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Abstract It is well known that the problem of finding the shortest path amid 3-D
polyhedral obstacles is a NP-Hard problem. In this paper, we propose an efficient
algorithm to find the globally shortest path by solving stochastic differential equa-
tions (SDEs). The main idea is based on the simple structure of the shortest path,
namely it consists of straight line segments connected by junctions on the edges of the
polyhedral obstacles. Thus, finding the shortest path is equivalent to determining the
junctions points. This reduces the originally infinite dimensional problem to a finite
dimensional one. We use the gradient descent method in conjunction with Intermit-
tent Diffusion (ID), a global optimization strategy, to deduce SDEs for the globally
optimal solution. Compared to the existing methods, our algorithm is efficient, easier
to implement, and able to obtain the solution with any desirable precisions.
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diffusion · Obstacle avoidance · Global optimization
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1 Introduction

Finding the shortest path in the presence of obstacles is one of the fundamental
problems in path planning and robotics. It is one of the enabling technologies that
make it possible for robots or UAVs to traverse cluttered environments. The problem
can be described as follows: given a finite number of obstacles in R2 or R3, what is
the shortest path connecting two given points X , Y while avoiding the obstacles. The
problem has received great attention during the last few decades (See for example [6,
12] and references therein), and many techniques have been developed for polygonal
obstacles in R2, where the problem can be reformulated as an optimization problem
on a graph, and therefore can be solved by combinatorial methods. For example,
by using the shortest path map method, Hershberger and Suri [9] found an optimal
O(n log n) polynomial time algorithm where n is the total number of vertices of all
polygonal obstacles. We refer to [12, 14] for a survey of the results and references
therein. However, Canny and Rief [2] proved that this problem in R3 becomes NP-
hard under the framework known as “configuration space”. This is mainly because
the shortest path doesn’t necessarily pass through the set of vertices of polyhedrons.
Instead, it may go through the interior points of edges, and this makes the optimal
algorithm in 2-D fail.

Two different approaches were developed later to overcome this difficulty. One is
to find a path that is 1 + ε times the length of the shortest one. The idea is to subdivide
the edges in certain ways and adopt the same optimal combinatorial methods which
are effective inR2. Following this idea, Papadimitriou developed an algorithm in [15]
with complexity O( 1

ε
). In a special case where the shortest path is unique, one can

define the precision δ of the problem, which is the difference between the shortest
path and the second shortest path. Given ε < δ, a faster algorithm was developed
in [3] with complexity O(log( 1

ε
) + P(1/δ)) for some polynomial P . The idea is to

apply the approach in [15] to obtain a good initialization within error δ to the shortest
path, and then use a gradient descent strategy to improve the accuracy to ε.

Another commonly used approach divides the problem into two parts: (i) find the
sequence of edges that the shortest path may go through, and (ii) find the optimal
connecting points on those edges. For convex polyhedral obstacles, it is observed in
[19] that the total number of possible sequences are of order O(n7kkk) where n is
the total number of vertices and k is the number of obstacles. Part (ii) is proven to be
NP-hard [7]. A different method, called unfolding technique, was introduced in [17]
under a theoretical computation model in which it assumes any infinite-precision
real arithmetic operation requires constant time. However, this assumption may not
be practical.

On the other hand, several differential equation basedmethods have been proposed
to tackle the shortest path problem with obstacles having smooth boundaries. For
example, a path evolution method finds the solution by solving a 2-point boundary
value ordinary differential equation (ODE), resulting in locally optimal solutions. The
front propagation method finds the global solution by solving an eikonal equation, a
partial differential equation (PDE). The numerical solution of the eikonal equation
can be computed by the fast marching method [18] or the fast sweeping method [20].
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In [5], we proposed a different algorithm called Evolving Junctions on Obstacle
Boundaries (E-JOB) for finding the shortest path. E-JOB is a general framework
which can be applied to environment with obstacles of arbitrary shape (continuous
or discrete) in any dimension (R2,R3 or higher). The key idea is dimension reduction.
It takes advantage of a simple geometric structure of the shortest path, i.e. the shortest
path is composed by line segments and arcs on the obstacle boundaries. The shortest
path is determined completely by the junctions of those segments. In this way, the
problem becomes how to find those junction points on the boundaries. In other words,
the original infinite dimensional problem of finding the whole path is converted to a
finite dimensional problem of finding only the junction points. The optimal position
of those junctions can be determined efficiently by the gradient descent method.
To address the drawback that the gradient descent method usually gets stuck at
local minimizers, a global optimization strategy called intermittent diffusion (ID) is
adopted. This strategy adds randomperturbations to theODEs of the gradient descent
method in a temporally discontinuous fashion, which leads to stochastic differential
equations (SDEs). It obtains the globally shortest path with probability 1 − δ where
δ is an arbitrarily small number. More specifically, by leveraging the recent studies
of convergence rate of Fokker-Planck equations [1, 4, 10, 13], it has been shown
that the time complexity of E-JOB is O(log 1

δ
log 1

ε
).

In this paper, we focus on applying E-JOB to the shortest path problem with poly-
hedral obstacles in R3. The restriction on polyhedral obstacles allows us to achieve
further dimension reductions. For obstacles with smooth boundaries, the implemen-
tation of E-JOB requires computations of geodesic on the boundaries between two
given points. In [5], this is achieved by either traversing the boundaries inR2, or fast
marching on the boundary surfaces in R3. However, for polyhedral obstacles, the
geodesics also has a similar simple structure, i.e. the geodesic between two points
on a polyhedron is a concatenation of line segments whose ending points are located
on polyhedron edges. And to determine the geodesic is equivalent to determining
those junction points. Therefore the overall shortest path connecting X and Y is
merely a conjunction of line segments whose ending points lie on obstacle edges. In
other words, each junction moves in a 1-D interval(edge). This makes the algorithm
extremely simple and efficient.

A feature of this study is that we do not restrict the obstacles to be convex polyhe-
drons. The algorithm we develop can equally be applied to non-convex polyhedrons.
For polyhedrons with Euler characteristic 2, which include all convex polyhedrons
and concave polyhedrons without holes, our algorithm can find the globally optimal
path with probability arbitrarily close to 1 in finite time. However, when dealing
with more sophisticated polyhedrons, for example, polyhedrons with complicated
holes, certain topological problems emerge, and prevent us from obtaining the glob-
ally optimal path. We will discuss this issue at the end of the paper as well as some
possible solutions.

It should be noted that our approach resembles the one in [3] in the sense that
both employ a gradient descent strategy. However, before the strategy can be applied,
the method in [3] requires the assumption that the shortest path is unique, and an
initialization that approximates the shortest path within error δ (precision) to start
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with (achieved by using [15]). Our approach needs neither of them. In fact, our
approach can be viewed as a way to find both the edge sequence and the optimal
connecting points in a unified manner, thanks to the introduction of randomness into
the differential equations. Below, we summarize some advantages of our algorithm:

(1) The algorithm can obtain the shortest path in any precision. This is because only
a system of SDEs needs to be solved which involves no subdivision of edges.

(2) The algorithm is able to handle non-convex polyhedral obstacles.
(3) The algorithm is easy to implement.
(4) The algorithm is fast. Sincewe solve an initial value problem of SDEs, the results

can be obtained efficiently by various established schemes.

The paper is arranged as follows. In Sect. 2, we give the derivation of the algorithm
following the ideas presented in [5]. The algorithm is then presented whose details
followafterwards. InSect. 3,wegive several interesting examples. Finally,wediscuss
the topological issues when dealing with polyhedrons with holes.

2 New Algorithm

In this section, we present our new algorithm for the shortest path problem with
polyhedron obstacles. We start with some mathematical description of the problem,
through which we introduce notations needed in the rest of the paper. The algorithm
follows afterwards and its details are presented at the end of this section.

Let {Pk}Nk=1 be N polyhedral obstacles in R3. Each obstacle Pk is determined
uniquely by its vertices, edges and faces. Denote V, E, F the set of vertices, edges
and faces of Pk respectively. We do not limit the polyhedrons to be convex. However,
we will focus on polyhedrons without holes in this section, i.e. polyhedrons whose
Euler characteristic is 2. The Euler characteristic is defined by

χ = |V | − |E | + |F |.

Polyhedrons with holes will be discussed in the last section. For any edge e ∈ E , it
has a representation

e = (u, v)

where u, v are the coordinates of the ending points of e. Any point x on edge e =
(u, v) can then be represented by the following expression

x(u, v, θ) = θu + (1 − θ)v, (1)

where θ is a scalar in [0, 1]. Thus to determine the position of a point on an edge,
one only needs to find its corresponding θ.
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2.1 Geodesics on Polyhedrons

For any two points x, y on the edges of Pk , we can define the distance dk(x, y)
between them to be the length of the shortest path on Pk connecting x and y. If we
view Pk as a surface in R3, i.e. a two dimensional manifold, then dk(x, y) is nothing
but length of the geodesic on Pk connecting x and y. For instance, for any x and y on
the same surface of a tetrahedron, d(x, y) = ‖x − y‖ since the line segment joining
them is on the surface. For general polyhedrons, the shortest path is composed by a
sequence of line segments connected to each other. To be more specific, the shortest
path can be represented by (x0, x1, x2, . . . , xnk , xnk+1) where x0 = x, xnk+1 = y and
each xi is a point on some edge ei = (ui , vi ). The shortest distance dk(x, y) therefore
equals

dk(x, y) = L(x1, x2, . . . , xnk ) =
nk∑

i=0

‖xi+1 − xi‖.

Denote xi = θiui + (1 − θi )vi , we then have

L(θ1, . . . , θnk ) = L(x1, . . . , xnk ) =
nk∑

i=0

‖θi+1ui+1 + (1 − θi+1)vi+1 − θiui − (1 − θi )vi‖.

It is worth mentioning that both θ and ui , vi are dynamic as we optimize over xi s.

2.2 Structure of the Shortest Path

A path is a curve γ ∈ R3, which is a continuous map

γ(·) : [0, 1] → R3.

We denote L(γ) the Euclidean length of the path γ. We are concerned with the set
of feasible paths F, i.e. paths that do not intersect with any obstacle Pk . The shortest
path connecting X and Y is then given by

γopt = argminγ∈F L(γ).

In [5], we proved that the shortest path has a simple structure, i.e. it is composed
by line segments outside the obstacles and paths on the boundary of the obstacles.
Since all the obstacles here are polyhedrons, the paths on the boundaries of the
obstacles also consist of a sequence of line segments connected by points on the
edges. Therefore, by putting all the connecting points together and relabeling them,
the shortest path connecting X and Y can be represented by (x0, x1, x2, . . . , xn, xn+1)

where x0 = X, xn+1 = Y .
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Let us denote
J (xi ) = ‖xi−1 − xi‖ + ‖xi+1 − xi‖. (2)

Then the length of the path is

L(x1, . . . , xn) = 1

2

n∑

i=1

(J (xi ) + ‖x1 − x0‖ + ‖xn+1 − xn‖). (3)

Again all xi s are on the edges of the obstacles. Denote xi = θiui + (1 − θi )vi , J (xi )
then becomes

J (θi ) = ‖θiui + (1 − θi )vi − xi−1‖ + ‖θiui + (1 − θi )vi − xi+1‖. (4)

2.3 Optimal Path

To find the optimal path, we differentiate J (θi ) with respect to θi to obtain

∇ J (θi ) = (xi − xi−1) · (ui − vi )
‖xi − xi−1‖ + (xi − xi+1) · (ui − vi )

‖xi − xi+1‖ . (5)

So using the method of gradient decent, we can find the optimal position θi following
a system of ODEs,

dθi

dt
= −∇ J (θi ). (6)

In order to find the globally optimal path, we adopt a strategy called Intermittent
Diffusion, i.e. we evolve the following SDE

dθi

dt
= −∇ J (θi ) + σ(t)dW (t) (7)

where σ(t) is a step function andW (t) is standard Brownian motion. More precisely,

σ(t) =
m∑

l=1

σl1[Sl ,Tl ](t) (8)

with 0 = S1 < T1 < S2 < T2 < · · · < Sm < Tm < Sm+1 = T , and 1[Sl ,Tl ] being the
indicator function of interval [Sl , Tl ]. We note that adding dW (t), the so-called white
noise, to the SDE corresponds to having a diffusion process in the classical stochastic
theory. Thus adding white noise perturbations to the SDE on discontinuous intervals
[Sl, Tl ] is like adding diffusion process intermittently. For convenience,we call [Sl , Tl
an intermittent diffusion interval. In this paper, the intervals Sl , Tl ,σl are chosen to be
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random and the magnitude, {σl}, of the random perturbations are selected according
to the following theorem. For more details, see [4].

Theorem 1 If all the obstacles have Euler characteristic 2, then for any small num-
ber ε, there exists τ > 0,σ0 > 0 and integerm0 > 0 such that if Ti − Si > τ ,σi < σ0

and m > m0, then Eq. (7) converges to a global minimizer with probability 1 − ε.

We will postpone the proof until the last section when we discuss the topological
issues.

2.4 Numerical Scheme

In this section, we discuss how to solve Eq. (7).

2.4.1 Discretization of SDE

We use the forward Euler method to discretize equation (7)

θ
j+1
i − θ

j
i

�t
= −∇ J (θ

j
i ) + σ( j�t)

√
�tξ

where ξ ∼ N (0, 1) is a normal random variable. Notice the θi s are updated alternat-
ingly in the Gauss-Seidel fashion.

2.4.2 Initialization

We can use the optimal path whose junctions are restricted to vertices of the obstacles
to initialize the path. This initialization can be obtained efficiently by amethod called
visibility graph . The visibility graph W is a weighted graph whose nodes are the
vertices of all the obstacles as well as the starting and ending points X,Y , and there
is an edge between vertices u ∈ W and v ∈ W if and only if they are visible to
each other, that is, if the line segment uv doesn’t intersect with any obstacles. The
weight of edge uv is simply the Euclidean distance of uv. One thing to notice is that
the visibility graph we construct here is essentially 2D, in the sense that it encodes
whether two points are visible to each other. This is fundamentally different from the
3D reduced visibility graph (3DRVG) [11]. 3DRVG consists of connected planes as
opposed to straight line segments which becomes complicated when there are more
than one obstacles. After the visibility graph is constructed, the initialization is the
shortest path between X and Y on the visibility graph W which can be obtained
efficiently by Dijkstra’s algorithm.
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2.4.3 Evolution when a Junction Reaches a Vertex

In the proposed method, the junctions move according to the SDEs if they are on
the interior of edges. When a junction x = (u, v, θ) reaches a vertex u following the
gradient flow, it continues moving according to different rules depending on whether
the two neighbors of x are on the same obstacle or not. If the neighbors of x are
both on the same obstacle as x , we call x an interior junction, otherwise we call x an
exterior junction. In other words, an exterior junction is one of the two ending points
of the line segments that connect two different obstacles. The following are the rules
for interior and exterior junctions reaching the vertices respectively.

Case 1. x = (u, v, θ = 1) is an interior junction. As an example, see the following
illustration (Fig. 1) where (x1, x2, x, x4) is the path on the obstacle and x1, x4 are
exterior junctions. When x hits u (θ = 1), path (x1, u = x, x4) will have smaller
length than (x1, x2, u = x, x4). In other words, all the junctions adjacent to u will
be dragged to u except the exterior junctions. Hence we remove all the junctions
adjacent to u and add junctions on the edges adjacent to u that haven’t been
occupied which results in a new path (x1, x6, x5, x4).

Case 2. x = (u, v, θ = 1) is an exterior junction. Let z be its neighbor on the same
obstacle and y be the neighbor on another obstacle. x will move to a different
feasible edge uw once it hits u. Edge uw is said to be feasible if

(a) The line segment joining y and u + �θ(w − u) doesn’t intersect with any
obstacle for arbitrarily small �θ.

We collect all the feasible directions and select one of themwith equal possibility,
x then continues evolving according to the flow. Depending on whether neighbor
z is visible, i.e. on the same face as edge uw, the new path are as follows:

i. z is on the same face as uw, then the new path becomes (· · · , y, x ′, z, · · · )
where x ′ ∈ uw.

ii. z is not on the same face as uw, then x is used as an intermittent junction
and the new path becomes (· · · , y, x ′, x, z, · · · ) where x ′ ∈ uw.

For an illustration, see the following example (Fig. 2). The feasible directions are
uv8 and uv2. z is visible to uv8, the path after evolution is simply (y, x ′, z). On
the other hand, z is invisible to uv2, the path after evolution is simply (y, x ′, x, z).

Case 3. x = (u, v, θ = 1) is an exterior junction, and two of its neighbors, z and
y, are on other obstacles. There are two scenarios. One is when x approaching
u, we remove x from the junction list and add new points on the edges adjacent
to u except uv. This is the same scenario as that illustrated in Case 1. The other
is that one can directly connect z and y, and this involves adding and removing
junctions as be discussed in the following subsection.
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Fig. 1 Movement of interior
junction

v1 v2

v
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v5v6
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Fig. 2 Movement of
exterior junction x . The left
figure corresponds to case (i)
and the right corresponds to
case (ii)
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2.4.4 Add and Remove Junctions

During the evolution of each point, we may need to add or eliminate junction points.
When twoneighboring junctions x, y are both exterior and xy intersectswith obstacle
Pk1 , Pk2 , · · · , Pkr after evolution, we initialize a path with x, y being the starting and
ending points and {Pki }ri=1 being the obstacles. Denote the new added junctions by
(xn+1, xn+2, · · · , xn+s) where s is the total number of new junctions. Then they are
inserted into the set of junctions in order and the evolution process continues. On the
other hand, when two neighboring junctions x, y are both exterior and x meets y, we
may shorten the path by removing x and y.More precisely, let z1 be the other neighbor
of x and z2 be the other neighbor of y, i.e. the path contains (· · · , z1, x, y, z2, · · · ) as
a fraction. Since x = y, we may connect z1 and z2 directly which shortens the length.
In other words, we have the new fraction (· · · , z1, z2, · · · ). Notice, the line segment
z1z2 may intersect with some obstacles. Again we add the necessary junctions as
described above. The determination of whether a line segment xy intersects with a
face can be done by checking whether the intersection point of the line containing
xy and the surface containing the face lies on the face or not.
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2.5 Algorithm

We present our algorithm below

Input: number of intermittent diffusion intervals m, duration of diffusion
�Tl = Tl − Sl , l ≤ m. diffusion coefficients σl , l ≤ m.

Output: The optimal set Uopt of junctions.

1 Initialization. Find the initial set U of junction points.
2 for l = 1 : m
3 Ul = U ;
4 for xi = (u, v, θ0i ) ∈ Ul

5 for j = 1 : �Tl
6 Update x according to (7), i.e. θ j+1

i = θ
j
i + (−∇ J (θ

j
i ) + σl

√
�tξ)�t ;

7 Update set Ul , i.e. remove junctions from or add junctions to Ul ;
8 end
9 while |θ j+1

i+1 − θ
j
i | > ε (or other convergence criterion)

10 Update x according to (6), i.e. θ j+1
i = θ

j
i − ∇ J (θ

j
i )�t ;

11 Update set Ul ;
12 end
13 end
14 end
15 Compare Uls and set Uopt = argminl≤m L(Ul).

2.6 Complexity Analysis

We now give a brief analysis of the algorithm. Following [16], instead of discussing
the algebraic complexity of the algorithm, we will consider the running time in order
to achieve certain relative error ε.

(1) The initialization is done by constructing the visibility graph and Dijkstra’s
algorithm. Constructing the visibility graph takes O(|V |2)while Dijkstra’s algo-
rithm takes O(|E | + |V | log |V |). These two steps are exact in the sense that the
complexities do not depend on ε. Therefore, they are not counted in the final
complexity.

(2) Inner loop line 5–8 takes O(�Tl) time. This is because Eq. (7) takes constant
time, and so does adding or removing junctions.

(3) Inner loop line 9-12 takes T (ε) time where T (ε) denotes the number of iterations
required until the error is less than ε. If we assume the Hessian matrix of the
gradient is nondegenerate, which is the case for all polyhedral obstacles [3], then
T (ε) = O(log 1

ε
).
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Table 1 Complexity comparison to other Algorithms

Algorithm Complexity

A∗ O(( 1ε )3 log 1
ε )

Papadimitriou [16] O( 1ε )

Choi et. al. [3] (When the shortest path is not unique.) O( 1ε )

Choi et. al. [3] (When the shortest path is unique.) O(log 1
ε )

Let �T = maxi≤l �Ti . Then the total running time is O(m(�T + log 1
ε
)). From

[4], it can be shown that in order to obtain the desired successful probability 1 − δ,
the number of realizations must be of order O(log 1

δ
). Therefore, the complexity is

O(log 1
δ
log 1

ε
). Table 1 shows a complexity comparisonwith some existingmethods.

3 Numerical Examples

We show several examples in this section to illustrate the paths obtained by our
algorithm. The diffusion coefficients are chosen randomly in interval [1, 2] and the
duration of diffusion�Tl is chosen randomly in [5, 20]. The parameterm, the number
of intermittent diffusion intervals {[Sl, Tl ]}m1 , on which the random perturbations are
added to the process, are specified in each example.

Example 1 The first example computes the shortest path between two points on
a hexagonal prism with side length

√
3 and base length 1. In one realization with

m = 10 intermittent diffusion intervals, it finds 3minimizers amongwhich the global
one, as illustrated in the left plot in Fig. 3, is visited 6 times. In this example, one
can easily enumerate all possible combinations to conclude the path obtained with
length L = 2.6 is the global optimal solution.

(a) Occurs 6
times, L=2.600

(b) Occurs 3
times, L=2.623

(c) Occurs once,
L=3.000

Fig. 3 Example 1
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(a) Occurs 13 times, L=7.0803 (b) Occurs twice, L=7.0956

(c) Occurs twice, L=7.3404 (d) Occurs once, L=7.3436

(e) Occurs once, L=7.4314 (f) Occurs once, L=7.5253

Fig. 4 Example 2

Example 2 There are three obstacles in this example (Fig. 4), two cubes and one
hexagonal prism. The algorithm finds 6 local optimal paths in 20 intermittent diffu-
sion intervals, among which the global optimal path occurs 13 times. Below we list
all the local minimizers.

Example 3 In this example (Fig. 5), we demonstrate that our algorithm works for
non-convex obstacles without holes. One obstacle is a rotated cube and the other
one is a larger cube with an unpenetrated indentation. In 20 intermittent diffusion
intervals, the algorithm finds 4 locally optimal path. The globally shortest path is
visited 14 times.
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Fig. 5 Example 3

(a) Occurs 14 times, L=4.4249 (b) Occurs twice, L=4.4599

(c) Occurs 3 times, L=4.6176 (d) Occurs once, L=4.5509

4 Polyhedron with Holes

We say two paths are homotopic if one can be deformed continuously to the other
while keeping its endpoints fixed. More precisely, letX be the space that takes away
all the obstacles, i.e.

X = R3 \
⋃

Pi .

Two paths f0, f1 are path-homotopic if there exists a family of paths ft : [0, 1] → X
such that

(1) ft (0) = x0 and ft (1) = x1 are fixed.
(2) the map F : [0, 1] × [0, 1] → X given by F(s, t) = ft (s) is continuous.

Intuitively, two paths are homotopic if one can be continuously transformed to the
other without passing through the obstacles. Path-homotopy is an equivalence rela-
tion. Thus one can divide all paths into equivalence classes. It is easy to see the
following

Theorem 2 If all the obstacles have Euler characteristic 2, then there is only one
path-homotopy equivalence class in the set of feasible paths F.

Proof Since each Pi has Euler characteristic 2, Pi is homotopic to 2-dimensional
sphere S2. Notice that R3 − B3 where B3 is the 3-dimensional ball is simple-
connected. Therefore, any two path in R3 − B3 are homotopic [8]. Same result holds
for R3 taking away n balls.

With this result, it is simple to obtain the results in Theorem 1.
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Fig. 6 Shortest path with
tunneled cube

(a) L=1.1543 (b) L=1.2659

Proof of Theorem 1 Theorem 2 guarantees that our algorithm is able to visit all
possible paths from any initialization. The rest of the theorem is simply the statement
from [4] and hence omitted.

However, on the contrary, if the obstacle contains holes, for example, a triangulated
torus, there would be multiple equivalence classes. For illustration, see the following
tunneled cube. The shortest path through the hole is 1.1543 while the one that doesn’t
penetrate the hole has length 1.2659. By slightly changing the position of the hole,
the shortest path would be the one that does not pass through it. Therefore, multiple
initializations are needed to ensure that all possible equivalence classes are covered.

A simple idea we can use is to “block” the homotopy equivalence class the current
path belongs to and then reinitialize. “Blocking” means deleting some vertices of the
obstacles such that the reinitialization will force the new path to a different homotopy
class. After the gradient descent settles down at the global minimizer in the current
homotopy class, the path is reinitialized and the algorithm is repeated to get a different
global minimizer. This procedure is repeated until all homotopy equivalence classes
are visited. The two paths in the above example are obtained by this method (Fig. 6).

However, there are two problems with this approach. First of all, the block is
often difficult to form because which vertices should be removed is a complicated
matter, for instance, a well triangulated torus as follows (Fig. 7). Second, the number
of different homotopy classes we need to visit is unknown in advance. For example,
topologically, there are infinitely many homotopy classes for a smooth torus and the
shortest path could wind the torus arbitrary times. In Fig. 8, the shortest path winds
the torus twice.
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Fig. 7 A triangulated torus

Fig. 8 A shortest path
winding a torus twice

A different approach is to use an already established approximation method, for
example [15] as described in the introduction section, to initialize the path. Those
algorithms are able to obtain a path that has length 1 + ε times the length of the
shortest path. Here ε depends on the mesh size. If the mesh size is sufficiently small,
the initialized path and the global minimizer will be in the same homotopy class.
However, the choice of the grid size is a critical and often hard to determine.

As discussed above, our method still applies for polyhedrons with holes provided
that appropriate initializations are taken. Although initialization is a complicated
matter, simple ideas usually work for most cases. We conclude our discussion here
and leave the improvement of initialization methods to our future work.

5 Future Work

The method we propose in this work can be equally applied to a general class of
problems. In detail, consider the following problem

γopt = argminγ∈F L(γ). (9)

Here L is a general functional on F with the form

L(γ) =
∫ 1

0
l(|γ̇(θ)|) dθ (10)
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where l(x) is a convex function. The Euclidean length of the path, which we consider
in this paper, simple corresponds to the case where l(x) = x . It turns out that in this
general setting, the optimal path has the same simple structure as mentioned in this
paper. Therefore, the method can be applied without any essential modification. An
example is l(x) = x2, in which case the functional L represents the oil consumption
of a car. We leave the direction for future exploration.
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