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Abstract In this Chapter we discuss multi-modality image registration models and
efficient algorithms. We propose a simple method to enhance a variational model to
generate a diffeomorphic transformation. The idea is illustrated by using a particular
model based on reformulated normalized gradients of the images as the fidelity term
and higher-order derivatives as the regularizer. By adding a control term motivated
by quasi-conformal maps and Beltrami coefficients, themodel has the ability to guar-
antee a diffeomorphic transformation. Without this feature, the model may lead to
visually pleasing but invalid results. To solve the model numerically, we present both
a Gauss-Newton method and an augmented Lagrangian method to solve the result-
ing discrete optimization problem. A multilevel technique is employed to speed up
the initialization and reduce the possibility of getting local minima of the underly-
ing functional. Finally numerical experiments demonstrate that this new model can
deliver good performances for multi-modal image registration and simultaneously
generate an accurate diffeomorphic transformation.
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1 Introduction

Working on a pair of images of the same object taken at different times or acquired
using different devices, image registration aims to either find differences between
them or fuse complementary information to each other which is otherwise not pos-
sible with a single modality. In either case, the key is to find a reasonable spatial
geometric transformation between these two images. Though the task is required
in diverse fields such as astronomy, optics, biology, chemistry and remote sens-
ing and particularly in medical imaging, and much work have been done, getting a
robust model for the task is still a challenge. For an overview of image registration
methodologies and approaches, especially for registering images acquired by the
same modality (e.g. CT-CT), we refer to [17, 18, 33, 35, 40]. For a more recent
survey, see [8]. This Chapter is mainly concerned with registering two images from
different modalities (e.g. CT-MRI or digital-Infrared) and focuses on one impor-
tant question of how to impose a constraint so that the underlying transformation is
diffeomorphic.

The image registration problem can be described as follows: given a fixed image
R (the reference) and a moving image T (the template), both represented by scalar
function mappings over Ω ⊂ R

d −→ R, find a suitable geometric transformation
ϕ(x) = x + u(x), u : Rd −→ R

d such that

G1(T [ϕ]) = G1(T (x + u(x)) ≈ G2(R), (1)

where G1,G2 must be chosen suitably in multi-modality scenario, because only
features or patterns in T, R visually resemble each other, not their given intensities.
In contrast, in mono-modality registration where intensities as well as features in
T, R resemble each other, we haveGi (·) = Id , (i = 1, 2) or T ≈ R pixelwise. In the
special case of parametric models, the solution u (orϕ) is assumed to belong to some
linear spanned space with known Ansatz functions, depending on few parameters
(e.g. affine with 6 parameters in 2D or 12 parameters in 3D). However, not all
problems can be solved by parametric models.

Here, we focus on variational models for deformable non-parametric image reg-
istration where the unknown u sought in a properly chosen functional space is not
assumed to have any parametric forms. The reconstruction problem based on model
(1) is an ill-posed inverse problem and thus regularization techniques are needed to
overcome ill-posedness [7, 11, 13, 14, 21, 30, 31, 47]. Generally speaking, a reg-
ularization technique turns the ill-posed problem (1) into a well-posed optimization
model

min
u∈H

{
J (u) = S(u) + λ

2
D(T (x + u), R)

}
(2)

where the displacement u is a minimizer of the above joint energy functional and λ
is a positive weight which controls the trade-off between them.
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In (2), the first term S(u) is a regularization term which controls the smoothness
of u and reflects our expectations in penalizing unlikely transformations. Various
regularizers have been proposed, such as first-order derivatives-based on total varia-
tion [10, 23], diffusion [15] and elastic regularizer registration models, higher-order
derivatives-based on linear curvature [16], mean curvature [12], Gaussian curvature
[24], and fractional order derivatives based models [50]; refer also to [11, 31, 44,
51, 52].

The second term D(T (x + u), R) is a fidelitymeasure, which quantifies distance
or similarity between the transformed template image T (x + u) and the reference R.
Formono-modal registration, a widely-used data fidelity term D(T (x + u), R) is the
sum of squared differences D = ‖T (x + u) − R‖22 ≡ SSD(T (x + u), R) to mea-
sure the difference between the reference image R and the deformed template image
T (x + u). However for multi-modality registration, the choice of D(T (x + u), R)

is more challenging. The main issue is how to design the right (or rather better)
similarity measures that can support the difference (in features, colours, gradients,
illumination etc.) between images from different modalities (e.g. SSD no longer
makes sense). Various measures have been proposed and tested in the literature.
Designing a measure which is based on the geometric information such as the gra-
dients of the images is a good choice. See for instance the normalized gradient field
(NGF) [22, 26, 39], edges sketching registration [1], normalized gradient fitting
(GT) [22, 43] and Mutual Information [29, 37, 46]. Recently [9] proposed a cross-
correlation similarity measure based on reproducing kernel Hilbert spaces and found
advantages over Mutual Information.

Many models in the literature, of type (2), do not usually contain constraints
to ensure that ϕ(x) is a diffeomorphic map for the mono-modal registration. And
even fewer theoretical or experimental studies deal with diffeomorphic maps for
the multi-modal registration. But non-diffeomorphic maps cause phenomena such
as folding or tearing which are usually seen as non-natural transformations between
the two images, unless λ is small (implying a poor registration fidelity error). Over
the last decade, more and more researchers have focused on diffeomorphic image
registration where folding measured by the local invertibility quantity det(Jϕ) is
reduced or avoided where det(Jϕ) is the Jacobian determinant of ϕ. Under desired
assumptions, obtaining a one-to-one mapping is a natural choice, see [7, 14, 19, 20].

After surveying a few models of type (2) for multi-modal images, this Chapter
shows how to incorporate a suitable constraint into a model so that it can deliver a
diffeomorphic map. We illustrate our idea by a specific model: minimizing a new
functional based on using reformulated normalized gradients of the images as the
fidelity term [43], higher-order derivatives and a new Beltrami coefficient based term
[28, 48]. An effective, iterative scheme is also presented and numerical experimental
results show that the new registration model has a good performance.
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2 Review of Related Models

For a variational image registration model (2), while there exist many choices for a
regularizer S(u) such as the diffusion operator or the Laplacian [8], below, we briefly
review a few of such choices of D(T (x + u), R) for registering a pair of multi-modal
images T, R.

Normalized Gradient Field (NGF) and its variants. The basic idea of NGF
[22, 26, 39] is the use of a derived information from the image intensity, i.e., the
gradient. Similarity measures depending on the gradients or geometry of the images,
which naturally encode information about the shape, can be better. The aim is to
align the gradients ∇T (x + u) and ∇R by minimizing the cosines distance between
them. More precisely, on each point x ∈ Ω , try to find a displacement u(x) such
that cos� = 1 where � is the angle between ∇T (x + u) and ∇R, which leads to
minimizing the similarity term:

DNGF (T (x + u), R) =
∫

Ω

(1 − (cos�)2) dx =
∫

Ω

(1 − (∇nT (x + u) · ∇n R)2) dx,

(3)
where∇nT (x + u) = ∇T (x + u)/|∇T (x + u)| and∇n R = ∇R/|∇R| are normal-
ized unit vectors.An alternative formof theNGF that avoids using terms∇nT (x + u)

and ∇n R which are degenerated in homogeneous regions, reformulate NGF as

DNGF (T (x + u), R) =
∫

Ω

(|∇T (x + u)|2|∇R|2 − (∇T (x + u) · ∇R)2) dx, (4)

Mutual Information (MI). It was firstly proposed in [46] and has been studied in
various literatures (see [29, 37]), showcasing its great capability aswell as limitations.
The basic idea is to compare the histograms of the images by exploiting the following
quantity

DMI (T (x + u), R) = −
∫

R2

pT,R(t, r) log
pT,R(t, r)

pT (t)pR(r)
dtdr, (5)

where pR, pT are probability distributions of the gray values in R and T , while
pT,R is the joint probability of the gray values which can be derived from the joint
histogram. The main drawback ofMI is its sensibility to image quantization and the
difficulty in estimating the joint probability density function (PDF). In addition, the
measure also fails when two features with different intensities in one image have
similar intensities in the other one [27].

Maximum Correlation Coefficient (MCC). It is an extension of well-known
Normalized cross correlation (CC) measure , which is only efficient for mono-modal
images [6, 33], to a measure that is able to handle multi-modal images [9]. The
similarity measure is defined by
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DMCC (T (x + u), R) = (1 − MCC(T, R))p := (1 − max
f,g

CC(M, N ))p, 0 < p < 1,

where M(x) = f (T (x + u), N (x) = g(R(x)), f and g are two measurable func-
tions. ThisMCC formulation does not require estimation of the continuous joint PDF
and offers a powerful alternative to the models based on maximizing MI. However.
the computation of the maximum over all functions f and g is a big challenge. The
recommended approach in [9] is to approximate it based on the theory of reproducing
kernel Hilbert space (RKHS) [2, 5].

3 The New Model

We aim to design a variational model building on the energy of the form (2)

min
u∈H

{
J (u) = S(u) + D(T (x + u), R) + γC(u)

}
(6)

which is comprised of three building blocks: a data fidelity term with similarity
measure D, a regularization term S and a control term C . The emphasis of this
Chapter is how to choose C . To do this for a concrete model, we now specify our
choice of all three terms.

3.1 Data Fitting

We consider a similarity measure based on the gradient information [43]. This mea-
sure is motivated by the standardNGF [22, 32] and it primarily explores the potential
of normalized gradients beyond its standard form.We shall consider normalized gra-
dients fitting combined with a measure based on the triangular similarity inequality.
More precisely, we consider the following fitting term

D(T (x + u), R) = DGF (u) + αDTM(u) (7)

where GF stands for ‘gradient filed difference’ and TM for ‘Triangular Measure’
with

DGF (u) =
∫

Ω

|∇nT (x + u) − ∇n R|2dx,

DTM(u) =
∫

Ω

(|∇T (x + u)| + |∇R| − |∇T (x + u) + ∇R|)2dx.
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3.2 Regularization

A regularizer controls the smoothness. Our primary choice for smoothness control is
the diffusionmodel [15] which uses first-order derivatives and promotes smoothness.
As affine linear transformations are not included in the kernel of the H 1-regularizer,
we desire a regularizer which can penalize such transformation. As such, we add the
regularizer based on second-order derivatives (LLT) to the model which allows to
remove the need of any pre-registration step of affine transformations. The second-
order derivatives allows also getting smooth transformations [52]. Our adopted reg-
ularizer is given by

S(u) = β1

2
S1(u) + β2

2
S2(u) (8)

where

S1(u) =
∫

Ω

|∇u|2dx, S2(u) =
∫

Ω

|∇2u|2dx.

3.3 Invertibility

A diffeomorphic map ensures local invertibility of the map and this is achievable by
a control term C that imposes the constraint det(Jϕ) > 0 at any x ∈ Ω . This latter
idea is much used in the literature with somewhat limited success because either
strong assumptions on T, R or compromised fidelity error are required; see tests
and remarks from [48]. Here, instead of controlling det(Jϕ) directly, we control the
Beltrami coefficient [48] in getting a diffeomorphic map and propose the use of

C(u) =
∫

Ω

φ(|μ(u)|2)dx, (9)

where φ(v) = v2

(v−1)2 and |μ(u)|2 = (∂x1u1−∂x2u2)
2+(∂x2u1+∂x1u2)

2

(∂x1u1+∂x2u2+2)2+(∂x2u1−∂x1u2)
2 .

One notes that our choice of the first two terms S, D for (6) is quite common
while the third term [48] is relatively new to readers. This is the key idea of this
Chapter: an old, non-diffeomorphic, variational model of form (2) can be converted
to a diffeomorphic model by adding a control term such as C from (9). This can be
done in 2D and also in 3D following our recent work. It should be remarked that
model (6) is non-convex so its solutions are not unique (as true for all registration
models). However we can show that the model admits at least one solution in the
space W 2,2(Ω), following the idea of [49].
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4 The Solution Algorithm

Here,we choose first-discretize-then-optimizemethod, namely directly discretize the
variational model to get a discrete optimization problem and then use optimization
methods to solve this resulting optimization problem. In this section we focus on a
Gauss-Newton (G-N) method and in the next section we briefly introduce another
alternating iteration method just before numerical results are shown.

4.1 Discretization

In the implementation, we employ the nodal grid and define a spatial partition

Ωn
h = {xi, j ∈ Ω|xi, j = (xi1, x

j
2 ) = (ih, jh), 0 ≤ i ≤ n, 0 ≤ j ≤ n},

where h = 1
n and the discrete domain consists of n2 cells of size h × h. We dis-

cretize the displacement field u on the nodal grid, namely ui, j = (ui, j1 , ui, j2 ) =
(u1(xi1, x

j
2 ), u2(x

i
1, x

j
2 )). By lexicographical ordering, we reshape four matrices to

two long vectors of dimension R
2(n+1)2×1

X = (x01 , x
1
1 , ..., x

n
1 , . . . , x

0
1 , x

1
1 , ...x

n
1 , x

0
2 , x

0
2 , ..., x

0
2 , . . . , x

n
2 , x

n
2 , ...x

n
2 )

T ,

U = (u0,01 , ..., un,0
1 , . . . , u0,n1 , ..., un,n

1 , u0,02 , ..., un,0
2 , . . . , u0,n2 , ..., un,n

2 )T .

4.1.1 Discretization of Fitting Term

Firstly, set R = R(PX) ∈ R
n2×1 as the discretized reference image and T(PX +

PU ) ∈ R
n2×1 as the discretized deformed template image, where P ∈ R

2n2×2(n+1)2

is an averagematrix from the nodal grid to the cell-centered grid. In order to discretize
∇T and ∇R, we introduce two discrete operators: D1 = In ⊗ ∂1

h and D2 = ∂1
h ⊗ In ,

where

∂1
h = 1

2h

⎡
⎢⎢⎢⎢⎣

−1 1
−1 0 1

... ... ...

−1 0 1
−1 1

⎤
⎥⎥⎥⎥⎦

∈ R
n×n .

Hence, the discretized ∇T and ∇R are [D1T, D2T] and [D1R, D2R] respec-
tively. Set LT = (

∑2
i=1 DiT � DiT + ε).1/2, LR = (

∑2
i=1 DiR � DiR + ε).1/2 and

LTR = (
∑2

i=1 Di (T + R) � Di (T + R) + ε).1/2, where � indicates component-
wise product and (·).1/2 indicates the component-wise square root.
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Then for DGF (u) and DTM(u), we have the following discretizations:

DGF (u) ≈ h2 pT1 p1, DT SM(u) ≈ h2 pT2 p2, (10)

where (using ./ to indicate the component-wise division)

p1 = [D1T./LT − D1R./LR; D2T./LT − D2R./LR]
p2 = LT + LR − LTR.

4.1.2 Discretization of Regularization Term

The first-order regularization term can be discretized into the following form:

S1(u) ≈ h2
n−1∑
i=0

n−1∑
j=0

2∑
l=1

(ui+1, j
l − ui, jl

h

)2 + (ui, j+1
l − ui, jl

h

)2
(11)

by using the forward difference and mid-point rule.
Define B1 = In+1 ⊗ ∂2

h ∈ R
(n+1)2×(n+1)2 , C1 = ∂2

h ⊗ In+1 ∈ R
(n+1)2×(n+1)2 ,

∂2
h = 1

h

⎡
⎢⎢⎣

−1 1
... ... ...

−1 1
0

⎤
⎥⎥⎦ ∈ R

(n+1)×(n+1), A1 =

⎡
⎢⎢⎣
B1 0
C1 0
0 B1

0 C1

⎤
⎥⎥⎦ ∈ R

4(n+1)2×2(n+1)2 ,

where⊗ denotes theKronecker product. Then (11) can be rewritten into the following
form (noting U ∈ R

2(n+1)2×1)

S1(u) ≈ h2UT AT
1 A1U. (12)

The second-order regularization term can be discretized into the following:

S2(u) ≈ h2
n−1∑
i=0

n−1∑
j=0

2∑
l=1

(ui+1, j
l − 2ui, jl + ui−1, j

l

h2
)2 + (

ui, j+1
l − 2ui, jl + ui, j−1

l

h2
)2

+ 2h2
n−1∑
i=0

n−1∑
j=0

2∑
l=1

(ui, jl − ui+1, j
l − ui, j+1

l + ui+1, j+1
l

h2
)2

(13)

by using the central difference, mid-point rule and Neumann boundary conditions
(l = 1, 2): ui,0l = ui,−1

l , ui,nl = ui,n+1
l , u0, jl = u−1, j

l , un, j
l = un+1, j

l .



Multi-modality Image Registration Models and Efficient Algorithms 41

Further define B21 = I2 ⊗ (In+1 ⊗ ∂3
h), B22 = I2 ⊗ (∂3

h ⊗ In+1),C2 = I2 ⊗ (E ⊗
E), τ1 = (n + 1) × (n + 1), τ2 = n × (n + 1), where

∂3
h = 1

h2

⎡
⎢⎢⎢⎢⎣

−1 1
1 −2 1

... ... ...

1 −2 1
1 −1

⎤
⎥⎥⎥⎥⎦

∈ R
τ1 , E = 1

h

⎡
⎢⎢⎢⎢⎣

−1 1
−1 1
... ... ...

−1 1
−1 1

⎤
⎥⎥⎥⎥⎦

∈ R
τ2 .

Then (13) can be rewritten into the following form

S2(u) ≈ h2UT A2U, A2 = BT
21B21 + BT

22B22 + 2CT
2 C2. (14)

4.1.3 Discretization of Control Term

Note that φ(|μ(u)|2) involves only first order derivatives and all ui, j are available at
vertex pixels. Thus it is convenient first to obtain approximations at all cell centers
(e.g. at V5 in Fig. 1) and second to use local linear elements to facilitate first order
derivatives. We shall divide each cell (Fig. 1) into 4 triangles. In each triangle, we
construct two linear interpolation functions to approximate the u1 and u2. Conse-
quently, all partial derivatives are locally constants or φ(|μ(u)|2) is constant in each
triangle.

Set Li, j,k(x) = (Li, j,k
1 (x), Li, j,k

2 (x)) = (ai, j,k1 x1 + ai, j,k2 x2 + ai, j,k3 , ai, j,k4 x1 +
ai, j,k5 x2 + ai, j,k6 ), which is the linear interpolation for u in the Ωi, j,k . Note that
∂x1L

i, j,k
1 = ai, j,k1 , ∂x2L

i, j,k
1 = ai, j,k2 , ∂x1L

i, j,k
2 = ai, j,k4 and ∂x2L

i, j,k
2 = ai, j,k5 . Then

according to the partition in Fig. 1, we have

Fig. 1 Partition of a cell,
nodal point � and center
point ◦. V1V2V5 is Ωi, j,k

V5

V1 V2

V3 V4
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C(u) =
∫

Ω

φ(|μ(u)|2)dx

≈h2

4

n∑
i=1

n∑
j=1

4∑
k=1

φ
( (ai, j,k1 − ai, j,k5 )2 + (ai, j,k2 + ai, j,k4 )2

(ai, j,k1 + ai, j,k5 + 2)2 + (ai, j,k2 − ai, j,k4 )2

)
.

(15)

To simplify (15), define 3 vectors r(U ), r1(U ), r2(U ) ∈ R
4n2 by r(U )� = r1

(U )�r2(U )�, r1(U )� = (ai, j,k1 − ai, j,k5 )2 + (ai, j,k2 + ai, j,k4 )2, r2(U )� = 1
/[(ai, j,k1 +

ai, j,k5 + 2)2 + (ai, j,k2 − ai, j,k4 )2] where � = (k − 1)n2 + ( j − 1)n + i ∈ [1, 4n2].
Hence, (15) becomes

C(u) ≈ h2

4
φ(r(U ))eT (16)

where φ(r(U )) = (φ(r(U )1), ...,φ(r(U )4n2)) denotes the pixel-wise discretization
of u1, u2 at all cell centers, and e = (1, ..., 1) ∈ R

4n2 .
Finally, combining the above three parts (10), (12), (14) and (16), we get the

discretization formulation for model (6):

min
U

J (U ) := h2 pT1 p1 + αh2 pT2 p2 + β1h
2

2
UT AT1 A1U + β2h

2

2
UT A2U + γh2

4
φ(r(U ))eT . (17)

Remark 1 According to the definition of φ and r(U )� ≥ 0, each component of
φ(r(U )) is non-negative and differentiable.

4.2 Optimization Method for the Discretized Problem (17)

In the numerical implementation, we choose a line search method to solve the result-
ing unconstrained optimization problem (17). Here, the basic iterative scheme is

Ui+1 = Ui + θδUi , (18)

where δUi is the search direction and θ is the step length. In order to guarantee a
descent search direction, we employ aGauss-Newtonmethod as the standardNewton
method does not generate a descent direction because our exact Hessian is non-
definite.

4.2.1 Gradient and Approximated Hessian of (17)

Firstly, we consider computing the gradient and approximated Hessian of the dis-
cretized fitting term h2 pT1 p1 + αh2 pT2 p2. Its gradient and approximated Hessian are
respectively:
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{
d1 = 2h2PT (dpT1 p1 + αdpT2 p2) ∈ R

2(n+1)2×1,

Ĥ1 = h2PT (dpT1 dp1 + αdpT2 dp2)P ∈ R
2(n+1)2×2(n+1)2 .

(19)

where dp1 = [�D1 − diag(D1T./t)�;�D2 − diag(D2T./t)�], dp2 = ∑2
i=1

diag(DiT./LT − Di (T + R)./LTR)Di , � = diag(1./LT), t = LT.3, � = ∑2
i=1

diag(DiT)Di and diag(v) is a diagonal matrix with v on its main diagonal.

Remark 2 Evaluating the deformed template image T must involve interpolation
because PX + PU are not in general pixel points. Here in our implementation, we
choose B-splines for the interpolation.

For the discretized diffusion regularizer β1h2

2 UT AT
1 A1U + β2h2

2 UT A2U, its gra-
dient and Hessian are respectively

{
d2 = h2(β1AT

1 A1 + β2A2)U ∈ R
2(n+1)2×1,

H2 = h2(β1AT
1 A1 + β2A2) ∈ R

2(n+1)2×2(n+1)2 .
(20)

Finally, for the discretized Beltrami term βh2

4 φ(r(U ))eT , the gradient and approx-
imated Hessian are as follows:

{
d3 = βh2

4 drT dφ(r) ∈ R
2(n+1)2×1,

Ĥ3 = βh2

4 drT d2φ(r)dr.
(21)

where dφ(r) = (φ′(r1), ...,φ′(r4n2))T is the vector of derivatives of φ at all cell
centers,

⎧⎨
⎩
dr = diag(r1)dr2 + diag(r2)dr1,
dr1 = 2diag(A31U )A31 + 2diag(A32U )A32,

dr2 = −diag(r2 � r2)[2diag(A33U + 2)A33 + 2diag(A34U )A34],
(22)

� denotes a Hadamard product, dr, dr1, dr2 are the Jacobian of r, r1, r2 with respect
toU respectively, [dφ(r)]� is the �th component of dφ(r) and d2φ(r) is the Hessian
of φ with respect to r, which is a diagonal matrix whose i th diagonal element is
φ′′(ri ), 1 ≤ i ≤ 4n2. More details about r1, r2, A31, A32, A33 and A34 are shown in
Appendix 1.

Therefore, combining the above results for 3 terms, we can obtain the gradient

dJ = d1 + d2 + d3 (23)

and the approximated Hessian of (17):

H = Ĥ1 + H2 + Ĥ3. (24)
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4.2.2 Search Direction

With the above approximated Hessian (24), in each outer (nonlinear) iteration, we
solve the Gauss-Newton system

HδU = −dJ (25)

to obtain the search direction δU for (17). Because H is symmetric positive semi-
definite, in our implementation, we choose MINRES with diagonal preconditioning
as the numerical solver [4, 36].

4.2.3 Step Length

Here, we choose a popular inexact line search condition, Armijo condition, which
determines a step length θ that satisfies the following sufficient decrease condition:

J (U + θδU ) < J (U ) + θηdJ T δU. (26)

Here, we set η = 10−4 and use the backtracking approach to find a suitable θ.
In addition, we need to check that r(U ) is smaller than 1 which is the norm of the
discretized Beltrami coefficient. For more details, please refer to [25, 34, 41].

4.2.4 Stopping Criteria

In the implementation, we choose the stopping criteria used in [33]:

(1.a) ‖J (Ui+1) − J (Ui )‖ ≤ τJ (1 + ‖J (U 0)‖),
(1.b) ‖Ui+1 −Ui‖ ≤ τW (1 + ‖X +U 0‖),
(1.c) ‖dJ‖ ≤ τG(1 + ‖J (U 0)‖),
(2) ‖dJ‖ ≤ eps,
(3) i ≥ MaxIter.

Here, eps is the machine precision and MaxIter is the maximal number of outer
iterations.We set τJ = 10−3, τW = 10−2 and τG = 10−2. If any one of (1) (2) and (3)
is satisfied, the iterations are terminated. Hence, a Gauss-Newton numerical scheme
with Armijo line search can be developed and summarized in Algorithm 1.
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Algorithm 1 Gauss-Newton scheme by using Armijo line search for Image Regis-
tration: U ← GNAIR(α,β1,β2, γ,U 0, T, R)
Step 1: Set i = 0 at the solution point Ui = U0.
Step 2: For (17), compute the energy functional J (Ui ), its gradient diJ and

the approximated Hessian Hi by (24).
while “none of the listed 3 stopping criteria are satisfied” do
Solve the Gauss-Newton equation: HiδUi = −diJ ;
Use Line Search to find step length θ;
Ui+1 = Ui + θδUi ;
i = i + 1;
Compute J (Ui ), diJ and Hi ;

end while

4.2.5 Multi-level Strategy

Amulti-level strategy is a standard technique in image registration. In the multi-level
strategy, we firstly coarsen the template T and the reference R by L levels. Then
we can obtain U1 by solving our model (6) on the coarsest level. In order to give
a good initial guess for the finer level, we adopt an interpolation operator on U1 to
obtainU 0

2 as the initial guess for the next level. We repeat this process and can get the
final registration on the finest level. The most important advantage of the multi-level
strategy is that it can save computation time because of less variables on the coarser
level than on the fine level. In addition, it can help to avoid trapping into a local
minimum.

4.2.6 Convergence Result

Our above described Algorithm 1 will converge to a stationary point of our new
model. Details are shown in Theorem 1 of Appendix 2 below.

5 Numerical Results

In this section, we will show some numerical results to illustrate the performances of
our proposed model (6) using Gauss-Newton method calledGNR. We compare with
the standardNGF [32] and theAugmented Lagrangian approach for solving a similar
model [43] called ALMR, which uses the same regularization and fitting terms.
However, the local invertibility of the map is guaranteed by imposing an inequality
constraint on the model. For more details about the augmented Lagrangian method,
we refer to [3, 38, 42] and the reference therein.
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ALMR. Alternating iteration is another popular method which might be applied
to (6). However, below, we shall consider it for a related model [43] that uses a
constrained optimization (different from (6)):

⎧⎨
⎩
min
u∈H

{J1(u) = S(u) + λ

2
DGF (u) + λ

2
DTM(u)},

w.r.t Cε(u) = det (I + ∇u) ≥ ε,
(27)

where imposing the constraint is a competing way of ensuring a diffeomorphic trans-
formation.

To reformulate (27), introducing variables K , p and n, we solve the following
constrained minimization problem:

⎧
⎪⎨
⎪⎩

min
u,K ,p,n

{S(u) + λ

2

∫

Ω

(n − ∇n R)2dx + λ

2

∫

Ω

(|p| + |∇R| − |m|)2 dx},

w.r.t K = T (x + u), p = ∇K , |p|n = p, m = p + ∇R, C > 0.

(28)

Then, the augmented Lagrangian functional corresponding to the constrained
optimization problem (28) is defined as follows:

L1(u, K ,p,n,m,λ1,λ2,λ3,λ4,λ5)

= S(u) + λ

2

∫

Ω

(n − ∇n R)2dx + λ

2

∫

Ω

(|p| + |∇R| − |m|)2 dx

+ r2
2

∫

Ω

(p − ∇K )2dx + r3
2

∫

Ω

(p − |p|n)2dx + r4
2

∫

Ω

(p + ∇R − m)2dx

+
∫

Ω

(T (x + u) − K )λ1dx +
∫

Ω

(p − ∇K ) · λ2dx +
∫

Ω

(p − |p|n) · λ3dx

+
∫

Ω

(p + ∇R − m) · λ4 dx + r1
2

∫

Ω

(T (x + u) − K )2dx + 1

2σ

∫

Ω

Cs(u,λ5) dx,

(29)
where

Cs(u,λ5) = [min{0,σ(C(u) − ε) − λ5})]2 − λ2
5, (30)

ε > 0 is a small parameter, σ > 0 and λi (i = 1, . . . , 5) are the Lagrange multipliers.
The augmented Lagrangian algorithm is shown in Algorithm 2.
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Algorithm 2 Augmented Lagrangian method

1. Initialization: u0, K 0, p0, n0,m0 and λ0
1, λ

0
2, λ

0
3, λ

0
4 and λ0

5.
2. Iterate for k = 1, 2, . . . until a required tolerance:

— compute an approximate minimizers uk+1, Kk+1, pk+1, nk+1 and mk+1 of the augmented
Lagrangian functional with the fixed Lagrange multipliers λk

1, λ
k
2, λ

k
3, λ

k
4 and λk

5:

[
uk+1, Kk+1,pk+1,nk+1,mk+1

]
=

arg min
u,K ,p,n

L1(u, K ,p,n,m,λk
1,λ

k
2,λ

k
3,λ

k
4,λ

k
5).

(31)

— Update Lagrange multipliers

λk+1
1 = λk

1 + r1(T (x + uk+1) − Kk+1), (32)

λk+1
2 = λk

2 + r2(pk+1 − ∇Kk+1), (33)

λk+1
3 = λk

3 + r3(pk+1 − |pk+1|nk+1), (34)

λk+1
4 = λk

4 + r4(mk+1 − pk+1 − ∇R), (35)

λk+1
5 = max{0,λk

5 − σCε(uk+1)}, (36)

In practice, the minimization problem (29) or (31) is decomposed into a number
of sub-problems, each of which can be solved quickly. However, the convergence
of the augmented Lagrangian iterations for this case is not guaranteed due to the
non-convexity of overall registration problem. Currently this is a major weakness
of ALMR while the convergence of GNR (even if a bit slower) can be proved and
hence recommended.

In order to reduce the number of parameters to tune, we set λ = 15, β1 = 0.005,
β2 = 0.1 × β1 r1 = 5, r2 = 10 and r3 = r4 = 100 in all numerical experiments
unless stated otherwise. We consider Nmax = 70 as the maximum number of iter-
ations for ALMR from Algorithm 2 and we stop the iterations before reaching
Nmax = 70 if the following stopping criterion

‖pk + ∇R − mk‖L1√
l × c

≤ τ

is satisfied for a given tolerance τ = 10−3, where l and c are the numbers of rows
and columns in the image

For all compared methods, we set the zero vector as the initial guess U 0. To
measure the quality of the registered images, we use the following quantities

GFer = DGF (u)

DGF (u0)
, (37)

NGFer = DNGF (u)

DNGF (u0)
, (38)
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and
MIer = −DMI (u). (39)

The good result means that it can lead to small GFer, small NGFer and large MIer.
All the codes are implemented by Matlab R2019b on a PC with 3.4GHz Intel(R)
Core(TM) i5-3570 processor and 12 GB RAM.

5.1 Example 1

In this example, we consider a pair of images displayed in Fig. 2a, b. The resolution
is 256 × 256. In order to choose the parameter easily, in this example, we fix α and
set α = 0.01.

Firstly, we consider the model without Beltrami control term, namely γ = 0. For
the parameters of regularizers, we set two pairs (β1,β2) = (50, 2) and (β1,β2) =
(50, 5). The corresponding deformed templates and transformations are shown in
Fig. 2d, e, g, h. From Fig. 2f, i, we can find that the deformed templates generated
by these two pairs of parameters are visually satisfied. In addition, these two choices
give similar measurements: GFer = 0.82, NGFer = 0.81, MIer = 0.58 and GFer
= 0.83, NGFer = 0.84, MIer = 0.57 respectively. However, the first choice leads
to a transformation containing folding because the minimum of the Jacobian deter-
minant of the transformation is negative but the second choice produces a smooth
transformation without folding because the minimum of the Jacobian determinant
of the transformation is positive.

Since first and second order regularizers just control the smoothness, in order to
overcome this drawback, we keep (β1,β2) = (50, 2) unchanged and choose a suit-
able γ. Here, we set γ = 10. Figure 3a, b shows the corresponding deformed template
and transformation. From Fig. 3c, the deformed template is similar visually with the
previous one without controlling the Beltrami coefficient and the measurements are
also similar (GFer = 0.82, NGFer = 0.82 and MIer = 0.57). But the minimum of
the Jacobian determinant of the transformation is positive, which illustrates that the
transformation is diffeomorphic. In the same figure, we also give the result ofALMR
model, which shows again from the overlay of T (ϕ) and the reference R that the
template image T is well registered to R.

Now, we investigate the sensitivity of γ. From Table 1, we can find that when
we fix α,β1 and β2 and change γ, GFer, NGFer and MIer are robust and at the
same time, the minimum of the Jacobian determinant of the transformations are all
positive. This indicates that the Beltrami control term is not sensitive.

In addition, we also investigate the convergence of the algorithm for our model.
Here, we force the relative norm of the gradient of the approximated solution to reach
10−3 although it only runs several iterations by using the practical stopping criteria.
Here, according to Fig. 4, we can find that the algorithm for our model is convergent.
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(a) Reference (b) Template (c) Overlay of T and R

(d) T (ϕ): GFer = 0.82,
NGFer = 0.81, MIer = 0.58
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(e) Bad ϕ with (50, 2)
det(Jϕ) ∈ [−0.17, 3.24]

(f) Overlay of T (ϕ) and R

(g) T (ϕ): GFer = 0.83, ,
NGFer = 0.84, MIer = 0.57
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(h) Good ϕ with (50, 5)
det(Jϕ) ∈ [0.17, 2.30]

(i) Overlay of T (ϕ) and R

Fig. 2 Example 1 without the Beltrami control term: the first row shows the reference, template
and overlay of the reference and template. The second and third rows show the deformed templates
and transformations obtained by two pairs of parameters (β1,β2) = (50, 2) and (β1,β2) = (50, 5),
respectively. The results are visually similar but the transformations are not both one-to-one. The
first choice leads to a mesh with folding because the minimum of the Jacobian determinant of the
transformation is negative
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(a) T (ϕ), GFer = 0.82,
NGFer = 0.82, MIer = 0.57
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(b) GNR ϕ:
det(Jϕ) ∈ [0.05, 3.48]

(c) GNR: T (ϕ) over R

(d) T (ϕ), GFer = 0.97,
NGFer = 0.88, MIer = 0.59

(e) ALMR ϕ:
det(Jϕ) ∈ [0.04, 3.09]

(f) ALMR: T (ϕ) over R

Fig. 3 Example 1: the deformed template and transformation are generated by (β1,β2, γ) =
(50, 2, 10). The results are visually satisfied and the transformation is one-to-one. Second row:
the deformed template obtained by ALMR and its overlay with the reference R

Table 1 Example 1: measurements obtained by using α = 10−2,β1 = 50 and β2 = 2

γ GFer NGFer MIer min det(Jϕ) max det(Jϕ)

1 0.82 0.82 0.57 0.01 3.14

10 0.82 0.82 0.57 0.05 3.48

100 0.82 0.82 0.57 0.06 3.13

1000 0.82 0.82 0.57 0.21 3.11

Hence, this example illustrates that our new control term can effectively control
the transformation and lead to an accurate registration. Meanwhile, the new control
term can make this model more robust.
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(a) Relative norm of the gradient
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(b) Relative norm of the function value

Fig. 4 Example 1: Relative norm of the gradient and relative norm of the function value by the
parameter (α,β1,β2, γ) = (0.01, 50, 2, 10). Here, we can notice that our algorithm is convergent

5.2 Example 2

In this example, we consider another pair of 256 × 256 images (Fig. 5a, b). Again,
in order to reduce the complexity of choosing parameters, we fix α = 10−1 in this
example.

Firstly, we set β1 = 50,β2 = 10 and γ = 0. From Fig. 5d–f, although the
deformed template is satisfied visually, we can find that the resulting transforma-
tion has folding since the minimum of the Jacobian determinant is negative.

As a comparison, we also test the model of the standard NGF [32] with the
same first- and second-order regularizer. Here, we test three pairs of (β1,β2) and
the corresponding results are shown in Fig. 6. We can find that for the fitting term,
if we choose NGF, it is very hard to choose the suitable parameters to get a good
registration, namely, simultaneously get a diffeomorphic transformation and a visu-
ally satisfied deformed template. In order to overcome this difficulty, we keep β1,
β2 unchanged and choose γ as 1, 10 and 100 separately. Figure7 shows that they
can all generate visually satisfied deformed template and diffeomorphic transforma-
tions. Specifically, according to Fig. 7, we can see that the measurements obtained
by these choices are very similar, which again demonstrates that this model can be
more robust through combining the Beltrami control term. We also give the result
of ALMR model in Fig. 8. We can observe from overlay of the registered and the
reference images that allmodelswork fine in producing acceptable registration result.
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(a) Reference (b) Template (c) Overlay of T and R

(d) T (ϕ), GFer = 0.62,
NGFer = 0.68, MIer = 0.83
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(e) GNR: ϕ,
det(Jϕ) ∈ [−0.19, 3.13]

(f) GNR: T (ϕ) over R

Fig. 5 Example 2 by the new model GNR without using the control term C : the resulting trans-
formation is not diffeomorphic although the deformed template is visually satisfied

In summary, when the ALMR, the NGF and the GNR work, the latter has the
largest MIer similarity (indicating better quality). However, NGF (or taking out an
extra control term forALMR andGNR) can fail to deliver a valid result (with negative
det∇ y) if the parameters are not chosen correctly. AlthoughALMR is completive to
GNR (and takes less time to converge in practice), only the convergence ofGNR can
be proved.Hence ourmodelGNR is robust and can be recommended formulti-modal
registration.

6 Conclusions

Image registration is an increasingly important and often challenging image process-
ing task. The quality of the transformation requires suitable control. In this Chapter to
improve a multi-modality registration model, we propose a novel term motivated by
Beltrami coefficient, which can lead to a diffeomorphic transformation. The advan-
tage of the term lies in no bias imposed on its Jacobian of the transformation’s deter-
minant. By employing first-discretize-then-optimize method, we design an effective
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(a) T (ϕ) with GFer = 1.08,
NGFer = 0.96, MIer = 0.50
with (β1, β2) = (0.1, 0.001)

(b) T (ϕ) with GFer = 1.07,
NGFer = 0.96, MIer = 0.53
with (β1, β2) = (0.01, 0.01)

(c) T (ϕ): GFer = 1.14,
NGFer = 0.99, MIer = 0.50
with (β1, β2) = (0.01, 10−4)

(d) T (ϕ) over R (e) T (ϕ) over R (f) T (ϕ) over R
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(g) ϕ

det(Jϕ) ∈ [0.27, 1.94]
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(h) ϕ

det(Jϕ) ∈ [0.54, 1.19]
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(i) ϕ

det(Jϕ) ∈ [−0.89, 4.10]

Fig. 6 Example 2 by the GNR without imposing a control term. Each column shows results of a
different choice of (β1,β2) balancing first- and second-order regularizers: the deformed template,
overlay of T (ϕ) and R, and the transformation. Clearly the last column obtains the incorrect ϕ
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(a) T (ϕ): GFer = 0.62,
NGFer = 0.68, MIer = 0.83
with γ = 1

(b) T (ϕ): GFer = 0.63,
NGFer = 0.68, MIer = 0.83
with γ = 10

(c) T (ϕ): GFer = 0.63,
NGFer = 0.68, MIer = 0.83
with γ = 100

(d) T (ϕ) over R (e) T (ϕ) over R (f) T (ϕ) over R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(g) ϕ: det(Jϕ) ∈ [0.01, 2.54]
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(h) ϕ: det(Jϕ) ∈ [0.01, 3.27]
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(i) ϕ: det(Jϕ) ∈ [0.02, 3.19]

Fig. 7 Example 2 by the new model GNR. By using the control term for each choice of γ (by
column), the resulting transformation is diffeomorphic and the deformed template is also visually
pleasing

solver to solve our proposed model numerically. Experimental tests confirm that our
proposed model performs well in multi-modality images registration. In addition,
with the help of the Beltrami control term, the proposed model is more robust with
respect to the parameters. Future work will investigate extension of this work to a
deep learning framework [45].
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(a) T (ϕ), GFer = 0.51,
NGFer = 0.62, MIer = 0.78

(b) ϕ: det(Jϕ) ∈ [0.11, 3.15] (c) ALMR: T (ϕ) over R

Fig. 8 Example 2 byALMRmodel. The deformed template is also visually close to the reference R

Appendix 1—Computation of the Vector r(U)

First of all, denote the 3 vertices of this triangle by V1 = x1,1, V2 = x2,1 and V5 =
x1.5,1.5 in Fig. 1. Set L(V1) = (u1,11 , u1,12 ), L(V2) = (u2,11 , u2,12 ) at the vertex pixels,
and L(V5) = (u1.5,1.51 , u1.5,1.52 ) at the cell centre (approximated values). Here the
linear approximations are L(x1, x2) = (a1x1 + a2x2 + a3, a4x1 + a5x2 + a6).

After substituting V1, V2 and V5 into L, we get

(
a1
a2

)
= 1

det

(
x12 − x1.52 −x12 + x1.52

−x21 + x1.51 x11 − x1.51

) (
u1,11 − u1.5,1.51

u2,11 − u1.5,1.51

)
, (40)

(
a4
a5

)
= 1

det

(
x12 − x1.52 −x12 + x1.52

−x21 + x1.51 x11 − x1.51

) (
u1,12 − u1.5,1.52

u2,12 − u1.5,1.52

)
, (41)

where det =
∣∣∣∣
x11 − x1.51 x12 − x1.52
x21 − x1.51 x12 − x1.52

∣∣∣∣.
According to (40) and (41), we can formulate two matrices D1 ∈ R

4n2×(n+1)2 and
D2 ∈ R

4n2×(n+1)2 such that

A31 = [D1,−D2], A32 = [D2, D1], A33 = [D1, D2], A34 = [D2,−D1].

Then using the Hadamard product �, we get a compact form for

⎧⎨
⎩
r1(U ) = A31U � A31U + A32U � A32U,

r2(U ) = 1./((A33U + 2) � (A33U + 2) + A34U � A34U ),

r(U ) = r1 � r2 ∈ R
4n2×1.

(42)
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Appendix 2—The Global Convergence of Algorithm 1

In order to discuss the global convergence result of Algorithm 1 for the discretized
optimization problem (17), we first review two lemmas.

Lemma 1 ([25]) For the unconstrained optimization problem

min
U

J (U )

let an iterative sequence be defined by Ui+1 = Ui + θδUi , where δUi =
−(Hi )−1dJ (Ui ) and θ is obtained by Armijo condition. Assume that three con-
ditions are met: (i). dJ be Lipschitz continuous; (ii). the matrices Hi are SPD (iii).
there exist constants κ̄ and M such that the condition number κ(Hi ) ≤ κ̄ and the
norm ||Hi || ≤ M for all i . Then either J (Ui ) is unbounded from below or

lim
i→∞ dJ (U

i ) = 0 (43)

and hence any limit point of the sequence of iterates is a stationary point.

Lemma 2 Let a matrix be comprised of 3 submatrices H = H1 + H2 + H3. If H1

and H2 are symmetric positive semi-definite and H3 is SPD, then H is SPD with
λH3 ≤ λH , where λH3 and λH are the minimum eigenvalues of H3 and H separately.

Proof According to Rayleigh quotient, we can find a vector v such that

λH = vT Hv

vT v
. (44)

Then we have

λH3 ≤ vT H1v

vT v
+ vT H2v

vT v
+ vT H3v

vT v
= vT Hv

vT v
= λH , (45)

which completes the proof.

In the above discretization leading to (17), we do not need to introduce the bound-
ary condition. However for theory purpose, in the following, we will prove our con-
vergence result under the Dirichlet boundary condition (namely, the boundary is
fixed) and this condition is needed to prove the symmetric positive definite (SPD)
property of the approximated Hessian. In practical implementation, such a condition
is not required as confirmed by experiments.

In addition, define an important set X := {U | r(U )� ≤ 1 − ε, 1 ≤ � ≤ 4n2} for
small ε. SoU ∈ X means that the transformation is diffeomorphic. Under the suitable
γ, each Ui generated by Algorithm 1 is in the X .
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Theorem 1 Assume that T and R are twice continuously differentiable. For (17),
by using Algorithm 1, we obtain

lim
i→∞ dJ (U

i ) = 0 (46)

and hence any limit point of the sequence of iterates produced by Algorithm 1 is a
stationary point.

Proof It suffices to show that Algorithm 1 satisfies the requirements of Lemma 1.
Recall r(U ) and we can see that it is continuous. Here, we use the Dirichlet boundary
condition and we can assume that ‖U‖ is bounded. Then r(U ) is a continuous
mapping from a compact set to R4n2×1 and r(U ) is proper. So for some small ε > 0,
X is compact.

Firstly,we show that inX , dJ of (17) is Lipschitz continuous. The termφ(r(U ))eT

in the (17) is twice continuously differentiable with respect to U ∈ X . In addition,
T and R are twice continuously differentiable. So (17) is twice continuously differ-
entiable with respect to U ∈ X and dJ is Lipschitz continuous.

Secondly, we show that in X , Hi = Ĥ i
1 + Hi

2 + Ĥ i
3 is SPD. By the construction

of Ĥ i
1 and Ĥ i

3, they are symmetric positive semi-definite. Hi
2 is symmetric positive

definite under the Dirichlet boundary condition. Consequently, according to Lemma
2, Hi is SPD.

Thirdly, we show that both κ(Hi ) and ‖Hi‖ are bounded. We notice that in each
iteration, Hi

2 is constant and we can set ‖Hi
2‖ = M2. For Ĥ i

1, we get its upper bound
M1 because T is twice continuously differentiable andX is compact. φ is also twice
continuously differentiablewith respect toU ∈ X , thenwe have ‖Ĥ i

3‖ ≤ M3. Hence,
we have

‖Hi‖ ≤ ‖Ĥ i
1‖ + ‖Hi

2‖ + ‖Ĥ i
3‖ ≤ M1 + M2 + M3. (47)

So set M = M1 + M2 + M3 and ‖Hi‖ ≤ M . Set σ as the minimum eigenvalue of
Hi

2. According to Lemma 2, the smallest eigenvalue λmin of Hi should be larger than
σ. The largest eigenvalue λmax of Hi should be smaller than M due to λmax ≤ ‖Hi‖.
So the conditional number of Hi is smaller than M

σ
.

Finally, we can find that (17) has lower bound 0. Hence, by applying Lemma 1,
we complete the proof.
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