
Low-Area, High-Throughput
Field-Programmable Gate Array
Implementation of Microprocessor
Without Interlocked Pipeline Stages

Prateek Sikka , Abhijit R. Asati, and Chandra Shekhar

1 Introduction

The processor architecture for microprocessors without interlocked stages (MIPS)
developedbyMIPSTechnologies and ImaginationTechnologies has recently evolved
from a 32-bit version to a 64-bit version. Compared with ARM processors, the
MIPS core is compact, requires a smaller die size, and consumes less power, all
while offering multi-threading capabilities, which increases its functionality. MIPS
processors are often used in applications involving consumer audio devices, such as
audio players, set-top boxes, DVD recorders and players, and digital displays, which
are typically implemented with a multifunction system on chip.

Given that low power and high speed are important goals in these applications,
reduced instruction set computer (RISC) architectures are preferred. The instructions
are simple in RISC, and each instruction requires a similar number of clock cycles,
making it easy to pipeline the instructions, thereby obtaining high throughput. Field-
programmable gate arrays (FPGAs) are also popular as platforms for pre-silicon
prototyping to accelerate verification and software development. Thus, exploiting
low-areaFPGAs to accelerate the implementationofMIPSprocessors is of significant
importance.

Numerous research efforts have focused onMIPS architecture in the past. In 2019,
Indira et al. implemented a 32-bit MIPS processor and targeted the same on a Xilinx
Virtex 7 FPGA [1]. They also discussed possible pipeline hazards and the associated
remedies. In 2017, Rashidah et al. proposed a simulator for the RISC-16 instruction
set [2] that was based on visual basic programming and five pipeline stages. In
2016, Husainali et al. proposed a three-stage, 32-bit pipelined processor [3] that they
designed in Verilog and implemented on a Xilinx Virtex 7 FPGA using Xilinx ISE

P. Sikka (B) · A. R. Asati · C. Shekhar
Electrical and Electronics Engineering Department, Birla Institute of Technology and Science,
Vidya Vihar Campus, Pilani, Rajasthan, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. Dhawan et al. (eds.), Recent Trends in Electronics and Communication,
Lecture Notes in Electrical Engineering 777,
https://doi.org/10.1007/978-981-16-2761-3_58

647

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2761-3_58&domain=pdf
https://orcid.org/0000-0002-0941-5101
https://doi.org/10.1007/978-981-16-2761-3_58


648 P. Sikka et al.

software. In 2018, Mangalwedhe et al. proposed a low-power RISC processor [4]
that they designed in Verilog. They used clock gating to reduce the dynamic power
consumption and implemented the design on a Spartan 6 FPGA.

In 2014, Rakesh et al. proposed a novel architecture for a 17-bit address RISC
processor [5]. They implemented their Harvard architecture-based design on aXilinx
FPGA. In the present work, we use high-level synthesis (HLS) to design aMIPS core
and implement it on a Xilinx Virtex 7 FPGA target, and we compare this implemen-
tation with previous implementations. In the proposed design, we use multiple HLS
directives to reduce the area and increase the speed. The results of the proposed
FPGA are clearly superior to those of previous FPGAs.

The rest of the paper is organized as follows: Sect. 2 introduces HLS, and Sect. 3
presents the architecture of the MIPS processor that we designed and explains the
method used in the proposed design. In Sect. 4, we discuss the techniques used to
optimize the synthesis results. Specifically, we discuss in detail the HLS directives
used during the design process, which lead to the optimal synthesis between design
and the target FPGA. Section 5 presents the results of the simulation and synthesis
and compares the results with those of other works for the same application. Finally,
Sect. 6 concludes the paper.

2 High-Level Synthesis

HLS is gaining popularity in the design community as a method that ensures
continued verification in the design flow and increasing the level of abstraction that
designers can use to describe the design behavior. This method of code generation
is free from errors and is faster than manual register transfer language (RTL) coding
[6]. HLS tools like Vivado HLS [7] and MATLAB HDL [8] coder are commonly
used in the design community to design and prototype algorithms that target different
application areas, such as image processing, computer vision, and microprocessors.
The code complexity is reduced by almost an order ofmagnitude, and reuse of behav-
ioral IPs across projects is simplified by using modeling techniques in HLS, such as
transaction-level modeling [9].

Formodern systemon chip designs, especially those containing embedded proces-
sors running firmware, the use of high-level programming languages in the automated
HLS process enables designers and architects to explore area, power, and throughput
trade-offs using different hardware–software boundaries. The industrial focus on
HLS tools gained importance with the enhancements to RTL-based synthesis tools
and flows. Proprietary tools were introduced by major chip design houses, such as
Motorola [10], IBM [11], Philips [12], and Siemens [13]. Major electronic design
automation (EDA) companies have also commercialized their HLS tools in the past
few years. In 1995, Synopsys introduced the behavioral compiler [14] that generates
synthesizable RTL implementations from C code and connects with downstream
synthesis tools. Mentor Graphics came out with Catapult HLS [15], and Cadence
introduced Stratus HLS [16].



Low-Area, High-Throughput Field-Programmable Gate Array … 649

Fig. 1 High-level synthesis flow for very large scale integration designs

Figure 1 shows a typical HLS flow for very large scale integration (VLSI) designs.
The HLS tool extracts all the parallelism that is accessible from the input descrip-
tion and schedules the operations. The next step includes allocating and sharing the
necessary resources and optimization tominimize the area and improve performance.
During these intermediate transform stages, different optimization directives can be
applied to guide the HLS tool to meet the design specifications for decreasing area,
increasing speed, and reducing power consumption. Within the HLS flow, tools typi-
cally perform the following functions: compile the specifications, allocate hardware
resources (functional units, storage components, buses, etc.), schedule the operations
to clock cycles, bind the operations to functional units, bind variables to storage
elements, and bind transfers to buses.

Although the overall design cycle time during algorithm development may
increase, the subsequent design implementation cycles are quicker, so the time to
market is reduced. As seen in Fig. 1, not satisfying the desired specifications may
trigger multiple iterations for HLS directives in the design flow.

3 Architecture of MIPS Processor

The primary goal in VLSI design has always been to reduce the power consump-
tion of devices (specially mobile), such as laptops, mobile phones, and tablets, so
that they would support real-time applications in video, image processing, telecom,



650 P. Sikka et al.

networking, etc. Different types of integrated circuits provide different complex
signal processing units to fulfill the various demands of complex use cases such
as mathematical computations. When it comes to real-time operation of these inte-
grated circuit designs, speed and power dissipation are the major bottlenecks. Thus,
themajor aimhere is to obtain computational speed and decrease power consumption.

To satisfy this requirement, the MIPS processor was proposed by MIPS Tech-
nologies in the 1980s. To date, six versions of the MIPS have been released (denoted
I–VI), with the current version (VI) having been released in 2017. Earlier versions
had only 32-bit support, but the later versions support 64 bits. The MIPS architec-
ture is also known as load-store architecture because, except for memory access, all
instructions operate on registers. The salient feature of a MIPS core is its use of the
RISC architecture with a non-interlocked five-stage pipelining technique to reduce
delay [17].

Pipelining has proven to be more efficient than traditional sequential architecture
because of that fact that CPUbecomes idle during instruction cycles that include other
services such as read and write to memory and storage or input–output devices. This
is clearly evident from Tables 1 and 2, which show the fetch, decode, and execute
cycle with and without the pipelining for multiple instructions, and the associated
throughput.

All MIPS instructions are 32 bit long. The instruction set is a compiler-based
encoding of the machine instructions (i.e., code generation efficiency is used to
choose alternative instructions). Multiple simple instruction sections are packed
together into an instruction word. To do several operations simultaneously in
pipelining, the simultaneous implementation of devices such as memory, integer
units, and other units is essential. Pipelining involves five stages: fetch, decode,
execute, memory, and write back.

• Fetch: In this stage, we fetched the instruction from the memory based on the
address provided in the program counter (PC). Incrementing by four to the

Table 1 Instruction execution without pipeline; the throughput is two instructions per clock cycle

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Table 2 Instructions execution with pipeline; the throughput is four instructions every six clock
cycles

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Instruction 3 Fetch Decode Execute

Instruction 4 Fetch Decode Execute



Low-Area, High-Throughput Field-Programmable Gate Array … 651

previous instruction address may update the PC. Alternately, it can be updated by
a branch address provided by conditional or unconditional branch instructions.
The instruction is fetched from the memory and relayed on to the next stage:

PC ≤ (PC + 4),
PC ≤ Branch address.

• Decode: In instruction decode, the opcode is decoded by the decoder unit. The
register bank is also present in this stage to find the effective address. When in
indirect-addressing mode, two clock cycles are required. For different addressing
modes, operands are identified through the register bank and handed to the next
stage for computation.

• Execute: All logical and arithmetic operations are performed in this stage. The
operation performed on the data are dependent on the control signals generated
in the decode stage for each instruction [2]. The integer unit consists of the arith-
metic logic unit (ALU), shifter, and multiplier devices. In addition, the effective
addresses used for load and store operations are computed.

• Memory: All memory related instructions are executed in this stage. Depending
on the control signals, instructions such as load and store are performed to read
and write the data.

• Write back: The registers are updated in this stage. The corresponding data are
updated in the register array located in decode stage. The data may be coming
from a memory location or another register.

MIPS cores have three types of instructions: I-type, J-type, and R-type (see Table
3). The six most significant bits for all types specify the opcode to select the type of
instruction. R instructions are used when all the values used by the corresponding
instruction are used from registers. I instructions are used when the instruction oper-
ates on a register and an intermediate value. Immediate values may be up to 16
bits long; larger number values cannot be manipulated by immediate instructions. J
instructions are used for jumps; it has the most bits available for an immediate value
to be stored because addresses are typically large numbers.

Table 3 Instruction types for MIPS architecture

R-type instructions

Op (6 bits) Rs (5 bits) Rt (5 bits) Rd (5 bits) Shamt (5 bits) funct (6 bits)

I-type instructions

Op (6 bits) Rs (5 bits) Rt (5 bits) Address/immediate (16 bits)

J-type instructions

Op (6 bits) Target address (26 bits)



652 P. Sikka et al.

4 Design Methodology

The end-to-end processor model for the MIPS core was created by using Simulink
with MATLAB function blocks. Figures 2, 3, and 4 show the top-level CPU
(Controller + Memory), MIPS datapath, and controller, respectively. The design is
optimized by applying directives such as loop unroll and pipelining (three stages). An
instruction parser operates within the datapath and consisted of the opcode, source
register, destination register, immediate operand, and jump address. The parser is
directly linked to a sign extend block and a jump calculator block. A 32-bit register
file is also available which consists of one write port and two read ports. The ALU
RESULT consists of three inputs: ALU control, Scr A, and Scr B, and this block
performs four major operations on the input: addition, subtraction, AND, and OR

Fig. 2 Top-level implementation of processor system with memory

Fig. 3 MIPS data path model



Low-Area, High-Throughput Field-Programmable Gate Array … 653

Fig. 4 MIPS controller

between the Scr operands A and B. The register file provides Scr A, and the Scr
B output data are obtained from the sign extended immediate value. The three-bit
ALU control specifies the operation to perform on operands while the ALU gener-
ates a 32-bit result and a zero flag (to indicate if ALU Result = zero). The ALU Scr
multiplexer is used to handle the R-type instructions, which write the ALU Result to
the register file. Therefore, we add this multiplexer to select between Read Data and
ALU Result and call the output as “Result.” This multiplexer was controlled by the
signal “Mem to Reg,” which is zero for R-type instructions to choose Result from the
ALU Result, and unity for lw to choose Read Data. After the base implementation
is created, we use the HLS tool MATLAB HDL coder to convert the MIPS core to
synthesizable Verilog code and subsequently run it through FPGA synthesis using
Xilinx Vivado.

As a second step, we apply the following HLS directives to optimize the results
of the MATLAB HDL coder:

(A) Pipeline. The HLS directive allows the concurrent execution of operations
by reducing the initiation interval for a loop or function, so a trade-off exists
between area and speed. To optimize this CPU design implementation, we
apply a pipeline directive with an initiation interval of two for all loops in the
design.

(B) Loop unroll allows the loop iterations to run in parallel by creating multiple
copies of the same loop body in the generated RTL. This directive helps to
increase the throughput by making the loops either partially or fully unrolled.



654 P. Sikka et al.

Table 4 Resource use for
FPGA implementation;
maximum synthesis
frequency = 420.028 MHz,
power = 0.0233 W; LUT:
lookup table, IOBs:
input–output blocks, BUFG:
global clock buffer

Resource Resources used Total resources

Slice registers 43 408,000

Slice LUTs 178 204,000

Fully used FF pairs 41 178

Number of bonded IOBs 47 600

Number of BUFG 1 32

For the proposed application of the MIPS controller and datapath, we use
the partial unroll directive to improve design performance, which incurs a
minor trade-off on resource usage. An unroll factor of two is used in the
implementation.

Section 5 presents detailed implementation results for the base implementation
and the implementation after application of the HLS directives.

5 Results

5.1 Simulation Results

After generating the RTL code, we performed an RTL simulation for the design using
a non-synthesizable Verilog test bench in xSim software. The simulation results were
identical to the simulation results obtained using a high-level simulation in Simulink.

5.2 Results of FPGA Implementation

We implemented the generated RTL from the HLSmodel on a Xilinx Virtex 7 FPGA
board (7vx330tffg1157-3). Table 4 summarizes the implementation results for the
target FPGA device.

5.3 Comparison of Results

As can be seen from Tables 4 and 5, although the proposed implementation operates
at almost the same operating frequency as that of Indira et al. [1], its resource usage
is 40–50% less. In addition, the proposed implementation is about fourfold faster
than that proposed by Rakesh et al. [5], with almost the same resource use. These



Low-Area, High-Throughput Field-Programmable Gate Array … 655

Table 5 Comparison of FPGA implementation results

Metric Proposed implementation Indira et al. [1] Rakesh et al. [5]

Slice registers 43 81 56

Slice LUTs 178 321 203

Fully used flip flops 41 81 43

Bonded IOBs 47 71 51

BUFG 1 2 1

Power (W) 0.021 0.0233 1.318

Maximum frequency (MHz) 404.1 420.028 100

improvements are attributed to the use of HLS directives in the proposed implemen-
tation, which produces better results in terms of both area and speed of operation
(i.e., synthesis frequency).

6 Conclusion

Over the past few years, MIPS processor architectures have evolved as an impor-
tant choice for multiple computing applications, such as communication and infor-
mation processing. Being built from a RISC architecture, MIPS are friendly for
pipelining instructions and thus provide faster throughput for targeted applications.
Additionally, to reduce time to market for VLSI designs, FPGAs have also become
popular as platforms for pre-silicon software development and accelerated verifi-
cation. Therefore, the optimal FPGA implementation of MIPS cores is vital for
obtaining optimized designs.

This paper proposes a resource optimal, high-throughput implementation of a
MIPS core on a Virtex 7 FPGA. The proposed design was created using Simulink
andwas implemented using theMATLABHDL coder andXilinxVivado. The design
targeted Virtex 7 so that the results could be compared directly with those of other
studies. We optimized the targeted implementation for performance and resource
usage using appropriate HLS directives for pipelining and loop unrolling. After
applying the directives, the final implementation results proved superior in terms
of throughput and target area on the FPGA. The results of FPGA synthesis clearly
indicate that the proposed implementation is superior to previous implementations,
despite having exactly the same design specifications. The implementation results
can be further improved using one or more HLS directives, which will be explored
in future work.



656 P. Sikka et al.

References

1. O. Indira,V.V.Dwivedi,M.Kamaraju,Verilog implementation of aMIPSRISC32-bit pipelined
processor architecture. IOSR J. Electron. Commun. Eng. 14, 31–40 (2019)

2. R.F. Olanrewaju, F.E. Fajingbesi, S.B. Junaid, R. Alahudin, F. Anwar, B.R. Pampori, Design
and implementation of a 5-stage pipelining architecture simulator for RISC-16 instruction set.
Indian J. Sci. Technol. 10, 1–9 (2017)

3. H.S. Bhimani, H.N. Patel, A.A. Davda, Design of 32-bit 3-stage pipelined processor based on
MIPS in Verilog HDL and implementation on FPGA Virtex7. Int. J. Appl. Inf. Syst. 10 (2016)

4. S. Mangalwedhe, R. Kulkarni, S.Y. Kulkarni, Low power implementation of 32-bit RISC
processor with pipelining, in Proceeding of the Second International Conference on Micro-
electronics. Lecture Notes in Electrical Engineering (2019), pp. 307–320. https://doi.org/10.
1007/978-981-10-8234-4_27

5. M.R. Rakesh, B. Ajeya, A.R. Mohan, Novel architecture of 17 bit address RISC CPU with
pipelining technique usingXilinx inVLSI technology. Int. J. Eng. Res. Appl. 4, 116–121 (2014)

6. F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts and Applications for
Embedded Systems (Springer, The Netherlands, 2005)

7. Xilinx, Vivado Design Suite: High-Level Synthesis (2018). Available from: https://www.xil
inx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthe
sis.pdf

8. Math Works, HDL Coder. Available from: https://www.mathworks.com/products/hdl-coder.
html

9. K. Wakabayashi, C-based behavioral synthesis and verification analysis on industrial design
examples, in Proceedings of the ASPDAC (2004), pp. 344–348

10. K.Kucukcakar, C.-T. Chen, J. Gong,W. Philipsen, T.E. Tkacik,Matisse: an architectural design
tool for commodity ICs. IEEE Des. Test Comput. 15, 22–33 (1998). https://doi.org/10.1109/
54.679205

11. R.A. Bergamaschi, R.A. O’Connor, L. Stok, M.Z. Moricz, S. Prakash, A. Kuehlmann, D.S.
Rao, High-level synthesis in an industrial environment. IBM J. Res. Dev. 39, 131–148 (1995).
https://doi.org/10.1147/rd.391.0131

12. P.E. Lippens, J.L. van Meerbergen, A. van der Werf, W.F. Verhaegh, B.T. McSweeney, J.O.
Huisken, O.P.McArdle, PHIDEO: a silicon compiler for high speed algorithms, inProceedings
of the European Conference Design Auto (IEEE Computer Society Press, Amsterdam, 1991),
pp. 436–441

13. J. Biesenack, M. Koster, A. Langmaier, S. Ledeux, S. Marz, M. Payer, M. Pilsl, S. Rumler, H.
Soukup, N. Wehn, P. Duzy, The Siemens high-level synthesis system CALLAS. IEEE Trans.
Very Large Scale Integr. 1, 244–253 (1993). https://doi.org/10.1109/92.238438

14. D.W. Knapp, Behavioral Synthesis: Digital System Design Using the Synopsys Behavioral
Compiler (Prentice Hall, Englewood Cliffs, NJ, 1996)

15. Catapult, High-Level Synthesis (2020). Available from: https://www.mentor.com/hls-lp/cat
apult-high-level-synthesis/

16. Stratus High-Level Synthesis. Available from: https://www.cadence.com/en_US/home/tools/
digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html

17. J. Hennessy, N. Jouppi, F. Baskett, J. Gill, MIPS: A VLSI Processor Architecture (Springer,
Berlin, Heidelberg; Stanford University, Departments of Electrical Engineering and Computer
Science, 1981), pp. 337–346

https://doi.org/10.1007/978-981-10-8234-4_27
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.mathworks.com/products/hdl-coder.html
https://doi.org/10.1109/54.679205
https://doi.org/10.1147/rd.391.0131
https://doi.org/10.1109/92.238438
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html

	 Low-Area, High-Throughput Field-Programmable Gate Array Implementation of Microprocessor Without Interlocked Pipeline Stages
	1 Introduction
	2 High-Level Synthesis
	3 Architecture of MIPS Processor
	4 Design Methodology
	5 Results
	5.1 Simulation Results
	5.2 Results of FPGA Implementation
	5.3 Comparison of Results

	6 Conclusion
	References




