quality—using air temperature
and AQI, respectively, as proxies—where a data-
driven approach is used for simulating the envi-
ronmental changes. A comparison is made
between the window opening/closing policies of
the RL agents and the occupant under identical
conditions using a dataset containing the occu-
pant’s window behaviour and environmental
measurements at that time. A theoretical basis is
established for the future live deployment of the
developed control method in the physical office,
and thus for further incorporation of occupant
feedback into its control logic.

The rest of the chapter is organised as follows.
Section 10.2 examines drivers for window
opening and closing and respective control
methods used for controlling the indoor envi-
ronment via window systems. Section 10.3 then

briefly introduces the RL method and algorithms
used in this chapter. In Sect. 10.4, we summarise
the data and implementation details, and in
Sect. 10.5 the results are discussed. Lastly, we
conclude the chapter in the final section.

10.2 Behaviours of Window
Opening and Closing

Occupant behaviour is a complex process and
there are many drivers for an occupant to interact
with building control. Apart from the contextual,
psychological, physiological, and social factors
of a building occupant, physical environmental
factors have been considered as the most direct
driver (Fabi et al. 2012). Since the behaviour of
window opening and closing has a significant
impact on both the indoor environment and
energy consumption, understanding the under-
lying drivers and modelling methods will con-
tribute to implementing efficient control
techniques.

10.2.1 Drivers of Window Opening
and Closing

Investigation of window opening and closing
behaviour can be conducted in many ways. One
approach is to use surveys in the form of ques-
tionnaires. This makes it flexible for the investi-
gator to raise desired questions (Jeong et al.
2016; Freitas and Guedes 2015). These surveys
reveal that most of the time, such behaviour aims

Fig. 10.1 Flowchart of the
contributions
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at improving physical feelings and that it varies
for different seasons. For example, opening a
window in winter is more explained by air
quality, whereas closing a window in summer
may be due to outside noise (Freitas and Guedes
2015). And a drop in indoor temperature can
explain more the act of window closing than the
outdoor temperature in winter (Jeong et al.
2016).

Another approach is to use statistical model-
ing to explain occupant behaviour (Haldi and
Robinson 2009; Pan 2019). The probabilistic
paradigm further allows us to monitor the dis-
tribution of behaviour in simulation studies. In an
earlier work (Fritsch et al. 1990), it was stated
that the probability of finding a window position
depends on the preceding position of windows.
A popular method for studying such behaviour is
logistic regression analysis. It studies the binary
dependent variables by fitting linearly indepen-
dent variables and has been comprehensively
used to model window opening and closing
(Rijal et al. 2018; Andersen et al. 2013; Yun and
Steemers 2008). It can both identify influential
factors and predict window opening probabili-
ties. For example, in residential buildings in
Denmark, the probability can be explained by
indoor CO2 concentration and outdoor tempera-
ture as the common patterns (Andersen et al.
2013). Large variations, however, are found
between the patterns in naturally ventilated
buildings and mechanically ventilated buildings
(Fabi et al. 2013). For office buildings in a nat-
ural ventilation season, the outdoor temperature
was identified as the primary driver among other
environmental factors. Another study has found
that the trigger point for occupants’ window
opening is to get better thermal comfort and air
quality (Li et al. 2015). Simulation results indi-
cate that during transition seasons, the probabil-
ity of window opening in office buildings follows
a normal distribution and increases linearly with
the outdoor temperature growth. Further studies
have revealed that factors such as indoor tem-
perature, occupant arrival and leaving time,
presence, window positions, solar radiation, wind
speed, seasons and time of the day also

contribute to explain window operation for office
buildings (D’Oca and Hong 2014; Pan 2018). In
a study of two general hospital wards conducted
in Nanjing, China (Shi 2018), the effects of air
quality (i.e. indoor CO2 concentration and out-
door PM2.5 concentration) and climatic param-
eters (i.e. indoor/outdoor temperature, relative
humidity, outdoor wind speed, wind direction,
and rainfall) on window opening/closing beha-
viour were analysed. Indoor air temperature and
relative humidity were found to be dominant
factors for window opening behaviour. Outdoor
temperature was found to be associated with the
probability of window opening negatively during
the cooling season, but positively during the
transition and heating seasons. Indoor relative
humidity positively affects the probability of
window opening during the transition season
while a negative impact appears during the
cooling and heating seasons.

Logistic regression models have been suc-
cessfully developed to predict window
opening/closing and have been verified to be
promisingly adaptable for an accurate result.
Similarly, a Probit analysis also models the
probability of window operations (Yun and
Steemers 2008). Yun and Steemers monitored
data and gave evidence that there is a statistically
significant relationship between window-opening
behaviour patterns and indoor stimulus in sum-
mer. For example, a window in an office that
featured a night cooling strategy was always
open upon departure whenever the room tem-
perature was over 23.6 °C.

10.2.2 Occupant Comfort
and Intelligent
Controllers

Having understood the drivers, we can single out
the control targets and focus on specific control or
automation methods. Thermal comfort and IAQ
have been considered as the most pertinent
objectives (Andersen et al. 2013; Li et al. 2015; Jin
et al. 2015; Stazi et al. 2017; Tanner and Henze
2014). The measurement of these largely depends
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on the operation of windows via changing the
airflow rate. Thus, an advanced automatic window
control method leads to a consequential change in
the indoor environment and hence optimises the
occupant’s overall comfort level in terms of these
aforementioned objectives.

Rijal et al. demonstrated that the adaptive
Humphreys algorithm could assist in achieving
more comfortable, lower energy buildings while
avoiding overheating (2008). This algorithm can
also be used to adjust CO2 concentration to the
desired level while keeping the operative tem-
perature at a constant (Stazi et al. 2017).

Four algorithms were compared for reducing
energy consumption and improving comfort with
regard to smart windows in commercial build-
ings (Dussault et al. 2016). The ruled-based
controller and the quasi-optimal controller
obtained by the genetic algorithm showed the
best real-time control. It was also pointed out that
genetic algorithms and model predictive control
(MPC) are powerful tools that can easily accept
more complex objective functions or scenarios.

When the occupant is involved in the control
system, a stochastic process for occupant beha-
viour can be modeled following a known distri-
bution (Tanner and Henze 2014). Tanner and
Henze demonstrated this by implementing a
stochastic MPC. Compared to deterministic
optimal control, stochastic optimisation is more
conservative but offers better performance. In a
survey work by Han et al., the benefits of model-
free control in such settings are illustrated from
the methodology point of view (2019).

10.2.3 Building Environment

Both descriptive and analytical methods for find-
ing drivers for window opening and closing aim to
efficiently operate windows so that the occupants
are satisfied. By defining an objective function, we
can design a controller for solving this sequential
decision-making problem. A key issue for a
computational agent to develop a control method
is the ability to sense the change in the state of the
environment. A common strategy for achieving
this is to use building simulation programs (Li

et al. 2015; Wang and Greenberg 2015). This
approach is fast and flexible for obtaining data, but
cannot guarantee accuracy as occupant presence
presents a significant influence on building per-
formance. In this chapter, we propose a data-
driven approach to predict the change in the indoor
environment due to the operation of windows.
Distinct from building simulation programs, a
data-driven learning process can gradually
improve accuracy. As the model-free RL control
method for improving indoor comfort has not been
studied in this way, a prototype of the prediction-
based implementation and its achievement is
demonstrated.

10.3 RL and Algorithms

Reinforcement learning (RL) essentially looks
for best policies in the process of decision-
making over time. The RL agent optimises its
actions through interacting with and learning
from the environment. It learns how to map sit-
uations to actions so as to maximise a numerical
delayed reward signal. It doesn’t need to have a
“teacher” telling it how to take an action, rather,
it makes decisions via implementing a trial-and-
error search and recognising the delayed reward
from the environment that the agent interacts
with (Sutton and Barto 2018).

The environment gives stochastic feedback to
the agent. In most cases, the environment cannot
be modeled accurately and thus model-free RL
techniques such as Q-learning and SARSA are
employed as learning algorithms. Richard Bell-
man came up with the concept of Markov deci-
sion processes (MDPs) or finite MDPs, a
fundamental theory of RL, to formulate the
underlying framework for solving such problems
(Bellman 1957a).

10.3.1 Markov Decision Processes

In a dynamic sequential decision-making pro-
cess, the state St 2 S refers to a specific condition
of the environment at discrete time steps
t ¼ 0; 1; . . .. By realising and responding to the
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environment, the agent chooses a deterministic or
stochastic action At 2 A that tries to maximise
future returns and receives an immediate reward
Rtþ 1 2 R as the agent transfers to the new state
Stþ 1. The reward is usually represented by a
quantitative measurement. Figure 10.2 (Sutton
and Barto 2018) shows how a sequence of state,
action, and reward are generated to form an
MDP.

The Markov property tells us that the future is
independent of the past and depends only on the
present. In Fig. 10.2, St and Rt are the outcomes
after taking an action and are considered as
random variables. Thus, the joint probability
density function for St and Rt is defined by,

p s0; rjs; að Þ ¼ P½St ¼ s0;Rt ¼ rjSt�1 ¼ s;At�1
¼ a�;

ð10:1Þ

where s; s0 2 S, r 2 R and a 2 A. It can be seen
from Eq. (10.1) that the distribution of state and
reward at time t depends only on the state and
action one step before. Equation (10.1) implies
the basic rule (or dynamics) of how the MDP
works and one can easily determine the marginal
transition probabilities p s0js; að Þ,

p s0js; að Þ ¼ P St ¼ s0jSt�1 ¼ s;At�1 ¼ a½ �
¼

X
r2R

p s0; rjs; að Þ:

ð10:2Þ

Equation (10.3) gives the expected reward by
using the marginal distribution of Rt:

r s; að Þ ¼ E RtjSt�1 ¼ s;At�1 ¼ a½ �
¼

X
r2R

r
X
s02S

p s0; rjs; að Þ: ð10:3Þ

Both Eqs. (10.2) and (10.3) are used for
solving the optimal value functions presented in
Sect. 10.3.2.

10.3.2 Policies and Value Functions

A policy p is a distribution over actions given
states. It fully defines the behaviour of an agent
by telling the agent how to act when it is in
different states. The policy itself is either deter-
ministic or stochastic (Sutton and Barto 2018)
and the probability of taking an action, a, in state
s is:

p ajsð Þ ¼ P½At ¼ ajSt ¼ s�: ð10:4Þ

The policy can be considered as a function of
actions. The selection of actions can be achieved
by either creating a look-up table (see
Sect. 10.3.3) or building an approximation
model. The overall goal of RL is to find the
optimal policy given a state.

An optimal policy tries to maximise the
expected future return from time t:
Gt ¼ Rtþ 1þ cRtþ 2þ c2Rtþ 3þ . . ., where 0� c� 1

is the discount parameter. The state-value func-
tion, vp sð Þ; and the action-value function,
qp s; að Þ; are two useful measures in RL that can
be estimated from the data. We define vp sð Þ, of
an MDP, under policy p, as the expectation of
the return starting from state s:

vp sð Þ ¼ Ep GtjSt ¼ s½ �

¼ Ep

X1
k¼0

ckRtþ kþ 1jSt ¼ s

" #
;

for all s 2 S:

ð10:5Þ

In practical applications, vp sð Þ is more appli-
cable for model-based problems, that is, problems

Fig. 10.2 The interaction between agent and environ-
ment in an MDP
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where a model of the dynamics is known a priori.
Whereas the action-value function, qp s; að Þ; is
more useful in the model-free context when the
dynamics is not known. Episodic simulations are
often used to estimate qp s; að Þ; where,

qp s; að Þ ¼ Ep GtjSt ¼ s;At ¼ a½ �

¼ Ep

X1
k¼0

ckRtþ kþ 1jSt ¼ s;At ¼ a

" #
;

for all s 2 S and a 2 A:
ð10:6Þ

The task of finding the optimal policy, p�, is
achieved by evaluating either the optimal state-
value function

v� sð Þ ¼ max
p

vp sð Þ ð10:7Þ

or the optimal action-value function

q� s; að Þ ¼ max
p

qp s; að Þ: ð10:8Þ

The way to optimise Eq. (10.7) or (10.8) is to
make use of the recursive relationships between
two states in sequential order, known as the
Bellman optimality equation for q� s; að Þ (Bell-
man 1957b), which is obtained by summating the
following,

q� s; að Þ ¼ r s; að Þþ c
X
s02S

p s0js; að Þmax
a0

q� s0; a0ð Þ:

ð10:9Þ

10.3.3 Q-learning and SARSA

A straightforward method to find q� s; að Þ given a
policy p is to iteratively update the values of
qp s; að Þ by maximising the sum of the discounted
future returns and the immediate reward, known

as the learning target. In a general iteration pro-
cess, the new estimate of a target is updated by
summing the old estimate with an error induced
by the incremental observation, namely:

New Estimate  Old Estimate

þ Step Size Target-Old Estimateð Þ:

Different strategies regarding Q-value
updates and action selections yield off-policy
and on-policy algorithms. Among those theo-
retically convergent-guaranteed algorithms, the
off-policy Q-learning and on-policy SARSA
algorithms learn policies efficiently when the
state-action pairs are discrete and the size is
moderate. Thus, in this chapter, we consider Q-
learning and SARSA as our testing algorithms
and examine their performances in adaptive
window controls.

10.3.3.1 Q-learning
Q-learning (Watkins 1989) is a value-based tab-
ular method. A look-up table is built to store all
state-action pairs and the corresponding action-
values. When the agent is in a specific state and
an action is selected, i.e. s; að Þ, the update for this
state-action pair evaluates the transited state-
action pair, i.e. s0; a0ð Þ. The subsequent action, a0,
is taken such that q s0; a0ð Þ is maximised. As seen
in Algorithm 1, the update to a new action-value
is achieved by adding a so-called TD-error,

a Rþ cmax
a0

Q S0; a0ð Þ � Q S;Að Þ
� �

, to the old

action-values. The value function Q(S, A)1

asymptotically converges to q� s; að Þ. An �-
greedy exploration indicates that the agent
chooses an action that has maximal estimated
action-value with probability 1� �, but with
probability � the agent selects an action at ran-
dom with equal probability.

1We use Q(S, A) to represent an approximate value
function from the data and q(S,A) to represent the target
of the approximation.
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10.3.3.2 SARSA
Compared to Q-learning, SARSA is more con-
servative and sensitive to errors. When the agent
of SARSA updates its Q-table, it observes the
successor state and takes an action according to,
for example, an �-greedy policy (or another
exploration method) derived from Q, whereas Q-
learning always looks for the maximum Q-value
by evaluating those possible successor actions.
Moreover, Q-learning re-selects the successor
actions after updating the Q-table (due to
exploration), which makes the policy of the

learning agent distinct from the policy for
updating the Q-table and thus behaves off-
policy. The incremental update in the SARSA
algorithm uses all of the elements in
S;A;R; S0;A0ð Þ to obtain the action-value,

Q S;Að Þ  Q S;Að Þþ a Rþ cQ S0;A0ð Þ � Q S;Að Þ½ �;

where A0 is derived from an �-greedy or another
exploration method. Algorithm 2 gives the
implementation details of SARSA.

Algorithm 1. Tabular Q-learning
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10.4 Data and Methods

10.4.1 Data

In this study, data from an office building con-
structed of reinforced concrete and brick at a
university in Beijing are used. The construction
material of the building is composed of 370 mm

common brick with thermal conductivity 0.6
W= m � Kð Þ and 200 mm polystyrene foam with
thermal conductivity 0.033 W= m � Kð Þ. All the
offices, shown in Fig. 10.3a, are located on the
second floor in the building, whereas the floor
spaces are used for laboratories (Pan 2018).
There is one door and one push–pull south
pointing window for the experimental room. As

Fig. 10.3 Office building a and room b

Algorithm 2. Tabular SARSA
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shown in Fig. 10.3b, the window size is 1.5 m
1.6 m and can be half-open. One out of ten
offices is selected for our experiment. As illus-
trated in Fig. 10.4, the experimental room
(No. 8 according to the serial number of the
building) is located at the southeast corner with a
size of 3.29 m � 3.11 m.

The data collection took place between March
16, 2015 and May 15, 2015. This period in
Beijing is the transition season with moderate
outdoor temperature and so natural ventilation is
highly preferred. To facilitate the comparison,
the same occupant following the working routine
in the university was in the room during the data
collection period. An earlier work (Pan 2018)
gives a detailed description of the variables and
the settings of the sensors. The devices that were

used for collecting the data are highlighted in
Fig. 10.5. An indoor air temperature sensor TR
(v1.2) was placed inside the room to avoid direct
sunshine and local heating sources. A portable
outdoor meteorological weather station was put
over the roof where outdoor temperature, solar
radiation, AQI, and wind speed and directions
are measured. Moreover, an intelligent human
body inductor P100 was used to detect the
wavelength of the human body. For the days
when the room was occupied for at least 30 min,
the daily occupied time ranges from 50 min to
11 h and has a mean value of 5.5 h. To monitor
the window, a displacement tester was applied to
detect and record the position of the window.
This was achieved by the magnetic induction of
two dry spring pipes positioned on the window.

Fig. 10.4 The selected office room
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The action of opening was recorded when the
window was opened more than 3 cm and the
opening period exceeded 3 s.

Indoor temperature (Tin), outdoor temperature
(Tout), solar radiation (SR), wind speed (WS), wind
direction (WD), and outdoor air quality index
(AQI) were selected as our environment variables.
The position of the window (Pwindow, open/closed)
and the occupancy information of the room
(occupied/unoccupied) were also tracked. Given
that the comfort factors Tin andAQI do not change
drastically, each data recordwas collected at a time
resolution of 10 min—which are accessible from a
data logger. Indoor temperature is the main com-
ponent for thermal comfort. Due to the limitation
of the devices and time, we did not measure other
thermal comfort factors, for example, metabolic
rate, clothing insulation, radiant temperature, air
speed and humidity. Given this, we simplify the
factors of thermal comfort by only considering the

most representative factor, temperature. For full
factors, the adjustment of Eq. (10.10) is straight-
forward according to the method from ASHRAE
standard 55 (ASHRAE Standard 2017). Since
simplified thermal comfort also generates an
interval or zone to indicate discomfort that affects
reward in Eq. (10.10), the simplification has no
impact on our training method compared to com-
fort with full factors. Hence, thermal comfort
mentioned in this study refers to the concept with
simplified factor.

10.4.2 Methods

The RL agent optimises its behaviour by
exploring a number of different trajectories as
time goes. The observed state at a time point has
a strong correlation to the following states,
because the change of the environment is time-

Fig. 10.5 Data collection devices: a indoor temperature sensor; b portable outdoor meteorological weather station;
c human body inductor; d window tester
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dependent. Instead of simulating the trajectories,
we conduct a data-driven approach to mimic the
impact on the environment when an action is
made. Among the variables in S, the indoor
temperature is susceptible to the actions taken
and so the prediction of it helps to evaluate the
future return.

The recurrent neural network (RNN) (Mandic
and Chambers 2001) makes use of sequential
data to make predictions. An RNN has a memory
that stores previous information about what has
been calculated. This is achieved by including
the hidden layer that is obtained from one step
earlier as input to the current hidden layer. In
Fig. 10.6, the information flows of the input I
and the output O have been stored and passed
into the hidden layer a. An additional weight
matrix Wa connects the hidden layers between
two time points by computing the function at ¼
f W1ItþWaat�1ð Þ given a nonlinear activation
function f . The unrolled RNNs share the same
weight parameters W1;W2 and Wa across the
entire prediction steps.

Training an RNN is similar to training an
ordinary neural network. By using the back-
propagation Through Time (BPTT) method
(Werbos 1990), the gradient for an RNN at each
output depends on both the current input and
previous output. The gradient at time t needs to
sum up all previous t � 1 gradients. In practice,
the long-term dependency makes BPTT unable
to work due to the problem of vanishing or
exploding gradients (Pascanu et al. 2013).

A special case of an RNN, known as Long Short-
Term Memory (LSTM), can perfectly avoid this
problem by adding gates to open and close
access to the previous information (Hochreiter
and Schmidhuber 1997). We analyse the results
of our RNN predictive model in Sect. 10.5.

Predicting the change in the environment
enables the agent to start learning. To train an RL
agent that acts optimally given a certain state, the
state S has to be representative of the environ-
ment, thereby giving the agent the potential to
figure out the transition probabilities and esti-
mated future reward. Hence, both the indoor and
outdoor temperatures as well as the AQI have
been identified as direct environmental factors
that have impacts on the position change of the
window. Wind speed and solar radiation have
also been included as factors since they affect
both the airflow rate and ambient temperature.
Since the current position of the window forms
the baseline for the agent, this too has been
included as part of the state components. Fur-
thermore, Gauss distribution models and logistic
regressions have also shown that the variables
Tin; Tout; SR;WS;AQI significantly influence
window operations (Pan 2019; Pan 2018). We
therefore formulate a single state as a sextuple:
S ¼ Tin; Tout; SR;WS;AQI;Pwindow. Dynamic
variables such as airflow rate or variables that
have indirect effects to comfort parameters such
as wind direction are excluded from S. As some
of the components of the state are continuous and
imperative for making policies, we have thus

Fig. 10.6 Structure of RNN
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discretised these so that the tabular RL algo-
rithms can work.

Given the observed state, the action set,
A ¼ Switch; Inactionf g, consists of only two
elements, since we do not measure the degree of
opening. Switch refers to either closing or
opening the window depending on the current
state. Inaction means keeping the position of the
window unchanged under either scenario. The
rationality to formulate the actions in this way is
so that we are able to keep an eye on the current
position of the window as well as track the actual
position change. Given an open window, for
example, it is more natural to say “keep it open”
than to say “open the window”.

The reward R reflects the comfort and is
composed of both thermal comfort (as measured
by the indoor temperature) and air quality (as
measured by the proxy variable, AQI). We first
define the thermal discomfort, s, at time t by
evaluating the squared difference between Tin

and given thresholds,

st ¼ min Tin
t � TUB

�� ��; Tin
t � TLB

�� ��� �� �2
; Tin

t 62 TLB;TUB½ �
0; otherwise

(
;

ð10:10Þ

where TUB and TLB are, respectively, the upper
and lower thresholds of the comfort temperature.
Higher outdoor AQI can also bring discomfort to
the occupant. A survey shows that people have
an incentive to close windows for better indoor
air quality when high outdoor AQI is detected
(Pan 2018). Hence, an additional component of
discomfort, r, is considered when the window is
open and the AQI is higher than a given
threshold, where,

rt ¼ AQIt � AQILB; AQIt 2 AQILB;1ð Þ
0; otherwise

	
:

ð10:11Þ

A combination of the normalised thermal and
air quality discomfort components yields the
following reward for discomfort,

Rt ¼ x1
st �min st

max st �min st
þx2Pwindow

rt �min rt
max rt �min rt

;

ð10:12Þ

where the indicator variable, Pwindow, takes zero
for a closed window and one for an open win-
dow, and the weight parameters, 0�xi� 1,
allocate the importance between the components.
An inverse transformation, R

0
t ¼ 1= Rtþ nð Þ,

where n[ 0 is some small real number, allows
us to solve the maximisation problem defined in
Eq. (10.9). It should be noted that unlike the
discretised components making up a state, Tin

t

and AQIt in Eqs. (10.11 and 10.12) are, respec-
tively, the RNN predictions and the numerical
values from the observations.

10.5 Results

The results for both indoor temperature modeling
given by a trained RNN, as well as the control
performance of the trained RL agents are discussed
in this section. All experiments are conducted in
python 3.6.5 using TensorFlow’s (v1.12.0) high-
level API, Keras (v2.2.4). These were imple-
mented on a Single Intel(R) 64-Bit Core(TM) i5-
7300U 2.70 GHz CPU with 16 GB RAM.

10.5.1 RNN Predictions

An RNN-LSTM with a single hidden layer of 50
LSTM units and a dense output layer for pre-
dicting inside temperature was trained for the
experimental room. Since opening and closing
the window has a direct effect on the airflow rate
and ventilation speed, the rate of change of
indoor temperature may increase after an imme-
diate switch of the window position. This effect
of a change in window position will gradually
wear off until the next switch occurs. Therefore,
we incorporate the following lagged—by one
time-step—as input variables: Tin, Tout, SR, WS,
Pwindow, WD, time of day, time since a switch to
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the window was made, the presence of the
occupant, and outdoor humidity.

We use the 70–30% rule to divide the data
into training and validation sets under the period
between March 20 and May 7. Since the
sequential order matters in RNNs, we strictly
follow the time series observations and do not
shuffle the data. We further select observations
between May 12 and May 15 as the testing set.
The training stops when the average losses are
not significantly reduced. As can be seen in
Fig. 10.7, the number of epochs needed for get-
ting a stable loss is about 40. In our experiments
we do not shuffle the data and so the sequential
feature may produce higher loss for unusual
observations in the early stage of training. Nev-
ertheless, this unusual high loss diminishes as the
number of epochs increases. Moreover, the pre-
dicted Tin s of a continuous 3-day period are
compared against the actual values in the vali-
dation set in Fig. 10.8a. For almost all time
points, the predicted values are close to the actual
values.

Once the RNN-LSTM is trained, we further
test its accuracy on a test set distinct from both
the training or validation datasets. The compar-
isons between the actual vs the predicted values
are given in Fig. 10.8b, where it can be seen that
no significant deviations are found, and hence the
RNN-LSTM predictive model thus trained gen-
eralises well to new inputs. The root mean
squared error (RMSE) for the experimental room
is 0.2 °C that is too trivial for the occupant’s

sensory-receptors to sense. Thus, the trained
RNN-LSTM is verified as a suitable predictive
model for simulating the environment.

10.5.2 Performance of RL Agents

Due to a lack of computational resources, the
learning outcomes are illustrated for a single day
(April 8) as a prototype. The occupant spent
eight hours in the room on this day, which is a
typical office routine in China. This same pro-
cedure can be applied to any other day, but we do
not see any reason why our agents would behave
differently.

Discretisation to the continuous states for our
experimental room and date are shown in
Table 10.1. We restrict Tin 2 20 �C; 27 �C½ � and
Tout 2 6 �C; 15 �C½ � to be within the bounds of
the actual extreme values. Considering the
lengths between the bounds in the intervals, a
step-size of 1 °C is set for both Tin and Tout. In
running the tabular algorithms, both the actual
and predicted states are numerically rounded to
the nearest endpoints. The distribution of SR is
skewed and so we consider ordinal indicators for
representing uneven intervals. The AQI and
Pwindow are binary variables where we only dis-
tinguish if AQI is greater than AQILB or not. We
take AQILB ¼ 150 as vulnerable groups of people
start to have aggravation of symptoms of heart
and respiratory diseases when AQILB [ 150,
furthermore, outdoor activities are not recom-
mended when values of AQI are greater than the
given threshold (Jin et al. 2015; Jassim and
Coskuner 2017; Pu et al. 2017). Further, in
Eq. (10.10) we take TLB = 21 °C and TUB = 21 °
C (ASHRAE Standard 2017; Chen et al. 2018;
Zhang et al. 2011). There is no obvious best
temperature within this interval. Since we try to
establish a general framework of agent training,
we consider the most representative thresholds
for the majority of occupants. Although indi-
vidual comfort preference can vary, the conse-
quence of the occupant’s behaviour is
emphasized in this study.

Fig. 10.7 Loss for RNN training
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We take 144 time steps as one episode for both
Q-learning and SARSA. To evaluate the learning
performances of our agents, we not only monitor
the reward function but we also examine the
accumulative number of penalty actions (defined
in Table 10.2) for each epoch. When the agent is
in a specific state, we consider six different sce-
narios made by the values of AQI and Tin

t . For
example, the agents should have learnt to close
the window when AQIt [ 150 and Tin

t \21�C;
opening under this scenario would result in a

penalty. Clearly, the reward function and the
accumulative number of penalties are inversely
related—an increase in the former will result in a
decrease in the latter. By the end of the 20th
epoch in Fig. 10.9, both Q-learning and SARSA
are able to improve their reward functions and
reduce their penalties. As stated in theory, Q-
learning has higher variance than SARSA due to
following a different policy to its behaviour pol-
icy. As we can see, by the end of training,
SARSA slightly outperforms Q-learning.

Table 10.1 Discretization
of states

Variables Minimum Maximum Interval

Tin 20 °C 27 °C 1 °C

Tout 6 °C 15 °C 1 °C

WS 0m=s 2:5m=s 0:5m=s

Fig. 10.8 3-day period comparisons: a predicted validation sets and actual values; b predicted test sets and actual
values

Table 10.2 Penalty
actions

AQIt [ 150 AQIt� 150

Tin
t \21 �C Open Open

21 �C� Tin
t � 27 �C Open –

Tin
t [ 27 �C Close when,1a[ b Close

Open when,a\b
1a ¼ st�min st

max st�min st
; b ¼ rt�min rt

max rt�min rt
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We further evaluate the performances of the
agents against the actual occupant. Specifically,
we compare the average reward and penalty per
time step for the whole day and three periods
when the occupant was in the room, namely,
8:25–12:45, 13:25–15:15, and 15:45–17:35. As
shown in Table 10.3, the trained agents give on
average more than 70 in reward for a 24 h per-
iod, whereas they reduce to 7.60 in the morning
and increase in the afternoon. For the three
occupied periods, the agents give lower average
rewards than the 24 h period. This is because the
agents have to compromise the gain when
AQIt [ 150 and Tin

t [ 27 �C.
For the morning period, negligible differences

in reward can be seen between the agents and the
occupant, indicating that the agents can perform

at least as good as the occupant. This tiny dif-
ference in reward is due to the prediction of
indoor temperatures. If we scrutinize the actual
actions given by both the agents and the occu-
pant in Fig. 10.10, we see that the actions in the
morning coincide with each other. In the after-
noon, however, the longer time steps with an
open window for the occupant make the reward
higher for the agents. An explanation for the
occupant’s irrational behaviour is the inertial
thinking from the morning, failing to sense the
gradually increased AQI. The occupant may have
been concentrating on his work and so easily
forgot to close the window. The RL agent,
however, is always able to learn from the envi-
ronment and keep a level that is close to the 24 h
average.

Fig. 10.9 Performances of Q-learning and SARSA

Table 10.3 Average reward and penalty for the agents and occupant per time step

24 h 8:25–12:45 13:25–15:15 15:45–17:35

QL2 Avg.R 70.12 7.60 55.26 47.20

Avg.P 0.31 0.96 0.27 0.45

S Avg.R 76.07 7.60 64.54 73.88

Avg.P 0.26 0.96 0.27 0.18

OC Avg.R 23.57 7.82 28.89 3.10

Avg.P 0.85 0.96 0.55 0.90
2QL is short for Q-learning; S is short SARSA; OC is short for Occupant; Avg.R is short for Average Reward; Avg.P is
short for Avergage Penalty

222 R. May et al.



10.6 Conclusions

The control of windows in naturally ventilated
buildings have a large impact on occupant
comfort. Among the comfort factors, better
thermal comfort and IAQ are of most concern for
occupants. In typical Chinese office buildings,
occupants may not behave optimally due to the
complex climate and weather, and therefore
intelligent control methods aiming at improving
thermal comfort and IAQ become indispensable
for smart and sustainable buildings. Previous
intelligent control methods applied to adaptive
window control have been based on models and
their performances are therefore heavily depen-
dent on the accuracy of these models. Further-
more, these models need to be corrected and re-
identified as a consequence of a change in the
dynamics of the building caused by, for example,
retrofits. Thus, as an alternative solution which
addresses such challenges, we have developed an
automatic control prototype based on

reinforcement learning for improving occupant
comfort and tested it in a data-driven simulated
environment.

An RNN-LSTM predictive model was used
for predicting the indoor temperature given
environmental variables and was verified by a
test set. The high accuracy of the predictive
model enabled us to simulate the actions of an
agent in a flexible setting. Two tabular algo-
rithms, Q-learning and SARSA, were used to
train two RL agents whose learned behaviours
were evaluated against the occupant’s histori-
cally observed behaviour. The agents achieved
much better policies than that of the historically
observed occupant’s policy measured in terms of
both accumulative reward and penalties. An RL
agent aims to maximise cumulative future return
instead of the immediate reward at a single time
point. Even though the performance of our
trained agents failed to surpass the average level
of the complete learning period for some specific
sub-periods when the room was occupied, the
agents still behaved close to the average level.

Fig. 10.10 Comparison of actions for different time periods
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This therefore means that tabular algorithms can
inherently reduce the variance.

The prototype established in this chapter leads
to a large number of novel and valuable topics
that are recommended for future works. We are
still at the early stage of understanding the
behaviours of window opening and closing.
Human behaviour is indispensable for control-
ling the level of comfort in the indoor environ-
ment, and with regard to occupant-centric RL,
we believe that occupant feedback will not only
continuously correct the reward function in the
process of learning, but will also increase the
actual learning experience. Human effects for
different occupants should be individually treated
and they are highly related to psychological,
physiological and social factors of the occupants.
To this end, algorithms built for multi-agent
cooperative systems (where agents have a joint
action-value function in which the exploration of
new states becomes complex as the number of
agents increases) are valuable to explore and
adapt accordingly in order to make them feasible
in practice. The comfort level of an occupant is
made up of the four factors, thermal comfort,
indoor air quality, lighting, and noise, and
therefore holistic approaches to measuring the
comfort level of occupants should be explored
and integrated in the design of an intelligent
agent. While discretising the state space allows
for the application of tabular RL methods, in so
doing errors may arise. Hence, solutions for
training an agent with a continuous state space
are therefore promising and thus approximation
techniques need to be developed. With advanced
computational power, as well as advances in
algorithm design that address the problem of
sample efficiency in RL (Botvinick et al. 2019),
high performance is expected.

References

Andersen R, Fabi V, Toftum J, Corgnati SP, Olesen BW
(2013) Window opening behaviour modelled from
measurements in Danish dwellings. Build Environ
69:101–113. https://doi.org/10.1016/j.buildenv.2013.
07.005

ASHRAE standard 55—thermal environmental condi-
tions for human occupancy (2017). ASHRAE Inc

Bellman R (1957a) A Markovian Decision Process.
Indiana Univ Mathe J 6(4):679–684. https://doi.org/
10.1512/iumj.1957.6.56038

Bellman R (1957b) Dynamic programming. Princeton
Univercity Press, Princeton, NJ

Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z,
Blundell C, Hassabis D (2019) Reinforcement learn-
ing, fast and slow. Trends Cogn Sci 23(5):408–422.
https://doi.org/10.1016/j.tics.2019.02.006

Chen Y, Norford LK, Samuelson HW, Malkawi A (2018)
Optimal control of HVAC and window systems for
natural ventilation through reinforcement learning.
Energy Build 169:195–205. https://doi.org/10.1016/j.
enbuild.2018.03.051

Chen B, Cai Z, Berges M (2019) Gnu-RL: a precocial
reinforcement learning solution for building hvac
control using a differentiable MPC policy. New York,
NY, USA, pp 316–325.https://doi.org/10.1145/
3360322.3360849

Cheng W-L, Chen Y-S, Zhang J, Lyons TJ, Pai J-L,
Chang S-H (2007) Comparison of the revised air
quality index with the PSI and AQI indices. Sci Total
Environ 382(2–3):191–198. https://doi.org/10.1016/j.
scitotenv.2007.04.036

D’Oca S, Hong T (2014) A data-mining approach to
discover patterns of window opening and closing
behaviour in offices. Build Environ 82:726–739.
https://doi.org/10.1016/j.buildenv.2014.10.021

Dalamagkidis K, Kolokotsa D, Kalaitzakis K,
Stavrakakis GS (2007) Reinforcement learning for
energy conservation and comfort in buildings. Build
Environ 42(7):2686–2698. https://doi.org/10.1016/j.
buildenv.2006.07.010

Ding X, Du W, Cerpa A (2019) OCTOPUS: deep
reinforcement learning for holistic smart building
control. New York, NY, USA, pp 326–335. https://
doi.org/10.1145/3360322.3360857

Dussault J-M, Sourbron M, Gosselin L (2016) Reduced
energy consumption and enhanced comfort with smart
windows: comparison between quasi-optimal, predic-
tive and rule-based control strategies. Energy Build
127:680–691. https://doi.org/10.1016/j.enbuild.2016.
06.024

Enescu D (2017) A review of thermal comfort models and
indicators for indoor environments. Renew Sustain
Energy Rev 79:1353–1379. https://doi.org/10.1016/j.
rser.2017.05.175

Fabi V, Andersen RV, Corgnati S, Olesen BW (2012)
Occupants’ window opening behaviour: a literature
review of factors influencing occupant behaviour and
models. Build Environ 58:188–198. https://doi.org/10.
1016/j.buildenv.2012.07.009

Fabi V, Andersen RV, Corgnati SP, Olesen BW (2013) A
methodology for modelling energy-related human
behaviour: Application to window opening behaviour
in residential buildings. Build Simul 6(4):415–427.
https://doi.org/10.1007/s12273-013-0119-6

224 R. May et al.

http://dx.doi.org/10.1016/j.buildenv.2013.07.005
http://dx.doi.org/10.1016/j.buildenv.2013.07.005
http://dx.doi.org/10.1512/iumj.1957.6.56038
http://dx.doi.org/10.1512/iumj.1957.6.56038
http://dx.doi.org/10.1016/j.tics.2019.02.006
http://dx.doi.org/10.1016/j.enbuild.2018.03.051
http://dx.doi.org/10.1016/j.enbuild.2018.03.051
http://dx.doi.org/10.1145/3360322.3360849
http://dx.doi.org/10.1145/3360322.3360849
http://dx.doi.org/10.1016/j.scitotenv.2007.04.036
http://dx.doi.org/10.1016/j.scitotenv.2007.04.036
http://dx.doi.org/10.1016/j.buildenv.2014.10.021
http://dx.doi.org/10.1016/j.buildenv.2006.07.010
http://dx.doi.org/10.1016/j.buildenv.2006.07.010
http://dx.doi.org/10.1145/3360322.3360857
http://dx.doi.org/10.1145/3360322.3360857
http://dx.doi.org/10.1016/j.enbuild.2016.06.024
http://dx.doi.org/10.1016/j.enbuild.2016.06.024
http://dx.doi.org/10.1016/j.rser.2017.05.175
http://dx.doi.org/10.1016/j.rser.2017.05.175
http://dx.doi.org/10.1016/j.buildenv.2012.07.009
http://dx.doi.org/10.1016/j.buildenv.2012.07.009
http://dx.doi.org/10.1007/s12273-013-0119-6


Fazenda P, Veeramachaneni K, Lima P, O’Reilly U-M
(2014) Using reinforcement learning to optimize
occupant comfort and energy usage in HVAC sys-
tems. J Ambient Intell Smart Environ 6(6):675–690.
https://doi.org/10.3233/AIS-140288

Fritsch R, Kohler A, Nygård-Ferguson M, Scartezzini J-L
(1990) A stochastic model of user behaviour regarding
ventilation. Build Environ 25(2):173–181. https://doi.
org/10.1016/0360-1323(90)90030-U

Frontczak M, Andersen RV, Wargocki P (2012) Ques-
tionnaire survey on factors influencing comfort with
indoor environmental quality in Danish housing. Build
Environ 50:56–64. https://doi.org/10.1016/j.buildenv.
2011.10.012

Haldi F, Robinson D (2009) Interactions with window
openings by office occupants. Build Environ 44
(12):2378–2395. https://doi.org/10.1016/j.buildenv.
2009.03.025

Han M et al (2019) A review of reinforcement learning
methodologies for controlling occupant comfort in
buildings. Sustain Cities Soc 51:101748. https://doi.
org/10.1016/j.scs.2019.101748

Hochreiter S, Schmidhuber J (1997) Long short-term
memory. Neural Comput 9(8):1735–1780. https://doi.
org/10.1162/neco.1997.9.8.1735

Hong T, Wang Z, Luo X, Zhang W (2020) State-of-the-
art on research and applications of machine learning in
the building life cycle. Energy Build 212(109831):1–
15

Huizenga C, Abbaszadeh S, Zagreus L, Arens EA (2006)
Air quality and thermal comfort in office buildings:
results of a large indoor environmental quality survey.
Healthy Build Lisbon 3:393–397

Jassim MS, Coskuner G (2017) Assessment of spatial
variations of particulate matter (PM10 and PM2.5) in
Bahrain identified by air quality index (AQI). Arab J
Geosci 10(19). https://doi.org/10.1007/s12517-016-
2808-9

Jeong B, Jeong J-W, Park JS (2016) Occupant behaviour
regarding the manual control of windows in residential
buildings. Energy Build 127:206–216. https://doi.org/
10.1016/j.enbuild.2016.05.097

Jin W, Zhang N, He J (2015) Experimental study on the
influence of a ventilated window for indoor air quality
and indoor thermal environment. Procedia Eng
121:217–224. https://doi.org/10.1016/j.proeng.2015.
08.1058

Kyrkilis G, Chaloulakou A, Kassomenos PA (2007)
Development of an aggregate air quality Index for an
urban Mediterranean agglomeration: Relation to
potential health effects. Environ Int 33(5):670–676.
https://doi.org/10.1016/j.envint.2007.01.010

Li N, Li J, Fan R, Jia H (2015) Probability of occupant
operation of windows during transition seasons in
office buildings. Renew Energy 73:84–91. https://doi.
org/10.1016/j.renene.2014.05.065

Mandic DP, Chambers JA (2001) Recurrent neural
networks for prediction: learning algorithms, architec-
tures, and stability. John Wiley, Chichester; New York

Mnih V et al (2013) Playing Atari with Deep Reinforce-
ment learning. arXiv:1312.5602 [cs], Accessed: 26
Jan 2019. [Online]. Available: http://arxiv.org/abs/
1312.5602

Mnih V et al (2015) Human-level control through deep
reinforcement learning. Nature 518(7540):529–533.
https://doi.org/10.1038/nature14236

Mozer MC (1998) The neural network house: An
environment that adapts to its inhabitants. AAAI
Spring Symp Intell Environ 58:110–114

Nagy A, Kazmi H, Cheaib F, Driesen J (2018) Deep
reinforcement learning for optimal control of space
heating. arXiv:1805.03777

Nunes de Freitas P, Guedes MC (2015) The use of
windows as environmental control in ‘Baixa Pom-
balina’s’ heritage buildings. Renew Energy 73:92–98.
https://doi.org/10.1016/j.renene.2014.08.029

Pan S et al (2018) A study on influential factors of
occupant window-opening behaviour in an office
building in China. Build Environ 133:41–50. https://
doi.org/10.1016/j.buildenv.2018.02.008

Pan S et al (2019) A model based on Gauss Distribution
for predicting window behaviour in building. Build
Environ 149:210–219. https://doi.org/10.1016/j.
buildenv.2018.12.008

Park JY, Dougherty T, Fritz H, Nagy Z (2019) Light-
Learn: an adaptive and occupant centered controller
for lighting based on reinforcement learning. Build
Environ 147:397–414. https://doi.org/10.1016/j.
buildenv.2018.10.028

Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty
of training recurrent neural networks. In: International
conference on machine learning, pp 1310–1318

Pu H, Luo K, Wang P, Wang S, Kang S (2017) Spatial
variation of air quality index and urban driving factors
linkages: evidence from Chinese cities. Environ Sci
Pollut Res 24(5):4457–4468. https://doi.org/10.1007/
s11356-016-8181-0

Rijal HB, Tuohy P, Nicol F, Humphreys MA, Samuel A,
Clarke J (2008) Development of an adaptive window-
opening algorithm to predict the thermal comfort,
energy use and overheating in buildings. J Build
Perform Simul 1(1):17–30. https://doi.org/10.1080/
19401490701868448

Rijal HB, Humphreys MA, Nicol JF (2018) Development
of a window opening algorithm based on adaptive
thermal comfort to predict occupant behaviour in
Japanese dwellings. Jpn Architectural Rev 1(3):310–
321. https://doi.org/10.1002/2475-8876.12043

Roulet C-A et al (2006) Perceived health and comfort in
relation to energy use and building characteristics.
Build Res Inf 34(5):467–474. https://doi.org/10.1080/
09613210600822279

Ruelens F, Claessens BJ, Vandael S, Iacovella S, Vinger-
hoets P, Belmans R (2014) Demand response of a
heterogeneous cluster of electric water heaters using
batch reinforcement learning. Wroclaw, Poland, pp 1–7

Ruelens F, Iacovella S, Claessens BJ, Belmans R (2015)
Learning agent for a heat-pump thermostat with a set-

10 A Novel Reinforcement Learning Method for Improving Occupant … 225

http://dx.doi.org/10.3233/AIS-140288
http://dx.doi.org/10.1016/0360-1323(90)90030-U
http://dx.doi.org/10.1016/0360-1323(90)90030-U
http://dx.doi.org/10.1016/j.buildenv.2011.10.012
http://dx.doi.org/10.1016/j.buildenv.2011.10.012
http://dx.doi.org/10.1016/j.buildenv.2009.03.025
http://dx.doi.org/10.1016/j.buildenv.2009.03.025
http://dx.doi.org/10.1016/j.scs.2019.101748
http://dx.doi.org/10.1016/j.scs.2019.101748
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/s12517-016-2808-9
http://dx.doi.org/10.1007/s12517-016-2808-9
http://dx.doi.org/10.1016/j.enbuild.2016.05.097
http://dx.doi.org/10.1016/j.enbuild.2016.05.097
http://dx.doi.org/10.1016/j.proeng.2015.08.1058
http://dx.doi.org/10.1016/j.proeng.2015.08.1058
http://dx.doi.org/10.1016/j.envint.2007.01.010
http://dx.doi.org/10.1016/j.renene.2014.05.065
http://dx.doi.org/10.1016/j.renene.2014.05.065
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1805.03777
http://dx.doi.org/10.1016/j.renene.2014.08.029
http://dx.doi.org/10.1016/j.buildenv.2018.02.008
http://dx.doi.org/10.1016/j.buildenv.2018.02.008
http://dx.doi.org/10.1016/j.buildenv.2018.12.008
http://dx.doi.org/10.1016/j.buildenv.2018.12.008
http://dx.doi.org/10.1016/j.buildenv.2018.10.028
http://dx.doi.org/10.1016/j.buildenv.2018.10.028
http://dx.doi.org/10.1007/s11356-016-8181-0
http://dx.doi.org/10.1007/s11356-016-8181-0
http://dx.doi.org/10.1080/19401490701868448
http://dx.doi.org/10.1080/19401490701868448
http://dx.doi.org/10.1002/2475-8876.12043
http://dx.doi.org/10.1080/09613210600822279
http://dx.doi.org/10.1080/09613210600822279


back strategy using model-free reinforcement learning.
Energies 8:8300–8318. https://doi.org/10.3390/
en8088300

Shaikh PH, Nor NBM, Nallagownden P, Elamvazuthi I,
Ibrahim T (2013) Robust stochastic control model for
energy and comfort management of buildings. Aust J
Basic Appl Sci 7(10):137–144

Shi G, Liu D, Wei Q (2017) Echo state network-based Q-
learning method for optimal battery control of offices
combined with renewable energy. IET Control Theory
Appl 11(7):915–922

Shi Z et al (2018) Seasonal variation of window opening
behaviours in two naturally ventilated hospital wards.
Build Environ 130:85–93. https://doi.org/10.1016/j.
buildenv.2017.12.019

Silver D et al (2016) Mastering the game of Go with deep
neural networks and tree search. Nature 529
(7587):484–489. https://doi.org/10.1038/nature16961

Silver D et al (2017) Mastering the game of go without
human knowledge. Nature 550(7676):354–359.
https://doi.org/10.1038/nature24270

Singh J (1996) Review: health, comfort and productivity
in the indoor environment. Indoor and Built Environ 5
(1):22–33. https://doi.org/10.1177/
1420326X9600500105

Stazi F, Naspi F, Ulpiani G, Di Perna C (2017) Indoor air
quality and thermal comfort optimization in class-
rooms developing an automatic system for windows

opening and closing. Energy Build 139:732–746.
https://doi.org/10.1016/j.enbuild.2017.01.017

Sutton RS, Barto AG (2018) Reinforcement learning: an
introduction, 2nd edn. The MIT Press, Cambridge,
MA

Tanner RA, Henze GP (2014) Stochastic control opti-
mization for a mixed mode building considering
occupant window opening behaviour. J Build Perform
Simul 7(6):427–444. https://doi.org/10.1080/
19401493.2013.863384

Wang L, Greenberg S (2015) Window operation and
impacts on building energy consumption. Energy
Build 92:313–321. https://doi.org/10.1016/j.enbuild.
2015.01.060

Watkins CJCH (1989) Learning from delayed rewards.
Ph.D. thesis, University of Cambridge

Werbos PJ (1990) Backpropagation through time: what it
does and how to do it. Proc IEEE 78(10):1550–1560.
https://doi.org/10.1109/5.58337

Yun GY, Steemers K (2008) Time-dependent occupant
behaviour models of window control in summer.
Build Environ 43(9):1471–1482. https://doi.org/10.
1016/j.buildenv.2007.08.001

Zhang H, Arens E, Pasut W (2011) Air temperature
thresholds for indoor comfort and perceived air
quality. Build Res Inf 39(2):134–144. https://doi.org/
10.1080/09613218.2011.552703

226 R. May et al.

http://dx.doi.org/10.3390/en8088300
http://dx.doi.org/10.3390/en8088300
http://dx.doi.org/10.1016/j.buildenv.2017.12.019
http://dx.doi.org/10.1016/j.buildenv.2017.12.019
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1177/1420326X9600500105
http://dx.doi.org/10.1177/1420326X9600500105
http://dx.doi.org/10.1016/j.enbuild.2017.01.017
http://dx.doi.org/10.1080/19401493.2013.863384
http://dx.doi.org/10.1080/19401493.2013.863384
http://dx.doi.org/10.1016/j.enbuild.2015.01.060
http://dx.doi.org/10.1016/j.enbuild.2015.01.060
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1016/j.buildenv.2007.08.001
http://dx.doi.org/10.1016/j.buildenv.2007.08.001
http://dx.doi.org/10.1080/09613218.2011.552703
http://dx.doi.org/10.1080/09613218.2011.552703


11Development of an Adaptation
Table to Enhance the Accuracy
of the Predicted Mean Vote Model

Yu Li, Yacine Rezgui, Annie Guerriero,
Xingxing Zhang, Mengjie Han, Sylvain Kubicki,
and Yan Da

Abstract

The Predicted Mean Vote (PMV) model is
extensively used by current thermal comfort
standards, such as ASHRAE 55 and ISO
7730, despite its discrepancy in predicting
Thermal Sensation (TS). The implicit assump-

tion is that PMV can be applied for predicting
TS of a large population. Our statistical
analysis of a subset of ASHRAE global
database of thermal comfort field study shows
that occupants’ expectations towards TS are
affected by factors that are not accounted for
in the classic PMV model, such as climate,
building type, age group, season and gender.
The influences of the climate and building
type are more determinant. An adapted PMV
(PMVa) model and an adaptation table were
developed based on the selected samples to
reduce this discrepancy. After adaptation, the
medians of each category corresponding to the
discrepancy are zero or near zero. The results
also show that the adapted PMV outperforms
the classic PMV in predicting TS, while
increasing the overall accuracy from 36 to
39%.

Keywords

Predictive mean vote � Thermal sensation �
Discrepancy � Adapted model � Adaptation
table � Adaptive thermal comfort

11.1 Introduction

Buildings are responsible for 40% of the energy
consumption in the EU (European Union), with
Heating, Ventilation and Air Conditioning
(HVAC) equipment used to regulate the indoor
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climate accounting for approximatively 50% of
the building energy consumption (European
Commission 2016; Li et al. 2017; Li et al. 2019).
Despite the significant energy footprint spent in
controlling the indoor climate, user satisfaction
with the indoor comfort is often not yet met
(Frontczak et al. 2012). A large scale survey in
North America showed that only 2% of the
commercial buildings achieved 80% thermal
satisfaction, which is the prescribed minimum
requirement by most standards for occupants’
thermal comfort (Karmann et al. 2018). Citizens
in industrialized countries spend around 90% of
their time indoor (Höppe et al. 1988), and
therefore the indoor conditions are important to
human health and wellbeing. Thermal comfort
has been identified as the most important indi-
cator influencing the overall satisfaction in terms
of indoor environmental quality (Al et al. 2016;
Frontczak and Wargocki 2011). Several studies
have proven that a dissatisfied thermal environ-
ment would result in an increased number of
problems, such as complaints, absenteeism, and
reduced productivity at work (Al et al. 2016;
Wang et al. 2019). From an energy conservation
point of view, indoor comfort can be used to
understand the specific demand and requirements
of occupants. Such information can inform the
design and control of building operation systems
to optimize energy efficiency and reduce carbon
emission.

Thermal comfort is defined as the concept of
mind to express satisfaction towards the thermal
environment, and thus it should be evaluated
through the direct feedback of the occupants
(Ghahramani et al. 2016). Human response to
Thermal Sensation (TS) is normally measured by
asking the subjects to complete a ‘comfort vote’
on a descriptive scale ranging from ‘−3’ to ‘3’,
either a 7-point ordered or continuous scale. ‘0’
is the best condition representing thermal neu-
trality. Statistical methods are then applied to
analyse the results. However, it is not practical
for occupants to answer questionnaires on a
continuous basis. As a result, other techniques
have been developed to correlate TS with the
built environment (Cheng et al. 2019; Yang et al.
2019).

PMV (Predicted Mean Vote) is the most
widely used model to mathematically predict the
average TS of a large group of individuals, which
is the basis for multiple indoor thermal comfort
standards, such as ASHRAE 55 (2017) and ISO
7730 (2005). It was developed based on exten-
sive experiments conducted in well-controlled
environments of European and North American
subjects (Fanger 1970; Van Hoof 2008; Fanger
and Toftum 2002). It rests on steady state heat
transfer conditions between a human body and its
surrounding environment. The static heat balance
model predicts the mean TS of the occupants
exposed to their thermal environment as a func-
tion of four thermal environmental parameters
(indoor air temperature, radiant temperature, air
speed and relative humidity), and two occupant’s
personal data (metabolic rate and clothing
insulation).

Previous studies have revealed that human
responses to indoor thermal comfort are affected
by non-thermal factors that are not accounted for
in the classic PMV model (Cao et al. 2011). As a
result, a discrepancy exists between the TS votes
and PMV model. The evidenced discrepancy
triggered an investigation into improving the
model’s credibility in predicting indoor thermal
comfort. Adaptive models have been proposed
which assumed that people are able to adapt to
their thermal environment through behavioural
adjustment, acclimatization to the thermal envi-
ronment or relaxation of expectations (Frontczak
and Wargocki 2011). While the classic PMV
model is capable of accounting for some degrees
of behavioural adaptation such as adjusting local
temperature and changing one’s clothes, it
overlooks psychological adaptation and
acclimatization. Fanger and Toftum (2002)
extended the PMV model by introducing an
expectancy factor for non-air-conditioned build-
ings in warm climates. They argued that the
occupants’ TS expectation is lower, and that
occupants would slow down their activities to
adjust their metabolic rates under warm condi-
tions. Nicol and Humphreys (2002) claimed that
people are able to adjust themselves to suit the
environment, and developed an adaptive thermal
comfort model to estimate the acceptable indoor
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temperature in relation to the outdoor monthly
average temperature in free-running buildings.
Fanger and Toftum (2002) pointed out that the
limitation of the adaptive model proposed by
Nicol and Humphreys is that the model does not
consider activity level, clothing insulation and
the indoor thermal environment, which are
believed to have a significant impact on human
thermal comfort. Yao et al. (2009) proposed an
adaptive PMV model based on a “black box”
theory to explore the logical and statistical rela-
tionships between the variables involved. The
established relationship was used to predict
thermal comfort, accounting for behavioural and
psychological adaptation. They claimed that their
model might be important in the context of
human interaction with the environment. Hum-
phreys and Nicol (2002) discussed the variables
affecting the accuracy of PMV model. They
advocated that using PMV to predict thermal
comfort votes could be misleading and proposed
a modified PMV model based on the classic
PMV and its discrepancy from the TS votes. The
biases were reduced after modification.

The PMV model was developed based on the
assumption that if the indoor climate meets the
critical requirements for a thermally acceptable
comfort condition, the TS is deemed the same for
occupants with the same level of clothing insu-
lation and carrying out similar activities,
regardless of the demographic and contextual
factors. The fact is that the influences of psy-
chological adaptation and physiological
acclimatization are well documented (Pantavou
et al. 2018; Cheung et al. 2019). To address this
research gap, the proposed study aims to explore
the impacts of the variables contributing to this
discrepancy. Currently, most of the field and
experiment studies are based on a limited number
of samples, which cannot be generalized to rep-
resent a large population. Thus, our study is
derived from the ASHRAE Global Thermal
Comfort Database II (Földváry et al. 2018) to
investigate the influence of a large sample size.
Following this introduction, Sect. 11.2 discusses
the factors contributing to the PMV discrepancy.
The chapter then elaborates on the methodology

used in this study (Sect. 11.3), followed by a
presentation of the results (Sect. 11.4). An
adapted model and an adaptation table are pre-
sented in Sect. 11.5 with the aim to compensate
the influences caused by the variables identified
in Sect. 11.2. The results are then discussed in
Sect. 11.6, followed by concluding remarks.

11.2 Factors Contributing
to the Discrepancies
Between PMV and Thermal
Sensation

The PMV model was primarily developed from
predefined thermal environmental and personal
variables, hence overlooking other factors that
may potentially affect the accuracy of the results.
However, thermal comfort is a subjective factor,
which is closely associated with occupants’
thermal expectations and capacity of adaptation.
Different occupants may have different percep-
tions of thermal comfort even when exposed to
the same environment (Humphreys and Nicol
2002). Such differences are associated with the
influence of seasonal variations (Cao et al. 2011;
Fountain et al. 1996; Rijal et al. n.d.) and the
general climate (Rijal et al. n.d.; Nicol and
Humphreys et al. 2007; Wenzel 1989; Hancock
et al. 2011), as well as lifestyle and socio-cultural
factors, including the use of different clothing
materials (Humphreys and Nicol 2002), expec-
tations (influenced by the season (Zhang et al.
2016; Li et al. 2017), climate (Humphreys and
Nicol 2002; Dear and Brager 1998), age (Nat-
sume et al. 1992; Yang and Olofsson 2017), and
gender (Wang et al. 2018; Karjalainen 2012), and
the ability to control the thermal conditions in the
actual buildings (Teli et al. 2012; Wang et al.
2019; Alwetaishi 2017). This, in turn, involves
variations in (a) perceived neutral temperatures,
(b) interpretation of the ASHRAE scale cate-
gories, and (c) personal judgements (Humphreys
and Nicol 2002). As such, five determinant
variables are identified from the literature,
namely: season, climate, building type, age
group, and gender; and elaborated below.
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11.2.1 Season

Many previous studies have reported the effect of
seasonal variations on personal perceived TS
(Cao et al. 2011; Fountain et al. 1996; Rijal et al.
n.d.; Zhang et al. 2016; Li et al. 2017). Li et al.
(2017) conducted a large-scale thermal comfort
survey in a hot summer and cold winter zone of
China. Different TS and adaptive responses were
detected in different seasons. The results revealed
that the significant seasonal variations were due
to the individuals’ thermal experience and ther-
mal expectations in difference seasons. A higher
neutral temperature was expected in warm sea-
sons. Thus, maintaining the same indoor tem-
perature in winter as in summer results in a waste
of energy (Cao et al. 2011). In addition to the
difference in perceived TS, the occupants’
physiological reactions are also different. The
differences have been recorded from climate
chamber experiments by measuring physiologi-
cal reaction of the participants (Nakamura and
Okamura 2009; Umemiya 2006; Lee et al. 2012).
Noriko (Umemiya 2006) investigated seasonal
metabolic rate variation of 6 subjects under
identical thermal conditions over the course of
one year. Results showed that metabolic rates
were higher in winter than in summer. Lee et al.
(Lee et al. 2012) compared sweating responses of
15 male participants in summer and winter. They
concluded that sweat volume and evaporative
rate were significantly less in winter than in
summer.

11.2.2 Climate

Research studies with regard to thermal comfort
have revealed that occupants’ thermal adaptation
is affected by climate and social custom, mainly
reflected by their perceived neutral temperature
and their interpretation of ASHRAE comfort vote
(Humphreys and Nicol 2002; Dear and Brager
1998). Generally, these studies found that neutral
indoor temperature in sub-tropical climate is
higher than temperate climate, and lowest in cool
climate (Rijal et al. n.d.; Nicol and Humphreys
2007). Although the clothing insulation and

metabolic rate are taken into consideration in the
classic PMV model, the values are normally
assessed from a standard checklist. Clothing in
the tropical area may allow great diffusion of
moisture and air (Humphreys and Nicol 2002).
The metabolic rate may be lower in the warm
climate while conducting the same listed tasks
(Humphreys and Nicol 2002). Thus, the identical
clothing level and tasks providing identical
assumption of clothing insulation and metabolic
rates may result in the same PMV while the TS is
different. Meanwhile, evidence suggests that
human genome imparted by natural selection is
strongly correlated with climate variables (Han-
cock et al. 2011). People exposed to certain cli-
mate may have higher tolerance for higher
temperature and humidity (Wenzel et al. 1989;
Yang and Wang 2018). For example, people
living in warm climate prefer a warmer indoor
temperature (Dear and Brager 1998).

11.2.3 Building Type

The impact of building type on thermal comfort
is much less discussed when compared with
other factors (Zhang and Dear 2019). Architects
design buildings that address functional require-
ments while complying with the energy (and
other) regulatory landscape (Daher et al. 2019).
Moreover, the interior design as well as indoor
facilities vary from one building type to another.
An office building is normally equipped with
personal computers and servers, which are
responsible for the extra heat gain of the build-
ing. Furthermore, the occupants are not passive
recipients of their thermal environment regime as
they actively interact with the control systems in
place (e.g. thermostats and radiator valves) to
make themselves comfortable. Different types of
buildings affect people’s ability to adapt to
clothing insulation and control of the environ-
ment (Teli et al. 2012; Wang et al. 2019). For
example, occupants in residential buildings tend
to adapt their clothing level, and impact on the
indoor environment by controlling their HVAC
system. Thus, the acceptable temperature range
in residential buildings is wider than other types
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of buildings (Alwetaishi 2017). Oseland et al.
(2010) compared 30 subjects’ thermal comfort
from home, office and a climate chamber. The
author concluded that under the same clothing
and activity, the participants felt warmer in their
home than in their office, and warmer in their
office than in the climate chamber. The result was
validated by a follow on study from Karjalainen
et al. (2009), who conducted an investigation to
examine the thermal comfort of 3094 respon-
dents. The results showed that the respondents
felt warmer at home than in their office.

11.2.4 Age Group

Tolerance to cold and hot environments of dif-
ferent age groups is generally considered to
decrease with age due to the reduced ther-
moregulation response (Natsume et al. 1992).
This reduction in thermal sensitivity is caused by
aging of the skin and the superficial skin blood
flow (Guergova and Dufour 2011). Natsume
et al. (1992) studied 6 older men (71–76 years
old) and 6 young men (21–30 years old) to
investigate their preferred temperature. The sub-
jects were healthy both physically and mentally.
The results indicated that the preferred tempera-
ture range of the older people is wider than the
younger people. Another study was conducted by
Schellen et al. (2010) to investigate thermal
comfort response of different age groups. 8 se-
niors (67–73 years old) and 8 young adults (22–
25 years old) participated in the investigation.
The results revealed that the older people pre-
ferred a higher temperature compared with the
younger people and their TS was generally 0.5
scale units less than the young people. The
results were challenged by some scientists who
claimed no significant influence of age on TS.
Soebarto et al. (2019) investigated the thermal
comfort of younger (20 samples) and older (22
samples) subjects under different test conditions.
The skin temperature of the subjects was mea-
sured at four body parts. No significant difference

in thermal preference or thermal sensation was
observed for the two different age groups.

11.2.5 Gender

A large number of studies have examined the
effect of gender on TS and yielded conflicting
conclusions. A substantial amount of field studies
reported a weak or insignificant influence caused
by gender difference (Wang et al. 2018). Amai
et al. (2007) studied thermal comfort under three
types of tasks. The TS difference between male
and female subjects was small. Maykot et al.
(2018) conducted 116 field studies to investigate
the influence of gender on thermal comfort tem-
perature. Total 584 participants were involved in
the experiments. Statistical analysis of the col-
lected results showed that the comfort temperature
for female is slightly higher (� 1 °C) than male.
Conversely, some studies revealed a noticeable
gender difference in terms of thermal comfort
(Alwetaishi 2017; Beshir and Ramsey 1981;
Karjalainen 2012). Beshir and Ramsey (1981)
investigated the TS difference between 31 male
and 15 female participants. The subjects were
exposed to 23.3–43.3 °C and were not allowed to
adjust the temperature throughout the experiment.
The results showed a significant gender differ-
ence, with the male subjects preferring a lower
comfort temperature than the female subjects. The
female participants felt more uncomfortable in
both cold and hot temperature extremes. In a way,
the results are similar to some field and laboratory
studies, which showed that the female participants
are more sensitive to deviation from the comfort
temperature and more likely to be thermal dis-
satisfaction than male under the same thermal
environment (Wang et al. 2018; Karjalainen
2012). Thus, it was suggested that female should
be used as primary subjects when investigating
indoor thermal comfort requirements (Karjalainen
2007). However, Kingma and Lichtenbelt (2015)
andWang et al. (2018) pointed out that the gender
differences are derived from themetabolic rate and
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clothing insulation, and thus the influence might
be eliminated once the clothing and metabolic
rates are well controlled (Zhang and Dear 2019).

11.3 Methodology

This section describes the data source used in the
study, the adopted sampling technique, as well as
the analytical methods used to analyse and
quantify the relationships between the categorical
variables involved, as elaborated below.

11.3.1 Data Source and Sampling
Technique

The ASHRAE Global Thermal Comfort
Database II, which consists of thermal comfort
data from subjective comfort votes and objective
instrumental measurements, is used in this study.
Besides the thermal comfort information, the
database also includes other related information
such as season, climates, building types, age and
gender. The samples with PMV, thermal sensa-
tion, season, climate (Köppen–Geiger climate

classification), building type, age and gender
were extracted from the database. Meanwhile,
the attributes under the different variables with a
sample size of less than 383 were excluded to
ensure a confidence level of 95%. This number is
obtained by Eq. (11.1).

Sample size ¼
Z2�SD� 1�SDð Þ

e2

1þ Z2�SD� 1�SDð Þ
e2N

� � ð11:1Þ

where, Z = 1.96 (95% confidence level), SD
(standard deviation) = 0.5, e (margin of error) =
0.05. N is the population size in the database.
The calculated population size is 383. Finally,

a total of 5 variables (Season, Climate, Building
Type, Age group, and Gender) consisting of
17,841 observations were used in this analysis.
A new variable named discrepancy representing
the difference between PMV and TS was gener-
ated. The extracted age information was a
numeric variable ranging from 16 to 99. In this
study, the age was grouped into three attributes:
Young: 16–24, Adults: 25–64 and Older adults:
65–99. Figure 11.1 summarizes the distribution
of the extracted samples. A large number of the

Fig. 11.1 Distribution of
extracted data samples from
the database. Am (Tropical
monsoon climate), Aw
(Tropical wet and dry
climate), BSh (Hot semi-arid
climate), Cfa (Humid
subtropical climates), Cfb
(Oceanic climate), Cwa (Dry-
Winter Humid Subtropical),
Cwb (Dry winter Oceanic
climate)
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records were collected from Adults: 25–64 in the
office building during summer.

11.3.2 Analytical Methods
for Categorical Variables

The factors contributing to the discrepancy in our
analysis are categorical variables. Therefore, the
analytical method should be able to analyse the
relationships among these categorical variables.
Analysis of variance (ANOVA) was applied to
explore the association between the discrepancy
and the different categorical variables (e.g. sea-
son, climate).

A boxplot is a straightforward graphical
method to summarize the datasets, which shows
whether or not a dataset is symmetric. It was used
in this analysis to visually identify the dispersion
of samples based on a five-number summary
(“minimum”, lower quartile (Q1), median, upper
quartile (Q3) and “maximum”), as shown in
Fig. 11.2. The difference between lower quartile
and upper quartile is the length of the box. A line
that divides the box into two parts represents the
median of the data. For example, a median of 5
denotes that the number of data higher than 5 is
the equal to the number of data lower than 5. The
difference between lower quartile and upper
quartile is the interquartile range (IQR). The
“minimum” and the “maximum” are the Q1-
1.5 * IQR and Q1 + 1.5 * IQR. Outliers are
displayed as individual points.

Correspondence Analysis (CA) and Multiple
Correspondence Analysis (MCA) were both used
in this study to project the correlation between
the discrepancy and the categorical variables in
2D map. The CA is a graphical technique

designed specifically for the analysis of cate-
gorical variables, which interprets the relation-
ship among categorical variables by identifying
their differences and similarities (Greenacre
1984; Sourial et al. 2010; Cariou and Qannari
2018). This technique preserves the categorical
nature of the variables and is able to accommo-
date any type of categorical variable (Sourial
et al. 2010). It is developed from data in a con-
tingency table, which is a two-dimensional table
in matrix format showing the frequency of the
variables associated attributes. The MCA is
similar to CA apart from that it can be used when
there are more than two categorical variables.
The association distances in CA and MCA are
measured by chi-square distance between the
response categories. This measurement ensures
that the larger population do not dominate the
relative distance. Thus, CA exhibits a higher
accuracy when compared with other multivariate
techniques derived from the correlation coeffi-
cient (Sourial et al. 2010). The chi-square dis-
tance between row i and i0 is defined by
Eq. (11.2) (Saqlain et al. 2019):

d i; i0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

pij � pi0j
� �2

pþ j

 !vuut ð11:2Þ

where pij and pi0j are relative frequencies of row
i and i0 in column j. pþ j is the marginal relative
frequency for column j.

11.3.3 Analytical Methods
to Quantify
the Relationships

Although categorical variables are widely used in
our daily life, they cannot be used directly in
regression analysis to establish a statistic rela-
tionship. Dummy coding, also known as one-hot
coding, is employed to incorporate categorical
variables into regression analysis by converting
the categorical variables into mutually exclusive
binary variables. The dummy variables then can
be considered as true values that consist of

Fig. 11.2 Interpretation of the boxplot
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0 and 1. Table 11.1 gives an example for dummy
coding of season. After coding, the attributes are
converted into binary data.

Multivariate linear regression is a linear sta-
tistical model with more than one independent
predictor. It was applied in this study to establish
the relationship between the discrepancy and the
dummy coded categorical variables. Linear
regression is selected because it is the most
extensively used regression model and the coef-
ficients can be easily used to generate a com-
pensatory table for categorical variables.

11.3.4 Workflow of the Methodology

The workflow of the methodology is shown in
Fig. 11.3. The main concept of the chapter is to
analyse the accuracy of the existing PMV model
for TS prediction, identify the reasons for the
discrepancy (PMV-TS), and propose an adapted
model (PMVa) together with an adaptation table
to enhance the accuracy of the model.

11.4 Results

This section presents the results related to the
accuracy of the PMV model for TS prediction, as
well as the effects of the variables involved in the
discrepancy based on the extracted samples.

11.4.1 Accuracy of the PMV Model
for TS Prediction

As people differ in their thermal perceptions,
PMV cannot be expected to precisely predict the
TS of an individual. The relationship between the
PMV and its discrepancy (PMV-TS) is illustrated
in Fig. 11.4. Figure 11.4a displays a scatter dia-
gram and a linear relationship of the PMV cor-
responding to the recorded discrepancy. It can be
seen that the discrepancy increases with the
increase of the PMV. When the PMV is neutral,
the absolute value of the discrepancy is smaller
than when the PMV deviates from the neutral.
This means that the perceived TS is not as hot or
cold as it is predicted from the PMV model in hot
or cold environments.

The PMV was binned into 7 categories in
Fig. 11.4b: Cold (PMV � −2.5), Cool

Table 11.1 An example
of dummy coding for
season

Dummy variables

Season Spring Summer Autumn Winter

Sample 1 Spring 1 0 0 0

Sample 2 Summer 0 1 0 0

Sample 3 Autumn 0 0 1 0

Sample 4 Winter 0 0 0 1

Fig. 11.3 workflow of the methodology
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(−2.5 < PMV � −1.5), Slightly cool (−1.5 <
PMV � −0.5), Neutral (−0.5 < PMV � 0.5),
Slightly warm (0.5 < PMV � 1.5), Warm
(1.5 < PMV � 2.5) and Hot (PMV > 2.5).
After binning the PMV, the overall sample
number for each category is 58 (Cold), 467
(Cool), 3405 (Slightly cool), 7956 (Neutral),
3920 (Slightly warm), 1007 (Warm) and 668
(Hot). The magnitude of the discrepancy quan-
tifies the success of PMV in predicting TS. The
median of each boxplot is −2.6, −1.5, −0.61,
0.02, 0.7, 1.19 and 1. The medians are smaller at
“Slightly cool”, “Neutral” and “Slightly warm”
environments. Thus, the PMV model is better for

TS prediction under these three circumstances.
The ISO 7730 (2005) also recommends that the
PMV range should be used within ±2 to ensure a
higher accuracy. The discrepancy is bigger in
“Cold” and “Cool” environments than in “Hot”
and “Warm” environments, which indicates that
the PMV model is better in predicting “Hot” and
“Warm” conditions than in that in “Cold” and
“Cool” environments. This could be explained
by the access to greater adaptive options for most
building occupants in a cooler environment
e.g. clothing modification. Thus, they do not
feel as cold as predicted from the PMV
model.

Fig. 11.4 The correlation
between PMV and its
discrepancy (PMV-TS)
a Scatter plot of PMV
corresponding to discrepancy,
b Boxplots of Binned PMV
corresponding to discrepancy
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11.4.2 The Effect of Variables
on the Discrepancy

This section discusses the influence of season,
climate, building type, age group and gender on
the prediction of the discrepancy based on the
extracted samples. The ANOVA test results
(P < 0.001) indicated that the discrepancy was
significantly different for each category. The
boxplots categorized by the different variables
are displayed in Fig. 11.5a–e. The CA maps and
MCA map illustrating the distance between each
variable and the discrepancy are shown in
Figs. 11.6a–e and 11.7. The origins of the maps
correspond to the centroid of each variable. The
longer distance from the attributes to the origin,
the more discriminating it is. The results are
discussed in the following subsections.

11.4.2.1 Season
Figure 11.5a shows the boxplots of the discrep-
ancy observation corresponding to the four sea-
sons. The medians of the discrepancy are −0.115
for spring, 0.09 for summer, -0.58 for autumn,
and 0.2 for winter. The negative medians imply
that on average the perceived TS is warmer than

predicted from the classic PMV model, while the
positive medians imply a cooler feedback from
the ASHRAE vote when compared with the
PMV model. It is apparent that the PMV
underestimates the actual TS in autumn. The
maximum difference of the discrepancy is 0.78,
which occurs between winter and autumn.

The CA map in Fig. 11.6a demonstrates the
distance between season and the categorized
discrepancy. Autumn is a highly discriminating
attribute indicated by its distance from the origin.
It is closer to category 1, category 2 and category
3 (PMV-TS � −1), leading to a larger negative
median value. The results reveal that autumn has
a big impact on occupants’ TS. Although spring
is also scattered from the origin, it is closer to
category 4 and category 5 (−1 < PMV-TS � 1).

11.4.2.2 Climate
The boxplots of the discrepancy observation
corresponding to the climate are displayed in
Fig. 11.5b. The difference caused by climate is
more noticeable when compared with other
variables. The medians for the Am, Aw, Bsh,
Cfa, Cfb, Cwa and Cwb are 0.1, 0.36, 0.5, −0.4,
−0.64, 0.6 and 0.2. The maximum difference is

Fig. 11.5 Boxplots of the discrepancy (PMV-TS) categorized above a, b, c, d, e
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1.24, which occurs between Cwa and Cfb. It
should be noted that the impact of the similar
climates on the discrepancy is similar. For
example, the tropical climates (Am and Aw) both
result in a cooler TS.

On the other hand, the CA map in Fig. 11.6b
indicates the different climates are significantly
scattered. Cfa and Cfb are clustered around cat-
egory 1, 2 and 3 (PMV-TS � −1), leading to
negative medians. On the contrary, Aw, Bsh and
Cwa are clustered around 6, category 7 and 8
(PMV-TS > 1), and thus positive medians are
observed.

11.4.2.3 Building Type
As can be seen from Fig. 11.5c, the influence of
classroom and office building on the discrepancy
is small, with medians of −0.1 and 0.1, respec-
tively. However, the influence of senior center is
more obvious, with a median of −0.7, which
means that the perceived thermal comfort is
warmer than predicted from the PMV model.
The CA map in Fig. 11.6c shows that the senior
center is highly differentiated, reflected in the
distance between the senior center and the origin.
It is close to category 1, category 2 and category
3. Therefore, a negative median is observed.

Fig. 11.6 Correspondence analysis maps of the discrepancy (PMV-TS) above a, b, c, d, e

Fig. 11.7 Multiple correspondence analysis map

11 Development of an Adaptation Table to Enhance the Accuracy … 237



The classroom and office building are centered
around the origin, which is in accordance with
the small medians.

11.4.2.4 Age Group
Figure 11.5 (d) displays the boxplots of the dis-
crepancy observation corresponding to the age
group. The medians for discrepancy are −0.19,
0.19, −0.4 for Young: 16–24, Adult: 25–64 and
Older adults: 65–99. The group difference
between the Young: 16–24 and Adult: 25–64 is
minor when compared with the Older adults: 65–
99. The distance between the senior group and
the origin in Fig. 11.6d also indicated that the
older group is a more discriminating variable.

11.4.2.5 Gender
The gender does not have a significant influence
on the discrepancy. The median values for dis-
crepancy caused by female (0) and male (0.16)
are similar. Figure 11.5e clearly demonstrates
that female and male are clustered around cen-
troid, and thus the deviation between the two
attributes is small. The male occupants are clus-
tered among point 6, point 7 and point 8. The
map indicates that the male occupants tend to
feel slightly warmer than PMV prediction.

11.4.2.6 Overall Analysis
The results in Figs. 11.5 and 11.6 show that the
five categorical variables (season, climate,
building type, age group and gender) investi-
gated had an impact on the discrepancy. In order
to examine the influence of those variables
together, the five variables are mapped into one
MCA in Fig. 11.7. As can be seen from the
figure, the climate and building type are more
scattered than the other variables, which indi-
cates the two variables are more differentiate than
the other variables. The gender is closely located
to the origin. The discrepancy categories (from 1
to 8) are primarily clustered by the climate. Thus,
the climate has the most significant influence on
the discrepancy.

11.5 Improvement in the PMV
Model

As the PMV model is an aggregated model
developed to predict the average TS of a large
population, unsurprisingly, its accuracy for pre-
dicting individual’s thermal comfort response is
not high. In fact, for occupants exposed to the
same space, sharing the same environment, their
thermal comfort perception varies. However, it
should be able to predict the mean comfort vote
of a large population. The medians shown in
Fig. 11.5 are deviate from zero, and thus there
are other factors contributing to the discrepancy,
which are not accounted in the classic PMV
model. This section attempts to quantify the
influence of these factors so that the PMV can
better represent the TS of a group of people.

11.5.1 Adapted PMV Model
and Adaptation Table

A regression model in Eq. (11.3) was developed
to account for the impact of the categorical
variables (season, climate, building type, age
group and gender) on the discrepancy.

PMV � TS ¼ b
0
0 þ b

0
1 Seasonþ b

0
2 Climate

þ b
0
3 Buildingtypeþ b

0
4 Agegroupþ b

0
5 Genderþ e

ð11:3Þ

where b
0
0, b

0
1, b

0
2, b

0
3, b

0
4, b

0
5 are coefficients for

constant, season, climate, building type, age
group and gender. e is the error term. The cate-
gorical variables were then dummy coded. The
sample data were fitted into the model
(P < 0.001). The target was to reduce the dif-
ference between PMV prediction and TS from
the occupants’ feedback. The results are shown
in Table 11.2. Based on the results, we proposed
an adapted PMV (PMVa) model in Eq. (11.4).
As the range of TS is from −3 to 3, PMVa should
also meet the requirement in Eq. (11.5).
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PMVa ¼ PMV � b0 � b1 Season� b2 Climate
� b3 Buildingtype� b4 Agegroup
� b5 Gender

ð11:4Þ
�3� PMVa � 3 ð11:5Þ

where b0, b1, b2, b3, b4, and b5 are coeffi-
cients for constant, season, climate, building
type, age group and gender. The corresponding
values are displayed in Table 11.1. For example,
in Summer, in Am climate, in classroom for
Young: 16–24 male occupants, the PMVa =
PMV −0.362−0−(−0.594)−0.391−(−0.092)
−0.087 = PMV−0.154. The standard error of the
coefficient is the standard deviation of the coef-
ficient, which measures how precise the coeffi-
cient is. Compared with the coefficient, the
standard error is small, which indicates the
accuracy of the model is high. PMV is the value
calculated from Fanger’s PMV model. As it can
be seen from Table 11.2, the influence of climate
and building type on TS are more significant
while the influence of gender is minor. The
maximum difference for climate and building
type are 1.324 and 0.749.

The reference categories are Adult: 25–64;
Aw; Female, Summer, Office, which are equal to
0 in the equation.

11.5.2 Evaluation of the Adapted
Discrepancy

The extracted samples in Fig. 11.8 together with
Eqs. (11.4) and (11.5) and the results from
Table 11.2 were used to obtain the adapted dis-
crepancy (PMVa-TS). Boxplots in Fig. 11.8
show the adapted discrepancy with respect to
season, climate, building type, age group and
gender. As shown in the boxplots, the median of
each attribute is ‘0’ or near ‘0’, which indicates
that, on average, the PMVa is free from serious
bias. Thus, it is concluded that the PMVa can be
used to predict the mean TS of a large
population.

After adaptation, it is also important to ensure
the accuracy of PMVa is the same or even better
than the classic PMV model when used for
individual prediction. To compare the overall
accuracy of the PMVa with the classic PMV, the
adapted discrepancies and original discrepancies

Table 11.2 Adaptation
table for PMV model

Coefficient Standard error p

Constant b0 0.362 0.019 P < 0.001

Season b1-Spring −0.408 0.044 P < 0.001

b1-Autumn −0.586 0.052 P < 0.001

b1 Winter −0.093 0.019 P < 0.001

Climate b2-Am −0.594 0.068 P < 0.001

b2-BSh 0.170 0.028 P < 0.001

b2-Cfa −0.756 0.025 P < 0.001

b2-Cfb −1.032 0.032 P < 0.001

b2-Cwa 0.294 0.032 P < 0.001

b2-Cwb −0.222 0.032 P < 0.001

Buildingtype b3-Classroom 0.391 0.057 P < 0.001

b3-Senior center −0.358 0.068 P < 0.001

Agegroup b4-Older adults: 65–99 0.249 0.063 P < 0.001

b4-Young: 16–24 −0.092 0.024 P < 0.001

Gender b5-Male 0.087 0.016 P < 0.001
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were pooled into distributions in Fig. 11.8a, b,
representing 17,841 discrepancies for each. The
original discrepancy in Fig. 11.9b follows a
normal distribution, with a mean of 0.06 scale
units and a standard deviation of 1.13 scale units.
The mean value demonstrates that the PMV as a
whole is slightly higher than the actual ASHRAE
vote by 0.06 scale units, which indicates that on
average the discrepancy is small. The distribution
of the adapted discrepancy is displayed in
Fig. 11.8a, which also follows a normal distri-
bution, with a mean of 0 and a standard deviation
of 1.04 scale units. Both the mean value and the
standard deviation are decreased. Therefore, the
overall accuracy of the adapted model used for
thermal comfort vote prediction has been
improved.

The PMVa and TS are binned in the same
way as the PMV. The PMVa was binned into 7
categories: Cold (PMVa � −2.5), Cool (−2.5 <
PMVa � −1.5), Slightly cool (−1.5 < PMVa
−0.5), Neutral (−0.5 < PMVa � 0.5), Slightly
warm (0.5 < PMVa � 1.5), Warm (1.5 <
PMVa � 2.5) and Hot (PMVa > 2.5). The TS

was also binned into 7 categories: Cold (TS
−2.5), Cool (−2.5 < TS � −1.5), Slightly cool
(−1.5 < TS � −0.5), Neutral (−0.5 < TS �
0.5), Slightly warm (0.5 < TS � 1.5), Warm
(1.5 < TS � 2.5) and Hot (TS > 2.5). After
binning the TS, the sample number for each bin-
ned TS category is 156 (Cold), 756 (Cool), 3144
(Slightly cool), 8216 (Neutral), 3387 (Slightly
warm), 1373 (Warm) and 449 (Hot). The binned
PMVa and binned PMV with respect to the bin-
ned TS are illustrated in Fig. 11.10, with the ratio
of correct prediction for each category and overall
prediction accuracy shown in the top of the figure.
When comparing Fig. 11.10a with Fig. 11.10b,
the accuracy for PMVa in “Cool”, “Sl. cool”,
“Neutral”, “Sl. warm”, “Warm” is higher than the
PMV model. More specifically, in “Neutral”
environment, the accuracy has increased by 2%.
The most significant increases are observed in “Sl.
cool” and “Warm” environment, increasing from
23 and 12% to 33% and 31% respectively. In
addition, the overall accuracy for PMVa is 3%
higher than PMV model, which indicates the
PMVa model is better in predicting TS.

Fig. 11.8 Boxplot of the discrepancy (PMVa-TS) categorized a Season, b Climate, c Building type, d Age group,
e Gender
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11.6 Discussion

The PMV model was developed from static heat
balance between a human body and its sur-
rounding environment. It illustrates the relation-
ship between the average TS of a large
population and the surrounding indoor environ-
ment, which assumed that the TS is exclusively
affected by four environmental and two personal
factors (Yao et al. 2007). The occupants are
regarded as passive recipients of their thermal
environment (Dear and Brager 1998). In reality,
they actively interact with their thermal

environment to adapt their own thermal prefer-
ences. Demographic and contextual factors are
believed to modify the occupants’ thermal pref-
erences and expectations through behavioural,
psychological and physiological adjustments
(Dear and Brager 1998). In particular, the beha-
vioural adaptation offers the biggest opportunity
for the occupants to play an active role in
maintaining thermal comfort.

The literature review in Sect. 11.2 and the
analysis in Sect. 11.4 discussed the effect of
season, climate, building type, age group and
gender on the discrepancy between PMV and TS.
These variables are not used as predictors in the

(a)

(b)

Fig. 11.9 Frequency
distribution of a adapted
discrepancy and b original
discrepancy

11 Development of an Adaptation Table to Enhance the Accuracy … 241



PMV model while evaluating the indoor thermal
comfort. The proposed adapted PMV (PMVa) is
able to account for these variables. Although the
effect of ventilation system usage (air-
conditioned or naturally ventilated) in buildings
is recorded (Fanger and Toftum 2002; Halawa
and Van Hoof 2015), it is not used as an indi-
cator in this study. The ventilation information
from the building level was included in the
database, but it is difficult to identify whether the
device was on when the subjects were filling the
surveys and how often it was used. Figure 11.11
shows the original discrepancy of the samples
collected from the summer season with respect to
the cooling strategies. The medians for the dif-
ferent control strategies are very close to “0”. We
believe more information is required to identify

the effect of air conditioning on PMV accuracy.
Furthermore, the use of HVAC systems can be
inferred from the climate together with season
and building type. For example, the office
buildings in tropical areas are normally equipped
with air conditioning facilities while in cold areas
they are equipped with heating devices.

Boxplots in Figs. 11.5 and 11.12 compared
the medians of the discrepancies with respect to
one specific variable. Figures 11.12 and 11.13
discuss the interaction between the variables.
Figure 11.12 compared the medians of the
adapted discrepancy with the original discrep-
ancy for different building types and seasons.
After adaptation, the medians are closer to ‘0’.
The boxplots with significant deviation from ‘0’
for the adapted discrepancy are spring senior

Fig. 11.10 a Binned PMVa
and b binned PMV
distribution corresponding to
binned TS
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center (41 samples), summer senior center (181
samples), autumn office (233 samples) and
autumn senior center (41 samples). As discussed

in Sect. 11.3.1, in order to achieve a 95% con-
fidence, the sample size should be larger than
383. Thus, the significant deviations may be
caused by individual differences, while the lim-
ited number of observations cannot be scaled to a
large population.

Boxplots in Fig. 11.13 compared the medians
of adapted discrepancy with the original dis-
crepancy for different climates and gender. The
sample size of each attribute is larger than 383
except for female subjects from climate Cwb
(345 samples). When compared with the original
discrepancy, the medians of the adapted dis-
crepancy are much closer to ‘0’ for male and
female participants from the 7 different climates.

It can be concluded from Figs. 11.12 and
11.13 that the universal application of the Fan-
ger’s model without any modification is deemed
as inappropriate. Researchers proposed multiple
adaptive thermal comfort models to improve the

Fig. 11.11 The effect of cooling strategies at building
level on original discrepancy

Fig. 11.12 Boxplots of adapted discrepancy a and
original discrepancy b in different types of buildings
and seasons

Fig. 11.13 Boxplots of adapted discrepancy a and
original discrepancy b in different climates and gender

11 Development of an Adaptation Table to Enhance the Accuracy … 243



prediction accuracy. The models are criticised for
their inherent complexity which makes them
difficult to be applied again by others (McCart-
ney and Fergus Nicol 2002). This study is the
first one to attempt to quantify the effect of dif-
ferent attributes on the TS of a large population.
The model proposed is an extension of the PMV
model, which is easy to be utilized by other
researchers. We believe this model will be useful
to investigate the indoor comfort temperature,
which facilitates building energy optimization.
The authors also argue that the adaptation table
should be incorporated into the current standards
to account for the influence of season, climate,
building type, age group and gender on TS.
Conversely, standards should be adapted to dif-
ferent climates to account for the effect of the
categorical variables.

The Fanger’s model was developed without
considering the influences of the categorical
variables. Nevertheless, when it was used for
predicting TS of the extracted 17,481 samples,
the discrepancy is small, which is 0.06 scale unit
larger than ASHRAE vote. Based on the results of
this study, the authors provide a potential expla-
nation; according to van Hoof (2008): “Fanger
derived his comfort equation based on college‐
age students exposed to steady‐state conditions in
a climate chamber for a 3 h period in winter at sea
level (1013 hPa) while wearing standardized
clothing and performing standardized activities”.
According to Alfano et al. (2017), extensive

experimental studies were carried out in Kansas
State University (KSU), which formed the basis
of Fanger’s finding. Later, a substantial amount of
data (including data from Danmarks Tekniske
Universitet (DTU)) were integrated into the
datasets. Figure 11.14 shows the calculation of
PMVa for Fanger’s datasets. The difference
between PMVa and PMV for KSU is small, while
the difference for DTU is slightly higher. Con-
sidering that Fanger’s PMV was developed in
well-controlled environments at steady-state
without local discomfort (PMV = 0) (Van Hoof
2008), and the potential of data collected from
other climate, it is reasonable that even when data
from DTU were merged to the dataset, the dis-
crepancy for Fanger’s model is still small.

There are also limitations for the use of the
adapted model. Due to a lot of missing infor-
mation in the database, some demographic and
contextual factors, such as educational back-
ground, ethnicity, body mass and social status,
which may influence thermal sensation are not
taken into consideration in the adapted model.
With current advances in smart devices and
Internet of Things (IoT) in the built environment,
understanding the causes of individual difference
towards perceived thermal comfort has gained
increased popularity. However, this study
investigates the occupants’ TS as an aggregated
model of a group of people, which does not
differentiate individual differences. The predic-
tion performance is poor when applied to

Fig. 11.14 Calculation of
PMVa for Fanger’s
experiments
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individuals due to large variations among the
occupants. Thus, the model cannot be applied to
understand the specific comfort requirements of
an individual occupant and characterize a set of
conditions to meet personalised conditioning in a
given space. The standards should be adapted to
different climates.

11.7 Conclusions

The PMV model has been widely used to predict
occupants’ thermal comfort. The discrepancy
between PMV and TS has been noted and dis-
cussed since the model was developed. Extensive
studies have investigated the influence of differ-
ent factors on TS through surveys or field
experiments. Understanding the impacts not only
contributes to our knowledge on how occupants
interact with the built environment, it also pro-
vides guidance on how to operate and manage
buildings to ensure comfort and health consid-
erations are met, while optimizing energy usage.
This study leverages on a global thermal comfort
database to quantify the influences of season,
climate, building type, age group and gender on
the discrepancy. Results indicate that the impacts
of climate and building type on the discrepancy
are more noticeable than the other variables. An
adapted model was proposed to reduce the dis-
crepancy by the five variables and an adaptation
table was generated. The maximum difference for
climate and building type are 1.324 and 0.749,
respectively. After adaptation, the median of
each attribute is ‘0’ or near ‘0’, which indicates
that, on average, the PMVa is free from serious
bias. The prediction accuracy of the model used
for individual TS was improved from 36 to 39%.
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Abstract

PMV (Predicted Mean Vote) model is cur-
rently the most extensively used method for
thermal sensation (TS) evaluation. However,
the model is criticized for not being able to
account for human thermal preferences and
expectations. In response to these limitations,
the adaptive model was developed to factor in
behavioural, psychological and physiological
adjustments, but it overlooks important factors
such as clothing insulation, activity level and
the indoor thermal environment. This chapter
therefore proposes a prediction accuracy

weighted voting ensemble (PAWVE) method
for TS evaluation. Feature selection was used
to identify the important features contributing
most to TS. Data resampling was applied to
improve the classification performance of the
imbalanced data extracted from the ASHRAE
global database. Five classifiers were eventu-
ally selected for the ensemble method based
on their prediction accuracies. Results indicate
that resampling is important for improving the
performance of the minority classes. PAWVE
with data resampling outperformed the other
models, with an overall accuracy and F1-score
both at 0.67. When compared with the tradi-
tional PMV model, the performance has been
improved by 72%.

Keywords

Predicted mean vote � Thermal sensation �
Thermal comfort � Prediction performance �
Ensemble models

12.1 Introduction

Building design involves ensuring that the indoor
environment meets occupants’ comfort aspira-
tions (Höppe and Martinac 1998; Li et al. 2019a,
2020). Occupants are becoming active agents in
buildings, and as such, continuously interact with
a wide range of appliances, including heating or
cooling control systems, to optimize their indoor
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climates to meet their thermal comfort require-
ments (Ahmad et al. 2016). Given that these
interactions influence building energy consump-
tion, a large number of studies have delivered
methods and algorithms to optimize local HVAC
(Heating, Ventilation and Air Conditioning)
appliances to strengthen occupants’ thermal
comfort (Daum et al. 2011; Kim et al. 2018a; Xin
et al. 2019). Results revealed that accurate eval-
uation of thermal comfort is indispensable for
building energy system management as poor
prediction often leads to overcooling, overheat-
ing and energy wastage (Sekhar 2016). For
instance, Attia and Carlucci (Attia and Carlucci
2015) stated that choosing different thermal
comfort evaluation criteria for zero energy
buildings would result in energy consumption
variation from 16 to 24.7%. Therefore, under-
standing occupants’ thermal comfort is critical to
improve their wellbeing as well as to optimize
building energy consumption.

Extensive field studies and chamber experi-
ments have been conducted worldwide to
investigate the mechanism of thermal comfort.
Many thermal comfort models have associated
Thermal Sensation (TS) with their thermal
environment. An overwhelming majority of
models to date assumed TS as a direct indicator
for thermal evaluation using categories such as
“Cold (−3)”, “Cool (−2)”, “Slightly cool (−1)”,
“Neutral (0)”, “Slightly warm (1)”, “Warm (2)”
and “Hot (3)”. The thermal comfort responses are
prevailingly collected through questionnaires by
asking occupants to assess their TS. Two major
approaches are widely used to evaluate TS:
(1) the Fanger’s PMV (Predicted Mean Vote)
model (Fanger 1970) and (2) the adaptive model
(Nicol and Humphreys 2002). The PMV is a
typical heat balance model, which predicts
indoor TS as a function of four environment
predictors (air temperature, radiant temperature,
air velocity and relative humidity) and two per-
sonal predictors (clothing insulation and meta-
bolic rate). It was developed based on chamber
experiments involving over one thousand Euro-
pean and North American subjects exposed to
well-controlled laboratory climates (Fanger
1970). This approach seeks to capture the

average TS of a large population premised on
steady-state heat balance of human body.
The PMV model formed the theoretical basis of
thermal comfort standards such as ASHRAE 55
(ASHRAE Standard 2017) and ISO 7730 (ISO
7730 2005). The heat balance model was chal-
lenged by the adaptive model, which claims that
occupants actively interact with their thermal
environment by modifying their thermal prefer-
ences and expectations through behavioural,
physiological and psychological adjustments
(Dear and Brager 1998a; Jing et al. 2018; Kim
et al. 2015). It was also argued that the rigorous
restrictions in the climate chamber are quite dif-
ferent from the actual situations in real buildings
(Humphreys and Nicol 2002). Thus, the adaptive
model was derived from field surveys. The
adaptive hypothesis is that one’s thermal satis-
faction is achieved through adjusting one’s
thermal expectation according to the actual
thermal environment (Brager and Dear 1998).
The surveys revealed that the comfort indoor
temperature is greatly influenced by the outdoor
temperature. Therefore, it proposed a linear
relationship between the indoor thermal comfort
temperature and the outdoor monthly air tem-
perature. The adaptive model is currently used as
an alternative for naturally ventilated buildings.

The universal applicability of the adaptive
model and the PMV model has been debated for
a long time (Li et al. 2019b). A number of field
studies showed that the adaptive model cannot be
used to accurately predict TS as it ignores the
effect of factors such as clothing insulation,
activity level and the indoor thermal environment
that have a huge impact on human thermal
comfort (Jing et al. 2019; López-Pérez et al.
2019; Fanger and Toftum 2002). Although these
variables are taken into account by the PMV
model, the latter ignores demographic and con-
textual factors such as age, gender, climate,
building type and ventilation mode, which are
also believed to contribute to occupants’ thermal
preferences and expectations (Li et al. 2019b;
Zhang and Dear 2019). It has been documented
that people exposed to different environments
develop different limits of tolerance to their
thermal environment, and thus PMV model turns
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out to be a poor predictor for TS (Li et al. 2019b;
Wenzel et al. 1989). Cheung et al. (2019) anal-
ysed the accuracy of using PMV for TS predic-
tion focusing on 56,771 samples extracted from
ASHRAE Global Thermal Comfort Database II
(Földváry Ličina et al. 2018). Results showed
that PMV is not reliable and it can explain only
34% of the TS votes. Li et al. (2019b) developed
an adaptation table, based on a subset extracted
from the same database, to enhance the perfor-
mance of using PMV for average TS prediction
by taking into account the effect of climate,
season, building type, age group and gender.
After adaptation, the PMV model was free from
serious bias in predicting average TS of a large
population. More recently, Zhang and Lin
(Zhang and Lin 2020) proposed an extended
PMV model to account for thermal adaptation by
analysing the same database. The extended
model was obtained by multiplying a factor to
the original PMV model and the accuracy was
improved by 65%.

TS is a subjective response, which is influ-
enced by a multitude of intricate factors. Previ-
ous research has shown that current tools are
insufficient for individual’s TS prediction.
Compared with the regression based approaches
(PMV and adaptive model) that use a function to
approximate the relationship between TS and
environmental, physiological and psychologic
factors, attempts have been initiated to develop
more sophisticated approaches that are more
realistic and powerful in describing thermal
comfort. In recent years, a number of studies
have attempted to develop thermal comfort
models by employing various machine learning
algorithms such as neural networks (Katić et al.
2018), Support Vector Machine (SVM) (Kim
et al. 2018a), Random Forest (RF) (Kim et al.
2018a), Logistic Regression (LR) (Daum et al.
2011), Bayesian network (Ghahramani et al.
2015) and KNN (K-Nearest Neighbours) (Lu
et al. 2019) for models development. Compared
with conventional comfort models, these data-
driven models have mitigated the difficulty in
capturing hidden relationships while securing
significant prediction accuracy improvement
(17–40%). Kim et al. (Kim et al. 2018b)

presented a review of the machine learning based
thermal comfort models and proposed a unified
modelling framework in predicting individuals’
thermal comfort responses. The general process
involves data collection and preparation, model
selection and evaluation, and continuous learn-
ing. The data sources can be derived from
existing databases or field collected data. Lu
et al. (Lu et al. 2019) established TS models with
KNN, SVM and RF (random forest) by using
ASHRAE RP884 and KNN achieved the best
performance with a recall of 49.3% (Dear and
Brager 1998). However, the classifiers failed in
predicting the minority classes and a majority of
the samples were classified as neutral due to the
imbalanced datasets. Grabe (Grabe 2016) devel-
oped an ANN (Artificial Neural Network) to
predict TS votes based on ASHRAE RP884 and
claimed that the prediction results outperformed
the classical PMV model, with an accuracy of
53%. Wang et al. (2019a) developed two RF
classification models to investigate TS of older
people. The field and lab study models both
exhibited higher accuracy than the PMV model,
producing an overall accuracy of 56.6% and
76.7% respectively. Wu et al. (Wu et al. 2018)
compared an ensemble machine learning (Bag-
ging) method against ANN and SVM for TS
votes prediction grounded on field data collected
from naturally ventilated and air conditioned
buildings. Results indicated that the ensemble
machine learning method performed better than
ANN and SVM models.

The above findings have evidenced the role of
machine learning in predicting occupants’ TS.
Machine learning is a significant departure from
the traditional models such as PMV and the
adaptive model that are mainly derived from
statistical regression, focusing on personal TS.
Though prior studies provide valuable insights
into machine learning in improving predictive
performance of individual’s thermal comfort,
there is still a paucity of research to investigate
TS prediction of an individual. A key challenge
is to choose the optimal learning model given the
extensive number of algorithms in the field of
machine learning (Wang et al. 2020). This forms
the gap addressed by the present chapter, which
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provides an in-depth study to re-establish the
relationship between a widespread range of
influential parameters and TS through machine
learning, based on samples derived from ASH-
RAE Global Thermal Comfort Database II. Fol-
lowing this introduction, Sect. 12.2 provides an
overview of the methodology applied in this
study and proposes a prediction accuracy
weighted voting ensemble (PAWVE) method for
TS prediction. The PAWVE is compared with
the soft voting and hard voting methods. The
results are demonstrated in Sect. 12.3, followed
with a discussion. The last section presents
concluding remarks and directions for future
research.

12.2 Methodology

The primary concept of the methodology is to
identify the important features contributing to TS
and then formulate a PAWVE learning method
for TS classification. The data source as well as
the feature selection methods, resampling
method, machine learning technique and the
methodology workflow are elaborated below.
Python programming language is used in this
study for data analysis.

12.2.1 Data Source and Samples

For a data-driven based study, a sufficient quality
and quantity of datasets are required for training
and validation. In this chapter, such datasets are
provided by the ASHRAE Global Thermal
Comfort Database II, which integrates and har-
monizes the abundant data from worldwide
thermal comfort related studies (Ličina et al.
2018). This combined datasets consist of 68
attributes, covering subjective comfort votes,
demographic information of subjects, local
climate/weather conditions, building characteris-
tics and objective instrumental measurements
(Földváry Ličina et al. 2018). Identifying a
number of important features is critical before the
formulation of a learning model. Clearly, the
number of potential features is subject to the

information provided in the database. The pre-
dictors were selected according to the most
extensively used thermal comfort models and
literature publications on potential influential
parameters for TS. Firstly, air temperature
(Air_T), relative humidity (RH), air velocity
(Air_Vel), clothing (Clo) and metabolic rate
(Met) were identified as important factors as they
are the key inputs for Fanger’s PMV model.
Although radiant temperature is also used as an
indicator in the PMV model, it is not commonly
recorded in the database. The mean outdoor
monthly temperature (Out_T) was selected as it
is a prevailing parameter for the adaptive model.
The samples with features of climate (Köppen
climate classification), building type (BT), sea-
son, sex, ventilation and age were also extracted
to ascertain possible links between TS and
environmental, psychological and demographic
parameters (Li et al. 2019b). Around 97% of the
samples’ TS adopted a seven-point scale (−3, −2,
−1, 0, 1, 2, 3 corresponding to cold, cool, slightly
cool, neutral, slightly warm, warm and hot).
Therefore, only the observations with integer
votes were included to form a classification
problem. Eventually, 10,288 samples were
extracted from the database. The statistic infor-
mation of the numerical variables and the infor-
mation with regard to the categorical variables
are shown in Tables 12.1 and 12.2. The numer-
ical data are then standardized into a consistent
range between −1 and 1 for machine learning.

12.2.2 Feature Selection

Given that there are generally more features than
required to perform an analysis, it is often
advantageous to reduce the number of features
before applying machine learning, focusing on
the variables of great interest. Feature selection is
a technique utilized to determine the attributes
that contribute most to the prediction result. This
process can not only effectively identify the
important features that are critical to achieve
good classification, it also removes irrelevant
features that may potentially negatively impact
model’s performance. Pearson correlation and
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Extra-Trees classifier were both employed in this
study to analyse the strength of relationships. The
Pearson correlation coefficient qX;Y

� �
measures

the linear correlation between two variable X and
Y, which is given by Benesty et al. (2009):

q X;Yð Þ ¼
cov X; Yð Þ
rXrY

ð12:1Þ

where cov is the covariance. rX and rY denote
the standard deviation of X and Y. The value of

Table 12.1 Statistic information of the numerical variables

Age Clo Met Air_T RH Air_Vel Out_T PMV

Mean 36.67 0.68 1.22 25.65 55.25 0.26 24.64 0.44

Std 15.18 0.32 0.19 3.81 13.81 0.40 7.09 1.03

Min 16.00 0.23 0.70 13.40 14.50 0.00 5.30 −3.00

50% 35.00 0.62 1.20 25.20 56.90 0.11 25.00 0.00

Max 95.00 2.87 3.50 45.30 88.80 4.71 38.10 3.00

Table 12.2 Information
of the extracted categorical
variables

Categories Subcategories Description Sample size

Climate Am Tropical monsoon climate 2075

Aw Tropical wet and dry climate 2008

Bsh Hot semi-arid climate 1372

Cfa Humid subtropical climates 1589

Cfb Oceanic climate 1396

Cwa Dry-winter humid Subtropical 1344

Cwb Dry winter oceanic climate 504

BT Office / 7766

Classroom / 2075

Senior center / 447

Season Spring / 44

Summer / 6402

Autumn / 41

Winter / 3801

Sex Female / 4532

Male / 5756

Ventilation NV Natural ventilation 4455

MM Mix mode 4019

AC Air conditioned 1814

TS −3 Cold 37

−2 Cool 264

−1 Slightly cool 1419

0 Neutral 5703

1 Slightly warm 1825

2 Warm 710

3 Hot 330
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the correlation coefficient qX;Y varies from −1 to
1. A value close to −1 or 1 implies a strong
negative or positive correlation while a value of 0
means there is no association between the two
variables. If the value is greater than 0, it indi-
cates a positive association, and vice versa.
Features that are highly correlated with each
other have almost the same effect on the depen-
dent variable. Thus, the redundant attributes
should be eliminated. Though categorical vari-
ables are popular in our daily life, they cannot be
used directly in regression analysis to establish a
statistical relationship. One-hot encoding was
applied to convert each categorical feature into a
binary feature, which then allows the use of
correlation analysis.

Since Pearson correlation can only identify
feature importance according to linear relation-
ship, Extra-Trees classifier is also used in this
study to select the features of importance with
non-linear relationship (Geurts et al. 2006).
Extra-Trees classifier is an ensemble that aggre-
gates the results of multiple decision trees col-
lected in a ‘forest’ to output a classification
result. Each decision tree is constructed from the
original samples. At each test node, the tree is
provided with a random of k features subset from
which each decision tree selects the best feature
to split the data according to some mathematical
criteria (e.g. Gini index). To perform feature
selection using the forest structure, the normal-
ized total reduction in the mathematic criteria is
computed and the values represent the features’
importance.

12.2.3 Resampling Imbalanced Data

Imbalanced data refers to unequally distributed
sampling values in a dataset. As observed from
Table 12.2, the sample sizes for different classes
of TS are severely imbalanced. For example, ‘0’
accounts for 55.4% of the sampling size, while
‘−3’ merely takes up 0.4% of the sample size.
Classification algorithms normally generate poor
performance for imbalanced data as they favour
the majority class, leading to a highly inaccurate

prediction of the minority classes (Feng et al.
2018; Ramentol et al. 2012). For example, a
classifier could achieve 55.4% accuracy for the
extracted samples by simply classifying all
samples to the class of ‘0’. Such algorithm would
be misleading and could not make any sense in
the real world. To improve the performance of
the classifiers, resampling is implemented to deal
with the imbalanced datasets. There are three
resampling strategies for imbalanced data: over-
sampling, under-sampling and hybrid sampling
(Ramentol et al. 2012). Over-sampling randomly
synthesizes the minorities until their sample sizes
are equal to the majority. This method reserves
all the original samples, but it could potentially
result in serious overfitting. By contrast, under-
sampling selectively eliminates some samples
from the majority classes while keeping the
original population of the minority. Since a
number of observations are removed from the
majorities, some useful information might be
discarded. The hybrid sampling is a method to
rebalance the class sizes by combining the pre-
vious two approaches. Many researchers have
successfully overcome the difficulties of the
imbalanced problems in machine learning by
using the hybrid resampling method (Seiffert
et al. 2010; Zhang and Hu 2014). This method
will be adopted in this study to solve the class
imbalanced problem.

12.2.4 Machine Learning Classifiers

Previous studies have provided robust evidences
for the use of machine learning in thermal com-
fort prediction. Classification algorithms are
more often employed when the variables to be
predicted are discrete rather than continuous.
There are many different types of machine
learning classifiers, with different degrees of
complexity and ability to learn. In this study,
classifiers include LR (Onan et al. 2016), Linear
Discriminant Analysis (LDA) (Balakrishnama
and Ganapathiraju 1998a), KNN classifier
(Pereira et al. 2009), Classification and Regres-
sion Tree (CART) (Dreiseitl and Ohno-Machado
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2002), Naive Bayes (NB) (Chen et al. 2020) and
Support Vector Classifier (SVC) (Gunn 1998a)
were selected as the base models to train the
extracted samples as they are widely used in
solving classification problems.

LR (Onan et al. 2016) is a simple and effective
supervised classification algorithm. The model
builds a generalized linear regression to predict
the probability of an event as a sigmoid function
of a number of predictors. The LDA (Balakr-
ishnama and Ganapathiraju 1998b) is a com-
monly used dimension reduction technique for
classification and machine learning. It is imple-
mented by projecting the data points onto a line
to reduce their dimensionality. Then, the pro-
jected points are classified according to their
distances to a given point. LDA attempts to
express the dependent variable as a linear rela-
tionship of the independent features. Thus, it is
better to be used when linear relationship exists.
The KNN (Pereira et al. 2009) is one of the
simplest classifiers as it does not involve any
explicit learning functions. It is realized by
computing the distance from the test sample to
the nearest training samples. Afterwards, the test
sample is assigned with the label of the training
samples according to majority voting or mean of
the k-nearest neighbours. CART (Dreiseitl and
Ohno-Machado 2002) is an important decision
tree algorithm, which is an effective non-
parametric machine learning technique for
regression and classification. This algorithm
repeatedly splits the datasets into smaller subsets
according to different sorting criteria, resulting in
a tree-like structure. It then finds the solutions
based on sequential and hierarchical decisions.
The NB classifier is a statistical classification
model built upon Bayes’ theory. It determines the
probability of an event given that some events
have occurred. A probability score is obtained by
multiplying the conditional probability of each
class. SVC (Gunn 1998b) is a classification
method developed based on the SVM. The

original datasets are transformed into a higher
dimension by using a nonlinear matching
method. The datasets are then partitioned into
different classes using a separating hyperplane.

12.2.5 Cross Validation

In order to evaluate the performance of the
selected classifiers, cross validation was applied
to test the effectiveness of the selected models.
K-fold cross validation (Fushiki 2011) is a sim-
ple and easy to understand technique to generate
less biased models. In the K-fold cross valida-
tion, the datasets are partitioned into k subsets
(folds). The algorithm uses one fold for testing
while the rest k-1 folds for training until every
fold has been tested. This method ensures that
every original dataset has the opportunity to
appear in the training and testing set. Thus, it can
be used to evaluate the accuracy of predicting
unseen data. The processes are elaborated as
follows:
(1) The datasets are randomly split into K folds

(normally k is 5 or 10), as shown in
Fig. 12.1.

Fig. 12.1 K-fold cross validation
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(2) The model is trained using k-1 folds and the
fold left out is used for testing.

(3) The process is repeated for K times until
every fold has been used as training and
testing dataset.

(4) The average accuracy of all the tests is
reported.

12.2.6 Prediction Accuracy Weighted
Voting Ensemble
Method

The performance of a single classifier is affected
by the merits and shortcomings of its underpin-
ning algorithm. Ensemble methods attempt to
combine multiple classifiers to overcome the
limitations of an individual classifier (Saqlain
et al. 2019). By coupling different classifiers, the
bias and variance can be mitigated. In addition,
an ensemble normally outperforms any single
learning method. Voting ensemble is a simple,
effective and widely used method to form an
ensemble from several machine learning algo-
rithms. This idea follows the human behaviour of
voting that tends to seek individual’s preferences
and options before making a collective decision.
Therefore, the voting ensemble is in fact not a
single classifier but a wrapper for several differ-
ent learning methods trained and tested in par-
allel. There are two typical different voting
strategies: hard voting and soft voting. The hard
voting is also the well-known majority voting.
Namely, the final decision depends on the subject
who obtains the most votes. The soft voting is the
weighted averaging voting ensemble. An average
probability is given by accounting for each vote.
Table 12.3 shows an example of the two

strategies. In hard voting, V1 obtained two votes
from classifier l1 and l2. V2 got one vote from l3.
Therefore, the probability for V1, V2 and V3 is
2/3, 1/3 and 0 respectively. Eventually, the result
is classified as V1. In soft voting, the probability
of l1, l2 and l3 voting for V1, V2 and V3 is taken
into account. As a result, the average probability
for V1, V2 and V3 is 38.3%, 43.3% and 20%
respectively. The result is classified as V2. It can
be concluded that different voting strategies yield
different results. Therefore, choosing the appro-
priate ensemble is important to ensure the overall
performance.

The hard voting only considers the final vot-
ing result from each model, regardless of the
probability of the candidates Við Þ being voted by
the learning models. The soft voting remedies the
disadvantage of the hard voting, but the weights
of the learning models are considered the same.
The PAWVE method was proposed focusing on
developing an ensemble grounded on the per-
formance of its constituent models. The proposed
ensemble method is based on the soft voting
strategy while the prediction accuracies of the
learning methods are used as the weight, which
means the algorithms with higher accuracies
have bigger weights. This ensures that the mod-
els with higher accuracies contribute more to the
final vote. Since the machine learning models are
independent models, the probability of voting for
Vi P l;Við Þð Þ under the PAWVE strategy is given
by:

P l;Við Þ ¼ P l1;Við Þ � Pl1 þP l2;Við Þ � Pl2 þ . . .þP lm;Við Þ � Plm

Pl1 þPl2 þ . . .þPlm

ð12:2Þ

where m is the selected number of independent
machine learning used for ensemble. P lm,Við Þ is

Table 12.3 Example of
voter’s preferences for hard
voting and soft voting

Hard voting Soft voting

V1 V2 V3 V1 (%) V2 (%) V3 (%)

l1 ✓ 50 30 20

l2 ✓ 45 40 15

l3 ✓ 20 60 20
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the probability of learning model lm voting for
candidate Vi. Plm is the prediction accuracy of
learning model lm.

12.2.7 Results Evaluation

Evaluation criterion is a key indicator for the
assessment of the classification performance. In a
two-class problem, a confusion matrix is often
used to record the correctly and incorrectly rec-
ognized samples, as displayed in Fig. 12.2. Tra-
ditionally, classification accuracy has been the
most widely used metric to evaluate the overall
ratio of correct prediction. The accuracy can be
obtained from Eq. (12.3).

accuracy ¼ TPþ TN

N
� 100% ð12:3Þ

where N is the total number of samples, given by

N ¼ TPþ TNþFPþFN ð12:4Þ

However, empirical evidences show that it is
inappropriate to use overall prediction accuracy
as the sole measure for imbalanced data (Chawla
et al. 2002). Thus, precision, recall and f1 score
are introduced. Precision is a measure of exact-
ness while recall is a measure of completeness
(He and Garcia 2009). More specifically, preci-
sion measures the fraction of positive observa-
tions among those predicted positive
observation; recall measures the ratio of correctly
classified positive observations of the total
number of positive observations. Clearly, since

classification intends to achieve good perfor-
mance for all classes, none of the above two
measures alone is sufficient for good evaluation.
To make it comparable, F1-score, which is more
useful than accuracy in evaluating imbalanced
classification, is used to assess the weighted
average of recall and precision (Fahad et al.
2015).

Precision ¼ TP

TPþFP
ð12:5Þ

Recall ¼ TP

TPþFN
ð12:6Þ

F1� score ¼ 2� Recall� Precision

RecallþPrecision
ð12:7Þ

12.2.8 Overview of the Methodology

The workflow of the methodology is illustrated
in Fig. 12.3. Firstly, the data samples were
extracted from the database. Subsequently,

Fig. 12.2 Confusion matrix of a two-class problem (TP:
the number of positive observation correctly predicted.
FP: the number of positive observation wrongly predicted.
FN: the number of negative observation wrongly pre-
dicted. TN: the number of negative observation correctly
predicted.) Fig. 12.3 A schematic view of the methodology
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feature selection technique was utilized to iden-
tify the features of importance, and a data
resampling technique was used to process the
imbalanced datasets. Then, the resampled data
were trained and tested by a number of classi-
fiers. The classifiers with good performance were
selected for the PAWVE prediction.

12.3 Results

12.3.1 PMV Prediction Accuracy

In order to examine the accuracy of using the
PMV model for mean TS prediction, the PMV
results are benchmarked with the true votes.
The PMV values were binned into 7 categories: 3
(PMV > 2.5); 2 (1.5 < PMV � 2.5); 1
(0.5 < PMV � 1.5); 0 (−0.5 � PMV � 0.5);
−1 (−1.5 � PMV < −0.5); −2 (−2.5 �
PMV < -1.5); −3 (PMV > −2.5). The confu-
sion matrix in Fig. 12.4 describes the perfor-
mance of using PMV for TS classification. Each
row in the confusion matrix represents the
number of samples for a specific vote. For
example, the first row indicates there are 37
samples voted for cold (−3). None of them was
correctly predicted by the PMV and a majority
(25) were classified as neutral (0). The PMV
model generates a higher accuracy for neutral

condition, 2852 out of 5703 were correctly pre-
dicted, which accounts for 50% of the samples
voted for neutral. The accuracy of the model
deteriorates in cold and warm environment. It
also shows a good performance under the hot
condition, with 193 out of 330 samples correctly
predicted. The overall prediction accuracy of the
PMV for TS is 0.39. Since the PMV was
developed to predict the mean vote of a large
population, it is reasonable that individual’s TS
deviates considerably from the PMV.

12.3.2 Feature Selection

Feature selection is an effective approach to
remove the irrelevant and redundant features
among the inputs. Pearson correlation and Extra-
Trees classifier were both used to test the
dependency of input parameters on the TS votes.
Figures 12.5b and 12.6b depict the order of
Pearson correlation importance in which indi-
vidual inputs contribute to TS. The correlation
coefficient indicates if the strong dependency
exists. The positive values represent positive
relationships while the negative values represent
negative relationships. The order of importance is
determined by their absolute values. The greater
the absolute value, the more important the vari-
able is. It can be observed that indoor air tem-
perature (Air_T) is the most important feature
contributing to TS. Summer (Season_Summer),
winter (Season_Winter) and clothes level
(Clo) show a stronger correlation with TS, with a
correlation coefficient of 0.234, −0.234 and
−0.226 respectively. The features with absolute
values of higher than 0.1 are considered as
important variables for TS in this study. Thus,
Air_Vel (0.158), Out_T (0.148) and Ventila-
tion_AC (−0.119) were also selected though their
correlation with TS is slightly lower. Closer
examination of the magnitudes of the correlation
index shows how individual parameters affect
each other. The correlation maps in Fig. 12.5a
and Fig. 12.6a present the correlation of all
extracted features. The strong red and strong blue
colour represent strong correlation, which should
be avoided to be used as inputs simultaneously.Fig. 12.4 Confusion matrix of PMV for TS prediction
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Fig. 12.5 Pearson correlation coefficients between continuous variables and TS

(a) Correlation matrix between categorical features (b) Feature importance to TS  

Fig. 12.6 Pearson correlation coefficients between categorical variables and TS
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By comparing features’ correlation, it can be
concluded that summer and winter are strongly
negatively correlated with each other, with a
correlation coefficient of −1. Hence, one of them
should be screened out from the selected features.

As Pearson correlation only filters the features
with linear relationship, the Extra-Trees classifier
serves as a supplement to identify features of
non-linear relationship. The feature importance
computed by Extra-Trees classifier is demon-
strated in Fig. 12.7. In accordance with Pearson
correlation, Air_T is recognized as the dominant
feature, with an importance score of 0.2. It is
worth noting that RH and age, which have weak
correlation coefficients with TS, exhibit impor-
tance scores of 0.18 and 0.11. Combining the
results of the two feature selection methods,
eventually, 8 predictors (Air_T, Season_Winter,
Clo, Air_Vel, Out_T Ventilation_AC, humidity
and age) were selected as input parameters for
machine learning.

12.3.3 Cross Validation Performance
of the Base Models

The candidate feature subsets are generated based
on the selected 8 predictors. 10-fold cross vali-
dation was used to test the performance of the
selected six base classifiers (LR, LDA, KNN,
CART, NB, SVM). This means 90% of the data
were used for training and the rest 10% were used
for validation. Such process was repeated 10
times until all data have been used nine times for
training and once for testing. All classifiers were
evaluated with the same resampled datasets. To

compare the prediction accuracy of the base
models, boxplots of the cross validation perfor-
mance are demonstrated in Fig. 12.8. Each model
generated a different prediction accuracy accord-
ing to its learning abilities. There is a large vari-
ation among prediction accuracies of the
individual models. Some models produce over
60% in prediction accuracy while some model is
worse than the PMV model. Specifically, among
the six classifiers, KNN and CART showed the
best performance both with a median of 0.64,
which has improved the accuracy by 64% when
compared with the PMV model. This is followed
by SVM (0.46), LR (0.41) and LDA (0.39). The
worst performing model is NB (0.30), which is
23% worse than the PMV model. The difference
may be resulted from the different complexity of
the models or because the samples are more
predictable by certain machine learning algo-
rithms. The variability of prediction accuracy for
all individual models in the cross validation pro-
cess is small, indicating stable prediction

Fig. 12.7 Feature
importance by Extra-Trees
classifier

Fig. 12.8 Boxplot of cross validation performance
associated with the base models
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performance of the base models. Since the per-
formance of an ensemble model depends on the
accuracy of its constituent classifiers (Saqlain
et al. 2019), only the models that exhibited better
performance than the PMV model were selected
for the ensemble. Specifically, KNN, CART,
SVM, LR and LDA were employed in the
ensemble.

12.3.4 Classification Performance
Analysis

For the proposed PAWVE model, the prediction
accuracy of each base model is assigned as the
weight of the classifier. The model collects the
results of the selected models and then combines
them into an aggregated output. To indicate the
merit of the proposed PAWVE model, the
recognition performance of the models is com-
pared with soft voting, hard voting and the PMV
model. The overall classification performance of
these models is presented in Table 12.4. The
results show that all the ensembles outperform
the PMV model, which proves that machine
learning can improve individual’s TS prediction
performance. The proposed PAWVE with
resampling performed best, as reflected in the
elevated values of precision, recall, F1-score as
well as accuracy. More specifically, the higher
accuracy shows that more samples were correctly
recognized by the PAWVE model and the higher
F1-score indicates that the PAWVE with
resampling produced a more balanced classifi-
cation than the other models. The accuracy and
F1-score for PAWVE with resampling are both
0.67, while the corresponding values for soft

voting are both 0.65. This proves that weighting
the best classifiers with higher weight strengthens
the overall performance of the ensemble. When
compared with the PMV model, the proposed
PAWVE model increases the accuracy and F1-
score both by 72%.

The performance of the PAWVE and soft
voting with resampling is better than the corre-
sponding models with imbalanced datasets. This
reveals that resampling improves the perfor-
mance and effectiveness of the imbalanced data
in classification. However, an exception exists
for hard voting model: the F1-score with
resampling is higher than the imbalanced datasets
while the accuracy of the imbalanced datasets is
higher than the datasets with resampling. This
lower accuracy does not mean that resampling
deteriorates the performance of the hard voting
model. As indicated in Sect. 12.2.3, when com-
paring the performance of the imbalanced data-
sets, F1-score is a more effective metric in
indicating classification performance. A more
detailed results showing the F1-scores of each
class from different models are demonstrated in
Table 12.5. The F1-scores of the ensembles with
resampling are more evenly distributed for each
class, especially for the PAWVE method. This
indicates that the PAWVE with resampling per-
forms the best at predicting all classes of the TS.
For the models using the imbalanced dataset,
there is a diverse difference in the F1-scores. The
F1-score for ‘neutral’ of the ensembles using
imbalanced datasets is as high as 0.75, while
under the ‘cold’ condition, the value is 0. This
means these models classify most of the imbal-
anced datasets to ‘neutral’ in order to ensure
accuracy.

Table 12.4 Overall
classification performance
of different models

Precision Recall F1-score Accuracy

Resampling datasets PAWVE 0.67 0.67 0.67 0.67

Soft voting 0.66 0.65 0.65 0.65

Hard voting 0.55 0.51 0.49 0.51

Imbalanced datasets PAWVE 0.55 0.60 0.51 0.60

Soft voting 0.54 0.60 0.51 0.60

Hard voting 0.54 0.59 0.47 0.59

PMV PMV 0.42 0.39 0.39 0.39
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Figure 12.9 shows the normalized confusion
matrices of the different models. Each row rep-
resents the proportion of predicted TS for a
specific vote. From the figure, it is easy to con-
clude that the prediction models misclassified a
majority of the imbalanced datasets to ‘neutral’.
This again explains the reason why the F1-scores
are higher at ‘neutral’ condition. It should be
noted that the higher prediction accuracies of the
imbalanced datasets are mainly attributed to the
‘neutral’ samples, as reflected in Fig. 12.9d, e
and f. Weighting the models with higher accu-
racy improves the performance of the minority
classes.

12.4 Discussion

Both PMV model and the adaptive model have
an inherent limitation of poor accuracy in pre-
dicting personal thermal comfort. Given that
these models were developed to estimate the
average TS of a large population, it is reasonable
that they fail to accurately predict individual’s
TS. Namely, the models cannot be applied to
correctly represent the thermal perception of an
individual. This also reflects real situations where
occupants sharing the same space claim various
degrees of thermal perception. Even for the same
occupants, their thermal perception differs under
different contexts. For example, people have a
wider tolerance of indoor thermal environmental
variation if they are capable of controlling their
environment (de Dear and Brager 1998b). The

results are intrinsically different due to a range of
reasons such as personal differences in interpre-
tation of TS and failure in evaluating the results
objectively (Wang et al. 2019b). Moreover,
subjective evaluations depend on occupants’
voluntary participation in the surveys in order to
obtain their feedbacks. Hence, an alternative
approach to inform individual’s thermal comfort
is needed for understanding personal thermal
comfort.

Recently, the physiological measurement
(skin temperature and heart rates) based tech-
niques arouse great interest in thermal comfort
evaluation (Song et al. 2016; Yao et al. 2007).
A growing number of wearable devices (such as
thermocouples and heart rate monitors) and
thermal cameras are used to measure skin tem-
perature and heart rates given their high accu-
racy, low cost and easy to manipulate. They are
normally installed in certain parts of the body or
nearby people, making them possible for moni-
toring body parameters in daily life. The col-
lected information is then used to establish
personal thermal comfort models. These models
leverage machine learning and Internet of Things
to understand individual’s thermal comfort
requirements. The strategy is based on long-term
data collection to adapt the personal comfort
model. Such models can provide improved pre-
diction accuracy in capturing individual’s ther-
mal comfort, and provide a more realistic
estimation of building energy consumption for
thermal comfort based HVAC control (Kim et al.
2018b). In practice, there is a scale limitation in

Table 12.5 Classification performance of each class for the different models

F1-score
(−3)

F1-score
(−2)

F1-score
(−1)

F1-score
(0)

F1-score
(1)

F1-score
(2)

F1-score
(3)

Resampling
datasets

PAWVE 0.76 0.64 0.62 0.68 0.67 0.71 0.66

Soft voting 0.67 0.60 0.60 0.67 0.65 0.68 0.62

Hard voting 0.48 0.28 0.43 0.60 0.43 0.51 0.47

Imbalanced
datasets

PAWVE 0 0 0.08 0.75 0.25 0.43 0.38

Soft voting 0 0 0.09 0.75 0.27 0.42 0.39

Hard voting 0 0.01 0.03 0.74 0.14 0.34 0.33

PMV PMV 0 0.03 0.15 0.55 0.28 0.09 0.42

262 Y. Li et al.



tracking sufficient comfort feedback to train a
personal comfort model as repeated surveys may
potentially lead to fatigue and eventually decay
in participation (Rana et al. 2013). Meanwhile,
due to occupants’ diverse preferences and
expectation, the personal thermal comfort models
cannot be generalized for people who do not
participant in the experiments. In addition, con-
tinuously tracking of individual’s behaviour may
be viewed by some participants as an invasion of
privacy. It is also worth noting that for the
developed personal comfort model, it may not

remain the same due to temporal and spatial
changes, such as seasonal variations and building
type. A new learning model should be trained to
update the personalized comfort model. Such
kind of personal thermal comfort model requires
continuous collection of individual feedback and
environment sensor data, which would result in a
high investment. In addition, some of the per-
sonal thermal comfort models call for more
personal information (e.g. body mass index, skin
temperature, body surface area and heart rate)
and sensor data, and thus cannot be used at the

Fig. 12.9 Normalized confusion matrix of the different models
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building design stage (Du et al. 2019; Li et al.
2019c).

If occupants are offered the possibility to
interact with their HVAC control systems,
motivated by the demand for thermal comfort,
this would lead to positive impacts on building
energy consumption. Thus, thermal comfort
should be predicted at the design stage to opti-
mize energy usage. The PMV model performs
poorly in predicting individual’s thermal comfort
while the existing personal comfort models
require an extensive number of sensors and
continuous feedback from the participants, which
are not available at the design stage. Although a
number of studies have investigated the devel-
opment of personal thermal comfort models for
individuals, the models are developed for a single
person or several occupants. The PAWVE model
was developed with a subset derived from the
ASHRAE global thermal comfort database,
which can be used to represent thermal comfort
of the general public. The model proposed in this
study may provide valuable information of ther-
mal comfort for a broad range of population.
These can serve as the foundation for thermal
comfort profiles, which can be utilized to control
the HVAC when a more personalized thermal
comfort model is not available or is still under
development. The model can also be applied to
inform the design, management and retrofit of
centralized heating and cooling systems in
buildings, such as hospitals and schools to better
characterize specific thermal comforts and to
provide optimal occupant thermal comfort
satisfaction.

The chapter argues that 8 predictors (Air_T,
Season_Winter, Clo, Air_Vel, Out_T Ventila-
tion_AC, humidity and age) are important vari-
ables influencing TS based on the results. The
features, such as age, outdoor temperature and
ventilation mode, which are not included in the
PMV model and adaptive model, turn out to be
important features contributing to TS. On the
contrary, metabolic rate, which is considered as
an important input for the PMV model is iden-
tified as a weak association variable to TS.
A primary evaluation of metabolic rate by taking
it as an input in the PAWVE shows that the

accuracy, recall and F1-score remain the same at
0.67. This is mainly because the extracted data
are collected from classroom, senior centre and
office buildings, where the activity level is a
relatively low and stable. For buildings with
intense activity, such as sports centre, metabolic
rate varies greatly with the degree of activity
level. The impact of the metabolic rate on TS is
bigger. Thus, the model should be updated based
on field data. Meanwhile, the PAWVE model
calculates TS assuming uniform temperature and
air velocity within the space, which ignores the
dynamic nature of air movement and temperature
variation. For example, there is a temperature
difference between human body and the air,
which results in heat transfer from human body
to the surrounding environment. Previous studies
have shown that local discomfort caused by
distribution differences in air velocity and air
temperature may significantly affect occupants’
thermal perception. The model should be modi-
fied in future work to consider such conditions.
For example, the evolution of sensing and
information technology enables access to more
updated environmental information, which could
be used by complex models for more reliable
prediction.

12.5 Conclusions

The PMV model was developed to predict the
average TS of a large population, but still it is
widely used to evaluate the TS of individuals. It
reduces thermal comfort to a steady-state heat
balance equation. Results of early field studies
argued that the heat balance model is inadequate
to predict indoor thermal comfort accurately as it
ignores individual’s thermal expectation and
adaptation. Actually, the occupants are actively
interacting with their environment to achieve
thermal comfort. Our findings indicate that reli-
ance on the PMV model for TS prediction should
be avoided and the prediction accuracy of the
model can only achieve an accuracy of 0.39.

This study formulated a data-driven method
for personal TS prediction under the explicit
hypothesis that individuals’ thermal perception is
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different under different thermal conditions. The
proposed method attempts to associate TS with
environmental variables and personal variables
targeting at improving the prediction accuracy.
Feature selection was conducted to identify the
key variables contributing to TS votes. Eventu-
ally, eight variables (Air_T, Season_Winter, Clo,
Air_Vel, Out_T, Ventilation_AC, RH and Age)
were selected as input parameters for machine
learning. The ensemble models were developed
based on five constituent base models (LR, LDA,
KNN, CART and SVC) and the prediction
accuracies were assigned as the weights of the
base models. Results showed that the proposed
PAWVE model with resampling outperformed
the other models. In particular, the overall
accuracy and F1-score are both at 0.67. When
compared with the PMV model, the accuracy and
F1-score are both improved by 72%. In addition,
the ensemble models with resampling are excel-
lent in predicting minority classes and the F1-
scores of all classes are more evenly distributed.

The proposed PAWVE model for TS evalu-
ation is a personal thermal comfort model that
can be used for the general public. It significantly
improves the prediction performance by
embracing the effect of microclimatic, physio-
logical and psychological factors. This model can
be used to facilitate building design, control and
renovation of the heating and cooling system to
meet both thermal comfort and energy saving.
Future work involves modifying the PAWVE
model to account for distribution differences in
air velocity and air temperature in indoor envi-
ronments. This will be enabled by the reliance on
an enhanced indoor environmental sensing
infrastructure.
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13Analysis and Interpretation
of the Particulate Matter
Concentrations at the Subway
Stations by General Linear Model
(GLM) and Correlation Analysis

Xinru Wang, Song Pan, Xingxing Zhang,
Li Chang, and Yiqiao Liu

Abstract

The particulate matters (PM10 and PM2.5)
inside urban subway stations greatly influence
indoor air quality and passenger comfort. This
study aims to analyze and interpret the
concentrations of PM10 and PM2.5, measured
in several subway stations from October 9th to
22nd, 2016 in Beijing, China. The overall
methodology was based on the Statistical
Package for Social Science (SPSS) software
while General linear model (GLM) and cor-
relation analysis were further applied to

examine the sensitivities of different variables
to the particle concentrations. The data anal-
ysis showed the average overall mass ratio of
PM concentrations inside subway station is
about 68.7%, much lower than outdoor con-
dition (79.6%). In the areas of the station hall
and platform, the real-time PM10 and PM2.5
concentrations varied periodically. In working
and operation offices, all rooms had much
higher PM concentrations than the outdoor
environment when its pollution level was level
3, in which the facility room reached the
highest level, while the closed meeting room
had the lowest. Correlation analysis results
indicated that PM10 and PM2.5 concentra-
tions were mutually correlated (average
R2 = 0.854), and a strong linear correlation
(R2 = 0.897) of the subway-station PM con-
centrations to the outdoor PM conditions,
regardless of the outdoor atmospheric PM
concentrations pollution level was. Neverthe-
less, the impact of passenger number and
temperature and humidity on the station PM
concentrations was less, when compared to
the outdoor environment. This chapter is
expected to provide useful information for
further research and design of effective pre-
vention measures on PM in local subway
stations, towards a more sustainable and
healthier built environment in the city
underground.
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13.1 Monitoring Subway Station
and Measuring Sites

This chapter tested 4 subway stations totally in
Beijing, as illustrated in Fig. 13.1, which inclu-
ded 3 most frequent subway lines, i.e. line 8
(green), line 10 (red), and line 14 (yellow). The
measured subway stations were respectively
Anhuaqiao station in line 8, Jinsong and Panji-
ayuan stations in line 10, and Beigongda-Ximen
station in line 14. The reasons for selecting these
stations are stated as below:

In Beijing, there are 2 different isolating door
systems to partition the train tunnel and the
platform/public areas for security: (1) safety door
system designed at different height, one is full-
height safety door and the other is half-height
safety door (only line 1 in Beijing subway), and
(2) full-height screen door system on the plat-
form. In terms of full-height safety door system,
as used mostly, the Beigongda-Ximen station in
line 14 was selected as a typical subway station

equipped with safety door system. The schematic
diagram of subway structure and measuring
points for the public areas (hall and platform) are
shown in Fig. 13.2. From the Fig. 13.2a, the
subway station is consisted of two levels: the
ground level for the entrance and underground
level. The underground level includes hall for
tickets and security check, while the platform for
ride. We set one measurement point in the
entrance for ground condition, while for the
underground part, although, the stations are dif-
ferent, including the size, depth, the system, the
location and so on, the construction is the same.
We put all testing points in the same picture to
make it clearer for the reader to have a total
understand about all testing points. In Fig. 13.2b
and c, there were respectively 2 measuring points
(1 and 2) for hall area and 3 measuring points (3–
5) for platform area. In terms of screen door
system, Anhuaqiao station in line 8 was chosen
as a representative station for the testing in the
tunnel (point 6) and staff’s working areas. In line
10, Jinsong (phase 1) and Panjiayuan station
(phase 2) were constructed at different phases.
Jinsong station was opened from July at 2008
and Panjiayuan station opened at the end of
2012. These two stations were chosen in order to
compare the effect of service time on concen-
tration, where the other factors are similar, such

Fig. 13.1 Map of measured
stations in Beijing subway
lines
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Fig. 13.2 Schematic
diagram of subway structure
(a); measuring points for b the
hall and c platform
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as train frequency, structure of the station, the
depth, and the air condition system are the same,
even the outside environment.

13.2 Monitoring Method
and Equipment

The detailed parameters for the testing equipment
are presented in Table 13.1. A portable Dust-
trak II Aerosol monitor (Model 8532, TSI, USA)
was used to monitor the concentration of PM10,
PM2.5, temperature and humidity. Such equip-
ment includes data-logging and light-scattering
laser photometer for real-time aerosol mass
readings. The data logging interval was set at
1 min. In order to identify the real fluctuation of
PM10 and PM2.5 concentration in the subway,
the data was measured for about continuous
2 weeks during the testing period. All the testing
equipment have been calibrated before conduct-
ing the measurement.

13.3 Results and Discussion

According to standard of China, there are 6 levels
in total for the atmosphere environment along
with the average concentration value of the
PM2.5 for 24 h. The first level is excellent with
the concentration range of PM2.5 is 0–50 ug/m3.
The second level is 50–100 ug/m3 and the light
pollution (100–150 ug/m3) is ranked as the level
3. Moderate pollution and heavy pollution are

150–200 ug/m3 and 200–300 ug/m3, respec-
tively. Situations over 300 ug/m3 are serious
pollution, level 6. To compare the internal sub-
way pollution against the external atmosphere
environment, we chose the data that was different
from outside pollution level, especially for the
level 6, which is unusual but could cause serious
problems to public health.

13.3.1 PM10 and PM2.5 for the Public
Areas

The results about the average real-time concen-
tration of PM10 and PM2.5 at different locations
in the public areas at the Beigongda-Ximen sta-
tion is presented as Table 13.2. Six representable
days were picked up when the outside environ-
ment pollution ranked at different levels in Bei-
jing. The concentration data for the outside
environment was the average value during the
measuring period. There were three measuring
points at the platform and two at subway hall,
while an average value of the measurements was
calculated for comparison. All the temperature
and humidity were also turned into average val-
ues due to a small variation.

It is observed from the Table 13.2, the pollu-
tion in the subway station varied in a wide range
along with the outside environment, where the
pollution level was from level 1 to level 6. In
general, the concentrations of PM10 and PM2.5
were higher during the peak period than that at the
non-peak period. The lowest PM concentration

Table 13.1 Instrument parameters of the testing equipment

Range Sensor type Time constant

0.001–400 mg/m3 90° Light scattering Adjustable 1–60 s

Flow accuracy Zero stability Resolution

±5% factory setpoint internal
flow controlled

±0.002 mg/m3 24 h at 10 s
time constant

±0.1% of reading of 0.001 mg/m3,
whichever is greater

Data logging Log internal Operational temp

45 days at 1 min samples 1 s–1 h 0–50 °C

Particle size range Temperature coefficient Storage temp

Approximately 0.1–10 lm ±0.001 mg/m3/°C −20 to 60 °C
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values were observed on 17th October 2016 when
the outside environment was excellent at level 1.
The lowest average values of PM10 (PM2.5)
were 96 ug/m3 (48 ug/m3) and 118 ug/m3 (56
ug/m3) respectively in the hall and the platform.
On the other hand, the highest PM concentration
values occurred on 19th October when the pol-
lution of the outside environment was at the
serious level (PM2.5 was 371 ug/m3) in Beijing.
The concentration of PM2.5 and PM10 were
found at 349 and 641 ug/m3 in the hall during the
peak time; while they were 250 ug/m3 (PM10)
and 425 ug/m3 (PM2.5) in the platform during

the peak period. It is obvious from Table 13.2 that
the PM concentrations inside the subway station
were not always larger than that in the outside.
For instance, the measurements of subway PM
concentrations, on dates of 11th–15th, 18th, 19th
Oct in 2016, were smaller than that in the outdoor
environment. Such observation is different from
the conclusion from some existing studies (Cheng
and Yan 2011; Cheng et al. 2012; Chillrud et al.
2004, 2005; Gomez-Perales et al. 2004). In con-
trast, when the pollution of the outside environ-
ment was over 200 ug/m3 (level 5), the result
became opposite. In Fig. 13.3, the real-time

Fig. 13.3 The real-time
concentration at hall (a) and
platform (b)
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fluctuation of the PM10 and PM2.5 at the hall and
platform were illustrated along with the outside
PM values.

The detailed variation of PM concentrations
against the train frequency are shown in
Fig. 13.4a and b, by using the non-peak period
data of date 9th Oct as an example. The fre-
quency of the train was 7 min/times. In the hall
area, the concentration of PM10 and PM2.5
ranges were respectively 40–61 ug/m3 and 78–

135 ug/m3, as in Fig. 13.4a. In the platform, the
concentration ranges of PM10 and PM2.5 were
112–159 ug/m3 and 52–75 ug/m3, respectively,
as seen in Fig. 13.4b. The concentrations of
PM10 and PM2.5 showed periodic changes
affected significantly by the piston wind effect
and other factors. There is about one-minute
delay for PM concentration changing after the
train arrived in platform, and the changing time
in the hall was a little delayed at about two to

Fig. 13.4 The real-time
concentration in ninth a for
hall and b for platform
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three minutes than that in the platform, owing to
the construction structure of the subway station
(Table 13.3).

13.3.2 PM10 and PM2.5
Concentrations
in the Train
and in the Employee’s
Working Areas

In addition to the hall and the platform, the
interior environment within the subway train at
different stations were measured in terms of the
PM concentrations. The measuring points were
located at the middle of two doors and the testing
results are shown in Fig. 13.5. It was measured
on the date when the outdoor concentration of
PM2.5 was 265 ug/m3. The equipment was set at
1 min/time and there were one to three mea-
surements during train in the tunnel. In Fig. 13.5,
the blue points represented the time that the train
arrived the station and the train door opened. It
was clear that the PM2.5 fluctuation was huge
from 220–370 ug/m3, which might be caused by
the passenger flow and the air pressure changes
between the platform and train when the train
door opened.

The air quality in the employee’s working
areas is important for the subway staff. It is the
first time that the concentration of PM10 and
PM2.5 could be measured in the working areas
as these areas are usually prohibited from enter-
ing. There were totally 8 kinds of rooms mea-
sured in Anhuaqiao station (line 8), as showed in
Fig. 13.6. During the measurement, only lounge,

working office and control room were equipped
with the mechanical ventilation system to supply
fresh air; while the meeting room was always
closed. The measurement was conducted on 21th
Oct 2016, when the outdoor environment was
lightly polluted at level 3, with the average
PM2.5 was 131 ug/m3 and PM10 was
158 ug/m3. In the ventilation system, the existed
ventilation system cannot filter PM2.5 by using
the coarse filter and medium efficiency filter.
According to the testing results, the PM con-
centrations at all these rooms were higher than
the outdoor data. The highest polluted areas were
the equipment areas with facilities and poor
ventilation, while the closed meeting room had
the lowest PM pollutions.

13.3.3 The Ratio and Correlation
of PM2.5 to PM10

The percentage and the correlation of PM2.5 that
accounted for PM10 were different at different
locations (Table 13.4). The average ratio of
PM2.5 to PM10 outside the subway was 79.6%
that was slightly higher than that in those loca-
tions inside subway including the train at about
68.7%. The working areas had the lowest ratio of
PM2.5 to PM10 at 47.6%, while the ratio in the
platform and the hall areas were almost 68.6%
and 61.2%, respectively. Nevertheless, the ratio
of the PM2.5 to PM10 in subway station was
much lower than that before researches
(Hosein et al. 2014; Huang et al. 2012; Kam et al.
2011a,b; Kamani et al. 2014; Karlsson et al.
2006).

Table 13.3 Train exercise
table during the
measurement period

Train status Entering Parking Starting Leaving

Time 15:33 15:34 15:37 15:38

15:45 15:46 15:49 15:50

15:57 15:58 16:01 16:02

16:09 16:10 16:13 16:14

16:21 16:22 16:25 16:26

16:33 16:34 16:37 16:38

16:45 16:46 16:49 16:50
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The correlation analysis indicated that PM10
and PM2.5 were significantly correlated at
Sig < 0.01, although the values were different
at different locations. The highest coefficient
(R2) was 0.930 at the platform, while the
lowest was 0.815 in the train. The results were
similar to the researches made by Guo et al.
(2014), Harrison et al. (1997), Hosein et al.
(2014) and so on. The high coefficient indicated
that the PM2.5 could predict from the

concentration of PM10 as the two particles
were highly correlated.

13.4 The Analysis of Influencing
Factors

There are many factors that could affect the
concentration of PM2.5 and PM10, which could
be divided into four kinds: external factors,

Fig. 13.5 PM concentration
of train at different stations in
line 14 a PM2.5; b PM10
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Fig. 13.6 Measuring results
of working areas a PM2.5;
b PM10

Table 13.4 The ratio (%)
and correlation matrix of
PM2.5 to PM10

PM2.5 to
PM10

Outside Hall Platform Train Working
office

Average

The ratio,
%

79.6 61.2 68.6 68.7 47.6 65.14

R 0.921 0.911 0.956 0.903 0.92 0.9222

R Square 0.848 0.829 0.93 0.815 0.846 0.8536

Adjusted
R square

0.845 0.827 0.93 0.813 0.843 0.8516

Sig. 0.000 0.000 0.000 0.000 0.000 0.000
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internal factors, human factors and operational
factors. The external factors include seasons, the
outside weather and the outdoor traffic. The
brake system, ventilation system, the subway
depth, the structure of the subway and the service
time are internal factors. For the human factors,
the main two are passenger flow and the mea-
suring time. The train frequency and the piston
effect caused by the train are the operational
factors. Moreover, these factors are mixed and
function is turbulent.

13.4.1 The Correlation Analysis

Table 13.5 lists the correlation analysis results.
The outdoor environment had dominating effects
on the PM concentration in the subway platform
(R2 = 0.897). Combined with the general linear
analysis, the linear regression equation was
Y = 75.370 + 0.877X, which also indicated the
high correlation of the outdoor environment to
the PM2.5 concentrations in the subway station.

In Table 13.5, the passenger flow had very
low correlation with the PM 2.5 concentration at
R2 = 0.246 and Sig = 0.135 > 0.05. It is differ-
ent from the speculation made by the (Karlsson
et al. 2005), who inferred that the passenger flow
would cause significant influence on the PM2.5
concentration. Figure 13.7 characterizes the real-
time change of PM2.5 concentration along the
passenger flow, which shows the real character of
PM10 and PM2.5 at the hall. The red points were
the time when the passenger flow increased.
After the passenger flow increasing, there was
usually a slight fluctuation of the concentrations,
but the average PM concentrations did not have
obvious change. So we argue that the passenger
flow could lead to fluctuation of the concentra-
tion, but does not affect the average PM2.5
concentration in subway, where the PM con-
centrations are mainly affected by the outdoor
environment and the piston wind produced by
the train.

For the temperature and humidity, the corre-
lation was even lower at R2 = 0.138 and Sig =

Table 13.5 The
correlation analysis of
different factors

Factors R R square Adjusted R square Sig.

Outside 0.947 0.897 0.871 0.00

Passenger flow 0.245 0.246 0.243 0.135

Temperature and humidity 0.135 0.138 0.134 0.159

Fig. 13.7 Concentration
fluctuation of PM2.5 at hall
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0.159 > 0.05. The results from multivariate
analysis, F = 1.265 and Sig = 0.295, also
demonstrate the low correlation of the tempera-
ture and humidity on PM2.5 concentration.

13.5 Summary

In the Beigongda-Ximen station, the concentra-
tion of PM10 and PM2.5 changed a lot along
with the outside pollution huge variety. At the
hall and platform, the real-time PM10 and PM2.5
showed periodic changes. For the train, when the
door opened, the concentration of the PM10 and
PM2.5 would fluctuate significantly. In the
working area, all rooms’ pollution was higher
than the outdoor environment; the highest pol-
lution areas were equipment rooms, while the
closed meeting room had the lowest PM con-
centrations. The average ratio of PM2.5 to PM10
outside the subway was 79.6%, slightly higher
than that in the locations inside subway including
the train at 68.7%. The working areas had the
lowest ratio of PM2.5 to PM10 at 47.6%. The
platform and hall for the public areas were 68.6%
and 61.2%, respectively. Correlation analysis
indicated that PM10 and PM2.5 were highly
correlated. The outdoor environment and the
service time of subway had significant effects on
the concentration of PM2.5, while the passenger
and temperature and humidity did not have
obvious influence on it.
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14Genetic Algorithm for Transforming
a Residential Building Cluster
into Electricity Prosumers

Pei Huang , Marco Lovati ,
and Xingxing Zhang

Abstract

Smart grid is triggering the transformation of
traditional electricity consumers into electricity
prosumers. This chapter reports a case study of
transforming an existing residential cluster in
Sweden into electricity prosumers. The main
energy concepts include (1) click-and-go pho-
tovoltaics (PV) panels for building integration,
(2) centralized exhaust air heat pump, (3) ther-
mal energy storage for storing excess PV
electricity by using heat pump, and (4) PV
electricity sharing within the building cluster
for thermal/electrical demand (including elec-
tric vehicles load) on a direct-current micro
grid. For the coupled PV-heat pump-thermal
storage-electric vehicle system, a fitness func-
tion based on genetic algorithm is established to
optimize the capacity and positions of PV
modules at cluster level, with the purpose of
maximizing the self-consumed electricity
under a non-negative net present value during
the economic lifetime. Different techno-

economic key performance indicators, includ-
ing the optimal PV capacity, self-sufficiency,
self-consumption and levelized cost of electric-
ity, are analysed under impacts of thermal
storage integration, electric vehicle penetration
and electricity sharing possibility. Results
indicate that the coupled system can effectively
improve the district-level PV electricity
self-consumption rate to about 77% in the
baseline case. The research results reveal how
electric vehicle penetrations, thermal storage,
and energy sharing affect PV system
sizing/positions and the performance indica-
tors, and thus help promote the PV deployment.

Keywords

Building cluster � Prosumer � PV optimization� Heat pump � Thermal storage � Electrical
vehicle

14.1 Introduction

Buildings as electricity prosumers are growing in
energy space as they not only produce energy
from distributed energy resources, but also con-
sume the generated energy locally, through
heating, ventilation and air conditioning (HVAC)
systems, appliances and electric vehicles (EV)
etc. These have profound impacts on the smart
grid value chain. It is also a harbinger of another
transformation—the shift of “power”, from being
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concentrated in the hands of utilities as the sole
owners/distributors of electricity, to electricity
prosumers on a vastly distributed and decentral-
ized basis (Christine 2013). With the intensive
growth in photovoltaic (PV) panels, EVs, home
batteries, distributed heat pumps (HP), thermal
energy storage (TES) and direct-current
(DC) grid, buildings offer great potentials for
consumers and building owners to re-evaluate
their energy practices (Parag and Sovacool
2016). As the electricity prosumers are increas-
ing at urban or district scale, the building inte-
grated or added PV installations are boosting
with very large capacity in recent years, which
bring many unknowns about the integration of
smart gird infrastructure that need to be opti-
mized (Parag and Sovacool 2016). To develop
strategies for the future, policymakers and plan-
ners need knowledge of how many and where
PV systems could be integrated effectively and
efficiently into local energy infrastructure and
markets.

Up to date, many researchers have devoted to
the techno-economic optimization of PV at
building level (Huang et al. 2018a). For instance,
Gui et al. (2017) developed a genetic algorithm
based optimization method to design the capac-
ity, locations, tilt angles and azimuth of PV
panels, with factors such as shapes and orienta-
tions of building exteriors and the surrounding
obstacles considered. Their method is able to
maximize the solar power output and thus redu-
ces the capital investment per unit power output.
Bingham et al. (2019) developed a non-sorting
genetic algorithm based optimization method to
design the envelop, PV systems, and battery
storage of a residential building in Bahamas.
Their study indicates that application of PV
systems and battery storage can significantly
reduce the cost and consumption of grid energy.
Koskela et al. (2019) explored the optimal sizing
of PV panels and batteries under different elec-
tricity pricing for an apartment building and
detached houses in Finland. Their study shows
that suitable electricity pricing can increase the
profitability of applying PV panels and batteries.
With the application of batteries and building
load control technologies, O’Shaughnessy et al.

(2018) analysed the improvements in PV energy
self-consumption and net present value
(NPV) using the renewable energy optimization
(REopt) model. Oh et al. (2018) developed an
integrated model (i-FEM) based on finite element
method for estimating the techno-economic per-
formance of the distributed solar generation
system on building façades. Liu et al. (2019)
investigated the design optimization of a PV-
battery system combining heat pumps. Sensitiv-
ity analysis was also conducted by them under a
range of PV capacities and battery prices to
understand the impacts of heat pumps on PV-
battery systems. Their study concludes that the
use of heat pump can help increase the PV self-
consumption and reduce the storage capacity.
The abovementioned studies have considered
solar resource and façade geometry, synergies
with batteries and thermal envelope, electrical
storage, electricity pricing, battery prices, and
load controls. However, they didn’t consider the
synergies of energy sharing among neighbour
buildings and the influence from local TES and
EV penetration.

On district or above level, researchers have
also been conducted regarding the techno-
economic analysis of PV and its related sys-
tems. For instance, Heijde et al. (2019) devel-
oped a genetic algorithm based computation-
efficient optimization tool, which uses the rep-
resentative days to simplify the whole-year sim-
ulation, to determine the size of district solar
energy systems and seasonal TES with the min-
imal operational costs. Shirazi et al. (2019) pro-
posed an integrated techno-economic evaluation
tool to identify the most appropriate PV instal-
lation façades in urban areas in Tehran of Iran.
Their study shows that proper selection of the
angles and building façades for installing PV
panels can significantly increase the solar power
production (e.g. 19%) and internal rate of return
(e.g. 6%). Roberts et al. (2019) investigated the
impacts of applying shared battery energy stor-
age systems on the PV self-consumption and
electricity bills of several apartment clusters in
Australian. Their study indicates the shared bat-
teries can effectively increase solar self-
consumption and shave the peak demand of the
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building cluster. Zhang et al. (2012) investigated
the energy and environment impacts of integrat-
ing PV power into electricity systems in Kensai
of Japan, under various scenarios with different
EV penetrations and heat pump capacities. It is
found that EV and heat pump are helpful for
keeping more PV power in the smart electricity
systems. Notably, Rodríguez et al. (2018) pro-
posed a PV-HP-thermal mass storage system for
alleviating the energy poverty for a low-income
housing district in Spain. In their study, the PV
surplus electricity is used to power the heat pump
to provide cooling/heating to improve thermal
comfort of the occupants. However, the capacity
of passive thermal storage (i.e. building thermal
mass) is much smaller compared with active
thermal storage, thus limiting the system flexi-
bility and performance. Also, the energy sharing
among different buildings and the EV penetra-
tions is not considered. Regarding energy sharing
among buildings, Shen and Sun (2016) compared
the sizing of PV systems for a small building
cluster with and without energy sharing enabled
considering demand uncertainty. They study
shows that enabling energy sharing can signifi-
cantly reduce the required PV system capacity,
since the surplus renewables of one building can
compensate the renewable insufficiency of
another. Huang et al. (2018b) investigated the
operation of decentralized PV-battery system for
a building cluster with energy sharing enabled.
By comparing with the scenario that energy
sharing is not allowed, their study indicates that
energy sharing can significantly increase the
cluster-level PV self-consumption and mean-
while reduce the electricity costs. These studies
have conducted techno-economic analysis of
district-scale PV from the aspects of the solar
resources’ maximization, seasonal TES, battery
or heat pump integration, and power sharing
integration. However, the integrated impacts of
TES for excess PV electricity, EV as part of
electrical load, and power sharing by DC grid are
not fully studied on optimal design/operation of
district/urban-level PV.

Regarding HPs and TES, many studies have
been conducted for improving their performance
and promoting their applications. For instance,

Fischer and Madani (2017) conducted a com-
prehensive overview of applications for HPs in a
smart grid. They conclude that HPs can be seen
as core technology to connect the heating and
electricity sectors. Nolting and Praktiknjo (2019)
conducted validated simulations of realistic and
flexible HP controls (i.e. time-of-use based con-
trols and spot market price-based control), and
assessed effects on energy efficiency and eco-
nomic potentials compared to standard reference
control algorithms. Sun et al. (2019) conducted a
comprehensive analysis of fine-grained data col-
lected from smart hybrid HPs (which perform
smart switching between electricity and gas) and
proposed a flexibility quantification framework
to estimate the capability of HP demand shifting
based on preheating. Their study results show
that smart controls of hybrid HPs can deliver
higher average COP values. By pairing HPs with
TES, heat demand can be shifted to off peak
periods or periods with surplus renewable elec-
tricity, and thus improved performance and
increased flexibility can be achieved. Renaldi
et al. (2017) developed a design and operational
optimization model to assess the performance of
HP-TES system. Their study results show that
the integration of TES and time-of-use tariffs can
reduce the operational cost of the HP systems
and make the HP systems cost competitive with
conventional systems. Psimopoulos et al. (2019)
developed rule-based control algorithms for a HP
system, which is integrated with TES and elec-
trical storage, to minimize building energy usage
and maximize self-consumption. Their devel-
oped method is able to reduce energy usage by
5–31% and the annual net cost by 3–26%. Bae-
ten et al. (2017) proposed a multi-objective
model predictive control strategy for a HP-TES
system, which takes into account users’ energy
cost and environmental impacts. Their study
shows that applying TES is effective in reducing
the required peak capacity of HPs. But, when
demand response is applied by using TES, the
costs for consumer always increase compared to
the case without demand response or TES. The
abovementioned studies have systematically
investigated the application of HPs and TES in
improving the building performance. However,
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the integration of HPs and TES with EV load as
well as the energy sharing among buildings, are
rarely considered.

In particular, the EVs are increasing their
influence in PV deployment and smart grid,
which should be considered as part of the elec-
trical demand in the optimal design of renewable-
energy based building renovations. The Swedish
government has set a goal that the 100% of the
national energy used in vehicle fleets should be
independent of fossil fuel by 2030 (Agency
2009). EVs, which can use the grid power and
the potential renewable energy, are promising
solutions to achieving these energy targets. Many
studies have been conducted to investigate the
EV energy usage patterns and estimate the EV
load profiles. For instance, using an availability
model which generates driving profiles by sta-
tistical analysis, Geth et al. (2010) analysed the
impacts of both uncoordinated charging and
coordinated charging on the load profiles in
Belgium. Moreira et al. (2011) developed a
discrete-state and discrete-time Markov chain
model to simulate the EV motion and the energy
usage. Shahidinejad et al. (2012) adopted a
fuzzy-logic inference system to emulate the EV
battery charging based on a large field-recorded
driving database. By combining EV usage with
synthetic activity generation of occupants’
electricity-dependent activities, Grahn et al.
(2013) used a Markov chain model to calculate
the EV electricity consumption. They found that
the EVs make up around 1/3 of the expected load
during the peak hours and around 1/5 of the total
daily electricity usage. Similarly, Munkhammar
et al. (2015) modelled the EV charging states
with a Bernoulli distribution and generated the
EV charging patterns by a Markov chain model.
Their study shows that large mismatch exists
between the PV power production and EV power
consumption. Munkhammar et al.’s (2013) study
indicates that aggregating the multiple house-
holds’ EV power usage and PV power generation
will be more beneficial for increasing self-
consumption of PV power than individual
households. Fischer et al. (2019) proposed a
stochastic bottom-up model to describe the EV
usage, charging behaviour and the resulting

electrical load profiles. Their study reveals that
load peaks strongly depend on the deployed
charging infrastructure and can easily increase by
up to 3.6 times, and EVs will lead to an inten-
sification and an approximately 45 min earlier
start of peak load hours during evenings for
working households in Germany. EVs will rep-
resent large electricity end-users in building
sector and have large impact on PV system per-
formance. However, the interactions of EVs with
other energy systems, such as heat pump and
TES, are rarely studied at cluster or district level
when EVs contribute as part of building elec-
tricity load.

Besides, there are many existing studies that
have presented the energy modelling at building
cluster level, but most of them didn’t fully opti-
mize the dynamic synergies of PV generation,
heat pump, EVs, TES integration, and building
load sharing among neighbour buildings, as well
as the dynamic interactions of local building
energy systems. A research gap thus lies in the
absence of detailed techno-economic optimiza-
tion of the coupled PV-heat pump-TES-EV at
cluster level (thus involving neighbour buildings
as aggregated electricity prosumers) related to
demand coverage of heating, domestic hot water
(DHW), and other general appliances. Research
questions are therefore raised up, for instance,
how the optimal configuration of PV’s NPV
changes as the EV penetration increases, and
how do the different key performance indicators
(KPI) are affected. What share of the electric
demand for buildings and mobility can be real-
istically and economically covered by PVs with
present technologies? A global optimization of
PV in each scenario is urgently desired.

Therefore, this study aims to optimize the
capacity of installed PV panels at each building in
a small residential district, by considering
thermal/electricity loads, power sharing among
neighbor buildings, heat pump, TES and EVs, in
order to maximize the self-consumed electricity
(SCE) when the system is profitable (i.e. positive
NPV) during its economic lifetime (of 15 years).
Due to factors such as surrounding shadings and
orientation, installing PV modules in different
positions can produce different amount of power,
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since the amount of solar radiation can be signif-
icantly different in different positions on building
roof or facades. To maximize the PV power out-
put, this study also optimized the positions of PV
modules to be installed on the building roof or
facades. The research results will be useful in
testing the effective strategies of PV deployment
as connecting with different EV penetrations and
heat pump/TES capacities in Swedish residential
district. In the future, the same method could be
replicated on different types of building clusters
for achieving improved KPIs.

The structure can be depicted as followings:
Sect. 14.2 describes the overall renovation con-
cepts for the building cluster; Sect. 14.3 clarifies
the research methodology and key performance
indicators considered; in Sect. 14.4, the mod-
elling of the coupled system is presented. Sec-
tion 14.5 summarizes the boundary conditions
and input parameters for the simulation case.
A series of optimization and the related sensi-
tivity analysis are subsequently performed in
Sect. 14.6. Section 14.7 finally presents discus-
sion and outlook; while the brief conclusions are
disclosed in Sect. 14.8.

14.2 Overall Energy Concepts
for Building Cluster
Renovation

14.2.1 Building Cluster Information

The studied building cluster is located in Sun-
nansjö, Ludvika, Dalarna region, Sweden. This
demo site is a multifamily dwelling unit made of
three buildings built in 1970/1973, as shown in
Fig. 14.1. The cluster (three buildings) includes
48 apartments over three floors, and most of the
apartment have one or two bedrooms. The total
façade surface gross area of the complex is 2146
m2, the total roof surface gross area is 1750 m2,
and the total heated area is 3861 m2 (see
Table 14.1). The energy consumption of the
cluster is 165 kW h/(m2 year), including opera-
tional electricity but not including electricity

used in the flats for appliances and lighting.
These buildings will be improved by a series of
renovation plans including installation of PV,
thermal energy storage, DC micro grid, EVs and
heat pump systems.

14.2.2 Energy Concepts

With the purpose of improving the overall energy
performance and reducing carbon emissions of
the building cluster, the following interventions
are being applied in renovating this building
cluster. First, a centralized heat pump using
exhaust air and ground as heat sources will be
used for supplying the heating and hot water for
all the three buildings. All the exhaust air in each
building will be ducted to a heat exchanger unit,
in which the waste heat will be recovered and
then delivered to the centralized heat pump via a
brine loop. A back-up pellet boiler is utilized to
accommodate the peak heating needs. The PV
can be installed on the roof and façades of the
buildings. The PV energy is first used to power
the electrical facilities in the buildings (e.g. fans,
pumps, lighting, EV demands). After this part of
electrical load is met, the remaining PV energy is
considered as excess PV energy. A hot water
storage is planned to store the excess PV energy
in the form of heat, where the excess PV elec-
tricity power is transmitted to the heat pump to
produce heating energy, and the produced heat is
stored as the hot water. All electricity in the
buildings, including that in the flats, as well as
that supplied to the EV’s is managed by one
Energy Hub in each building, connected together
via a DC micro grid. The DC sources (i.e. PV)
and sinks (i.e. EVs and variable speed heat pump
compressor) as well as batteries, if present, are
connected directly to the DC micro grid. The
overall energy concepts (the advanced techniques
used in the building cluster renovation for
improving the overall energy performance) of the
renovation plans are presented in Fig. 14.2. In
this subsection, the details of the major energy
concepts are presented.
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14.2.3 Click-And-Go PV Panels

Click-and-go is a concept that aims at making the
installation/removal of the PV modules easier
while improving the aesthetical quality. The
mounting systems have been carefully designed
so that they can be easily, conveniently, and
flexibly installed/removed. The PV modules can
be installed on either building roofs or façades.
The roof mounting system has overlapping pan-
els and has been certified by KIWA (IEC 61215)
and meets building standard ‘NEN 7250, Solar
energy systems—integration in roofs and façades
—building aspects’ (NEN 2014). The mounting
system for the façades is based on an equivalent
click-and-go system, which can be easily
mounted and demounted. In contrary to the pit-
ched roof version with overlapping panels, the

façade mounting system has flat mounted panels
with a surrounding gap between the panels.
Beside the easy mounting, the system has a high
aesthetic value, as at the front side only the glass
of the PV modules is visible and the mounting
construction is invisible. Accumulation of
dirt/stripes on glass is prevented simultaneously.

The PV panels are developed on basis of a
portfolio of lightweight, aesthetic and click-and-
go solutions. There are two lightweight PV
module technologies developed in the Energy-
Matching project: glass/glass and composite-
based modules. The difference between them
relies on the encapsulation material. This study
uses the glass/glass-based modules. The manu-
facturing process of glass/glass PV modules is
based on traditional manufacturing processes,
adapted accordingly to allow the effective

Table 14.1 Area of each
building used to assign a
share of the private
electricity demand

Ground floor area (m2) Gross floor area (m2) Number of floors

A 381 1143 3

B 509 1527 3

C 552 1656 3

Total 1442 4326

Fig. 14.1 Three buildings in
the cluster for renovation in
Ludivika, Sweden
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integration of PV cells, leading to a lightweight
concept (range of weight between 10 and
15 kg/m2).

14.2.4 Centralized Exhaust Air Heat
Pump (EAHP) System

A centralized heating plant is proposed, which
comprises a brine-water heat pump using exhaust
air as heat source as well as a back-up boiler. The
heat pump covers all the DHW load using a hot
water storage tank. The heat pump also provides
the space heating until its maximum capacity is
reached. At peak heating loads, the back-up boiler
is used to supply the remaining heating load. Each
building has one heat recovery unit in the attic, to
which the exhaust air in each room, including
kitchens and bathrooms, is ducted by fans. The
recovered heat from the ventilation air is then
supplied to the heat pump as the heat source via a
brine loop. An anti-freeze mixture is used in this
loop so that the heat pump can operate with
supply temperatures below zero. The amount that
can be extracted from the exhaust air is dependent

on the ventilation rate, which is generally fixed at
the national requirements for hygienic air. In
Sweden, the required air flow rate is normally
0.35 l/m2 s, which results in roughly 0.5 ACH for
normal ceiling heights (Concannon 2002). The
design supply and return temperatures of water in
ventilation radiators for space heating are 55 °C
and 45 °C, respectively. The actual supply tem-
perature is varied depending on the ambient
temperature using a heating curve. The speed of
the heat pump compressor (or pellet fed into the
boiler) is controlled to maintain the desired sup-
ply temperature. When the required heating is
below the minimum load of the heat pump, the
heat pump goes into cycling mode to provide the
desired load. The charging of the DHW storage is
controlled using two temperature sensors in the
storage. The control ensures that there is enough
heat in the store to meet the expected load. The
hot water circulation is supplied at about 55–57 °
C with a return temperature around 52 °C, con-
sistent with the Swedish requirement that the
temperature at tapping points should be over 50 °
C. During charging of the DHW, the heat pump is
running at high power.

Fig. 14.2 Overall energy concepts for the building cluster
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The heat pump has a variable speed com-
pressor, which can adjust the heating capacity by
changing the frequency of the compressor. For
variable speed heat pumps, an inverter is typi-
cally used to convert DC power to variable fre-
quency alternating current (AC) power. In the
conventional heat pumps, this DC power is first
created with a rectifier. With the application of
DC micro grid technology, in this study the heat
pump is connected directly to the DC micro grid,
which eliminates the needs for extra rectifiers and
thus reduces unnecessary convertion losses. At
present, the available heat capacity is in the range
of 6–60 kW. Up to eight such units can be cas-
caded and controlled by one controller, so the
available capacity range can reach up to 480 kW.
It is also possible to have additional heat sources
in the same centralized system, such ambient air
or the ground.

14.2.5 Micro Direct Current Grid—
Energy Hub Concept

To use the DC power produced by PV panels,
inverters are usually needed to convert the DC
power into AC power that can be delivered by
the conventional AC power distribution system.
On the other hand, modern large loads, such as
pumps, compressors, fans and EVs, are often
operating with DC power with built-in AC-to-
DC converters (Strunz and Abbasi 2014). The
DC/AC converting at both the supply side and
demand side not only causes dramatic electricity
losses, but also reduces the system reliability due
to increased complexity. To address these issues,
the Energy Hub based on DC micro grid is rec-
ommended to replace the traditional AC distri-
bution systems (Ayai et al. 2012).

Figure 14.3 presents the schematics of the
Energy Hub DC micro grid. The Energy Hub
closely integrates multiple energy systems of
different energy carriers through convertors,
energy distribution and storing components in an

optimal manner for various energy use (Howell
et al. 2017). Please note that Energy Hub is
different from the Heat Pump. The Energy Hub
consists of DC/AC inverters or AC/DC conver-
tors and power optimization module, which
connects the power generating and consuming
facilities to form DC a micro grid. It converts and
controls the energy flow in both directions
between the DC grid and the facility AC grid. By
using the Energy Hubs, the whole DC micro grid
becomes an easy-to-use and energy-efficient
power management system that can be applied
in wide scales. The different nodes in the grid,
such as PVs, EVs and loads, can exchange power
efficiently and reliably by autonomous dis-
tributed control systems based on the DC volt-
age. The Energy Hub automatically controls all
system components, such as heat pump, EVs,
and other electrical appliance, to ensure opti-
mized energy utilization within the DC grid.

The Energy Hub based DC micro grid is able
to maximize the use of locally produced PV
electricity by sharing with different end-users that
have consumption at any given time. The system
also supports peak load shifting to reduce power
tariffs. For instance, load peaks of one user (e.g.
EV charging) can be distributed to other users to
reduce power drawn from the public AC grid.
Meanwhile, by keeping as much of the electricity
production and consumption on the DC grid, the
converting losses can be significantly reduced (by
up to 50%) and thus producing higher efficiency.
The Energy Hub techniques used for constructing
DC microgrid were developed by Ferroamp
(2018). The operating voltage of the DC micro-
grid is 760 V. Loads that support a nominal DC
voltage of 760 V can be powered directly from
the DC grid. A minibus DC/DC converter has
also been developed by Ferroamp to step down
the 760 V DC grid voltage to the output voltage
required by other DC loads (120–400 V), thus
enabling more flexible applications. For details of
the microgrid operation and control, please refer
to Ferroamp (2019).

292 P. Huang et al.



14.2.6 Thermal Energy Storage
for Excess PV Electricity
by Heat Pump

As most of the buildings’ energy is for thermal
loads, this study uses hot water storage to store
the excess PV power (after supplying other
electricity loads) instead of electrical batteries.
When there is excess PV power, the excess
electricity will be used to power the heat pump
for producing heat, which is stored in separate
hot water tank. The stored heat can only be used
for DHW purposes in the chosen system design.
The algorithm varies the speed (and thus the
heating capacity) of the heat pump in order to
match the total electricity load with the PV
supply. If there is a battery in the system, the
utilization of thermal storage is prioritized. The
battery is only used when the thermal storage is
fully charged.

14.3 Proposed Method
for Optimizing PV
Capacity/Positions

14.3.1 Optimization Algorithm
and Fitness Functions

The aim of the modelling is to understand which
features the system should have to perform well
over its lifetime, rather than to estimate the exact
energy or economic output of a pre-designed
system. For this reason, a set of features should
be optimized according to a specific measure of
performance. The features of the system are
expressed in the optimization problem as
parameters and the measure of performance is
expressed as a fitness function based on genetic
algorithm. The parameters are the quantity of PV
capacity installed on each façade of the building

AC micro DC grid
Intelligent 
integra�on 
for the grid

EnergyHub storage

Scalable Inverters: two-
way bridge between AC 
and DC power

Unique feature for 
electricity supply meter

Powerful DC charger 
combining solar power, 
energy storage and the grid

EnergyHub op�mizer 
Smart and efficient 
use of DC energy

EnergyHub op�mizer
Easy to build and customize

EnergyHub op�mizer
Wind and hydro op�mizers

Fig. 14.3 Schematics of the Energy Hub micro DC grid (Ferroamp 2018)
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and the quantity of electric storage. Focussing on
the capacity of PV on a building, in which there
are two façades (roof and south façade) the set of
parameters [0,0] represents a building without
PV, [1, 1] is a building where all the area
available is covered by PV, [0,0.5] is a building
where half of the area available on the south
façade is occupied by PV while the roof is
empty. The quantity of electric storage simply
constitutes a parameter as it is. The aim of the
fitness function used in this study is to maximize
self-consumed electricity (SCE) during the life-
time of the system. Equation (14.1) expresses the
lifetime cumulative electricity self-consumed
weighted by electricity price for the consumer.

SCE ¼
XN
t¼0

c � Pcðt; hoyÞ ð14:1Þ

where,

• SCE is the lifetime self-consumed electricity;
• t is the year of operation of the PV system

where N is the planned lifetime of the system;
• c is the cumulative electricity produced by the

PV system and consumed on site (contempo-
raneously or through electric storage);

• Pc(t,hoy) is the “point in time” price of the
electricity for the consumer depending on the
year t and the hour of the year (hoy) (in case
of day/night or summer/winter variations).
This value was added to privilege, at the same
level of self-sufficiency, the solutions that
generate a higher economic output: this may
seem a monetary consideration, but because
of how the fitness function is designed, any
profit would indeed constitute a sort of buffer
that the algorithm trades in exchanges for an
improvement in self-production until any
profit is dissipated.

The fitness function in Eq. (14.1) presents a
problem because it is monotonic relatively to the
capacity, so it cannot decrease amid an increase
in capacity and it will indeed increase as long as
there is a gain in self-consumption. This feature
of the fitness function would obviously cause the

optimal set of parameters to converge on the
largest possible capacity (i.e. [1,1,…,1]), hence
causing a grossly over-dimensioned system and
defeating the very purpose of an optimization
process. To avoid the excess generated by the
fitness function in Eq. (14.1) while still maxi-
mizing it and to avoid economically unprofitable
solutions, the function is described as following
Eq. (14.2), where the fitness function is descri-
bed according to two domains. The algorithm
will thus maximize the lifetime SCE at the con-
dition that the system cannot be unprofitable.

Fitness function ¼ SCE NPV � 0
�SCE NPV\0

�
ð14:2Þ

In this way, the monotony of the function with
respect to the capacity is used to guide the
algorithm towards solutions that are not unprof-
itable, in fact once the NPV becomes negative,
an increased capacity would increase the absolute
value of the fitness function, rendering it more
negative. In practice, the fitness function will
maximize the self-sufficiency while guaranteeing
that the system does not become a net cost during
its lifetime.

The formula of NPV calculation is expressed
by Eq. (14.3):

NPV ¼
XN
t¼0

c � Pc þ s � Ps � xPV � ðCMPV ;t þCSÞ
ð1þ iÞt

� �

� xPV � CIPV ;0 � xB � CIB;0
ð14:3Þ

where,

• The quantity c � Pc, represents the costs
avoided for the electricity that was not pur-
chased from the grid because of the self-
sufficiency; Pc is the price for the electricity
paid by the consumer: c � Pc is treated in the
formula like an economic gain. An avoided
cost and an earning are not different for any
practical purpose in this optimization;

• Similarly s � Ps represents the revenues gen-
erated by the fraction of the electricity that is
sold s multiplied by its price Ps: notice that the

294 P. Huang et al.



price for the valorization of the electricity sold
is usually lower than the price paid by the
consumer (Pc).

• The letter x is meant here to represent the
capacity of a component: xPV is the capacity
of the PV system in [kWp] while xB is the
capacity of the electric storage (or battery)
measured in kWh;

• Similarly, the capital letter C represents the
costs and is found in three values: CM denotes
the unitary costs for maintenance [€/kWp
year]. CI stands for the unitary installation
costs and is measured in [€/kWp] for PV and
[€/kWh] for the electric storage. CS is the cost
for the substitution of components and
involves inverters and electric storage systems;

• The letter i in the denominator of the quantity
in the annual sum indicates the discount rate
applied for the investment as defined in Lovati
et al. (2018).

The result of the optimization process strongly
depends on the demand but, as Sect. 14.4.3
shows, the demand itself is influenced by the
excess PV electricity (the excess PV power will
be used by the heat pump), which is in turn
influenced by the result of the optimization. The
optimal PV system is generally characterized by
some hours of over-production along the year: if
this over-production is used to heat a thermal
storage, the energy transfer to the local grid is
reduced. The reduction of over-production would
cause an increase in the optimal dimension of the
PV system because it will effectively be an
increase in electric demand, this causes a positive
feedback loop (see Fig. 14.4) until convergence
(i.e. when the average temperature of the extra
storage is high enough to send electricity to the
grid anyway).

14.3.2 Key Performance Indicators
Considered

This study mainly considers four KPIs, self-
consumption (SC), self-sufficiency (SS), expec-
ted levelized cost of electricity (LCOE), and

expected self-consumed-LCOE (LCOEself).
These four KPIs are introduced in this section.
The SC is the annual average of the rate (ex-
pressed as a %) at which the electricity produced
by the PV system is consumed on-site. It is cal-
culated by Eq. (14.4).

SC ¼ Epv;onsite

Epv;onsite þEpv;offsite
ð14:4Þ

[kWh] is the aggregated PV power that is
consumed on-site during one year period, and
Epv;offsite [kWh] is the aggregated PV power that
is consumed off-site (i.e. exported to the power
grid). A larger SC indicates a better performance
in terms of load matching.

The SS (expressed as a %) represents the
annual average of the rate at which the electricity
used by the building is provided by the PV
systems. It is defined by Eq. (14.5).

SS ¼ Epv;onsite

Ed;whole
¼ Ed;pv

Ed;pv þEd;grid
ð14:5Þ

where, Ed;pv [kWh] is the aggregated electricity
demand that is supplied by the PV system during
one year period, and it is equal to Epv;onsite

[kWh]. Ed;grid [kWh] is the aggregated electricity
demand that is supplied by the power grid. The
sum of these two terms equals Ed;whole [kWh]
(i.e. whole electricity demand) of the building
regardless of which source is providing it, a
larger SS indicates a better performance as it
refers to a building that is less reliant on the grid.

Fig. 14.4 Schematic representation of the feedback loop
till convergence of the optimization process and the use of
excess PV electricity in an extra thermal storage
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The LCOE [€ cent /kWh] is calculated
through dividing all the costs (i.e. initial invest-
ment, maintenance and substitutions) by all the
electricity produced over 15 years, as expressed
by Eq. (14.6).

LCOE ¼ Costinitial þCostmaintenance þCostsubstitution
Epv;total

ð14:6Þ

where Costinitial [€ cent], Costmaintenance [€ cent]
and Costsubstitution [€ cent] are the initial invest-
ment, maintenance cost and substitution costs,
respectively, and Epv;total [kWh] is the aggregated
PV power produced over the 15 years. The
expected self-consumed LCOE [€ cent /kWh]
refers to the LCOE for the electricity that is self-
consumed, it is therefore obtained as the total
costs of installation and maintenance divided by
only the electricity self-consumed, as shown by
Eq. (14.7),

LCOEself ¼ Costinitial þCostmaintenance þCostsubstitution
Epv;onsite;total

ð14:7Þ

where Epv;onsite;total [kWh] is the aggregated self-
consumed PV power over the 15 years. Since the
amount of self-consumed PV power is usually
smaller than the total PV generations, the expec-
ted self-consumed LCOE is usually larger than
the expected LCOE. In other words, this KPI
considers the cost of electricity as if only the
“onsite” share has been produced. This was made
because the cost of production of a resource
should refer to the share of this resource that is
usable, and the over production from PV cannot
be considered usable by the district. The excess
PV electricity is in theory usable by someone else
in the larger grid, but it cannot be guaranteed that
all of the electricity will be utilized (especially in
a future with a high penetration scenario for PV).
In this sense this KPI can be interpreted as an
extremely conservative value for the real cost of
electricity by urban PV. Notice that if the elec-
tricity sold to the grid has value (i.e. PS 6¼ 0) the
LCOEself will be higher than the average price for
the consumer (i.e. LCOEself > Pcaverage), this is

consequence that there are some revenues that can
be used to purchase a larger system and so
increase the SCE.

14.4 Modelling Approach
for the Coupled Systems
in Building Cluster

14.4.1 PV System Modelling
and the Related
Assumptions

The PV systems are modelled to ensure not only
accurate operation, but also reducing the effort
for collecting model inputs in the early design
stage. In a complex context such as PV, the
biggest losses are due to the partial shading of
modules and arrays. In this chapter, the power
profile of the PV system is estimated as propor-
tional to the irradiation falling on the module, but
corrected according to the cell temperature
(Maturi et al. 2014) and a temperature coefficient
as shown by Eq. (14.8) (Reich et al. 2012).

PPV ;HOY ¼PR
Xn

Mod¼0

HMod;HOY � gMOD

� AMOD � cTðMod;HOYÞ ð14:8Þ

• PPV ;HOY represents the power output of a PV
system in a specific hour of the year (HOY);

• PR (performance ratio) is static performance
ratio of 0.8 (Reich et al. 2012) that takes into
account losses such as soiling or reflection.
PR is defined as the ratio between the system
yield (energy produced in time period over the
nominal power) and a reference yield (the
incident solar energy in time period t over the
reference irradiance 1000 W/m2);

• Mod is the latest module in the system char-
acterized by its efficiency ηMOD and area
AMOD;

• HMod;HOY is the irradiation intensity [kWh/m2]
falling over a specific module Mod in a
specific HOY;

• cTðMod;HOYÞ is a temperature correction
coefficient calculated as in 2019 and
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dependant on the module temperature which
is in turn determined by MOD and HOY. The
temperature is found by the simplified relation
TMod = Tambient + k�HMOd,HOY where Tambient
[°C] is the ambient temperature retrieved from
the weather file and k [m2/kW] is the Ross
coefficient described in Maturi et al. (2014)
and Skoplaki and Palyvos (2009).

Aside from the modelling of the power pro-
duction curve, the cost of the system is modelled
as well: the initial costs are composed by total
system costs (including modules, inverters,
cables, structure installation and taxes), which
are assumed to be directly proportional to the
capacity installed following a linear relation. In
reality, the unitary cost is probably bound to
decrease for larger capacities, but due to the
difficult estimation of the phenomena in an urban
context (where large homogeneous production
plants cannot be built), the price is assumed
independent from the capacity. This approxima-
tion can be considered conservative as it will
advantage smaller capacities during the opti-
mization process. Likewise, the operational costs
are also considered linearly correlated with the
capacity of the system: these costs consist of
maintenance costs and costs for the substitution
of the inverter. The maintenance costs are an
annual expense that should be paid proportion-
ally to the capacity installed (expressed therefore
in unit of €/kWp year), the inverter cost is an
expense that comes once every 10 years and
corresponds to the amount of 250 €/kWp. As for
the calculation of the power, the exact number of
inverters and the strings they serve is unknown,
because of this the cost of inverters is included in
the unitary price of the PV system at installation
and amounts to 250 €/kWp in the years when it is
substituted. The electric storage system is not
interested by maintenance costs, but it generates
initial and substitution costs every 10 years as
well: these costs are proportional to the storage
capacity, the initial cost of the electric storage is
selected as an input while the substitution costs
are averaged from the learning curve taken from
three independent studies on the matter (Varti-
ainen et al. 2017; IRENA 2030; Leuthold 2014).

It should be noted that given the current eco-
nomics, the electric demand and the location, the
electric storage suggested by the algorithm has
an exceptionally low capacity.

14.4.2 Thermal and Electrical Loads
of Buildings

TRNSYS 18 (Klein et al. 2017) is used to sim-
ulate the building and energy systems in a two
stage process where an hourly space heating load
file is generated by a building model in the first
stage that is then used as input in the second
stage to the HVAC system model. This in turn
generates an hourly electricity load profile that is
used as input by the PV optimisation tool (see
Sect. 14.3.1).

In the first stage, all three buildings are
modelled in one Type 56. A 3-D model built in
the tool SketchUp is used to generate the
geometry of the buildings. For building C, four
zones are used, one for each of the floors plus
one for the attic. For the other two buildings,
where the ground floor has parts that contain flats
and other parts that are not kept at normal room
temperature, two zones are modelled for the
ground floor in addition to the zones for the other
floors and the attic, making five in total. The
model is then converted into the non-geometric
mode in order to have a faster simulation time,
and material properties based on the real building
were added. Ground coupling is done using a
simplified approach with Type77 providing the
ground temperature to which heat losses are
calculated. The occupancy, electricity and DHW
load profiles for the flats are derived by a
stochastic model developed by Widén and
Wäckelgård (2010) and the annual electricity
usage has been calibrated to the measured data.
The internal gains due to operational electricity
are based on the measured values and assume
100% is converted to heat. The simulation model
is then calibrated with the available measured
data in order to achieve acceptable accuracy.

The HVAC system model is a simplified
model of the proposed HVAC system, as shown
by the TRNSYS model in Fig. 14.5. The space
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heating and DHW loads are input as load files
(“SH Load” and “DHW Load” respectively in
Fig. 14.5), with one load file for the whole dis-
trict. Similarly, only one exhaust air heat
exchanger is modelled using Type508b as brine
source to the heat pump, using the total ventila-
tion flow rate for the district of 1460 l/s as input.
The heat pump is modelled using Type1927,
which uses a performance map with source and
load inlet temperatures, source flow rate as well
as compressor frequency as independent vari-
ables. A detailed performance map covering the
range of operating conditions is provided by the
manufacturer of the heat pump that is used in the
system. The heat pump has a nominal heating
capacity of 45 kW with a COP of 3.82 at B0W35
and 102 Hz compressor frequency. The space
heat is controlled using a heating curve (a curve
describing how supply water temperature should
be set based on the outdoor air temperature) for a
heating system with design temperatures of
55/45 °C at a design ambient temperature of
−23 °C. “SH Load Equ” removes the heating
rate specified in the load file “SH Load” from the
space heating flow, while the two distribution
pipes are for all the three buildings and based on
the sizes, lengths and insulation standard in the
buildings.

The heat pump frequency is controlled using a
PID controller to supply the current flow tem-
perature according to the space heating curve. If

the maximum frequency does not give enough
heat, a Type 6 auxiliary heater with 200 kW
maximum heating rate adds heat in order to
generate the required flow temperature. This
auxiliary heater, representing the pellet boiler of
the real systems, is thus only used for space
heating, and supplies only as much heat as
required to match the space heating load. A small
buffer store of 370 L, modelled using Type 4, is
located in series between the heat pump and the
auxiliary heater.

The DHW of 2.5 m3 and the extra store for
excess PV in the form of heat (“PVxs store”) are
modelled with one Type 534 each, using five
zones and connections at the top and bottom. The
volume of the PVxs store is 3.5 m3 for the case
study. The U-value for the store heat losses is
calibrated to give the measured heat loss from a
typical DHW store at rated conditions. “DHW
Load” and “DHW” provide the load mass flow
rate at a time resolution of one minute together
with the cold water temperature that varies with
the seasons. The cold water is preheated in the
extra hot water store (“PVxs store”) in series with
the DHW store. DHW circulation is connected to
the DHW store and has pipes calibrated to give
losses of 0.57 W/m2 of living area, 2.2 kW in
total for the three buildings. The DHW store is
charged from the HP at full power using an
on/off controller designed to maintain the store at
the height of the sensor to between 51 and 56 °C.

Fig. 14.5 HVAC system modelling in TRNSYS
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During charging the three-way valves “HP split”,
“HP Tp”, “SHbypass1” and “SHbypass2” are
switched so as to send the flow from the heat
pump to the stores and for the space heating loop
to bypass the heat pump.

14.4.3 Storage of Excess PV
Production as Thermal
Energy in an Extra
Thermal Energy Storage

The HVAC model also reads in the electricity use
profiles for the building (flats and operational
electricity) and the EVs as well as the production
of the PV array, all with a time resolution of one
hour, which is also the time resolution of the PV
optimisation tool. The model then calculates the
excess PV power available for running the heat
pump, after use in the flats and for operational
needs. If the heat pump is already running to
supply space heat or to charge the DHW, no
action is taken and the system operates as normal.
If the heat pump is not in operation, the heat pump
is turned on and the flow is switched to charge the
PVxs store using the three-way valves “HP split”,
“HP Tp”, “PVxssplit” and “PVxs Tp”. The
compressor frequency is then controlled so that its
electricity load matches the available PV excess,
using a function with excess PV power and con-
denser inlet temperature as independent variables.
This is limited to the maximum compressor fre-
quency and continues until the PVxs store is fully
charged, 56 °C. The excess PV that is stored in
the form of heat, is thus only used for supplying
heat for DHW and can only be stored when there
is no “normal” need for space heating or for
charging the normal DHW store, and thus repre-
sents a conservative capability. The temperature
in the store is varying from close to that of the
mains cold water supply to 56 °C at the temper-
ature sensor when fully charged. Thus, the pre-
heating of hot water has to be achieved with a heat
exchanger to avoid legionella problems, the pre-
heated water being then heated to above 50 °C in
the main DHW stores.

14.4.4 Electric Vehicle Load
Generator

The EV load is generated by using the Grahn-
Munkhammar model (Grahn et al. 2013). It
simulates the EV home-charging based on stan-
dard settings of 0.2 kWh/km electricity use (in-
cluding losses) and 24 kWh battery capacity
available for trips, and a total distance driven per
year of about 12,200 km as a Swedish average
scenario. The used model considers the EV bat-
tery charging process is related to household
activities (i.e. away, sleeping, etc.). For example,
the EV owners usually charge the EVs after
returning home from work, and thus charging
process is usually activated in this period. The
household activities are first computed by a dis-
crete Markov-chain model. Then, based on the
obtained household activities, the usage of EVs
and the charging load profiles are calculated. The
state of charge (SOCi+1,j) of the jth EV battery in
the (i + 1)th time interval is calculated by
Eq. (14.9).

SOCiþ 1;j ¼
SOCi;j � fðv;Cs

i Þ if consuming
SOCi;j þCpDt if charging
SOCi;j else

8<
:

ð14:9Þ

When the EV is being used, the electricity
consumption fðv;Cs

i Þ is calculated based on the
EV velocity (v) and the season (represented by a
seasonal coefficient Cs

i ). When the EV is being
charged, the SOC of the battery will increase at a
constant charging rate of Cp(i.e. 2 kW used in
this study). Dt is the time step for calculating the
EV battery SOC. To prolong the service life of
battery, full charging/discharging cycles
should be avoided when using the battery, and
thus a minimal SOC value should be considered.
As depicted by Eq. (14.10) , the lower limit
of SOC is determined by a fraction pdod , which
defines the minimal depth of discharge (DoD).

pdodSOCmax � SOCi;j � SOCmax ð14:10Þ
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The EV load imposed on the building is then
calculated based on the charging power of EV
battery, as shown by Eq. (14.11).

Pi;j ¼ CP if charging
0 else

�
ð14:11Þ

Figure 14.6 shows the hourly EV charging
load in a typical day. The charging load is small
during daytime and reaches the minimum during
9:00–11:00, while it reaches the maximum at
night during 22:00–24:00. Note that in peak
demand time (i.e. between 22:00 and 24:00) the
EV demand is still lower than the charging power
of the EV plug (i.e. 2 kW), this is due to the fact
that the EV are not always charging
contemporaneously.

14.5 Boundary Conditions, Input
Parameters and Regulation
for PV Electricity Sharing

The simulation tool requests a series of input
parameters summarized in three categories in
Fig. 14.7. The main input is a 3D model
describing the building geometry and being used
to calculate the irradiation matrix. This is
expressed in W/m2 for every hour of the year,
and for each building unit surface. Every point
represents a solar collector with a given area and
is associated with an hourly irradiation. Hourly
weather data for Borlänge regional airport, from
the extended weather data set in TRNSYS, is
used for all stages of the process: building

simulation, PV optimisation tool and HVAC
system simulation. The site of the weather station
is roughly 45 km north-east of the building
cluster in Sunnansjö, and has a similar climate.
The average ambient temperature and annual
global radiation are given in Table 14.2 together
with key figures for the energy demands in the
case study.

The PV module efficiency data is provided by
LudvikaHem (i.e. the building owner) based on
field measurements. The values of parameters
related to economic analysis, including the
electricity price, PV system price and electric
storage price, are also provided by LudvikaHem.
The price of the electricity for the consumer is
assumed to be 0.16 €/kWh year round according
to a long-term contract stipulated by the building
owner. This arrangement is more profitable in
terms of PV profitability compared to a monthly
variable plan as, in the latter, the largest possible
earnings are in periods when the radiation is
unavailable. In a monthly variable plan the
months where most earnings are possible for a
PV system are only March and October. The
electricity that is not contemporaneously self-
consumed is assumed to be sent to the grid for
0.05 €/kWh. Nevertheless, it is assumed that the
price paid by the energy provider for the excess
PV electricity is going to decrease alongside the
lifetime of the system or at best stay the same.
For what concerns the EVs, the possibility to
charge two EVs will be guaranteed immediately
after the restoration project, nevertheless the
long-term level of penetration of the EVs is
unknown to this day. It is assumed that the
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Fig. 14.6 Average EV
charging load in one day
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maximum penetration possible for the electric
vehicle would be of one EV per family for a total
of 48 EVs. Different optimization is therefore
performed: with two EVs, with 25 EVs and with
48 EVs. Aside from these inputs, Tables 14.3 and
14.4 report the set of techno-economic parame-
ters required for PV and other components.

Figure 14.8 represents the variation of electric
demand due to the EVs on an annual basis and
for the average day. The EV charging load is not
much affected by the season in terms of cumu-
lative demand, shown in Fig. 14.8a. This is

because of two reasons: (1) The low operation
temperature in winter will reduce the battery
capacity, which can lead to reduced ranges.
However, by increasing the charging frequency
(i.e. how often the battery is charged) or the
average depth of discharge, the overall cumula-
tive charging loads (which can be considered
approximately proportional to the product of
ranges and charging frequency) are still likely to
be stable. (2) For the EVs used in cold regions,
large amount of electricity is needed for heating
the interior of the car, leading to reduced

Fig. 14.7 Inputs for the optimization tool

Table 14.2 Key figures
for the case study (all
annual values) with no PV
system

Quantity Value

Global radiation [kWh/m2] 971

Average ambient temperature [°C] 4.1

Space heating demand [MWh] 395

DHW demand [MWh] 80.5

DHW circulation demand [MWh] 17.7

Heat supplied by auxiliary heater [MWh] 214

Heat pump electricity [MWh] 78.2

Operational electricity [MWh] 42.5

Flat electricity [MWh] 89.0

EV demand (2 EVs) [MWh] 4.8
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available amount of battery-stored electricity for
EV motion. However, in Sweden such amount of
electricity is partly provided by the buildings (i.e.
the heating process occurs in the car park before
the EV usage), and the battery in the car does not
need to supply heat to heat up the car before a
journey. Since most of the electricity stored in
the EV battery is still used for motion in winter
seasons, the EV ranges will not be greatly
reduced because of the increasing heating needs
in Sweden. Please also note that even with
assumptions that lead to a significant amount of
heating by the car battery (greater winter EV
charge demand), the results of the study would
not change as this increased demand occurs only
during the months with very little PV production,
and when all PV can be used for other loads. In
annual cumulative terms, each EV absorbs little
over 1MWh so that the aggregated demand of 23
EVs requires an amount of energy that is almost
equal to 30% of the baseload. In the hourly
average load over the year, displayed in
Fig. 14.8b, it is visible that the EVs are adding

their demand mostly at night, and the additional
load thins out during the daytime (especially
during the late morning). In general, the annual
behaviour of the EV demand can be considered
advantageous for the PV installation, because the
PV produces proportion proportionally more
during the summer months when the rest of the
load demand is the least. Nevertheless, the
prevalence of the load at night risk to render the
PV less useful unless electric storage is installed.
On the other hand, an electric storage is extre-
mely unlikely to be profitable as there is probably
no over-production of PV electricity during the
winter months (thus forcing the storage to have
idle time and therefore reducing its profitability).

The construction of DC microgrid and the
sharing of PV power among different buildings
should obey the local regulation and policy and
additionally needs approval from the grid oper-
ator. Until now, although many countries permit
the feed-in of PV power to the power grid and
clearly established regulations, renewable energy
sharing among different electricity prosumers is

Table 14.3 Input
parameters of PV system

Input name Vvalue

Module efficiency 0.174

Mesh dimensions [m] 1.65 � 0.992

Performance ratio of the system at STC 0.8

Price of electricity sold to the grid[€] 0.05

Price of electricity bought from the grid [€] 0.16

Time horizon [years] 15

Cost of the finished PV system [€/kwp] 1420

Cost of the storage system [€/kwh] 670a

aUsed Tesla powerwall: 1 Powerwall = 13.5 kWh usable power and costs 7.030,00 €
(including taxes) + installation costs assumed 2000 € � 9.030,00 € which is ca. 670 €/
kWh

Table 14.4 Techno-
economic input parameters

Input name Min value Max value

Annual maintenance costs [€/kwp year]a 0 15

Linear annual growth of the electrical load 0 2

Linear annual efficiency losses 0.5 1

Annual discount rate 0 2

Linear annual growth of bought electricity 0 3

Linear annual growth of sold electricity −1 0
aThis cost does not include the substitution of inverters and batteries
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still not allowed and the related regulations are
very unclear. In terms of regulatory condition in
Sweden, DC micro grid has been deployed in
building sectors for promoting the utilization of
renewable energy in a few cases. When the local
micro gird consists of DC lines that directly
connect PV production plants, they are covered
by the exemption under § 22 (a) of the IKN
Regulation 2007:215 (MoIR 2013). While when
the local micro grid consists of lines connecting
buildings that are not equipped with PVs, the
situation is a bit unclear for sharing the produced
solar energy among buildings. A preliminary
ruling from the Swedish Energy Markets
Inspectorate is then needed by the grid owner for
considering approving an exception from the grid
concession. In this study, all the three buildings
are planned with PVs, so an exemption is
achieved according to the regulation, which
means it is possible to share the produced PV
electricity by micro grid among these three
buildings. Unfortunately, in many other Euro-
pean countries, due to the concern of system
reliability and safety, such micro grid application
and energy trading among different small elec-
tricity prosumers are still not allowed.

To estimate the impact of the possibility of
sharing electricity, the private consumption of
the flats in the cluster is assigned differently to
the three buildings. At first, the power demand is
assigned proportionally to the area (obtaining ca.
21 MWh/m2year), then three different occupancy
schedules have been assigned to the three

buildings. It is assumed that the building A is a
retirement home and has therefore a similar
occupancy to an hospital, while the other two
buildings are regular households with most of the
occupancy during the morning, evening and
night. To estimate the occupancy profile of the
three buildings, the schedules from Ahmed et al.
(2017) are used, and the resulting occupancy
profile of the whole cluster is shown in Fig. 14.9.
By assigning shares of the total demand pro-
portionally to the contemporary inhabitants, the
demand profile in Fig. 14.10 is obtained. Build-
ing B and C have a slight peak before 8:00 and a
sustained demand between 18:00 and 21:00. On
the contrary, the A building features a strong and
sustained demand between 10:00 and 16:00.

.

14.6 Optimization and Sensitivity
Analysis Results

In this section, the optimal configuration of the
PV system is shown in terms of capacity on the
different roofs and façades in the building cluster,
and different optimal PV configuration will be
shown following an increasing order in terms of
demand covered (see Fig. 14.11 and Table 14.5).

The first run of optimization (i.e. Scenario 1)
is performed using as electric demand: public
and private lights and appliances, electricity for
the operation of the condominium devices, heat
pump, heating of the DHW and two EVs. After

Fig. 14.8 Variation of building electric demand with EV demand considered a on annual basis and b in the average
day (i.e. hourly average values over the year)
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Fig. 14.9 Occupancy assigned to the three buildings in the cluster along 24 h (Building A is assumed in this
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Fig. 14.10 Electric demand of January the first and relative quota assigned to the three buildings during the 24 h

Fig. 14.11 Steps to produce the five optimal configura-
tions analyzed in the study: the baseload consists of public
and private lights and appliances, common operational

loads, heat pump demand, domestic hot water and two
EVs. The tone of color used in the chart is reported also in
the 3D representation of the different configurations
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that, an iterative optimization (i.e. Scenario 2) is
performed following the procedures described in
the Sect. 14.3.1 in order to add an extra thermal
storage for hot water. The iterative process is
useful because it enables the control strategy of
the heat pump to use the excess PV electricity
when this is available. Once the demand is
increased with the special additional thermal
storage, progressively more EVs will be added
(i.e. Scenarios 3 and 4) and the impact on the
KPIs is assessed. All the optimization process
explained in this section refers to an aggregated
electrical demand for the whole cluster, this takes
for granted that some form of electricity sharing
exists among the three buildings. The last opti-
mization (i.e. Scenario 5) explores the situation
in which there is no possibility to exchange flat
electricity among the buildings (except opera-
tional electricity). The positive impact of the
energy sharing technology on the performance of

the PV system is measured through the difference
in optimal capacity and in performance KPIs.

14.6.1 Design Results of the Coupled
System for the Base
Load Scenario

The first run of optimization is the one that
includes the smallest possible electric demand, in
this scenario no extra thermal storage for the
excess PV electricity is included and the number
of EV is only the minimum of two in the whole
cluster of buildings. Figure 14.12a shows the
optimal configuration of PV modules over the
roof and façade of the cluster. The screenshot on
Fig. 14.12b shows in color-coded disks the
annual cumulative irradiation over the different
façades. The southern slope of the roof is clearly
more irradiated than the rest of the surfaces made

Table 14.5 Configurations of systems and demands in each scenario

ID Scenarios Energy sharing Thermal energy storage EV number

1 Base case Yes No 2

2 TES integrated Yes Yes 2

3 Medium EV penetration Yes Yes 25

4 High EV penetration Yes Yes 48

5 Single building optimization No No 2

6 Aggregated demand (same as Scenario 2) Yes Yes 2

(b)(a)

Fig. 14.12 a The optimal configuration for the baseline
case, most of the system is installed in the southern slope
of the roof and on the southern façade; b Color-coded

depiction of the annual cumulative irradiation, despite the
higher area installed the façade is less irradiated overall
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available for a PV system averaging just below
1200 kWh/m2year. The east and west slopes are
a bit better irradiated than the south façades,
despite this, a significant portion of the system is
installed on the southern façade while much of
the roof is still available. The southern façade
turns out interesting for the optimization algo-
rithm as it enjoys a more homogeneous irradia-
tion throughout the year, during the winter
season the solar angle is closer to the horizontal
than the vertical and irradiates the southern
façade more than the roof.

In Fig. 14.12a the modules on the east and
west slopes of the roof have a dispersed pattern,
because the placement of the modules is chosen
randomly depending on areas with essentially
equal radiation. Thus, the PV modules placed
randomly by tool, which can be placed together
in practice. In the case shown in Fig. 14.12b, the
result of the tool is interpreted as follows: the
southern slope is the most profitable surface and
should be exploited as much as possible (ca.
45 kWp out of 65 kWp); the south façade should
be used (ca. 6 kWp) even if large portions of the
roof are still available, but the lower parts of the
two façades should be avoided because of
shading, while the east and west slopes of the
roof should be used (ca. 14 kWp) and the exact
position of the modules is not important from an
optimization point of view. Table 14.6 shows the
main KPIs reached by the optimal system for the
baseload scenario.

Overall, the collection of KPIs can be con-
sidered satisfying, in fact it shows that it is
possible to cover (contemporaneously to the
production) ca. 20% of the electric demand of the
cluster while retaining an excellent level of self-
consumption of ca. 77%. Despite being at high
latitude, the system reaches better results com-
pared to other studies such as reference
(Luthander et al. 2019). The reason for this might
be the aggregation of the demand. A single-
family house has a demand profile that is really
hard to match for a PV system lacking storage (or
with minor storage), this is due to the strong
variability of the load that is characterized by an
extremely low baseline and huge “spikes” or
“peaks”. The positive effect of the aggregation of
the load is quantitatively discussed in
Sect. 14.6.4.

It can be noticed that the optimal system often
includes very small capacities of electric storage
(see Tables 14.6, 14.7, 14.8 and 14.9), these
capacities are trivial compared to the generation
and loads, so cannot be making any meaningful
contribution to the system. The result should be
interpreted in general as the fact that the electric
storage is unprofitable under these techno-
economic conditions, nevertheless are reported
for the sake of completeness. To avoid this
aspect, it suffices to increase the capacity step for
the optimization of the electric storage, in this
study the capacity step used was 0.1 kWh.

Table 14.6 Main KPIs
reached by the optimal
system

KPI Value

Installed capacity [kWp] 65.5

Installed storage capacity [kWh] 0.3

Installed area [m2] 376.5

Capacity of electric storage [kWh] 0.3

System cost [€] 93,017

Expected self-consumed-LCOE [€ cent /kWh] 17.9

Expected LCOE [€ cent /kWh] 14.5

Self-consumption [%] 76.9

Self-sufficiency [%] 20.4

Annual cumulative production [kWh] 56,798

Annual cumulative balance production/consumption 0.3
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It should be noted that some external users
might consume the electricity that is not self-
consumed, this is out of the scope of the system.
Furthermore, in a future where PV will become
more pervasive, it is unrealistic to expect some
demand by neighbouring clusters in over-
production times. Compared to the present
price of the electricity, the LCOE of the self-
consumed fraction would be 12% higher (at
almost 0.18 € against the present 0.16 €) while
the whole electricity LCOE would be about 10%
lower. Given the present costs and the economic
modelling performed in this study, the tool

suggests installing a very minor electrical energy
storage quantity.

14.6.2 Impact of Thermal Storage
Capacity on the PV
Design and Overall
Performance

The role of TES is to increase the self-
consumption by enabling some part of the elec-
tricity to be used in a non-contemporaneous way.
In Sect. 14.3.1, an iterative series of

Table 14.7 KPIs at the end of the three optimization processes

KPI 1st iteration 2nd iteration 3rd iteration

Capacity [kWp] 65.5 79.2 79.2

Battery Storage capacity [kWh] 0.3 0.0 0.4

Self-sufficiency [%] 20.4 24.8 25.1

Self-consumption [%] 76.9 78.3 79.4

LCOE self [€ cent/kWh] 17.9 17.8 17.7

LCOE [€ cent/kWh] 14.5 14.8 14.8

Residual demand [MWh] 170.8 160.1 159.2

Table 14.8 Various KPIs at the three levels of EV presence

KPI 2 EV 25 EV 48 EV

Installed capacity [kWp] 79.2 88.3 96.0

Installed storage capacity [kWh] 0.4 0.2 0.1

Expected self-consumed-LCOE [€ cent/kWh] 17.7 17.7 17.6

Self-consumption [%] 79.4 80.3 80.9

Self-sufficiency [%] 25.1 21.8 19.8

Annual cumulative demand [MWh] 213 274 330

Table 14.9. Selection of KPIs due to the impact of electricity sharing within the cluster

KPI Building A Building B Building C Disaggregated Aggregated

Capacity [kWp] 23.1 24.5 14.5 62.1 79.2

Battery Storage capacity [kWh] 0.0 0.4 0.0 0.4 0.4

Self-sufficiency [%] 26.3 22.3 13.6 20.3 25.1

Self-consumption [%] 93.8 71.6 93.1 86.1 79.4

LCOE self [€ cent/kWh] 16.9 18.3 17.1 17.5 17.7

LCOE [€ cent/kWh] 16.2 13.9 16.1 15.4 14.8

Residual demand [MWh] 46.8 55.7 67.0 169.5 159.2
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optimizations was described to be able to use the
excess PV electricity. The ability of transforming
the excess PV electricity in thermal energy gen-
erates an increase of the electric demand during
the times of over-production. This encourages
the next optimization process to install a higher
capacity restoring the situation of overproduction
in some hour of the year (HOY). The process is
then repeated with the aim to exploit the over-
production, nevertheless the average temperature
of the storage is higher this time as the thermal
need is limited, so the increase in electric demand
is minor. The following optimization did not
yield any increase of capacity and the process
could be then considered converged. Table 14.7
shows the main KPI’s for the first, second and
third optimization. A volume of 3.5 m3 was used
in this case study for the PV excess thermal store.

The second iteration generates a large increase
in the optimal PV capacity compared to the
baseload scenario (+21%): this is not due to the
increase in electric demand (the overall demand
is basically unaltered as the increase during the
central hours is compensated by a reduction in
the evening), but due to the improved matching
of the demand with PV production. The electric
demand resulting from the use of excess PV
electricity presents a bump during the central
hours of the day. This feature makes it easier for
the PV to match the electric demand and allows
the optimization algorithm to install a larger
capacity of PV. The two values for the LCOE
shows how the iterations leave the LCOE almost
unaltered. Nevertheless, it is possible to notice
that the LCOE associated with the self-consumed

quota is reducing while the overall one is
increasing. This is not surprising since the self-
consumption grows along the iterations boosting
the cumulative electricity self-consumed and a
larger system forces the algorithm to use position
that are slightly less irradiated and therefore
reduces the overall yield. The main result is the
reduction in residual electric demand (i.e. the part
that cannot be covered by the PV sys-
tem + thermal storage) that achieves a −6.8%
reduction over the whole process of roughly 11.6
MWh/year. Most of the reduction in demand is
accomplished in the 2nd iteration when the PV
capacity increases, but some reduction happens
in the 3rd iteration and therefore is due solely to a
better contemporaneity between production and
consumption.

14.6.3 Impact of Electric Vehicle
Variation on the PV
Design and Overall
Performance

PV optimization with the impact of variations of
EV is shown in Fig. 14.13. The southern portion
of the roof is the first one to be occupied by the
PV system because it is the mostly irradiated
part. With increasing presence of EVs, it is vis-
ible how the PV system grows in size. Despite
having slightly higher irradiation compared to
the façades, the east and west portions of the roof
are not entirely utilized for the application of PV
by the algorithm, the southern façades are used
instead. The reason for this noticeable behaviour

(b) (a) (c) 

Fig. 14.13 PV visualization with impact of variation of EV a two EV case; b 25 EV case; c 48 EV cases
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lies probably in it having a better performance
during winter months, when the sun angles are
closer to the horizontal and the electric demand is
more prominent, the façade integration results
therefore to be more profitable, thus prioritized
by the algorithm.

Table 14.8 shows various KPIs at the three
levels of EV presence. Despite a noticeable
growth in the installed capacity, the larger
growth of the demand forces the share of PV
electricity to go down. There is a slight increase
in self-consumption (not surprising considering
that the whole system shifts towards larger load
and larger capacity), thus a small reduction in the
LCOE of the self-consumed electricity.

The results from this study are consistent with
other similar analysis in Sweden. For instance, in
Munkhammar et al. (2013) under different sce-
narios of PV capacities and EV penetrations, the
self-sufficiency values varywithin 20–30%,which
is close to the values calculated in this study.

14.6.4 Impact of Electricity Sharing
on the PV Design
and System
Performance

Using the optimization technique, the difference
in performance between the optimal configuration
for each building and the one for the whole cluster
are addressed. The optimization for each building
separately is the condition that would apply in the
case in which there is no means of exchange of
flat electricity among the different buildings
within the cluster. In the case of the same heating
demand and operational electrical load,
Table 14.9 shows a selection of KPIs for two
cases where the possibility to exchange flat
electricity is extremely favourable for the PV
market: (1) aggregated electricity sharing as a
cluster, and (2) disaggregated cluster: no elec-
tricity sharing among neighbour buildings. In this
example the aggregated cluster shows in fact an
optimal installed capacity of a whopping 27.5%
higher compared to the disaggregated one. This is

because energy sharing makes the PV system
more versatile (the whole cluster is more efficient
at consuming the electricity produced on-site),
hence improving its economic value. Because of
the fitness function, where the self-sufficiency
should be maximized, an increased value trans-
lates into a larger investment with the aim of
increasing self-sufficiency, thus producing a lar-
ger overall PV capacity. This phenomena does
not disagree with other studies such as reference
(Shen and Sun 2016), where is shown that a
smaller system can achieve the same level of
performance of a larger one if sharing is taken
into account. Also, in this case energy sharing
would have allowed a smaller system to achieve
the same performance of a larger one in a disag-
gregated scenario: but the aim is not to maintain
the performance, but rather to out-perform it at
the same price. In the disaggregated case, Build-
ing A has a better matching (better contempo-
raneity) because of the shape of the load matches
the PV generations better (see Fig. 14.10).
Building B has better yield thanks to the south
slope and can afford to put some storage and
highest capacity. Building C does not have a good
yield nor contemporaneity. The higher capacity
does generate more hours of over-production
(self-consumption is reduced of ca. 7%), but the
increase in capacity is more than enough to offset
this effect causing an increase of the self-
sufficiency of ca. 24%. These KPIs aside, also
the LCOE has a benefit (in both ways it can be
calculated) and the residual demand is reduced of
about 6%.

Looking at the geometric patterns of installa-
tion (as shown in Fig. 14.14), it is visible that the
south slope of the roof is not completely occu-
pied by the PV system in the disaggregated case,
this is an obvious source of inefficiency as that
slope is the most irradiated part of the building
and even if completely covered with PV does not
cause significant over-production if applied to
the whole cluster. In the disaggregated case, the
possibility of installation on the southern slope is
obviously limited by the lack of sufficient
demand in the underlying building.
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14.7 Discussion and Outlook

For the demonstration building in Sweden, the
most profitable surface for installing PV panels is
the southern slope, since it is more irradiated
(*1200 kWh/m2year) compared with the other
surfaces that are available for PV panel installa-
tion. The upper parts of the two south façades are
the second most profitable locations for installing
PV panels. This is because the south façades are
irradiated more homogeneously throughout the
year. The east and west slopes are the third most
profitable surface for installing PV panels since
they are not shaded and have relatively large
solar irradiation.

The application of Energy Hub DC micro grid
in buildings enables an easier, more convenient
and more energy-efficient way for utilizing on-
site produced renewable energy. This will help
promote the deployment of renewable energy
systems in the building sector. More importantly,
the Energy Hub DC micro grid provides a plat-
form for flexible energy sharing between differ-
ent buildings. By enabling energy sharing among
buildings, the buildings with surplus renewable
energy generations can send their renewables to
buildings with insufficient supply, thus achieving
an improved match between the district-level
renewable supply and electrical demand. The
improved match helps boost the SC. Note that
the significant increase in SC is contributed by
the sharing mechanism at almost no extra cost,
and thus should be possible to implement prof-
itably in many cases, if national regulations allow
this. Thus, the Energy Hub DC grid has huge
potential to be applied in large scales for

improving the SC of buildings. This is in line
with Luthander et al. (2016), who investigated
the impact of placement of meter and battery
storage for a group of buildings and showed that
centrally placed battery and metering for the
buildings as a cluster resulted in increased self-
consumption of the cluster compared to the case
with buildings individually. It also showed that
much less curtailment would be required if large
amounts of PV were to be installed, and power
input to the grid were to be limited. In this study,
the considered three buildings all belong to res-
idential buildings, which have similar occupancy
schedules and load patterns. Such similarity
limits the benefits from energy sharing, since the
buildings may have surplus renewable genera-
tions or insufficient supply in the same period.
When different types of buildings with different
demand patterns are connected in one Energy
Hub DC grid, more performance improvements
in SCE are expected to be achieved. For instance,
putting an office building and a residential
building in one cluster, the potential renewable
energy shortage of the office building during the
daytime can be compensated by the surplus
renewables from the residential building (Huang
and Sun 2019).

Thermal energy storage is an efficient solution
to improving the renewable energy self-
consumption rate of buildings. The integration
of thermal energy storage, together with appro-
priate control, will lead to increase in the optimal
capacity of PV systems that maximizes the SC,
as the charging of thermal energy storage is
treated as extra electrical demand. By changing
the shape of the electrical demand to match the
renewable energy generations, an increased SC

(b)(a)

Fig. 14.14 PV visualization with impact of electricity sharing a Aggregated case; b Disaggregated case
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can be achieved (i.e. the self-consumption
increased from 77 to 79.4%) at the same time
as the total installed capacity increased.
Figure 14.15 presents the KPIs of the three iter-
ations (refer to Sect. 14.6.2) using the scheme
proposed in Luthander et al. (2019), as the
authors points out the iteration 2 and 3 are
aligned respect to the origin of the axes and the
increase in self-production is therefore propor-
tional to the increase in self-consumption.

It should be noted that this study is a single-
objective optimization by the basic genetic
algorithm, and previous research has shown that
significant improvements can be achieved with
more advanced algorithms (Psimopoulos et al.
2019), meaning that the results shown here are
conservative compared to what can be achieved
in practice. However, if thermal storage of excess
PV in the form of heat is to be included in the PV
optimisation tool, only basic algorithms will be
feasible, together with a simplified model of the
heat pump system. The energy sharing is likely
to help reduce the capacity of TES to some
extent. When energy sharing is enabled in the
building cluster, the required optimal capacity of
TES can be reduced, compared with the scenario
in which energy sharing is not allowed. This is
because the district-level electric demand can
match the district-level renewable supply better
as discussed previously and shown by Luthander
(2018), and thus a smaller sized TES is needed to
compensate the energy mismatch. The integra-
tion of TES does not affect LCOE too much, as
both the renewable energy generations and the

costs increase. Another potential application of
the thermal energy storage is to conduct demand
management in response to the varying electric-
ity prices. By storing the grid power in low-
electricity-price period in advance, economic
savings can be achieved for the building cluster
(Psimopoulos et al. 2019).

With increased EV penetration, the cost-
optimal PV capacity will also increase due to
the increased electrical demand. Increasing the
number of EVs will lead to a slight increase in
the SC, as the whole system shifts towards larger
load and larger capacity. The EV profiles used
have only a small seasonal variation. This is not
always correct for the cold Swedish winter cli-
mate, when a significant amount of heating is
required for the interior of the car, which
increases the amount of electricity used for a
given journey. How large this heating demand is
depends on the duration of the journey and not its
distance. The electricity demand of the buildings
used includes electrical heating for cars in the car
park before use, as is common practice in Swe-
den, so the battery in the car does not need to
supply heat to heat up the car before a journey.
For the location of the cluster, there is no traffic
congestion for normal journeys and thus the
energy use for motion will be much higher than
that for heating, even in winter. Additionally, in
the winter the electric load is far greater than the
PV production, so any differences of EV load at
this time of year would have very little impact on
the results. In each hour of a day, the charging
demand varies dramatically, reaching peaks at
night and valleys during daytime. Such daily EV
demand profiles have an opposite trend as the PV
power generation, which reaches peak in the
daytime and becomes zero at night. Thus, the
increase of EV numbers will not promote a
higher contemporary self-consumption rate for
PV electricity. Similar to the application of
Energy Hub DC micro grid, in the residential
area of Sweden the particularly negative inter-
action between PV and EVs suggests to replicate
the optimization process in other building clus-
ters, instead of only residential buildings. The
relation between PV and EVs could be more
synergic in offices and commercial activities due

Fig. 14.15 Self-consumption and self-sufficiency
scheme as proposed in Luthander (2018), the diameters
of the bubbles represents the capacity of the PV system
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to the better contemporaneity of production and
demand, as EV’s used for commuting are logi-
cally charged when people are at work. This
study did not consider the scenario that EV bat-
teries are allowed to charging the power grid and
thus can help alleviate the grid stress in the peak-
demand periods (Sun et al. 2018). In such sce-
nario, EVs are used as mobile electrical energy
storage which is charged in buildings with sur-
plus renewable production and discharges in the
buildings with insufficient renewable supplies
(Barone et al. 2019). From this aspect, the
deployment of EVs can help further increase the
renewable energy self-consumption at the build-
ing cluster level.

According to 2030 Framework for climate
and energy (Council 2014), the European com-
mission bids to achieve a 32% share of renew-
able energy source (RES) by 2030. Increasing
the capacity of renewable energy systems can
help achieve this goal. However, the increased
capacity will cause issues such as high invest-
ments and over-production. The energy concepts
introduced in this study, such as energy sharing
and TES integration, represent good solutions for
the buildings in Sweden to achieving this ‘32%
share of renewable energy source’ target. They
should also be easy to implement in many other
countries on a technical level, but regulations
would need to be revised in order to allow power
sharing among buildings with or without PVs.

14.8 Conclusions

This chapter has presented a case study about
transforming existing building cluster into elec-
tricity prosumers in Sweden. The core energy
concepts, including click-and-go PV, centralized
variable-speed heat pump, Energy Hub direct
current microgrid that can share power between
buildings and hot water thermal storage, have
been introduced and applied for retrofitting an
existing building cluster. An optimization method
has been developed to design the capacity and
positions of PV modules on each building, which
aims at maximizing the self-consumed electricity

under the constraint that the system has a positive
lifetime net present value (and thus it is prof-
itable). Based on the developed method, the
impacts of thermal energy storage, electric vehi-
cle penetrations, and energy sharing on the opti-
mal capacity and positions of PV panels have
been investigated. The results have revealed how
those factors influence the design of PV systems
and the system techno-economic performance,
and thus help promote the PV deployment. More
importantly, this study has demonstrated the
feasibility for transferring the existing Swedish
building cluster into smart electricity prosumers
with higher self-consumption rates and energy
efficiency and more intelligence, which offers
good solutions for Sweden to achieving the ‘32%
share of renewable energy source’ target. The
major findings are summarized as follows.

• The annual cumulative solar irradiation and
homogeneity of irradiation are two significant
factors affecting the PV power self-
consumption, and thus they should be con-
sidered in the selection of locations for PV
panel installation.

• The energy sharing can significantly improve
the renewable energy self-consumption. The
self-consumption could reach as high as 77%
while maintaining a self-sufficiency above
20% in the baseline case, which is much
higher than other studies at similar high lati-
tude. This is because the aggregated electrical
demand of multiple buildings eliminates the
huge peaks featured by single building’s
demand, and thus can better match the PV
power generations.

• The integration of thermal energy storage,
together with suitable control for storing heat
using PV excess production, will lead to
increase in the optimal capacity of PV systems,
as charging of thermal energy storage will
increase electrical load. Due to an increased
match between the electrical demand and
power generation, the integration of thermal
energy storage is beneficial for increasing
renewable energy self-consumption, i.e. self-
consumption increased from 77 to 79.4%. The
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integration of thermal energy storage does not
affect levelized cost of electricity too much, as
both the power generation and the costs
increase.

• The integration of electric vehicles will lead to
increase in the optimal capacity of PV systems
that maximizes the self-consumption, in this
case study the self-consumption rate increased
from 79.4 to 80.9% when EV number
increased from 2 to 48. Meanwhile, due to the
increased self-consumption, the levelized cost
for the self-consumed electricity will be
reduced slightly.

• Aggregating the building demand and supply
by enable energy sharing will lead to increase
in the optimal capacity of PV systems that
maximizes the self-consumption rate, since
energy sharing makes the PV system more
versatile, and thus the whole cluster is more
efficient at consuming the electricity produced
on-site. The self-consumption will be reduced
(i.e. 7.8% decrease), but this will be com-
pensated by a dramatic increase in the self-
sufficiency (i.e. 23.8% increase). The leve-
lized cost of electricity is not affected by
aggregating the building demand and supply.

In this study, the considered system is one
centralized heat pump-thermal storage system for
the three building. The energy sharing control is
relatively easy as just one set of system needs to
be controlled. When buildings have their own
heating and storage systems, the district-level
collaborative controls will become difficult.
Future work is needed to develop advanced col-
laborative control strategies for building clusters,
which can globally coordinate multiple systems
and demands. One limitation of this study is that
the thermal storage cost is not considered in the
optimization. Future work will take into account
storage costs for a more comprehensive opti-
mization. Furthermore, the effect of the tech-
nologies analysed in this study could be as well
investigated in terms of specific CO2 emissions
[kg CO2-eq/MWh] (Huang et al. 2019).
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15Genetic Algorithm for a Coordinated
Control to Improve Performance
for a Building Cluster with Energy
Storage, Electric Vehicles,
and Energy Sharing

Pei Huang and Xingxing Zhang

Abstract

Existing studies have developed some
advanced building side controls that enable
renewable energy sharing and that aim to
optimize building-cluster-level performance
via regulating the energy storage
charging/discharging. However, the flexible
demand shifting ability of electric vehicles is
rarely considered. For instance, the electric
vehicle charging will usually start once they
are plugged into charging stations. But, in
such charging period the renewable generation
may be insufficient to cover the EV charging
load, leading to grid electricity imports. Con-
sequently, the building-cluster-level perfor-
mance is not optimized. Therefore, this study
proposes a coordinated control of building
prosumers for improving the cluster-level
performance, by making use of energy sharing
and storage capability of electricity batteries in
both buildings and EVs. An EV
charging/discharging model is first developed.
Then, based on the predicted future 24 h

electricity demand and renewable generation
data, the coordinated control first considers
the whole building cluster as one ‘integrated’
building and optimizes its operation as well as
the EV charging/discharging using genetic
algorithm. Next, the operation of individual
buildings in the future 24 h is coordinated
using nonlinear programming. For validation,
the developed control has been tested on a real
building cluster in Ludvika, Sweden. The
study results show that the developed control
can increase the cluster-level daily renewable
self-consumption rate by 19% and meanwhile
reduce the daily electricity bills by 36%
compared with the conventional controls.

Keywords

PV � Electric vehicle � Energy sharing �
Building cluster � Coordinated control

15.1 Introduction

Buildings represent large energy end-users
worldwide (Zhang et al. 2020). In the E.U. and
U.S, buildings currently consume over 40% of
total primary energy usage (Cao et al. 2016).
Renewable energy, which has much less carbon
emissions and relatively lower costs compared
with the conventional fossil fuel-based energy,
offers a promising solution to meeting the large
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energy needs in the building sectors (Merrill
et al. 2017). In this regard, distributed energy
systems, such as PV panels, have gained popu-
larity and are now widely installed in buildings
(Zhang et al. 2016). For instance, the Swedish
Energy Agency has set a target for 100%
renewable electricity production by 2040, to
which building integrated PV systems are plan-
ned to contribute 5–10% in electricity generation
(Agency 2017). The integration of distributed
energy systems has promoted the transformation
of buildings’ role from energy consumers to
energy prosumers, i.e. energy consumers who
produce energy for their own consumption using
distributed energy technologies (Lovati et al.
2020). A popular type of energy prosumer is the
zero energy buildings (ZEBs) (Huang et al.
2018a), which produce the same amount of
energy as they consume. The transformation of
buildings’ role into energy prosumers also pro-
vides opportunities for collaborations among
buildings to improve the overall cluster-level
performances (Huang and Sun 2019a). When
multiple building prosumers are involved in a
building cluster, they can share their excessive
renewables with others with insufficient genera-
tions (Fan et al. 2018). Such energy sharing can
help improve the building-cluster-level renew-
able self-consumption rates and thus reduce the
grid power usage (due to an increased share of
renewable energy utilization). A study conducted
by Luthander et al. (2016) shows that that even a
simple energy sharing (i.e. aggregate electricity
demand and supply) among 21 houses in Sweden
can easily improve the PV power self-
consumption by over 15%. When there is
shared energy storage, the improvement in PV
power self-consumption can reach 29%.

To achieve energy sharing among buildings,
existing studies have developed a number of
advanced controls. For example, Odonkor et al.
proposed a control method of ZEBs using genetic
algorithm and Pareto decision making based on
an adaptive bi-level decision model (with a
facilitator agent at cluster level and local systems
at single NZEB level) (Odonkor and Lewis
2015). In such bi-level decision model, the
individual building’s systems (i.e. individual PV

system and battery) are in the first level, and the
centralized cooling system as well as an ice
storage system are in the second level. Fan et al.
proposed a collaborative demand response con-
trol of zero energy buildings for enhancing the
building-cluster-level performances. In their
method, the control of each building was con-
ducted in sequence, and the optimization of one
building’s operation was based on the previously
optimized buildings’ operation (Fan et al. 2018).
In each optimization, the daily hourly
charging/discharging rates of the battery are set
as variables to be optimized, and the economic
cost and grid friendliness are set as the objective
function. Prasad and Dusparic developed a Deep
Reinforcement Learning based method for ZEB
community (Prasad and Dusparic 2019).
The ZEB community is modelled as a multiagent
environment, where each agent represents a
building. Every agent learns the optimal beha-
viour independently and is entirely responsible
for making energy transactions on behalf of that
building. The abovementioned controls optimize
the building cluster performance in a bottom-up
way, and they merely perform very limited col-
laborations among buildings.

With the purpose of maximizing the energy
sharing within a building cluster, researchers
have developed controls that directly use the
building-cluster-level performances as the opti-
mization targets. For instance, Gao and Sun
(2016) developed a genetic algorithm based
coordinated demand response control in which
all the storage systems’ charging rates were
optimized simultaneously. Similarly, considering
the problems caused by the independent micro-
grids operation, Zhang et al. (2018) proposed a
coordinated control in which a cluster-level
controller (i.e. an aggregator) was utilized to
simultaneously manage local energy transactions
among microgrids and energy exchanges with
the grid. Both these two controls are easy to
implement and effective in improving building-
cluster-level performance. But with the increase
of the number of buildings, such a straightfor-
ward coordination will face too many parameters
to be optimized, causing excessive computation
load. Such excessive computation loads make the
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straightforward method unfeasible to be applied
in large NZEB clusters. To address the large
computation, Huang et al. developed a top-down
control for a cluster of building prosumers
equipped with electrical energy storage system
(Huang et al. 2018b). In their study, the optimal
performances that can be achieved are first
searched by advanced searching algorithm. Then
the optimal performances at the top-level are
divided into separate goals for each individual
building at the bottom-level. Compared with the
individual controls, their method can increase the
daily load coverage by renewable energy by as
much as 45%, reduce the daily peak energy
exchanges with the power grid by as much as
80%, and meanwhile significantly reduce the
daily operational costs. Similarly, in Huang and
Sun 2019b a three-step demand response control
algorithm is developed considering the dynamic
pricing. Such control can flatten the electricity
demand profiles via properly coordinating single
buildings and thus maximize the benefits of both
buildings and the power grid. Taking into
account of the demand prediction uncertainty, in
Huang and Sun 2019c a robust collaborative
control is developed. Such control identifies the
optimal operation strategy under the predicted
uncertain ranges of demand, and thus it can
maximize the renewable energy sharing robustly.

These existing controls can effectively
improve the performances at building cluster
level. However, electric vehicles (EV), which
also play an important role in the building cluster
scale energy systems, are usually considered as
non-scheduled electrical loads (such as lighting)
and their flexible demand shifting ability is rarely
used (Taşcıkaraoğlu 2018; Huang et al. 2019).
As a result, the flexible demand shifting ability of
EVs are rarely considered together with the
building control, leading to limited performance
improvements at building cluster level (Barone
et al. 2019; Dallinger et al. 2013). For instance,
in practice the EV charging will start once they
are plugged into charging stations. However, in
such charging period the renewable generation
may be insufficient to cover the EV charging
load, leading to grid electricity imports. On the
other hand, when there is surplus renewable

generation, the EVs cannot be used as electricity
storage if they have already been fully charged,
leading to the surplus renewable energy exports.
As a result, the overall building-cluster-level
performance is not fully optimized.

The EV deployment is continuously increased
and many governments have established policy
or goals to promote the EV deployment. For
instance, the French government set a target of 2
million EVs in 2020 (Merten et al. 2012). The
Swedish government has set a goal that the
vehicle fleets should be 100% independent of
fossil fuel by 2030 (a large percentage should be
achieved by EV deployment) (Xylia and Silveira
2017). The U.S. Federal government has enacted
policies and legislations to promote the U.S.
market for EVs, such as improvements of tax
credits in current law, and competitive programs
to encourage communities to invest in infras-
tructure supporting these vehicles (Agency
2010). The number of EVs on the road is pro-
jected to reach 18.7 million in 2030, up from
slightly more than 1 million at the end of 2018
(Cooper and Schefter 2018). In the future, due to
the large penetration, EVs will have large
impacts on the grid power demands. Thus, it is
necessary to make use of their potentials in
demand regulation in the power grid and district
energy systems.

By properly scheduling the EV charging
loads, the batteries in EVs can be used as flexible
energy storage to help regulate the electricity
demands in the power grid. Existing studies have
also developed some advanced controls for EVs
at both individual level and aggregated level. At
individual level, Islam et al. proposed a coordi-
nated EV charging control based on a correlated
probabilistic model of EV charging loads con-
sidering the stochastic charging behaviour
(Shariful Islam et al. 2019). The charging control
optimizes the power factors of PV and battery
energy storage system to enhance the quality of
service by minimizing the probability of voltage
and current noncompliance. The application of
the developed control on a three-phase IEEE 37-
bus unbalanced distribution system using the real
data of vehicles and solar PV shows it is effective
in providing more quality of service. At
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aggregated level, Geth et al. developed a coor-
dinated charging control for a number of EVs
(Geth et al. 2010). In their control, a vehicle
owner first indicates the point in time when the
batteries should be fully charged. Then, the
aggregator collects this information and calcu-
lates when each EV can start charging, based on
two rules: (i) charging is most economically
when the total demand (including the residential,
industrial and EV consumption) is low, and (ii)
the EVs can be charged during working hour in
the working places. Case study shows that the
coordinated charging can effectively decrease the
peak load, as the coordination makes the charg-
ing load profile much flatter. Similarly, Usman
et al. proposed an automated coordinated control
of EV fleets, which can plan the charging strat-
egy at the cheaper moments while keeping the
vehicle charged enough to complete its sched-
uled trips (Usman et al. 2016). Their control uses
a grid agent to grant tokens to the EVs in idle
state based on the grid electricity prices. By
shifting charging loads to low electricity price
period (usually with low aggregated electricity
demands in the power grid), this control can
effectively increase the match between the
available power and the consumed power. In
(Kam and Sark 2015), three different smart EV
charging control methods were proposed for
increasing PV power usage in a microgrid: real-
time charging based on PV power sufficiency;
real-time charging based on PV power suffi-
ciency and with vehicle-to-grid enabled (i.e.
vehicle can discharge power back to grid); and
linear programming based optimization (i.e.
optimize all EVs’ charging based on PV power
production on a daily basis). Their study shows
that coordinated EV controls can increase the PV
power self-consumption by 13*38% and reduce
the peak electricity demand by 27*67%. In this
study, the optimization at the building side (e.g.
battery charging/discharging and energy sharing)
was not considered. Fachrizal and Munkhammar
(Fachrizal and Munkhammar 2020) developed a
centralized smart EV charging scheme for a
residential building cluster, which optimizes the
charging rates of all the EVs simultaneously
considering the interaction of individual EVs and

PV power production. This study innovatively
considered EV smart charging in improving
building-cluster-level performance. However,
their study considers all the buildings in the
cluster as one ‘aggregated’ building for simplic-
ity, in which the operation of individual build-
ings is neglected. Such a simplification may not
be practical. The abovementioned studies can
effectively improve the economic performances
of EV or EV fleets. However, these studies typ-
ically consider EVs as a separate role in the
urban energy system and thus neglect their inte-
gration with the building controls. In the future
scenario with increased number of building pro-
sumers and EV penetration, EV control not
integrated with building prosumers controls (i.e.
buildings’ energy sharing control) will limit the
overall performance improvement potentials.

To sum up, existing studies have developed
some advanced building side controls that enable
renewable energy sharing and that aim to opti-
mize building-cluster-level performance via reg-
ulating the energy storage’s charging/
discharging. However, the flexible demand
shifting capability of EVs, which has been pro-
ven effective in enhancing building cluster-level
performance [e.g. increase PV power self-
consumption by over 10% (Fachrizal and
Munkhammar 2020), reduce peak demand by
37% (Kara et al. 2015)], is not considered in the
cluster-level controls. Therefore, this study pro-
poses a coordinated control of building cluster
with both energy sharing and the EV charging
considered, with the purpose of improving the
cluster-level performance by taking advantage of
energy sharing and storage capability of elec-
tricity batteries in both buildings and EVs.
An EV charging/discharging model is first
developed, and then a coordinated control is
developed for building cluster with the energy
storage, EVs and energy sharing considered.
Based on the predicted future 24 h electricity
demand and renewable generation data, the
coordinated control first considers the whole
building cluster as one ‘integrated’ building and
optimizes its operation as well as the EV
charging/discharging using genetic algorithm.
Then, the operation of individual buildings in the
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future 24 h is coordinated using nonlinear pro-
gramming. For validation purpose, the developed
control has been tested using the energy demand
and supply data on a real building cluster in
Ludvika, Sweden. The major contributions of
this study to the subject have also been summa-
rized and added to the introduction.

• A coordinated control method for building
clusters has been developed for optimizing
building-cluster-level performances.

• The developed control can regulate individual
building’s battery charging/discharging to
maximize the renewable energy sharing and at
the same time coordinate all the individual
EVs’ charging load in order to increase the
building cluster renewable energy usage.

• The performances of the developed control
have been compared with a conventional
individual control (without energy sharing and
smart EV charging) and a partial collaborative
control (with energy sharing but without smart
EV charging).

• The performance improvements have been
analyzed in aspects of renewable energy self-
consumption and economic saving.

The structure of this chapter is as followings.
Section 15.2 describes the overall coordinated
control for the building cluster. Section 15.3
presents the detailed building model and energy
system models. In Sect. 15.4, the developed
coordinated control is applied on a case building
cluster. and its performance are compared with
two existing scenarios. The brief conclusions are
given in Sect. 15.5.

15.2 Coordinated Control
to Improve Energy
Performance for a Building
Cluster

This section first introduces the energy sharing
concept. Then, the detailed coordinated control,
which takes account of the energy storage, EVs

charging and renewable energy sharing among
buildings, is introduced.

15.2.1 Energy Sharing

Energy sharing is an effective way to improve the
overall performances at the building cluster level.
In this study, the energy sharing is implemented
by installing an energy sharing microgrid among
the buildings (Huang et al. 2019; Ferroamp
2018), as depicted by Fig. 15.1. The renewable
energy from Building A can be used to supply
the electricity demands charge the EVs in
Building B or C, or even be stored in the battery
of Building B or C. Such renewable energy
sharing can help increase the renewable self-
utilization rates of the building cluster, and thus
help improve both the economic and energy
performances (Huang et al. 2018b).

15.2.2 A Coordinated Control
to Improve Energy
Performance
for a Cluster of Building
Energy Prosumers
with Energy Storage,
EVs, and Energy Sharing
Considered

This section introduces the developed coordi-
nated control. Figure 15.2 presents the flowchart
of the developed method. The aim of the
coordinated control is to coordinate the opera-
tion of energy storage (installed in each single
building) and the EVs, to achieve the optimal
cluster-level performances. The coordinated
control consists of four steps. In Step 1, all the
buildings in the building group are considered
as a ‘representative’ building, and the electrical
demand, renewable energy generation and load
shifting capacity of the ‘representative’ building
are predicted, i.e. its electrical demand/
renewable generation/demand shifting capacity
equals the aggregated demand/ generation/
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capacity of all buildings inside the cluster. In
Step 2, the operation of the ‘representative’
building and the EV charging rates are opti-
mized using genetic algorithm (GA). The per-
formance of the ‘representative’ building,
obtained by simultaneous optimization of the
building and EV operation, is considered to be
the best performances that the building group
can achieve (Shen et al. 2016). In Step 3, the
operation of each single building inside the
building group is coordinated using non-linear
programming (NLP) based on the ‘representa-
tive’ building’s operation obtained from Step 2.
In Step 4, the performances of the proposed
coordinated control are compared with two
existing controls, including a conventional
individual control [Scenario 1 (Shen et al.
2016)], which does not enable renewable shar-
ing and charge the EVs immediately after being
parked, and an existing coordinated control
[Scenario 2 (Gao and Sun 2016)], which
enables full renewable energy sharing but also
charges the EVs immediately after being
parked. The details of each step are introduced
below.

15.2.2.1 Step 1: Estimation
of the ‘Representative’
Building’s Demand
and Storage

In this step, all the buildings inside the cluster are
considered as a ‘virtual’ building. Its hourly
electricity demand (Er

d;i (kW h)) equals the
aggregated hourly electricity demand of each

single building (E j
d;i (kW h)) (i indicates time

with a unit of hour), its hourly renewable gen-
eration (Er

s;i (kW h)) equals the aggregated
hourly renewable generation of each single

building (E j
s;i (kW h)) and its load shifting

capacity (CAPr (kW h), i.e. battery capacity) is
the aggregated load shifting capacity of each
single building (CAPj (kW h)).

Er
d;i ¼

Xn
j¼1

E j
d;i ð15:1Þ

Er
s;i ¼

Xn
j¼1

E j
s;i ð15:2Þ

CAPr ¼
Xn
j¼1

CAPj ð15:3Þ

Fig. 15.1 Schematics of electricity energy sharing among buildings in a cluster
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15.2.2.2 Step 2: Optimization
of the ‘Representative’
Building’s Operation
Using GA

The electricity demand and renewable genera-
tion of each individual building is calculated
using the models presented in Sect. 15.3.
The GA algorithm searches the optimal
charging/discharging rates of both the battery
(see Sect. 3.2 for the detailed models) and EVs
that can minimize the electricity costs of the
‘representative’ building. For example, the EVs
can be scheduled to be charged in periods with
sufficient renewable generations while not
charged in periods with insufficient generations.
In the GA simulation, the inputs mainly include
the battery charging/discharging rates (to be
optimized), the EV charging rates (to be opti-
mized), the EV parking periods, the future 24-h
weather data, building parameters, and battery
parameters. The EVs are different from the
electrical battery, since they are not constantly
connected into the buildings. This study uses
four parameters to characterize an EV (e.g. the
kth EV): arrival time to the charging port (tk),

parking periods in the charging port (nk), initial
state of charge (SOC0,k), and the required state
of charge when the car departs from the charg-
ing port (SOC1,k). These parameters are consid-
ered known and will be used as inputs in the
optimization.

In each generation of GA, trials of 24-h
thermal storage hourly charging/discharging
rates (i.e., uv1; u

v
2; . . .u

v
24

� �
kW) and charging

rates of each EV (i.e. [uev;ktk ; uev;ktk þ 1; . . .u
ev;k
tk þ nk ] kW)

are generated by the GA optimizer. The repre-
sentative building’s hourly power demand
(Er

d;i kW) and hourly renewable power genera-
tion (Er

r;i kW) in the future 24 h is then pre-
dicted using the building and system models (see
models given in Sect. 15.3). The charging/
discharging rates of the electrical battery should
meet the following two constraints: (1) The bat-
tery charging amount could not exceed the
remaining battery storage capacity. (2) The bat-
tery discharging amount could not exceed the
stored electricity in the battery. These two con-
straints are expressed by Eq. (15.4) (Lu et al.
2015; Sun et al. 2018),

Fig. 15.2 Flowchart of the coordinated control to improve energy performance for a building cluster with energy
storage, EVs, and energy sharing
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0�;r0 þ ur1 þ ur2 þ . . .þ uri
� �� s�CAPr

wherei ¼ 1; 2; . . .; 24

ð15:4Þ

where ;v0 (kW h) is the amount of thermal energy
initially stored in the tank, s is the duration of
battery charging/discharging (i.e., 1 h in this
study).

Similarly, the charging rates of the kth EV
should meet these two constraints, as expressed
by Eq. (15.5). SOC0;k is the initial state of charge
when the kth EV arrives at the charging port.
CAPev

k (kW h) is the capacity of the kth EV
battery. tk is the arrival time of the kth EV at the
charging port, and nk is the parking duration.

0� SOC0;k � CAPev
k þ uev;ktk

þ uev;ktk þ 1 þ uev;ktk þ i

� �
� s�CAPev

k

where i ¼ 1; 2; . . .; nk

ð15:5Þ

In addition, the EV battery should be charged
to a user-specified level (SOC1;k) before they
depart the charging port. This constraint is
expressed by Eq. (15.6). When SOC1;k equals 1,
it represents the EV users require the EV battery
to be fully charged before they depart the
charging port.

SOC0;k

� CAPev
k þ uev;ktk

þ uev;ktk þ 1 þ . . .þ uev;ktk þ nk

� �
� s� SOC1;k � CAPev

k

ð15:6Þ

This study considers the strategy to minimize
daily electricity cost of the building group. Fol-
lowing this control goal, a fitness function is
determined, as expressed by Eq. (15.7) (Salom
et al. 2011).

Jgrid ¼ min Costð Þ ð15:7Þ

Cost ¼
X24
i¼1

Er
ex;i � s

� vi;
vi ¼ vbuy; if E

r
ex;i [ 0

vi ¼ vsell; if E
r
ex;i � 0

�
ð15:8Þ

where vi. (kr/(kW h)) is the electricity price in
the ith time slot. vbuy (kr/(kW h)) is the price of
purchasing electricity from the power grid, and
vsell (kr/(kW h)) is the feed-in-tariff.

The outputs of the GA search are the ‘repre-
sentative’ building’s battery charging/
discharging rates ([ur�1 ; u

r�
2 ; . . .u

r�
3 ] kW) in the

next 24 h and the charging rates of each indi-

vidual EV ([uev;1�t1 ; uev;k�tk þ 1; . . .; u
ev;k�
tk þ nk ],

[uev;2�t2 ; uev;2�t2 þ 1; . . .u
ev;2�
t2 þ n2 ],… kW). The optimized

battery charging/discharging rates of the ‘repre-
sentative’ building are used in Step 3.

15.2.2.3 Step 3: Coordination of Single
Building’s Operation
Using NLP

In this step, the single building’s battery

charging/discharging rates (i.e. u j
i is the jth

building in the ith hour) are coordinated using
NLP based on the ‘representative’ building’s
operation (Zhao et al. 2015). The NLP is con-
ducted in each hour and will be repeated 24 times
for obtaining the building’s daily operation. The
fitness function of the NLP is expressed by Eqs
(15.6) and (15.7), which aims at minimizing the
electricity costs of the building group.

JNLP ¼ min Costall;i
� � ð15:9Þ

Costall;i ¼
Xn
j¼1

E j
d;i � vi

� �2
ð15:10Þ

In order to reduce the uneven allocation of the
battery charging/discharging rates (otherwise
only a few buildings take benefits from the
demand response), the square of each building’s
operational cost is used in the fitness function.

E j
d;i (kW h) is the energy demand of the jth

building in the ith hour after applying the

u j
i (kW) amount of battery charging/discharging,

which is calculated by the models presented in
Sect. 15.3. vi (HKD/(kW h)) is the electricity
price in the ith hour.

In the ith hour, the optimized parameters in
the NLP are the hourly battery charging/
discharging rates of all the buildings inside the
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building group, i.e., [u1i ; u
2
i ; . . .; u

N
i ] (kW), where

N indicates the number of buildings in the
building group. The battery charging/discharging
rates in each hour should follow the constraints
below.
(i) The sum of battery charging/discharging

rates of each building (u j
i . (kW)) should

equal the battery charging/discharging of
the ‘representative’ building (ur�i (kW))
(obtained from Step 2).

XN
j¼1

u j
i ¼ ur�i ð15:11Þ

(ii) For each single building, the electricity
charging amount must be smaller than the
remaining storage capacity of the battery,
and the electricity discharging amount must
be smaller than the amount of electricity
stored in the battery. There are 2 N
inequality constraints for N buildings.

�; j
i�1 � u j

i � s�CAPj � ; j
i�1ðj

¼ 1; 2; . . .N; respectivelyÞ ð15:12Þ

where s is the charging duration (i.e., 1 h), CAP j

(kW h) is the battery capacity of the jth building,

; j
i�1 (kW h) is the electricity energy stored in the

jth building’s battery. ; j
i�1 (kW h) is calculated

by Eq. (15.13).

; j
i�1 ¼ u j

1 þ u j
2 þ . . .þ u j

i�1

� �� s ð15:13Þ

In total, for a building group with N buildings,
there are N unknown parameters to be solved,
there is 1 equality constraints, and there are 2 N
inequality constraints.

15.2.2.4 Step 4: Performance
Comparison
and Analysis

After obtaining the optimized operation of each
single building, the performances of the proposed
coordinated control are compared with two
existing controls in aspects of renewable energy
self-consumption improvements and economic

cost savings. The two existing controls include a
conventional individual control [Scenario 1 in
Table 15.1 (Shen et al. 2016; Gao and Sun
2016)], which does not enable renewable sharing
and charge the EVs immediately after connecting
them, and an existing coordinated control [Sce-
nario 2 in Table 15.1 (Huang et al. 2018b)],
which enables full renewable energy sharing in
the building cluster but charges the EVs imme-
diately after connecting them. In both the two
comparative studies, the EVs demand are first
computed. Such load is added to the building
electricity demand, which will then be used as
inputs for battery charging/discharging controls.
In Scenario 1 (i.e. an existing individual control)
(Shen et al. 2016), GA was used for searching
the optimal battery charging/discharging rates in
each building, which is similar to the control
optimization of the ‘representative’ building (see
Step 2 in Fig. 15.2 without EV related variables).
After obtaining the individual buildings’ optimal
operation, their electrical demands were aggre-
gated for evaluating the building-cluster-level
performances. In Scenario 2 (i.e. an existing
coordinated control) (Gao and Sun 2016), the
battery charging/discharging rates of all the three
buildings are optimized simultaneously using
GA, and the minimization of the building-
cluster-level performance was used as the fit-
ness function.

15.3 Buildings and System
Modelling

This section introduces the building information
and system modelling. Each building is installed
with a renewable energy system (i.e., PV panels),
an electricity storage system (i.e., battery), as
well as an EV.

15.3.1 Building Modelling

This study considered a real building cluster
located in Ludvika, Dalarna region, Sweden.
This building cluster consists of three separate
buildings, as shown in Fig. 15.3. The building
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cluster (all the three buildings) includes 48
multifamily dwelling units over three floors, and
most of the apartments have one or two bed-
rooms. The total façade surface gross area of the
complex is 2146 m2, the total roof surface gross
area is 1750 m2. These buildings will be
improved by a series of renovation plans
including installation of PV, battery storage,
direct current (DC) micro grid, and EV charging
station. It is assumed the heating is provided by
district heating system. So, the PV panels will
only need to provide power supply to the
domestic electricity demand (e.g. lighting, TVs,
dish wash). The schematics of the building
cluster and the energy systems are shown in
Fig. 15.1.

Until now, there are different models devel-
oped for modelling the electricity demand in
residential buildings. For instance, Palacios-
Garcia et al. (2018) developed a high-resolution
model for calculating the electricity demand of
heating and cooling appliances considering
variables such as the number of residents, loca-
tion, type of day (weekday or weekend) and date.
In (Palacios-Garcia et al. 2015), a stochastic
model for simulating lighting power consump-

tion profiles in Spain was developed considering
the number of household residents and differen-
tiating between weekdays and weekends. In
(Widén and Wäckelgård 2010), Widén devel-
oped a stochastic model for computing the
occupancy and electricity load in Sweden. Since
the occupancy schedules and lighting usage can
vary significantly in different countries due to the
culture and location difference, this study choo-
ses Widén’s model to calculate the electricity
load profiles for the three individual buildings.
Meanwhile, in order to achieve acceptable
accuracy, the measured data about the annual
electricity usage was used to calibrate the model.

15.3.2 Renewable Energy System
Modeling

The power generation from the PV panel PPV

(kW) is calculated by Eq. (15.14) (Huang et al.
2018a; Klein et al. 2004),

PPV ¼ s� IAM � IT � g� CAPPV ð15:14Þ

Table 15.1 Configuration
of the three scenarios

Scenario EV control? Energy sharing?

1 Charged immediately when plugged in No

2 Charged immediately when plugged in Full sharing

3 (Developed control) Charged at any time when parked Full sharing

Fig. 15.3 Bird view of the
case building cluster located
in Ludvika, Sweden
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where s is the transmittance-absorptance product
of the PV cover for solar radiation at a normal
incidence angle, ranging from 0 to 1; IAM is the
combined incidence angle modifier for the PV
cover material, ranging from 0 to 1; IT (W=m2) is
the total amount of solar radiation incident on the
PV collect surface; g is the overall efficiency of
the PV array; CAPPV (m2) is the PV surface area.

15.3.3 Electrical Battery and EV
Battery Modeling

This study used simplified electrical battery and
EV battery models. The electricity stored in the
battery is calculated using a simplified model, as
expressed by Eqs. (15.4) and (15.5). It is esti-
mated from the hourly charging rates (Sun et al.
2018). This study considers three EVs.
Table 15.2 summarizes the capacity, maximum
charging rates as well as the parking periods of
each EV. EV 1, EV 2 and EV 3 are assumed to
be charged in Building A, B and C, respectively.
To consider the various EV usage, these three
EVs are assumed to have different parking peri-
ods. EV 1 is assumed to be owned by a resident
living in the building, and thus it is parked at
night from 18:00 to 07:00 in the next day. EV 2
and EV 3 are assumed to be owned by some
working staff in the building estate, and they are
parked during daytime (i.e. one from
08:00*16:00 and the other from 09:00*17:00).
The EV battery capacity and maximum charging
rates are referred from the available EV models
in the market in Ustun et al. (2013).

In all the three scenarios, the EVs are required
to be fully charged before they leave the charging
station. When the EVs arrive in a charging sta-
tion in the home, a random SOC parameter

(between 0 and 1) is assumed to represent the
remaining storage in the EV battery.

15.4 Case Studies and Results
Analysis

In the case studies, a typical summer week was
selected to validate the developed coordinated
controls. The weather data of Ludvika was used
for modelling the local renewable generations.
This section first presents the individual build-
ing’s electricity demand and renewable genera-
tion information. Then, the detailed EV charging
and battery charging results obtained from the
two scenarios (see Step 4 in Sect. 15.2) and the
developed control are compared and analyzed.
Finally, the overall economic and energy per-
formances are compared.

Table 15.3 summarizes the input parameters
used in the case studies. According to the
building dimension, 100 m2, 200 m2 and 300 m2

roof areas are planned for installing PV panels in
the three buildings, respectively. It was assumed
each building is installed with an electrical bat-
tery with capacity of 20 kW∙h and a maximum
charging/discharging rates of 6 kW. The price of
purchasing electricity from the power grid was
set as 0.16 €/(kW h). Considering the negative
impacts on the grid stability and safety, the feed-
in-tariff was set as 0.05 €/(kW h), which is lower
than price of electricity purchase (Huang et al.
2019). The price of electricity trading in the
building cluster was set as 0.1 €/(kW h). Such
price setting will provide incentives for energy
sharing within the building cluster, i.e. the
building owners can earn more by selling their
excessive renewable energy to the building
cluster than sell to the power grid, and vice versa.

Table 15.2 Capacity, charging limits and parking periods of the three different EVs, data obtained from Ustun et al.
(2013)

ID Battery capacity (kW h) Maximum charging rates (kW) Parking period

EV 1 22 4 18:00*07:00 (next day)

EV 2 27 5 08:00*16:00

EV 3 53 10 09:00*17:00
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15.4.1 Building Electricity Demand,
Renewable Generation
and Electricity Mismatch

Figure 15.4 displays the hourly electricity
demand, hourly PV generation, and the hourly
electricity mismatch of the three buildings in the
selected week. Note that the heating needs of the
three buildings are assumed to be met by the
district heating system. Thus, the electricity
demand only includes the domestic electricity
loads (i.e. lighting, washing machine, TV, etc.).
The trends of PV power production of the three

buildings are similar, since the solar irradiation is
nearly the same for the three buildings which are
located in the same location. As Building C has
the largest roof area, more PV panels can be
installed on its roof. Thus, it has the largest
average PV production.

Power mismatch of each building is calculated
as the deviation between the its hourly power
demand and hourly renewable generation.
A positive value of power mismatch indicates
insufficient renewable generation (and thus grid
power is needed), while a negative value of
power mismatch indicates excessive renewable

Table 15.3 Configuration
of the PV and battery
system and electricity
prices

Input parameter Value

Area of PV panel in building A (m2) 100

Area of PV panel in building B (m2) 200

Area of PV panel in building (m2) 300

Battery capacity (kW h) 20

Battery maximum charging/discharging rates (kW) 6

Price of electricity sold to the grid (€/(kW h)) (Huang et al. 2019) 0.05

Price of electricity purchased from the grid (€/(kW h)) (Huang et al. 2019) 0.16

Price of electricity trading in the building cluster (€) 0.1

Fig. 15.4 The hourly power demand, renewable generation and power mismatch of three buildings in the selected
summer week
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generation (and thus selling electricity to the grid
is needed). The diversity between the power
mismatch provides good opportunities for the
buildings to collaborative with each other in
aspects of energy sharing. For instance, at noon
(i.e. 11:00*16:00) in the first day, Building A
has insufficient renewable generations (i.e.
7.6 kW h more demand), while Buildings B and
C have excessive renewable generations (i.e.
24.7 kW h and 55.8 kW h more supply, respec-
tively). Buildings B and C can share their surplus
renewable generation with Building A to avoid
grid power imports (for Building A) and power
exports to the grid (for Buildings B and C), and
thus help improve the overall performance at the
building-cluster-level.

15.4.2 Detailed Battery Controls
and Energy Flows

To have a close look at the charging of EVs and
battery storage, as well as the energy flow in the
system, the detailed operation in the first day of
the selected week is presented and analyzed in
this section. Note that the EV charging loads are
exactly the same for the three scenarios. The
initial SOCs when EVs arrive at the charging
stations are the same for three scenarios. The
initial SOCs upon arrival for the three EVs are
0.29, 0.61 and 0.62, respectively. All the EVs are
required to be fully charged when they depart the
charging stations, i.e. SOC equals 1. Figure 15.5
presents the State of Charge (SOC) of the three
EVs’ battery and the aggregated battery in the
first day of the selected week. For Scenarios 1
and 2, since the EVs are charged at their maxi-
mum charging rates (i.e. 4 kW, 5 kW and 10 kW
for the three EVs, respectively) immediately after
being plugged into the charging ports, there is a
stable increase in the SOCs for all the three EVs
in the beginning of parking periods. In the
developed control, the EVs are charged flexibly
in the parking period. In some timeslots, they are
charged at a high rate; while in some timeslots,
they are charged at a low rate (or even zero).

Despite the different charging patterns, all the EV
batteries are fully charged (as specified in the
case study, see Sect. 3.3) before they depart the
charging ports in the three scenarios.

Regarding the battery storage usage, the
aggregated battery has not been fully charged in
Scenario 1, while it has been fully charged in
Scenario 2 and the developed control. This is
because in Scenario 1 the collaboration (i.e.
renewable energy sharing) is not allowed among
the buildings, while in Scenario 2 and the
developed control, collaboration is enabled (see
Fig. 15.6 for detailed energy sharing). The col-
laboration enables buildings to store their surplus
renewables in other building’s battery, thereby
helping increase the overall battery utilization.
Such increased battery utilization can help the
building cluster keep more renewable energy
onsite instead of exporting to the power grid, and
thus contribute to increased renewable energy
self-consumption rates.

Figure 15.6 depicts the electricity energy flow
of the subsystems (i.e. electrical demands,
renewable generation, EV demands and battery
charging/discharging) in each building in the first
day of the selected week for the three different
scenarios. Figure 15.6 also shows the individual
building’s energy exchange with the building
cluster (i.e. the other buildings) and with the
power grid. A positive value of energy flow
indicates energy demand, while a negative value
indicates energy supply. For the power
grid/building cluster, a positive energy flow
indicates buildings export electricity to the power
grid/building cluster, while a negative energy
flow indicates buildings import electricity from
the power grid/building cluster. The PV system
produces electricity from 6:00 to 20:00. But for
Buildings A and B, the amount of PV power
production is less than the electricity demand in
the early morning (6:00*8:00). As a result, there
is grid power purchase in this period. While
Building C has more power production in this
period due to a larger PV system installed.

In Scenario 1, the energy sharing is not
allowed among the buildings, so there is no
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Fig. 15.5 State of Charge (SOC) of the three EVs and the aggregated battery in the first day of the selected week

Fig. 15.6 Detailed electricity flow (of building, PV systems, battery and EV) in the individual building in each
scenario in the first day of the selected week
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energy exchange with the building cluster. Since
the EVs are charged immediately after they are
plugged into the charging stations, large EV
loads can be observed for both Building B and C
during 8:00*12:00 (one EV arrives at 9:00, and
another EV arrives at 10:00). However, due to a
lack of renewable generation in this period, a
large amount of grid power is imported from the
power grid (i.e. 19.4 kW h and 27.8 kW h
electricity imports for Buildings B and C,
respectively). At noon (i.e. 13:00*15:00), both
Buildings B and C have surplus PV power pro-
duction. However, due to a lack of energy shar-
ing, such surplus PV power is exported to the
power grid (i.e. 12.4 kW h and 27.8 kW∙h
electricity exports for Buildings B and C,
respectively). Meanwhile, Building A purchased
5 kW h electricity from the power grid. In total,
in this, Building A imported 102.7 kW∙h elec-
tricity, Building B imported 55.6 kW∙h electric-
ity and exported 19.7 kW∙h electricity, and
Building C imported 45.6 kW∙h electricity and
exported 48.5 kW∙h electricity.

In Scenario 2, energy sharing is enabled
within the building cluster. At around 14:00,
since the battery of Building C has already been
fully charged, the surplus renewable energy from
Building C is exported to Building A and stored
in Building A’s battery. Such energy sharing
avoids the unnecessary renewable exports to the
power grid, as compared with Scenario 1. In
total, from 12:00 to 18:00, Building B shared
6.2 kW∙h electricity with Building A, and
Building C shared 22.3 kW∙h electricity with
Building A. Similar to Scenario 1, due to a lack
of EV control, large EV charging demands can
still be observed for both Buildings B and C
during 8:00 * 12:00, leading to large grid
power purchase (i.e. 17.8 kW h and 27 kW h
electricity imports for Buildings B and C,
respectively). In total, in this day, Building A
imported 71.9 kW h electricity, Building B
imported 41.5 kW h electricity and exported
1.5 kW h electricity, and Building C imported
43.2 kW h electricity and exported 23.4 kW h
electricity.

In the developed control, the energy sharing is
enabled among buildings and the EV charging is

regulated. Similar to Scenario 2, the renewable
energy sharing reduces the renewable energy
exports to the power grid from Building C. In
terms of EVs charging, due to the shifting of
large EV charging loads to periods with more
renewable energy generations in Buildings B and
C, the developed control effectively reduces the
grid power imports in the period 8:00*12:00
compared with Scenario 1 and 2. In total, in this
day, Building A imported 74.5 kW h electricity,
Building B imported 40.1 kW h electricity and
exported 2.5 kW h electricity, and Building C
imported 25.1 kW h electricity and exported
25.7 kW h electricity.

Figure 15.7 depicts the electricity energy flow
of the building cluster (i.e. electricity demand),
aggregated PV production, power grid, aggre-
gated battery and three EVs in the first day of the
selected week for the three different scenarios.
The aggregated energy exchanges within the
building cluster become zero in the aggregated
level, since the amount of purchased electricity
from the building cluster compensates with the
amount of electricity sold to the building cluster.

In the period 9:00*12:00, for Scenario 1 and
Scenario 2, large electricity demand occurs, as
EV 2 and EV 3 are charged immediately after
being plugged in. Unfortunately, the renewable
energy generation is not sufficient in this period
to meet the large demands. As a result, a large
amount of grid electricity is purchased by the
building cluster, i.e. 48.7 kW h and 52 kW h for
Scenarios 1 and 2, respectively. In Scenario 3
(developed control), as EV 2 and EV 3 can be
flexibly charged in any timeslot during the
parking period, the controllers set relatively small
EV charging rates in this period. Consequently,
the amount of grid power purchase is signifi-
cantly reduced in the developed control, i.e.
14.6 kW h. In the period 14:00*17:00, for
Scenario 1, since there is no collaboration among
buildings, only a small part of the surplus
renewable energy is kept onsite, while a large
part of the surplus renewables (i.e. 28.5 kW h) is
exported to the power grid at a low price. In
Scenario 2, contributed by the energy sharing
within building cluster, more renewable energy
can be stored in the battery. After the batteries in
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the building cluster all being fully charged, only
a small amount of surplus renewable energy (i.e.
14.1 kW h, which is only half of the amount of
exported electricity in Scenario 1) is still expor-
ted to the power grid. Scenario 2 has better
performance compared with Scenario 1. Since
the batteries of EV 2 and EV 3 have already been
fully charged in the period 9:00*12:00, there is
no energy flow for them in the period
14:00*17:00. In the developed control, consid-
ering the large renewable energy production in
this period, the controller shifts the charging load
of EV 2 and EV 3 to this period. Part of the

surplus renewable generation is stored in the
building battery and part of the surplus renew-
ables is used to supply the EV load. As a result,
exporting renewable energy to the power grid is
completely avoided. This can effectively improve
the renewable energy self-consumption rate of
the building cluster.

To sum up, in Scenario 1, the building cluster
exported 41.3 kW h electricity to the grid and
imported 177.0 kW h electricity from the grid. In
Scenario 2, the building cluster exported
23.0 kW h electricity to the grid and imported
159 kW h electricity from the grid. Scenario 2

Fig. 15.7 Detailed energy flow (of building, PV systems, battery and three EVs) in the building cluster in each
scenario in the first day of the selected week
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performs better than Scenario 1 (i.e. with reduced
energy imports/exports) as energy sharing
enables the building cluster to keep more
renewable energy on-site. While using the
developed control, the building cluster exported
0 kW h electricity to the grid and imported
135.6 kW h electricity from the grid. Scenario 3
performs even better than Scenario 2, as the
controller shifts EV charging loads to periods
with large renewable production and thus help
keep more renewable energy used onsite in cases
when the batteries in the buildings have been
fully charged (see the aggregated battery SOC in
Fig. 15.5).

15.4.3 Overall Economic and Energy
Performance
Comparison

This section compares the overall economic and
energy performance of different controls.
Table 15.4 summarizes the building-cluster-level
daily electricity costs and renewable energy self-
consumption rates. in different scenarios. Fig-
ure 15.8a compares the daily renewable energy
self-consumption rates of the three scenarios in
the selected week. The relative performances
improvements of Scenario 2 and the developed
control compared with Scenario 1 are also
depicted. Compared with Scenario 1, Scenario 2
improved the renewable energy self-consumption
by 6*9%. This is because the collaboration
enables buildings to share their surplus renew-
able energy with other buildings with insufficient
supply and thus help reduce the electricity
exports to the power grid (i.e. keep more
renewable energy onsite). Compared with Sce-
nario 2, the developed control further improves
the renewable self-consumption rates by 3–11%
(see Table 15.4). This is because the developed
control makes use of the flexible charging ability
of EVs. By shifting the EV charging load to
periods with large renewable generation periods,
more renewable energy can be used onsite,
especially when the electrical battery storages are
fully charged. In Day 1, the daily self-

consumption rates are relatively higher than the
other six days. This is because the amount of PV
power production is relatively lower than other
days (see Fig. 15.4 the PV power production
profiles), and thus most of the PV power will be
used to meet the electricity demand on-site.

Figure 15.8b compares the daily electricity
costs of the three scenarios in the selected week.
Due to increased renewable energy self-
consumption rates and thus less grid power
purchase, Scenario 2 achieves 11*28% cost
saving compared with Scenario 1, and the
developed control achieves 7*17% more cost
saving compared with Scenario 2 (see
Table 15.4). The relative improvements in eco-
nomic performance is much larger than the rel-
ative improvements in daily self-consumption
rates. This is because the building cluster pur-
chase electricity from the power grid at a high
price (i.e. 0.16 €/(kW h)) but sell electricity at a
much lower price (i.e. 0.05 €/(kW h)). When the
building cluster exports more renewables to the
power grid (i.e. in Scenario 1), they will need to
buy more electricity from the grid at a high price,
as the aggregated daily electricity demand is
fixed.

15.5 Conclusion

This study has proposed a coordinated control of
building clusters for improving the cluster-level
performance, with both energy sharing and EV
charging considered. The developed coordinated
control first uses a ‘representative’ building to
represent the whole building cluster and opti-
mizes its energy storage operation as well as the
EV charging using genetic algorithm. The opti-
mized performance of the building cluster is
considered to be the optimal one that maximizes
the energy sharing within the building cluster by
coordinating individual building’s operation.
Then, non-linear programming is used to coor-
dinate the operation of each individual building.
For validation, the developed control has been
tested using the energy demand and supply data
on a real buildings cluster (with three EVs
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considered) in Ludvika, Sweden, and its detailed
energy performance (i.e. renewable self-
consumption rate) and economic performance
(i.e. electricity cost) have been compared with
two scenarios (i.e. one does not enable energy
sharing and one allows full energy sharing, both
do not have EV charging controls). Case studies
have shown that the developed coordinated
control can effectively improve the renewable
self-consumption rates and meanwhile reduce the
electricity bills of the building cluster, by taking
advantage of energy sharing, storage capability

of electricity batteries, flexible demand shifting
ability of EVs. The major findings are summa-
rized as follows:

• The developed coordinated control provides a
mechanism to coordinate each single build-
ing’s operation and EV charging demands for
improved building cluster performances.

• In aspect of renewable utilization, the coor-
dinated control improved the daily self-
consumption rates by as much as 19% com-
pared with Scenario 1 (no EV control and no

Table 15.4 Building-cluster-level daily economic and energy performance

Day 1 2 3 4 5 6 7

Daily self-
consumption

Scenario 1 83.7% 60.2% 60.9% 59.9% 65.1% 62.7% 75.2%

Scenario 2 91.0% 64.2% 65.5% 63.4% 70.4% 67.3% 80.3%

Proposed
control

100.0% 66.2% 68.3% 65.5% 74.4% 73.2% 86.8%

Relative
improvements

Scenario 2
versus 1

9% 7% 8% 6% 8% 7% 7%

Developed
versus 1

19% 10% 12% 9% 14% 17% 15%

Daily electricity
costs (€)

Scenario 1 29.2 13.7 14.5 12.2 15.1 15.4 20.4

Scenario 2 24.2 9.9 12.2 9.8 13.4 11.2 15.4

Proposed
control

21.7 9.0 10.8 8.6 12.4 8.5 13.0

Relative
improvements

Scenario 2
versus 1

17% 27% 16% 20% 11% 28% 25%

Developed
versus 1

26% 34% 25% 29% 18% 45% 36%

Fig. 15.8 Comparison of the daily renewable energy self-consumption rates and daily electricity costs of the three
scenarios
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energy sharing) and as much as 11% com-
pared with Scenario 2 (no EV control but with
energy sharing). This is because the devel-
oped control shifts the EV charging load to
periods with large renewable generation peri-
ods, and thus more renewable energy are used
onsite, especially when the electrical battery
storages are fully charged.

• In aspect of economic costs, the coordinated
control reduced the daily electricity costs by
as much as 36% compared with Scenario 1
(no EV control and no energy sharing) and as
much as 17% compared with Scenario 2 (no
EV control but with energy sharing). This is
because the developed control reduces the
amount of high-price grid electricity imports.

This chapter concentrates on the development
of control concept for the coupled PV-battery
storage-EV systems in the case building cluster.
So far, the renovation in this demo case is still
under progress and the only pre-monitoring data
before renovation has been collected. In the
future with both PV and EV integrated, post-
monitoring data will be collected and the exper-
imental data from the demo site will be used to
validate the simulation. In this study, the detailed
driving patterns of EVs are not considered, and
the SOC when they arrive the charging ports are
determined by some random values. The mobil-
ity of humans is highly regular, and study shows
that there is 93% potential predictability in user
mobility (Song et al. 2010). Future work will
take account of the predictive EV driving pat-
terns in the optimization to achieve better per-
formances. Meanwhile, the uncertainty in
demand and renewable prediction is not consid-
ered in this study. Future work will try to develop
more robust controls.
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16Genetic Algorithm and Mont Carlo
Method for Global Sensitivity
Analysis of Key Parameters
Identification of Net Zero Energy
Buildings Towards Power Grid
Interaction Optimization

Yongjun Sun, Yelin Zhang,
and Xingxing Zhang

Abstract

Utilizing renewable energy to meet the energy
demand, net-zero energy building (NZEB) is
considered a promising solution to the wors-
ening energy and environmental problems.
Due to the intermittent and unstable charac-
teristics of renewable energy (e.g. solar
energy), NZEB needs to frequently exchange
energy with the power grid. Such frequent
energy interactions can impose negative
impacts on the grid in terms of power balance
and voltage stability. Existing studies demon-
strated that there exist many influential
parameters to NZEB grid interaction. How-
ever, the impacts of influential parameters
have not been systematically compared and
the key parameters with critical impacts are
still unknown. Without knowing the key

parameters, researchers may mistakenly opti-
mize non-critical parameters, thereby leading
to limited performance improvements; or they
have to take parameters more than necessary
into consideration, thereby causing unneces-
sarily high computation loads. Therefore, this
study proposes a novel method to identify the
key parameters affecting NZEB grid interac-
tions. In the method, global sensitivity anal-
ysis is adopted to quantitatively compare the
impacts of 24 influential parameters in three
major performance aspects including
over/under voltage, grid dependence and
energy loss. Meanwhile, Monte-Carlo method
is used to simulate the parameter uncertainties.
The identified key parameters have been
verified through comparing their performance
improvements and computation loads. Provid-
ing an effective way to identify key parame-
ters out of numerous ones, the study results
can substantially reduce the unnecessary con-
siderations of non-critical parameters in
design optimizations. Also, the identified key
parameters can be used for improving NZEB
grid interaction with limited computing power
requirement.
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16.1 Introduction

Net-zero energy buildings (NZEBs) are recog-
nized as a promising solution to reducing the
growing energy consumption and greenhouse gas
emissions. A NZEB equips with renewable
energy systems and generates as much energy as
it consumes over a specific period (typically a
year) (Huang et al. 2018a). The development of
NZEBs has been legislated in many countries
and organizations. For instance, the European
Directive established the target that all new
buildings should be NZEBs from 2021 (Huang
et al. 2018b); the U.S. set the goal of net zero
energy for all commercial buildings by 2050
(Doe 2008). Due to the intermittent and unstable
characteristics of renewable energy (e.g. solar
energy), NZEB needs to frequently exchange
energy with the power grid. For instance, with
insufficient/surplus renewable generation, a
NZEB needs to import/export electrical energy
from/to the power grid.

Such frequent energy interactions can impose
negative effects on the grid in terms of power
balance (Roos and Bolkesjø 2018) and voltage
stability (Baetens et al. 2012). Regarding power
balance, the frequent energy exports may result
in an increased renewable penetration of the grid,
thereby substantially increasing the technical
difficulties and costs in maintaining the grid
power balance (Brinkel et al. 2020; Holweger
et al. 2020). It was reported that in the German
2030 power system, an expected increase of
renewable penetration from 66 to 73% could
result in the increase of the costly reserve from
226 to 1963 million euros (Roos and Bolkesjø
2018). Regarding voltage stability, such frequent
energy interactions can escalate the overvoltage
risk of the distribution lines. For instance, during
the periods with surplus renewable generations,
reverse power flow will occur at the low voltage
feeder thereby raising up the feeder voltage and
causeing the overvoltage problem. Baetens et al.
(2012) found that in Belgium, due to the concern
of overvoltage risk, up to 47% of solar power
generations from the residential NZEBs were not

allowed to be exported to the grid and thus
wasted.

NZEB grid interaction is mainly determined
by its power mismatch, i.e., the difference
between renewable generation and energy
demand. Thus, all the parameters affecting
renewable generation and energy demands will
be able to cause changes of the power mismatch
and then can influence NZEB grid interaction.
Meanwhile, since a storage system (such as a
battery) can store the surplus renewable genera-
tion for later use, its buffering effect can
reduce/eliminate the power mismatch and thus
influence NZEB grid interaction. In this case, the
parameters affecting the storage performance also
need to be considered as NZEB grid interaction
to be improved. Existing studies have demon-
strated that there are various parameters affecting
energy demand, renewable generation, and stor-
age characteristics. All these parameters could
eventually influence NZEB grid interaction but
with impacts to different extents.

Regarding energy demand, existing studies
have shown that different parameter optimiza-
tions can achieve substantial performance
improvements. For instance, to improve energy
and daylighting performance of a small office
building, Fang and Cho (2019) optimized design
parameters of building envelop, including win-
dow and skylight size and placement, and the
study results showed that the energy consump-
tion can be reduced by 20.2%. Adopting artificial
neural network, Ilbeigi et al. (2020) optimized
six design parameters to minimize the energy use
of an office building in Iran. The study results
indicated that such multi-parameter optimization
can achieve up to 35% energy savings. Mean-
while, substantial energy savings can also be
achieved by adopting novel advanced technolo-
gies to improve HVAC (heating, ventilation and
air-conditioning) system COP (coefficient of
performance). For instance, Wu et al. (2018)
adopted energy recovery ventilator and ground
source heat pump to improve the system COP
from 2.42 to 3.38, which resulted in 14.7%
annual energy savings.
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Realizing various parameters may influence
building energy demand to different extents,
researchers also tried to identify the key param-
eters with critical impacts. For instance, Nas-
ruddin et al. (2019) identified 10 key parameters
for the energy use of an educational building in
Indonesia, including temperature and relative
humidity set-points, window to wall ratio
(WWR), wall thickness and etc. In a comparative
study, Yu et al. (2013) found that shading coef-
ficient, WWR and wall U-value were the three
most influential parameters to the energy use of
high-rise residential buildings in the hot summer
and cold winter region of China. The study
results also indicated that roof U-value, building
envelope solar absorptance had negligible
impacts. For the energy use of apartment build-
ings in Turkey, Yildiz et al. (2012) found that
U-value of wall and glazing, WWR and
infiltration rate were the important influential
parameters. It should be mentioned as different
climates or building types considered, the iden-
tified key parameters could be different or
inconsistent.

Regarding renewable generation, existing
studies have demonstrated the existence of vari-
ous influential parameters. The optimization of
these parameters can improve the performance of
load matching and renewable generation. For
instance, Awad and Gül (2018) demonstrated
that the load matching can be improved by
optimizing the photovoltaic (PV) azimuth and tilt
angle. In another study, Ma et al. (2014) opti-
mized the size of a hybrid renewable system in a
remote island and found that the load matching
improvements, obtained from the optimized
hybrid system, can saved more than 15% of the
excess renewable energy. Similarly, Cao et al.
(2013) indicated that up to 16.2% improvements
can be achieved in load matching through opti-
mizing the hub height and wind turbine
(WT) number in a residential NZEB. To improve
PV electrical efficiency, Alizadeh et al. (2018)
proposed a pulsating heat pipe integrated PV
system and demonstrated that the system can
reduce the PV temperature by 16.1 °C, thereby
increasing the energy generation by 18%.
Through shape optimization and placement of

deflector plates, Storti et al. (2019) enhanced
wind energy harvesting by 30% in a vertical axis
wind turbine (VAWT).

Regarding energy storage, many existing
studies focused on battery size optimizations and
inverter efficiency improvements. For instance,
Sharma et al. (2019) optimized the battery size
for a PV-powered NZEB to minimize the annual
electricity bill with consideration of initial
investment. Yu et al. (2016) investigated the
impacts of battery size on grid independence for
a net zero office building. They found that grid
independence increased by 50% with a battery
size of 130 kWh. The existing study also showed
that the inverter energy loss can achieve 4.88%
of the total renewable energy generation despite
the inverter efficiency as high as over 90% (Ma
et al. 2014).

Due to lack of systematic studies, among so
many influential parameters, the key ones with
significant impacts on NZEB grid interaction are
still unknown. Although existing studies have
identified the key parameters for building energy
demand, such identification results are not
applicable for NZEB grid interaction. The main
reason is that, in comparison with building
energy demand, NZEB grid interaction is influ-
enced by much more parameters, and their
influences are mixed and aggregated in a com-
plex way. Without knowing the key parameters,
researchers may mistakenly optimize non-critical
parameters, thereby leading to limited perfor-
mance improvements; or they have to take
parameters more than necessary into considera-
tion, thereby causing unnecessarily high com-
putation loads.

Therefore, this chapter proposes a global
sensitivity analysis-based method to identify the
key parameters affecting NZEB grid interactions.
Three indicators, namely over/under voltage, grid
dependence and energy loss, are selected to
assess the grid interaction performance. The
study firstly identifies the key parameters using
global sensitivity analysis. Meanwhile, Monte-
Carlo simulation has been taken to consider the
parameter uncertainties. Then, the reasons why
the identified parameters have significant impacts
are elaborated in detail. Next, the global
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sensitivity analysis results are verified by com-
paring the performance improvements and com-
putation loads. Last, major findings are
summarized in the conclusion part.

16.2 Methodology of Key
Parameter Identification

Figure 16.1 shows the basic idea of the proposed
method which includes two parts. The first part is
to identify the key parameters and it includes
three steps: input parameters collection, grid
interaction performance assessment and global
sensitivity analysis. In the first step, all the input
parameters that may influence the grid interaction
are collected and their ranges are identified with
reference to existing studies. In the second step,

the grid interaction performance is assessed using
the Monte-Carlo simulation in which the
parameter uncertainty samples are generated
from the identified parameter ranges. The Monte-
Carlo simulation, relying on repeated random
sampling to obtain numerical results, is a com-
monly used method to assess the uncertainty
impacts (Huang and Huang 2015). In the third
step, based on the parameter uncertainty impacts
obtained from the Monte-Carlo simulation,
standardized regression coefficient (SRC) algo-
rithm, a global sensitivity analysis method, is
used to identify the key parameters.

The second part is to verify the sensitivity
analysis results by comparing the performance
improvements achieved from optimizing differ-
ent parameter sets. In comparison with an
unimportant parameter, a key parameter has

Fig. 16.1 Flowchart of the key parameter identification and verification method
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more potentials to improve grid interaction per-
formance under the same efforts. Thus, after
separate optimizations, those parameters with
significant performance improvements will be
considered as key parameters. To verify the
sensitivity analysis results, the following steps
will be taken. First, based on the key parameters
identified from sensitivity analysis in Part I,
several parameter groups are constructed which
consist of different numbers of key parameters.
And then, the genetic algorithm (GA) optimizer
is used to optimize the constructed parameter
groups. Next, the performance improvements
and computation loads of optimizations for dif-
ferent parameter groups are compared to verify
the sensitivity analysis results.

16.2.1 Collection of Input Parameters

The grid interaction of NZEBs is caused by the
mismatch between renewable generations and
energy demands. Thus, the grid interaction per-
formance is mainly influenced by energy
demand, renewable generation, energy storage.
Parameters that affect these processes should be
considered as inputs. In this study, the main input
parameters are classified into five categories, i.e.
building envelope, system operation, internal
heat gain, energy generation and energy
storage/conversion. And 24 parameters in these
categories are selected as input parameters of
Monte-Carlo simulation and sensitivity analysis,
as summarized in Table 16.1.

Table 16.1 Input parameters for sensitivity analysis (Li and Wang 2018; Sun 2015)

Category Parameter Base value Range

Building envelop Wall specific heat, kJ/(kg K) 1.4 0.8–2

Wall U-value, W/(m2 K) 0.8 0.2–1.5

Wall solar absorptance 0.6 0.3–0.9

Roof specific heat, kJ/(kg K) 0.93 0.45–1.4

Roof U-value, W/(m2 K) 0.8 0.2–1.5

Roof solar absorptance 0.6 0.3–0.9

Building height, m 3.5 3–4

Internal shading factor 0.5 0–1

Window to wall ratio 0.6 0.05–0.9

Infiltration rate, ACH 0.75 0.5–1

System operation System COP 3.5 3–4

Ventilation rate, l/s/person 2.4 1.8–3

Indoor temperature set-point, °C 24 22–26

Relative humidity set-point, % 50 40–60

Internal heat gain Occupant density, m2/person 2 1.5–2.5

Lighting demand, W/m2 9 6–12

Equipment demand, W/m2 12 8–15

Energy generation Generation capacity Mean 1–1.2

PV proportion 0.5 0.5–1

PV electrical efficiency 0.14 0.08–0.2

WT power loss 0.15 0–0.3

Energy storage/conversion Battery capacity, kWh Mean (0–1) � Pcon,daily
a

Battery round-trip efficiency 0.8 0.75–0.85

Inverter efficiency 0.95 0.93–0.97
aPcon,daily is the daily energy consumption
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In the design of a new building, designers
select proper parameter values from a limited
range suggested by design guidelines/handbooks.
Considering the equivalent selection probability
of each value, the study utilizes the uniform
distribution to describe such uncertainty (Tian
2013). With reference to existing studies (Li and
Wang 2018; Sun 2015), the ranges of the input
parameter values are determined and presented in
Table 16.1. Their base values are also given in
Table 16.1 for the analysis of the identified key
parameters. Note that in the retrofitting cases,
other statistical distributions (e.g. normal distri-
bution and triangular distribution), derived from
actual measurements, can be used to quantify the
parameter uncertainties (Huang et al. 2019a;
Booth and Choudhary 2013).

16.2.2 Grid Interaction Performance
Assessment Using
Monte-Carlo Simulation

The Monte-Carlo simulation is a commonly used
technique for uncertainty impact assessments. In
this study, it is adopted to investigate the impacts
of the parameter value uncertainties on the grid
interaction performance. Based on the uniform
uncertainty distribution given in Sect. 2.1, N pa-
rameter samples are generated using the random
sampling approach (Huang and Huang 2015).
For all the input parameters, an input sample
matrix x is formed as below. The matrix consists
of N sampled values of the m input parameters.

x ¼ x1 x2. . . xm½ � ¼
x1;1 x1;2 . . . x1;m
x2;1 x2;2 . . . x2;m
. . . . . . . . . . . .
xN;1 xN;2 . . . xN;m

2
664

3
775

ð16:1Þ

Next, the sample matrix x is imported into the
NZEB model for estimating the uncertainty in
the concerned performance indicator. The esti-
mation process will repeat N times (correspond-
ing to the N samples) for obtaining the

performance vector y. In this study, three per-
formance indicators are considered in terms of
over/under voltage, grid dependence and energy
loss. For each performance indicator, a perfor-
mance vector y will be produced.

y ¼
y1
y2
. . .
yN

2
664

3
775 ¼

f x1;1; x1;2; . . .; x1;m
� �
f x2;1; x2;2; . . .; x2;m
� �

. . .
f xN;1; xN;2; . . .; xN;m
� �

2
664

3
775

ð16:2Þ

16.2.2.1 Over/Under Voltage
Performance Indicator

For the satisfactory operating of electrical and
electronic devices, it is recommended to allow
voltage variation at the prescribed limits,
i.e. ±6% of rated voltage in Hong Kong (Hong
Kong Electric 2019). Voltage variations have
adverse effects on connected loads. For instance,
overvoltage can cause insulation damage to
electrical appliances, thereby leading to short
circuits; while undervoltage causes equipment
inefficient operation. The over/under voltage
indicator (OV) (Mahmud et al. 2011) is the ratio
of maximum voltage variation to the voltage
variation limits, as shown in Eq. (16.3). For the
safe and satisfactory operating of electrical
devices, OV needs to be smaller than 100%.

OV ¼ max OVj

� � ¼ max
DUj

DUlimit

����
����

� �
� 100%

ð16:3Þ

where OVj is the over/under voltage in the jth
hour; DUlimit is the absolute value of the allowed
voltage variation in Hong Kong (6%); DUj is the
voltage variation (Mahmud et al. 2011) in the jth
hour, which is calculated by Eq. (17.4),

DUj ¼ Pexchange;jrþQexchange;jx

U2
0

� l ð16:4Þ

where, U0 is the nominal voltage (V); r and x are
the resistance and reactance per kilometre
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respectively (X/km); l is the length of the feeder
(km); Pexchange,j (W) and Qexchange,j (Var) are the
active and reactive power exchange between the
NZEB and the power grid, respectively. Pexchange,j

and Qexchange,j are explained in details in
Sect. 3.5.

16.2.2.2 Grid Dependence Performance
Indicator

The grid dependence indicator (GD) (Salom et al.
2011) describes the degree of a NZEB’s depen-
dence on the power grid, which is evaluated as
the ratio of time with power exchanges to the
total counting time (see Eq. (16.5)). The value of
GD is between 0 and 1. A larger GD means a
heavier dependence of NZEB on the grid and
thus a worse grid interaction performance.

GD ¼ 1� CPexchange¼0

Ctot

� �
� 100% ð16:5Þ

where, C is the time duration (h), and subscript
Pexchange is the power exchange between the
NZEB and power grid (which is calculated by
Eq. (16.18) in Sect. 3.5); Ctot is the total number
of counting hours (8760 h).

16.2.2.3 Energy Loss Performance
Indicator

The energy loss indicator (EL) (Ma et al. 2014) is
calculated as the ratio of total energy loss Etotal-

loss to the total energy generation of PV and WT.
It mainly includes three parts, i.e. grid loss
(ELgrid), battery loss (ELbat) and inverter loss
(ELinver).

EL ¼ ELgrid þELbat þELinver

¼ Egridloss

Etotalgen
þ Ebatloss

Etotalgen
þ Einverloss

Etotalgen

� �
� 100%

ð16:6Þ

where, Etotalgen is the total renewable energy
harvested by PV and WT (kWh); Ebatloss is the
total energy loss in the battery, which includes
the charging/discharging loss and the self-
discharge loss (kWh) (see Sect. 3.4); Einverloss is
the total energy loss in the inverter, which is

determined by the inverter efficiency and the
energy passing through the inverter (kWh) (see
Sect. 3.5); Egridloss is the total energy loss in the
distribution network (kWh), which is calculated
by Eq. (16.7) (Kashem et al. 2000; Jamil and
Anees 2016),

Egridloss ¼
X8760
j¼1

P2
exchange;j þQ2

exchange;j

U2
0

� R ð16:7Þ

where, R is the total resistance of the feeder,
R = l � r (X).

16.2.3 Global Sensitivity Analysis
for Identifying Key
Parameters

Based on the Monte-Carlo simulation results,
global sensitivity analysis will be used to identify
the key parameters with significant impacts on
the performance indicators. Among different
sensitivity analysis methods, the SRC method is
selected in the study due to its simplicity and
lower data requirement (Tian 2013; Hopfe 2009).
In the SRC method, a linear multivariate model
between the performance outputs (y) and the
parameter inputs (x) is first constructed, as shown
in Eq. (16.8).

y ¼ b0 + b1x1 + b2x2 + . . . + bmxm ð16:8Þ

where, bk (k = 1, 2, …, m) is the regression
coefficient which can be calculated using
least squares method (Domínguez-Muñoz et al.
2010).

The regression coefficient bk will be further
used to calculate the standardized regression
coefficient SRCk, as shown in Eq. (16.9). SRCk

directly reveals the importance of the parameter
xk in affecting the performance output. A higher
absolute value of SRCk represents a more sig-
nificant impact of the input parameter. A positive
SRCk means that the performance output increa-
ses as the input parameter increases; while a
negative SRCk means that the performance out-
put decreases as the input parameter increases.
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SRCk ¼ bkrxk
ry

ð16:9Þ

where, rxk and ry are the standard deviation of
input xk and output y, respectively.

16.2.4 Verification of the Key
Identified Parameters

After the key parameter identification using the
SRC method, the next step is to verify the
identification results by comparing the perfor-
mance improvements achieved from optimizing
different parameter sets. The verification process
consists of three steps: construction of parameter
groups, search for the optimal parameters, and
performance improvement comparison, as shown
in Fig. 16.1.

In the first step, a parameter group Xi (i = 0, 1,
2, …, n) is composed of the top i key parameters
(i.e. the parameters with the top i highest absolute
SRC values). It should be noted that i = 0 rep-
resents a case in which no parameter is optimized.
In the second step, genetic algorithm (GA) will be
used to search for the optimal parameter values in
Xi. In the search process, those parameters not
included in Xi will be assigned random values
based on their distributions to simulate the actual
design scenario. During each search round, a
group of trial values of Xiwill be generated within
the search space by the GA optimizer. Then, these
trial values will be sent into the simulation plat-
form for performance evaluation. The main per-
formance considered is the grid interaction and
thus the GA optimizer directly takes the three
indicators as the fitness functions, see Eqs. (16.3),
(16.5) and (16.6). In order to improve the com-
parison robustness, the optimization of each
parameter group is repeated 10 times, and average
values of the optimal performance and computa-
tion loads are used for comparison. In the last
step, the average values of the optimal perfor-
mance and computation loads are compared.

Through such comparisons, the parameters’
significances will be obtained. If the optimization
of a parameter leads to larger performance
improvements than another one, this parameter

will be considered as a more important parameter.
On the other hand, if the optimization of one more
parameter leads to limited/negligible performance
improvements but with noticeable computation
load increase, this parameter will be considered as
a non-significant/non-key parameter.

16.3 Simulation Platform
and System Modelling

With reference to existing NZEBs, a simulation
platform is established using TRNSYS and
MATLAB. Figure 16.2 shows the schematics of
the platform and the energy system types selec-
ted from TRNSYS. It mainly includes a hybrid
renewable system (i.e. PV and WT), an electrical
battery, an inverter, several energy consuming
systems (i.e. HVAC system, lighting system and
other electrical equipment) and a power grid. In
the platform, the renewable energy will firstly be
used to meet the building energy demand, and
then the surplus part will be stored in the battery.
In case that the battery is fully charged, the sur-
plus renewable energy will be exported to the
power grid. In the following models, the
parameter values will be assigned the base values
of Table 16.1.

16.3.1 Building Model

Multi-zone model (i.e. type 56) from TRNSYS is
used to simulate the NZEB. It is a one-floor
office building with dimensions of 20 m
(length) � 20 m (width) � 3.6 m (height). The
single type window with a U-value of
5.68 W/m2K was selected from the window type
library of TRNSYS. The values of other design
parameters of the NZEB are summarized in
Table 16.1. The total energy consumption
includes energy used by the HVAC system,
lighting system and other equipment. Since the
building is located in a subtropical climate,
heating is not needed. Cooling is provided by a
central air-conditioning system to maintain the
indoor temperature at a pre-defined set-point.
Figure 16.3 presents the schedules of HVAC
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operation, occupancy, equipment, and lighting,
with reference to Guideline on Performance-
based Building Energy Code (2003). The energy
consumptions of the lighting system and other
equipment can be estimated based on their
schedules and the rated power as shown in
Table 16.1.

16.3.2 HVAC System

A typical configuration of HVAC system was
selected and presented in Fig. 16.4. In the cool-
ing water loop, a constant speed pump was used
to supply cooling water to the chiller. A variable
speed fan was used to deliver the ambient air to
cool down the circulating water in the cooling
tower. At the chilled water side, a constant speed
pump was installed in the primary loop and a
variable speed pump was adopted in the sec-
ondary loop. The speed of the secondary water
pump was varied to deliver the needed amount of
chilled water according to the varying cooling
load. The constant speed fan-coil units were used
to supply the cool air to different rooms (Huang
and Huang 2015; Zhang et al. 2016). The sizes of

the HVAC components were selected based on
the peak cooling load of the building (Zhang
et al. 2016).

In this HVAC system, the power consuming
components include the chiller, two fans and
three pumps. The power consumed by the chiller
is calculated by Eq. (16.10) (Chai et al. 2019;
Huang et al. 2019b).

Pcon;chiller ¼ FFLP� Qcooling

COP
ð16:10Þ

where, FFLP is the fraction of full load power;
Qcooling is the actual cooling load (W); COP is
the nominal coefficient of performance (COP) of
the chiller, as shown in Table 16.1.

The power consumed by the variable and
constant fans is estimated by the air flow rate _mair

and the static pressure drop of the air flow DPair,
as shown in Eq. (16.11) (Chai et al. 2019; Huang
et al. 2019b).

Pcon;fan ¼ _mair � DPair ð16:11Þ

The power consumed by the variable and
constant speed pumps is calculated according to
the water flow rate _mw and the water head DPw,

Fig. 16.2 Schematic diagram of the simulation platform

16 Genetic Algorithm and Mont Carlo Method for Global Sensitivity … 345



Fig. 16.3 Schedules of HVAC operation, occupancy, equipment, and lighting

Fig. 16.4 Schematics of the
HVAC system
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as shown in Eq. (16.12) (Chai et al. 2019; Huang
et al. 2019b).

Pcon;pump ¼ _mw � DPw ð16:12Þ

16.3.3 Renewable Energy System

Type 562 and type 90 from TRNSYS are selec-
ted to simulate the PV panel and WT respec-
tively. The power outputs of PV (PPV) and WT
(PWT) are calculated using Eqs. (16.13) and
(16.14), respectively (Sun 2015; Zhang et al.
2016).

PPV ¼ ðsaÞn � IAM � APV � g� IT ð16:13Þ

where (sa)n is the transmittance-absorptance
product of the PV cover for solar radiation at a
normal angle of incidence; IAM is the combined
incidence angle modifier for the PV cover
material; IT is the total amount of solar radiation
on the PV collector surface (W/m2); η is the
overall efficiency of the PV array; and APV is the
PV surface area (m2).

PWT ¼ CP � qair � AR � v3a ð16:14Þ

where, qair is air density (kg/m3); AR is rotor area
(m2); va is wind velocity in the free stream (m/s);
power coefficient Cp is a function of the axial
induction factor.

The sizes of PV and WT were selected
according to the PV proportion and generation
capacity. PV proportion indicates the proportion
of PV energy generation to the total energy
generation. Generation capacity refers to the
ratio of the annual renewable energy generation
to the annual energy consumption. Due to the
energy loss of the battery and inverter, the
generation capacity could be slightly larger than
1. In this study, the PV proportion varies from
50 to 100%, and the generation capacity varies
from 1 to 1.2.

16.3.4 Electrical Energy Storage
System

The amount of electricity stored in the battery is
calculated as the product of the battery capacity
and the state of charge (SOC). It should be noted
that the oversized batteries cause excessive initial
costs and energy losses but with limited perfor-
mance improvements (Guarino et al. 2015). In
this case, following the existing study (Sun
2015), the upper limit of battery capacity was set
as the average daily energy demand, as shown in
Table 16.1.

The battery SOC is estimated using
Eq. (16.15). In this equation, r is the self-
discharging rate taken as 0.02% (Agarwal and
Kumar 2013); gbat is the battery round-trip effi-
ciency (see Table 16.1); Pbat,j is the charging/
discharging power of battery in the jth hour (W),
which is calculated by the mismatch between
power generation and power consumption.
A negative value of Pbat,j indicates battery charg-
ing and a positive value indicates battery
discharging.

SOCjþ 1 ¼ SOCjð1� rÞ � Pbat;jgbat
BC

ð16:15Þ

The calculation of the battery SOC is subject
to the following constraints.

SOCmin � SOCj � SOCmax ð16:16Þ

and

Pbatj

�� ���Pbat;max ð16:17Þ

With reference to the existing studies (Ma
et al. 2014), the allowable range of SOC is set to
be 30–100% in the study, and the amount of
maximum charging/discharging power Pbat,max is
set as 20% of the value of battery capacity (Yang
and Lu 2007). If the battery is fully
charged/discharged, the remaining electricity will
be imported from/exported to the power grid.
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16.3.5 Modelling of Grid Interaction

The energy interaction between the NZEB and
the power grid includes active power exchange
Pexchange and reactive power exchange Qexchange.
They are calculated by Eqs. (16.18) and (16.19).

Pexchange;j ¼ Psup;j � Pcon;j

¼ ðPPV;j + PWT ;j + Pbat;jÞ � PFinver

� ginver � Pcon;j

ð16:18Þ
Qexchange;j = Qsup;j � Qcon;j ¼ Psup;j � tanðarccosPFinverÞ

� Pcon;j � tanðarccosPFbuildÞ
ð16:19Þ

where, PFinver and PFbuild are the power factor
of inverter and energy consumers, respectively
(PFinver = PFbuild = 0.95) (Tonkoski and Tur-
cotte 2012; Shen et al. 2013).

Then, the obtained Pexchange and Qexchange

from Eqs. (16.18) and (16.19) are used as inputs
for evaluating the grid interaction performance in
terms of over/under voltage, grid dependence and
energy loss. In these equations, the voltage at the
middle-voltage/low-voltage (MV/LV) substation
node (U0) is set as 380 V. The length of feeder
connecting the substation and the NZEB (l) is set
as 400 m, and its impedance (r and x) is set to be
0.13 + j0.14 X/km following the designed

guideline (Electrical and Mechanical Services
Department 2015).

16.4 Case Studies and Analysis

This section presents the study results and asso-
ciated analysis. In case studies, Hong Kong
weather data (e.g. solar radiation and wind
speed) in the typical year (https:energyplus.
net/weather) were used. Figure 16.5 presents the
daily wind velocity, solar radiation, ambient
temperature and relative humidity in the typical
year of Hong Kong. It can be observed that the
maximum wind velocity and solar radiation can
reach 9.7 m/s and 996.3 W/m2, respectively.
Figure 16.5b reveals that in the most time, the
ambient temperature is above 25 °C and relative
humidity is over 70%, representing a hot and
humid climate. The simulation period was one
year and the time interval was one hour. In the
following parts, sensitivity analysis results were
firstly presented. Then, detailed analysis was
provided to elaborate the reasons why the iden-
tified parameters could have significant effects on
the considered performance. Finally, the verifi-
cation results were stated in terms of perfor-
mance improvements and computation load
variations when different parameter sets were
optimized.

Fig. 16.5 Hong Kong weather data in the typical year (a) daily wind velocity and solar radiation; (b) daily ambient
temperature and relative humidity
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16.4.1 Key Parameter Identification
Results via Global
Sensitivity Analysis

Figure 16.6 shows the sensitivity analysis results
of the three performance considered. The 24
input parameters were arranged in the order of
SRC absolute values. A larger SRC absolute
value indicates that the corresponding parameter
plays a more important role in improving the
concerned performance. The sign of the SRC
represents whether the performance indicator has
a positive or negative correlation with the
parameter. For the over/under voltage, there were
two identified key parameters, i.e. PV proportion
and generation capacity. For the grid depen-
dence, there were another two key parameters,
i.e. battery capacity and PV proportion. For the
energy loss, there were four key parameters, i.e.
inverter efficiency, battery capacity, battery
round-trip efficiency and PV proportion.

16.4.2 Analysis of the Identified Key
Parameters
for Over/Under Voltage

Figure 16.7 is used to elaborate the reason why
the two identified key parameters had critical
impacts on over/under voltage. Over/under volt-
age is mainly caused by the maximum/peak grid
energy exchange. Figure 16.7a presents the daily
peak power generations of WT and PV in the
scenario of 50% PV proportion. It shows that the
peak power generation of WT (appeared on the
204th day) was over 4 times of that of PV. Thus,
in comparison with PV, WT was more likely to
cause overvoltage problems due to its excessive
peak power generation.

Figure 16.7b–d present variations of
over/under voltage with PV proportion, genera-
tion capacity and COP respectively on the 204th
and 205th day with severe overvoltage risks. As
shown in Fig. 16.7b, when PV proportion

Fig. 16.6 SRCs of all input parameters for a over/under voltage; b grid dependence; c energy loss
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increased from 50 to 100%, over/under voltage
first rapidly reduced from 85.23 to 0% and then
bounced back to 13.55%. Figure 16.7c shows
that with the increase of the generation capacity
from 1 to 1.2, overvoltage increased from 76.09
to 94.36%. The main reason was the change of
the WT installation capacity. For instance, at a
given PV proportion, the capacity increase
directly lead to the increase of WT installation
capacity, thereby substantially increasing the
daily peak power generation and associated
overvoltage risk, as shown in Fig. 16.7c. In
contrast, overvoltage is almost unchanged as the
system COP increased from 3 to 4, as shown in
Fig. 16.7d. In other words, PV proportion and
renewable generation capacity were of more
significance in reducing overvoltage risk in

comparison with system energy efficiency
improvement.

16.4.3 Analysis of the Identified Key
Parameters for Grid
Dependence

Figures 16.8 and 16.9 are used to elaborate the
reasons why the two identified key parameters
played more important roles for grid dependence.
Grid dependence is determined by power inter-
action between a NZEB and the power grid. The
power interaction is jointly influenced by build-
ing renewable generation, energy demand and
storage characteristics. Figure 17.8 presents the
weekly power variations (including power

Fig. 16.7 a Power generation of PV and WT; variations of over/under voltage with b PV proportion, c generation
capacity and d COP
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interaction between the NZEB and the grid,
power consumption and renewable generation)
as the four top-ranked key parameters consid-
ered. Figure 16.8a shows that with the battery
capacity increased from 0 to 200 kWh, the grid
independence period (i.e., the period requiring
zero power interaction) largely increased from 0
to 80 h. This was because via storing the surplus
renewable generation for later use, battery can
effectively reduce or eliminate power mismatch.

Figure 16.8b shows the power variations with
PV proportion. It was observed that PV propor-
tion directly changed the renewable generation
and thus caused the variation of the power
interaction between the NZEB and the grid.

As PV proportion increased from 50 to 100%,
the grid independence period (i.e., the period
requiring zero power interaction) increased from
23 to 46 h. Figure 16.8c and d show the power
variations with COP and indoor temperature set-
point (ITS) respectively. Although COP and ITS
can largely change building power consump-
tions, the resulting variations of the power
interactions and corresponding grid dependence
were not substantially. For instance, as ITS
increased from 22 to 26 °C, associated grid
independence period only increased two hours,
i.e. from 22 to 24 h. The main reason was that
building power consumption had relatively stable
trend and profile, and thus it had less impacts on

Fig. 16.8 Power variations with a battery capacity; b PV proportion; c COP; and d indoor temperature set-point
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the variation of power interaction in comparison
with the renewable generation that had more
dramatic variations.

Figure 16.9 summarizes the grid dependence
variations with the four top-ranked parameters. It
shows battery capacity has the largest impacts on
the grid dependence. For instance, as battery
capacity changed from 0 to 200 kWh (from Min
to Max in Fig. 16.9), the grid dependence
reduced substantially from 100 to 47.74%.
As PV proportion increased from 50 to 100%
(from Min to Max in Fig. 16.9), grid dependence
first decreased from 63.44 to 56.05% and then
slightly increased to 58.47%. It indicated that
there was an optimal PV proportion for mini-
mizing the grid dependence. The grid depen-
dence remained almost unchanged with COP and
indoor temperature set-point. Figure 16.9 also
shows that with the increase of battery capacity,
grid dependence decreased quickly at the
beginning but slowly at the end. For instance, as
the battery capacity increased from 0 to 40 kWh
(+20% in Fig. 16.9), the grid dependence was
largely reduced from 100 to 65.88%. Then, as the
battery capacity kept increasing, the improve-
ments in grid dependence became less effec-
tively. The main reason was that a major part of
the power interactions between the NZEB and
the grid were of relatively small magnitudes, and
thus they can be easily eliminated using a small
sized battery. To eliminate the remaining power

interactions with large magnitudes, batteries with
dramatic size increases were required.

16.4.4 Analysis of the Identified Key
Parameters for Energy
Loss

In the study, the energy losses in inverter, battery
and grid feeder were considered. Figures 16.10
and 16.11 are used to elaborate the reasons why
the four identified key parameters were important
for energy loss. Figure 16.10 presents the varia-
tions of energy losses with the four top-ranked
parameters. It shows that the inverter loss
accounted for more than 50% of overall energy
loss even with an over 90% high inverter effi-
ciency. This was because all the renewable
generations must be converted to alternative
current (AC) via the inverter before their usage or
deports to the grid. Due to the relatively low
battery round-trip efficiency (e.g. 75–85%), the
battery loss was also substantial. In total, the
losses in battery and inverter accounted for about
90% of the total loss, and thus they had two most
significant impacts on the energy loss. Fig-
ure 16.10 also reveals that the energy loss from
the grid feeder was less than 10% of the total
one. This was because the grid loss was mainly
caused by the Joule effect of resistance in the
power lines, and the line resistance was very
small nowadays.

More importantly, Fig. 16.10 shows the
energy loss variations with the four top-ranked
parameters including inverter efficiency, battery
capacity, battery round-trip efficiency and PV
proportion. It can be observed that the inverter
loss varied substantially with the inverter effi-
ciency. As shown in Fig. 16.10a, when the
inverter efficiency increased from 93 to 97%, the
energy loss decreased from 10.00 to 6.11%.
Figure 16.10b shows that with the increase of
battery capacity from 0 to 200 kWh, the battery
loss increased from 0 to 3.81%, and the total
energy loss increases from 5.50 to 8.97%. The
main reason was that a larger sized battery can
provide more energy storage as surplus renew-
able generations existed, thereby leading to more

Fig. 16.9 Grid dependence variations with different
parameters
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battery energy losses in the charging and dis-
charging processes. Figure 16.10c reveals that
the total energy loss reduced from 8.83 to 7.34%
with the increase of battery round-trip efficiency
from 75 to 85%. Figure 16.10d shows that the
battery loss increased gradually with the increase
of PV proportion. The detailed reason was
explained as below (in Fig. 16.11).

In Fig. 16.11a–c, a typical week was selected
to compare the battery charge cycles at different
PV proportions. When PV proportion was 50%
(as shown in Fig. 16.11a), the power generation
was less than the power consumption in most
time of the week. In this case, very limited sur-
plus renewable generation can be stored, and the
battery SOC stayed at a minimum level for most
of the week. Thus, only one charge cycle was
performed in the whole week. In contrast, as PV
proportion increased to 75 and 100%, the battery
charge cycles increased to 3 and 5 respectively,
as shown in Fig. 16.11b and c. As the PV pro-
portion continuously increased, there exist more

surplus renewable generations that can be stored
for later use, thereby increasing the battery
charge cycles. Figure 16.11d summarizes the
annual battery cycle variations with PV propor-
tion increase. It can be observed that the annual
battery charge cycles increased from 151.5 to
221.7 with the PV proportion increase from 50 to
100%. Such an increase of the battery charge
cycles was the reason why PV proportion
increase can cause the increase of battery energy
loss.

16.4.5 Verifications via Performance
Improvement
and Computation Load
Comparisons

In the study, the verifications of the identified
key parameters were performed by comparing
performance improvements and computation
loads. Figure 16.12 shows the performance

Fig. 16.10 Energy loss variations with a inverter efficiency; b battery capacity; c battery round-trip capacity; d PV
proportion
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improvements and computation loads as different
number of top-ranked parameters optimized. It
should be mentioned that a smaller indicator
value represents better performance. Fig-
ure 16.12a shows the variations of over/under
voltage and associated computation load with
different parameters optimized. The optimiza-
tions of the two key parameters (i.e. PV pro-
portion and generation capacity) resulted in the
substantial reductions of the overvoltage risk. In
details, the optimization of PV proportion led to
the largest overvoltage risk reduction, from 72.03
to 37.03%, and the optimization of the generation
capacity further reduced the risk from 37.03 to
31.03%. In contrast, the other three optimization
cases contributed little to the overvoltage risk
reduction. Such different performance improve-
ments verified that the two identified parameters
(i.e., PV proportion and generation capacity) had
critical impacts on NZEB overvoltage. On the
other hand, with the more parameters optimized,

associated computation loads increase rapidly
from 0.92 to 2.94 h.

Figure 16.12b shows the variations of grid
dependence and associated computation loads
with different parameters optimized. As the bat-
tery capacity (the identified first-ranked parame-
ter) was optimized, grid dependence substantially
improved from 64.99 to 43.67%. The optimiza-
tion of the identified second-ranked parameter
(i.e. PV proportion) can achieve a further 11.74%
improvement. In contrast, the optimizations of
the non-key parameters including COP and ITS
can only result in very limited performance
improvements, i.e., 2.44% and 2.43%, respec-
tively. Such different performance improvements
verified that the two identified parameters (i.e.,
battery capacity and PV proportion) had critical
impacts on NZEB grid dependence. Similar to
the over/under voltage, the computation loads
also rapidly increased from 0.86 to 3.13 h as
more parameters were optimized.

Fig. 16.11 Power, SOC and battery cycle variations under different PV proportion a PV proportion = 50%; b PV
proportion = 75%; c PV proportion = 100%; d Annual battery cycle count
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Figure 16.12c shows the variations of energy
losses and associated computation loads with
different parameters optimized. The optimiza-
tions of the four key parameters (including
inverter efficiency, battery capacity, battery
round-trip capacity, and PV proportion) achieved
energy loss reductions of 2.5, 1.37, 0.64, and
0.54% respectively. In contrast, the optimization
of the window to wall ratio (the fifth-ranked
parameter) can only achieve negligible energy
loss reduction, i.e. 0.03%. Such different per-
formance improvements verified that the four
identified parameters played more important
roles in reducing the energy loss as compared
with other parameters. It can also be observed
that with the increase of the optimized parame-
ters, associated computation loads increase
rapidly from 0.81 to 3.45 h.

In summary, the optimizations of the identi-
fied key parameters can achieve substantial per-
formance improvements, while the optimizations
of the non-key parameters can only lead to
negligible performance improvements but with
rapid computation load increase. Thus, for
computation-efficient optimization, the identified
key parameters should be considered.

16.5 Summary

In this study, a novel method has been proposed
to identify the key parameters affecting net-zero
energy building (NZEB) grid interactions as
parameter uncertainty considered. In the method,
global sensitivity analysis has been adopted to
systematically investigate the impacts of 24

Fig. 16.12 Variations of different performance indicators and computation load with the number of optimized
parameters a over/under voltage; b grid dependence; c energy loss
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influential parameters on three user-concerned
performance including over/under voltage, grid
dependence and energy loss. To verify the
identification results, six parameter groups, con-
taining different numbers of the top-ranked
parameters, have been optimized separately,
and then their performance improvements and
computation loads were compared. The major
findings of the study are stated as below.

• In the aspect of over/under voltage, photo-
voltaic (PV) proportion and renewable gen-
eration capacity are the two identified key
parameters. In comparison with the renewable
generations with excessively high peak power
output, such as wind turbine (WT), PV energy
generation is relatively more stable. Thus, an
increase of PV proportion (or a reduction of
WT proportion) can effectively reduce the
peak renewable power generation, thereby
substantially reducing the overvoltage risk.
Meanwhile, with a given PV proportion, a
reduction of the renewable generation capac-
ity leads to a reduction of the WT installation
capacity, which consequently reduces associ-
ated WT peak power generation and thus
reduces the overvoltage risk.

• In the aspect of grid dependence, battery
capacity and PV proportion are the two
identified key parameters. In the study, as the
battery capacity increased from the 0 kWh to
the maximum one, the grid dependence
rapidly reduced from 100 to 47.74%. The
main reason was that battery can effectively
reduce power interactions between the NZEB
and the grid through storing the surplus
renewable generation for later use. It must be
mentioned that grid dependence did not
improve in a simple linear way as the battery
size increased (i.e., fast improvements at
beginning but slow ones at end, as shown in
Fig. 16.9). In this regard, battery capacity
increase may no longer be effective to
improve grid dependence after a certain
extent. With relatively power generation, PV
proportion increase can also improve the grid
dependence, but the maximum improvement

requires the optimization of the PV
proportion.

• In the aspect of energy loss, the identified key
parameters include inverter efficiency, battery
capacity, battery round-trip efficiency and PV
proportion. The study results showed that the
losses in the battery and inverter accounted for
about 90% of the total loss, which stressed the
importance of their efficiencies in reducing the
total energy losses. With an increased battery
capacity, the stored energy amount will
increase, thereby directly increasing the bat-
tery energy losses in the charging and dis-
charging processes. In addition, a rise of PV
proportion will cause an increase of battery
charge cycles (as shown in Fig. 16.11), which
consequently result in an increase of the bat-
tery energy loss.

• The study results have showed that the key
parameters optimization can rapidly improve
the considered performance, while the opti-
mizations of other non-critical parameters can
only slightly or even hardly improve the per-
formance, as shown in Fig. 16.12. On the
other hand, with more unnecessary/non-key
parameters taken into considerations, the
computation loads will quickly increase.

The study provided an effective solution to
identifying the key influential parameters out of
many, and thus unnecessary/non-critical param-
eters optimization can be substantially reduced.
The identified key parameters can also be directly
used to develop computation-efficient design
optimization methods for improving NZEB grid
interactions in the aspects of overvoltage, grid
dependence, and energy loss.
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17Local Energy Communities: Market
Design Evaluation Using Agent
Based Modelling

Marco Lovati, Pei Huang, and Xingxing Zhang

Abstract

Solar photovoltaic (PV) is becoming one of the
most significant renewable sources for positive
energy district (PED) in most countries,
including Sweden. The lack of innovative
business models and financing mechanisms are
one of the main constraints for PV’s deploy-
ment installed in local community. This chap-
ter therefore analyses a set of peer-to-peer
(P2P) business model for 48 individual build-
ing prosumers with PV installed in a Swedish
community. It considers energy use behaviour,
electricity/financial flows, ownerships, and
trading rules in a local electricity market.
Different local electricity markets are designed
and studied using agent-based modelling tech-
nique, with different energy demands, cost–
benefit schemes and financial hypotheses for
an optimal evaluation. This chapter provides
an early insight into a vast research space, i.e.
the operation of an energy system through the

constrained interaction of its constituting
agents. The agents (48 households) show
varying abilities in exploiting the common
PV resource, as they achieve very heteroge-
neous self-sufficiency levels (from ca. 15 to
30%). The lack of demand side management
suggests that social and lifestyle differences
generate huge impacts on the ability to be
self-sufficient with a shared, limited PV
resource. Despite the differences in
self-sufficiency, the sheer energy amount
obtained from the shared PV correlates mainly
with annual cumulative demand.

Keywords

Agent based modelling � Micro-grid �
Self-sufficiency � Emergent systems �
Prosumer � PV optimization

17.1 Introduction

Climate change is one of the main challenges that
threaten the well being or the very existence of
human society. This threat cannot be ignored
because it can impact a wide range of natural
ecosystems and socio-technical systems. In the
last few decades numerous technologies have
been discovered, or improved, that can dramati-
cally reduce our greenhouse gas emissions:
renewable or low carbon energy generation
devices, energy storage systems, energy
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efficiency, and carbon capture devices. The vast
majority of countries and international institu-
tions on the planet agree on the danger of climate
change and on the need for action (Liu et al.
2020). In other words, since the political and
social will to build a low carbon economy has
been largely achieved, the focus in this chapter
has been put chiefly on practical strategies and
effective transition pathways. The subject is how
to achieve a transition to a low carbon society in
an economically beneficial way and without
causing discontent.

17.1.1 How Change Can Happen

To transform the will for change in actual
change, it is important to understand the causes
and the mechanisms that activate change. In
Giddens (1984) an important role in the evolu-
tion of technology is played by the interaction
between socio-technical regimes, I.e. the existing
dominating technology and the social structure it
generated, and technological niches, I.e. newer,
smaller and dynamic socio-technical entities that
disturb the existing regime. In Geels and Schot
(2007) the authors elaborate different transition
pathways (I.e. transformation, reconfiguration,
technological substitution, and de-alignment and
re-alignment) elaborating upon previous work
and criticisms. In particular (Geels 2002) is
reported, which add new elements on the subject
introducing the so called ‘socio-technical land-
scape’. The socio-technical landscape is the sum
of morals, beliefs, knowledge and ideas that can
push the change in a socio-technical regime. In
Suarez and Oliva (2005) different modifications
of the socio-technical landscape are presented (I.
e. regular, hyperturbolence, specific shock, dis-
ruptive, avalanche). Also (Scott 2013) speaks
about the forces that drive a transition or the
conservation of a socio-technical regime, which
can therefore be seen as a socio-technical land-
scape. These forces are divided into three groups:
regulative (e.g. laws and standards), normative
(e.g. values and norms), and cognitive (such as
beliefs and search heuristics). The study argues
that the stronger of these forces is the cognitive

one since is the most immersive and invisible for
the actors under its influence. Other aspects that
are fundamental in a transition are the selection
pressure and the coordination of resources, these
two are deeply interconnected according to
Smith et al. (2005).

17.1.2 Micro-grids, Local Energy
Communities,
and Relative Research

Fortunately, the possibility to form energy com-
munities, where energy can be locally shared, has
been regulated at European level in the Clean
Energy package presented by the European
Commission (2020) and at Swedish level under §
22 (a) of the IKN Regulation 2007:215 (Riksdag
2020). This can be an opportunity for a new
business model development within the energy
sector, e.g. Peer-to-Peer (P2P) trading. In such
business model, consumers and pro-sumers
organize in energy communities, in which the
excess production could be sold to other mem-
bers (Parag and Sovacool 2016). The benefits are
threefold as the pro-sumers could make an
additional margin on their sale, consumers could
buy electricity at a more advantageous price and
the grid could be more stable and resilient. This
can be a potential solution to promoting PV
installation in a sustainable way, while reducing
the reliance on subsidies.

In order to support new regulations, careful
design and optimal modelling of P2P business
models for PV penetration is necessary by ana-
lysing current state of affairs and proposing
future ways of exchanging energy. Huijben and
Verbong (2013) summarized three possible
ownerships of PV systems, such as Customer-
Owned (single ownership), Community Shares
(multiple ownership) and Third Party owner-
ship. Based on these possibilities, Lettner et al.
(2018) further described three different system
boundaries of a PV prosumer business concept
(as illustrated in Fig. 17.1): Group (1) single
direct use (one consumer directly uses the gen-
erated PV electricity on site), Group (2) local
collective use of PV in one building (several
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consumers share the generated PV electricity
with or without the public grid), and Group
(3) district power model (PVs are installed in
several buildings, where those prosumers directly
consume locally generated PV power, and the
PV electricity is further shared using public or
private micro grid). It is possible to have different
ownerships in each category of these boundary
conditions, resulting in a large number of possi-
bilities and uncertainties in the practical business
operation. Learning and mapping (i.e. testing) a
wide array of these possible designs and com-
binations are necessary. There are a few existing
regulatory and modelling studies about the P2P
PV-electricity trading. Community-owned PV
system was surveyed as an innovative business
model in Switzerland, where it can seemingly be
a successful distribution channel for the further
adoption of PV (Stauch and Vuichard 2019).
Roberts et al., tested a range of financial sce-
narios in Australia, based on the P2P concept, to
increase PV self-consumption and electricity
self-efficiency by applying PVs to aggregated
building loads (Roberts et al. 2019). Zhang et al.

(2018) established a four-layer system architec-
ture of P2P energy trading (as shown in
Fig. 17.2, i.e. power grid layer, ICT layer, con-
trol layer and business layer), during which they
focused on the bidding process on business layer
using non-cooperative game theory in a micro-
grid with 10 peers. A price mechanism for the
aggregated PV electricity exchange among peer
buildings was also developed using either
Lagrangian relaxation-based decentralized algo-
rithm (Xu et al. 2017) or mixed integer linear
programming (Nguyen et al. 2018). Jing et al.
(2020) then applied the non-cooperative game
theory to modelling the aggregated energy trad-
ing between residential and commercial build-
ings by considering fair energy pricing
mechanism for both PV electricity and thermal
energy simultaneously. Lüth et al. (2018)
designed two local markets for decentralised
storage (flexi user market—individually owned
batteries) and centralised storage (pool hub
market—commonly owned battery), based on a
multi-period linear programming. It focused on
the evaluation of two different ownerships of

Fig. 17.1 Classification of integration concepts (Lettner et al. 2018)

17 Local Energy Communities: Market Design Evaluation Using Agent … 361



batteries and optimized P2P energy trading local
markets. They indicated that the end users can
save up to 31% electricity bills in the Flexi User
Market and 24% in Pool Hub Market. Further-
more, two different ownership structures, namely
the third-party owned structure and the user
owned structure, were investigated in a P2P
energy sharing network with PV and battery
storage (Rodrigues et al. 2020). These existing
studies almost cover all the four layers of a P2P
network. The impact of other system and market
components on the economic performance of PV
P2P business models has been investigated, such
as EV (Electric Vehicle) batteries (Tang et al.
2018), gas storage (Basnet and Zhong 2020),
heat pump/hot water storage (Huang et al. 2019),
advanced control (Thomas et al. 2019), energy
cost optimization (Alam et al. 2019), bidding
strategies for local free market (El-Baz et al.
2019), double auction market (Chen et al. 2019),
local market designs (Sousa et al. 2019), inte-
gration of local electricity market into wholesale
multi-market (Zepter et al. 2019), micro grid ICT
architecture (Cornélusse et al. 2019) and grid
operation (Almasalma et al. 2019) etc.

According to the above studies, a research
gap is found in the lack of examination on full
P2P energy trading process at the business layer
in a local market for individual participant,
which, in time sequence, consists of bidding,
exchanging and settlement, under different local
market conditions with various ownerships of
PV systems and market rules. Bidding is often
the first process when energy players (genera-
tors, consumers and pro-sumers) agree to trade
energy with each other at a certain price for a
specific amount of energy. Energy exchanging
is the second process, during which energy is
generated, transmitted and consumed. Settle-
ment is the last process when bills and trans-
actions are finally settled via settlement
arrangements and payment (Zhang et al. 2018),
which results in the final economic benefits. In
cases of the physical network constraints, due to
the varying energy demand and the intermittent
generation of PVs, there are always mismatches
between sellers and buyers. Such difference
between electricity generation and demand are
to be evaluated and charged/discharged during
settlement stage.

Fig. 17.2 The four layered
system architecture of P2P
energy trading from Zhang
et al. (2018)
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17.1.3 Novelty and Aim

A number of studies have focused on the technical
or economic aspects of the micro-grids and shared
RES, but the endeavor has been tackled in a seg-
mented way analyzing a narrow sample of possi-
bilities among the vast search space of the business
models. The existing studies have not yet fully test
the effectiveness and compare the characteristics
of various P2P business models, in case of
heterogeneous peer (individual) energy supply/
demand, and dynamic market rules for the full
trading process on the business layer. There is a
lack of a concise and efficientmethod yet tomodel.

Although the study in this chapter analyses
only three different setups, it attempts to lay the
groundwork for a systematic study of the subject.
In other words, the results and the discussion
presented in this chapter, although not conclusive
by themselves, they are part of a well-defined
search-space. This allows the outcomes to be
interpreted from the perspective a larger sys-
tematic endeavor.

In summary, the elements of novelty of this
chapter are described as the following:
1. The particular result of the study: to the

knowledge of the authors, no study have
linked the price of the electricity offered
within a shared RES to both the risk of eco-
nomic loss and the potentials for earning

among the individual households within the
shared micro-grid. Furthermore, the domi-
nance of shear annual cumulative consump-
tion over self-sufficiency in determining the
earning potential in a shared RES is an
unknown phenomenon. It deserves to be
further analyzed (i.e. tested under different
datasets) to be proven.

2. The examples of business models presented
in the study are included in a well-defined
search space map (see Fig. 17.3). This facil-
itates a systematic inquiry and offers a way to
organize the results presented in the study of
this chapter and in the follow-ups.

This chapter reports the results of a study of
the P2P business model for 48 individual build-
ing prosumers with PV installed in a Swedish
community. The aim is to discover ‘latent
opportunities’ that were previously unknown and
optimize the market design and its variables for
the best benefit. It will have significant influence
that integrates energy needs, supply and market
rules. This chapter is expected to provide
knowledge for policymakers to design a fair,
effective and economical P2P energy framework.
The research results will be useful to optimize
PED’s three functions (energy efficiency, energy
production and flexibility) towards energy sur-
plus and climate neutrality.

Fig. 17.3 District scale
renewable energy systems
behaviour map
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17.2 Method

The definition of ownership structures from
Huijben and Verbong (2013) distinguishes
among customers, communities and third parties.
In general, a similar distinction could be applied
to the behaviour of the local grid instead to the
ownership. In this way, the concept of ownership
is not associated with the functioning of the grid
and it is easier to describe hybrid forms (e.g.
some share-holder of an energy provider, or more
providers, which form a market although not
prosumers etc.). Thinking about the behaviour of
the shared system, a space can be defined
according to three dimensions (see Fig. 17.3):
(1) The controlled versus emergent dimension

describes how much there are rules or a
controller that directs the exchanges, versus
an emergent behaviour from the interactions
between agents.

(2) The centralized versus de-centralized
dimension describes how much the agents
are equivalent among each other, versus the
presence of few (potentially one) agents that
concentrate some functions for a larger
number of others.

(3) The individual versus collective dimension
describes how much each agent controls and
directs its own resources (i.e. PV, storage,
demand-response resources etc..), versus
having larger pools of agents who share
some common resources.

The behaviour map does not refer to any
specific levels (Zhang et al. 2018), although the
last two (i.e. controls and business) are particu-
larly affected from the volume of the map, in
which they are located. In fact, the control of the
energy and monetary flows between generation
and demand points can be decided by a con-
troller, which can be assigned by the internal
rules of a community or emerged as the result of
an auction.

17.2.1 Agent Based Modelling

Given the number and nature of the emergent
behaviours in the behaviour map (i.e. Fig. 17.3),
an agent based model (ABM) simulation was
developed to get an insight on the energy and
economic fluxes exchanged between the different
actors in the local grid. Usually, every agent of
the simulation represents one household in the
local grid (i.e. a consumer or a pro-sumer), but
producers are not excluded. Example of pro-
ducers are energy providers. For instance, com-
panies or investor interacts with the local grid
without necessarily being served by it, or the
parent grid, i.e. the larger grid in which the local
grid is embedded. The local grid could be a
micro-grid but also a secondary network, where
the pro-sumers are allowed to have a certain level
of control of the network.

In an ABM, each agent can interact with all
the other agents by trading energy. Thus it can
send energy in exchange for money or vice-
versa. The movement of energy in the micro-grid
is an emergent behaviour, which results from the
interaction of a number of independent actors.
This is opposed to a control algorithm, where the
behaviour is set by a series of rules or conditions.
Naturally, the freedom of the agents can be
limited by the introduction of rules. For instance,
a producer could be forced to prioritize the sale
of renewable electricity to those consumers that
have used the least of it in a given period. If the
rules become tighter, the freedom of each indi-
vidual agent is reduced. While if the rules are as
tight as to completely limit any possibility of
choice for the agents, the ABM degenerates into
a control algorithm.

In the present study, the behaviour of the
agents is extremely simplified: the consumers
prioritize the purchase of electricity from the
cheapest source available at any given time, on
the other end the producers have the ability to set
the price, and they do so according to the case as
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explained in the following section (i.e. ownership
structures and business models).

Figure 17.4 presents the possible ownership
structures arranged in three main families, these
are slightly different from those in Huijben and
Verbong (2013) for the purpose of this study:
(1) Local Energy Provider (LEP) (a in

Fig. 17.4): It occurs when a single agent
owns the totality of the production or storage
capacity of the entire local network and the
other agents are strictly consumers. The
owner of the plant can be either a producer or
a prosumer.

(2) Local Energy Community (LEC) (b in
Fig. 17.4): It is the case in which a com-
munal plant is shared among all or a group of
agents, the shares could be equally dis-
tributed or according to other principles such
as energy used from the plant or the share of
the initial investment.

(3) Local Energy Market (LEM) (c in Fig. 17.4):
It is the most complex and free-form of all
the structures, it is characterized by the
presence of multiple producers, consumers
and pro-sumers, in this arrangement the
interaction between agents can reach signif-
icant complexity and the agents could
achieve higher earnings by engaging in
intelligent behaviours.

17.2.2 Ownership Structures
and Business Models

In the case study examined (see following
Sect. 17.2.4), a communal PV plant is shared
among the different households in the building.
This allows for all of the three basic ownership
structures from Fig. 17.4 to be applied, because it
is possible to create a LEM by having some
household who own share of the large PV system.
The ownership structure is intertwined with the
business model and the rules of the market. In the
following pages, the same communal PV plant is
shared between the households in the local grid in
three different market cases for LEC and LEP:
1. LEC gratis: in this arrangement, the electric-

ity from the communal PV plant is given for
free when available. All the households par-
ticipate in the initial investment and in the
Operation and Maintenance (O&M) costs of
the plant according to equal shares.

2. LEC LCOE: in this arrangement, the elec-
tricity from the communal PV is given at
production cost (i.e. without profit) and the
revenues are divided among the shareholders.
Although variable shares are possible, in this
study, all the households are equal sharers in
the LEC (i.e. initial investment and O&M
costs, and revenues are shared equally).

 )b( )a(

(c) 

Fig. 17.4 Ownership
structures organized in three
main families: Local Energy
Provider (LEP) (a), Local
Energy Community
(LEC) (b) and Local Energy
Market (c)
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3. LEP n%: This arrangement is a pure form of
LEP. Thus the production plant is owned by a
single provider who can set the price at its
own will. Obviously, the provider cannot set
the price higher than that of the parent grid
(i.e. the average price for Swedish household
consumer as assumed in the Sect. 17.2.4) as
the consumers retain the right to purchase
electricity from the cheapest source.

After these three cases, 6 LEM scenarios are
analysed. Due to the inherent complexity of this
ownership structure, the characteristics of this
simulation are explained in a dedicated paragraph
(i.e. Sect. 17.2.3).

In this study, the provider sets the price as half-
way between the minimum of the local LCOE and
themaximumof the consumer price from the parent
grid. More precisely, the provider sets a price at a
percentage n so that n = 0 is the LCOE, n = 100 is
the price offered by the parent grid and n = 50 is
half-way. This set-up is valid under the assumption
that the LCOE of the system is lower than the price
of the electricity for the consumer. Of course, if this
assumption does not hold true, the provider will not
be able to charge above market price and will thus
operate at the minimum loss.

In all the arrangements, the consumer is pro-
grammed to buy electricity from the cheapest
source. But by having a single source in the local
grid, the choice is only between the local source
and the parent grid. This implies that the price of
electricity in the local grid must be at any time
below the Swedish consumer price. If the local
production is absent or insufficient (i.e. local
consumption > local production), the demand
shall be covered partially or totally by the parent
grid. If the local production is not sufficient, in a
given point in time, to cover entirely the demand,
all the households will be served equally in terms
of percentage of their demands as shown in the
system of relations in (17.1).

Elocal ¼ g � Dlocal

Ehouse ¼ g � Dhouse

Dlocal ¼
P

Dhouse

8<
: ð17:1Þ

where
Elocal and Ehouse are the amount of electricity

available in a given time for the aggregated local
grid and for a specific household respectively. η
is the self-sufficiency: a number between 0 and 1
that represents the share of the demand covered
by locally produced electricity, note that is the
same globally and for each household. Dlocal and
Dhouse represent the aggregated demand and the
demand of each single household respectively.

The equations in (17.1) imply that having a
larger consumption when the local electricity
production is scarce guarantees access to a larger
amount of local energy, although equal in per-
centage. Another consequence of the relation in
(17.1) involves the price of the electricity for
each household: the price results from the
weighted average (weighted on energy) of the
prices from the different sources of electricity
purchased. In the specific case of this study the
price can be calculated with the relation (17.2):

Phouse ¼ Plocal �gþ Pparent � 1� gð Þ ð17:2Þ

where
Phouse, Plocal and Pparent represent the elec-

tricity price for the individual household, the
price for the energy produced locally and the
price for the energy bought from the parent grid
respectively. η is the self-sufficiency as defined
for (17.1).

Considering that η is the same for every
household in the local grid as shown in (17.1),
the Eq. (17.2) implies that at any given time
there is a unique price of the electricity within the
local grid, which depends on the relation
between the aggregated energy demand (Dlocal)
and the aggregate energy production (Elocal).

366 M. Lovati et al.



Thus, the price for the electricity is solely func-
tion of the Hour Of the Year (HOY) and is not
function of any given household. This fact holds
true also for the LEM case, in fact, in every time-
step, the unique price in the micro-grid is equal
to the average of the different prices of each
available source. This average is weighted for the
relative power of each source, thus, if a cheap
source can satisfy a significant fraction of the
demand, it will sensibly drive down the unique
price. Of course, the ability of each single
household to consume its own power, or at least
to consume more power in cheap time-steps will
affect the average price of electricity it pays (see
Fig. 17.12).

To simplify, the agent based model can be
described by a simple set of rules:
(1) Every household is represented by one

independent agent in the simulation.
(2) Every agent has an energy balance in each

HOY (Hour Of the Year). The energy bal-
ance is determined by its PV power (if it
owns a PV system) minus its power demand
in that particular HOY. If the balance is
negative, the agent will be a net buyer in that
HOY, otherwise it will be a seller. This rule
implies that each agent can only sell electric
power if it has already satisfied its own
demand. Simply, each household can sell
only excess PV production.

(3) Each seller can set the price for the power he
has to export.

(4) If the electricity is offered by multiple sellers,
the buying agent will buy preferentially by
the cheapest source.

(5) If the aggregated demand of the district
exceeds the offer of the cheapest source, the
demand of each household is satisfied pro-
portionally by the cheapest source. If, for
example, the cheapest source covers 30% of
the aggregated demand in that HOY, each
household is provided 30% of its power
demand by the cheapest source (see equa-
tions in 17.1).

(6) If the on-site renewable power exceeds the
power demand in a certain HOY, the
cheapest sources are consumed preferen-
tially, while the more expensive ones risk to

be in excess of the demand and sell part (or
all) their power to the grid. Those who sell to
the grid cannot set the price but are simply
valued the price paid by the grid (which is
always way lower than that of the local
sellers).

17.2.3 The LEM (Local Energy
Market)

The LEM, being a more loose aggregation of
stakeholders, is open to higher complexity and is
thus studied in more detail, in this Chap. 6 sce-
narios have been hypothesized to study different
behaviours within a LEM.

17.2.3.1 Scenario 1
All residents agree to purchase the PV system,
every household purchases an equal share of the
total system and has thus the right to 1/48 of the
power at any time (I.e. ca. 1.36 kW each). The
price for the sale within the micro-grid is agreed
for the long term as the summer grid price/1.2
(thus a static 1 SEK/kWh at the year 0), therefore
whoever buys electricity from another household
saves ca. 17% on the electricity cost in summer
and 45% in winter.

17.2.3.2 Scenario 2
All residents agree to purchase the PV system,
likewise scenario 1. The price for the sale within
the micro-grid is agreed for the long term as 99%
of the grid price, therefore whoever buys elec-
tricity from another household has almost no
savings compared to the grid. In this case it is
assumed that using local energy is perceived as a
value in itself by the partecipants in the grid.

17.2.3.3 Scenario 3
Only 50% of the residents agree to purchase the
PV system, every PV equipped household pur-
chases an equal share of the total system and has
thus the right to 1/24 of the power at any time (I.e.
ca. 2.73 kW each). The price for the sale within
the micro-grid is agreed for the long term as the
summer grid price/1.2, likewise in scenario 1.
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17.2.3.4 Scenario 4
Only 50% of the residents agree to purchase the
PV system, every PV equipped household pur-
chases an equal share of the total system likewise
in scenario 3. The price for the sale within the
micro-grid is agreed for the long term as 99% of
the grid price, likewise in scenario 2.

17.2.3.5 Scenario 5
All residents agree to purchase the PV system,
likewise scenario 1. The price for the sale within
the micro-grid is left to the choice of the single
household, 50% of the households decide to
charge a high price (I.e. 90% of the grid, like
case 2 and case 4), the others charge the summer
price /1.2.

17.2.3.6 Scenario 6
All residents agree to purchase the PV system,
likewise scenario 1. The price for the sale within
the micro-grid is left to the choice of the single
household, 50% of the households decide to
adopt a dynamic price system based on their
energy balance in every hour of the year. With
this strategy the energy is sold at LCOE when-
ever the balance is more than double the average
balance in that hour of the day. The other 50%

charges the summer price /1.2 likewise scenario
1 and scenario 3 (Table 17.1).

17.2.4 Case Study Description

The agent based model is tested on a digital
representation of a moderate size residential
district (see Fig. 17.5) equipped with a shared
PV system + DC micro-grid as described in
Huang et al. (2019). The group of three buildings
with three stories is located in Sunnansjö, Lud-
vika, Dalarna region, Sweden. The common PV
system is formed by the arrays shown in
Table 17.2. In total, there are 3 arrays on the roof
and one on the southern façade (total 65.5 kWp).

The system capacity and the position of the
arrays over the building resulted from an opti-
mization process, presented in Huang et al.
(2019), in order to maximize the self-sufficiency
while maintaining a positive NPV over the life-
time. In this system, no electric storage was
installed. The LCOE (Levelized Cost of Elec-
tricity) of the system was calculated to be about
0.83 SEK/kWh (0.077 €/kWh) under the fol-
lowing assumptions:

Table 17.1 PV capacities
per household and prices in
the 6 different scenarios

Scenario PV capacity (kW/household) Electricity price (at year 0) (SEK/kWh)

(1) 1.36 1

(2) 1.36 1.19 (summer), 1.78 (winter)

(3) 2.73 or 0 1

(4) 2.73 or 0 1.19 (summer), 1.78 (winter)

(5) 1.36 1 or 1.19 (summer), 1.78 (winter)

(6) 1.36 1 or dynamic

Fig. 17.5 Bird view of the small district in the case study (Huang et al. 2019)
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• Local initial price of the turn-key system
without taxation: 10,000 SEK/kWp (935 €/
kWp).

• Price of the inverter: 2500 SEK/kWp (234 €/
kWp) (changed 2 times over the lifetime). The
number of changes was retrieved as the
expected value assuming a lifetime of the
inverter between 12 and 15 years.

• Planned lifetime of the system: 30 years.
• Maintenance costs for the system (substitu-

tions, cleaning and inspection):
5109 SEK/year (477 €/year). This value is
calculated as the expected value out of 100
stochastic simulations.

• Degradation of the performance of the system:
ca. −1.15%/year.

The weather file and the production of the
diverse arrays of PV have been calculated from
PVGIS (Šúri et al. 2005). The load profile of the
48 households could not be published for privacy
concerns. Thus, the study is presented using data
generated by the LPG (Load Profile Generator)
software (Pflugradt and Muntwyler 2017). Load
Profile Generator is a tool that simulates the
electric demand for residential light and

appliances. The variability of the aggregated
curve according to the number of households has
been validated against a real low voltage grid
consumption (Pflugradt et al. 2013). The electric
demand is generated by simulating every
household component as an agent. Its demand is
determined by the power absorption and duration
of use of devices among an available selection
(see Fig. 17.6). These are chosen by the house-
hold components according to a set of activities
and needs. The needs are modelled as counters
that grow at each time-step: a high counter rep-
resents a need that is in urgent need of satisfac-
tion. Different needs have different growth rates
for each time-step, which means that some needs
are to be satisfied more often than others.

The parent grid (i.e. the Swedish national
grid) has been assumed to offer electricity for
1.8 SEK/kWh (0.17 €/kWh) from October to
March and 1.2 SEK/kWh (0.11 €/kWh) from
March to October. These prices have been
assumed as a reasonable price for each single
household at the annual cumulative level of
consumption observed. According to (Eurostat,
2007–2019), the average price for household
electricity in 2019 was 1.39 SEK/kWh

Table 17.2 Characteristics of the shared PV system

Block Facing Tilt (Deg) Capacity (kWp) Production (MWh)

B South 18 28.4 22

C East 18 15.9 10.4

A West 18 15.9 10.3

A South 90 5.3 3.4

Fig. 17.6 Workflow diagram of the load electricity generation (Pflugradt and Muntwyler 2017)

17 Local Energy Communities: Market Design Evaluation Using Agent … 369



(0.1297 €/kWh) for electricity transmission,
system services, distribution and other necessary
services. If VAT and levies are added, the aver-
age price would reach 2.2 SEK/kWh (0.2058 €/
kWh) (Eurostat, 2007–2019). It is not clear what
taxes can be avoided consuming locally pro-
duced electricity, but it is reasonable to believe
that VAT can be avoided in both the LEC cases
explored as the electricity is offered for free or at
a price equal to production cost. Conversely, it is
not possible to estimate how much of the base
1.39 SEK can be reduced thanks to the aggre-
gation of the loads. The price of the electricity is
not static but is projected to grow linearly over
the next 30 years at a rate of +1%/year. This is
under the assumption that the national grid will
need liquidity to invest in the energy transition.
Conversely, the revenues for the energy sold to
the grid are set to be worth 0.3 SEK/kWh
(0.028 €/kWh), but are assumed to shrink by
1.67%/year under the assumption that the
increase in installation of PV will gradually dis-
count the energy during sunny hours.

17.3 Results

The results section begins with a discussion
about the self-sufficiency of the different
households in the local network. It then pro-
ceeds with a techno-economic analysis of each
arrangement to establish its features and its
behaviour (i.e. distribution of risk and profit
among stakeholders). Given that the local PV
plant is unique, the movement of energy in the
network is the same in all the arrangements,
thus the self-sufficiency is a static figure
throughout the arrangements.

17.3.1 Self-sufficiency
of the Households

PV self-sufficiency is defined as the share of total
demand in a household that is being supplied by
locally generated electricity from PV system
(Luthander et al. 2015). In this study, the system,
as it is designed, allows to cover an estimated

20.2% of the annual cumulative demand of the
district. This result is satisfactory for a system
without any electric storage. For a reference,
according to IEA 2020b the country, with the
most electricity production from PV (i.e. Hon-
duras), has an estimate PV self-sufficiency of
14.8% with the EU on average having 4.9%. It
has been calculated in Lovati et al. (2019) and
(Huang et al. 2019) that the economically opti-
mal self-sufficiency of a conveniently aggregated
system, even in absence of electric storage, is
comfortably above any penetration level we see
today (i.e. often above 20%). The economically
optimal self-sufficiency sets a conservative limit
of hosting capacity in an electrical system in a
regime of self-sufficiency. The P50 (i.e. 50th
percentile or median) household has a self-
sufficiency of 18.5% as shown in Fig. 17.7a:
this value is below the average value of the
aggregated district because the slope of the
increase is higher to the right of P50 (see
Fig. 17.7a). The P50 (i.e. 50 percentile) house-
hold has a relatively low self-sufficiency because
there is a positive correlation between annual
cumulative demand and self-sufficiency (see
discussion about Fig. 17.9). In general, the
variability in self-sufficiency between the
households in the micro-grid is high. The most
self-sufficient household possesses in fact a value
double of the lesser one (14.1 to 28.4%). This
strong variability suggests that, even without any
deliberate attempt for demand control, some
households show habits, or a way of life, that can
take out the most from the available PV energy.

Figure 17.7b and c show the share of the
annual demand in different hours of the day or
month of the year respectively: this is to say how
much of the total annual demand is concentrated
during a specific hour of every day or month
along the year. In the household with the highest
self-sufficiency, the electricity demand around
12:00 is particularly prevalent (see Fig. 17.7b). It
indicates that its inhabitants use to cook at home
for lunch. On the other end, the evening peak of
the most self-sufficient household is way less
prominent than in the lowest one. Looking at the
prevalence throughout the months of the year
(Fig. 17.7c), the difference is less marked
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compared to the daily average: both the house-
holds present a steep drop in sunny months
which seems to indicate an absence due to
summer holidays. The most self-sufficient
household appears to have had an absence for
holidays during May instead of June, as shown in
Fig. 17.7c. This might be advantageous as it
allows to use more PV electricity when the
overall electricity demand of the district is lower
and the radiation from the sun is higher. It should
be noted that, in general, the best performing
household presents a smaller dip in demand for
the summer holidays, it is unknown whether it is
due to a shorter holiday or at the presence of
some household’s components at home.

The examples shown in Fig. 17.7 highlight
the two apartments that are extreme in terms of
self-sufficiency. To infer more generalized
information on the time of high consumption that
favors high self-sufficiency (see Fig. 17.8) the
following formula was used:

ISelfSts ¼
X48
HH¼1

TPts;HH � TPts;Tot 8 SelfSHH � SelfStot
0 8 SelfSHH � SelfStot

�

ð17:3Þ
where
ISelfSts is the influence of high energy demand

in a given time step (which could be an hour of
the day or a month of the year). HH stands for
HouseHold as the curve results from the sum of
all the individual households. TPts,HH and TPts,tot
are the typical power demand [W] of said time
step(ts) for the nth household (HH) or the whole
district (tot) respectively. The sum of all time-
steps is then rescaled so that it is equal to 1.

In practice, the curve is influenced only by the
households that have a self-sufficiency above
average. It represent the influence (positive or
negative) that the demand in each time-step has
on the overall self-sufficiency. Unsurprisingly,
Fig. 17.8a shows that a lower average demand in
the evening and early morning hours is

Fig. 17.7 Self-sufficiency of
the apartments in the local
grid. a is the distribution of
self-sufficiencies across the 48
households, b shows the
hourly average of the extreme
households, c shows the
monthly average consumption
of the extreme households
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associated with high self-sufficiency. On the
contrary, the central hours of the day are gener-
ally above average in highly self-sufficient
households. It is interesting to notice how the
electric demand at 12:00 is in general less ben-
eficial for self-sufficiency than the hours around:
this is somewhat counter intuitive, but it makes
sense since at 12:00 the high general consump-
tion due to lunch causes scarcity of renewable
energy more often than in the hours immediately
before or after. The signal on a monthly basis is
not so easy to interpret. It appears to be beneficial
to have above-average consumption in August
and below-average in September: this is possibly
due to a fraction of the households that went into
holiday later in any given year. Given the sharp
drop in irradiation of the month of September

compared to July and August, it seems reason-
able that going to holiday in September increases
the self-sufficiency over the year.

17.3.2 Exploitation of the Common
Renewable Resources:
Sheer Cumulative
Consumption Versus
Self-sufficiency

Figure 17.9 shows the relation between the
annual cumulative demand and the annual
cumulative energy received from the shared PV
system. These two variables are strongly corre-
lated (R > 0.9), thus the quantity of energy
consumed from the PV system can be assumed

Fig. 17.8 Influence on self-
sufficiency of high demand in
a each hour of an average
day; and b month of the year.
The value is a-dimensional
but it express the positive (or
negative) influence of a high
electric demand at a given
time-step compared to all the
others (see Eq. 17.3)

372 M. Lovati et al.



with good confidence from the annual cumula-
tive demand alone (i.e. regardless of the self-
sufficiency).

This aspect, although counter-intuitive, is a
consequence of the highest variability in annual
cumulative demand compared to the variability
in self-sufficiency: if in fact the highest self-
sufficiency is two times the lowest one, the
highest cumulative demand is almost 5 times the
lowest one (excluding the highest value as an
outlier, otherwise is more than 7 times). The
strong prominence in variability of cumulative
demand compared to self-sufficiency reduces the
variation in self-sufficiency as a mere noise
compared to the other variable (as visible in
Fig. 17.9). Furthermore, as self-sufficiency is a
share of the demand, it does not have much
importance in absolute terms when applied to
households with low cumulative demand. This
fact represents somewhat a hindrance as it
implies that increasing overall consumption
works better than improving self-sufficiency to
seize larger quantities of scarce local renewable
resources. Nevertheless, it is not clear what
power has an individual household to change its
cumulative energy demand. Further investigation
on the aspects that influence the cumulative
energy demand (e.g. number of people in the
household, cooking habits, holiday habits etc..) is
needed to assess whether it is something that the
inhabitants can change. If each household has
significant power on the cumulative energy
consumption, it is reasonable to fear a sharp

increase in the overall consumption after the
installation of the communal PV system. It
should be acknowledged that the lack of data
with respect to other households might focus the
attention of the inhabitants on their own energy
demand advising them to increase the self-
sufficiency. Another interesting aspect, shown
in Fig. 17.8, is that the linear interpolation of the
household data points has a steeper slope than the
average self-sufficiency of the 48 households.
This means that the household with the highest
annual cumulative consumption also has, on
average, a highest self-sufficiency. The highest
slope of the interpolation implies that at low
consumption the self-sufficiency of a household
tend to be lower than average, while at higher
consumption tends to be higher. A correlation
analysis between annual cumulative consump-
tion and self-sufficiency found a positive, albeit
weak, correlation (R � 0.2). Although it is weak
and thus uncertain, the correlation suggests that
highly consuming households might have more
contemporaneity with the production from PV.
This might be due to larger households having
some members who stay at home during day-
time, or to electric consumption by people who
spend daytime at home being larger overall.

17.3.3 LEC Gratis

In this arrangement, the households in the district
are shareholders of the system. So they can use

Fig. 17.9 Annual
cumulative energy demand
and annual cumulative energy
used from the PV system for
every household in the local
grid

17 Local Energy Communities: Market Design Evaluation Using Agent … 373



the electricity produced by the system for free
when available. In this study, the shares of the
PV system are equal. Each household will
therefore have to pay 13,646 SEK (1275 €) of
initial investment plus ca. 342 SEK/year (32 €/
year) for maintenance and substitution of the
inverter. Different ownership structures are pos-
sible, but the business model should be modified
to avoid loopholes in the risk–benefit balance.
For instance, equal shares could be distributed to
a sub-group of the households (i.e. there are
consumers who do not hold shares). In this case,
a price of the electricity for non-owners should
be established (see section LEP n%).

Figure 17.10 shows the difference in price
between the energy offered by the parent grid and
the energy available within the local system. The
chart shows monthly values, which refer to the
average cost of the electricity that month in the
grid. We know from the section “Ownership
structures and business models” that at any given
time the price of the electricity is unique within
the micro-grid and depends from the relationship
between production of PV and demand (see
Eqs. 17.1 and 17.2). The bars in Fig. 17.10 are
the average of all the electricity prices of the
respective month weighted by the aggregated
electric consumption in that month. Obviously,
since the energy, not met by the local production,
is bought from the parent-grid, the external price
has an influence on the internal one. In simpler
terms, the internal price of the electric energy in
one month, because the Eq. (17.2) with Plo-
cal = 0, is proportional to the residual demand.
Notice that, due to the higher external price, the
drop in cost of electricity during the months of
March (month 3) is similar to that in April
(month 4) despite a lower self-sufficiency.

Even if the price of the electricity is the same
within the micro grid at any given point in time,
the average price paid by each household varies
according to the time patterns of consumption.
A household will enjoy a lower average price
when they consumed a large share of its annual
consumption at times when the electricity was
free (or at least cheaper). This is to say that a
higher self-sufficiency will lower the average
price. However, in terms of gross economic

benefit (i.e. the sum that can be saved), it is not
the average price that matter, but the cumulative
energy received for free. In this sense, the con-
clusion from Fig. 17.9 is troublesome as the
earnings are not due to the ability to obtain a
higher self-sufficiency, but simply to the sheer
cumulative consumption. In Fig. 17.11, the
households in the micro-grid are divided in 3
groups of 16 elements each according to their
annual cumulative consumption. As in Fig. 17.9,
the correlation of the KPI (Key Performance
Indicator) with annual cumulative consumption
is evident. In fact, the lifetime economic balance
is determined solely by the savings, thus by the
sheer quantity of energy that is received by each
household. From Fig. 17.11a it is visible how
being in the upper third of the cumulative con-
sumption charts guarantees substantial earnings
(IRR: internal rate of return from 1.9 to 6%), in
case of the initial investment of about 13,646
SEK (1275 €/household). Conversely, the low-
consumption households are doomed to eco-
nomic losses, which means they are unable to
recover the investment itself.

If the relation between annual cumulative
consumption and lifetime earnings would
become known by the households in the local
grid, there is a risk that there would be a con-
siderable increase of the cumulative demand after
the installation of the communal system. This
fact, although potentially reducing the risk for
those investing in the system (especially in a LEP
case), would counteract the purpose of reducing
consumption of electricity from the grid.

17.3.4 Lec Lcoe

If the energy is sold at production cost (LCOE),
instead of being given for free, the difference in
lifetime balance from the different households
are greatly reduced, but they persist. In this case,
the advantage associated with the use of energy
from the system is influenced by the stake of
ownership of the system. In general, it can be
noted that the lifetime earnings (i.e. Fig-
ure 17.11a and b) follow a linear transformation
from the extreme inequality (as in Fig. 17.10a),
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to a situation of complete equality of earnings (if
a LEC grid-price is hypothesized), where no
benefit is obtained by the use of on-site elec-
tricity. In the hypothesis, a benefit for self-
consumed electricity would spur increased self-
sufficiency. A balance should be found between
risk for the low consumption households and
reward for the consumption of local renewable
energy.

17.3.5 LEP N%

In this arrangement, the PV system is owned by a
single provider who has the right to set the price.
Obviously, since the parent grid has the ability to
supply 100% of the demand of the district, the
owner cannot set the price higher than the electric
grid lest being completely out-bid (e.g. no
household would use the owner’s energy). In this
study, the provider sets the price as half-way
between the minimum of the local LCOE and the
maximum of the consumer price from the parent
grid. More precisely, the provider sets a price at a
percentage n so that n = 0 is the LCOE, n = 100
is the price offered by the parent grid and n = 50
is exactly half-way in between.

Table 17.3 shows how the annual revenues,
the balance over the lifetime and the real IRR
change according to the price at which the elec-
tricity is sold.

Notice how with n = 0% (i.e. the electricity
sold at production cost of 0.83 SEK/kWh), the
balance and thus the IRR result are negative. This
is due to the fact that the self-consumption of the
system is not 100% (it is in fact ca.85%). In other
words, not all the energy produced by the PV
system is consumed by the households in the
local grid. Therefore, part of the production is
sold to the grid below LCOE and results in a
moderate loss over the lifetime. The existence of
this loss justifies the use of a LCOE adjusted for
self-consumption as described in Huang et al.
(2019). This loss also explains why, under
LEC LCOE arrangement, some households
experience economic losses over the lifetime
when the electricity by the communal system is
given at price of cost (see Fig. 17.11b). When the
electricity is sold at LCOE, the IRR of the PV
system is negative, thus holding its shares leads
to a loss unless the benefit for cheaper energy
outweighs the costs.

Applying an n = 9.43% does not result in any
loss or gain over the lifetime of the system. It can
be argued that no investor would like to take any
risk to have an expected NPV (Net Present
Value) of 0 at the end of the lifetime with a
discount rate of 0. Nevertheless, there are
potential business models for large homeowners
such as general contractors or municipalities who
could substitute part of the roof and façade
cladding with BIPV thus avoiding the cost of an

Fig. 17.10 Monthly
difference in price between
the energy offered by the
parent grid and the average
paid by the shareholders in a
LEC gratis arrangement
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alternative material. Furthermore, this price tag is
extremely interesting as price of sale from LEC.
It in fact presents the advantage of expected
lifetime economic balance in positive ground for
each household.

A good business opportunity is finally offered
by the n = 100%. This price, while suggesting a
real IRR around 3% for the LEP, offers the
occupants the opportunity to largely increase
their share of renewable energy use without
having to pay any upfront cost. In this case, the
households have no economic benefit in instal-
ling the PV, but they have no risk nor upfront
investment and could receive information about
their own self-sufficiency by the provider, e.g.
with a monthly email.

17.3.6 LEM

Figure 17.12 describes the average hourly price
for scenario 1 during the different hours of the
day within the district. The grey bands represent
the variability between different households of
the district. If a bar is longer, it means that some
households have an average price that is signif-
icantly lower than others in that hour of the day.
The red ticks represent the average price in that
hour for the whole district. It is immediately
visible that between 7 P.M. and 4 A.M. the price
is almost stable at one point five SEK. The price
is stable because there is no electric storage
installed in the micro grid and therefore, when a
photovoltaic system is not producing, the price is

Fig. 17.11 Cumulative
balance over the lifetime of
the system against the annual
energy demand. The
households have been divided
in 3 groups, each of 16
specimens, according to their
cumulative consumption.
a LEC Gratis, b LEC LCOE
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that of the power provided by the electric grid.
Considering that the night-time consumption of
the district remains stable throughout the year,
And that the the electricity is sold at
1.8 SEK/kWh in winter and 1.2 SEK/kWh in
summer, the night price paid by the whole district
equals almost exactly the average of the two (I.e.
1.5 SEK/kWh). During daytime the price is
lower, there are two reasons for this phe-
nomenon. The first reason is that each household
owns a share of the local PV system, and there-
fore all the electricity produced by their own
share already belongs to them, and is thus free
for themselves. The second reason is that they
can purchase electricity from their peers, which
price is consistently lower than that of the grid.
For these reasons, those households that are able
to use larger share of their own electricity, or at
least of the electricity from their peers, can enjoy
a lower price for the electricity. It is visible, how
indeed expected, that the price of electricity is
generally lower during the central hours of the
day. Furthermore, it can be observed that times
of the day of comparatively higher price, corre-
spond with moments of high electric demand.
For example, it can be seen how the price is
comparatively higher at seven and eight am
(when people prepare and consume breakfast)
and at noon (when many prepare and consume
lunch). This is due to the fact that, despite a large
photovoltaic production in that hour, the outlier

high demand forces the whole district to supply
part of its demand from the electric grid.

Figure 17.13 shows the relationship between
savings and revenues for each single households
within the micro grid. All the sixth scenarios
described previously are shown in the chart. In
general, the savings are obtained either by using
the electricity produced by one’s own system,
therefore saving 100% of the price from the grid,
or else by using the electricity from a peer
household at a discounted price. On the other
end, the revenues are obtained either by selling
electricity to the grid, or else by selling electricity
to another household, the latter providing a much
higher price. In each of the charts, every house-
hold is displayed as a circle, its position on the x
axis represents its annual revenues, while its
position on the y axis represents its annual sav-
ings. The color of the circle line represents its
belonging to a different category, according to
the number of people living in the household. In
general, these charts should be studied in their
relative difference between each other, rather
than in their absolute values. In fact, the absolute
value of revenues and savings are not interesting
when the cost of initial investment and those for
the maintenance of the system are not taken into
account. To see the lifetime techno-economic
performance of the system the internal rates of
return should be investigated. Observing the
colour in all the cases it is visible that the smaller

Fig. 17.12 Average price for
each hour of the day and its
variability within the district
(LEM, Scenario 1)

17 Local Energy Communities: Market Design Evaluation Using Agent … 377



households, I.e. those which have a smaller
electric demand tend to show lower savings and
higher revenues. This phenomenon is quite
unsurprising because In the example considered
every household purchases an equal capacity to
all the others. Therefore, the small households
will have a PV capacity that is larger relative to
their demand, and will, thus, export and sell a
larger fraction of the electricity that they produce.

There is a noticeable difference between the
scenario 1 and the scenario 2. In the scenario 1
every household agreed to sell their electricity at
a significantly lower price compared to what they
agree in the scenario 2 (see Table 17.1). Because
of these, the scenario 1 seems to be particularly
advantageous for the largest consumers. This is
due to the fact that the largest consumers have
high savings but low revenues, and therefore, the
sale of electricity at a lower price from others
leads to higher saving for them, while it does not
impact their revenues significantly. On the con-
trary, the smallest consumers, that have in gen-
eral lower savings and higher revenues, will
benefit from higher price of the electricity. In this
case, they will be able to increase greatly their
revenues without changing too much their sav-
ings. In fact, being smaller, most of their savings
comes from their own PV system, which is
already over-dimensioned compared to their size.
Going back to the largest consumers, a large
fraction of their savings implies purchasing
electricity from the smaller peers. Another
noticeable aspect is that in scenario 2, all the
points are almost linearly correlated. This is due
to the high price of the electricity sold, which is
almost the same of the cost of electricity from the

grid. The smaller remaining differences can be
explained by the correlation between the private
electric demand and the demand of the whole
district. If an household over-produce electricity
when the whole district is in over-production, Its
performances will be slightly lower because it
will often sell to the grid. In the opposite case,
when an household overproduces at times when
there is need from other households, then its
performance will be slightly higher.

Scenario 3 and 4 reflect scenario 1 and 2 in
terms of price, but they have the peculiar aspect
that only half of the households choose to pur-
chase a PV system. This state of affair would be
very important for any practical application of
the micro-grid. This is because, in practice, it is
really difficult to convince 100% of the tenants in
a multi-family dwelling to participate, and espe-
cially to invest money, in a PV system. In a
realistic setting it is expected that part of the
population is unwilling to invest in the system,
nevertheless, in the simulation is assumed that
they decided to participate in the micro-grid as
simple consumers (i.e. those who do not own any
part of the system). The assumption is pretty safe
because being a simple consumer only requires
to always purchase the electricity from the
cheapest source. In this way, to participate as a
simple consumer does not have any initial cost,
but it might have a benefit during the lifetime of
the system. If scenario 1 is compared to scenario
3, it is visible that the points in the latter over-
whelmingly outperform those in the former both
in terms of revenues and in terms of savings. It is
tolerably intuitive that, if only half of the
households own a PV system, their revenues will

Table 17.3 Annual revenues, lifetime balance and internal rate of return (real) of the investment by different prices set
by the owner

N (%) Revenues (SEK) Balance (SEK) Balance (€) IRR (%)

0 34′553 −94′058 −8′790 −0.5

9.43 37′689 0 0 0.0

25 42′864 155′247 14′509 0.7

50 51′174 404′553 37′809 1.6

75 59′484 653′859 61′108 2.3

100 67′794 903′165 84′408 2.9
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(3) 

(4) 

(1) 

Fig. 17.13 Savings versus
revenues for each household
in the microgrid. Both axes
are in [SEK/year]
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increase. In fact, all the households who do not
own PV can only buy the electricity from those
who own it, and therefore, the whole local mar-
ket moves in the direction of a “seller’s market”.
Also the increase in savings is readily explained,
In fact, since the optimal capacity is unchanged
in every scenario, every PV owner has at his
disposal a larger capacity. This fact implies that
there is more available electricity for self-
consumption in every HOY, even at times of a
relatively high private electric demand. This
spare over-capacity favours an increase in self-
sufficiency. Looking at the bottom left corner of
the chart for scenario 3, it can be seen how there
is a benefit in terms of savings also for those who
do not own a PV system. Of course, these sav-
ings are minor compared to those of the other
households, and this is due to two specific rea-
sons. The first one is that, by lacking a PV sys-
tem of their own, these households do not have
their own electricity for free, and therefore can
only purchase electricity from their peers. The
second reason is that every household, before to

sell electricity, satisfies his own demand, and
therefore those in the micro-grid who do not own
a PV system can only benefit from the left-over
electricity from the others. In other words the
household without PV can only purchase elec-
tricity when they happen to be in need of power
at times when others are in over-production.
Scenario 4, like the scenario 2, presents a linear
correlation between the revenues and the savings
of each household. Like scenario 2 over scenario
1, also scenario 4 presents a relatively higher
revenues and lower savings compared to scenario
3, thus favouring the smallest consumers. Fur-
thermore, like scenario 3, it presents a sharp
contrast between the PV owners and the other
households. It should be noted, though, that this
time there is absolutely no benefit in participating
in the micro-grid, or at least the benefits are so
tiny that cannot be seen by the naked eye. There
is nevertheless a benefit for those household, it is
the possibility to increase the share of renewable
on-site electricity in their energy consumption. It
can be expected that, given the absence of initial

(5) 

(6) 
             Revenues [SEK/year] 

Fig. 17.13 (continued)
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investment, most consumer would be willing to
increase their renewable energy share. It is pre-
sented to them the possibility to save the planet
with a cost-less, thus effortless, action.

In the first four scenarios the price for the sale
of PV power And the number of PV owners has
been changed. Nevertheless, in all these cases,
every PV owner agreed to maintain the same
price as everybody else. In scenario 5 the
hypothesis is made that a half of the PV owners
prefer to sell at the lower price (I.e. the price of
the whole group of PV owners in scenario 2 and
4). Meanwhile the other half of the owners pre-
fers to sell at the same price of scenario 1 and 3.
Observing the revenues and the savings in this
arrangement, it can be noted that, in general, the
sellers who decide to sell for a lower price (I.e.
shown as ‘cheap sellers’), enjoy a higher rev-
enues compared to the others. First of all, let’s
consider that savings are not affected by the price
for the sale of one’s own electricity, but rather by
the price for available energy from the other
households. For every saving level in the chart,
the lowest selling households, which are marked
as ‘cheap sellers’, appear to be on the right side
compared to the others, this means that they have
managed to obtain higher revenues. There are
two factors at play when measuring the revenues
in this type of market (I.e. where there are two
different prices groups). The first factor is the
sheer revenues per KWh sold, this it acts by
lowering the revenues for the so called ‘cheap
sellers’. The second factor regards the ability to
effectively sell your electricity within the micro
grid at all (i.e. the capacity of not be in over
supply, Thus forced to sell most of your power to
the grid). If a different price was chosen, the
result might have been different, but in this case
the increased revenues deriving from an higher
price scheme are not enough to offset the
increased instances in which the electricity can-
not be sold due to high price and low demand.
Also in scenario 6, the last one, the group of
households was divided into 2 sub groups. As in
the previous scenario, some households where

selling their electricity at a lower price compared
to others. This time, though, the expensive sellers
were given the ability to change the price
according to a behaviour of their own. The
mechanism used to change the price was set
according to the simple principle explained in the
description of scenario 6. In practice, these
households, identified in the chart as ‘smart
sellers’, will sell their power at the LCOE of the
system, which is lower than the static price of the
cheap sellers, whenever they have an outlier high
energy balance. In other words, when a smart
seller has an outlier, low power consumption or
an outlier high power production from PV, it will
sell its electric power at the lowest possible price.
This strategy is extremely simple and is prone to
numerous fallacies. In fact, if for example a
particular household is on holiday during an
unpopular period (I.e. when nobody else is on
holiday), its power demand would be unusually
low, thus resulting in an outlier high balance.
This could cause it to sell at LCOE in a time in
which the electricity is indeed in high demand
throughout the district. In this example, the
household would be selling at the lowest possible
price in a time in which the maximum price
would still manage to sell to the peers. Con-
versely, if an household will experience an out-
lier high demand for its own reasons, it might
find itself selling its available power dearly,
while there might be plenty of energy available
for everyone. In this case it will be forced to sell
most its power to the electric grid. Despite the
simplicity of this strategy and its obvious flaws, it
is visible from the chart (Fig. 17.13 (6)) that such
a simple behaviour is good enough for
outsmarting the cheap sellers in the competition
for the sale of electric power. Given any savings
level, the smart sellers undeniably manage to
obtain higher revenues. This is a very important
result because it shows that it is possible to create
an effective strategy without knowing the con-
sumption of the other agents in the micro grid,
thus, avoiding privacy issues.
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17.4 Discussion and Outlook

17.4.1 Social and Cultural Differences
Among Households
Have a Huge Impact
on Self-sufficiency

In the local grid, if the renewable energy is not
enough to cover the electric demand during a
specific hour, the aggregated self-sufficiency is
assigned to each household regardless of its
demand (see Eqs. 17.1 and 17.2). A large dif-
ference in terms of self-sufficiency has been
observed within the 48 households, with the
individual self-sufficiencies spanning from ca.
14% to more than 28% (see Fig. 17.7a). Con-
sidering the absence of active strategies to
increase the self-sufficiency in the cluster, such
large differences can be attributed only to socio-
cultural factors and spontaneous lifestyle choices.
From Fig. 17.7b it appears that the most self-
sufficient household has on average the peak of
energy consumption at noon (possibly due to
home cooking), while the least self-sufficient one
has usually its peak consumption at 8 P.M. Dif-
ferences are visible also over the different months
of the year but their effect is not as clear as in the
hours of the day. The large differences observed
in self-sufficiency, having no active engagement
or use of demand-shifting technologies, invites a
deeper analysis and understanding of the existing
electric demand and the factors which affect self-
sufficiency.

17.4.2 High Cumulative Energy
Demand is More
Effective Than High Self-
sufficiency in Exploiting
the Shared Renewable
Resource

Despite the large variation in self-sufficiency, it
has been observed that the sheer amount of
energy used from the system is mainly deter-
mined by the annual cumulative demand (see
Fig. 17.9). This phenomenon, albeit counter-

intuitive, is due to the fact that the variability
of cumulative demand far outweighs the vari-
ability in self-sufficiency (the largest being 5 or
even 7 times the smallest one). In other words,
the fraction self-consumed is not significant
when applied to a group of households whose
entire demand is hardly significant compared to
others. This fact is problematic because the
energy savings (i.e. the main earning mechanism
of the investment in some market designs) come
from the amount of PV energy consumed, and
not from the self-sufficiency reached. The rela-
tion between annual cumulative consumption
and cumulative energy from PV is transposed in
the relation between energy consumption and
lifetime balance (see Fig. 17.13). The balance in
a LEC gratis arrangement (Fig. 17.11a) is almost
completely determined by the cumulative con-
sumption, with the self-sufficiency being reduced
to a noise in the linear relation. Moreover, if the
households are divided in 3 groups according to
their cumulative consumption, the biggest con-
sumers all have positive balance and the smallest
consumers all have a negative one. This aspect
suggests that, if the communal PV system is
installed under a LEC gratis arrangement, the
shareholders might increase their electric demand
in a bid to outdo each other’s energy consump-
tion. This behaviour would possibly defeat the
purpose of installing on-site renewables in the
first place. It should be also considered that, due
to privacy laws and standard practice, each
individual household is likely only aware of its
own electric demand and self-sufficiency. This
lack of data might drive each household to work
on improving self-sufficiency instead of annual
cumulative demand. It should also be remem-
bered that the earnings are savings, thus
increasing the cumulative demand would anyway
lead to an increase in the energy bill. In this
sense, the increased exploitation of the common
electricity through increased cumulative demand
would happen only if increased consumption is
perceived as a value, for example through the
purchase or increased use of energy hungry
appliances for cooking or DIY (Do It Yourself)
purposes. How easy or difficult it is to change
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self-sufficiency compared to cumulative demand
should also be considered to assess the likelihood
of one outcome over the other. For example,
cumulative demand might be strongly con-
strained by working schedule or number of
household members. These aspects reiterate the
need for a deeper study on the aspect of demand
that influence self-sufficiency. From the per-
spective of the investment in PV, both the
changes in behaviour envisioned would increase
self-consumption, hence earning potential.

17.4.3 Different Selling Prices
Generates Various
Business Opportunities

Assuming that the shared PV system is owned by
a single entity in a LEP (Local Energy Provider)
arrangement, this entity enjoys freedom in setting
the price for the sale of electricity. This freedom
is nevertheless constrained by the LCOE of the
PV system and by the price offered by the parent
grid. If the LEP sells electricity at a higher price
than the parent-grid it will have no purchaser
among the households. This happens because the
grid has the capacity to satisfy 100% of the
demand of the whole district at any time. For this
reason, a coefficient “n” has been devised so that:
n = 0 is the LCOE of the local system and
n = 100 is the sale of energy at the exact same
price as from the parent grid. It has been shown
that at n = 0, despite selling at production cost,
the lifetime balance is < 0. This is due to the self-
consumption being below 100% (i.e. ca 85%),
hence ca. 15% of the energy produced being sold
at spot price (i.e. 0.3 to 0.15 SEK/kWh or 3 to
1.5 € cent/kWh). This loss also explains why in
the LEC LCOE arrangement some households
still have a negative lifetime balance, as
demonstrated in Fig. 17.11b. Another interesting
selling price is the one obtained with n = 9.43%
because this is the price at which no profit nor
loss is made from the LEP. This price tag, albeit
unattractive as an investment for a third-party PV
owner, presents an interesting mean for building
owners to substitute other claddings on their
properties. Using this selling price offers in fact a

building material that, contrary to every other,
does not cost anything over its lifetime. If applied
as common price in a LEC it allows all the
household to have a positive lifetime economic
balance, yet to have individual differences in
earnings. It should be said that this price was
determined at the end of a previous run when the
overall self-consumption was already known. In
a real case, to obtain such an equilibrium, the
price should be updated at any point in time
according to the evolution of self-consumption
and energy prices. Selling energy at the price of
the parent grid (n = 100) could be an interesting
investment as it guarantees the LEP with a real
IRR of around 3%, it provides no economic
benefits for the household consumers but it gives
them the ability to boost their reliance on
renewable without any upfront cost nor risk.
Furthermore, the possibility for the households to
buy voluntarily sized shares of the LEP could
kick start a set of tantalizing business
opportunities.

17.5 Conclusions

In the study, a newly developed agent based
model was tested on a shared PV system serving
a small district comprising 48 apartments in a
local community. Different ownership structures
were explored. The LEC arrangement was stud-
ied both with the electricity given for free to all
the equal shareholders or given at a price (in the
study the LCOE). For the LEP, because the free
offering would make no sense, an array of dif-
ferent prices was tried (see Table 17.3).

17.5.1 Key Findings

The main findings of the study are reported as
follows and interpreted in the corresponding
paragraphs in the discussion section:

• Social and cultural differences among house-
holds have a huge impact on self-sufficiency:
the households were simulated without intro-
ducing any demand-response measure or
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smart control. Yet, some households achieved
a self-sufficiency of almost 30% using the
common PV system while others stopped
short of 15%. also in the LEM case, where a
more accurate study of the energy demand
were made, a similar result was obtained.

• High cumulative energy demand is more
effective than high self-sufficiency in exploit-
ing the shared renewable resource: despite the
large differences observed in self-sufficiency
among households, the quantity of energy
received from the shared system has been
determined almost completely by the annual
cumulative demand rather than by self-
sufficiency.

• Different selling prices generates various
business opportunities: different value of n%,
as defined in the Sect. 17.2.2, generate
advantage and interesting features for diverse
stakeholders. For instance, a very low n%
(i.e. <10%) generates a strong drive for the
shareholders to self-consume as much PV
energy as possible, but it contains a risk for
the least consuming ones. Higher n% (i.e.
from ca. 10 to 100%) are interesting for
building owners and BIPV solutions and,
amid increasing n%, become more and more
interesting for third party energy providers.

17.5.2 Follow-up Studies

The present study shows a plain set-up and a
narrow set of possibilities, but it sets the stage for
a broader class of studies. In principle, some of
the simplifying assumptions employed in this
study should be removed in favor of a higher
realism and a more complex modelling, never-
theless models that are too complex for the level
of uncertainty and for the input data available
should be avoided.

For instance, it is tempting to change the
present model for the prices from the parent grid
(i.e. static seasonal price + long term linear
trends for sold and bought electricity) into a spot-
price + distribution costs. However, while the

change reflects reality better, the long term
(multi-annual) modelling of the spot-price would
be a daunting task and affected by huge uncer-
tainty. Because of this reason, it might pay off to
just maintain a simplified model for the prices
(i.e. 2 seasonal prices for purchase and sale +
time of day variation), but to perform a stochastic
simulation with variability in the time-evolution
of the prices. In other words, any further com-
plexity addition should only be determined by
the use case of the model. And, for this model,
the use case is the market design to finance and
maintain a fair and remunerative local electric
energy system.

On the other end, there are several low
hanging fruits that can be easily harvested: for
example, while in this study the price was always
set by either a unique actor (be it a community or
a provider) or by two groups of actors (such as in
scenario 5 and 6 of the LEM). It would be
interesting to explore the effect of different pro-
sumer setting each an arbitrary price and explore
their interaction. In this sense, one more step
could be to endow the agents with some level of
intelligence, beyond the simple behaviour of the
smart sellers, and let them adjust the price
reacting to the environment to maximize poten-
tial economic gains.

In the present study, there are devices and
loads that have not been investigated, such as
EVs and electric storages, in the local grid. These
features, given a simplified enough model, are
extremely easy to be implemented and can con-
stitute a game-changer in the effectiveness of a
business model.

Another interesting and potentially prolific
research direction would be the study of the
demand itself. Given the large variation of self-
sufficiency found among the different agents
participating in the micro-grid, it is possible to
find correlation with socio-economic and life-
style parameters such as median age, work-home
schedules, number of members in an household
etc. This does not constitute information in itself,
but it can lead to different results according to the
different shared renewable systems. In other
words, each social-mix might demand a different
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system (capacity of PV, capacity of electric
storage).

Regarding the demand, it is of paramount
importance to consider how often a house
remains vacant due to change or death of the
owner. These aspects should be investigated in
terms of impact over each business model, but
also in terms of risk-mitigating effect of larger
local grids. It shall not be forgotten that lower
risk can allow lower IRR for the investment, thus
unlock wider market niches. The vacancy of the
households is as well affected by socio-economic
parameters and median age of the households,
these aspects likely present spatial variability in
different parts of the city and the world.
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18District Household Electricity
Consumption Pattern Analysis Based
on Auto-Encoder Algorithm

Yuan Jin, Da Yan, Xingxing Zhang,
Mengjie Han, Xuyuan Kang, Jingjing An,
and Hongsan Sun

Abstract

The energy shortage is one key issue for
sustainable development, a potential solution
of which is the integration with the renewable
energy resources. However, the temporal
sequential characteristic of renewable
resources is different from traditional power
grid. For the entire power grid, it is essential to
match the energy generation side with the
energy consumption side, so the load charac-

teristic at the energy use side is crucial for
renewable power integration. Better under-
standing of energy consumption pattern in
buildings contributes to matching different
source of energy generation. Under the back-
ground of integration of traditional and
renewable energy, this research focuses on
analysis of different household electricity
consumption patterns in an urban scale. The
original data is from measurement of daily
energy consumption with smart meter in
households. To avoid the dimension explosion
phenomenon, the auto-encoder algorithm is
introduced during the clustering analysis of
daily electricity use data, which plays the role
of principal component analysis. The cluster-
ing based on auto-encoder gives a clear
insight into the urban electricity use patterns
in household. During the data analysis, several
feature variables are proposed, which include
peak value, valley value and average value.
The distinction analysis is also conducted to
evaluate the analysis performance. The chap-
ter takes households in Nanjing city, China as
a case study, to conduct the clustering analysis
on electricity consumption of residential
buildings. The analysis results can be further
applied, such as during the capacity design of
district energy storage.
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18.1 Introduction

Residential energy consumption accounts for
around 20–30% electricity consumption in dif-
ferent countries and is of great potential for
energy conservation (Teeraratkul et al. 2018). In
2016, the household electricity consumption
takes up 27.2% proportion of the world total
electricity consumption (IEA Electricity 2018).
With the development of smart grid and sus-
tainable energy integration, the combination of
renewable energy becomes more promising to
save energy and to face the challenge of energy
shortage. During the integration of the renewable
energy source with the traditional electricity grid,
because of the profile discrepancy, it is necessary
to make the energy generation and end use side
comply with each other. Based on the developing
technology of energy consumption measurement,
such as smart meter, it is easier to analyse the
electricity use with different temporal resolutions
(Kong 2018; Ponocko et al. 2017). Since then, a
lot of researches on the electricity profile and
demand response have arisen, and the new smart
grids also bring many challenges to the demand
response research (Godina 2018; Nan et al. 2018;
Setlhaolo et al. 2014; Vázquez-Canteli and Nagy
2019). The electricity use data with different
temporal resolution possesses different potentials
for research and engineering application. The
hourly data contributes to the load profile study
in one day and instructs the strategy of demand
response. While the daily data helps with the fuel
supplies, maintenance operations (Stoll 1989) as
well as energy storage design.

Many researchers have conducted analysis
based on the daily electricity use data. Valor
et al. (2001) conducted research on relationship
between daily electricity consumption and air
temperature, with the objective to simulate the
response of energy consumption to weather

conditions. The research showed that the energy
consumption was strongly related to the outdoor
air temperature, which indicated the influence of
temperature on the energy consumption of heat-
ing or cooling. The analysis divided the data
from the weekdays and the weekends (including
holidays). Compared with the weekends and
holidays, the electricity use in weekdays pre-
sented stronger and clearer correlation. Beccali
(2004) proposed a combined approach based on
unsupervised and supervised neural networks to
forecast and predict the electric energy demand,
correlating the electricity use with the weather
data, including temperature, relative humidity
and global solar radiation. Besides the regression
and prediction work, many researchers focus on
the clustering analysis. To instruct the building
management for forecasting and detection of
abnormal energy use, Li et al. (2010) made
classification of the energy consumption in
buildings with outlier detection methods. The
features of the energy consumption were firstly
extracted, used for the abnormal outlier detection
as well as the classification work. Wen et al.
(2019) proposed a shape-based clustering
method to recognize the electricity use patterns in
residential buildings. There are also many clus-
tering methods about the electricity use data,
such as Dirichlet process mixture model, k-
means method, fuzzy clustering and decision
trees (Granell et al. 2015; Ryu 2016; Qi et al.
2017). Zhou et al. (2017) also used an improved
fuzzy c-mean method to cluster monthly elec-
tricity use data. Different algorithms meet the
requirement for data with different scale and
amount. In the process of clustering analysis, k-
means clustering method shows advantage than
other algorithms (Wen et al. 2019). However, it
should be noticed that the k-means method is
based on the distance analysis among different
observations. Once the dimension of the obser-
vation reaches to a large scale, the “dimension
explosion” shall happen, which makes Euclidean
distance meaningless and the clustering analysis
may not work. In this chapter, the data contains
the daily electricity use data for a whole year,
with 365 values, and the dimension of the data is
relatively high. Therefore, to deal with the
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clustering analysis of such high dimensional
data, the dimension reduction should be
introduced.

In this research, an auto-encoder based
method is proposed to solve the high-dimension
problem during the clustering analysis of elec-
tricity use data. As for the data pre-processing,
the k-nearest neighbour analysis is used to con-
duct the outlier analysis. One case study with
daily electricity data for one year is conducted to
illustrate the proposed clustering analysis
method. Based on the clustering analysis, the
typical daily and monthly electricity pattern in
the urban scale are obtained. Also, the peak and
valley values of the typical electricity pattern are
analysed. The primary results will help with the
capacity design of district energy power station.
Based on this research, further the model for
district electricity use will be established, which
will be used for analysis of power integration
with renewable resource.

18.2 Methodology

This chapter focuses on the clustering analysis of
electricity use data, which possesses high-
dimensional characteristic. The data is firstly
processed with data cleaning, dimension reduc-
tion and outlier analysis. Here, as for the
dimension reduction, the proposed improved
method of auto-encoder algorithm to extract
principle component with much lower dimen-
sion. Then the electricity data is clustered
according to the principle components. Finally,
the evaluation and illustration of each cluster is
performed. The clustering results are further used
for energy management and demand response
analysis. The overall methodology illustration is
as shown in Fig. 18.1.

18.2.1 Data Pre-processing

The data pre-processing is divided into three
parts, (1) data cleaning, (2) dimension reduction
and (3) outlier detection.

Firstly, data cleaning is required. Because of
the errors of measurement and recording, the
electricity use data may not be complete. In this
chapter, if the data is less than the 90% length of
the full observation, this observation will be
deleted from the whole dataset. As for the
remaining observations, the blank electricity use
will be filled with the average daily energy
consumption in this month to represent the
average electricity use.

Secondly, this research focus on daily elec-
tricity consumption data for a certain time, which
is considered as high-dimensional. The tradi-
tional clustering methods are distance-based or
density-based, among which the k-means algo-
rithm (Hartigan and Wong 1979) presents supe-
riority of clustering performance. However, the
high-dimensional data may bring about the so-
called “curse of dimensionality” to clustering

Fig. 18.1 Methodology illustration of auto-encoder
based clustering analysis
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analysis, which means that with the increase of
observation’s dimension, the Euclidean distance
may be invalid to depict the relationship among
observations. Many studies have been conducted
to deal with this problem. Principal component
analysis and shape-based clustering method are
proposed by Wen to solve this problem (Wen
et al. 2019). The similar methods are listed as
wavelet packet decomposition method, discrete
Fourier transform, piecewise linear regression,
etc. (Khan, et al. 2014; Torriti 2014; Eichinger
et al. 2015). In this chapter, the cluster method is
improved by the introduction of auto-encoder (Li
2017), which plays the role of dimension
reduction.

The auto-encoder is an unsupervised neural
network, including three layer-structures, the
input layer, output layer and the hidden layer(s).
The particularity is that the input layer and the
output layer are exactly the same during the
model training (Fig. 18.2). Through well training

process, normally with backward propagation
(Rummelhart 1986), the model can well repre-
sent nearly all the information from input layer to
output layer. In this way, the useful information
is extracted and preserved in the neurons of
hidden layers, the information in hidden layers is
considered to be adequate for the representation
of the almost all the details of input layers. The
structure from input layer to hidden layer(s) is
called the encoding process, and the structure
from hidden layer(s) to output layer is called the
decoding process. If the dimension of the hidden
layer is less than the dimension of the input
observation, then the high-dimensional data is
reduced to low-dimensional data in hidden layer.

According to the dimension scale of the
original data, the stacked auto-encoder is intro-
duced when the dimension of the data is rather
high. The whole neural network is symmetrical,
with stacked auto-encoder networks shown in
Fig. 18.2, which indicates multi-time dimension
reduction during the model training. Hence, the
stacked auto-encoder network reduces the
dimension of the data step by step, and the mid-
dle of hidden layer is the results of the dimension
reduction, as the core hidden layer. The detailed
stacked auto-encoder network is further illus-
trated in Sect. 18.3.

Thirdly, due to the abnormal electricity use
may occur no matter related to the malfunction of
the smart meter or the consumption boundary
confusion, outlier detection is necessary during
the data pre-processing. Here, the consumption
boundary confusion means that the region clas-
sified as residential however the building used as
commercial or office functions, and this may
occur in the case study. In this chapter, the
households amount is also at a large scale, so an
efficient outlier detection for raw data with large
amount is introduced (Liu 2017).

The outlier detection, also called anomaly
detection, is used to detect the abnormal or
deviant observations in a dataset. Mainly there
are two procedures of the outlier detection, out-
lier ranking and determination. Normally, an
index or score is defined to represent the abnor-
mal and anomalous level of one observation. In
this chapter, the outlier detection combines k-

Fig. 18.2 Structure illustration of auto-encoder neural
network

390 Y. Jin et al.



nearest neighbours and local outlier factors to
conduct the outlier detection (Breunig et al.
2000). Considering the dataset with large amount
observations, the k-nearest neighbours will firstly
conduct to help with the rough category and
reduce the computation cost (Cover and Hart
1967). Then in the scope of their k-nearest
neighbours, the index of local outlier factor
(LOF) is estimated to represent the “outlier level”
of each observation. The “outlier level” depends
on how isolated the object is compared with the
surrounding neighbours (Breunig et al. 2000). It
can be understood as the average of the ratio of
the local reachability density of a sample and
those of its k-nearest neighbours. The inlier
observation’s LOF tends to be close to 1, while
outliers tend to have a larger LOF value. By this
means, the outlier observations of the electricity
dataset are recognized and removed.

18.2.2 Clustering Analysis

After dimension reduction processing, the results
of lower dimension are used to make clustering
analysis. In this chapter, k-means algorithm is
recommended. To decide the proper cluster
amount, the Calinski-Harabaz index is intro-
duced, under the circumstance that the true
cluster label cannot be obtained. The higher
index value indicates that the analysis possesses
better defined clusters.

18.2.3 Typical Electricity Use Pattern

After the clustering analysis of the dataset, the
results for principle components also the original
electricity use pattern can be illustrated and fur-
ther analysed with different temporal resolution.
For each cluster, the average daily electricity use
data of the households in this cluster can be
calculated and analysed. As for the daily elec-
tricity consumption profile, the feature indicators
like peak value, valley value and average value
are analysed. For the monthly electricity con-
sumption data, the peak value and valley value
can also be analysed. From the analysis, the

relationship between electricity consumption and
the season and temperature can be inferred.

18.3 Case Study

In this chapter, the residential electricity use data
from Nanjing city, Jiangsu province, in China is
used as the case study. The buildings include
apartment buildings and detached buildings. The
daily consumption data is measured by smart
meter from January 1, 2014 to December 31,
2014, lasting for one year in total. The data is
recorded in the temporal resolution of 1 h. This
dataset is used to depict the clustering analysis
based on auto-encoder algorithm, which shows
potential of daily electricity consumption data
analysis to district power storage capacity design
and integration with renewable energy.

18.3.1 Data Pre-processing

For the first step of data pre-processing, the valid
days of electricity consumption data are analysed
and used for data cleaning. The household with
amount of valid days less than 90% will be
deleted from the dataset. Figure 18.3 shows the
histogram of the statistical results of the amount
of the valid days for all the households in the
dataset. After the data cleaning, there are 17,031
valid households in the dataset. As for the vacant
data, the monthly average electricity consump-
tion will be filled into the blanks.

The auto-encoder network is established
based on package called “Scikit-learn” in python
(Pedregosa et al. 2011), with the symmetrical
structure and same output layer with input layer,
however. The stacked auto-encoder is trained
through the neural network training, and the
detailed parameter settings and network structure
is as shown in Table 18.1. The middle hidden-
layer compromise 3 neurons, which is the
reduced dimension of the electricity use data.

The outlier detection is conducted to avoid the
abnormal data due to malfunction of the mea-
surement equipment. The k-nearest neighbours
are introduced, and the k is set to be 1,000.
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The local outlier factor (LOF) for each household
is computed according to the 1000 nearest
neighbours fold data. The larger LOF value
refers to more anomaly. The histogram of LOF
values is illustrated in Fig. 18.4. There are 5.9%
households with LOF larger than 1.5, and this
figure shows the results of LOF under 1.5. After
the outlier detection, the inlier households of the
electricity consumption data are 14,478
households.

18.3.2 Clustering Analysis

With the training of auto-encoder network, the
output layer is close to the input layer, which has
already been standardized, and the 3 neurons is
considered as the dimension-reduced factors with
almost all the key feature of the daily electricity
consumption data lasting for one year. The
information of middle hidden-layer is named as

core layer for easy understanding. The clustering
analysis is performed on the core data. Fig-
ure 18.5 shows the results for the clustering of
the core data. The meaning of each value in the
core data is not specific, however, the informa-
tion from the core layer is adequate to represent
the characteristic of the input data. According to
the cluster labels for each household, the average
daily electricity consumption data is also anal-
ysed, which is shown in Fig. 18.6. The propor-
tion and values of each cluster centre are shown
in Table 18.2.

18.3.3 Typical Electricity Use Pattern

Based on the cluster analysis results, the feature
indicators of electricity consumption in each
cluster are analysed. Figure 18.6 has already
illustrated the average electricity use pattern for
each cluster. For further application of

Fig. 18.3 Histogram of amount of valid days of all the households in the original dataset

Table 18.1 Parameter settings and structure of auto-encoder network

Solver a Activation function Network size of hidden layers

Kingma and Ba (2015) 0.001 f(x) = max(0, x) (180, 60, 12, 3, 12, 60, 180)

392 Y. Jin et al.



Fig. 18.5 Clustering results of core data

Fig. 18.4 Histogram of local outlier factors during the outlier detection process
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integration with renewable energy and traditional
energy resource, the detailed pattern of the
electricity use shall be explored. In this chapter,
the peak and valley value of daily and monthly
electricity use data are analysed. Figure 18.7
illustrates the peak and valley values of average
daily electricity use data for one year of three
clusters. Ten households of load profile from
each cluster are picked out randomly from the
raw dataset and depicted in Fig. 18.8, which
shows difference between the single household
electricity use pattern and the average pattern in
one district. The randomness and variety should
be considered during the future analysis. For
example, the histogram of peak values of all the
households in each cluster is illustrated in
Fig. 18.9. The peak value of single household is
higher than the peak value of average electricity
use, which should be carefully considered during

further electricity simulation work. In Fig. 18.10,
the monthly electricity use data is illustrated. The
energy consumption varies with different season,
which infers that the electricity use is strongly
affected by the heating and cooling consumption
in the case study district. This characteristic is
promising to be considered for electricity use
model establishment. Finally, the summary of
typical electricity use pattern are shown in
Table 18.3.

18.4 Discussion

In this chapter, the clustering analysis is con-
ducted on urban electricity use data. To depict
the relationship among the different clusters, one
of analysis of variance, called Duncan’s test
(Bernhardson 1975; Harter 1960) is performed to

Table 18.2 Proportion of each cluster of electricity consumption data

Cluster Proportion (%) Core layer value

1 2 3

1 21.9 −34.6 34.9 87.1

2 36.6 −8.0 6.2 19.2

3 41.5 −19.9 17.0 50.0

Fig. 18.6 Clustering results of average daily electricity consumption data
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the cluster results to analyse the correlation
among each cluster centre, which shows the
significance of different cluster centres and rela-
tionship among them. Normally, the variables are

listed in the sequence of the average value.
Through Duncan’s test, the significance and
relationship among different clusters can be
analysed, normally according to the average and

Fig. 18.8 Electricity use data of random ten households for each cluster

Fig. 18.7 Peak value and valley value of average electricity use data for each cluster
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variance values. Table 18.4 shows the results for
Duncan’s test. The three category under the 0.05
a value shows significant distinction, which
verifies the performance of clustering analysis.

This chapter is promising to provide a novel
insight of the electricity consumption data anal-
ysis. From the temporal resolution of month, the
seasonal characteristic can also be analysed.

Fig. 18.10 Average monthly electricity use for each cluster

Fig. 18.9 Histogram of peak value of households in each cluster
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Because the clustering is conducted through
daily use data, the seasonal features may depict
more relation between the daily use and the
seasonal characteristic. More correlation work
between the electricity use and weather condition
can be studied, and detailed energy use model in
residential buildings in urban scale is going be
established.

Furthermore, there still exists challenging
work to improve. The outlier detection is limited
when the outlier data accounts for a larger pro-
portion, so the outlier recognition should be
improved. Meanwhile, the cluster analysis
should also be combined with more specific and
detailed information including the household
information and weather condition, so that the
analysis will be more solid.

18.5 Summary

This chapter proposes a novel clustering analysis
method based on auto-encoder algorithm, to deal
with the analysis of daily electricity consumption
data. Firstly, the data is pre-processed using a
novel method of outlier detection based on k
nearest neighbours and local outlier factor. To
avoid the “curse of dimensionality” during the
clustering analysis, the auto-encoder algorithm is

combined with the clustering analysis, which
plays a role as dimension reduction. By this
means, the electricity data can be analysed and
clustered in a more refined temporal resolution,
which includes more detailed information. The
results of this chapter are promising for further
integration between the residential grid and
renewable energy resources, such as the power
storage capacity design and evaluation of the
solar panels for residential buildings.
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19Digital Mapping of Spatial Energy
Use for Buildings in City

Samer Quintana, Pei Huang, Mengjie Han,
and Xingxing Zhang

Abstract

Urban energy mapping plays a crucial role in
benchmarking the energy performance of
buildings for many stakeholders. This study
examined a set of buildings in the city of
Borlänge, Sweden, owned by the municipal-
ity. The aim was to present a digital spatial
mapping of both electricity use and district
heating demand. A toolkit for top-down data
processing and analysis was considered based
on the energy performance database of
municipality-owned buildings. The data were
initially cleaned and transformed using the
Feature Manipulation Engine tool (FME) and
then it was geocoded using a python script
with an application program interface (API)

for OpenStreetMap. The dataset consists of
221 and 89 geocoded addresses for, respec-
tively, electricity and district heating monthly
consumption for the year 2018. The electricity
use and heating demand in the building
samples were about 24.06 kWh/m2 and
190.99 kWh/m2 respectively, for which great
potential for saving heating energy was
observed. The digital mapping revealed a
spatial representation of identifiable hotspots
for electricity uses in high-occupancy/density
areas and for district heating needs in districts
with buildings mostly constructed before
1980. These results will provide a compre-
hensive means of understanding the existing
energy distributions to stakeholders and
energy advisors. They also facilitate strategy
geared towards future energy planning in the
city, such as energy benchmarking policies.

Keywords

Energy mapping � GIS � Geocoding � UBEM

19.1 Introduction

Buildings represent large energy end-users
worldwide. In the E.U. and U.S, buildings cur-
rently consume over 40% of total primary energy
usage (Huang et al. 2020). With sights set in the
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new paradigm shift regarding energy production,
efficiency and climate change, Sweden will
implement strategies to reach national targets of
energy efficiency in the building sector by 2050.
According to these targets energy use per square
metre should decrease by 20% by 2020 and 50%
by 2050, in comparison with use in 1995. This is
a national target for energy efficiency in the
housing sector (Ministry of Sustainable Devel-
opment Sweden 2006). In 2010, over 50% of the
world’s population were living in urban areas.
By 2050, this number is expected to reach 75%
(UN-Habitat 2009). Urban development and the
expansion of cities, through the modification of
land uses (from natural to artificial) modify the
local energy budget and wind patterns. Such a
transformation has significantly changed the
microenvironment and the related energy usage
in urban cities (Torabi Moghadam et al. 2019).
The mapping of urban building energy plays a
crucial role in understanding the multitude of
agents that take part in the energy performance of
buildings, which will set up the benchmarks in
different districts for various stakeholders.

In the context of sustainable cities, spatial
visualization is a very effective approach that can
help decision-makers in the urban planning pro-
cess to create future energy transition strategies
and implement energy efficiency and renewable
energy technologies. Geographic Information
System (GIS) techniques can be used for visu-
alizing the energy demand or production in
buildings, from urban to regional, or even to a
national scale. Some of these visualization tech-
niques are: the thematic 2D map (Mhalas et al.
2013); the ‘hit maps’ (i.e., aggregated data in 3D
charts) (Murugesan et al. 2015); the 3D city
models with semantic objects (Gröger and Plü-
mer 2012). There are many studies using GIS
techniques to visualize the energy data in build-
ing stocks. For instance, Mattinen et al. devel-
oped a method for estimating and visualizing the
energy use and greenhouse gas emissions from a
residential building stock located in Kaukajärvi
district, Finland (Mattinen et al. 2014). Using
such visualization model, they also analysed the
impacts of behavioural and technical changes on
the energy performance in the building stock.

Finney et al. made a comprehensive mapping of
heat sources and sinks in Sheffield City, the UK
(Finney 2013). Based on the heat source map-
ping, they linked these smaller systems to create
a combined-heat-and-power based urban-scale
network of energy generation and delivery.
Huang et al. used GIS technique to obtain the
roof area in Kowloon district in Hong Kong.
Using the obtained roof area, they evaluated the
solar power potential of the whole district by
installing rooftop PV panels. Based on the
mapped solar power potentials, they developed
an optimal design method to sit the public
charging stations (Huang et al. 2019). Similarly,
Ramachandra and Shruthi used the GIS tech-
nique to map the wind energy resources of
Karnataka state, India. Based on the wind power
mapping, they analysed their variability consid-
ering spatial and seasonal aspects (Ramachandra
and Shruthi 2005).

In Swan and Ugursal’s study, the modelling
approaches for energy consumption in a number
of buildings were classified into bottom-up or
top-down approaches (Swan and Ugursal 2009).
The bottom-up approach is more appropriate
when there is a need for evaluating the energy
consumption based on a high detailed level of
data and the ability to model technological sys-
tems (Kavgic et al. 2010). Bottom-up models can
be divided into two types: deterministic (or
engineering) and statistical. The statistical
methods search for correlations, utilizing a sam-
ple of information in energy bills as a source of
data for energy modelling and analysing the link
between energy consumption and a range of
different variables (e.g. building shape, age, and
occupant behaviour) (Nouvel et al. 2015). They
can also consider socioeconomic effects in the
equations. They calculate reliable consumption
based on the available information on the current
status of buildings. However, due to their strong
dependency on available historical consumption
data, these methods are restricted to predict the
impact of new technology options and energy
saving potential after applying refurbishment
measures (Torabi Moghadam et al. 2018). The
deterministic methods are detailed models which
are based on thermodynamic relationships and
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heat transfer calculations (Bruse and Fleer 1998).
The main advantage of an engineering-based
method is the ability of predicting energy saving
potentials for buildings if some renovation mea-
sures are to be implemented (Mauree et al. 2017).
These modelling approaches require a large
amount of information about the building struc-
tures and parametric input for estimating the
energy usage of a set of reference buildings of
the stock based on a numerical model. Addi-
tionally, the evaluation of urban planning sce-
narios is computationally extensive, and the
availability of construction and geometrical data
needed as input for the models is very scarce.
The top-down approach treat the entire residen-
tial sector as one energy sink. The top-down
methods are suitable for a large-scale analysis
and not for the identification of the possible
improvements at the building at urban and local
levels (United Nations 2015). Compared with the
bottom-up approaches, the top-down methods are
relatively easy to develop based on the limited
information provided by macroeconomic indica-
tors such as price and income, technology
development pace, and climate. As summarized
by Swan and Ugursal, the top-down approach
has advantages including long-term forecasting
in the absence of any discontinuity, inclusion of
macroeconomic and socioeconomic effects, sim-
ple input information required and encompasses
trends (Swan and Ugursal 2009).

Although there are existing studies in mapping
energy uses in different cities, spatial energy
analysis in local municipality are necessary as
they will be different in various city and culture
contexts. Specific consideration should be paid to
the differences between cities when it aims to
optimize the integration of urban energy systems
operated in buildings, and promote renovation
and renewable energy systems. This is because
cities differ from each other at the local, national
and international levels in the perspectives of
geography, socio-economy, culture, infrastruc-
ture, and information platform. The types of cities
and districts will determine the kind of users and
needs, and consequently the nature (qualitative
and quantitative) of the policy/regulation schemes
and the calibration/adjustment of the energy

infrastructures. The citizen’s behaviours and
needs/preferences of energy may be different
from each other in different cities, which can lead
to a great difference in the energy demand. Within
the same framework of transforming to sustain-
able and liveable city, different areas must not
only adopt standardized approaches, but also
consider the specificities at the local level. Dedi-
cated research into local city and district is
therefore of paramount importance to ensure the
proper mix between international/national sce-
narios and local measures.

The urban energy mapping and analysis for
Borlänge city have not yet been done. Therefore,
this study aims to cover the research gap by
studying a set of buildings owned by the
municipality of Borlänge, Sweden. The initial
step of the study is to give a spatial mapping of
both electricity use and district heating demand.
A top-down approach was considered based on
the energy consumption data of the municipality-
owned buildings. It was expected that this study
would be able to provide insights that allow the
understanding of the existing local energy dis-
tributions. It also facilitates strategy geared
towards future energy planning in this city.

This chapter is structured as follows: methods
illustrates the data source and the methodology
used to process the data; in results and discus-
sion, both statistical and spatial analysis are
presented; a conclusion is further depicted after.

19.2 Methods

19.2.1 Data Sources

Acquiring the necessary data to create an urban
model can be a difficult endeavour. New general
data protection regulation laws (GDPR) by the
European Parliament regulates how the data must
be acquired, handled and stored while protecting
the privacy of the individuals (European Parlia-
ment 2016). Energy consumption data is sensi-
tive information that fall into the new regulation,
greatly complicating the data acquisition.
Depending on the data resolution, storing the
information can be complicated, may be not kept
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for large periods of time or stored in obsoletes
systems making difficult to be used.

The primary source of data used for this model
is provided by Tunabyggen, a municipality owned
company that constructs, manages and rents a set
of buildings in the Borlänge municipality. The
data is provided in PDF format, containing a total
number of 375 pages of monthly data for elec-
tricity demand, district heating and hot water flow
rate for the year 2018. The geographical infor-
mation is obtained from the official Swedish sur-
veying institution, Lantmäteriet, specifically, the
vector data for the property information and
LiDAR data for the Borlänge municipality. Other
social statistics and specific data such as building
year of construction, percentage of occupation,
demographics and typologies are acquired from
hitta.se, which is a Swedish search engine that
offers telephone directory, addresses and maps.
To complete and validate the model, it is neces-
sary some extra information that was obtained by
visual inspection such as the number of floors,
area and shape of the roofs. The flowchart,
Fig. 19.1, further describes the processes, data-
bases and validation operations.

19.2.2 Data Extraction

The first step in the process is to extract the
information from the data source provided.
The PDF archaic data structure format must be
transformed into a common format that can be
used by other applications. In order to extract
the data a custom python script is written to parse
out the information. Then, the data is further
inspected for missing data and error correction.
From the 375 pages in PDF format, a total of 262
addresses and 463 entry points of monthly data
for electricity (kWh), district heating (MWh) and
flow rate (m3) for the year 2018 were extracted.

19.2.3 Geocoding

The extracted addresses from the data source are
further expanded to include the city and the

country information. Then, it is run through a
python script, using an application program
interface (API) for OpenStreetMap, Fig. 19.2,
gives the script that uses pandas, geopy libraries.
In parallel, another script was used to connect to
Google Maps API geocoding services. Two
outputs from each geocoding service are
obtained with the longitude and latitudes of the
addresses. The output format for the coordinate
system is the standard LL-WGS84. The location
for a total of 222 out of the 262 entry points were
found on the first iteration.

19.2.3.1 Geocoding Validation
The results are plotted and further inspected for
validation. During this process, the locations are
geocoded and manually centred in the property
area, as displayed in Fig. 19.3. The green dots
are the geocoded locations and the brown dots
are the manually centred locations. The output
becomes to 238 out of the 262 total addresses,
leaving a total of 24 addresses and 31 entry
points that are not able to be geocoded due to
unspecific naming until manual visual inspection
and analysis of the context is performed. The
final result generates a total of 250 geocoded
addresses and 12 unclarified ones.

19.2.3.2 Area Merger Code, Area
Validation

Next parameters are extracted from the Swedish
survey database Lantmäteriet. The building
property vector information is provided in a
shapefile (.shp) format, a digital vector storage
format for storing geometric location and asso-
ciated attribute information.

Using the Feature Manipulation Engine
(FME) tool, shown in Fig. 19.4, it is possible
to extract and calculate the areas for the geo-
coded addresses points. This information is
compared to the visual inspected area, in order
to analyse its accuracy. The extra information
stored in the shapefile is incorporated to the
dataset. This information includes a building
description, coordinates in the Swedish refer-
ence system SWEREF-99-TM and a unique
object identity.

402 S. Quintana et al.



19.2.3.3 Data Processing
All the different sources of information are
finally combined together and inspected for
errors or inconsistencies. The total building area
is calculated using the number of floors and the
buildings vector surface areas. Finally, the results

for the energy consumption, electricity and dis-
trict heating in kWh/m2 for the year 2018 were
obtained.

From the 250 addresses that were geocoded,
28 addresses were excluded from the analysed
dataset due to missing, erroneous or abnormal

Fig. 19.1 Flowchart for data
processing, extraction,
geocoding and validation
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information. The final sample dataset consists of
221 buildings for the electricity data and 89
buildings for district heating data.

19.3 Results and Discussion

19.3.1 Statistic Data Analysis

In the considered building samples, all of the
buildings are residential buildings and the related
facility buildings (such as laundries, storage,
etc.). The energy use is normalized by dividing

the energy use by the heated floor area. The
definition of the heated or living floor area has a
large impact on the magnitude of the area-
specific energy requirement. In Sweden, the
heated floor area is defined as the floor area that
is heated more than 10 °C. As a result, in this
study, we assume the heated floor area is aver-
agely 87% of the total external floor area for the
analysis (Mata and Kalagasidis 2009). In addi-
tion, electricity demand is further normalized by
considering the occupancy ratio of each building.
For the heating demand there is no need to
consider the occupation ratio, as it is common in

Fig. 19.2 Python script for
OSM API geocoder

Fig. 19.3 Geocoded data
will adjusted coordinates
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Sweden for the heating systems to stay on, even
if there is no occupancy in the building.

The annual electricity demand for lighting and
appliances in the building samples are illustrated
in Fig. 19.5.

The mean electricity demand of 221 building
samples was 24.06 kWh/m2, with a total range
from minimum 0.02 kWh/m2 to maximum
189.89 kWh/m2. Comparing to the average
electricity demand of 30–36 kWh/m2 in Swedish
context (Mata et al. 2013), the average electricity
demand of the building samples is reasonably
low. The median electricity demand was 12.72

kWh/m2, which means that 50% of the building
samples demand less electricity than this value.
Furthermore, over 76% of the building samples
achieves lower electricity use than 30 kWh/m2.

The Swedish Housing Agency's building
rules (Boverket 2011) stipulate requirements for
the energy performance of buildings depending
on their use, end-use heating system and climate
zones. The energy performance (heating
demand) requirements are given as the specific
energy use, comprising the purchased energy for
space heating, domestic hot water and electricity
for fans and pumps but excluding electricity for

Fig. 19.4 Processes in FME area merger workflow

Fig. 19.5 Annual electricity
demand for building samples
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household appliances and lighting (Dodoo and
Gustavsson 2014). The annual heating demand
for the building samples are displayed in
Fig. 19.6.

The mean heating demand of 89 building
samples was 190.99 kWh/m2, with a total range
from minimum 0.41 kWh/m2 to maximum
492.52 kWh/m2. Borlänge city belongs to cli-
mate zone II in Sweden, where the new building
code requires up to 110 kWh/m2 energy use for
non-electric heated buildings (with district heat-
ing) annually. In addition, passive houses criteria
even have higher requirements with up to 35%
lower value compared to building code (FEBY
2012). Thus, the average heating demand in the
building samples was much higher than either the
building code or the passive house standard,
about twice the requirement stipulated by build-
ing code, and three times of the requirement of
the passive house standard. The median heating
demand was 145.43 kWh/m2, which means that
50% of the building samples demand less heating
than this value. Approximately 25% of the
building samples achieves lower heating demand
than 110 kWh/m2. The difference between the
different counties is clear. In Gävleborg, it was
found that the average heating demand was about
185 kWh/m2 in 2010. When across the whole
Sweden, the average annual energy use for
heating in single- or two-dwelling was reported
at about 158 kWh/m2 per year in 2014 (Swedish
Energy Agency 2015). So, the heating use in

Borlänge city stays at a high level when com-
pared to the closed regions and the average figure
over the country.

However, this high energy demand can be
understood since over 60% of the buildings in the
sample were constructed before 1980, and there-
fore it may not be energy efficient dwellings. The
annual heating demand average varies consider-
ably depending on the year of construction of the
building. For buildings built after 1980, the
heating demand was of about 97–98 kWh/m2 in
2004, while those built before 1980 used heating
from 120 to 133 kWh/m2 per year (Pallardó
2011). In the sample, the average heating demand
for buildings constructed before 1980 was about
187.98 kWh/m2 per year, where these buildings
account for 90,651 m2 of the heated floor area.
So, there is great potential (about 4532–5439
MWh/year) for these buildings built before 1980
to improve their energy performance through
renovations such as, increasing the thermal insu-
lation of the walls/roofs, upgrading windows and
heating radiators for example.

19.3.2 Spatial Data Analysis

A digital mapping method was applied in this
study to compile and format the energy data into
a virtual image and thus to produce a general
map of energy use in Borlänge city based on
building samples, which offers appropriate

Fig. 19.6 Annual heating
demand for building samples
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representations of the dedicated areas and dis-
tricts. Using a Geographic Information System
(GIS) tool—QGIS, it was able to visualize the
sample energy data on the spatial map of Bor-
länge. Using the yearly electricity and heating
demand in the unit of kWh/m2 as the weight
factor, longitude and latitude of the addresses,
two digital maps were generated as shown in
Figs. 19.7 and 19.8, respectively for electricity
use and heating demand.

These digital maps provide an interactive and
scalable way of visualizing the energy use across
the city, which is used to spot abnormalities or
faulty energy data points. These maps also
illustrate a spatial idea of identifiable hotspots for
electricity uses in high-occupancy/dense areas.
For district heating demands it shows hotspots
with buildings mostly constructed before 1980.
For instance, some of the hotspots can be easily
identified as several student’s accommodation

Fig. 19.7 Digital mapping of
electricity use in Borlänge
city based on building
samples

Fig. 19.8 Digital mapping of
heating demand in Borlänge
city based on building
samples
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areas in the northwest quadrant. These highly
dense buildings have high electricity consump-
tion since the occupants remain indoor for the
most learning and living activities, but at the
same time these buildings have relatively low
heating needs as the buildings are well main-
tained and insulated. It is observed from these
two maps that electricity use is mainly relied on
the occupancy density, where higher population
per floor area usually results in higher electricity
use. On the other hand, district heating demand is
dependent on the building itself, where poorly-
insulated building leads to higher heating need.
As a result, electricity use and heating demand do
not always appear in the same district/area since
they are influenced by different parameters. This
offers clear insights for planning of urban energy
infrastructure and distributions, as well as the
potential contributions from local renewable
energy source (RES) systems. For instance, more
electricity distribution or RES power generation
is necessary for high-dense residential areas,
while higher heating should be distributed to
those areas with buildings mostly constructed
before 1980.

19.4 Conclusion

A dedicated spatial analysis of both electricity
use and district heating demand in a Swedish
local-city context was completed, through a
toolkit for top-down digital mapping. The aver-
age electricity demand in Borlänge building
samples was 24.06 kWh/m2, which was reason-
ably lower than the average value in Sweden.
The mean value of heating of the building sam-
ples was 190.99 kWh/m2, which was much
higher than either the building code or the pas-
sive house standard. The heating use in Borlänge
city stays at a high level when compared to the
closed regions and the average figure over the
country. In particular, there are great potentials
(about 4532–5439 MWh/year) for the buildings
built before 1980 to improve the energy
performance.

The digital maps provided a spatial represen-
tation of the identifiable hotspots for electricity

uses in high-occupancy/density areas and for
district heating needs in districts with buildings
mostly constructed before 1980. Electricity use
and heating demand do not always appear in the
same district/area since they are influenced by
different parameters. The overall result offers clear
insights for the planning of urban energy infras-
tructure and distributions, as well as a potential
contribution from local RES implementation.
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20Machine Learning and Artificial
Intelligence for Digital Twin
to Accelerate Sustainability
in Positive Energy Districts

Jingchun Shen, Puneet Kumar Saini,
and Xingxing Zhang

Abstract

Positive Energy Districts (PED) require inte-
gration of different systems and infrastructures
for the optimal interactions among buildings,
stakeholders, mobility, energy systems and
ICT systems. Digital twin is a coupled
approach for new forms of modelling and
analysis based on big data and machine
learning/artificial intelligence, which combi-
nes capacities of virtual model, data manage-
ment, analytics, simulation, system controls,
visualization and information sharing. Digital
twin is regarded as a potential solution to
optimize PEDs. This chapter presents a com-
prehensive review about digital twins for PED
from aspects of concepts, working principles,
tools/platform and applications, in order to
address the issues of both ‘how digital PED
twin is made’ and ‘how digital PED twin
optimizes liveability’. Further challenges and
opportunities are brought forward for discus-
sion. The outcome of the review is expected to

provide useful information for optimizing the
liveability of the urban environment in line
with social, economic and environmental
sustainability.

Keywords

Positive energy districts � Digital twin

20.1 Introduction

According to European Strategic Energy Tech-
nology (SET) Plan Action 3.2, positive energy
districts (PED) are the essential part of compre-
hensive approaches towards sustainable urban-
ization including technology, spatial, regulatory,
financial, legal, social and economic perspectives
(Europe 2019). Urban development is moving
from building solutions to PEDs in order to
achieve EU’s energy and climate targets. It has
planned more than 100 PEDs by 2025 in EU,
which will require coupled and dynamic inter-
action among buildings, users and energy sys-
tems, mobility and ICT infrastructures (SET-Plan
action 3.2 2018). PEDs are defined as energy-
efficient and energy-flexible urban areas with
surplus renewable energy production and net
zero greenhouse gas emissions. Active informa-
tion exchange and analysis will be necessary that
enable balancing and optimization, peak shaving,
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load shifting, demand response and reduced
curtailment of renewables, and district-level self-
consumption of energy.

The integration of digital methods can be a
solution to the challenges in PEDs. Buildings and
districts can be designed to be more vibrant,
efficient and resilient if they are modelled, ana-
lyzed and tested before they are built. Digital
twin refers to the creation of digital
model/platform by monitoring, modelling and
optimizing the PEDs as a complex multi-physics
system based on real-time big data sets (Woods
and Freas 2019). Digital twin integrates internet
of things (IoT), artificial intelligence (AI),
machine learning and analytics, to create living
digital simulation model that update and change
as needed. A digital twin model continuously
learns and updates itself from multiple sources to
represent its near real-time status.

Digital twin of PEDs enables a revolutionary
way to accelerate sustainability of the society, in
terms of energy transition, circular economic and
climate change. In a digital twin platform, sensors
will be set up to collect all kind of information,
such as occupancy (mobility), temperature,
moisture, energy consumption, renewable pro-
duction, CO2 concentration, costs, waste, carbon
footprint, etc., creating the ‘brain of PEDs’. With
such big data sets, digital twin model can be used
to assess energy demand/supply, indoor air
quality, thermal comfort, CO2 emissions, expen-
ses for operating and maintenance, building
renovation/replacement needs (including recycle
of waste construction material), carbon emissions
and payback periods of energy saving measures
over lifetime. This therefore optimizes PED’s
three functions in energy efficiency, energy pro-
duction and flexibility, towards energy surplus
and climate neutrality.

Although there are several existing projects
and reports about digital twin for PEDs, it sig-
nificantly lacks of a systematic review and
summary about the current R&D status in this
area, in order to identity current working limits
and future research directions. This chapter
therefore presents a comprehensive review about
digital twins for PED from aspects of concepts,

working principles, tools/platform and applica-
tions, in order to address the issues of both “how
digital PED twin is made” and “how digital PED
twin optimizes livability”. Further challenges and
opportunities are discussed.

20.2 Concept and Working
Principle for PEDs

A digital PED twin usually consists of four
important components: a virtual model of PED,
sensor network integration, data analytics and
stakeholder layer. Figure 20.1 displays a sche-
matic of how digital PED twin is made. The vir-
tual model is a visualization process for a PED
that can derive from 3D models extracted from
BIM or the custom 3D models of PED. The
information and data within a digital PED twin
can collected and transfer by various sensor net-
works to create a real-time monitoring, which
often include weather conditions (temperature,
solar irradiation etc.), material (new or wasted),
cost, carbon emissions and footprint,
facility/system status, indoor air quality (IAQ),
inhabitant behaviour, electric vehicle (EV) mo-
bility, energy demand and local RES supply.
These data sets will be further analysed by
machine learning or AI approaches, and exchange
actions/decisions with different stakeholders for
operations. In this sense, the stakeholders may
refer to public institution/government, property
owner/manager, inhabitant, urban planner, engi-
neer, financial company, utilities, service provi-
der, and so on. This dynamic interaction allows
for real-time analytics, informed decision-
making, resource efficiency, and comfort
enhancement (Khajavi et al. 2019).

Ideally, in a digital PED twin, the real-time
data is collected and transferred to data analytic
centre, where all kinds of data are analysed along
with their complex systems for either prediction
or optimization for multi objectives of liveability,
such as maintaining IAQ level, improving energy
self-consumption, maximizing economic bene-
fits, and minimizing carbon emissions, etc. The
predicted or optimized information is further, if
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necessary, sent to stakeholders for decisions, or
returned to the individual systems in reality for
regular operations. Such digital twin increases
system resilience by considering interdependent
systems and optimizing the decision/operation of
the future.

The considerable benefits of a digital PED
twin can be anticipated. The digital twin envi-
ronment will facilitate interaction and collabora-
tion between all stakeholders involved in a
PED’s life cycle, by enabling integrated data-
information-knowledge-decision sharing capa-
bilities. Such activity will further increase public
and individual awareness. Since data and feed-
back are real-time, it can increase energy sys-
tems’ flexibility and robustness during operation.
A PED-centred digital twin Environment can
aggregate all data through the whole life cycle of
a PED from design and construction (renova-
tion), to operational and demolishment phases,
hence improving the livability by more resource-
efficient, economic and environmental decision
taking (Alonso et al. 2019).

20.3 Digital Twin Platform
and Tools

A digital twin is a combination of several modules
such as computer model, physical model, commu-
nication services, and data analytics. These modules
work in synchronization to monitor, learn, and
optimize the complete system operation. A digital
twin can capture the relationships that define such
modules and allows new levels of analysis for
complex environments. However, the implementa-
tion of the digital twin concept may require new
processes, methods, and novel platforms to interact
with each of these modules (Qin et al. 2017).
Similar to the diversification in the 3D modelling
techniques, there does not exist a common digital
twin platform. The reason is that solution to provide
digital twin does not lie in technology, but on the
methodology and processes used to provide these
solutions (Theiet 2020). Therefore, this section
intends to provide an overview of various available
tools, which are used, for digital twin in the built
environment and PED context.

Fig. 20.1 Schematic design of key components in a digital PED twin
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20.3.1 Intelligent Communities’
Lifecycle (ICL)

ICL provides a digital platform to create, analyse,
and optimize the complex energy systems. The
tool can assess a broad range of configurations
for building and energy systems throughout their
lifecycle (IESVE 2020). ICL makes use of the
established building simulation tools to interact
with the broader environment required for DT
implementation. This results in an interconnected
platform that makes use of IoT data, sensor
readings, OpenData, or any other source to
investigate the built environment performance at
any level. The digital model is created using an
intelligent community design (iCD) tool, which
utilizes open street maps to build the three-
dimension model and BIM interoperability of the
case building. The input from iCD is used for
dynamic simulation performance of the system
across the entire building lifecycle. This is
enabled by the virtual environment (VE) plat-
form to carry daylight, energy performance, and
life cycle assessment of the system. Furthermore,
the data from the real case building is obtained
and analysed to identify operational issues, risk
mitigation, and understanding system interac-
tions using an energy management information
platform. The utilization of the tool is commer-
cially demonstrated with over 100 projects all
over the World (IESVE 2020).

20.3.2 BuildingMinds

The tool is developed by BuildingMinds GmBh,
Germany, in collaboration with Microsoft, USA.
Similar to ICL, BuildingMinds (BuildingMinds
2020) provides a common platform to obtain,

integrate, and analyze big data from various
physical systems. However, the unique features
of the tool lie in the use of a common data model
that makes use of artificial intelligence and data
democratization techniques, to efficiently process
the databank to provide real-time feedback to the
services. The data process approach used by the
tool is shown in Fig. 20.2 (Policy Lab and Spa-
tial Services 2019).

Initially, the data is clustered and prioritized
based on a specific process, and further validated
using available tools and performance indicators.
The data is stored as “common data’ with
specific attributes and entities for further analy-
sis. This also enables users to import and analyze
data from existing digital and analog sources to
build an interoperable real-time representation of
existing building entities.

20.3.3 Predix

Predix is a digital twin platform developed by
General electrical, USA with a focused devel-
opment of cost-effective and predictive mainte-
nance strategies for industrial components such
as turbines, and motors (Ge.com 2020). It has
been reported that a major share of manufacturers
suffers from excessive costs related to materials,
labour, packaging, and shipping. The reasons
identified to these expenses include lack of
component performance prediction, which might
result in un-scheduled asset downtime, mainte-
nance, and late shipments (Macfarlane 2020).
However, predictive analytics enabled by digital
twin is used as a vital tool to help reduce all of
these issues. The dynamical linkage of each
digital twin element with construction, engi-
neering, and operational data can help to

Process related 
clustering and 
prioritisation

Data validation 
using releavant 

documents, 
tools and KPIs

Data extraction 
and allocation of 
various attributes

Fig. 20.2 Data process approach used by BuildingMinds
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streamline the element controls. Predix claims to
be the world’s first industrial internet platform, to
manage digital twin and associated analytical
models to connect data, intelligence, and people.
The platform consists of an asset performance
management kit that designed to optimize asset
operations. The kit also includes HMI and
supervisory control and data acquisition system
to implement intelligent control applications.

20.3.4 Ecodomus

Ecodomus provides a constellation of four sub-
modules required to create a DT of the asset, as
shown in the Fig. 20.3. The software addresses
the full lifetime approach of the building from the
design phase to the decommissioning phase to
achieve short- and long-term efficiency gains
(Ecodomus.com 2020). The conjunction of
building management software and BIM model
with facility operational tools helps to understand
and get critical insights on the operational sys-
tems of the building. However, the geographical
information for the asset such as topography and
site-wide information is obtained using Ariel
equipment, such as drones to scan the field, and
used as input to create a realistic digital repre-
sentation of the asset. The tools have been
commercially demonstrated for managing a

digital twin of a wastewater treatment plant in
Hamilton, New Zealand.

20.3.5 Other Platforms/Tools

There exist a few other platforms, which can
support digital twin. However, most of them
have a focus on industrial applications. Examples
for such tools are Akselos, iTwins, and Seebo
(Warner 2018). Tools such as feature manipula-
tion engine also provide a data integration plat-
form with applications in multiple sectors such as
transportation, commercial, and utilities. The tool
can be used to automate the data integration
workflow and distribution to save time and effort
(Warner 2018). Moreover, there are several
existing EU-funded Horizon 2020 projects
looking at digital twin to address various sectors,
e.g. food-water-energy nexus, and industrial
O&M. One such project is CRUNCH using
urban living labs that are scattered throughout the
EU and beyond. The digital twin of these living
labs will try to mimic the flows that occur in a
food-water-energy nexus (CRUNCH 2018).
Project Dasher also provides a digital twin kiosk
to explore the various possibilities of using dig-
ital twin for building applications to add value in
building operations and support better decision
making (Dasher360.com 2020). The rest possible
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Fig. 20.3 Submodules of
Ecodomus integration
platform
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platforms or tools are mainly developed based on
existing GIS models of cities/districts (i.e.
3DEXPERIENCity platform), BIM models of
buildings and transportation, data collection
networks (i.e. TerriaJS), as well as data com-
munication and visualization platforms.

Although the full implementation of digital
twin might happen in near future, however,
several platforms and tools are offering easily
adaptable starter elements, development, of
which will result in much more connected
models for higher overall benefit to the built
environment, industry and PEDs (Boje et al.
2020). However, there are few concerns, such as
security for aggregated resources, validation, and
authentication of the data, which needs to be
addressed by these platforms (Qin et al. 2017).

20.4 Applications of Digital PED
Twin

Until year 2020, there are several successful
digital PED twin developments (Research and
Markets 2020). In Europe, a digital twin project
in Helsinki, Findland, has been developed on
CityGML, which is a semantic, expandable
information Open Geospatial Consortium model
that can describe objects (Heiskanen 2019).
Renne city in France establishs a digital 3D
model for various urban studies (such as for
urban mediation with citizens), and for urban
development purposes (such sunshine simula-
tion, noise modelling, tree shadow impact on
buildings) (Poppe 2016). Rotterdam city in
Netherland applies a digital twin for managing
the city's infrastructure assets (Research and
Markets 2020). In North America, Pasadena
California in United States develops a useful
supervisory tool for the city's public sector
players. Meanwhile, Portland Oregon in United
States plans to construct a digital transportation
activated by residents’ cellular data (Fischer
2019). Waterfront Toronto in Canada stands on
digital twin technology launch a public advocate
of waterfront revitalisation, and urban innovation
organisation Sidewalk Labs, which aims to
combine urban design with the latest in digital

technology to address the challenges that cities
face, such as housing affordability, transportation
and energy use (Doyle 2019). In the Middle East,
a project in Dubai focuses on the user experience
by digital twin. Jaipur city in India underpins a
digital twin project on urban planning and
supervision (Research and Markets 2020).
Yingtan city in China develops its first 5G Dig-
ital Twin. In Shanghai in China, immersive
digital twins in railway engineering establish new
practices to deliver sewage treatment plant (Par-
rott and Warshaw 2017). The detail description
of specific digital twin projects can be found in
Table 20.1.

From the demonstrated pilot projects, it can be
concluded that the digital twin concept usually
consists of three distinct parts: (1) the physical
asset, from community to city; (2) the logical
constructed digital/virtual product, the associated
virtual three-dimensional digital replica; and
(3) communications in between contained by
specific applications. The communications usu-
ally take place on certain types of platform. The
most popular digital twin city solution suppliers
are Alphabet, Autodesk & Esri, Bentley, City-
zenith, Dassault systems, Engie Ineo/Siradel,
Microsoft, NTT Data Corporation, Siemens and
IES VE (Research and Markets 2020; Institute
for Manufacturing 2020).

Meanwhile their connections between the
physical items and the digital/virtual replica is
continued data flows that streams from the
physical product to the digital/virtual product, as
well as information that generate from the
digital/virtual platform to the physical environ-
ment. In a summary, the primary functions col-
lected from mentioned projects are: Prediction,
Simulation, Monitoring, Lifecycle, Sensing,
Optimisation, Internet of Things, Artificial
Intelligence, Building Information Modelling,
knowledge processing with data sets and web-
based data integration (Boje et al. 2020).

From the aspect of digital twin evolution, it has
evolved from the monitoring platforms, the
intelligent semantic platforms and the agent dri-
ven socio-technical platforms. The whole evolu-
tion represents a continuous growth in terms of
both lifecycle integration and supply chain
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Table 20.1 Summary of existing application examples

Project description Platform and objectives

2019, New South Wales state, Australia (Policy Lab
and Spatial Services 2019)
It included digital visualisations of the local government
areas that comprise the Western Sydney City Deal and
Greater Parramatta to the Olympic Peninsula. It
achieved the integration of live transport feeds as well as
infrastructure building models that developed with the
CSIRO’s Data61 digital research network

Platform/tool: TerriaJS
It generally aims to upgrade the existing state’s spatial
data from 2D to real-time 3D and 4D, following the
recommendation of State Infrastructure Strategy in
2018. The platform will further engage with local, state
and federal government agencies and industry bodies
offering benefits at national, state and local government
levels; from disaster management through to bus
schedules for city’s future needs

2017, Dundalk Institute Of Technology, Ireland
(IESVE 2017)
It created a 90 acre virtual campus energy model, which
covering all campus buildings, streetlights,
transformers, the 850 kW wind turbine and the 125 kW
electricity storage battery. By analyzing the results on
ICL, the direct improvements were:
(1) Wind Turbine meets 52.8% of demand;
(2) Electricity Storage meets only 2.2% of demand;
(3) 10.5% Transformer Losses,
(4) 45% of demand is met by the grid

Platform/tool: ICL
It overarches a Net Zero Energy Campus. The virtual
campus model was to:
(1) Analyse all annual energy sources and demand for
the campus;
(2) Simulate energy demand data;
(3) Validate pre-existing renewable investments and
calculate return of investment (ROI) on improvement
options. Finally, some suggestions were given towards
its net-zero energy goal by disposing of the Electrical
Storage unit, assessing renewable energy networks and
investing in other energy conservation methods

2019, Virtual Singapore (Qin et al. 2017; Systèmes
2019)
The virtual country project is a $73 million, continuous
live digital replica urban laboratory that created by the
Singapore National Research Foundation. It consists of
3D semantic model and the associated platform which
incorporates real-time dynamics, as components of
buildings and infrastructures, as well as information
about demographics, climate or traffic. The project not
only targets to translate urban relevant design tasks into
data-rich driven totally, but also further turn into a
virtual test bed at urban level, which ensures very large-
scale simulations, like wind, noise, traffic simulation to
support the city’s R&D work. This project is the most
advanced digital twin to date

Platform/tool: 3DEXPERIENCity platform
Because large cities are usually characterised by a
dynamism in several symbiotic entities that conceals
highly complex social structures and services that
normally makes urban planning a complicated
systematic work. The introduction of 3D virtual
representation of real country offers a common and
holistic way for designing better urban centres. With the
help pf big data, cloud computing and virtual reality in
the city-state of Singapore, it has been already beneficial
for urban planners, citizens and business partners with:
(1) optimizing a better accessibility solution in a specific
area without any construction work;
(2) estimating emergency situations and establishing the
most suitable evacuation protocols;
(3) providing real-time monitoring of the Project

2019, Boston 3D Model, USA (Patrick 2018)
Evolving from the previous craved wooden downtown
model in the 1980s, Boston Planning and Development
Agency now prompted to an in-house digital twin. The
general interests are to spatially understand
environmental impacts using cutting-edge technology
with data-driven workflows. The upgraded model has
capabilities of geographic information system software
and the expertise coming from Autodesk & Esri
professional services

Platform/tool: GIS-based 3D city model
The digital twin model allows to capture the entire city
and determine real-world impacts to make timely
decisions. It developed a GIS-based 3D twin that
includes both quantitative and qualitative analysis
workflows. In the coming future, designers are able to
use metrics and a standardized process and procedure to
evaluate projects, including planning and development,
flood modelling, shadow studies, and line-of-sight
evaluation

2018, University of Cambridge and the west Cambridge
shire in UK (Institute for Manufacturing 2020)
A digital twin has been applied to infrastructure system
management in, University of Cambridge and the west
Cambridgeshire in UK. The whole project has been

Platform/tool: integrated platform with sub
models/systems from Bentley, GeoSLAM, Topcon, and
Redbite
Within the structured 3 work packages as:
(1) data development; (2) data integration and
(3) applications, the overall goals of this activity are to:

(continued)
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integration (Boje et al. 2020). The associated data
consumers and stakeholders are resident, supply
chain, operator, engineer, manager, designer,
planner and government/local authority.

20.4.1 The First Tier Generation

It works close to an enhanced version of BIM on
construction sites to data. The limitations lie in
information requirements for subsequent lifecy-
cle stages and extensibility in associated complex
computations. Typically, the evolved maturity
elements at this stage are (Savian 2020):

• reality as-built data set capture (e.g. point cloud,
drones, photogrammetry, or drawings/sketches);

• spatial information connected to 3D model;
• connect model to more static data (e.g. docu-

ments, drawings, asset management systems);

20.4.2 The Second Tier Generation

It moves a major progress forward with intelli-
gent semantic platforms, providing a primary

knowledge base development. But there are
inadequate actuation capabilities in dealing with
complex information interactions.

Typically, the evolved maturity elements at
this stage are added with (Savian 2020):

• enrich with dynamic one-directional data flow
(e.g. from Internet of Things, embedded
sensors);

• establish two-way data integration and inter-
action (human-to-machine and machine-to-
machine).

20.4.3 The Latest Generation

It has advanced knowledge leverages with the
use of AI-enabled agents. Relying on the previ-
ous intelligent semantic platform, it elaborates AI
technologies, such as machine learning, deep
learning, data mining and analysis capabilities to
construct a self-reliant, self-updatable and self-
learning digital twin projects. Typically, the
evolved maturity elements at this stage can be
finalized with aspirational autonomous opera-
tions and maintenance (Savian 2020).

Table 20.1 (continued)

Project description Platform and objectives

carried out in partnership with along three
interconnected work packages:
• Bentley Systems for 3D BIM modelling building;
• GeoSLAM for detailed context capture scan,
• Topcon for a low-level-detailed 3D geometry and
photogrammetry of the West Cambridge Site using
drone and vehicle-based scanning and camera devices

• Redbite for asset management solution. Redbite will
further develop APIs that can be used to integrate the
asset data with the 3D BIM model through Bentley’s
AssetWise operational analytics solution

(1) Demonstrate the impact of digital modelling and
analysis of infrastructure performance and use on
organizational productivity;
(2) Provide the foundation for integrating city-scale data
to optimize city services such as power, waste, transport
and understand the impact on wider social and
economic outcomes;
(3) Establish a ‘research capability platform’ for
researchers to understand and address the major
challenges in implementing digital technologies at scale;
(4) Foster a research community interested in
developing novel applications to improve the
management and use of infrastructure systems
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20.5 Challenge and Opportunity

20.5.1 Data Analysis and Semantic
Interoperability

It is observed that most of the existing studies
and applications emphasize the creation of a
digital PED twin, rather than how to optimize it
for operation and maintenance. Most studies
have completed excellent virtual models of PED
and integrated large-scale sensor network, but it
still lacks of knowledge and skill in data analysis
and interoperable interaction with different
stakeholders.

The ability of a digital PED twin is to capture
the complex-and-dynamic relationships of dif-
ferent components in PEDs, which allows new
levels of analysis of complex environments.
However, it now lacks of the studies to run
analysis of real-time operations and different
future scenarios, which aim to explore their
impacts across the PED systems for new insights
that enhance the ability to take more holistic
approaches to building/PED design, energy
strategies, and transportation planning etc. For
instance, how inhabitants change their mobility
behaviour in response to the increase of EV
numbers; what is the impact of distributed PV
installation on local network and storage sys-
tems, as well as local electricity market via dif-
ferent business models; what is the impact of
future climate, and how to adapt PED to the
future scenario. It will need more and more
advanced machine learning and AI approaches to
provide another level of analysis of the complex
systems and component relationships that would
be nearly impossible to recognize in real-world
environment (Woods and Freas 2019).

In current digital PED twins, it lacks of a
semantic model to standardize concept descrip-
tions and data representations for interoperable
interaction with different stakeholders and energy
information communication/management. At the
moment, semantic models and their applications
are mostly designed to facilitate planning or
analysis of urban energy systems through simu-
lation or information representation and

exchange, rather than facilitating energy-related
operation and management or as part of a com-
plex event processing system (Howell et al.
2017). Semantic heterogeneity between vocabu-
laries and data representations is a common issue
in existing digital twin models.

20.5.2 Business Models
and Economic Analysis

There is a piece of very low information avail-
able on economic feasibility studies and business
models of digital twin platforms. The concept of
digital twin will transform the business of energy
production and delivery amid the ongoing pas-
sage from centralized production (i.e. energy
plants) to decentralized production (i.e. high
penetration of renewables and PEDs) (Richter
2013). The renewable energy systems and the
energy saving technologies that form a PED have
an initial cost but also an energy
production/saving potential during their lifetime.
The business model of these technologies con-
sists in exceeding the investment and mainte-
nance costs with the savings (Qi et al. 2019) and
revenues (IRENA 2019) from the energy saved
or exported. The costs associated with the cre-
ation of a digital twin are already to be taken into
account when designing a PED energy system as
most of the infrastructure needed for the opera-
tion of a digital twin is necessary in a de-
centralized energy market, regardless of the
ownership structure of the infrastructure itself.
Given the profound inter-dependence of energy
and monetary fluxes, it is paramount to have a
detailed knowledge, hence a model, of the energy
flows in a local grid (Roberts et al. 2019). In
recent years some authors have started to study
the interaction between prosumers within an
energy producing district (Jing et al. 2020; Zhang
et al. 2018), by proposing different business
models, such as power purchase agreements
(PPA), net-metering mechanism, and peer to peer
(P2P) trading mechanism. If the energy produc-
ers have to be adequately remunerated by the
energy consumers, the energy transaction within
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a local grid have to be adequately mapped. Once
the sensors and the model of the local energy
system are put in place, the use of a digital twin
can bring a series of benefits from design to
operation phase, which will facilitate the energy
sharing and trading based on different business
models.

Using a digital twin during design phase helps
to predict the performance during operation
phase. Continuous learning can improve the
profitability of the energy investments and
reduce the investment risk. The digital twin
offers an insight into the aging of the infras-
tructure it represents by monitoring and re-
calibration of certain parameters over time.

20.5.3 Data Security
and Management

PED gathers dynamic energy and other infor-
mation at a district level and generates big
amount of data when it is digitalized, which
enables cloud computing a viable strategy for
modelling. However, when multiple organiza-
tions share the data, there is a risk of misusing
the data (Rao and Selvamani 2015). Providing
authentication, authorization and access control
for data stored in cloud may increase the data
security in terms of confidentiality, integrity and
availability.

Confidentiality protects information from
being accessed by unauthorized parties. It is an
essential requirement to ensure the security of
data in cloud storage and computing (Aloraini
and Hammoudeh 2017). Applying data encryp-
tion can limit the access to stored data for PEDs.

PED is an integrated system where digital
information for each subsystem is highly corre-
lated. Any alteration of data may jeopardize the
connections between systems. Thus, cloud ser-
vice providers should check and maintain the
data and computation regularly. But it is still a
challenge to predict any future modification to
the data based on historical performance.
Another issue concerns to avoid inefficient
download/upload of dynamic data.

PED comprises multiple agents. The sub-
systems may work independently and they need
a system that is always available that is not under
control of a single-cloud provider. Substantial
efforts are needed for making the transition from
single-cloud to multi-cloud computing.

20.6 Summary

This chapter presents a comprehensive review
about digital twins for PED from aspects of
concepts, working principles, tools/platform and
applications, in order to address the issues of
both ‘how digital PED twin is made’ and ‘how
digital PED twin optimises liveability’. A few
available tools and platforms are reviewed for
digital twin in built environment and PED con-
text, such as ICL, Building minds, Predix, Eco-
domus. Other platforms/tools either have a focus
on industrial applications or are mainly devel-
oped based on existing GIS models of
cities/districts, BIM models, data collection net-
works, as well as data communication and visu-
alization platforms. Several successful
application of digital PED twins are summarized,
where lessons and observations are gained so that
digital PED twins can be categorized into three
tiers: (1) an enhanced version of BIM model
only, (2) semantic platforms for data flow, and
(3) AI-enabled agents for data analysis and
feedback operation. Further challenges and
opportunities lie in areas of data analysis and
semantic interoperability, business models, data
security and management.
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Abstract

Solar photovoltaic thermal (PVT) is an
emerging technology, capable of producing
electrical and thermal energy using a single
collector. However, to achieve larger market
penetration for this technology, it is impera-
tive to have an understanding of the energetic
performance for different climatic conditions
and the economic performance under various
financial scenarios. This chapter thus presents
a techno-economic evaluation of a typical
water based PVT system for electricity and
domestic hot water applications in 85 loca-
tions worldwide. The simulations are per-
formed using a validated tool with one-hour
time step for output. The thermal performance
of the collector is evaluated using energy
utilization ratio and exergy efficiency as key
performance indicators, which are further
visualized by the digital mapping approach.
The economic performance is assessed using
net present value and payback period under
two financial scenarios: (1) total system cost
as a capital investment in the first year;

(2) only 25% of total system cost is a capital
investment and remaining 75% investment is
considered with financing period with certain
interest rate. The results show that such a PVT
system has better energy and exergy perfor-
mance for the locations with a low annual
ambient temperature and vice versa. Further-
more, it is seen that the system boundaries,
such as load profile, hot water storage volume,
etc., can have a significant effect on the annual
energy production of the system. Economic
analysis indicates that the average net present
values per unit collector area are 1800 € and
2200 € respectively among the 85 cities for
financial model 1 and financial model 2.
Nevertheless, from the payback period point
of view, financial model 1 is recommended for
the locations with high interest rate. The study
is helpful to set an understanding of general
factors influencing the techno-economic per-
formance of PVT systems.
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21.1 Introduction

21.1.1 Background and Existing
Studies

The concept of “electrify everything” considers
solar energy as a key renewable technology with
an aim of de-carbonization of domestic heating
demand (Jia et al. 2019). The rapid growth in
Photovoltaic (PV) installation capacity from the
last few years has further strengthen the impor-
tance of PV as the main driver of renewable
transformation (Joshi and Dhoble 2018). PV
remains an interesting subject area for many
researchers, global leaders, and manufacturers
because of its reliability, sustainability, ease of
installation, and economic feasibility (Al-Waeli
et al. 2017). However, the concurrence of
heat/electricity demand and limited roof area in
domestic dwellings does require technologies,
which can generate energy efficiently in both
thermal and electrical form. Therefore, there is a
huge potential for well-designed systems by
combining both solar PV and solar thermal
technologies. A relatively new commercialized
concept of solar photovoltaic/thermal
(PVT) technology can achieve such a goal by
generating both electrical and thermal energy
together using a single panel (Gu et al. 2018).
Realizing its importance, the Solar Heating and
Cooling Program (SHC) of the International
Energy Agency (IEA) has initiated the task 60
for PVT applications and solutions to HVAC
systems in buildings (PVT systems IEA SHC
2019). The task is active from January 2018 and
has built a huge knowledge base around PVT
systems for its use in domestic and industrial
applications.

PVT system can be categorized in several
ways, however, the most common is based on
heat-transfer medium (air based/liquid based)
used in the PVT collector (Zhang et al. 2012).
The liquid based types are dominating the current
PVT market in terms of the number of installa-
tions due to high efficiency, and ease of inte-
gration in existing hydronic systems (Ramschak
2020). In a standard liquid based PVT collector,

the heat carrier is usually water or brine mixture,
which is allowed to circulate in a heat exchanger
behind the PV cells. The circulation results in a
heat transfer through the back sheet of the
module, which raises the fluid temperature
enough to use for various applications such as
hot water, swimming pool heating etc. From a
technical perspective, PVT technology is well
developed and it can be coupled with various
energy systems. For instance, it can go hand-in-
hand with the emerging awareness of heat pump
technology with/without borehole storage (IEA-
SHC-Task60-Highlights 2020). However, the
main barriers currently in PVT development and
deployment are lack of testing standards, uncer-
tain financial incentives, and business models
across different regions in a niche market.
Therefore, the business potential of PVT solution
is not fully explored, although it can be a very
efficient solution for domestic and industrial
heating requirements.

There are several studies concerning the
techno-economic analysis of PVT collectors with
a focus on the component and system design (Gu
et al. 2018; Buonomano et al. 2015; Riggs 2017;
Wang et al. 2019; Kazem 2019). The most
common way is to assess the energetic perfor-
mance firstly and then carry out an economic
evaluation based on dependent variables (Gu
et al. 2018; Buonomano et al. 2015; Riggs 2017;
Kazem 2019; Fudholi et al. 2014; Khelifa et al.
2015, 2016; Gagliano et al. 2019). The prevalent
energy performance indexes are energy effi-
ciency and exergy efficiencies, Zhang et al.
(2012) while the most popular economic indi-
cators are represented by Levelized Cost Of
Energy (LCOE), Net Present Value (NPV), and
payback period (Gu et al. 2018). To name a few
studies for technical evaluation, Fudholi et al.
(2014) investigated electrical and thermal per-
formances on PVT water-based collectors by
testing with specific inputs parameters ranging
from 500 to 800 W/m2 solar irradiance and mass
flow rate of 0.011–0.041 kg/s. The test has rec-
ognized that absorber performed better at a mass
flow rate of 0.041 kg/s and under 800 W/m2

irradiance, with measured PV efficiency of
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13.8%, the thermal efficiency of 54.6%, and
overall collector efficiency of 68.4% (Fudholi
et al. 2014). Shah and Srinivasa (2018) modelled
a theoretical model using COMSOL multi-
physics validation tool with Standard Test Con-
ditions (STC) to measure the PV improved effi-
ciency when it is integrated with hybrid PVT
system. Another study performed by Buonomano
(2016) has developed a numerical model to
conduct the technical and economic analysis of
PVT collectors and compared it with conven-
tional PV collectors installed in Italy. The tool
was validated using TRNSYS platform for the
energetic and economic performance of systems
integrated with PV and PVT collectors together.
Yazdanpanahi (2015) presented a numerical
simulation and experimental validation for eval-
uation of PVT exergy performance using one-
dimensional steady thermal model and four-
parameter current–voltage model for PVT water
collector. In terms of economic studies, Gu et al.
(2018) developed an analytical model on basis of
combinations of Monte Carlo method to analyze
techno-economic performances of solar PVT
concentrator for Swedish climates, which con-
sidered several essential input uncertainties
whereas economic variables were assessed ini-
tially. The obtained results for range of capital
cost between 4482 and 5378 SEK/m2 and system
size of 10.37 m2 during the system lifespan of
25 years. The results indicate LCOE of 1.27
SEK/kWh, and NPV of 18,812 SEK with a
simple payback period of 10 years. It was con-
cluded that the most important sensitivity factor
is average daily solar irradiation followed by debt
to equity ratio, capital price, regional heating
price, and discount rate. Herrando et al. (2016)
performed techno-economic analysis of hybrid
PVT systems for electricity and domestic hot
water (DHW) demand for a typical house in
London and concluded that with such systems
can meet 51% of electricity demand and 36% of
DHW demand even during low solar Global
Horizontal Irradiation (GHI) and ambient tem-
peratures. In the economic aspect, it is also
concluded that hybrid PVT technology has better
energy yield per unit roof area, which can result
in attractive NPV for investor while mitigating

the CO2 emissions. Riggs et al. (2017) developed
a combined LCOE techno-economic model for
different types of hybrid PVT systems applied for
process heat application in United States. The
sensitivity analysis of parameters affecting the
Levelized Cost Of Heat (LCOH) was determined
using technical, financial, and site-specific vari-
ables. Ahn et al. (2019) studied the importance of
energy demands, solar energy resources and
economic performances of hybrid PVT systems
at different PV penetration levels using Monte
Carlo method, whereas the study found that
irrespective of PV penetration levels, the uncer-
tainties in energy demands and solar irradiance
can influence the energy performance of PVT
systems. Heck et al. (2016) conducted Monte
Carlo method for LCOE based on probability
distribution, which concluded that this method
provides more realistic information on
risk/uncertainty, which triggers more scope of
potential investment on electricity generation.
However, this method is complex slightly than
point values.

However, most of the existing studies focused
on a single climate, with a straightforward
economic-financial analysis. Furthermore, com-
plicated procedures or individual software are
used to estimate the performance of PVT col-
lectors, where it lacks a comprehensive simula-
tion of PVT techno-economic performance
through a common tool over a large geographic
area, aiming for application feasibility and busi-
ness potentials. Besides, many studies have
reported solar energy resource potential on
buildings at different spatial scales using digital
mapping methods, such as digital numerical
maps (Jung et al. 2019), digital surface model
(Oh and Park 2018), satellite imageries and
geographic information systems (Mishra et al.
2020; Bremer et al. 2016), multi-scale
uncertainty-aware ranking of different urban
locations (Peronato et al. 2018), which provide
direct evaluations for solar application, leading to
robust planning decisions. Nevertheless, no study
is found yet for mapping of techno-economic
performance of PVT systems.

As a result, this chapter aims to fill these
research gaps by utilizing a validated simulation
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tool to perform a comprehensive techno-
economic performance simulation for a wide
range of cities. The results are further analyzed
and visualized using a digital numerical mapping
approach to set a comparison among various
regions.

21.1.2 Aim and Objectives

This study aims at simulation and mapping of the
energetic and economic indicators of a typical
PVT system over different regions, to establish a
digital performance database for various key
performance indicators (KPI). The economic
feasibility of the PVT collector is obtained and
compared under various financial scenario mod-
els. The data obtained from simulations are used
to establish a simple correlation between vari-
ables affecting the PVT system.

The main objectives of this chapter are to:

• Assess the thermal and electrical performance
of a typical PVT system in 85 locations across
the World using a validated simulation tool.

• Evaluate the economic performance using
NPV and payback period using two financial
scenarios.

• Analysis and visualization of energy and
economic performance.

The significance of this chapter lies in (1) un-
derstanding of typical PVT components beha-
viour at system level, (2) mapping of the
collector energetic and economic performance at
different climatic conditions across the world.
This research results would reflect the concrete
developments to this subject area and helps the
promotion of the potential markets, e.g. discov-
ering the economic feasibility of the PVT system,
and feasible financial solutions to the PVT sys-
tem in different regions. This chapter evaluates
the related business benefits of a typical PVT
system, which would help to develop a database
as repository of PVT performances in different
regions and contexts. The research results will be
useful for researchers, planners, and policy-
makers to further evaluate PVT potentials in a

net-zero/positive energy district towards energy
surplus and climate neutrality.

21.2 System Description
and Research Methodology

21.2.1 Water-Based PVT Collector

Among different types of PVT technology, the
water based PVT is the most common one that
has great possibilities for system integration
(Chow 2010). This PVT collector type is struc-
tured similarly to the typical flat-plate collector,
as shown in Fig. 21.1. It is a sandwiched struc-
ture comprising several layers, including a glass
cover placed on the top; a layer of PV cells or a
commercial PV lamination laid beneath the cover
with a small air gap in between; heat-exchanging
tubes or flowing channels through the absorber
and closely adhered to the PV layer; a thermally
insulated layer located right below the flow
channels. All the layers are fixed into a framed
module using adequate clamps and connections.
In the heat-exchanging tubes, water is the most
commonly used heat carrier media due to high
specific heat capacity and ease of availability.
The glass cover is often optional depending on
system design priority for type of output required
(i.e. electricity or heat). The glass cover helps to
reduce heat convection losses, but it also causes
high solar reflectance losses and thus lowers
optical efficiency. In many cases, glass cover is
used when higher heat output is expected, while
it is removed when the system is optimized for
higher electrical output.

The electrical efficiency of PV cells increases
when the pumped cooled water flows across the
rigid series or parallel tubes. The flow control is
an important factor to achieve overall high per-
formance of the PVT collectors (Joshi and Tiwari
2007). In addition to electricity production, hot
water is generated by absorbing extra heat from
the PV layer, which can be used for several
applications. The electrical and thermal efficien-
cies of PVT generally depend on PV cell type,
fluid temperature, fluid flow rate, flow channel
size/configuration, and ambient climatic
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condition. The collector energetic performance
can be measured in terms of energy utilization
ratio and exergy efficiency (Yazdanpanahi et al.
2015).

This chapter will focus on a typical PVT
collector developed by a Spanish manufacturer
named Abora solar. The collector is market
available and more than 5700 m2 of the gross
collector is installed for a broad range of appli-
cations. The collector is a covered PVT type with
an additional layer of glass on the top of the
collector (in addition to a glass layer for PV cells)
to reduce the heat convection losses. The rated
power of the collector is 365 W at Standard
Testing Conditions (STC), with a collector area
of 1.96 m2 consisting of 72 mono-crystalline
cells. The main specifications and characteristics
of analysed PVT collector are shown in
Table 21.1.

21.2.2 Key Performance Indicators

The performance of such PVT collector is evaluated
using standard key performance indicators. The per-
formance of a collector over a specified period can be
quantified using the energy utilization ratio geð Þ.,
which is defined as below (IEA SHC 2019):

ge ¼
Output energyelectrical
GHI*collector area

þ Output energythermal
GHI*collector area

ð21:1Þ

where, GHI is Global horizontal Irradiation
(kWh/m2), and the collector aa is in m2. How-
ever, the exergy value of both electricity and heat
is different. Electricity can be regarded as pure
exergy whereas heat contains some exergy value.
To account for this, with the drawback of being
somewhat less intuitive, is to replace “energy” by
“exergy”. The overall exergy efficiency takes

Fig. 21.1 Schematic cross-
section of a covered flat-plate
PVT collector (IEA SHC
2019)

Table 21.1 Schematic
design of the solar PV/LHP
module-based heat-pump
water heating system

Parameter Description

Length * width * thickness 1970 * 995 * 107 mm

Gross collector area 1.96 m2

Number of PV cells 72

Cell type Mono-crystalline

Rated power 365 Wp

Electric efficiency at STC conditions 17%

Thermal efficiency at STC conditions 70%

Temperature coefficient of PV −0.41%/°C

Thermal efficiency at zero mean temperature 0.7

Coefficient of thermal losses, a1 5.98 W/m2 K

Coefficient of thermal losses, a2 0.021 W/m2 K2

Internal water volume 1.78 L
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into account the difference of energy grades
between heat and electricity and involves a
conversion of low-grade thermal energy into the
equivalent high-grade electrical energy using the
theory of the Carnot cycle. The overall exergy of
the PVT (eeÞ is defined as following expression,

ee ¼ gc gth þ gel: ð21:2Þ

Carnot efficiency gC (%), which is defined in
the following,

gC ¼ 1� Tin
Tout

ð21:3Þ

where gth; gel; Tout; Tin are thermal efficiency,
electrical efficiency, outlet fluid temperature, and
inlet fluid temperature respectively.

NPV is defined as a measurement of cumu-
lative profit calculated by subtracting the present
values of cash outflows (including initial cost)
from the present values of cash inflows over the
PVT collector’s lifetime. In this chapter, we use
NPV to evaluate a single investment to evaluate
the acceptability of the project (Gu et al. 2018).
A positive NPV indicates that the projected
earnings, generated by a project or investment,
exceed the anticipated costs. In general, an
investment with a positive NPV will be a prof-
itable one and the higher NPV means higher
benefits. This concept is the basis for the NPV
decision rule, which dictates that the only
investments that should be made are those with
positive NPV values. NPV is calculated using,

NPV ¼
Xn�1

t¼0

CFt

1þ rð Þt � C0 ð21:4Þ

where, CFt, r, n, t,C0 are the cash flow of particular
year (SEK), discount rate, number of years, year
of NPV evaluation, and capital cost respectively.

The payback period is the time for a project to
break even or recover its initial investment funds,
where the cash flow starts to turn positive and
can be given as in,

PP ¼ T CFt [ 0ð Þ ð21:5Þ

21.2.3 Research Methodology

The simulation is carried using a validated tool
developed by the manufacturer of the studied
PVT collector. The “Abora hybrid simulation
tool” (Abora Solar 2019) was used to map the
performance across 85 cities shown in Fig. 21.2.
The cities were chosen based on population
density and geographical coordinates in different
countries to represent a large market potential in
these regions. A large number of selected loca-
tions for analysis are concentrated within Europe,
with limited locations in India, USA, and Aus-
tralia. The selection of locations is also restricted
due to the availability of weather and GHI data in
the simulation tool. The simulation tool accepts a
wide range of design and financial input param-
eters, e.g. location and weather resources, elec-
trical and thermal demands, local energy tariffs,
specific storage volume, PVT panel and instal-
lation parameters, interest rate, and financing
period, etc. The complete list of various inputs
used is shown in. The performance model used in
the tool for evaluation of PVT performance is
validated in Oh and Park (2018), where a heat
pump system integrated with 25 PVT modules
was monitored, and measurements were also
compared with the dynamic simulation model
built in TRNSYS for Zaragoza, Spain. The
thermal and electrical performance of collectors
reasonably matches with measured data (4.2%
deviation), however, a slightly higher deviation
in heat pump performance was noted due to
limitations in the black-box model of the heat
pump in the studied energy system.

This chapter further applies the digital
numerical map approach based on heat maps to
visualize the performance of various indicators
across simulated locations. The simulation results
for all locations are exported to Microsoft Excel
for calculations of energy and exergy efficiency
(Microsoft Excel 2020). After then, the results
are visualized using QGIS tool, which provides a
heat map rendering to design a point layer data
with a kernel density estimation processing
algorithm (Welcome to the QGIS Project! 2020).
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Initially, a parametric study of components at the
system level is considered according to the
operation flow of the simulation tool indicated in
the flow chart shown in Fig. 21.3. Then, the
simulations are carried with defined boundary
conditions and the results are represented sub-
sequently as monthly electrical and thermal per-
formances, energy savings, economic
parameters, such as NPV, payback period.

This chapter also considers the economic
performance of the collector in two different
financial models, which are described below:

• Model 1: The total system cost is invested in
the first year.

• Model 2: Only 25% of total system cost is a
capital investment and the remaining 75%
investment is considered with the financing
period with a certain interest rate.

Fig. 21.2 Schematic simulated locations for techno-economic analysis

Table 21.2 Technical and economic input parameters

Technical parameters Economic input parameters

Type of application (Domestic/industrial) Type of mounting structure

Type of demand (hot water/space heating) Type of inverter

Type of auxiliary system Material profit margin

Number of bedrooms Operation and maintenance margin

DHW temperature Pricing of all system components

Dwellings occupancy Annual maintenance cost

Number of collectors Electricity price increment

Collector tilt Auxiliary fuel price increment

Collector azimuth Financing period models

Storage tank volume Interest rate

Meteorological parameters (irradiation/ambient temperature/Albedo etc.) Opening interest rate

Shadow loss percentage

Number of additional PV panels
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The economic analysis results highlight the
economic parameters, such as NPV and payback
period per unit collector area, for all the locations.
Furthermore, the uncertainty and sensitivity
parameters are discussed and the strategy in
decision-making for investing in PVT technology
is recommended. Digital mapping method is
applied to compile and format the techno-
economic performance data into a virtual image,
which aims to produce a general map with KPIs of
such a PVT system that gives appropriate repre-
sentations of the dedicated areas.

21.3 Simulation Tool and Boundary
Conditions

21.3.1 Location and Detailed
Demand Analysis

The simulation tool considers the Meteonorm
(2020) weather database to determine solar and
meteorological resources, such as GHI, ambient
temp, and wind speed. The thermal and electrical
demands change with different categories of
buildings, i.e. single and multifamily houses,
tertiary buildings (such as hospitals, hotels, and
gyms, etc.,) and can be selected individually
within the tool interface. Specific key parameters,
such as load profiles, the current auxiliary source
of electricity, and energy system details, are
included. The simulation engine assesses the
total monthly and annual total demand depending

on inputs for each application. The monthly
energy load (L) needed to raise the temperature
of supply water to the desired hot water tem-
perature is calculated using,

L ¼ m � Cp � N � Td � Tsð Þ ð21:6Þ

where the ‘m’ indicates the amount of hot water
required per person in a day (in liters), ‘Cp’ is the
specific heat capacity (J/kg K), ‘N’ is several
days in a month (days), ‘Td’ is desired water
temperature (°C), and ‘Ts’ cold supply water
temperature in (°C). The monthly demand can
also be customized based on consumer utilization
in that specific month. For a single-family house,
the amount of DHW for one person in a day is
considered as 28 L/person/day at 100% occu-
pancy. The demand is kept constant to minimize
the variables in the overall system, and thus to
have a fair comparison of collector performance
for various locations. The fraction of occupancy
can be parameterized to meet the specific thermal
demand for the individual location. For tertiary
buildings (such as industrial applications), tools
consider a different consumption depending on
process characteristics.

This simulation tool offers to choose an aux-
iliary heating system to meet the load demand.
This tool also accommodates that the total col-
lector electricity generation can be utilized for
self-consumption or if there is excess electrical
energy, it can be sold to the electricity grid in the
context of a positive energy building.

Fig. 21.3 Operation flow of
the simulation tool
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21.3.2 System Variables

This simulation tool consists of several PVT
collectors and also recommends the number of
collectors that would be required based on opti-
mization of total demand and the storage tank
capacity. The specific volume capacity (v/a),
which is ratio of tank volume (liter) to collector
gross area (m2) can be changed depending on
number of storage duration hours.

The shading loss fraction on PVT modules
can be adjusted manually. There is the provision
to integrate PV and PVT collectors in a scenario
if the thermal demand is first fully met by PVT
modules, and electrical demand is not covered
fully.

21.3.3 Working Principle
of the Simulation Tool

The simulation tool also optimizes the collector
and installation parameters based on the demand,
availability, and metrological conditions for a
particular location. Simulation results highlight
essential parameters such as GHI, irradiation on a
tilted surface, thermal demand, thermal produc-
tion, thermal solar coverage, electrical produc-
tion, total electric and thermal savings, and
environmental impact. The maximum power
point Pm (in kW) generated by the PV cells is
obtained by using Error! Reference source not
found. depending on the global irradiation on the
surface of the module G (W/m2), ambient tem-
perature Ta (°C), cell temperature Tc (°C),
nominal power of photovoltaic collector Pn
(kW), GSTC irradiance under STC conditions
(W/m2) i.e. 1000 W/m2, the temperature varia-
tion coefficient of power (c) (%/°C) (Al-Ghussain
et al. 2019).

Pm ¼ Pn � G

GSTC
1� c Tc � 25ð Þð Þ ð21:7Þ

The cell temperature Tc is linked to the tem-
perature of the absorber plate, which is depen-
dent on the temperature of fluid going in and out
of the module. Cell temperature is calculated for

each simulation time step based on inlet and
outlet temperatures, and electrical output is then
calculated depending on the temperature coeffi-
cient of the module.

The instantaneous thermal efficiency of the
collector is calculated based on,

gth ¼ go � a1
Tm � Ta

G

� �
� a2

ðTm � TaÞ2
G

 !

ð21:8Þ

where go is optical efficiency, a1 is first order
heat loss coefficient (W/m2 K), a2 is second order
heat loss coefficient (W/m2 K2), Tm is average
fluid temperature (°C), and Ta is ambient tem-
perature (°C). The various characteristics of the
simulated module are listed in Table 21.1, and
are validated by real measurements as explained
in Mishra et al. (2020).

The temperature leaving the PVT module To

is determined using,

To ¼ Ti þ m � Cp

G � gth

� �
ð21:9Þ

where To;m;Cp represents inlet temperature (°
C), fluid mass flow rate (kg/s), fluid specific heat
(kJ/kg K) respectively. Thermal solar coverage
(Tsolar) is calculated using Eq. 21.10 in this
simulation tool,

Tsolar %ð Þ ¼ Total collector thermal production kWhð Þ
Total thermal demand kWhð Þ � 100

ð21:10Þ

21.3.4 System Pricing
And Optimization

The detailed system cost of the PVT system is
defined by customizing each component, such as
flat or tilted mounting structure, single-phase or
three-phase inverter, material marginal rate,
electrical and combustible price escalation rate,
annual maintenance cost, etc.

The simulation considers the appropriate
dynamic inputs and generates the report of
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assessment on the key economic performance
indicators i.e. lifetime cash flow with appropriate
total annual savings, NPV, and payback period.
This simulation tool allows collector economic
performance with several financing options
shown in Fig. 21.4. For instance,

The total system cost is invested in the first
year as a capital investment.

• The 100% of total system cost can be invested
in several years with monthly payment at a
certain open and fixed interest rate.

• The 75% of total system cost can be invested
in several years with monthly payment at a
certain open and fixed interest rate and the
remaining 25% of total system cost is to be
invested initially as capital investment.

This simulation tool is also flexible in cus-
tomizing several real-time scenarios, i.e. the
number of payments in a single year, the total
number of payments in the entire financing per-
iod. The early cancellation interest rate can be
applied when the system is to be dismantled
during the financing period.

21.3.5 Boundary Conditions

This section pre-determines the boundary con-
ditions for the simulation as shown in Table 21.3.

Initially, the energy performance of the PVT
system is simulated in 85 different locations
using the simulation tool. In order to discover
and compare the collector energy performance in
different locations, the thermal demand is main-
tained the same in all selected locations. There-
fore, the simulated system considers a single
PVT collector (1.96 m2), for a single-family
house application with 5 people, for the same
demand, and the same tank volume for all loca-
tions. These assumptions provide a common
system boundary to understand the effect of cli-
matic variables and financing parameters on
collector performance. Two types of demands are
considered as DHW and electricity use in the
building. In the electricity model, no price dif-
ference in self-consumed and exported power to
the grid is considered. In the thermal system
configuration, the auxiliary source for the house
is the electricity grid with appropriate energy
prices for every location. The generated DHW by

Fig. 21.4 Cost optimization of PVT system in the simulation tool
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the collector is utilized for household purposes
using a storage tank connected to the auxiliary
system which will deliver demand at the desired
temperature of 60 °C, as shown in Fig. 21.5. For
each location, the installed tilt and azimuth
angles are taken optimally based on higher col-
lector production. The specific volume capacity
is assumed 80 L/m2 for all the locations which is
equivalent to total 150 L of storage tank capacity.

In the proposed simplified energy system,
PVT collector is directly connected to the tank
without any internal or external heat exchanger.
The cold water from the tank enters the PVT
module, exchange heat from the absorber, and
hot water is fed to the top of the tank. The DHW
cold water enters at bottom of the tank, and hot
water leaves from top of the tank for DHW
supply in building. The DHW distribution sys-
tem and associated heat losses are not considered
in the analysis. The maximum DHW supply
temperature is set at 60 °C, and an electric aux-
iliary heater is provisioned in the tank for periods

when the energy from PVT modules is not
enough to meet the DHW load. Electric heater
starts and stops at the determined dead band to
optimize energy consumption, while maintaining
the fixed supply DHW temperature. During the
periods when tank temperature exceeds the set
limit, the energy from PVT modules is fed to a
heat sink (air/water heat exchanger), and this
spilled energy from the collector is not counted
as part of useful energy output.

In the electrical system configuration, the
generated DC power will be converted to the AC
power using an inverter. Then, it is utilized by
household purposes and the remaining will be
sent to the electricity grid, whereas the excess
electricity demand is taken from the grid con-
nection as shown in Fig. 21.5. As the tilt angle of
the PVT collector is a key parameter that will
also decide the collector production, a prelimi-
nary parametric study is carried for each location
to determine the optimal tilt angle for maximum
annual collector production.

Table 21.3 Boundary conditions for the simulation tool

Parameter Description

Type of application Single-family house

Type of demand Electricity demand, and Thermal demand for DHW

Auxiliary system Electrical heater

Auxiliary system energy price This has been selected for the appropriate location

No. of people in house 5

DHW temperature 60 °C

Collector model aH72SK

No. of collectors 1

Specific volume capacity 80 L/m2

Inclination These were selected optimally based on a parametric study for maximum
energy production

Type of mounting structure Tilted

Type of inverter Single-phase inverter

Annual maintenance cost Assumed that no maintenance is required for a single collector to reduce
uncertainties

Electricity and combustible price
increment

6% per year is assumed for all the locations

System lifetime 25 years

Interest rate Selected appropriately for each location
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The total system cost is determined using
variables such a module cost, system com-
ponents cost, annual operation, and mainte-
nance cost. The electricity and auxiliary
energy price escalation is assumed 6% per
year for all the locations. Various parameters
considered for economic analysis are shown
in Table 21.4.

The payback time and NPV are estimated by
considering a reference system using an electric
heater. The price of electricity considered for
various locations is shown in Fig. 21.6.

The economic performance of the collector in
two different financial models is evaluated based:

• Model 1: The total system cost is invested in
the first year,

• Model 2: The total system cost is paid for
7 years with a certain variable interest rate
with every location.

21.4 Results and Discussion

This section details the simulation results using
the digital mapping approach. Table 21.5 shows
the inputs and results of key performance indi-
cators for all selected locations, and the results
are discussed.

Table 21.4 Parameters
considered for economic
analysis

Parameter Value

Abora PVT collector 350 €

Cost for Connection kit 128 €

Tilted mounting structure 243 €

Storage tank 1553 €

Valve (servo meter) 127 €

Flowmeter 142 €

Copper tubes 19 €

Isolation tubes 14 €

Heat sink 474 €

Micro inverter 500 €

Legal regulations 377 €

Electricity price increment 6% annually

System life time 25 years

Electricity price Variable based on each location

Fig. 21.5 Thermal and
Electrical system
configurations
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Table 21.5 All simulated data of key performance indicators

Country City Latitude Annual
GHI
(kWh)

Annual
average
temperature
(°C)

Annual
thermal
production
(kWh)

Annual
electrical
production
(kWh)

NPV per
unit
collector
area for
financial
model 1
(EUR)

NPV per
unit
collector
area for
financial
model 2
(EUR)

Italy Catania 38 1967 18 1790 487 5140 5541

Florence 44 1632 16 1520 413 4039 4451

Milan 45 1233 12 1153 317 2528 2955

Rome 42 1585 17 1464 401 3797 4211

Bari 41 1824 17 1679 458 4691 5096

Portugal Lisbon 39 1939 18 1770 483 4766 5171

Porto 41 1765 16 1640 447 4246 4657

Setubal 39 1997 18 1823 495 4966 5368

Spain Sevilla 37 2134 20 1882 520 4972 5361

Valencia 39 2043 18 1831 505 4776 5167

Zaragoza 42 2002 16 1795 498 4649 5041

Barcelona 41 1904 18 1728 479 4387 4782

Lugo 43 1567 13 1464 406 3393 3798

Madrid 40 2019 15 1810 504 4709 5101

Switzerland Bern 47 1335 10 1270 351 2576 3002

Davos 47 1612 4 1562 426 2863 3286

Lausanne 47 1408 12 1329 364 2108 2539

Zurich 47 1249 10 1186 331 1648 1935

(continued)

Fig. 21.6 Considered electricity prices in all countries [37]
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Table 21.5 (continued)

Country City Latitude Annual
GHI
(kWh)

Annual
average
temperature
(°C)

Annual
thermal
production
(kWh)

Annual
electrical
production
(kWh)

NPV per
unit
collector
area for
financial
model 1
(EUR)

NPV per
unit
collector
area for
financial
model 2
(EUR)

Sweden Gothenburg 58 1138 10 1073 305 1287 1726

Linkoping 58 1132 8 1061 304 1257 1697

Malmo 56 1183 9 1113 316 1424 1863

Stockholm 59 1179 8 1105 317 1407 1846

Uppsala 60 1099 8 1024 297 1142 1583

Denmark Alborg 57 1116 8 1047 298 3041 3463

Copenhagen 56 1144 10 1079 305 3195 3615

Odense 55 1102 9 1040 295 2987 3409

Finland Helsinki 60 1160 6 1086 312 1021 1464

Oulu 65 1182 4 1112 321 1104 1545

Germany Berlin 53 1194 10 1128 315 4582 4988

Dortmund 52 1093 11 1037 291 4034 4446

Frankfurt 50 1143 11 1078 302 4291 4701

Hamburg 54 1146 11 1091 306 4363 4772

Munich 48 1318 11 1257 345 5348 5747

Iceland Reykjavik 64 968 6 932 266 −145 186

Norway Bergen 60 926 9 875 253 −576 −163

Oslo 60 1029 7 962 277 −408 3

Trondheim 64 1166 7 1107 317 −136 273

Belgium Brussels 51 1151 12 1094 306 3244 3664

Bulgaria Sofia 43 1335 13 1264 348 364 813

France Lyon 46 1422 14 1337 368 1899 2333

Nantes 47 1408 13 1333 367 1889 2323

Paris 49 1204 13 1134 315 1279 1718

Toulouse 44 1522 15 1437 391 2197 2628

Greece Athinai 38 1915 21 1731 474 3119 3540

Luxembourg Luxembourg 50 1194 9 1128 318 1661 2096

Poland Krakow 50 1191 10 1126 315 868 1267

Warsaw 52 1213 10 1137 320 909 1307

Romania Bucharest 44 1589 13 1482 406 1841 2153

Cluj-Napoca 47 1443 11 1365 374 1516 1831

Ukraine Kyiv 50 1330 10 1242 348 − 1287 − 1368

United
Kingdom

Glasgow 56 1097 10 1045 294 2096 2527

Liverpool 53 1013 11 965 273 1765 2199

London 52 1107 13 1048 294 2109 2540

(continued)
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Table 21.5 (continued)

Country City Latitude Annual
GHI
(kWh)

Annual
average
temperature
(°C)

Annual
thermal
production
(kWh)

Annual
electrical
production
(kWh)

NPV per
unit
collector
area for
financial
model 1
(EUR)

NPV per
unit
collector
area for
financial
model 2
(EUR)

China Hong Kong 22 1338 24 1251 329 461 725

Qatar Doha 25 1957 28 1715 462 −1468 −1168

Saudi
Arabia

Medina 25 2349 29 1966 540 −828 −401

Singapore Singapore 1 1618 27 1473 390 1461 1569

India Bangalore 13 2093 25 1847 489 −12 178

Bombay 19 1910 28 1687 445 −213 −21

Hyderabad 17 2005 28 1765 466 −112 79

Lucknow 27 1921 27 1717 453 −174 17

New Delhi 29 2157 27 1878 505 35 224

Surat 21 2168 28 1874 500 26 215

Wadhwan 23 2159 28 1866 496 17 207

Yavatmal 20 1938 28 1715 453 −179 13

USA Chicago 42 1564 11 1475 402 987 1432

Denver 40 1912 11 1796 483 1695 2133

Houston 30 1720 21 1582 422 1211 1655

Las Vegas 36 2278 21 1987 545 2136 2570

Los Angeles 34 1973 20 1808 489 1722 2161

New York 41 1597 14 1508 407 1052 1496

Portland 46 1436 12 1361 374 732 1179

San
Francisco

38 1886 15 1757 478 1616 2056

Washington 39 1602 15 1510 407 1053 1497

Mexico Mexico City 20 1848 18 1727 451 −342 −224

Australia Brisbane −27 1898 21 1720 452 3940 4339

Melbourne −38 1528 15 1426 371 2872 3282

Perth −32 1930 19 1731 455 3990 4389

Argentina Buenos
Aires

−35 1703 18 1550 406 65 −2077

Brazil Brasilia −16 1928 22 1762 467 1985 2197

Chile Santiago −33 1732 15 1570 411 1785 2171

Colombia Bogota 5 1560 14 1510 394 856 1107

Algeria Algiers 37 2017 18 1835 495 −1027 −747

Egypt Cairo 30 2009 22 1791 485 −1551 −1589

Morocco Rabat 34 2094 18 1907 517 1616 1950
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21.4.1 Energy Performance
Evaluation of PVT Panel

21.4.1.1 Collector Thermal Production
The simulated results are visualised using geo-
spatial maps, as they provide a clear indication
for the understanding of regional trends for
thermal and electrical output despite large data
sets. Figure 21.7 shows the variation in the
thermal output of the collector.

The general trend shows that thermal output is
higher in countries with higher irradiation such as
Saudi Arabia, Algeria, Morocco, Brazil, Mexico,
India, etc., with annual thermal production above
1800 kWh (area-specific output 918 kWh/m2) due
to high GHI and ambient temperatures. The lower
band of average collector production can be seen
in Reykjavik, Iceland and for some locations in
Norway with a specific output of 475 kWh/m2 and
500 kWh/m2 respectively. Similar thermal output
is obtained for locations in counties such as
Sweden, Finland, United Kingdom, Denmark,
etc., with less than 510 kWh/m2 annual produc-
tion. The collector shows better performance in
countries, such as Spain, Portugal, and Australia
with collector production of above 1600 kWh
(816 kWh/ m2).

Figure 21.8 shows the correlation of collector
thermal production with GHI and ambient tem-
perature. All the simulated data points of these
parameters are considered to define the possible

trend. Results show that thermal output has a
strong linear correlation with GHI with R2 value
close to 0.98. Thus, the location with higher GHI
has higher thermal output. Also, thermal output
shows a linear trend with ambient temperature
for most of the data points, however, the corre-
lation is not as strong as with GHI. Therefore,
ambient temperature cannot be used as a sole
indicator to estimate the collector output.

21.4.1.2 Collector Electrical Production
Figure 21.9 represents the electrical performance
of the collector, which shows similar trends as
thermal output. For locations in countries with
high GHI such as Saudi Arabia, Algeria, Mor-
occo, Brazil, India, etc. have generation above
500 kWh, and peak value in Saudi Arabia with
540 kWh. The electrical production is much less
in Iceland with 266 kWh due to less available
GHI, And the collector lower than 300 kWh in
locations, such as Sweden, Finland, Denmark,
Poland, United Kingdom, etc., The collector
performed slightly better in Spain, Portugal, and
Australia with more than 400 kWh annually.
However, it shows there is no significant differ-
ence in thermal and electrical production trends.
Furthermore, a correlation of collector electrical
production with GHI and ambient temperature is
developed based on all monthly points from all
chosen locations and a positive correlation is
realized as shown in Fig. 21.10. A large variation

Fig. 21.7 Annual average
collector thermal performance
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in electrical output for similar values of ambient
temperature can be observed, which again shows
that GHI is the critical parameter governing the
electrical output of the collector.

A large variation in thermal and electrical
output is seen for many counties and is reflected
in Figs. 21.7 and 21.9. The range of collector
output with a maximum and minimum value of
thermal and electrical production is shown in
Fig. 21.11.

The minimum thermal production in blue
color represents minimum production for ana-
lyzed location, while the maximum thermal

production is indicated with an orange color that
represents the highest thermal production of a
city in each country. The results show likely high
variation in Italy, Spain, USA, and Australia, as
many cities were simulated in those countries,
and less variation is recorded in countries Den-
mark, Iceland, United Kingdom, etc., due to less
simulated cities.

In general, PVT collector monthly production
is an important key factor in the sizing of a solar
system to match the monthly variation of energy
consumption. Figures 21.12 and 21.13 show the
variation in collector monthly thermal and

Fig. 21.8 Correlation of
collector thermal production
with Global Horizontal
Irradiation (GHI) and ambient
temperature

Fig. 21.9 Annual average collector electrical performance
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electrical production respectively. The thermal
performance in April and July is relatively higher
and less in January and October for the locations
in the northern hemisphere such as Madrid,
Stockholm, and Berlin. In Medina location,
although GHI and ambient temperatures are

higher in July, yet the thermal production in
lower compared to October month. This is
because the thermal demand in July is less than
in October. Therefore, in July month, due to high
GHI and less thermal demand, the storage tank
losses will be higher as the tank temperature

Fig. 21.10 Correlation of
collector electrical production
with Global Horizontal
Irradiation (GHI) and ambient
temperature

Fig. 21.11 Country-wise
collector thermal performance
uncertainty

Fig. 21.12 Collector
monthly thermal production
variation
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increases. Higher tank temperature results in
lower thermal and electrical production of col-
lector. As the GHI trend in the southern hemi-
sphere is quite opposite to the northern
hemisphere, the production in January and
October is likely higher than April and July
months. In Stockholm location, the variation
between the months is significant because of
seasonal variation in GHI, and the same is lower
in Medina which results in more uniform
monthly production.

The trends for monthly electrical production
are slightly different than thermal output. For
example, In Medina location, electrical produc-
tion is higher in July than in October even though
the ambient temperature is maximum in July.
This is due to high GHI in July and is in line with
findings that the major factor influencing the
electrical production is GHI, rather than ambient
temperature.

21.4.1.3 Collector Energy Utilization
Ratio

The energy utilization ratio of the collector for
various locations is shown in Fig. 21.14. The
correlation trends between energy utilization
ratio and annual average ambient temperature are
shown in Fig. 21.15 with consideration of all
selected 85 geographical locations to derive a
possible trend between the parameters.

Some locations show interesting results of
system boundaries on PVT collector perfor-
mance. This can be realized by comparing the
energy utilization ratio for Medina (high

irradiation) and Davos (low irradiation location).
The energy utilization for Davos (63%) is higher
compare to Medina (52.5%), even though the
absolute value of total energy output is higher for
Medina (2506 kWh), compared to Davos (1988
kWh). This is because the load demand for
Medina is comparably lower, while the other
system design parameters remain the same (col-
lector area, tank volume, etc.), which resulted in
higher average tank temp, and thus lower col-
lector efficiency for Medina. Results show that
the total thermal demand for every location is
varying depending on the ambient temperature as
shown in Fig. 21.16. It is because of the tem-
perature difference between the annual average
ambient temperature of each location and desired
water temperature (assumed 60 °C), which has to
be covered by the collector thermal production.

21.4.1.4 Collector Exergy Efficiency
From the Carnot efficiency Error! Reference
source not found., it can be noted that exergy
efficiency is a function of inlet temperature and
thermal output of the collector (assumed that the
desired output temperature is fixed at 60 °C). So,
it can be derived that locations with higher
ambient temperature will result in less quality of
exergy, and thus lower exergetic efficiency.

Figure 21.17 shows the correlation of exer-
getic efficiency with ambient temperature based
on all selected 85 geographical locations to
derive a possible trend between the parameters.
The similar trends can be seen for some specific
locations shown in Fig. 21.18. It can be seen that

Fig. 21.13 Collector
monthly electrical production
variation
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Fig. 21.15 Correlation of
Energy utilization ratio with
the annual average ambient
temperature

Fig. 21.16 Total thermal
demand of single-family
house relation with the
average ambient temperature

Fig. 21.14 Collector energy
utilization ratio
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even though the energy efficiency of Madrid is
higher compared to the Davos, the exergy effi-
ciency of the Davos is higher due to lower annual
ambient temperature, and thus higher quality of
heat is delivered to the user.

21.4.2 Economic Performance
Evaluation of PVT
Collector

Based on the above energy performance, the
economic performance of such a PVT system is
investigated in the 85 different locations. In this
section, NPV per unit collector area is analyzed
and represented.

21.4.2.1 Collector Economic
Performance
in Financing Model 1

This financing model scenario has assumed that
the total cost of the system is invested in the first
year of the system period. As the total system
cost will be invested in the first year, no interest
rate is not considered. Figure 21.19 is the digital
representation of NPV potential per unit collector
area with financial model 1 in all 85 geographical
cities across the World and Fig. 21.20 shows the
NPV potential per unit collector area in geo-
graphical cities in the European continent.

The cities with larger dots represent the high
NPV potential and cities with smaller dot size
represents the least NPV potential. The cities

Fig. 21.17 Correlation of
exergy efficiency with the
annual average ambient
temperature

Fig. 21.18 Collector exegetic efficiency
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Catania and Munich have the highest potential of
5140 € and 5348 € respectively, followed by
Bari, Lisbon, Setubal, Sevilla, Valencia, Zar-
agoza, Madrid and Berlin cities has potentially
more than 4500 € per unit collector area. This is
due to their high available GHI and electricity
grid price, so the energy savings are high in these
locations which reflected in huge NPV potential
for this system. Although cities, such as Oslo,
Bergen, Reykjavik, etc., with relatively less
electricity grid price, resulted in negative NPV
due to lower available GHI. The cities with high
collector production such as Medina, Algeria,
Cairo have shown negative NPV potential due to
a very less electricity grid price which eventually
showed fewer energy savings.

The NPV potential in all 85 simulated cities
has been selected divided and segmented for the
appropriate countries to define the NPV range per
unit collector area of each country as shown in

Fig. 21.21. A large variation in NPV can be seen
in few countries, such as Italy, Portugal, due to
variability in GHI for simulated locations. How-
ever, a smaller variation is identified in countries
such as China, Argentina, Brazil, etc., this is
because only one city has been simulated in this
chapter, which is part of the key uncertainty.

Figure 21.22 shows the payback period of this
PVT system for a single-family house of 5 peo-
ple in several countries based on financial model
1. The results show that the total system cost will
be returned in the first 10 years in countries, such
as Australia, Belgium, Denmark, Germany,
Greece, Italy, Portugal, Spain, Switzerland, etc.
This is due to high collector production and high
electricity grid price. Although countries such as
Algeria, Saudi Arabia, Egypt have the highest
collector production, the grid price is compara-
tively lower, which reflects the payback period of
more than 20 years.

Fig. 21.19 NPV potential per unit collector area for financing model 1
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21.4.2.2 Collector Economic
Performance
in Financing Model 2

This financing model has been analyzed by
assuming that 75% of total system cost is paid
within a financing period of 7 years with a cer-
tain interest rate and the remaining 25% of total
system cost is invested in the first year without
any interest rate. The NPV potential per unit
collector area with financing model 2 in 85
geographical cities across the world is shown in
Fig. 21.23 and NPV potential per unit collector
area in a specific European continent is shown in
Fig. 21.24.

The cities with larger dots represent the high
NPV potential and cities with smaller dots rep-
resent the lower NPV potential. The cities per-
formed high NPV potential in financing model 1,
such as Catania and Munich, which has shown
improved NPV of 5140 € and 5348 € respec-
tively because of Zero interest rates in those
countries. This is because if the interest rate is
zero, the user needs to pay the part of system cost
in later years, and the present value of this
investment will be lower due to the time value of
money. This will reduce the accumulated
investment and thus higher NPV. However, if the
interest rate is high, the extra amount paid due to

Fig. 21.20 NPV potential per unit collector area in Europe for financing model 1

Fig. 21.21 Country-wise
NPV potential per unit
collector area for financial
model 1
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high interest in later years, which will overweigh
the advantage due to the time value of money
and it will decrease the overall NPV. Therefore,
Financial model 1 is recommended for countries

with high interest rate to maximize the NPV, and
minimize the payback. Whereas, financial model
2 is recommended for counties with zero or
lower interest rates to maximize the NPV.

Fig. 21.22 Country-wise average payback period of the PVT collector system

Fig. 21.23 NPV potential per unit collector area for financing model 2
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Figure 21.25 shows the NPV potential per
unit collector area in each country for the
financing model 2. As compared with financing
model 1, there is slightly better performance in
NPV in most of the countries. Thus, there is not
much variation has been identified in this model
2 compared with model 1.

The effect of NPV change due to financial
model 2 compare to model 1 is shown in
Fig. 21.26. As expected, the countries with high
interest rate have shown a negative effect on
NPV and countries with less and zero interest
rates has shown better NPV potential, such as

USA, Australia and most of the European
countries. However, due to high interest rate of
38% in Argentina, a huge negative impact is
identified with this financing model 2. Further-
more, a correlation is derived between NPV
variation with an interest rate of a specific loca-
tion in Fig. 21.27.

21.4.2.3 Uncertainties
In this chapter, the authors acknowledge the
possible uncertainties in energy performance
analysis. For instance, the delivery water tem-
perature are assumed 60 °C and 28 L DHW

Fig. 21.24 NPV potential per unit collector area in Europe for financing model 2

Fig. 21.25 Country-wise
NPV potential per unit
collector area for financing
model 2
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demand per person for all the locations across all
the cities. Also, the specific volume ratio (v/a)
has been assumed as 80 L/m2 for all the locations
but since it may vary depending on the location
and type of application, the resulted collector
production would be slightly different in real-
time but this approach has been assumed to
achieve the goals of this chapter.

Furthermore, as the grid price is a key
parameter of the total system energy savings, the
auxiliary energy price is taken as the generalized

price for every specific country, whereas in real-
time case the energy price would be different for
every state/city/municipality depending on
localized energy policy. It has been considered
because of the unavailability of precise data,
which may not be significantly higher. The
interest rate is chosen for each country for
deriving the NPV potential difference between
financing model 1 and model 2. But only few
countries, which have negative and zero interest
rate, have been assumed as 0.1% due to the

Fig. 21.26 NPV profit increase with financing model 2
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simulation tool incapability of accepting negative
or null values. However, it has also realized that
uncertainty of difference between the negative
interest rates and assumed interest rates has not
been less than 1% which is not significantly
affecting the NPV potential difference. Hence,
the assumptions have been considered to achieve
the aims in possible optimistic and realistic
approaches irrespective of the uncertainties.

21.5 Conclusions

The performance of an energy system consists of
a PVT collector performance and storage tank is
evaluated for 85 locations across a large cities.
The optimal tilt angle of PVT collector, load
demand, and electricity prices are chosen
appropriately for each simulated location. The
results show that the major parameter influencing
the PVT performance is GHI, and results derived
a strong linear correlation between collector
output and GHI. The other factor influencing
energetic performance is ambient temperature,
source, and load water temperatures. The ener-
getic utilization ratio is dependent on total ther-
mal demand and specific volume ratio (v/a ratio),
as it can have a major influence on the fluid
temperature in the storage tank, and thus col-
lector total production. The electrical production
by PVT collector is higher in high ambient
temperature locations. The highest and lowest
energy utilization ratio of the collector is recor-
ded in Reykjavik, Iceland (63%), and Medina,
Saudi Arabia (54%) respectively. The highest
and lowest exergetic efficiency of the collector
has been recorded in Reykjavik, Iceland (23%),
and Medina, Saudi Arabia (17%) respectively.
Most importantly, the results show that the
higher energetic output does not guarantee high
economic feasibility. There are several factors
such as electricity price, interest rate, and selec-
tion of financial model which can highly affect
the economic feasibility of PVT collector. The
average NPV per unit collector area of 85 geo-
graphical cities for financial model 1 and finan-
cial model 2 is 1886 € and 2221 € respectively.
The NPV and payback period analysis of the

PVT system has shown positive results for the
cities, which have high collector production and
high electricity grid price reflecting high energy
savings. However, the financing model 1 is
highly recommended for the locations with high
interest rates and financial model 2 is beneficial
for the locations with less interest rates. This
chapter offers potential insight into the promotion
of the PVT market in different regions.
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