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Abstract In this survey, we present fast, accurate and convergent numerical meth-
ods for solving non-rigid image registration based on optimal mass transport. To
solve the model equation, we first transform the nonlinear PDEs into an HJB equa-
tion. We apply a mixed standard 7-point stencil and semi-Lagrangian wide stencil
discretization, such that the numerical solution is guaranteed to converge to the vis-
cosity solution of the Monge-Ampere equation. We design a numerical scheme that
converges to the optimal transformation between the target and template images.
Finally, we introduce fast multigrid methods for solving the discrete nonlinear sys-
tem. In particular, we use a four-directional alternating line relaxation scheme as
smoother, a coarsening strategy where wide stencil points are set as coarse grid
points. Linear interpolation and injection are used in prolongation and restriction,
respectively. Our numerical results show that the numerical solution yield good qual-
ity transformations for non-rigid image registration and the convergence rates of the
proposed multigrid methods are mesh-independent.

Keywords Image registration - Optimal mass transport - Monge-Ampere
equation + Multigrid + Monotone discretization scheme
1 Introduction

In many applications, one has to compare two images T (template) and R (reference)
which display the same object, but the object inside the images is not spatially aligned,
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or the devices that record the two images are different. The image registration problem
is to find a coordinate transformation ¢ which transforms the image 7 to another
image Ty, such that T is similar and thus comparable to the image R.

One important application of image registration is to compare medical images of
the same patient, such as CT (computed tomography) and MRI (magnetic resonance
imaging) images of a damaged brain, which gives guidance for diagnosis and surgery
[1, 24]. Image registration can also be used for image fusion [26]. Multiple images
of the same object are taken, registered and then merged together, such that the
integrated image provides more useful than the original ones. We refer readers to [2]
for more discussion on applications.

Different approaches have been developed for image registration problems,
including parametrized transformation [30, 44], landmark-based registration [36],
elastic registration [8], fluid registration [14], diffusion registration [18], demon’s
registration [41], flow of diffeomorphism [16, 43], etc. A substantial discussion of
existing methods can be found in [32, 40].

This paper surveys the three recent works of the authors [10-12] and it considers
a non-rigid image registration method based on Monge-Kantorovich mass transport
[9, 20, 22, 23, 33, 37]. Optimal mass transport problems appear in many applications
and have been widely studied (seee.g. [13, 34, 38]). The use of optimal mass transport
for image registration was first proposed in [22, 23]. This image registration model
treats two images R and T as two mass densities. The goal is to find a mapping
which transforms one mass density 7' to the other R with mass conservation. Such
transformation is non-unique. By defining a transformation-dependent cost function
and minimizing it, we can obtain a unique optimal transformation. This optimal
transformation has desirable properties. For instance, it is usually diffeomorphic and
does not introduce foldings and crossings.

The primary advantage of this image registration model is that, unlike many other
non-rigid methods that are only applicable for images with small deformations, this
model can be applied to images with large deformations. See Figs. 1 and 2 in [22]
for an example of images with large deformations. Indeed, given any R and T, the
transformed image T, under the mass transport formulation can be equal to R [33].

Numerical methods have been developed for solving the image registration model
based on optimal mass transport. In [22, 23], the authors construct an initial mass-
preserving mapping ¢o by solving a nonlinear partial differential equation (PDE),
and obtain a second mass-preserving mapping ¢, by solving another nonlinear PDE
system, such that ¢y o ¢, is the optimal transformation. The entire process involves
many intermediate steps. Also, in general, a nonlinear PDE (or PDE system) has
multiple solutions. An immediate challenge is that the nonlinear PDE system in
[22, 23] can give multiple transformations between R and T, which may not be the
optimal transformation.

An alternative approach is to solve an equivalent nonlinear Monge-Ampere equa-
tion. The gradient of the unique globally convex solution corresponds to the optimal
transformation between R and T [22, 27]. The convex solution itself is usually called
ascalar potential that generates the optimal transformation. Some literature has inves-
tigated numerical schemes for the Monge-Ampere equation arising from the image
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registration model [9, 20, 37]. However, for the approach in [20], the computational
cost per pixel must increase to infinity as the image size increases [17]. The methods
in [9, 37] are based on gradient descent, which is essentially equivalent to solving
the Monge-Ampere equation using explicit pseudo-timestepping.

In this survey paper, we present a numerical approach for the image registration
model based on optimal mass transport by solving the equivalent Monge-Ampere
equation. In order to ensure that the numerical scheme yields the optimal trans-
formation between R and 7' [20, 21], we will adopt a monotone finite difference
discretization method based on our previous work [10], which can be proved that the
resulting numerical solution converges to the viscosity solution [4] of the Monge-
Ampere equation. We will also present efficient multigrid methods for solving the
resulting nonlinear discretized system [11].

Standard multigrid methods turn out to have poor convergence. There are two
major factors behind the poor convergence. One is that the PDE may become
anisotropic along various directions. Standard pointwise smoothers fail to smooth
the error along the weakly connected directions. The other factor is that the result-
ing matrix is non-symmetric, which is a well-known issue when applying multigrid.
Algebraic multigrid (AMG) methods [35, 39] have been used as preconditioners.
However, they are not efficient as stand-alone solvers since AMG methods assess
geometric information indirectly though the strength of connections which is not
effective for the monotone discretization.

To obtain a fast stand-alone multigrid solver for solving Monge-Ampere equa-
tions, we note that wide stencils introduce oscillations locally to the error, and
such oscillations cannot be eliminated by smoothers, including the alternating line
smoothers. However, the oscillations are restricted at the wide stencil points. One
possible solution to capture the oscillations is to use a sophisticated interpolation,
which can be complicated and expensive to set up. Instead, we use a non-standard
coarsening strategy. Specifically, we set wide stencil points as coarse grid points.
The purpose is to directly use the coarse grid points to capture the oscillations. As
the wide stencils are mainly restricted to the singular points or singular lines, setting
wide stencil points as coarse grid points does not significantly increase the number of
the coarse grid points. In our numerical experiments, we illustrate that the proposed
multigrid method has a mesh-independent convergence rate for various problems.

This paper is organized as follows. In Sect. 2, we describe the image registration
model based on optimal mass transport. Section3 describes a finite difference dis-
cretization for the Monge-Ampere equation arising from the mass transport image
registration model. In Sect.4, we present efficient multigrid methods to solve the
discretized system. Numerical results in Sect.5 show that our multigrid methods
converge quickly with mesh-independent convergence rate. Image results are also
provided to demonstrate the performance of the registration model. Section6 con-
cludes the paper.
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2 Image Registration Model Based on Optimal Mass
Transport

2.1 Image Registration

Given a template image 7 and a reference image R, the objective of the image regis-
tration problem is to align the two images. Mathematically, we consider the template
(reference) image as a function defined on the domain Q7 (Q%). For simplicity,
we assume that Q7 = QF = [0, 1] x [0, 1]. The image registration problem can be
formulated as to find a coordinate transformation ¢ that minimizes the difference
between p’» and p¥, where p” and p® are the intensities of the template image and
reference image, respectively, and p is the intensity of the transformed image, Tj.
The intensities must be positive and bounded. The difference of the two images is
usually measured by some function such as sum of squared differences

D™, p®) = 11p" — "l L.can)- (1)

2.2 Optimal Mass Transport Model

Consider registering two images 7 and R. If we view them as two piles of soil with
the densities p” and p®, then an image registration problem can be interpreted as a
mass transport problem [22, 23, 33]. That is, we consider two piles of soil pT and
p® with the same total mass:

/ ol (®)d*x = / pR(x)d*x. 2)
xeQl xeQR

The image registration problem becomes to find a coordinate transformation ¢ :
QR — QT or £ = ¢(x) € R?, such that p” is transformed to p® while the total
mass is conserved:

/ @) = / PR (x)dx, 3)

xeQk

or equivalently,

o’ ((x)) det[Do (x)] = p*(x), 4)

where D¢ (x) € R?**? is the Jacobian of the transformation ¢ (x).
Under the transformation ¢, define the intensity of the transformed image Ty as

p™(x) = p (¢ (x)) det[ D¢ (x)]. )
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Then the transformed template image is equal to the reference image:
T, R
p(x) = p=(x). (6)

As a result, the mass transport model can transform any template image 7' to any
reference image R [33].

The mass transport registration (5) is ill-posed. More specifically, there exist
multiple transformations that move the soil p” to p®. Among all possible transfor-
mations, one of them requires the “least cost”, which is desirable. Following [5, 22,
23], we aim to find the optimal transformation ¢*(x) that minimizes the following
cost function:

¢*(x) = argmin | lx — p(x)|*p" (¥)d’x, (7
¢ (x) R2

which is the weighted least squares displacement of the mass. In essence, (7) regu-
larizes the mass transport registration and makes the transformation between p” and
o® unique.

2.3 Monge-Ampere Equation

It has been proved in [27] that the optimal transformation that minimizes the cost
function (7) can be written as

¢*(x) = Vu(x), ®)

where u € C(QR) is a strictly convex scalar potential field, and its gradient Vu
generates the optimal transformation ¢*. Substituting (8) into (4), we have

2 N PR(x)
det[D“u(x)] = —pT(Vu(x))’ &)
u is strictly convex. (10)

Equations (9)—(10) is a Monge-Ampere equation.

Due to the nonlinearity, the equation (9) itself, without the convexity constraint
(10), can have multiple solutions [6, 17]. However, the solution of (9) that satisfies
the convexity constraint (10) is unique [20], which we will denote as u* whenever
we need to distinguish it from the other solutions. We emphasize that the convexity
of u* is equivalent to the optimality of the transformation ¢* = Vu™* [20, 22].
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3 Finite Difference Discretization

In order to design a finite difference scheme that converges to the viscosity solution,
we first convert the Monge-Ampere equation into an equivalent Hamilton-Jacobi-
Bellman (HJB) equation. The equivalence of the two PDEs is first established in [28,
29]. Here we present the equivalent HIB equation as follows:

Theorem 1 Let u € C2(QLR) be convex, and let pT7 € C(QT) and p® € C(QF) be
two positive functions. Then the Monge-Ampére equation (9)—(10) is equivalent to
the following HJB equation

N

Lex),00(x) u(x) =0, (11)

subject to (c*(x), 0*(x)) = arg max [ic(x),@(x) u(x), (12)
(c(x),0(x))el’

where the differential operator is

A

L) o) u(x) = —0o11(c(x), 6(x)) e, (x) — 2012(c(x), 0(X))uxy (x)
PR (x)
pT (Vu(x))’
(13)
and (c(x), 0(x)) is the pair of control at point x, T' = [0, 1] x [—%, %) is the set of
admissible control. The coefficients are

—on(c(x), 0(x))uy, (x) + 2\/6‘(«\7)(1 —c(x))

o1 (c(x), 0(x)) = 1[1 — (I = 2c(x)) cos 26 (x)],
02(c(x),0(x)) = =[1 + (1 — 2¢(x)) cos 20 (x)], (14)
op(c(x),0(x)) = 5(1 — 2¢(x))sin20(x).

Below, we will describe a monotone finite difference discretization scheme for
the HIB equation (11)—(12).

3.1 Standard 7-Point Stencil Discretization

Consider discretizing the differential operator (13) at a grid point x; ;. We use the
standard central differencing to approximate u,,(x; ;) and u,,(x; ;). Regarding the
cross derivative u, (x; ;), it can be shown that the standard 7-point stencil discretiza-
tion leads to a monotone scheme in the following two cases:
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Fig. 1 (i) 7-point stencil of

(16); (ii) 7-point stencil of j+1 o o e o
(18)
e o o e o o
J Xij X
J_]- ® L) ] L)
i—1 i i+1 i—1 i i+1
(€] (ii)

e Case 1. When the coefficients (14) at a grid point x; ; satisfy
o11(ci,j.6i,j) = lo1a(ci j. 0;, )N, 022(ci j. 65, ) = loa(ci j. 6, I, o12(cij. 6;,7) =20, (15)

we approximate u,, (x; ;) using
2ug ;i 1 Ui o1 T Ui T Wi, T W]~ Ui ]

2h2
(16)

1 o
E(DjD;,L + Dy DY)y j =
e Case 2. When the coefficients (14) at a grid point x; ; satisfy
o11(ci,j. 6i,j) = lora(ci j. 0;, I 022(ci j. 0, 7) = lo2(ci j. 0 DI o12(ci, . 6;,) <0, (17)

we approximate u,, (x; ;) using

=2Uj ;= Uil j—1 — Uil j+1 F Uikl + Ui+ Ui j1 + UG -1

1 _ _
E(DjD). + D; Dj)u,-,,- = e
(18)

Figure 1 shows the stencil points of the 7-point stencil discretizations (16) and (18).
As aresult, the discretization of the differential operator (13) at x; ; reads

Li j(cij, 6ijsup) = —o11(ci j, 6;, ) D Dy ui j — o12(ci,j, 9[,_,‘)(D,TDf + Dy D)y j

_ , (19)
—022(ci j, 0i DY Dy ui j+2,/ci j(A=ci ) fij

3.2 Semi-Lagrangian Wide Stencil Discretization

However, if neither of Conditions (15) and (17) is fulfilled at the grid point x; ;, then
itis unclear how to directly discretize the cross derivative u,,(x; ;) in (13) monoton-
ically. Our approach is to consider a semi-Lagrangian wide stencil discretization
[15, 31]. Figure?2 illustrates the discretization process. More specifically, we con-
sider eliminating the cross derivative u,(x; ;) by a local coordinate transformation.
Let {(e;)i j, (ew)i )} be a local orthogonal basis obtained by a clockwise rotation
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<-\\Xi,j'"\/F(ew)i,j
|~
xi,j_\/ﬂ(ez)i,j
Xy, j “el,j xi,j+\/ﬂ(ez)i,]
e
| -~ (ez)i,}'
Xi,j_\/ﬂ<ew)i,j

Fig. 2 Semi-Lagrangian wide stencil discretization at a grid point x; ; inside the computational
domain

of the standard axes {(ey); j, (ey)i ;}, as represented by the grey axes in Fig.2. By
straightforward algebra, one can show that if the rotation angle is

20‘12 (C,',j, 9,"}')

— arctan
o (cij. 6ij) — o (cijs 6i))

=0,

then the cross derivative vanishes under the basis {(e;); ;, (ew);, j}. As aresult, (13)
becomes

(20)

—cijuz (i) — (1= cij) uww(xij) +2/cij (1 —cij) fij

Here u_.(x; ;) and u,,,(x; ;) are the directional derivatives along the basis (e;); ;
and (e,,); ;. We note that (20) still depends on ; ;, as the basis (e;); ; and (e); ;
depend on 6; ;.

To discretize (20), one may consider applying the standard central differencing
to u - (x; ;) and uy,, (x; ;). For instance, we approximate u_,(x; ;) by

1
7 [u(xi; +hie)ij) — 2ui; +ux;; —hie)i;)]. (21)

However, since the stencil is rotated, the stencil points x; ; &= h(e;); ; may no longer
coincide with any grid points. In such cases, we consider approximating u(x; ; £
h(e;); ;) using bilinear interpolation from the neighboring grid points. However, a
consequence of the bilinear interpolation is that the truncation error of (21) turns out
to be O (1), which is not consistent. In order to maintain consistency, we choose the
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stencil length +/7, which yields O (/) truncation error. We note that the stencil length
VI is greater than &, which gives rise to a “wide” stencil.

Under the stencil length /I, the new stencil points are x; ; & x/ﬁ(ez),-, j and
x; ;£ Vh (ew)i,j» as represented by the grey stars in Fig.2. The unknown values at
these stencil points are approximated by the bilinear interpolation from their neigh-
boring points, as represented by the black dots in Fig. 2. We denote these interpolated
unknown values as Zju| xR, and Z,u| xitew)is” The finite difference dis-
cretizations for u_;(x; ;) and u,,, (x; ;) are then given by

Ihu|xl,‘j+\/ﬁ(ez)i,f o 2uiv-f + Ihu|xi,,f*«/ﬁ(9z)1,/

D;_Dz_ui,j = h B (22)
Thul, = 2u; 4+ Thul, N
DiDu;; = xi j+vh(ew): ; J xij—vh(ew) . 23)

Finally, the discretization of the differential operator (13) at x; ; reads

Lijeij O3 un) = —ci,j DI D7uj j — (1= cij) D Dy j +2,/ei j(1 = ¢i,j) fij-

(24)

We remark that here we have only discussed the scenario where x; ; is well inside
the computational domain. The scenario where x; ; is near the boundary can be
handled similarly.

3.3 Mixed Discretization

The advantage of the semi-Lagrangian wide stencil discretization (24) is that it is
unconditionally monotone but it is only first order accurate. On the other hand, the
standard 7-point stencil discretization is second order accurate. In order to com-
bine the advantages of both discretization schemes, we will only apply the semi-
Lagrangian wide stencil discretization at the grid points where neither (15) nor (17)
is satisfied. Otherwise, the standard 7-point stencil discretization is applied. The
resulting discretization method can be written as:

The significance of this mixed discretization is that monotonicity is strictly main-
tained at every grid point, and meanwhile, by using the standard 7-point stencil
discretization as much as possible, the numerical scheme is as accurate as possible.

The mixed discretization scheme gives rise to a nonlinear discrete system which
can be written in the following matrix form:

An(ch, 67 up = (e, 67), (25)
subject to  (cj,, 0;) = arg max {Ay(cy, O) up — by(cn, Op)}, (26)
(cn.On)el

where the matrix A, € R™"*"" and the vectors uy, c;,, 0y, b, € R™".
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Algorithm 1 Mixed discretization for the HIB equation (11)-(12)
l:for i =1,,..,n, do

2: for j=1,,..,n, do

3: if (c; j, 0; ) satisfies Conditions (15) or (17) then

4. The discrete equationat (i, j), L;,j(ci, j, 0;,j; un),is given by the standard 7-point stencil
discretization (19)

5: else

6: The discrete equation at (i, j), £;, j(ci j, 0i,j; un), is given by the semi-Lagrangian wide
stencil discretization (24)

7: end if

8: end for

9: end for

4 Multigrid Methods

We will apply multigrid methods for solving (25). We start with multigrid methods for
the standard 7-point stencil discretization. More precisely, we consider the case where
the standard 7-point stencil discretization can be applied on the entire computational
domain and still results in a monotone scheme. We will leave the discussion of
multigrid for more general mixed stencil discretization to Sect.4.3.

4.1 Policy-MG Iteration

One family of multigrid methods for solving the discretized HIB equation (25) is
based on a global Newton-like iteration for the nonlinear system, called policy iter-
ation (or Howard’s algorithm) [19, 25]. At each policy iteration, a linear multigrid
solver is applied to solve the linearized system. The algorithm can be written as
follows:
Start with an initial guess of the solution u
For k = 0, 1, ... until convergence:

0)
P

1. Solve for the optimal control pair (a,(,k), Q,Ek)) under the current solution u;,k):
k) ok k
(@), 6")) = arg max {Ah(ah, Onuy — by (a, 9h)} ) 27
(ai,j.6i, /)€, j i,j

forall x; ; € Q. Here I'; ; = [0, 1] x [—7, %) is the control set at x; ;.
Meanwhile, obtain the residual

O = An(a), 0y — by(a, 0). (28)
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2. If ||r,§k) || < tolerance: break

Else, use the multigrid V-cycle to solve the following linear system for the solution

u;k“) under the current optimal control pair (a,gk), G,Ek)):

k k k+1 k k k+1
An@®, 0 ulf Y = a0 = ul Y. (29)

To summarize, in order to solve (25), the inner multigrid V-cycle iteration for
linearized problems is nested in an outer policy iteration. For convenience, we refer
this type of multigrid methods as “policy-MG iteration”.

The advantage of using this approach is that policy iteration is guaranteed to
converge for any initial guess u;lo), if HJIB equation is monotonically discretized
[3, 7]. Policy iteration consists of two sub-steps. The first sub-step is to solve the
optimization problem at each grid point x; ;; see (27). Our recent work [10] discusses
speeding up computation of the optimization problem in details. The second sub-step
of the policy iteration is to solve the linear system under a given control pair; see
(29). The second sub-step is our focus of developing multigrid methods.

4.2 MG for 7-Point Stencil

The components of the standard multigrid include pointwise smoother, full coarsen-
ing, full-weighting restriction, bilinear interpolation and coarse grid operator (i.e.,
Galerkin coarse grid operator or direct discretization). However, the standard multi-
grid leads to a poor convergence for the HIB equation. We need to adapt each multi-
grid component to the HIB equation in order to achieve fast convergence.

4.2.1 Nonlinear Smoother

First, we discuss smoothers. We observe that (11) may become anisotropic. For
instance, if ¢* = € is a small constant close to 0 and 8* = 0, then (11) becomes

—€uyy — (1 —uyy +2/e(l —€) f =0,

which is an anisotropic Poisson equation. It is well-known that when solving
anisotropic equations, the standard pointwise smoothers do not smooth errors along
the weakly connected axis, which causes poor convergence rates [42].

To address anisotropy, we consider using line smoothers. More specifically,
instead of updating the unknowns point by point, we update strongly-connected
grid points collectively. In general, the strongly-connected direction of the 7-point
discretization can change alignment to either the x-axis, or the y-axis, or the diag-
onal axes, in different parts of the computational domain. In view of this, we apply
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four-direction alternating Gauss-Seidel line smoother. Thus, the line smoother is
applied four times: along the x-axis (left to right), the y-axis (top to bottom), the
diagonal axis (top left to bottom right) and the transpose diagonal axis (top right to
bottom left). We summarize the nonlinear smoother in Algorithm 2.

Algorithm 2 Nonlinear four-direction alternating Gauss-Seidel line smoother

1: subroutine u; = SMOOTH (uy,)

2:for i =1,,..,n, do

3: for j=1,,..,n, do

4. Update the control: (¢;,j, Q_i‘j) = argmax L; j(cij,0;j; up).
(ci,j,0i, )€l

5:  end for

6: end for

7: Apply the one-step four-direction alternating Gauss-Seidel line smoother to the linearized system
Ap(ch, Op) up, = bp(cp, 0y), which updates the solution u;, — iy.

4.2.2 Restriction and Interpolation

Once the error becomes smooth along the x, y and diagonal axes after using the
four-direction alternating line smoother, the standard full-coarsening can be applied.
In order to capture the directional feature of the 7-point discretization, we follow [42]
and apply 7-point restriction operators to (19). Using the stencil notation introduced,
the corresponding 7-point restriction operators are given by

(Tort [T11o
RU=—_|121|, R®=-|121], (30)
110 81011

respectively. The interpolation operator is the scaled transpose of the restriction
operator:
P =4R". 31

4.3 MG for Mixed Discretization

In this section, we will discuss multigrid methods for the more general mixed dis-
cretization, where the semi-Lagrangian wide stencil discretization is applied to part
of the computational domain. We will propose global linearization multigrid methods
instead of FAS methods. One reason is that mixed discretization with wide stencils
is a more difficult problem than the pure standard 7-point stencil discretization. We
would like to use the Petrov-Galerkin coarse grid operators, which is more robust in
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terms of the accuracy of the error estimate but is incompatible with the nonlinearity
of FAS. Another reason, which will be shown, is that the coarse grids of our pro-
posed approach are no longer square grids, which poses difficulties in defining an
FAS coarse grid problem using direct discretization.

4.3.1 Issues

To start with a simple scenario, we consider solving the mixed discretization of the
following linearized HJB equation:

1 1 .
Euxx + Euyy = \/?, m Q\{(O, 0)}7
2+2 2-V2 !
4[Mxx + 4f“y>' + —=uy =0, at(0,0), (32)

V2

u=g, onaf2.

In other words, we assume that the control is given as (c*, 6*) = (%, 0) on the entire
computational domain €2, where the standard 7-point stencil discretization is applied,
except that the control is (c*, 6*) = (1, %) at the origin (the center of 2), where wide
stencil discretization is applied. Figure 3(ii) shows the error after applying the four-
direction alternating line smoother. In particular, the cross section of the smoothed
error shows that a kink appears at the origin (0,0). In general, wherever the wide
stencil discretization is applied at a grid point, a kink appears in a smoothed error.
Unfortunately, such kinks cannot be eliminated by other types of smoothers either.

4.3.2 Coarsening Strategy

Despite kink(s), Fig.3(ii) shows that, after smoothing, kink(s) are restricted to the
wide stencil point(s), and the error at the other grid points (i.e., the standard 7-
point stencil points) is still smooth. This motivates us to apply full-coarsening to the
standard 7-point stencil points, and consider a special type of coarsening strategy at
the wide stencil points.

To motivate our coarsening strategy for wide stencils, we define a C-point as a fine
grid point that is kept in its corresponding coarse grid; and an F-point otherwise. Let
us first consider a one-dimensional cross section of a smoothed error; see Fig. 4(i).
Black dots are C-points, while hollow dots are F-points. Assume that the standard
full-coarsening assigns a wide stencil point (indicated by the red arrow) as an F'-
point. Let the black curves represent the underlying fine grid error. On the coarse
grid, let its estimated error match the underlying fine grid error exactly, i.e., let the
values of the black dots sit on the black curve. After linear interpolation of the coarse
grid error, we obtain the interpolated error (grey curve) on the fine grid. Ideally, the
interpolated error (grey curve) should match the underlying fine grid error (black
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(i) Initial error

0.5

-1 0 1

(ii) Smoothed error

0.3

-1 0 1

Fig. 3 The error after one step four-direction alternating Gauss-Seidel line smoothing. (i) Initial
error and its cross section along the x-axis. (ii) Smoothed error and its cross section along the x-axis.
A kink appears at the origin (0,0)

curve) as closely as possible. However, since the underlying fine grid error has a
kink at the wide stencil point, the resulting interpolated error turns out to have a
mismatch, as indicated by the red arrow. In other words, if the wide stencil point is
an F-point, a linearly interpolated error will fail to capture the kink accurately.

Instead, our approach is simply setting the wide stencil F-point as a coarse grid
point, i.e., a C-point; see Fig. 4(ii). As a result, interpolation at the wide stencil point
is no longer needed. The error at the wide stencil point is simply copied from the
coarse grid to the fine grid. This yields a more accurate fine grid estimated error, as
indicated by the green arrow.

The above coarsening strategy can be extended to two dimensions. Figure 5 illus-
trates the coarsening process. On the fine grid, the black dots are selected as C-points,
and the hollow dots are selected as F-points. Suppose wide stencils are applied to the
three red dots. Then these three dots are all assigned as C-points. The resulting first
coarse grid is a combination of a square grid that comes from geometric coarsening,
and some additional coarse grid points that come from wide stencils. We can con-
tinue to coarsen the square sub-grid and meanwhile keep all the wide stencil points
as C-points, which generates the second coarse grid. Such a coarsening strategy can
be applied recursively until the coarsest level.
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%\/%

linear | interp linear | interp
@) (ii)

Fig.4 Coarsening strategy at a wide stencil point. (i) Standard coarsening with linear interpolation
at a wide stencil F-point (red arrow). (ii) Setting the wide stencil point as a coarse grid C-point
(green arrow)
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Fine grid 1st coarse grid 2nd coarse grid

Fig. 5 Wide stencil grid points (red) are kept as C-points as the grid is coarsened from a fine grid
to a coarse grid

One may argue that by setting all the wide stencil points as coarse grid points, the
number of coarse grid points, and thus the computational complexity, will increase.
However, it is observed in numerical simulations that wide stencils typically account
for a negligible proportion of the total grid points in practical applications (such
as image registration). Setting wide stencil points as coarse grid points would not
result in a significant increase of the number of coarse grid points, and would still
approximately maintain the square grid structure as the grid coarsens.

4.3.3 Interpolation

Under the proposed coarsening strategy, all the wide stencil points are excluded
from the set of F-points. In other words, F-points must be the standard 7-point
stencils. Hence, the 7-point interpolation, as described in Sect.4.2.2, can be used for
interpolating the errors at these F-points.

We note that the coarse grids are no longer square grids; see Fig.5. However,
each of these coarse grids can be seen as a combination of a square grid and some
additional wide-stencil C-points. Then all the F-points can still be interpolated from
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Coarse grid Coarse grid
.4/. Py Py Py \.. o “ ¢* o Py 7'y Py P — P
Fine grid ! Fine grid !
-01—/0——0_—0——0——0\—:%— 028 o o o e o o> o
-6 0 -7 0 7

(1)

(ii)

Fig. 6 Restriction for one-dimensional Poisson equation. (i) 4 = % and v/h = 6h. (ii) h = 4%
and v/h = Th

the C-points on the square grid. The arrows in Fig.5 show how an F-point can be
interpolated.

4.3.4 Restriction

In both the standard geometric and algebraic multigrid methods, restriction is sim-
ply the transpose of interpolation. However, it does not result in mesh-independent
convergence rates for the non-symmetric matrices A arising from the mixed dis-
cretization. We will show such poor convergence in Sect. 5.2. Instead, we propose a
restriction operator R that is different from the transpose of the interpolation P.

Our approach is simply to use injection on wide stencil points. To motivate the use
of injection, let us simplify our problem and start with the one-dimensional Poisson
equation

—uy =0, xe[-0.5,0.5]. (33)

We apply the wide stencil discretization at x = 0 and the standard finite difference
discretization on the rest of the computational domain. Figure 6 shows that under our
coarsening strategy (which in this case is the same as the standard full coarsening),
the fine grid points with even indices are C-points (black points), and the ones with
odd indices are F-points (hollow points). The wide stencil point is i = 0. A naive
choice of restriction at i = 0 would be the transpose of the linear interpolation, i.e.,
the standard full-weighting restriction:

rH—lr —l—lr +1r (34)
0 = g1 AT
where r_1, g, 1 are the fine grid residuals at i = —1, 0, 1, respectively, and r(f is

the restricted residual at the coarse grid point. However, this leads to a poor coarse
grid estimated error. In order to find a better restriction, we investigate two cases.
Casel: h = % and v/h = 6h. Figure 6(i) shows that on the fine grid, the stencil
points of i = 0 fall onto i = =£6. In this case, the wide stencil discretization ati = 0
reads
—U_¢g + 2uy — ug

6z

(35)
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The residual at i = 0 is then given by

—e_¢ + 2e9 — e

©h)? (36)

ro =

We notice thati = 0,i = —6 and i = 6 are all C-points. Then a natural construction
of the coarse grid problem ati = 0 is to discretized the Poisson equation using these
three points, or more precisely,

=l 37)

where the left hand side is a discretization of the Poisson equation on the coarse
grid with the stencil length 64, and the right hand side is the coarse grid residual
r{!. Comparing (36) and (37), we can see that the restriction at i = 0 is a simple
injection:

r(f{ = ry. (38)

Case2: h = % and v/h = 7h. Figure 6(ii) shows that on the fine grid, the stencil
points of i = 0 fall onto i = £7. Unlike the previous case, here the two points
i = %7 are both F-points. To discretize the Poisson equation on the coarse grid, we
interpolate the errors at i = 7 and i = —7 from their neighboring C-points, which
gives

—%(efg + ef6) + 266{ — %(eéi + egl) H
(7h)2 =T .

(39)

We want to find a restriction, i.e., to rewrite r{’ as a linear combination of fine grid
residuals, such that it matches the left hand side of (39). One scheme is to use the
linear combination of the following fine grid residuals:

—e_7+2e9 — e7 —eq + 2e7 — eg —e_g+2e_7—e_g
n=s—————, rMHM=————6—#6#9¥/0#—— 1. 7= .

0 (Th)? ! 2 ! 2

(40)

If we combine rg, r7 and r_7 as follows
1 1 —3(e_g + e_6) +2e0 — 3(es + €3)
+ ot —rg = , 41
0T 98" T 9" (Th)? @

then (41) matches the left hand side of (39) in the exact sense. Equation (41) defines
a possible restriction, i.e.,

" 1 1
ry =19+ @m + ﬁr,% (42)
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We note that the restriction (41) makes use of the residuals r; and r_5, which are
the points that the wide stencil point i = 0 connects to. This is different from the
standard full weighting restriction (34), which uses the neighboring points r; and
r—1. Since the coefficients of r; and r_; are small, we simply drop them from (42)
and yield again an injection:

ré'l =ry. (43)

More generally, given a wide stencil C-point i € C with a stencil length v/,
the non-zero restriction weights occur at the set of the F-points that it connects to,
denoted as {j | j € F, A; j # 0}. We can show that the restriction weights are

1
Aij TWhe _h
- =5 (44)

|

When £ is small, the restriction (44) can be left out. In other words, injection is
sufficient for a good coarse grid problem.

We extend the proposed injection at wide stencil C-points from the
one-dimensional Poisson equation to the two-dimensional HJB equation. Note that
the resulting restriction operator R;, is no longer the transpose of the interpolation.
Once the restriction operator is specified, we construct the coarse grid operator by

A2h = RhAhPh‘ (45)

Since R, # P/, it results in the Petrov-Galerkin coarse grid operator.

The benefits of injection at wide stencil C-points are two-fold. One is that the
resulting restriction operator and Petrov-Galerkin operator (45) are significantly
sparser than their counterparts if other types of restriction operators are used (such
as AMG restriction). This reduces the computational complexity. The other bene-
fit is that such restriction would lead to an accurate coarse grid error estimate and
eventually a mesh-independent convergence rate (Fig. 7).

S®o Mixed stencil scheme
& = . IIu—uth, slope = -2.00

—o—llu-u,ll_, slope = -2.00

Wide stencil scheme
—e- IquuhHZ, slope = -0.90

—o- IIu—uhHw, slope = -0.91

50 100 200 400 800
Na

(i)

Fig. 7 Example 1: The exact solution is u(x, y) = e%("zﬂ'z). (i) Numerical solution. (ii) Norms
of the errors |lu — uy||
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5 Numerical Results

In this section, we demonstrate the mesh-independent convergence rates of the pro-
posed multigrid methods for solving the discretized system (25)—(26). Details can
be found in [10, 11].

5.1 Multigrid for Standard 7-Point Stencil Discretization

In Examples 1-2, the standard 7-point stencil discretization can be applied mono-
tonically on the entire computational domain. We compare the performance of two
families of multigrid methods - global linearization methods and full approximation
scheme (FAS). For global linearization methods, the residual tolerances for the outer
policy iteration and the inner multigrid V-cycle are 107% and 1077, respectively.
The Gauss-Seidel smoother, the standard full coarsening and the 7-point restriction
and interpolation are applied. The Petrov-Galerkin coarse grid operators are used
to construct coarse grid problems. For FAS, the multigrid components are the same
as the global linearization methods, except that we use the nonlinear version of the
smoothers and direct discretization coarse grid operators.

Example 1 Consider solving the following equation:

Uyxlyy — ufy = f(x,y) = (1+x2 4 y2e ™, in Q,
u(x,y) = glx,y) = ex® ", on 9%2,

where Q2 = (—1, 1) x (—1, 1). The exact solution u(x, y) = 2@ ig smooth.
This example is isotropic, so it suffices to apply the less expensive pointwise
Gauss-Seidel smoother. First we show the convergence rates of the global lineariza-
tion method; see the first and second columns of Table 1. To understand the reported
numbers, we take the grid size of 32 x 32 as an example. The numbers “8, 7, 2”
mean that it takes 3 policy iterations to converge to the solution of the nonlinear

Table 1 Convergence of the global linearization method and the FAS for Example 1

Ny X ny Gobal linearization method FAS
Number of multigrid | Total number of Total number of
V-cycles within each | multigrid V-cycles multigrid V-cycles
policy iteration

32 x 32 8,7,2 17 8

64 x 64 9,7,3 19 8

128 x 128 9,7,3 19 9

256 x 256 9,7,3 19 9
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problem, where the 1st policy iteration takes 8 V-cycles to converge to the solution
of the linearized problem, the 2nd policy iteration takes 7 V-cycles, and the 3rd pol-
icy iteration takes 2 V-cycles. The table shows that the number of multigrid V-cycles
within each policy iteration ranges from 2-9. The total number of multigrid V-cycles
for solving the nonlinear problem is 17-19, independent of mesh size. As a side
remark, we use the solution of the k-th policy iteration, uilk), as the initial guess of
the multigrid V-cycles at the (k + 1)-th policy iteration. Hence, as policy iteration
converges, the initial guess of multigrid V-cycles becomes more and more precise,
and the number of multigrid V-cycles within each policy iteration decreases.

We compare the global linearization method with the FAS iteration. The last
column of Table 1 shows that the total number of the FAS iterations is 8-9 and is
independent of mesh size. We note that for both the global linearization method and
the FAS iteration, the computational cost per multigrid iteration is approximately the
same. Hence, the FAS iteration is less expensive and converges faster.

Example 2 We consider the following equation:

UpxUyy — ’4)2@ = f(x,y)=1+24x+y)? inQ,
u(x,y) = gx,y) =35>+ yH)+x+y* onaQ.

The exact solution is u(x, y) = 1(x? + y*) + (x + »)*.

Table 2 reports the convergence of the global linearization method using alternat-
ing line smoother and pointwise smoother. The multigrid V-cycle with the alternating
line smoother converges at 20-32 iterations in total, which is approximately inde-
pendent of mesh size. Conversely, the multigrid V-cycle with a pointwise smoother
converges with more than 70 iterations, and the number of iterations is more than
doubled as n, increases from 32 to 256. This is because the example is anisotropic,
and a pointwise smoother is not efficient in smoothing errors along weakly connected
directions.

Similar to Example 1, we also compare the total numbers of multigrid V-cycles
given by the global linearization method with the numbers given by the FAS. The

Table 2 Convergence of the global linearization method for Example 2 using alternating line
smoother and pointwise smoother

Ny X Ny MG with alternating line smoother MG with pointwise smoother
Number of multigrid Total number of Total number of
V-cycles within each multigrid V-cycles multigrid V-cycles
policy iteration

32 x 32 5,5,5,3,2 20 73

64 x 64 5,6,6,4,2,1 24 94

128 x 128 6,6,7,5,3,1 28 129

256 x 256 |7,1,7,6,3,1 32 161
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Table 3 Total number of multigrid V-cycles of the global linearization method and the FAS for
Example 2 using the alternating line smoother

Ny X Ny Global linearization method FAS
32 x 32 20 5
64 x 64 24 6
128 x 128 28 6
256 x 256 32 6

alternating line smoother is used. Table 3 shows that the global linearization method
converges in 20-32 iterations, whereas the FAS converges in 5-6 iterations, which
is significantly faster.

5.2 Multigrid for Mixed Discretization

In this section, we illustrate the multigrid convergence rates for the mixed discretiza-
tion. Thus, we apply four-direction alternating line smoother. At standard 7-point
stencil points, we apply the standard full coarsening and the 7-point restriction and
interpolation. At wide stencil points, we set them as coarse grid points, and use
injection as the restriction. The Petrov-Galerkin coarse grid operators are used for
constructing coarse grid problems.

Example 3 We consider solving the linearized HIB equation (32), where f and
g are the same as in Example 1. Consider applying the wide stencil at the origin
and the standard 5-point stencil discretization everywhere else. We compare the
performance of our multigrid method (Scheme 1), the standard multigrid with four-
direction alternating line smoother (Scheme II), and the standard multigrid with
pointwise Gauss-Seidel smoother (Scheme III). For this example, the only difference
between Schemes I and II is that injection is applied at the wide stencil point for
Scheme I, while full-weighting restriction is applied at the same point for Scheme
II. Table4 shows that Scheme III has poor convergence. Scheme II converges in
less than 20 iterations, but the convergence rate grows as n, increases. Scheme I
converges in 5-6 iterations, and the convergence rate is independent of mesh size.
Figure 8 explains the convergence observed in Table 4 by examining the evolution
of errors during one two-grid cycle. Only the cross sections along the x-axis are
plotted. Start with the same initial error (green lines) for both our and the standard
schemes. The pre-smoothed error (blue lines) is smooth everywhere, except that a
kink appears at the wide stencil point x = 0. Figure 8(i) uses our algorithm, where
injection is applied at the wide stencil point x = 0. The resulting coarse grid problem
yields an accurate coarse grid estimated error, i.e., the red line matches the blue line
well. Such accurate coarse grid estimate eliminates the error effectively, and yields
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Table 4 Convergence of linear multigrid V-cycles for Example 3

Y. Chen and J. W. L. Wan

Ny X Ny Scheme I: Our MG | Scheme II: Standard | Scheme III: Standard
MG with alternating | MG with pointwise
line smoother smoother

32 x32 5 7 23

64 x 64 5 9 46

128 x 128 6 12 198

256 x 256 6 17 more than 200

proposed twogrid standard twogrid

— initial error

— pre-smoothed error
— twogrid estimate error
— corrected error

initial error

pre-smoothed error
twogrid estimate error _4
corrected error

-0.2 0.0 0.2 0.4 -0.2 0.0 0.2 0.4

@) (i)

-0.4 -0.4

Fig. 8 Cross sections of errors along the x-axis. (i) Our algorithm, where injection is used at the
wide stencil point x = 0. (ii) Standard algorithm, where full-weighting restriction is used

a small post-corrected error (black line). Conversely, under the same smoother, if
the standard full-weighting is used at the wide stencil, then Fig.8(ii) shows that
the coarse grid estimated error (red line) is no longer a good approximation of the
pre-smoothed error (blue line).

Example 4 We use the global linearization method to solve the Monge-Ampere
equation as in Example 1, where

0.15

f(x,y) = max (1 — ,O) , glx,y)= 1(\/xz + y? —0.15)?
2+y2 2

X

on Q = (—0.5,0.5) x (—0.5,0.5). The viscosity solution is given by u(x,y) =
1 max(y/x? + y2 — 0.15, 0)>. This is a C' function where the solution is not smooth
at the ring x> + y?> = 0.152. Semi-Lagrangian wide stencils are applied near the ring
(Fig. 9).

Table 5 reports the convergence of the global linearization method. The number
of outer policy iterations increases from 5 to 10 as n, increases from 32 to 256. Such
increase of outer iteration is related to nonlinearity and the singularity on the ring.

To compare the number of multigrid V-cycles across different mesh sizes fairly,
we compute the average number of multigrid V-cycles per policy iteration. Table 5
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Fig.9 Example 3: The exact solution is % max(y/x2 + y2 — 0.15, 0)2. (i) Numerical solution. (ii)
Norms of the error ||u — uy||

Table 5 Convergence of the global linearization multigrid method for Example 4

ny X ny Number of multigrid V-cycles within | Average number of multigrid V-cycles
each policy iteration per policy iteration

32 x 32 4,5,3,2,1 3.0

64 x 64 4,63,2,1 32

128 x 128 5,6,4,3,3,2 3.8

256 x 256 6,6,6,6,5,4,3,3,2,1 4.2

shows that the average V-cycle count is approximately a constant ranging from 3.0
to 4.2 as n, increases from 32 to 256. Hence, the inner multigrid V-cycle for solving
linearized systems is nearly mesh-independent.

6 Conclusion

This paper presents a numerical scheme for solving the mass transport registration
model. In particular, we introduce a mixed standard 7-point stencil and wide sten-
cil finite difference discretization. Furthermore, we present multigrid methods for
solving the mixed discretization of the Monge-Ampere equation. We investigate two
scenarios. One scenario is when the standard 7-point stencil discretization is applied
on the entire computational domain. FAS gives the optimal mesh-independent con-
vergence. The other scenario is the general mixed discretization. Global linearization
method is used. We set all wide stencil points as coarse grid points and propose injec-
tion of residuals at wide stencil points. The resulting multigrid methods converge at
mesh-independent rates.
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