
Automatic Parameter Selection Based on
Residual Whiteness for Convex
Non-convex Variational Restoration

Alessandro Lanza, Serena Morigi, and Fiorella Sgallari

Abstract Image restoration is a well-known ill-posed inverse problem whose aim
is to recover a sharp clean image from the corresponding blur- and noise-corrupted
observation. Variational methods penalize solutions deemed undesirable by incorpo-
rating regularization techniques. A popular strategy relies on using sparsity promot-
ing regularizers; it is well known that, in general, nonconvex regularizers hold the
potential for promoting sparsity more effectively than convex regularizers. Recently
a new class of convex non-convex (CNC) variational models has been proposed
which includes a general parametric nonconvex nonseparable regularizer. However,
the performance of this approach depends critically on the regularization parame-
ter. In this paper we propose to use a parametric CNC variational restoration model
within a bilevel framework, where the parameter is tuned by minimizing a measure
of the restoration residual whiteness. Some preliminary numerical experiments are
shown which indicate the effectiveness of the proposal.
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1 Introduction

In this paper, we consider the problem of restoring 2-D gray-scale images corrupted
by blur and additive white Gaussian noise (AWGN).

These images can be represented by the discretization of a real valued function
defined on a 2-D compact rectangular domain. Let x ∈ R

n , with n = n1n2, be the
unknown n1 × n2 clean image concatenated into an n-vector, A ∈ R

n×n be a known
blurring operator and ε ∈ R

n be an unknown realization of the noise process, which
we assume white Gaussian with zero-mean and standard deviation σ . The discrete
imagingmodel of the degradation processwhich relates the observed degraded image
b ∈ R

n with x , can be expressed as follows:

b = Ax + ε . (1)

Given A and b, our goal is to solve the inverse problem of recovering an accurate
estimate of x , which is known as deconvolution or deblurring. When A is the identity
operator, recovering x is referred as denoising.

Image deblurring is a discrete ill-posed problem, as such further a priori assump-
tions on the solution can help to determine a meaningful approximation of x . Assum-
ing the image is corrupted by AWGN, then an estimate x∗

λ of x can be obtained as a
solution—i.e., a global minimizer—of the following variational model which is the
sum of a convex smooth (quadratic) fidelity term and a regularization term:

x∗
λ ∈ arg min

x∈Rn
J (x; λ), J (x; λ) := 1

2
‖Ax − b‖22 + λR(x) , (2)

where ‖v‖2 denotes the �2 norm of vector v and λ represents the classical regulariza-
tion parameter which controls the trade-off between data-fidelity and regularization.

The regularizer R(x) encodes a priori knowledge on the solution. Focusing on
the recovery of images characterized by some sparsity property, we consider the
general class of sparsity-inducing variational models described in [15] to determine
solutions x∗

λ which are close to the data b according to the observation model and,
at the same time, for which the transformed solution vector y∗

λ = G(Lx∗
λ) is sparse

with L ∈ R
r×n a linear operator andG : Rr → R

s a possibly nonlinear vector-valued
function—see [15].

The drawback of the proposal in [15], which will be briefly illustrated in Sect. 3,
is that it requires a trial-and-error procedure for tuning the regularization parameter
λ and a manual stopping. This represents a crucial aspect in variational restoration
methods and has been subject of several research works.

We propose an automatic criterion for adjusting the regularization parameter λ.
More precisely, our proposal is based on the key idea that if the restored image is a
good estimate of the target clean image, then the residual image must resemble the
realization of the noise process, thus being spectrally white.
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Hence, starting from a sufficiently small λ value, we iteratively increase λ until a
suitable whiteness maximality criterion is satisfied.

In Sect. 2 we review some related works on the choice of the regularization param-
eter. The class of CNC variational models introduced in [15] is briefly illustrated in
Sect. 3. In Sect. 4 we define the residual whiteness strategy, and Sect. 5 is devoted
to the description of the proposed algorithmic framework. Numerical results are
presented in Sect. 6. Conclusions are drawn in Sect. 7.

2 Related Work

A crucial issue in the regularization of ill-posed inverse problems is the choice of the
regularization parameter. The quality of the solution is affected by the value of λ: a
too large value of λ gives an over-smoothed solution that lacks details that the desired
original solution may have, while a too small value of λ yields a computed solution
that is unnecessarily, and possibly severely, contaminated by propagated error that
stems from the error ε in b.

The discrepancy principle (DP) [22] chooses the regularization parameter so that
the variance of the residual equals that of the noise; the DP thus requires an accurate
estimate of the noise variance and is known to yield overregularized estimates [7].
The sensitivity of λ and of the computed solution to the inaccuracies in an available
estimate of ‖ε‖ has been investigated byHamarik et al. [6], who proposed alternatives
to the discrepancy principle when only a poor estimate of ‖ε‖ is known. Automatic
procedures for selecting the λ parameter based on the DP has been proposed in
literature, see e.g. [9].

Parameter choice methods when no estimate of ‖ε‖ is available are commonly
referred to as “heuristic”, because they may fail in certain situations; see [5].

A large number of heuristic parameter choice methods have been proposed in the
literature due to the importance of being able to determine a suitable value of the
regularization parameter when the DP cannot be used; see, e.g., [3, 7, 22]. These
methods include the L-curve criterion, and generalized cross validation [3].

These methods are outperformed bymore recent criteria based on Steins unbiased
risk estimate (SURE) [4, 18]. SURE provides an estimate of the mean squared error
(MSE), assuming knowledge of the noise distribution and requiring an accurate
estimate of its variance [23].

Recently, the fact that the additive noise is the realizationof awhite randomprocess
and, hence, that the restoration residual image must be uncorrelated, has been used
not only as an a-posteriori performance evaluation criterion (see, e.g., [21]), but
also as a key idea in the design of new fidelity terms [11, 12, 14]. In particular,
by evaluating the resemblance of the residue image to a white noise realization,
one can check, to some extents, the quality of the restored image. In [1, 8, 20,
21] the measures of residual spectral whiteness have been exploited for adjusting
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the regularization parameter and/or the number of iterations of the algorithms for
deconvolution problems. Comparisons among several state of the art methods have
been documented in [2].

3 The Class of CNC Variational Models

The considered class of CNC variational models proposed in [15] relies on a general
strategy for constructing non-convex non-separable regularizers starting from any
convex regularizer R : Rn → R of the form

R(x) := �(y) , y := G(Lx) , (3)

with L ∈ R
r×n , G : Rr → R

s a possibly nonlinear vector-valued function with
gi : Rr → R, i = 1, . . . , s, representing its scalar-valued components and� : Rs →
R a sparsity-promoting penalty function [10, 13, 17]. The CNC model associated
with the regularizer R is as follows

x∗
λ = argmin

x∈Rn
JB(x; λ), JB(x; λ) := 1

2
‖Ax − b‖22 + λRB(x), (4)

with the parameterized non-convex non-separable regularizer RB defined by

RB(x) := R(x) − (R � 1
2 ‖B · ‖22

)
(x), (5)

where � denotes the infimal convolution operator and B ∈ R
q×n is a matrix of

parameters.
According to Proposition 8 in [15], a sufficient condition for JB to be strongly

convex—hence, for the variational model in (4) to admit a unique solution—is that
the matrix B satisfies

BTB ≺ (1/λ)ATA. (6)

A simple yet effective strategy for constructing a matrix BTB ∈ R
n×n satisfying

the convexity condition in (6) has been presented in [15]. Since the matrix ATA ∈
R

n×n is symmetric and positive semidefinite, it admits the eigenvalue decomposition

ATA = V EV T, E, V ∈ R
n×n, E = diag(e1, . . . , en) , V TV = VV T = In ,

(7)
with ei , i = 1, . . . , n, indicating the real non-negative eigenvalues of ATA. By setting

BTB = 1

λ
V �EVT, � := diag(γ1, . . . , γn) , γi ∈ [0, 1) ∀ i ∈ {1, 2, . . . , n} , (8)
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then (6) is clearly satisfied. A special case is to set a unique parameter γ = γi ∈
[0, 1) ∀ i , which corresponds to setting B = √

γ /λ A.
In the present work, which addresses the specific problem of image restoration,

we consider as a first regularization function R in (3) the popular Total Variation
(TV) semi-norm [19]. In this case � is the �1 norm function and L = [DT

h , DT
v ]T,

with Dh, Dv ∈ R
n×n representing finite difference approximations of the first-order

partial derivatives along the horizontal and vertical directions, respectively, then we
have:

R(x) = TV(x) = ‖G(Lx)‖1 =
n∑

i=1

|gi (Lx)|, gi (Lx) =
√

(Dhx)2i + (Dvx)2i .

(9)
It is well known that TV-based reconstructions favor piecewise-constant solutions,
but present staircase effects in the restoration of smooth parts of the images. To
avoid this artifact, in the reconstruction of piecewise-affine solutions, a second-order
extensions of the TV regularizer can be considered which promotes sparsity of the
Hessian Schatten norms instead of the gradient norms. That is, the sumof the Schatten
p-norms of the Hessian matrices computed at every pixel of the image is minimized
[16], where, we recall, the Schatten p-norm ‖M‖Sp of a matrix M ∈ R

z×z is defined
by

‖M‖Sp :=
(

z∑

i=1

σ
p
i (M)

) 1
p

, p > 0 , (10)

with σi (M) indicating the i-th singular value ofmatrixM . Let L = [DT
hh, D

T
vv, D

T
hv]T

with Dhh, Dvv, Dhv ∈ R
n×n representing finite difference approximations of second-

order derivatives along horizontal, vertical and mixed horizontal/vertical directions,
respectively. Then the Hessian Schatten p-norm regularizer is defined by

R(x) = SpH(x) = ‖G(Lx)‖1 =
n∑

i=1

|gi (Lx)| , gi (Lx) =
∥∥
∥∥

[
(Dhhx)i(Dhvx)i
(Dvh x)i(Dvvx)i

]∥∥
∥∥Sp

. (11)

We recall that the Schatten p-norm reduces to the nuclear norm when p = 1.

4 Residual Whiteness

Given a realization ε := { ε(i, j) ∈ R : (i, j) ∈ 	 }, 	 = {1, 2, . . . , n1} ×
{1, 2, . . . , n2} of a 2D n1 × n2 random noise process, that is the series of noise values
corrupting the particular observed image according to the deterministic degradation
model in (1), the sample auto-correlation of ε is a function aε mapping all the pos-
sible lags (l,m) ∈ 
 = {−(n1 − 1), . . . , n1 − 1} × {−(n2 − 1), . . . , n2 − 1} into
a scalar value given by
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aε(l,m) := 1

n

(
ε � ε

)
l,m = (

ε ∗ ε′ )
l,m

= 1

n

∑

(i, j)∈ 	

ε(i, j) ε(i + l, j + m) , (l,m) ∈ 
, n = n1n2 , (12)

where � and ∗ denote the 2-Ddiscrete correlation and convolution operators, respec-
tively, and where ε′(i, j) = ε(−i,− j). Clearly, for (12) being defined for all lags
(l,m) ∈ 
, the noise realization ε must be padded with at least n1 samples in the
vertical direction and n2 samples in the horizontal direction.We assume here periodic
boundary conditions for ε, such that � and ∗ in (12) denote circular correlation and
convolution, respectively. If the noise process ε is white, then it is well known that
the auto-correlation aε satisfies the following asymptotic property:

lim
n→+∞ aε(l,m) = 0 ∀ (l,m) ∈ 
0 = 
 \ {(0, 0)}. (13)

For noise corruptions affecting images of finite dimensions—namely, n < +∞—
we can say that the auto-correlation values for all non-zero lags are small. Some
important examples of distributions of additive white noises are the uniform, the
Gaussian, the Laplacian and the Cauchy [14].

Clearly the nearest to the uncorrupted image is the restored image x∗
λ , the closer

the residual image r∗
λ = b − A x∗

λ is to the realization ε in (1) of awhite noise process.
Our proposal is to seek for the regularization parameter value λ∗ yielding the

whitest restoration residual, which can be formally defined as follows:

λ∗ ∈ arg min
λ∈R+

{
W (λ) := W (

r∗
λ

)}
, (14)

withW : Rn → R one of the two following residual whiteness measures:

W1
(
r∗
λ

) =
√∑

(l,m)∈
0

(
ar∗

λ
(l,m)

)2

ar∗
λ
(0, 0)

, W2
(
r∗
λ

) = max(l,m)∈
0

∣∣ ar∗
λ
(l,m)

∣∣

ar∗
λ
(0, 0)

. (15)

We notice that, according to definition (12), the term ar∗
λ
(0, 0) represents nothing

else than the sample variance of the residual image r∗
λ .

5 The Proposed Algorithmic Framework

The proposed bilevel framework consists of an iterative procedure for computing an
approximate solution x∗

λ∗ of the class of CNC models proposed in [15] and defined
in (4), or also of the associated purely convex models in (2), with R any sparsity-
promoting convex regularizer of the form in (3) and λ∗ satisfying the whiteness
maximality criterion in (14).
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In Algorithm 1 we report the main computational steps of the overall proposed
bilevel framework for image restoration.

The algorithm starts with a sufficiently small value of the parameter λ yielding a
large value of the residual whiteness measure W in (14)–(15); at each iteration λ is
increased by amultiplicative factor θ > 1 to strengthen the effect of the regularization
term. The iterative procedure is terminated as soon as the residual whiteness measure
stops decreasing, for a certain λ∗ value. Such a scheme relies on the assumption that
the residual whiteness function W (λ) in (14) is monotonically decreasing on the λ

interval between 0 and the function minimizer λ∗. This property of the whiteness
function W (λ) is very hard to be proved theoretically but we verified it empirically
and the evidence of such behavior is reported in Sect. 6.

At each (outer) iteration h of Algorithm 1, the restored image x (h) is computed—
that is, the corresponding optimization problem is solved—by using the Primal-Dual
Forward-Backward (PDFB) algorithm described in [15] for the CNCmodels and the
Alternating Direction Method of Multipliers (ADMM) for the associated purely
convex models. We remark that, for any given λ value, the considered variational
models are strongly convex—hence they admit a unique global minimizer—and the
PDFB and ADMM minimization algorithms are guaranteed to converge towards
such minimizer.

We adopt for efficiency purposes the so called warm-starting strategy to initialize
the algorithm at the next inner optimization step using the estimated values at the
previous step.

The considered CNC variational approach requires the design of a matrix B satis-
fying the convexity condition (6) for the functional JB. Many such matrices B exist,
see [15]. In the following experiments, we set � to be a two-dimensional dc-notch
filter defined by � = I − H where H is a two-dimensional low-pass filter with a
dc-gain of unity and H ≤ I . In our experiments, we set γ = 0.98 and H = HT

0H0

where H0 is the most basic two-dimensional low-pass filter: the moving-average
filter with square support.

6 Numerical Examples

In this section, we report some experimental results aimed at assessing the effective-
ness of the automatic parameter selection procedure illustrated in Sects. 4 and 5 for
image restoration by using the CNC variational models recently proposed in [15]
and briefly outlined in Sect. 3.

We consider the three test images shown in the first row of Fig. 1: qrcodewhich
belongs to the class of piecewise constant images, roof which is a piecewise affine
image, and the popular photographic cameraman image. The test images have been
synthetically corrupted by space-invariant Gaussian blur generated by the Matlab
command fspecial(’gaussian’,band,sigma) with parameters (band,sigma) =
(5,1.5), and AWGN of standard deviation σ = 40, so as to obtain the three degraded
images shown in the second row of Fig. 1. The qrcode and roof images are
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Algorithm 1 Bilevel Framework based on Residual Whiteness

inputs: degraded image b ∈ R
n , blur operator A ∈ R

n×n

outputs: regularization parameter λ∗ > 0, restored image x∗
λ∗ ∈ R

n

parameters: λmin > 0, θ > 1

initialization: h = 0, λ(h) = λmin, W (h) = +∞
repeat

· update iteration counter and regularization parameter:

· h = h + 1, λ(h) = θ λ(h−1)

· compute restored image by solving the optimization problem:

· x (h) = argminx∈Rn JB(x; λ(h))
(
or J (x; λ(h))

)

· compute residual whiteness:

· r (h) = b − Ax (h), and W (h) = W(r (h)), by (15)

until W (h) > W (h−1)

λ∗ = λ(h−1), x∗
λ∗ = x (h−1)

Fig. 1 Original (first row) and degraded (second row) test images qrcode (left column), roof
(center column) and cameraman (right column)

characterized by very sparse first- and second-order derivatives, respectively, hence
the convex TV and Schatten 1-norm regularization terms in (9)–(11) and their non-
convex non-separable counterparts defined according to (5) are suitable to get good
restorations.
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Hence, in the experiments we perform restoration by using the proposed bilevel
framework outlined in Algorithm 1 applied to the two purely convex variational
models

TV−�2 : x∗
λ = argmin

x∈Rn

{
1

2
‖Ax − b‖22 + λTV(x)

}
, (16)

S1H−�2 : x∗
λ = argmin

x∈Rn

{
1

2
‖Ax − b‖22 + λS1H(x)

}
, (17)

and the two associated CNC counterparts

CNC−TV−�2 : x∗
λ = argmin

x∈Rn

{
1

2
‖Ax − b‖22 + λ

(
TV−TV � 1

2 ‖B · ‖22
)
(x)

}
, (18)

CNC−S1H−�2 : x∗
λ = argmin

x∈Rn

{
1

2
‖Ax − b‖22 + λ

(
S1H −S1H � 1

2 ‖B · ‖22
)
(x)

}
. (19)

For all the tests, i.e. for all images and all restoration models, the bilevel frame-
work outlined in Algorithm 1 has been used in order to automatically select the
regularization parameter λ∗ yielding the whitest restoration residual according to
both the whiteness measuresW1,W2 defined in (15); we denote by λ∗

1, λ
∗
2 such two

optimal values and by W ∗
1 := W1

(
λ∗
1

)
, W ∗

2 := W2
(
λ∗
2

)
the associated (minimum)

whiteness measure values.
The (inner) iterations of the minimization algorithms used to determine the

restored image for any given λ value—namely, ADMM for the TV−�2 and S1H−�2
models, PDFB for the CNC−TV−�2 and CNC−S1H−�2 models—are terminated
as soon as two successive iterates satisfy

∥∥x (h) − x (h−1)
∥∥
2∥∥x (h−1)

∥∥
2

< 10−5 . (20)

The quality of the obtained restorations is evaluated by means of both the Signal-
to-Noise Ratio (SNR) and the Structural Similarity Index (SSIM). We indicate by
SNR∗

1, SNR
∗
2 and SSIM∗

1, SSIM
∗
2 the SNR and SSIM values of the restored images

associated with the optimal values λ∗
1, λ∗

2. In order to quantitatively evaluate the
ability of the proposed approach in automatically selecting λ values yielding restored
images of good quality, we also introduce—and compute for each test—the following
quantities:

LQ∗
j = 100

Q − Q∗
j

Q
, Q ∈ {SNR,SSIM}, j ∈ {1, 2}, (21)

where Q denotes the maximum value of the quality measure - SNR or SSIM—
achievable by letting λ vary in its domain. These quantities represent the loss of
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restoration quality (in percentage) yielded by the proposed automatic selection pro-
cedure with respect to the maximum achievable.

In Table1 we report all the obtained quantitative results, whereas in Figs. 2, 3,
4 and 5 we show some visual and graphical results related to the restoration of the
cameraman test image by the four variational models considered. In particular, the
results obtained by using thewhitenessmeasureW1 are in Figs. 2 and 3, bywhiteness
measureW2 in Figs. 4 and 5. Each column in these figures corresponds to a different
restoration model. In the third, fourth and fifth row we report the plots of the SNR
and SSIM values of the restored image and the plots of the whiteness measure of
the restoration residual as functions of the regularization parameter λ, respectively.
The dashed vertical red lines indicate the “optimal” regularization parameter values,
namely those yielding the smallest residual whiteness measures. It is worth noticing
that for all reported tests the residual whiteness measure function W (λ) with both
the choices of W introduced in (15)—shown in the last row of Figs. 2, 3, 4 and
5—exhibit a monotonically decreasing behavior on the λ interval between 0 and the
functions minimizer λ∗.

In the first and second row of Figs. 2, 3, 4 and 5 we show the restored images
obtained by using such optimal λ values and the associated absolute error images,
respectively.

In Table1 the best results are marked in boldface. The results obtained by hand-
tuning λ (labeled as Q) indicate that, as expected, TV-based models perform better
on the piecewise constant images qrcode and cameraman whereas S1H -based
models outperform TV-based models on the piecewise affine image roof. More
precisely, the CNC models perform better than their associated purely convex coun-
terparts. This is due to the stronger sparsity-promoting effect produced bynon-convex
regularization.

For what regards the optimal residual whiteness measures W∗
1 and W∗

2 reported
in the last two columns of Table1, it is worth observing that the lowest results
(in boldface) are obtained in correspondence of the best performing models for
each restoration test. This in principle should allow to use the proposed automatic
parameter selection strategy in order to automatically select the best regularization
term for each problem.

Finally, for any given model, the proposed automatic parameter selection strategy
seems to perform very well as indicated by the small values of the quality losses
LQ∗

j , j = 1, 2, reported in Table 1 and visually supported by the plots in the figures.
Visual inspection and comparison of the restored images are consistent with the

results in Table 1.
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Table 1 SNR/SSIM results obtained by restoring the test imagesqrcode,roof andcameraman

qrcode Q Q∗
1 Q∗

2 LQ∗
1 LQ∗

2 W∗
1 W∗

2

Q = SNR TV-�2 12.857 12.778 12.682 0.6 1.4 0.3982 1.7928

CNC-TV-
�2

14.262 13.708 13.631 3.9 4.4 0.3947 1.6594

S1H -�2 9.052 8.836 8.520 2.4 5.9 0.4242 4.0721

CNC-
S1H -�2

8.994 8.847 8.514 1.6 5.3 0.4245 4.2746

Q = SSIM TV-�2 0.803 0.803 0.801 0.0 0.3 0.3982 1.7928

CNC-TV-
�2

0.869 0.850 0.849 2.2 2.3 0.3947 1.6594

S1H -�2 0.565 0.565 0.561 0.0 0.6 0.4242 4.0721

CNC-
S1H -�2

0.558 0.557 0.556 0.0 0.4 0.4245 4.2746

roof Q Q∗
1 Q∗

2 LQ∗
1 LQ∗

2 W∗
1 W∗

2

Q = SNR TV-�2 22.927 22.599 22.697 1.4 1.0 0.5096 2.2322

CNC-TV-
�2

22.658 22.658 22.526 0.0 0.6 0.5100 2.2410

S1H -�2 39.567 39.199 39.514 0.9 0.1 0.5025 2.1634

CNC-
S1H -�2

42.171 41.720 41.906 1.1 0.6 0.5002 2.1481

Q = SSIM TV-�2 0.919 0.896 0.916 2.5 0.3 0.5096 2.2322

CNC-TV-
�2

0.913 0.902 0.910 1.2 0.3 0.5100 2.2410

S1H -�2 0.999 0.999 0.999 0.0 0.0 0.5025 2.1634

CNC-
S1H -�2

0.999 0.999 0.999 0.0 0.0 0.5002 2.1481

cameraman Q Q∗
1 Q∗

2 LQ∗
1 LQ∗

2 W∗
1 W∗

2

Q = SNR TV-�2 11.009 10.712 10.808 2.7 1.8 0.3950 1.6809

CNC-TV-
�2

11.125 10.780 10.974 3.1 1.4 0.3946 1.6775

S1H -�2 10.445 10.006 9.938 4.2 4.9 0.3994 1.9923

CNC-
S1H -�2

10.211 9.951 9.821 2.5 3.8 0.3992 2.0405

Q = SSIM TV-�2 0.701 0.699 0.701 0.2 0.0 0.3950 1.6809

CNC-TV-
�2

0.707 0.699 0.707 1.1 0.0 0.3946 1.6775

S1H -�2 0.663 0.663 0.663 0.0 0.0 0.3994 1.9923

CNC-
S1H -�2

0.650 0.648 0.650 0.3 0.0 0.3992 2.0405
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Fig. 2 Visual/graphical results obtained by using the W1 residual whiteness measure
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Fig. 3 Visual/graphical results obtained by using the W1 residual whiteness measure
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Fig. 4 Visual/graphical results obtained by using the W2 residual whiteness measure
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Fig. 5 Visual/graphical results obtained by using the W2 residual whiteness measure
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7 Conclusions

We presented a bilevel framework aimed at equipping the class of CNC variational
models for image restoration proposed in [15] with an effective strategy for auto-
matically selecting the regularization parameter based on maximizing the residual
whiteness. The idea behind our proposal is that if the recovered image is well esti-
mated, the residual image is spectrally white; on the contrary a poorly restored image
exhibits structured artifacts which yield spectrally colored residual images. Numer-
ical results for restoring images characterized by some sparsity properties strongly
indicate that the considered class of CNCmodelswith the proposed automatic param-
eter selection strategy outperforms classical convex models with non-smooth but
convex regularizers. The proposed parameter selection strategy makes the consid-
ered class of CNC models automatic, in the sense that the regularization parameter
is set without requiring any knowledge about the noise variance.
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