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Abstract The problem of inverse source problem is considered in this paper. The
main aim of this problem is to determine the source density function from the state
function which is corrupted by uniform noise. Under the framework of maximum
a posteriori estimator, the problem can be converted into an optimization problem
where the objective function is composed of an L∞ norm and a total variation (TV)
regularization term. By introducing an auxiliary variable, the optimization problem
is further converted into a minimax problem. Then first order primal-dual method
is applied to find the saddle point of the minimax problem. Numerical examples
are given to demonstrate that our proposed method outperforms the other testing
methods.

Keywords Inverse problem · Uniform noise · Total variation · L∞-norm
constraint · Linear systems.

1 Introduction

In this paper, we consider the numerical solution of an elliptic inverse source problem
[16, 17]. Inverse source problems arise in many areas of mathematical physics,
and applications in recent year are rapidly expanding to such areas as geophysics,
chemistry, medicine, engineering andmathematical imaging [5, 25]. The phenomena
in these applications are generally described by partial differential equations. An
inverse source problem for an elliptic partial differential equations on the domain
� ∈ R2 with homogeneous Dirichlet boundary condition is given as follows [10]:
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{−∇ · (a(x)∇u) + 〈b(x),∇u〉L2(�) + c(x)u = f (x) in �

u = 0 on ∂�
(1)

where a(x) and c(x) are two given bounded and positive functions in�, b(x) denotes
the velocity of flow, u(x) represents state function, and f (x) is the source density
function. If the coefficients a(x), c(x) and the source function f (x) are directly
given, we need to estimate the state function u(x), the problem in (1) is called a
forward source problem. However, in any physical and engineering problems such
as pollutant detection and imaging science, we can acquire the state function u(x)
at the boundary of the reconstruction region, i.e., the measurement data u(x) is
available, but we need to estimate the source function f (x). It is an inverse source
problem [15]. The main aim of the inverse source problem is to determine f from
the state function u.

We shall focus our attention to find a numerical solution of the inverse source
problem (1) in this paper. The discrete model of (1) can be represented by using
vectors and matrices. With the lexicographical ordering of u and f , their relationship
can be expressed as follows:

Ku = f .

Here K is the matrix generated by the elliptic partial differential equations.
Assume that the size of u is N × M , ui j denotes the ((i − 1)N + j-th component of
u. If the solution u is obtained, the source f can be computed directly by the matrix
and the vector product. The solution u is generally associated with the boundary
value which is an observation with errors, this is that u is corrupted by the noise
n and the observation uδ is given by uδ = u + n. Hence we obtain f = K (uδ − n).
Since the observation data is corrupted by the measurement errors (noise), the source
f can not be calculated by the product of the matrix and the vector. The observation
data uδ can be rewritten as

uδ = K−1f + n.

In mathematics, the inverse source problem is ill-conditioned in the sense of
Hadamard [13, 20], namely, small perturbation (quantization errors) in the mea-
surement data may lead to the lack of stability of numerical inversions. The ill-
conditioning can be alleviated to stabilize the solution by incorporating the priori
source information, and the solution f can be formulated as a minimizer of the fol-
lowing minimization problem

min
f

ψ(uδ, f) + λφ(f).

Here the function ψ(uδ, f) is the data-fitting term to represent the distribution of
the measurement error n, the function φ(f) is the regularization term to represent the
prior knowledge of f , and λ is a regularization parameter.
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In this paper, we assume that themeasurement data u(x) is corrupted by a uniform
distribution noise. This is that ni (the i-th entry of n) are the independent identically
distributed samples with uniform distribution U (−c, c), here c denotes the noise
level. According the distribution function of n, we can derive the data-fitting term
by ψ(uδ, f) = ∥∥K−1f − uδ

∥∥∞, see [10, 27]. In the literatures [2, 13, 18, 19], a
Tikhonov-type function was used to represent the prior knowledge in the inverse
problems.

Numerical difficulty is caused due to non-differentiability of the L∞-norm in the
data-fitting term. In [10, 27], the minimization problem was reformulated into a
constrained one. In [10], a Moreau-Yosida approximation for L∞-norm constraint
was considered, and the authors then applied a semi-smooth Newton method to solve
for the resulting optimality condition. In [27], the L∞-norm constraint was handled
by active set constraints arising from the optimality conditions, and then an efficient
semi-smooth Newton method was applied to find a solution.

In this paper, we consider that the source function is a piecewise continuous func-
tion and apply the total variation (TV) function [24] to represent its prior knowledge.
The TV regularization has been widely used inmany problems such as image denois-
ing [1, 24], image restoration [3, 6], image segmentation [7, 8] and so on. However,
to best of our knowledge, there are few papers using the TV function as a regulariza-
tion term in the inverse source problem.We remark that both the data-fitting term and
the regularization term considered in this paper are non-differentiable, we develop
different numerical scheme to find a minimizer.

The remainder of the paper is structured as follows. In Sect. 2, we review the
inverse source problem and propose total variation regularization method to find
its solution. In Sect. 3, we transform the inverse source problem into an equivalent
minimax problem and then apply first order primal-dual algorithm to solve it. In
Sect. 4, Appling our proposed approach to address given numerical examples of the
Inverse Source Problem. Finally, the Sect. 5 concludes this paper.

2 Total Variation Regularization for Inverse Source
Problem

In this section, we consider a total variation (TV) regularization approach for inverse
source problem. The minimization problem can be written as

min
f

∥∥K−1f − uδ

∥∥∞ + λ ‖∇f‖1 . (2)

Here ‖∇f‖1 denotes the TV norm of f . The TV norm is defined by φ(f) = ‖∇f‖1,
here

(∇f)i, j = ((∇x f)i, j , (∇yf)i, j )

with
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(∇x f)i, j =
{
fi+1, j − fi, j , if i < N ,

0, if i = N ,

(∇yf
)
i, j =

{
fi, j+1 − fi, j , if j < M,

0, if j = M.

We remark that the data-fitting term in (2) is derived by the assumption of uniform
noise in the observation data. Considering an independentU (−δ, δ) random variable
X , where δ stands for the noise level. Since ni (the i-th entry of n) are the independent
identically distributed samples with uniform distribution, the likelihood function is
given by

L∏
i=1

fX (ni |uδ, δ) ∝ I(n1, . . . ,nL ∈ [−δ, δ]),

where the indicator function I(S) equals to 1 if S happens and 0 otherwise. If
at least one ni (i.e., (uδ − K−1f)i ) falls outside of the interval [−δ, δ], the likeli-
hood will be equal to 0. Therefore, the solution of (2) should be any u that satisfies∥∥uδ − K−1f

∥∥∞ ≤ δ. Therefore, the minimization problem in (2) can be rewritten as

min
f

‖∇f‖1 s.t.
∥∥K−1f − uδ

∥∥∞ ≤ δ. (3)

In fact, the minimization problem in (2) and (3) are mathematically equivalent.
Given a regularization parameter λ in (2), there exists a δ such that the solution of (2)
is also the solution of (3). In contrast, given a δ in (3), there also exists a regularization
parameter λ in (2) such that the solution of (3) is also the solution of (2), moreover,
1/λ is the Lagrangian multiplier corresponding the L∞-norm inequality constraint.
It is very important to choose a suitable regularization parameter λ in (2), because λ
balances the data-fitting term and the regularization term and avoids to over-fitting
or under-fitting the data. Compare to tune the regularization parameter λ, it is more
easier to choose the noise level δ because δ is the noise level in the observation
data. When δ is not available, it can be estimated by the method of moments [27].
In this paper, we will focus on the numerical scheme to solve (3). Although many
methods have been proposed in the literature to find the minimizer of TV-based
optimization problem, it is non-trivial to find the minimizer of (3) because both the
TV norm and the L∞ norm are non-differentiable, also the minimizer should satisfy
the inequality constraint. In the next section, we will consider the numerical scheme
to find a minimizer of (3).

3 Primal-Dual Approach

In this section, we find the minimizer of the inverse source problem (3) by trans-
forming it into a minimax problems. Then we solve it by a primal-dual method [9,
11, 14, 22, 23, 26, 30, 31]. We will apply Chambolle-Pock first order primal-dual
algorithm in [9] to seek the saddle point of our minimax problem. We therefore give
a brief introduction of the method here.



A Total Variation Regularization Method … 85

3.1 Chambolle-Pock’s First-Order Primal-Dual Algorithm

In [9], Chambolle and Pock considered solving the minimax problem:

min
v

max
z

�(v) + 〈v, Hz〉 − �(z). (4)

Here �,� are propoer, convex and lower semi-continuous functions, and H is a
linear operator with induced norm ‖H‖. They proposed to solve the problem by a
first-order primal-dual algorithm as follows:

⎧⎪⎪⎨
⎪⎪⎩

v(k+1) = argmin
v

�(v) + 〈v, Hz〉 + 1
2t

∥∥v − v(k)
∥∥2
2 ,

v̂(k+1) = v(k+1) + μ(v(k+1) − v(k)),

z(k+1) = argmax
z

〈̂
v(k+1), Hz

〉 − �(z) − 1
2s

∥∥z − z(k)
∥∥2
2 .

(5)

The parameters s, t > 0 are step sizes of the primal and dual variables respec-
tively, and μ is the combination parameter. In the iterative procedure, proximal-point
iterations are applied to the sub-differentials of the v and z subproblems in (5) with
the primal variable and the dual variable fixed alternately.

3.2 Minimax Problem

Let us describe the notations that wewill use in the followings. For ξ ∈ R
NM × R

NM ,
ξi, j = (ξi, j,1, ξi, j,2) ∈ R

2 denotes the (i + ( j − 1)n)-th component of ξ. Define
the inner product 〈ξ,q〉 = ∑

i, j ξi, jqi, j for ξ,q ∈ R
nm × R

nm . Define ‖ξ‖∞ =
maxi, j |ξi, j |. Define div = −∇T as the discrete version of the divergence operator,
where ∇T is the adjoint of ∇, i.e.,

(div ξ)i, j =
⎧⎨
⎩

ξxi, j i = 1
ξxi, j − ξxi−1, j 1 < i < N
−ξxi−1, j i = N

+
⎧⎨
⎩

ξ
y
i, j j = 1,

ξ
y
i, j − ξ

y
i, j−1 1 < j < N ,

−ξ
y
i, j−1 j = N .

We represent the TV norm using the dual form, i.e.,

‖∇f‖1 = max
‖ξ‖∞≤1

〈divξ, f〉 . (6)

Using the dual formulation, the minimization problem (3) can be written as the
following minimax problem:

min‖K−1f−uδ‖∞≤δ
max

‖ξ‖∞≤1
〈f, divξ〉 . (7)
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Introducing the auxiliary varible r = uδ − K−1f , we obtain f − K (uδ − r) = 0.
We consider Lagrangian function for the resulting equation

L(f, r, ξ, y) ≡ 〈f, divξ〉 + 〈y, f − K (uδ − r)〉 . (8)

Here y is the Lagrange multiplier associated with the equality constraint f −
K (uδ − r) = 0. Hence, we have

max
‖ξ‖∞≤1,y

L(f, r, ξ, y) =
{ ‖∇f‖1 , if f − K (uδ − r) = 0,

∞, otherwise.

Also we have

min
f

L(f, r, ξ, y) =
{ 〈divξ, K (uδ − r)〉 , if divξ + y = 0,

−∞, otherwise.

According to [4, Proposition 5.5.4], we know that theminimum and themaximum
in (8) can be swapped and there exists a saddle point of L. We obtain

min
‖r‖∞≤δ,f

max
‖ξ‖∞≤1,y

L(f, r, ξ, y) = max
‖ξ‖∞≤1

min
‖r‖∞≤δ

〈divξ, K (uδ − r)〉 .

Thus we have the following theorem.

Theorem 1 Define Q(r, ξ) = 〈divξ, K (uδ − r)〉, then we have

min‖K−1f−uδ‖∞≤δ
‖∇f‖1 = max

‖ξ‖∞≤1
min

‖r‖∞≤δ
Q(r, ξ).

Moreover, theminimum in the left-hand side above is attained at f∗ = K (uδ − r∗),
here (r∗, ξ∗) is the saddle point of the function Q(r, ξ).

Now we apply Chambolle-Pock’s first-order primal-dual method (5) to compute
the saddle point of Q(r, ξ), the iterative scheme is given as follows:

rk+1 = argmin
‖r‖∞≤δ

Q(r, ξk) + 1

2s

∥∥r − rk
∥∥2

2 (9)

r̂k+1 = rk+1 + θ(rk+1 − rk) (10)

ξk+1 = argmax
‖ξ‖∞≤1

Q(̂rk+1, ξ) − 1

2t

∥∥ξ − ξk
∥∥2

2 (11)
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3.3 Subproblem for r

The minimization of (9) reduces to

rk+1 = argmin
r

〈
divξk, K (uδ − r)

〉 + 1

2s

∥∥r − rk
∥∥2

2 (12)

= argmin
r

∥∥r − (rk − sK T divξk)
∥∥2

2 (13)

We first introduce the concept of the projection operator.

P(w) = argmin
r∈�

‖r − w‖22 . (14)

In general, the projection onto a general convex set is difficult and computationally
expensive. As the L∞-constraints can be formulated as the bounded constraints, the
corresponding closed-form solution is given by

[P(w)]i =
⎧⎨
⎩

δ, wi ≥ δ.
wi , |wi | < δ.
−δ, wi ≤ −δ.

By using a suitable projection operator, we can view rk+1 as the projection of(
rk+1 − sK T divξk) on �. Thus we obtain

rk+1 = P (
rk+1 − sK T divξk) . (15)

3.4 Subproblem for ξ

We change themaximization problem for ξ in (11) to aminimization one and obtain:

ξk+1 = argmax
ξ

〈
divξ, K (uδ − r̂k+1)

〉 − 1

2t

∥∥ξ − ξk
∥∥2

2 (16)

= argmin
‖ξ‖∞≤1

− 〈
divξ, K (uδ − r̂k+1)

〉 + 1

2t

∥∥ξ − ξk
∥∥2

2 (17)

Thus
ξk+1 = PA(ξk − t∇K (uδ − r̂k+1))

where A = {
ξ : ‖ξ‖∞ ≤ 1

}
, the gradient projection of (ξk − t∇fk+1) onto the set

A. In the following, we derive a formula for the gradient projection operator
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PA(q) = argmin
p∈A

‖p − q‖22

For any q, by the definition of the set A, the Lagrangian function is

‖p − q‖22 +
∑
i, j

ti, j
(|pi, j |2 − 1

)
,

where ti, j ≥ 0 is the Lagrangian multiplier associated with the constraint |pi, j |2 ≤ 1.
Its complementarity conditions implies that for the optimal ti, j , either ti, j = 0 with
|pi, j |, |qi, j | < 1, or ti, j > 0with |pi, j | = 1 and |qi, j | ≥ 1. In the former case, we have
pi, j = qi, j . In the latter case, the KKT conditions yields pi, j − qi, j + ti, j pi, j = 0 for
all i, j . Therefore, we have ti, j = |qi, j | − 1, and thus pi, j = qi, j/|qi, j |. Hence, we
obtain

(PA(q))i, j = 1

max(1, |qi, j |)qi, j . (18)

4 Numerical Results

In this section, three numerical experiments are implemented to demonstrate the
effectiveness of the proposed method, that is to consider the inverse source problem
(1) with domain � = [0, 1]2. We investigate the influence of noise level on the
numerical results, specifically, set δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. In
order to be able to stabilize the convergence of approximate solution by our proposed
method, choosing primal variation step size s = 5 × 10−8 and dual variation step
size t = 5 × 10−2. We show the exact solution f∗ with size 256 × 256 in Fig. 1a, the
exact data u∗ in Fig. 1b and observation data uδ with noise level δ = 0.1, 0.4, 0.9
respectively in Fig. 2.

In the following experiments, we compare our algorithm(TV) with semi-smooth
Newtonmehthod (SSN) [27], Primal-Dual method (PD) [21] and Forward Backward

(a) exact solution f∗ (b) exact data u∗

Fig. 1 Left: the exact solution f∗ with size 256 × 256; Right: the exact data u∗
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δ = 0.1 δ = 0.4 δ = 0.9

Fig. 2 Observed data uδ corrupted by uniform noise levels with the δ = 0.1, 0.4, 0.9 respectively

method (FB) [12]. The Root-Mean-Square-Error (RMSE) is used to quantitatively
measure the quality of the estimated solution. It is defined as follows:

RMSE = 1√
L

∥∥̂f − f∗∥∥
2

where f∗ denotes the exact solution and f̂ denotes the estimated solution. The smaller
RMSE is, the better the estimated solution is.

We consider the discrete problem (1) and set a(x) = 1 and c(x) = 0. Three differ-
ent functions for b(x) are used in the tests, they are b(x) = −[2, 0], b(x) = −[0, 1]
and b(x) = −[2, 1] respectively. In order to quantitatively measure the accuracy of
the estimated solutions, we show theRMSE values for different noise level in Table1.
We note that the RMSE of recovery data by four methods gradually increase with
the noise level increasing. The RMSE obtained by TV method is smaller than that
obtained by other methods.

We show the estimated solutions obtained by different methods in the Figs. 3, 4
and 5 with different noise levels δ = 0.1, 0.4, 0.9, respectively. We can observe that
there are some jumps in the estimated solutions obtained by SNN method and FB
method. The estimated solutions obtained by PD method look smooth. We remark
that the Tikhonov-type regularization function is applied in the these three methods.
It is obviously that the estimated solutions obtained by the proposed method are
closer to the true solution.

5 Conclusion

In this paper, we study the inverse source problem where observation data are cor-
rupted by uniform noise. Themain contribution of this paper is to develop an efficient
total variation regularization method for solving the ill-posed inverse source problem
of the L∞-norm data fitting. Numerical examples are given to demonstrate that our
proposed method outperforms the other testing methods.
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Table 1 RMSE of estimated solution for different noise levels

δ ‖uδ − u‖2 SSN PD FB TV

a = 1, b = −[2, 0]
0.1 9.36e-03 1.19e-01 1.25e-01 1.34e-01 2.36e-02

0.3 2.80e-02 1.33e-01 1.36e-01 1.39e-01 3.85e-02

0.5 4.68e-02 1.33e-01 1.41e-01 1.48e-01 6.95e-02

0.7 6.55e-02 1.49e-01 1.46e-01 1.53e-01 9.94e-02

0.9 8.42e-02 1.53e-01 1.50e-01 1.58e-01 1.18e-01

a = 1, b = −[0, 1]
0.1 9.93e-03 1.19e-01 1.26e-01 1.35e-01 1.82e-02

0.3 2.97e-02 1.32e-01 1.36e-01 1.41e-01 3.34e-02

0.5 4.96e-02 1.34e-01 1.42e-01 1.47e-01 7.16e-02

0.7 6.95e-02 1.50e-01 1.47e-01 1.55e-01 9.73e-02

0.9 8.93e-02 1.52e-01 1.51e-01 1.60e-01 8.86e-02

a = 1, b = −[2, 1]
0.1 9.24e-03 1.18e-01 1.25e-01 1.27e-01 1.95e-02

0.3 2.77e-02 1.32e-01 1.35e-01 1.37e-01 3.65e-02

0.5 4.62e-02 1.32e-01 1.41e-0 1.43e-01 7.03e-02

0.7 6.47e-02 1.50e-01 1.47e-01 1.50e-01 1.04e-01

0.9 8.32e-02 1.51e-01 1.49e-01 1.52e-01 1.16e-01

SNN FB

PD TV

Fig. 3 Root-mean-square-error (RMSE) values obtained by different methods for different noise
levels. Here δ = 0.1 and a = 1, b = −[2, 0]
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SNN FB

PD TV

Fig. 4 Four algorithms recovering data graphs with noise levels of d = 0.4 based on a = 1, b =
−[0, 1]

SNN FB

PD TV

Fig. 5 Four algorithms recovering data graphs with noise levels of δ = 0.9 based on a = 1, b =
−[2, 1]



92 H. Pan and Y.-W. Wen

References

1. J. Aujol, G. Gilboa, Constrained and SNR-based solutions for TV-Hilbert space image denois-
ing. J. Math. Imaging Vis. 26(1), 217–237 (2006)

2. V. Akcelik, G. Biros, O. Ghattas, K. Long, B.G.V. Bloemen Waanders, A variational finite
element method for source inversion for convective-diffusive transport. Finite Elem. Anal.
Des. 39(8), 683–705 (2003)

3. M.Bertalmio,V.Caselles, B.Rougé,A. Solé, TVbased image restorationwith local constraints.
J. Sci. Comput. 19(1–3), 95–122 (2003)

4. D. Bertsekas, Convex Optimization Theory (Athena Scientific Belmont, MA, 2009)
5. A. Badia, T. Ha-Duong, An inverse source problem in potential analysis. Inverse Probl. (2000)
6. P.Blomgren, T.Chan,ColorTV: total variationmethods for restoration of vector-valued images.

IEEE Trans. Image Process. 7(3), 304–309 (1998)
7. X. Cai, R. Chan, M. Nikolova, T. Zeng, A three-stage approach for segmenting degraded color

images: Smoothing, lifting and Thresholding (SlaT). J. Sci. Comput. 72(3), 1313–1332 (2017)
8. X. Cai, R. Chan, T. Zeng, A two-stage image segmentation method using a convex variant of

the Mumford-Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)
9. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applica-

tions to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
10. C. Clason, L∞ fitting for inverse problems with uniform noise. Inverse Probl 28(10) (2012)
11. G. Chen, M. Teboulle, A proximal-based decomposition method for convex minimization

problems. Math. Program. Ser. A 64(1):81–101 (1994)
12. P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting . Multiscale

Model. Simul. 4(4), 1168–1200 (2005)
13. H. Engl, R. Ramlau, Regularization of Inverse Problems, Encyclopedia of Applied and Com-

putational Mathematics (Springer, Berlin, Heidelberg, 2015)
14. J. Eckstein, D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point

algorithm for maximal monotone operators. Math. Program. Ser. A 55(3), 293–318 (1992)
15. Q. Hu, S. Shu, J. Zou, A new variational approach for inverse source problems. Numer. Math.-

Theory Methods Appl. 12(2), 331–347 (2019)
16. V. Isakov, Inverse source problems. Ams Ebooks Prog. 34, 191 (1990)
17. V. Isakov, Inverse problems for partial differential equations. Appl. Math. Sci. 703(45), 93–98

(1979)
18. Y. Keung, J. Zou, Numerical identifications of parameters in parabolic systems. Inverse Probl.

14(1), 83–100 (1998)
19. Y. Keung, J. Zou, X. Wang, An efficient linear solver for nonlinear parameter identification

problems. J. Sci. Comput. (1998)
20. E. Lavrent, M. Jn, et al., Inverse Probl. Math. Phys. (1987)
21. X. Liu, Z. Chen, Y.Wen,A dualmethod for uniform noise removal base on L∞ norm constraint,

pp. 1346–1350, 07 (2017)
22. R. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in

convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
23. R. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim.

14(5), 877–898 (1976)
24. L.Rudin, S.Osher, E. Fatemi,Nonlinear total variation based noise removal algorithms. Physica

D 60, 259–268 (1992)
25. A. Tikhonov, A. Goncharsky, V. Stepanov. Numerical Methods for the Solution of Ill-Posed

Problems (Kluwer Academic Publishers, 1995)
26. P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and

variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)
27. Y. Wen, W. Ching, M. Ng, A semi-smooth newton method for inverse problem with uniform

noise. J. Sci. Comput. 75(2), 713–732 (2018)
28. Y. Yang, N. Galatsanos, A. Katsaggelos, Projection-based spatially adaptive reconstruction of

block-transform compressed images. IEEE Trans. Image Process. 4(7), 896–908 (1995)



A Total Variation Regularization Method … 93

29. L. Zhen, E. Delp, Block artifact reduction using a transform-domain Markov random field
model. IEEE Trans. Circuits Syst. Video Technol. 15(12), 1583–1593 (2005)

30. M. Zhu, Fast Numerical Algorithms for Total Variation Based Image Restoration. Ph.D. thesis,
University of California, Los Angeles (2008)

31. M. Zhu, T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image
restoration. UCLA CAM Report, pp. 08–34 (2007)


	 A Total Variation Regularization Method for Inverse Source Problem with Uniform Noise
	1 Introduction
	2 Total Variation Regularization for Inverse Source Problem
	3 Primal-Dual Approach
	3.1 Chambolle-Pock's First-Order Primal-Dual Algorithm
	3.2 Minimax Problem
	3.3 Subproblem for r
	3.4 Subproblem for ξ

	4 Numerical Results
	5 Conclusion
	References




