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Abstract We proposed an ADMM-like splitting method in [11] for solving convex
minimization problems with linear constraints and multi-block separable objective
functions. Its proximal parameter is required to be sufficiently large to theoretically
ensure the convergence, despite that a smaller value of this parameter is preferred
for numerical acceleration. Empirically, this method has been applied to solve var-
ious applications with relaxed restrictions on the parameter, yet no rigorous theory
is available for guaranteeing the convergence. In this paper, we identify the opti-
mal (smallest) proximal parameter for this method and clarify some ambiguity in
selecting this parameter for implementation. For succinctness, we focus on the case
where the objective function is the sum of three functions and show that the optimal
proximal parameter is 0.5. This optimal proximal parameter generates positive indef-
initeness in the regularization of the subproblems, and thus its convergence analysis
is significantly different from those for existing methods of the same kind in the
literature, which all require positive definiteness (or positive semi-definiteness plus
additional assumptions) of the regularization. We establish the convergence and esti-
mate the convergence rate in terms of iteration complexity for the improved method
with the optimal proximal parameter.
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1 Introduction

Our purpose is finding the optimal (smallest) proximal parameter for the splitting
method in [11] for separable convex programming models. To expose our main idea
and technique more clearly, we focus on the special convex minimization problem
with linear constraints and a separable objective function that can be represented as
the sum of three functions without coupled variables:

min{θ1(x) + θ2(y) + θ3(z) | Ax + By + Cz = b, x ∈ X , y ∈ Y, z ∈ Z}, (1)

where A ∈ �m×n1 , B ∈ �m×n2 , C ∈ �m×n3 ; b ∈ �m ; X ⊂ �n1 , Y ⊂ �n2 and Z ⊂
�n3 are closed convex sets; and θi : �ni → � (i = 1, 2, 3) are closed convex but not
necessarily smooth functions. Such a model may arise from a concrete application in
which one of the functions represents a data-fidelity termwhile the other two account
for various regularization terms. We refer to, e.g., [16, 20–23], for some applications
of (1). The solution set of (1) is assumed to be nonempty throughout.

To recall the splitting method in [11] for the model (1), we start from the aug-
mented Lagrangian method (ALM) that was originally proposed in [15, 18]. Let the
Lagrangian and augmented Lagrangian functions of (1) be given, respectively, by

L(x, y, z, λ) = θ1(x) + θ2(y) + θ3(y) − λT (Ax + By + Cz − b), (2)

and

Lβ(x, y, z, λ) = θ1(x) + θ2(y)

+ θ3(z) − λT (Ax + By + Cz − b) + β

2
‖Ax + By + Cz − b‖2.

(3)

In (2) and (3), λ ∈ �m is the Lagrange multiplier; and in (3), β > 0 is the penalty
parameter. When the three-block separable convex minimization model (1) is pur-
posively regarded as a generic convex minimization model and its objective function
is treated as a whole, the ALM in [15, 18] can be applied directly and the resulting
iterative scheme is

{
(xk+1, yk+1, zk+1) = argmin

{Lβ(x, y, z, λk)
∣∣ x ∈ X , y ∈ Y, z ∈ Z}, (4a)

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b). (4b)

If two functions in the objective are treated together and two variables in the
constraints are grouped accordingly, the alternating direction method of multipliers
(ADMM) in [5] can also be directly applied to (1). The resulting iterative scheme
reads as
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⎧⎪⎨
⎪⎩

xk+1 = argmin
{Lβ(x, yk, zk, λk)

∣∣ x ∈ X }, (5a)

(yk+1, zk+1) = argmin
{Lβ(xk+1, y, z, λk)

∣∣ y ∈ Y, z ∈ Z}, (5b)

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b). (5c)

Unless the functions and/or coefficient matrices in (1) are special enough, direct
applications of theALM (1.4) and theADMM(1.5) usually are not preferred because
the (x, y, z)-subproblem in (1.5b) and (y, z)-subproblem in (1.5b) may still be too
difficult (even when the functions θi per se are relatively easy). Therefore, generally
the three-block model (1) should not be treated as a one-block or two-block case and
the ALM (1.4) or ADMM (1.5) should not be applied directly.

On the other hand, for specific applications of themodel (1), functions in its objec-
tive usually have their own physical explanations andmathematical properties. Thus,
it is usually necessary to treat them individually to design more efficient algorithms.
More accurately, we are interested in such an algorithm that handles these functions
θi individually in its iterative scheme. A natural idea is to split the subproblem in the
original ALM (1.4) in the Jacobian or Gaussian manner; the corresponding schemes
are as follows: ⎧⎪⎪⎨

⎪⎪⎩
xk+1 = argmin

{Lβ(x, yk, zk, λk) | x ∈ X }
,

yk+1 = argmin
{Lβ(xk, y, zk, λk) | y ∈ Y},

zk+1 = argmin
{Lβ(xk, yk, z, λk) | z ∈ Z},

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b),

(6)

and ⎧⎪⎪⎨
⎪⎪⎩
xk+1 = argmin

{Lβ(x, yk, zk, λk)
∣∣ x ∈ X }

,

yk+1 = argmin
{Lβ(xk+1, y, zk, λk)

∣∣ y ∈ Y},
zk+1 = argmin

{Lβ(xk+1, yk+1, z, λk)
∣∣ z ∈ Z},

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b).

(7)

All the subproblems in (6) and (7) are easier than the original problem (1); only one
function in its objective and a quadratic termare involved in the x-, y-, z-subproblems.
But, as shown in [1, 8], neither of the schemes (6) and (7) is necessarily convergent.
Therefore, although schemes such as (6) and (7) can be easily generated, the lack of
convergence may require more meticulous theoretical study and algorithmic design
techniques for the three-block case (1). The results in [1, 8] also justify that design-
ing augmented-Lagrangian-based splitting algorithms for the three-block case (1) is
significantly different from that for the one- or two-block case; and they need to be
discussed separately despite that there is a rich literature of the ALM and ADMM.

Despite of their lack of convergence, the schemes (6) and (7) may empirically
work well, see, e.g., [20, 22, 23]. It is thus interesting to design an augmented-
Lagrangian-based splitting method whose iterative scheme is analogous to (6), (7),
or a fused one of both, while its theoretical convergence and empirical efficiency can
be both ensured. The method in [11] is such one; its iterative scheme for (1) reads
as
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin{Lβ(x, yk, zk, λk) | x ∈ X }, (8a)

λk+ 1
2 = λk − β(Axk+1 + Byk + Czk − b), (8b){

yk+1 =argmin{θ2(y)−(λk+ 1
2 )TBy + μβ

2 ‖B(y − yk)‖2 | y ∈ Y},
zk+1 =argmin{θ3(z)−(λk+ 1

2 )TCz + μβ

2 ‖C(z − zk)‖2 | z ∈ Z}, (8c)

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b), (8d)

where the parameter μ is required to be μ ≥ 2 in [11]. The scheme (1.8) has the
simplicity in sense of that each of the x-, y-, and z-subproblems involves just one
function from (1) in its objective. Its efficiency has been verified in [11] by some
sparse and low-rank models and image inpainting problems. Also, it was used in [2]
for solving a dimensionality reduction problem on physical space.

It is easy to see that the scheme (1.8) can be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argmin
{Lβ(x, yk, zk, λk)

∣∣ x ∈ X }, (9a){
yk+1 = argmin

{Lβ(xk+1, y, zk, λk) + τβ

2 ‖B(y − yk)‖2 ∣∣ y ∈ Y},
zk+1 = argmin

{Lβ(xk+1, yk, z, λk) + τβ

2 ‖C(z − zk)‖2 ∣∣ z ∈ Z}, (9b)

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b), (9c)

with τ = μ − 1 and thus τ ≥ 1 as shown in [11]. The scheme (1.9) shows more
clearly that it is a mixture of the augmented-Lagrangian-based splitting schemes (6)
and (7), in which the x- and (y, z)-subproblems are updated in the alternating order
while the (y, z)-subproblem is further splitted in parallel so that parallel computa-
tion can be implemented to the resulting y- and z-subproblems. Recall the lack of
convergence of (6) and (7). Thus, it is necessary to regularize the splitted y- and
z-subproblems appropriately in (1.9) to ensure the convergence. Indeed, the terms
τβ

2 ‖B(y − yk)‖2 and τβ

2 ‖C(z − zk)‖2 in (1.9) can be regarded as proximal regular-
ization terms with τ as the proximal parameter.

On the other hand, with fixed β, the proximal parameter τ determines the weight
of the proximal terms in the subproblems (1.9b) and its reciprocal plays the role of
step size for an algorithm implemented internally to solve the subproblems (1.9b).
We hence prefer smaller values of τ whenever the convergence of (1.9) can be
theoretically guaranteed. As mentioned, in [11], we have shown that the condition
τ ≥ 1 is sufficient to ensure the convergence of (1.9).While, numerically, as shown in
[11] and also in [2] (see SectionV, PartB, Pages 3247–3248), it has been observed that
values very close to 1 are preferred for τ . For example,μ = 2.01, i.e., τ = 1.01, was
recommended in [11] and used in [2] to result in faster convergence. This raises the
necessity of seeking the optimal (smallest) value of τ that can ensure the convergence
of (1.9). The main purpose of this paper is to rigorously prove that the optimal value
of τ is 0.5 for the method (1.9). That is, any τ > 0.5 ensures the convergence of (1.9)
yet any τ ∈ (0, 0.5) yields divergence.
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Note that, because of our analysis in [1], without loss of the generality, we can just
assume β ≡ 1. That is, the augmented Lagrangian function defined in (3) is reduced
to

L(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)

− λT (Ax + By + Cz − b) + 1

2
‖Ax + By + Cz − b‖2; (10)

and the iterative scheme of (1.9) is now simplified as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argmin
{L(x, yk, zk, λk)

∣∣ x ∈ X }, (11a){
yk+1 = argmin

{L(xk+1, y, zk, λk) + τ
2‖B(y − yk)‖2 ∣∣ y ∈ Y},

zk+1 = argmin
{L(xk+1, yk, z, λk) + τ

2‖C(z − zk)‖2 ∣∣ z ∈ Z}, (11b)

λk+1 = λk − (Axk+1 + Byk+1 + Czk+1 − b). (11c)

The rest of this paper is organized as follows. We recall some preliminaries in
Sect. 2. In Sect. 3, we show why positive indefiniteness occurs in the proximal reg-
ularization for the scheme (1.11) when τ > 0.5. Then, we provide an explanation
in the prediction-correction framework for (1.11) in Sect. 4; and focus on analyzing
an important quadratic term in Sect. 5 that is the key for conducting convergence
analysis for (1.11). The convergence of (1.11) with τ > 0.5 is proved in Sect. 6; and
the divergence of (1.11) with τ ∈ (0, 0.5) is shown in Sect. 7 by an example. We
estimate the worst-case convergence rate in terms of iteration complexity for the
scheme (1.11) in Sect. 8. Finally, we make some conclusions in Sect. 9.

2 Preliminaries

In this section, we recall some preliminary results for further analysis. First of all, a
pair of

(
(x∗, y∗, z∗), λ∗) is called a saddle point of the Lagrangian function defined

in (2) if it satisfies the inequalities

Lλ∈�m (x∗, y∗, z∗, λ) ≤ L(x∗, y∗, z∗, λ∗) ≤ Lx∈X ,y∈Y,z∈Z(x, y, z, λ∗).

Or, we can rewrite these inequalities as

⎧⎪⎪⎨
⎪⎪⎩
x∗ = argmin{L(x, y∗, z∗, λ∗) | x ∈ X },
y∗ = argmin{L(x∗, y, z∗, λ∗) | y ∈ Y},
z∗ = argmin{L(x∗, y∗, z, λ∗) | z ∈ Z},
λ∗ = argmax{L(x∗, y∗, z∗, λ) | λ ∈ �m}.

(12)
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Indeed, a saddle point of the Lagrangian function defined in (2) can also be
characterized by the following variational inequality:

⎧⎪⎪⎨
⎪⎪⎩
x∗ ∈ X , θ1(x) − θ1(x∗) + (x − x∗)T (−ATλ∗) ≥ 0, ∀ x ∈ X ,

y∗ ∈ Y, θ2(y) − θ2(y∗) + (y − y∗)T (−BTλ∗) ≥ 0, ∀ y ∈ Y,

z∗ ∈ Z, θ3(z) − θ3(z∗) + (z − z∗)T (−CTλ∗) ≥ 0, ∀ z ∈ Z,

λ∗ ∈ �m, (λ − λ∗)T (Ax∗ + By∗ + Cz∗ − b) ≥ 0, ∀ λ ∈ �m .

(13)

We call (x, y, z) and λ the primal and dual variables, respectively.
The optimality condition of the model (1) can be characterized by the monotone

variational inequality:

w∗ ∈ �, θ(u) − θ(u∗) + (w − w∗)T F(w∗) ≥ 0, ∀w ∈ �, (14a)

where

u =
⎛
⎝ x

y
z

⎞
⎠ , θ(u) = θ1(x) + θ2(y) + θ3(z), w =

⎛
⎜⎜⎝

x
y
z
λ

⎞
⎟⎟⎠ , F(w) =

⎛
⎜⎜⎝

−AT λ

−BT λ

−CT λ

Ax + By + Cz − b

⎞
⎟⎟⎠
(14b)

and
� = X × Y × Z × �m .

We denote by �∗ the solution set of (14). Note that the operator F in (14b) is
affine with a skew-symmetric matrix and thus we have

(w − w̄)T (F(w) − F(w̄)) = 0, ∀w, w̄. (15)

3 The Positive Indefiniteness of (1.11) with τ > 0.5

In this section, we revisit the scheme (1.11) from the variational inequality per-
spective; and show that it can be represented as a proximal version of the direct
application of ADMM (1.5) but the proximal regularization term is not positive defi-
nite for the case of τ > 0.5. The positive indefiniteness of the proximal regularization
excludes the application of a vast set of known convergence results in the literature
of ADMM and its proximal versions, because they all require positive definiteness
or semi-definiteness (plus additional assumptions on the model (1)) for the proximal
regularization term to validate the convergence analysis.

Let us first take a look at the optimality conditions of the subproblems in (1.11).
Note that the subproblem (1.11b) are specified as
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yk+1 = argmin
{
θ2(y) − yT Bλk

+ 1

2
‖Axk+1 + By + Czk − b‖2 + τ

2
‖B(y − yk)‖2 | y ∈ Y}, (16a)

and

zk+1 = argmin
{
θ3(z) − zTCλk

+ 1

2
‖Axk+1 + Byk + Cz − b‖2 + τ

2
‖C(z − zk)‖2 | z ∈ Z}. (16b)

Thus, the optimality condition of the y-subproblem in (1.11b) can be written as
yk+1 ∈ Y and

θ2(y) − θ2(y
k+1) + (y − yk+1)T

(−BT λk + BT (Axk+1 + Byk+1 + Czk − b)
+τ BT B(yk+1 − yk )

)
≥ 0, ∀y ∈ Y;

or equivalently: yk+1 ∈ Y and

θ2(y) − θ2(y
k+1) + (y − yk+1)T

(−BT λk + BT (Axk+1 + Byk+1 + Czk+1 − b)
τ BT B(yk+1 − yk ) − BT C(zk+1 − zk )

)
≥ 0, ∀y ∈ Y .

(17a)

Similarly, the optimality condition of the z-subproblem in (1.11b) can be written
as zk+1 ∈ Z and

θ3(z) − θ3(z
k+1) + (z − zk+1)T

(−CT λk + CT (Axk+1 + Byk+1 + Czk+1 − b)
−CT B(yk+1 − yk ) + τCT C(zk+1 − zk )

)
≥ 0, ∀z ∈ Z.

(17b)

Then, with (1.11c), we can rewrite the inequalities (17a) and (17b) as
(yk+1, zk+1) ∈ Y × Z and

(
θ2(y) − θ2(yk+1)

θ3(z) − θ3(zk+1)

)
+
(
y − yk+1

z − zk+1

)T{(−BTλk+1

−CTλk+1

)
+ D0

(
yk+1 − yk

zk+1 − zk

)}
≥ 0, ∀ (y, z) ∈ Y × Z, (18)

where

D0 =
(

τ BT B −BTC
−CT B τCTC

)
. (19)

Obviously, D0 is positive semidefinite and indefinite when τ ≥ 1 and τ ∈ (0, 1),
respectively.

Then, it is easy to see that the scheme (1.11) can be rewritten as
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+1 = argmin
{L(x, yk , zk , λk)

∣∣ x ∈ X }, (20a)(
yk+1

zk+1

)
= argmin

{
L(xk+1, y, z, λk) + 1

2

∥∥∥∥ y − yk

z − zk

∥∥∥∥2
D0

∣∣∣∣ (y, z) ∈ Y × Z
}

,(20b)

λk+1 = λk − (Axk+1 + Byk+1 + Czk+1 − b), (20c)

Comparing (3.5b) with (1.5b) (note that β = 1), we see that the scheme (1.11)
can be symbolically represented as a proximal version of (1.5) in which the (y, z)-
subproblem is proximally regularized by a proximal term. But the difficulty is that
D0 defined in (19) is positive indefinite when τ ∈ (0.5, 1). Indeed, our analysis in
[11] requires τ ≥ 1 and thus the positive semidefiniteness of D0 is ensured. For
this case, the convergence analysis is relatively easy because it can follow some
techniques used for the proximal point algorithm which is originated from [17, 19].
For the case where τ is relaxed to τ > 0.5 and hence the matrix D0 in (19) is
positive indefinite, the analysis in [11] and other literatures is not applicable and
more sophisticated techniques are needed for proving the convergence of the scheme
(1.11) with τ > 0.5.

4 A Prediction-Correction Explanation of (1.11)

In this section, we show that the scheme (1.11) can be expressed by a prediction-
correction framework. This prediction-correction explanation is only for the conve-
nience of theoretical analysis and there is no need to follow this prediction-correction
framework to implement the scheme (1.11).

In the scheme (1.11), we see that xk is not needed to generate the next (k + 1)-th
iterate; only (yk, zk, λk) are needed. Thus, we call x the intermediate variable; and
(y, z, λ) essential variables. To distinguish their roles, accompaniedwith the notation
in (14b), we additionally define the notation

v =
⎛
⎝ y

z
λ

⎞
⎠ , V = Y × Z × Rm and V∗ = {(y∗, z∗, λ∗) | (x∗, y∗, z∗, λ∗) ∈ �∗}.

(21)
Moreover, we introduce the auxiliary variables w̃k = (x̃ k, ỹk, z̃k, λ̃k) defined by

x̃ k = xk+1, ỹk = yk+1, z̃k = zk+1 and λ̃k = λk − (Axk+1 + Byk + Czk − b),
(22)

where (xk+1, yk+1, zk+1) is the iterate generated by the scheme (1.11) from the given
one (yk, zk, λk). Using these notations, we have
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λk+1 = λk − (Axk+1 + Byk+1 + Czk+1 − b)

= [λk − (Axk+1 + Byk + Czk − b)] + B(yk − yk+1) + C(zk − zk+1)

= λ̃k + B(yk − ỹk) + C(zk − z̃k). (23)

Now, we interpret the optimality conditions of the subproblems in (1.11) by
using the auxiliary variables w̃k . First, ignoring some constant terms, the subproblem
(1.11.a) is equivalent to

xk+1 = argmin
{
θ1(x) − xT Aλk + 1

2
‖Ax + Byk + Czk − b‖2 | x ∈ X };

and its optimality condition can be rewritten as

x̃ k ∈ X , θ1(x) − θ1(x̃
k) + (x − x̃ k)T (−AT λ̃k) ≥ 0, ∀ x ∈ X . (24a)

Using (23), yk+1 = ỹk and zk+1 = z̃k , the inequalities (17a) and (17b) can be written
as

ỹk ∈ Y, θ2(y) − θ2(ỹ
k) + (y − ỹk)T {−BT λ̃k + (1 + τ)BT B(ỹk − yk)} ≥ 0, ∀ y ∈ Y

and

z̃k ∈ Z, θ3(z) − θ3(z̃
k) + (z − z̃k)T {−CT λ̃k + (1 + τ)CTC(z̃k − zk)} ≥ 0, ∀ z ∈ Z,

respectively. Thus, the inequality (18) becomes (ỹk, z̃k) ∈ Y × Z and

(
θ2(y) − θ2(ỹk)
θ3(z) − θ3(z̃k)

)
+
(
y − ỹk

z − z̃k

)T{(−BT

−CT

)
λ̃k +

+ (1 + τ)

(
BT B 0
0 CTC

)(
ỹk − yk

z̃k − zk

)}
≥ 0, ∀(y, z) ∈ Y × Z. (24b)

Note that the equality λ̃k = λk − (Axk+1 + Byk + Czk − b) in (22) can bewritten
as the variational inequality form

λ̃k ∈ �m , (λ − λ̃k )T {(Ax̃k + B ỹk + Cz̃k − b) − B(ỹk − yk) − C(z̃k − zk) + (λ̃k − λk )} ≥ 0, ∀λ ∈ �m .

(24c)
Therefore, it follows from the inequalities (24a), (24b) and (24c) that the auxil-
iary variable w̃k = (x̃ k, ỹk, z̃k, λ̃k) defined in (22) satisfies the following variational
inequality.
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Prediction Step

w̃k ∈ �, θ(u) − θ(ũk ) + (w − w̃k )T F(w̃k ) ≥ (v − ṽk )T Q(vk − ṽk ), ∀w ∈ �, (25a)

where

Q =
⎛
⎝ (1 + τ)BT B 0 0

0 (1 + τ)CTC 0
−B −C Im

⎞
⎠ . (25b)

We call the auxiliary variable w̃k = (x̃ k, ỹk, z̃k, λ̃k) as the predictor. Using (23),
the update form (1.11c) can be represented as

λk+1 = λk − (Axk+1 + Byk+1 + Czk+1 − b) = λk − [−B(yk − ỹk ) − C(zk − z̃k ) + (λk − λ̃k )].

Recall we define by v in (21) the essential variables for the scheme (1.11). The new
essential variables of (1.11), vk+1 = (yk+1, zk+1, λk+1), are updated by the following
scheme:

Correction Step
vk+1 = vk − M(vk − ṽk), (26a)

where

M =
⎛
⎝ I 0 0

0 I 0
−B −C Im

⎞
⎠ . (26b)

Overall, the scheme (1.11) can be explained by a prediction-correction framework
which generates a predictor characterized by the step (4.5) and then corrects it by the
step (4.6). As we shall show, the inequality (4.5) indicates the discrepancy between
w̃k and a solution point of the variational inequality (14) and it plays an important role
in the convergence analysis for the scheme (1.11). Indeed, we can further investigate
the inequality (4.5) and derive a new right-hand side that is more preferred for
establishing the convergence. For this purpose, let us define a matrix as

H =
⎛
⎝ (1 + τ)BT B 0 0

0 (1 + τ)CTC 0
0 0 Im

⎞
⎠ , (27)

which is positive definite for any τ > 0 when B and C are both full column rank.
Then, for thematrices Q andM defined in (4.5b) and (4.6b), respectively, it obviously
holds that

Q = HM. (28)

In the following lemma, we further analyze the right-hand side of (4.5) and show
more explicitly the difference of the proof for the convergence of (1.11) with τ > 0.5
from that with τ ≥ 1 in [11].
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Theorem 4.1 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then, w̃k ∈ � and

θ(u) − θ(ũk ) + (w − w̃k )T F(w) ≥ 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
) + 1

2
(vk − ṽk )T G(vk − ṽk ), ∀w ∈ �, (29)

where
G = QT + Q − MT HM. (30)

Proof Using Q = HM (see (28)) and the relation (4.6a), the right-hand side of
(4.5a) can be written as

(v − ṽk)T H(vk − vk+1),

and hence we have

θ(u) − θ(ũk) + (w − w̃k)T F(w̃k) ≥ (v − ṽk)T H(vk − vk+1), ∀w ∈ �. (31)

Applying the identity

(a − b)T H(c − d) = 1

2
{‖a − d‖2H − ‖a − c‖2H } + 1

2
{‖c − b‖2H − ‖d − b‖2H },

to the right-hand side of (31) with

a = v, b = ṽk, c = vk, and d = vk+1,

we obtain

(v − ṽk )T H(vk − vk+1) = 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
) + 1

2
(‖vk − ṽk‖2H−‖vk+1 − ṽk‖2H ).

(32)
For the last term of (32), we have

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H
= ‖vk − ṽk‖2H − ‖(vk − ṽk) − (vk − vk+1)‖2H
4.6a= ‖vk − ṽk‖2H − ‖(vk − ṽk) − M(vk − ṽk)‖2H
= 2(vk − ṽk)T HM(vk − ṽk) − (vk − ṽk)T MT HM(vk − ṽk)

= (vk − ṽk)T (QT + Q − MT HM)(vk − ṽk)

4.10= (vk − ṽk)T G(vk − ṽk). (33)

Substituting (33) into (32), we get
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(v − ṽk)T H(vk − vk+1) = 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
)

+ 1

2
(vk − ṽk)T G(vk − ṽk). (34)

Recall that (w − w̃k)T F(w̃k) = (w − w̃k)T F(w) (see (15)). Using this fact, the
assertion of this lemma follows from (31) and (34) directly. �

When G given in (30) is positive definite, as shown in [11], it is relatively easier
to use the assertion (29) to prove the global convergence and estimate its worst-case
convergence rate in terms of iteration complexity, see, e.g., [7, 14] for details and [6]
(Sections 4 and 5 therein) for a tutorial proof. For the matrix G given in (30), since
HM = Q and MT HM = MT Q, we have

MT HM =
⎛
⎝ I 0 −BT

0 I −CT

0 0 Im

⎞
⎠
⎛
⎝ (1 + τ)BT B 0 0

0 (1 + τ)CTC 0
−B −C Im

⎞
⎠

=
⎛
⎝ (2 + τ)BT B BTC −BT

CT B (2 + τ)CTC −CT

−B −C Im

⎞
⎠ .

Then, using (4.5b) and the above equation, we have

G = (QT + Q) − MT HM

=
⎛
⎝ (2 + 2τ)BT B 0 −BT

0 (2 + 2τ)CTC −CT

−B −C 2Im

⎞
⎠

−
⎛
⎝ (2 + τ)BT B BT C −BT

CT B (2 + τ)CTC −CT

−B −C Im

⎞
⎠

=
⎛
⎝ τ BT B −BTC 0

−CT B τCTC 0
0 0 Im

⎞
⎠ . (35)

By using the notation D0 (see (19)), the matrix G can be rewritten as

G =
⎛
⎝D0

0
0

0 0 I

⎞
⎠ .

Obviously, the proximal matrix D0 in (19) can be rewritten as

D0 = (τ − 1)

(
BT B 0
0 CTC

)
+
(

BT

−CT

) (
B,−C

)
. (36)
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Therefore, for τ ∈ ( 12 , 1),G is positive indefinite because thematrix D0 is not so. The
positive indefiniteness of G is indeed the main difficulty of proving the convergence
of the scheme (1.11) with τ > 0.5; and we need to look into the quadratic term
(vk − ṽk)T G(vk − ṽk) more intensively.

5 Investigation of the Quadratic Term
(vk − ṽk)TG(vk − ṽk)

Asmentioned, the keypoint of proving the convergence of the scheme (1.11)with τ >

0.5 is to analyze the quadratic term (vk − ṽk)T G(vk − ṽk) which is not guaranteed
to be positive. In this section, we focus on investigating this term and show that

(vk − ṽk)T G(vk − ṽk) ≥ ψ(vk, vk+1) − ψ(vk−1, vk) + ϕ(vk, vk+1), (37)

where ψ(·, ·) and ϕ(·, ·) are both non-negative functions. The first two terms
ψ(vk, vk+1) − ψ(vk−1, vk) in the right-hand side of (37) can be manipulated consec-
utively between iterates and the last term ϕ(vk, vk+1) should be such an error bound
that can measure how much wk+1 fails to be a solution point of (14). If we find such
functions that guarantee the assertion (37), then we can substitute it into (29) and get
the inequality

θ(u) − θ(ũk) + (w − w̃k)T F(w)

≥ 1

2

(‖v − vk+1‖2H + ψ(vk, vk+1)
) − 1

2

(‖v − vk‖2H + ψ(vk−1, vk)
)

+1

2
ϕ(vk, vk+1), ∀w ∈ �. (38)

As we shall show, all the components of the right-hand side of (38) in parentheses
should be positive to establish the convergence and convergence rate of (1.11). It is
indeed this requirement that implies our restriction of τ > 0.5. We show the details
in Theorem 5.5, preceded by several lemmas. Similar techniques for the convergence
analysis of the ADMM are referred to, e.g. [4, 9, 10, 12].

Lemma 5.1 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then we have

(vk − ṽk)T G(vk − ṽk)

= (1 + τ)‖B(yk − yk+1)‖2 + (1 + τ)‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2
+2(λk − λk+1)T

(
B(yk − yk+1) + C(zk − zk+1)

)
. (39)

Proof First, according to (35), we have
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G =
⎛
⎝τ BT B −BTC 0

−CT B τCTC 0
0 0 Im

⎞
⎠ =

⎛
⎝(1 + τ)BT B 0 0

0 (1 + τ)CTC 0
0 0 Im

⎞
⎠ −

⎛
⎝BT B BTC 0
CT B CTC 0
0 0 0

⎞
⎠

and thus

(vk − ṽk)T G(vk − ṽk) = (1 + τ)‖B(yk − ỹk)‖2 + (1 + τ)‖C(zk − z̃k)‖2 + ‖λk − λ̃k‖2
−‖B(yk − ỹk) + C(zk − z̃k)‖2.

For the term ‖λk − λ̃k‖2 in the right-hand side of the above equation, because x̃ k =
xk+1,

λk − λ̃k = Axk+1 + Byk + Czk − b and Axk+1 + Byk+1 + Czk+1 − b = λk − λk+1,

we have
λk − λ̃k = B(yk − yk+1) + C(zk − zk+1) + (λk − λk+1).

Finally, by a manipulation, we get

(vk − ṽk)T G(vk − ṽk)

= (1 + τ)‖B(yk − yk+1)‖2 + (1 + τ)‖C(zk − zk+1)‖2
−‖B(yk − yk+1) + C(zk − zk+1)‖2
+‖B(yk − yk+1) + C(zk − zk+1) + (λk − λk+1)‖2

= (1 + τ)‖B(yk − yk+1)‖2 + (1 + τ)‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2
+2(λk − λk+1)T

(
B(yk − yk+1) + C(zk − zk+1)

)
.

The lemma is proved. �
For further analysis, we will divide the crossing term 2(λk − λk+1)T

(
B(yk −

yk+1) + C(zk − zk+1)
)
in the right-hand side of (39) into two parts and give their

lower bounds by quadratic terms.

Lemma 5.2 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then we have

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥ (

ψ(vk , vk+1) − ψ(vk−1, vk)
) − 2(1 − τ)

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2), (40)

where

ψ(vk , vk+1) = 1

2

(∥∥∥∥ yk − yk+1

zk − zk+1

∥∥∥∥
2

D
+ (1 − τ)

(
‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2

))

(41)
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with

D =
(

BT

−CT

) (
B,−C

)
. (42)

Proof Recall (18). It holds that

(yk+1, zk+1) ∈ Y × Z,

(
θ2(y) − θ2(yk+1)

θ3(z) − θ3(zk+1)

)
+
(
y − yk+1

z − zk+1

)T

{(−BT

−CT

)
λk+1 + D0

(
yk+1 − yk

zk+1 − zk

)}
≥ 0, ∀(y, z) ∈ Y × Z. (43)

Analogously, for the previous iteration, we have

(yk , zk) ∈ Y × Z,

(
θ2(y) − θ2(yk)
θ3(z) − θ3(zk)

)
+
(
y − yk

z − zk

)T

{(−BT

−CT

)
λk + D0

(
yk − yk−1

zk − zk−1

)}
≥ 0, ∀(y, z) ∈ Y × Z. (44)

Setting (y, z) = (yk, zk) and (y, z) = (yk+1, zk+1) in (43) and (44), respectively,
and adding them, we get

(
yk − yk+1

zk − zk+1

)T{(
BT

CT

)
(λk − λk+1) + D0

[(
yk+1 − yk

zk+1 − zk

)
−
(
yk − yk−1

zk − zk−1

)]}
≥ 0.

Consequently, we have

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥
(
yk − yk+1

zk − zk+1

)T

D0

[(
yk − yk+1

zk − zk+1

)
−
(
yk−1 − yk

zk−1 − zk

)]
. (45)

From (19) and (42) we get

D0 = D − (1 − τ)

(
BT B 0
0 CTC

)
.

Thus, using Cauchy-Schwaez inequality, from (45) we obtain
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(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥
(
yk − yk+1

zk − zk+1

)T {
D − (1 − τ)

(
BT B 0
0 CTC

)}[(
yk − yk+1

zk − zk+1

)
−
(
yk−1 − yk

zk−1 − zk

)]

=
∥∥∥∥ yk − yk+1

zk − zk+1

∥∥∥∥
2

D

−
(
yk − yk+1

zk − zk+1

)T

D

(
yk−1 − yk

zk−1 − zk

)

−(1 − τ)
(
‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2

)

+(1 − τ)

(
yk − yk+1

zk − zk+1

)T (
BT B 0
0 CTC

)(
yk−1 − yk

zk−1 − zk

)

≥ 1

2

∥∥∥∥ yk − yk+1

zk − zk+1

∥∥∥∥
2

D

− 1

2

∥∥∥∥ yk−1 − yk

zk−1 − zk

∥∥∥∥
2

D

−3

2
(1 − τ)

(
‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2

)
−1

2
(1 − τ)

(
‖B(yk−1 − yk)‖2 + ‖C(zk−1 − zk)‖2

)
, (46)

where the last inequality is because of the Cauchy-Schwarz inequality. Manipulating
the right-hand side of (46) recursively and using the notation of ψ(·, ·) (see (41)),
we get (40) and the lemma is proved. �

In addition to (40), we need to the term (λk − λk+1)T
(
B(yk − yk+1) + C(zk −

zk+1)
)
by an another quadratic terms. This is done by the following lemma.

Lemma 5.3 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then, for τ ∈ (0.5, 1), we have

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥ −τ

(
‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2

)
−
(3
2

− τ
)
‖λk − λk+1‖2. (47)

Proof Setting δ = τ − 1
2 . Because τ ∈ (0.5, 1), we have δ ∈ (0, 0.5). Using the

Cauchy-Schwarz inequality twice, we get

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥ − 1

4(1 − δ)
‖B(yk − yk+1) + C(zk − zk+1)‖2 − (1 − δ)‖λk − λk+1‖2

≥ − 1

2(1 − δ)

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2) − (1 − δ)‖λk − λk+1‖2.

Since δ ∈ (0, 0.5), we have
1

2(1 − δ)
<

1

2
+ δ,
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and thus

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥ −(1

2
+ δ

)(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2) − (1 − δ)‖λk − λk+1‖2.

Substituting δ = τ − 1
2 in the above inequality, we get (47) and the lemma is

proved. �

Recall that we want to bound the quadratic term (vk − ṽk)T G(vk − ṽk) in the
form of (38). Our previous analysis enables us to achieve it; and this is the basis of
the convergence analysis to be shown soon.

Lemma 5.4 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then, for τ ∈ (0.5, 1), we have

(vk − ṽk)T G(vk − ṽk) ≥ (
ψ(vk, vk+1) − ψ(vk−1, vk)

) + ϕ(vk, vk+1), (48)

where ψ(vk, vk+1) is defined in (41) and

ϕ(vk, vk+1) = (
τ − 1

2

)(
2‖B(yk − yk+1)‖2 + 2‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2).

(49)

Proof Substituting (40) and (47) into (39), we get

(vk − ṽk)T G(vk − ṽk)

≥ (1 + τ)‖B(yk − yk+1)‖2 + (1 + τ)‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2
+(

ψ(vk , vk+1) − ψ(vk−1, vk)
) − 2(1 − τ)

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2)
−τ

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2) − (3
2

− τ
)‖λk − λk+1‖2

= (
ψ(vk , vk+1) − ψ(vk−1, vk)

)
+(2τ − 1)

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2) + (
τ − 1

2

)‖λk − λk+1‖2.

The assertion of this lemma follows from the definition of ϕ(vk, vk+1) directly.�
Finally, substituting (48) into (29), we obtain the following theorem directly. This

theorem plays a fundamental role in proving the convergence of (1.11) with τ > 0.5.
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Theorem 5.5 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then we have

θ(u) − θ(ũk) + (w − w̃k)T F(w) ≥ 1

2

(‖v − vk+1‖2H + ψ(vk , vk+1)
) − 1

2

(‖v − vk‖2H
+ψ(vk−1, vk)

) + 1

2
ϕ(vk , vk+1), ∀ w ∈ �, (50)

where ψ(vk, vk+1) and ϕ(vk, vk+1) are defined in (41) and (49), respectively.

6 Convergence

As mentioned, proving the convergence of the scheme (1.11) with τ > 0.5 essen-
tially relies on Theorem 5.5. With Theorem 5.5, the remaining part of the proof is
subroutine. In this section, we present the convergence of the scheme (1.11) with
τ > 0.5; a lemma is first proved to show the contraction property of the sequence
generated by (1.11).

Lemma 6.1 Let {wk} be the sequence generated by (1.11) with τ > 0.5 for the
problem (1). Then we have

(‖vk+1 − v∗‖2H + ψ(vk, vk+1)
) ≤ (‖vk − v∗‖2H + ψ(vk−1, vk)

) − ϕ(vk, vk+1),

(51)
where ψ(vk, vk+1) and ϕ(vk, vk+1) are defined in (41) and (49), respectively.

Proof Setting w = w∗ in (50) and using

θ(ũk) − θ(u∗) + (w̃k − w∗)T F(w∗) ≥ 0,

we obtain the assertion (51) immediately. �

Theorem 6.2 Let {wk} be the sequence generated by (1.11) with τ > 0.5 for the
problem (1). Then the sequence {vk} converges to a v∞ ∈ V∗ when B and C are both
full column rank.

Proof First, it follows from (51) and (49) that

(τ − 1

2
)
(
2‖B(yk − yk+1)‖2 + 2‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2

)
≤ (‖vk − v∗‖2H + ψ(vk−1, vk)

) − (‖vk+1 − v∗‖2H + ψ(vk, vk+1)
)
.

Summarizing the last inequality over k = 1, 2, . . ., we obtain
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∞∑
k=1

{
(τ − 1

2
)
(
2‖B(yk − yk+1)‖2 + 2‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2

)}
≤ ‖v1 − v∗‖2H + ψ(v0, v1)

and thus

lim
k→∞ ‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2 = 0. (52)

For an arbitrarily fixed v∗ ∈ V∗, it follows from (51) that, for any k > 1, we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H + ψ(vk−1, vk) ≤ ‖v1 − v∗‖2H + ψ(v0, v1). (53)

Thus the sequence {vk} is bounded. BecauseM is non-singular, according to (4.6),
{ṽk} is also bounded. Let v∞ be a cluster point {ṽk} and {ṽk j } be the subsequence of
{ṽk} converging to v∞. Let x∞ be the vector induced by given (y∞, z∞, λ∞) ∈ V .
Then, it follows from (31) that

w∞ ∈ �, θ(u) − θ(u∞) + (w − w∞)T F(w∞) ≥ 0, ∀w ∈ �,

which means w∞ is a solution point of (14) and its essential part v∞ ∈ V∗. Since
v∞ ∈ V∗, it follows from (53) that

‖vk+1 − v∞‖2H ≤ ‖vk − v∞‖2H + ψ(vk−1, vk). (54)

Together with (52), it is impossible that the sequence {vk} has more than one
cluster point. Thus {vk} converges to v∞ and the proof is complete. �

Remark 6.3 Note that the convergence of (1.11) with τ > 0.5 in terms of the
sequence {vk} is proved in Theorem 6.2 under the assumption that both B and C
are full column rank. Without this assumption, weaker convergence results in terms
of {Byk,Czk} can be derived. We refer to Sect. 6 in [11] for details.

7 The Optimality of τ = 0.5

We have proved the convergence of (1.11) with τ > 0.5; the key is sufficiently
ensuring the non-negativeness of the coefficients in the right-hand side of (50). In
this section, we show by an example that any τ ∈ (0, 0.5) may yield divergence of
(1.11). Hence, τ = 0.5 is the watershed, or optimal value, to ensure the convergence
of (1.11).
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For any given τ < 0.5, we take ε = 0.5 − τ > 0 and consider the problem

min{x + ε

2
y2 + ε

2
z2 | x + y + z = 0, x ∈ {0}, y ∈ �, z ∈ �}, (55)

which is a special case of the model (1). Obviously, the solution of this problem is
x = y = z = 0.

The augmented Lagrangian function of the problem (55) with a penalty parameter
of 1 is

L(x, y, z, λ) = x + ε

2
y2 + ε

2
z2 − λT (x + y + z) + 1

2
‖x + y + z‖2;

and the iterative scheme (1.11) for (55) is⎧⎪⎪⎨
⎪⎪⎩
xk+1 = argmin

{L(x, yk, zk, λk)
∣∣ x ∈ {0}},

yk+1 = argmin
{L(xk+1, y, zk, λk) + τ

2‖y − yk‖2 ∣∣ y ∈ �},
zk+1 = argmin

{L(xk+1, yk, z, λk) + τ
2‖z − zk‖2 ∣∣ z ∈ �},

λk+1 = λk − (xk+1 + yk+1 + zk+1).

(56)

Since X = {0}, we have xk+1 ≡ 0. Ignoring constant terms in the objective func-
tion of the subproblems, the recursion (56) becomes

⎧⎪⎪⎨
⎪⎪⎩
xk+1 ≡ 0,
yk+1 = argmin

{
ε
2 y

2 − yTλk + 1
2‖y + zk‖2 + τ

2‖y − yk‖2 ∣∣ y ∈ �},
zk+1 = argmin

{
ε
2 z

2 − zTλk + 1
2‖yk + z‖2 + τ

2‖z − zk‖2 ∣∣ z ∈ �},
λk+1 = λk − (yk+1 + zk+1).

(57)

Further, it follows from (57) that⎧⎨
⎩

εyk+1 − λk + (yk+1 + zk) + τ(yk+1 − yk) = 0,
εzk+1 − λk + (zk+1 + yk) + τ(zk+1 − zk) = 0,
λk+1 = λk − (yk+1 + zk+1).

Thus, the iterative scheme for v = (y, z, λ) can be written as

⎧⎨
⎩

(τ + 1 + ε)yk+1 = τ yk − zk + λk,

(τ + 1 + ε)zk+1 = −yk + τ zk + λk,

λk+1 = λk − (yk+1 + zk+1).

(58)

Without loss of generality, we can take y0 = z0 and thus yk ≡ zk , for all k > 0.
Using this fact and τ + ε = 0.5, we get

{ 3

2
yk+1 = (τ − 1)yk + λk,

λk+1 = λk − 2yk+1.
(59)
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With elementary manipulations, we obtain

⎧⎪⎨
⎪⎩

yk+1 = −2(1 − τ)

3
yk + 2

3
λk,

λk+1 = 4(1 − τ)

3
yk + −1

3
λk,

(60)

which can be written as(
yk+1

λk+1

)
= P(τ )

(
yk

λk

)
with P(τ ) = 1

3

(−2(1 − τ) 2
4(1 − τ) −1

)
. (61)

Let f1(τ ) and f2(τ ) be the two eigenvalues of the matrix P(τ ). Then we have

f1(τ ) = 1

6

(
(2τ − 3) +

√
(3 − 2τ)2 + 24(1 − τ)

)
,

and

f2(τ ) = 1

6

(
(2τ − 3) −

√
(3 − 2τ)2 + 24(1 − τ)

)
.

Certainly, the scheme (60) is divergent if the absolute value of one of the eigen-
values of the matrix P(τ ) is greater than 1. Indeed, it holds that f2(τ ) < −1 for any
τ ∈ (0, 0.5). To see this assertion, we notice that

f2(τ ) < −1 ⇔ (2τ − 3) − √
(3 − 2τ)2 + 24(1 − τ) < −6

⇔ 2τ + 3 <
√
4τ 2 − 36τ + 33

⇔ 4τ 2 + 12τ + 9 < 4τ 2 − 36τ + 33
⇔ τ < 0.5.

Hence, the scheme (1.11) is not necessarily convergent for any τ ∈ (0, 0.5).

8 Convergence Rate

In this section, we derive a worst-case O(1/t) convergence rate in terms of iteration
complexity for the scheme (1.11) with τ > 0.5, where t is the iteration counter.
Hence, although the condition τ ≥ 1 in [11] is now relaxed to τ > 0.5, the same
convergence rate result in [11] remains valid for the scheme (1.11). Similar analysis
is refereed to [11, 13].

First of all, recall (14). If we find w̃ satisfying the inequality

w̃ ∈ �, θ(u) − θ(ũ) + (w − w̃)T F(w̃) ≥ 0, ∀w ∈ �,
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then w̃ is a solution point of (14). As mentioned in (15), we have (w − w̃)T F(w̃) =
(w − w̃)T F(w̃). Thus, a solution point w̃ of (14) can be also characterized by

w̃ ∈ �, θ(u) − θ(ũ) + (w − w̃)T F(w) ≥ 0, ∀w ∈ �.

Therefore, as [3], for given ε > 0, w̃ ∈ � is called an ε-approximate solution of
VI(�, F, θ) if it satisfies

w̃ ∈ �, θ(u) − θ(ũ) + (w − w̃)T F(w) ≥ −ε, ∀ w ∈ D(w̃),

where
D(w̃) = {w ∈ � | ‖w − w̃‖ ≤ 1}.

In the following, we show that based on the first t iterates generated by the scheme
(1.11) with τ > 0.5, we can find an approximate solution of (14), denoted by w̃ ∈ �,
such that

w̃ ∈ � and sup
w∈D(w̃)

{
θ(ũ) − θ(u) + (w̃ − w)T F(w)

} ≤ ε, (62)

where ε = O(1/t). That is, a worst-case O(1/t) convergence rate is established for
the scheme (1.11) with τ > 0.5. Theorem 5.5 is still the basis for the analysis in this
section.

Theorem 8.1 Let {wk} be the sequence generated by (1.11) with τ > 0.5 for the
problem (1) and w̃k be defined by (22). Then for any integer t , we have

θ(ũt ) − θ(u) + (w̃t − w)T F(w) ≤ 1

2t

{‖v − v1‖2H + ψ(v0, v1)
}
, (63)

where

w̃t = 1

t

( t∑
k=1

w̃k
)

(64)

and ψ(v0, v1) is defined in (41) and thus

ψ(v0, v1) = 1

2

(∥∥∥∥ y0 − y1

z0 − z1

∥∥∥∥
2

D

+ (1 − τ)
(
‖B(y0 − y1)‖2 + ‖C(z0 − z1)‖2

))
.

Proof First, it follows from (50) that

θ(u) − θ(ũk) + (w − w̃k)T F(w) ≥ 1

2

(‖v − vk+1‖2H
+ ψ(vk, vk+1)

) − 1

2

(‖v − vk‖2H + ψ(vk−1, vk)
)
.
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Thus, we have

θ(ũk) − θ(u) + (w̃k − w)T F(w) + 1

2

(‖v − vk+1‖2H
+ ψ(vk, vk+1)

) ≤ 1

2

(‖v − vk‖2H + ψ(vk−1, vk)
)
. (65)

Summarizing the inequality (65) over k = 1, 2, . . . , t , we obtain

t∑
k=1

θ(ũk) − tθ(u) + (

t∑
k=1

w̃k − tw)T F(w) ≤ 1

2

(‖v − v1‖2H + ψ(v0, v1)
)

and thus

1

t

( t∑
k=1

θ(ũk)
) − θ(u) + (w̃t − w)T F(w) ≤ 1

2t

(‖v − v1‖2H + ψ(v0, v1)
)
. (66)

Since θ(u) is convex and

ũt = 1

t

( t∑
k=1

ũk
)
,

we have that

θ(ũt ) ≤ 1

t

( t∑
k=1

θ(ũk)
)
.

Substituting it into (66), the assertion of this theorem follows directly. �

For a given compact set D(w̃) ⊂ �, let

d := sup

{
‖v − v1‖2H + 1

2

∥∥∥∥ y0 − y1

z0 − z1

∥∥∥∥2
D

+ 1 − τ

2

(
‖B(y0 − y1)‖2 + ‖C(z0 − z1)‖2

) ∣∣∣w ∈ D(w̃)

}

where v0 = (y0, z0, λ0) and v1 = (y1, z1, λ1) are the initial and the first generated
iterates, respectively. Then, after t iterations of the scheme (1.11), the point w̃t ∈ �

defined in (64) satisfies

w̃ ∈ � and sup
w∈D(w̃)

{
θ(ũ) − θ(u) + (w̃ − w)T F(w)

} ≤ d

2t
= O(

1

t
),

which means w̃t is an approximate solution of VI(�, F, θ ) with an accuracy O(1/t)
(recall (62)). That is, a worst-case O(1/t) convergence rate is established for the
scheme (1.11) with τ > 0.5. Since w̃t defined in (64) is the average of all iterates of
(1.11), this convergence rate is in the ergodic sense.
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9 Conclusions

We revisit the splitting method proposed in [11] for solving separable convex mini-
mizationmodels; and show that its optimal proximal parameter is 0.5when the objec-
tive function is the sum of three functions. This optimal proximal parameter offers
the possibility of immediate numerical acceleration; which can be easily verified by
the examples tested in [2, 11] and others. For succinctness, we omit the presentation
of numerical results. Meanwhile, more sophisticated techniques are required for the
convergence analysis because this optimal proximal parameter generates positive
indefiniteness in the proximal regularization term as well. We establish the conver-
gence and estimate the worst-case convergence rate in terms of iteration complexity
for the improved version of the method in [11] with the optimal proximal parameter.
This work is inspired by the analysis in our recent work [9, 10] for the augmented
Lagrangian method and alternating direction method of multiplies.
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