
G-NSVF: A Greedy Algorithm for
Non-Slicing VLSI Floorplanning

B. N. B. Ray, Sony Snigdha Sahoo(B), and Susil Kumar Mohanty

Department of Computer Science and Applications, Utkal University,

Vani Vihar, Bhubaneswar 751004, Odisha, India

Abstract. Floorplanning is the first step in the physical design of VLSI.
At this stage, the circuit is partitioned into blocks for packing them
optimally within the chip. The metrics minimized in floorplan are overall
interconnect wirelength, area of the chip, deadspace, etc. B* tree is a
popular representation of floorplan as it captures both slicing and non-
slicing floorplans. In this work, we have proposed a greedy algorithm for
the initial floorplan, which can be used by simulated annealing placer
that takes B* tree as the initial floorplan. The proposed algorithm in
conjunction with B* tree when integrated into simulated annealing placer
and experimented on MCNC benchmarks reduces the overall wirelength
on an average by 11% and 69% as compared to random and prior greedy
initial floorplans.

Keywords: B* Tree · Floorplanning · Greedy algorithm · Physical
design

1 Introduction

Advancement in technology is leading to complex circuit design. VLSI floorplan-
ning is an effective approach toward managing circuit design complexity. Given
a set of circuit components or modules and a netlist specifying the intercon-
nections between the modules, floorplanning ensures that none of the modules
overlap each other and various metrics like area, total interconnect wirelength
among modules are minimized.

Effective representation of such floorplans is important for ensuring the con-
version between a representation and the corresponding floorplan. There are two
basic floorplanning structures, namely slicing and non slicing floorplans. A brief
comparison among the two has been given in [3]. Several representations have
been proposed for representing non-slicing floorplans such as sequence pair [4],
bounded slice line grid [5], O-tree [6], B*tree [1] etc. B* tree representation, as
proposed by Chang et al. [1] has been proven to be an efficient representation of
floorplan as it has many advantages over other representations. It has not only
inherited all the best features of an ordered binary tree but also, is quite flexible
in handling floorplanning problem with different kind of modules like hard, soft,
preplaced, and rectilinear. It is very fast and can be easily implemented. The
c© Springer Nature Singapore Pte Ltd. 2021
P. K. Behera and P. C. Sethi (Eds.): CSI 2020, CCIS 1372, pp. 48–58, 2021.
https://doi.org/10.1007/978-981-16-2723-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2723-1_6&domain=pdf
https://doi.org/10.1007/978-981-16-2723-1_6


G-NSVF: A Greedy Algorithm for Non-Slicing VLSI Floorplanning 49

authors in [9] have introduced following greedy evaluation function Vi for each
module vi for (1 ≤ i ≤ n), n being the number of modules.

Vi = λ1 × hi × wi

H × W
+ λ2 × hi + wi

H + W
(1)

Where hi and wi are height and width of module vi and H and W are the height
and width of the floorplanning region. The constants 0 ≤ λ1, λ2 ≤ 1 are such
that λ1+λ2 = 1. On the basis of the decreasing values of Vi for each 1 ≤ i ≤ n as
given by Eq. 1, they generated an initial floorplan and represented the floorplan
as B* tree. Their experimental results on MCNC Benchmarks using HSA (Hybrid
Simulated Annealing) algorithm show improvement in overall interconnection
wirelength and deadspace.

In this paper, we have introduced a greedy heuristic for initial floorplan mod-
ifying Eq. 1, so that it can be used by simulated annealing placer that takes the
initial floorplan as a B* tree. The experimental results for our initial greedy
floorplan on MCNC benchmarks [13] using B* tree based simulated anneal-
ing placer [1] reduce the final wirelength of floorplan on average by 11% and
69% respectively compared to floorplans generated randomly and also by Eq. 1,
respectively.

In short, our contributions in this paper are listed below:

– We have proposed a greedy heuristic for the initial floorplan as an input to
the simulated annealing placer.

– We have also integrated it into annealing based placer that takes initial floor-
plan as B* tree.

– Experimental results on MCNC benchmarks for the proposed initial greedy
floorplan on an average show 11% and 69% reduction in placement wirelength
compared to the random floorplan and also floorplan due to Eq. 1 respectively.
In addition to this, the new heuristics also reduces the dead-space of final
placement almost 3× than that of existing schemes.

The remaining of the paper is organized as follows. Section 2 gives a brief
review of B* tree representation and simulated annealing algorithm for solving
the floorplan problem. Section 3 begins with the problem statement, followed by
our greedy approach. The implementation details are given in Sect. 4. The paper
concludes with its future scope in Sect. 5.

2 B* Tree Representation

B* tree can be constructed along the same lines as that of the DFS procedure
[1]. As proposed in [1] “first, the left subtree is recursively constructed starting
from the root and then the right subtree. Let Ri be the set of modules located on
the right-hand side and adjacent to a module bi denoting the node ni. The left
child of the node ni corresponds to the lowest module in Ri that has not been
visited. The right child of ni represents the module located above and adjacent
to bi, with its x-coordinate equal to that of bi and its y-coordinate less than that



50 B. N. B. Ray et al.

of the top boundary of the module on the left-hand side and adjacent to bi, if
any [1]. The B*-tree maintains the geometric relationship between two modules
as follows. If node nj is the left child of node ni, module bj must be located on
the right-hand side and adjacent to module bi in the admissible placement; i.e.,
xj =xi+wi. Besides, if node nj is the right child of ni, module bj must be located
above and adjacent to module bi, with the x-coordinate of bj equal to that of bi;
i.e., xj =xi. Also, since the root of T represents the bottom-left module, the x-
and y-coordinates of the module associated with the root(x root,y root)= (0,0)”.
Primitive operations like insertion, the search can be performed in constant time,
and deletion can be done in linear time on a B*tree. Apart from these, three new
operations have been proposed for perturbing a B* tree in [8], namely rotation
of a block, movement of a block from one place to another, and swapping of two
blocks. These operations can be carried out in O(h) time, where h denotes the
height of the B*tree.

2.1 Simulated Annealing Based B* Tree Representation

VLSI floorplanning being an NP-hard problem, various heuristic methods have
been suggested for dealing with it. They can be categorized as constructive
methods and iterative methods. The constructive methods use heuristic infor-
mation for constructing the floorplan, whereas, the iterative ones make use of
metaheuristic strategies, such as genetic algorithm, simulated annealing, and
tabu search for obtaining good solutions. Floorplan algorithms used in [10] and
[11] are also based on the simulated annealing. Simulated annealing (SA) is one
of the widely used techniques used for approximating global optimization in a
large search space [9]. However classical SA process has a significant draw-back
of excessive running time. Thus, several annealing schemes for controlling the
temperature changes during the annealing process have been proposed to reduce
the running time of SA while searching for desired solutions more efficiently.
One of the most successful among them has probably been the annealing sched-
ule used by TimberWolf [7]. It provides not only the relative positions of the
modules, but also their aspect ratios and pin positions. In [12], a fast simulated
annealing algorithm has been proposed, which is significantly different from the
existing simulated annealing schemes. It tries to speed up the annealing process.
Hybrid simulated annealing approach in [9] constructs the initial B* tree using
a new greedy approach, and a new operation on B* tree has also been proposed
for exploring the search space. It leads to a much quicker optimal solution.

2.2 Original Algorithm

According to [9] “given an initial floorplan encoded in B* trees, at each tempera-
ture, the local search method finds a locally optimal solution through systemat-
ically examining those B* trees obtained by rotating a module by 90◦, moving a
module to another place or swapping two modules”. If one of the operations leads



G-NSVF: A Greedy Algorithm for Non-Slicing VLSI Floorplanning 51

to a floorplan with a smaller cost, the floorplan is accepted. The pseudo-code of
the local search algorithm is presented in Algorithm 1 [9].

Algorithm 1: Algorithm for Local Search

1: I is an initial configuration
2: T is the Temperature

3: mt = 0, uphill = 0, reject = 0

4: Nmax = k × m
5: An empty list LIST
6: while

(
(uphillmax) and

(mt < 2 × Nmax)
)
do

7: Randomly use one of the three
operations to generate a new
configuration J

8: Calculate cost(J), and update
the cost to the list LIST

9: mt = mt + 1

10: ΔC = cost(J) − cost(I)
11: if (ΔC ≤ 0) then

12: I = J

13: localbest = J
14: else

15: Randomly generate a number

t (0 ≤ t ≤ 1)

16: if (t < e
ΔC
T ) then

17: I = J

18: uphill = uphill + 1
19: else

20: reject = reject + 1

21: end if

22: end if
23: end while
24: reject rate = reject

mt
25: return configuration I,

reject rate, localbest

After the local search, simulated annealing is used as a global search method
to explore the search space [9].

Algorithm 2: Simulated Annealing Algorithm

1: Initial B∗ tree B (By Algorithm
1)

2: best = B, count = 0
3: conv rate = 1, min

4: An initial temperature T
5: while

(
(reject rate < conv rate)

and (actual T > term T )
)
do

6: count = count + 1

7: Optimize I using the Algorithm
1

8: if
(
cost(localbest) < cost(best)

)

then
9: best = localbest
10: end if
11: Update T and actual T

12: if (count > min) then
13: conv rate = 0.95

14: end if
15: end while

3 Problem Formulation

Let M = {v1, v2, · · · , vn} be a set of modules with height hi and width wi and N
be the Net-list for specifying interconnection among the modules. A floorplan F
assigns M onto a plane in such a manner that none of the modules overlap each
other. Area A of a floorplan F is a measure of the area of the smallest rectangle
that surrounds all the modules. Wirelength W is the interconnection cost, and
it is a measure of the total wirelength for maintaining the connection specified



52 B. N. B. Ray et al.

by N . The cost of a floorplan as given in [9] is given by the following equation.

f = w × area(F )
norm area

+ (1 − w) × wirelength(F )
norm wirelength

where w and (1-w) are weights such that w ∈ [0, 1] assigned for minimizing area
and interconnection. This cost function has been adopted in [9]. A floorplan is
said to be compact if no modules can be moved left or down without moving other
modules. A compact floorplan can be represented using B* tree. The solution
space is composed of all the B* trees that can be constructed when modules are
given. As there exists a unique B* tree for every compacted floorplan, redundant
solutions in the search space are eliminated.

3.1 Our Proposed Greedy Algorithm

This section proposes a modified heuristic cost function for the initial floorplan
representation of the B* tree.

For generating the initial floorplan, the heuristic cost function defined by
Eq. 1 has been modified as below. For each module vi, the evaluation function
say fvi

is defined as

fvi
= λ1 × hi × wi

H × W
+ λ2 × hi + wi

H + W
+

no of pinsi
total no of pins

(2)

where 0 ≤ λ1, λ2 ≤ 1 are non negative weights such that λ1 + λ2=1. and have
been set to 0.5 each as has been adopted in [9]. And no of pinsi is the number
pins of each module vi, while total no of pins is the summation of pins of each
of the modules.

This cost function is calculated for every module. Modules are then packed
in decreasing order of their heuristic values.

The heuristic function given by Eq. 1 normalizes area as VLSI floorplan-
ning has always focused on minimization of area and wirelength. But the pro-
posed approach has considered area, wirelength and pin density of each module
together. A module with larger fvi

is packed earlier i.e. modules are packed in
decreasing order of fvi

values.

3.2 Greedy Algorithm

The following Greedy initial placer() algorithm places modules according to
decreasing value of fvi

.

Algorithm 3: Greedy initial placer()
1: for i = 1 to n do
2: Module vi, calculate fvi

= λ1 × hi×wi

H×W + λ2 × hi+wi

H+W + no of pinsi

total no of pins
3: end for
4: Sort fvi

in decreasing order ∀n
i=1vi

5: Let M ′ = {v′
1, v

′
2, · · · , v′

n} be the permutation of M = {v1, v2, · · · , vn}
resulting from step 4

6: Call Place Module(M ′) to place modules in layout area



G-NSVF: A Greedy Algorithm for Non-Slicing VLSI Floorplanning 53

The procedure Place Module(M ′) places modules in the prescribed order of
M ′ within the chip and returns the initial B* tree B for the simulated annealing
placer. While placing modules in the chip, the procedure Place Module(M ′) uses
the following operations, as discussed in [9]. If B is the set of modules placed in
the chip, then the feasible region of the chip is the free space in the chip where
if a module is placed, then it neither overlaps with any modules of B nor it
oversteps the floorplan area.

1. Determine points in the feasible region and sort them in their increasing order
of y-coordinates and then choose the point in that order.

2. Then choose the module from M ′ and put at the bottom left corner of that
feasible point and include the module in set B. Then delete placed module
from the set M ′.

3. If at that feasible point determined in step 1, no module can be placed, then
exclude that feasible point and select the next feasible point in the sorted
order and then goto step 2.

4. Continue to step 2 and step 3 until M ′ is empty.

At the end of step 4, the initial greedy B* for the annealing placer is returned.
The pseudo-code Place Module(M ′) is described by Algorithm 4.

Algorithm 4: Place Module(M ′)
1: M ′ = {v′

1, v
′
2, · · · , v′

n}
2: Initialize B* tree B = Nil
3: while (M ′ �= φ) do
4: Execute steps 1), 2), 3) for selecting a feasible point pi and a module v′

i;
5: Put v′

i at point pi, then remove v′
i from M ′ and add it to B

6: end while
7: return B* tree B

3.3 Time Complexity Analysis

In Algorithm 3, the step 4 involves O(nlogn) comparisons for sorting fvi
(1 ≤ i ≤

n), the heuristic values fvi
. The procedure Place Module(M ′) (Algorithm 4) at

step 6 uses O(nlogn) comparisons for sorting y-coordinates of n feasible points
and O(n) time to place n modules in B* tree B. Thus the running time of
Greedy initial placer() Algorithm = O(nlogn) + O(nlogn) + O(n) = O(nlogn).

After the modules are packed according to the above Algorithm 3 (see Fig. 1),
it is then converted into B* tree, as shown in Fig. 2. Then Algorithm 1 and
Algorithm 2 are used to find the solution of the floorplan.

Before we discuss the effect of various initial floorplans on the quality of the
final floorplan, we use the following additional notations.



54 B. N. B. Ray et al.

Fig. 1. Floorplan

b1

b2 b3

b5 b4

Fig. 2. B* Tree of the Floorplan

– B*tree WL(B* tree Deadspace): final floorplan wirelength (Dead space) due
to random initial floorplan given as an input to B* tree-based simulated
annealing placer [1]

– HSA WL(HSA Deadspace): final floorplan wirelength (Deadspace) due to
initial floorplan of Eq. 1

– Proposed WL(Proposed Deadspace): final floorplan wirelength (Deadspace)
due to initial floorplan of Eq. 2.

4 Performance of the Proposed Greedy Approach

In order to study the efficacy of the proposed greedy strategy against random
initial floorplan and floorplan due to Eq. 1, we implemented the proposed greedy
algorithm and the greedy algorithm of Eq. 1 in C++. We integrated them into
the publicly available B* tree-based simulated annealing placer [1]. For simu-
lation purposes, we have used the MCNC floorplan benchmark suite [13]. All
experiments were conducted on a Linux machine with a Core i5 processor, with
a speed of 2.3 GHz and 4GB RAM. We have conducted three sets of experiments
on MCNC benchmarks. In our first set of experiments, we presented the random
floorplan of benchmark circuits as input to the B* tree-based simulated anneal-
ing placer as used in [1]. For the second set of experiments, we repeated the first
experiment providing benchmark circuits as input to the annealing placer based
on a greedy strategy of Eq. 1. And for the third set of experiments, we provided
benchmark circuits as input to the placer based on our greedy strategy given
by Eq. 2. The experimental results for wirelength and deadspace for various cir-
cuits for these three sets of experiments are presented in Table 1 and Table 2,
respectively.

In Table 1, the names of circuits are put in the first row, starting from column
2 through column 6. The second row of the table presents final wirelengths (B*
tree WL) of floorplans in millimeter for various circuits from column 2 through
column 6 based on random floorplan. The second row presents final floorplans
wirelengths (HSA WL) for the greedy algorithm on the framework of Eq. 1.
And the third row shows the final placement wirelength on the basis of our



G-NSVF: A Greedy Algorithm for Non-Slicing VLSI Floorplanning 55

Table 1. B* Tree, HSA and proposed algo wirelength result

Circuit ami33 ami49 apte hp xerox Norm WL

B*tree WL 178.139 11460.6 1058.36 317.894 1162.141 1.116

HSA WL 170.317 8818.91 1112.05 1136.8 1098.19 1.69

Proposed WL 170.317 8818.91 1018.5 267.51 1151.44 1

Table 2. B* Tree, HSA, proposed algo deadspace result

Circuit ami33 ami49 apte hp xerox Norm DS

B*Tree Deadspace 5.56 46.89 2.03 23.87 6.21 2.93

HSA Deadspace 6.06 29.95 2.03 24.69 4.19 2.92

Proposed Deadspace 6.06 29.95 3.44 2.23 7.04 1

Table 3. Computation statistics for random initial floorplan

Circuit ami33 ami49 apte hp xerox

No of modules 33 49 9 11 10

Height 1.715 39.074 14.918 3.766 7.966

Width 0.714 1.708 3.186 3.08 2.59

Area 1.22451 66.738 47.53 11.599 20.632

Wirelength 178.139 11460.6 1058.36 317.894 1162.141

Total Area 1.156 35.445 46.562 8.83 19.350

Deadspace 5.56 46.89 2.03 23.87 6.21

CPU Time 2.39 30.74 1.94 1.34 0.27

Last CPU Time 2.37 27.89 0.18 1.12 0.23

Table 4. Computation statistics for initial floorplan based on Greedy HSA

Circuit ami33 ami49 apte hp xerox

No of modules 33 49 9 11 10

Height 0.679 29.624 3.186 21.476 2.59

Width 1.813 1.708 14.918 0.546 7.798

Area 1.23103 50.5978 47.5287 11.7259 20.197

Wirelength 170.317 8818.91 1112.05 1136.8 1098.19

Total Area 1.156 35.445 46.562 8.83 19.350

Deadspace 6.06 29.95 1.89 24.69 4.19

CPU Time 2.77 29.07 0.14 4.22 0.29

Last CPU Time 2.74 24.05 0.21 0.37 0.29



56 B. N. B. Ray et al.

Table 5. Computation statistics for proposed Greedy initial floorplan

Circuit ami33 ami49 apte hp xerox

No of modules 33 49 9 11 10

Height 0.679 29.624 13.182 2.016 2.604

Width 1.813 1.708 3.658 4.48 7.994

Area 1.23103 50.5978 48.2198 9.032 20.816

Wirelength 170.317 8818.91 1018.5 267.51 1151.44

Total Area 1.156 35.445 46.562 8.83 19.350

Deadspace 6.06 29.95 3.44 2.23 7.04

Last CPU Time 2.74 24.05 0.09 0.14 0.20

greedy algorithm given by Eq. 2. From Table 1, it is clear that for all circuits,
the proposed greedy initial floorplan consistently reduces the final placement
wirelength. Column 7 of Table 1 displays the normalized wirelengths (Nor WL)
of B* tree WL, HSA WL, and Proposed WL. From column 7, one can see that the
proposed greedy approach, on an average reduces the final placement wirelength
by 11% and 69%, respectively, as compared to the random floorplan and greedy
floorplan due to Eq. 1. This is also evident from the bar graph shown in Fig. 3,
where the x-axis represents benchmarks and y-axis wirelength. In Fig. 3, blue
bar, red bar and gray bar correspond to B*tree WL, HSA WL, and Proposed
WL, respectively.

Fig. 3. Plot representing B* Tree wirelength, Greedy HSA wirelength and that
obtained in the Proposed Greedy Approach (Color figure online)



G-NSVF: A Greedy Algorithm for Non-Slicing VLSI Floorplanning 57

Fig. 4. Plot representing B* Tree deadspace, Greedy HSA deadspace and that obtained
in the Proposed Greedy Approach (Color figure online)

Table 2 presents the results for deadspace of final floorplans for various cir-
cuits by initial floorplans generated randomly by Eq. 1 and by Eq. 2 (proposed
greedy algorithm). Here also column 7 presents normalized deadspace of final
floorplans by three approaches. From Table 2, it is evident that the deadspace of
final floorplans due to the random floorplan and HSA based floorplan are almost
3× more than that of the proposed greedy floorplan. This fact is also illustrated
by bar graph shown in Fig. 4, where the x-axis represents benchmarks and y-
axis deadspace. In Fig. 4, blue bar, red bar and gray bar correspond to B*tree
Deadspace, HSA Deadspace, and Proposed Deadspace, respectively. Table 3,
Table 4, and Table 5 show computation statistics (such as Height, Width, Area,
Wirlength, Deadspace, and CPU time of final floorplan) for random, greedy HSA
and proposed greedy initial floorplans. The consistent decrease in wirelength and
deadspace of the final floorplan for the proposed greedy initial floorplan may be
attributed to the fact that the proposed strategy is more amenable to generate
initial floorplan that is close to the optimal, which is the biggest advantage of
the algorithm. It is interesting to explore the nature of the cost function surface
on the basis of various greedy approaches to the initial floorplan.

5 Conclusion and Future Scope

In this work, we have proposed a greedy heuristic for the initial floorplan, which
can be used as an input by any simulated annealing placer. The proposed greedy
floorplan, when given as an input to simulated annealing placer based on B*
tree representation, shows a good reduction in wirelength as well as dead space
compared to the random floorplan and prior art on the greedy floorplan. Exper-
imental results on MCNC benchmarks for the proposed greedy approach on an



58 B. N. B. Ray et al.

average reduces final floorplan wirelength by 11% and 69% as compared to ran-
dom and prior greedy initial floorplans, respectively. The deadspace produced
by random and prior greedy floorplans are almost 3× more than that of the pro-
posed greedy approach. In the future, we plan to study the effect of the proposed
greedy floorplan on the thermal aware floorplan.

References

1. Chang, Y.C., Chang, Y.W., Wu, G.M., Wu, S.W.: B* Tree: a new representation
for non slicing floorplans. In: ACM/IEEE Design Automation Conference, pp. 458–
463 (2000)

2. Chen, J., Zhu, W., Ali, M.M.: A Hybrid Simulated Annealing Algorithm for Non-
slicing VLSI Floorplanning (2011)

3. Chan, H.H., Adya, S.N., Markov, I.L.: Are floorplan representations important
in digital design?. In: Proceedings of the International Symposium on Physical
Design, pp. 168–173 (2000)

4. Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: Rectangle-packing based
module placement. In: Proceedings of the ICCAD, pp. 472–479 (1995)

5. Nakatake, S., Fujiyoshi, K., Murata, H., Kajitani, Y.: Module placement on BSG-
structure and IC layout applications. In: Proceedings of the ICCAD, pp. 484–491
(1996)

6. Guo, P.-N., Cheng, C.-K., Yoshimura, T.: An O-tree representation of non-slicing
floorplan and its applications. In: Proceedings of the DAC, pp. 268–273 (1999)

7. Sechen, C., Sangiovani-Vincentelli, A.L.: The timber wolf placement and routing
package. IEEE J. Solid-State Circuits SC-20(2), 510–522 (1985)

8. Chen, J., Liu, Y., Zhu, Z., Zhu, W.: An adaptive hybrid memetic algorithm for
thermal-aware non-slicing VLSI floorplanning. Integr. VLSI J. 58 (2017). https://
doi.org/10.1016/j.vlsi.2017.03.006

9. Chen, J.Z., Ali, W., Montaz, A.: A hybrid simulated annealing algorithm for non
slicing VLSI floorplanning. IEEE Trans. Syst. Man Cybern Part C: Appl. Rev. 41,
544–553 (2011). https://doi.org/10.1109/TSMCC.2010.2066560

10. Sur-Kolay, S.: Studies on nonslicible floorplans in VLSI layout design. Ph.D. dis-
sertation, Department of Computer Science and Engineering, Jadavpur University,
Calcutta (1991)

11. Wong, D.F., Liu, C.L.: Floorplan design for rectangular and L-shaped modules.
In: Proceedings of the International Conference on Computer Aided Design, pp.
520–523, November 1987

12. Chen, T.C., Chang, Y.-W.: Modern floorplanning based on fast simulated anneal-
ing, pp. 104–112 (2005). https://doi.org/10.1145/1055137.1055161

13. The MCNC Benchmark Problems for VLSI Floorplanning. http://www.mcnc.org

https://doi.org/10.1016/j.vlsi.2017.03.006
https://doi.org/10.1016/j.vlsi.2017.03.006
https://doi.org/10.1109/TSMCC.2010.2066560
https://doi.org/10.1145/1055137.1055161
http://www.mcnc.org

	G-NSVF: A Greedy Algorithm for Non-Slicing VLSI Floorplanning
	1 Introduction
	2 B* Tree Representation
	2.1 Simulated Annealing Based B* Tree Representation
	2.2 Original Algorithm

	3 Problem Formulation
	3.1 Our Proposed Greedy Algorithm
	3.2 Greedy Algorithm
	3.3 Time Complexity Analysis

	4 Performance of the Proposed Greedy Approach
	5 Conclusion and Future Scope
	References




