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Abstract We consider three-dimensional (3D) localization and imaging of space
debris from only one two-dimensional (2D) snapshot image. The technique involves
an optical imager that exploits off-center image rotation to encode both the lateral
and depth coordinates of point sources, with the latter being encoded in the angle
of rotation of the PSF. We formulate 3D localization into a large-scale sparse 3D
inverse problem in discretized form. A recently developed penalty called continuous
exact £y (CELO) is applied in this problem for the Gaussian noise model. Numerical
experiments and comparisons illustrate the efficiency of the algorithm.
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1 Introduction

The area of 3D imaging and localization has been getting increasing attention
in recent years. The use of 3D localization in single-molecule super-resolution
microscopy can obtain a complete picture of subcellubar structures [1, 6, 24]. The
molecules are labeled by some specific fluorescent proteins or oligonucleotides,
which can be regarded as a collection of point sources. Another application of
3D imaging is for space situational awareness (SSA). Currently, there are more
than 20,000 objects in orbit around earth [27], including operational satellites, dead
ones and other human-made debris. 3D localization of micro-scale space debris that
become increasingly abundant with decreasing size can be vital for SSA systems
responsible for the overall protection of space assets. Radar systems can sometimes
detect such space debris objects, but can at best localize them with lower precision
than short-wavelength optical systems. A stand-alone optical system based on the
use of a light-sheet illumination and scattering concept [3] for spotting debris within
meters of a spacecraft has also been proposed. A second system can localize all three
coordinates of an unresolved, scattering debris [7, 25] by utilizing either the parallex
between two observations, or a pulsed laser ranging system, or a hybrid system. How-
ever, to the best of our knowledge there is no other proposal of either an optical or an
integrated optical-radar system to perform full 3D debris localization and tracking in
the range of tens to hundreds of meters. Prasad [17] has proposed engineering point
spread functions for 3D localization by the use of an optical imager that exploits
off-center image rotation. This system encodes in a single image snapshot both the
range z and transverse (x, y) coordinates of a swarm of unresolved sources such as
small, sub-centimeter class space debris, which when actively illuminated can scatter
a fraction of laser irradiance back into the imaging sensor. 2D image data taken with
a specially designed point spread function (PSF) that encodes, via a simple rotation,
changing source distance can be employed to acquire a three dimensional (3D) field
of unresolved sources like space debris. Here, we propose the 3D localization and
tracking of space debris at optical wavelengths by PSF engineering and employing
a space-based telescope.

PSF engineering is widely used in single-molecule super-resolution [10, 15, 16,
19-21]. It is based on choosing a phase pattern that makes the defocused image of a
point source depth-dependent without blurring it excessively. For space-surveillance
and SSA, PSF engineering is just beginning to be considered, with [9, 18] proposing
the optical theory and simulation of a single lobe rotating PSF. Such PSFs have
obvious advantages over multi-lobe PSFs when dealing with high source densities
at low light levels. In [26], we proposed a mathematical formulation of the 3D
localization problem employing such a PSF in the Poisson-noise case. This noise
model characterizes an EMCCD sensor operated in the photon-counting (PC) regime.
However, when conventional CCD sensors operate at low per-pixel photon fluxes and
large read-out noise, a Gaussian noise model describes more accurately this kind of
data noise. In this paper, we consider the latter case.
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The following forward model based on the rotating PSF image describes the spatial
distribution of image brightness for M point sources in the observed 2D image:

M
G, y) =) Ho(x—xi,y =y fi +b+N(x,y), ()

i=I

where N is the Gaussian noise operator which is data-independent and b is the
uniform background value. Here H_, (x — x;, y — ;) is the rotating PSF for the i-
th point source of flux f; and 3D position coordinates (x;, y;, z;) with the depth
information z; encoded in H_,, and (x, y) is the position in the image plane. In the
Fourier optics model [5] of image formation, the incoherent PSF for a clear aperture
containing a phase mask that imposes an optical phase retardation, v (s), on the
imaging wavefront is given by

2
H.(s) = % V P(wexp [c2mu - s + (u® — ()] du| , )

where ¢ = T(ZUJ—UZZ)R is defocus parameter and the imaging wavelength is denoted

by A. Here ¢ = /=1, £y is the distance between the lens and the best focus point,
and P (u) is the indicator function for the pupil of radius R. We use s with polar
coordinates (s, ¢s) to denote a scaled version of the image-plane position vector, r,
namely s = m. Here r is measured from the center of the geometric (Gaussian)
image point located at r; = (x, y), and z; is the distance between the image plane
and the lens. The pupil-plane position vector p is normalized by the pupil radius,
u = £. For the single-lobe rotating PSF, t/(u) is chosen to be the spiral phase profile

defined as
[—1 l
() = Iy, for,/T <u 5\/;, l=1,--- L,

in which L is the number of concentric annular zones in the phase mask. We evaluate
(2) by using the fast Fourier transform. With such spiral phase retardation, PSF
(2) performs a complete rotation about the geometrical image center, as ( changes
between — L and L, before it begins to degrade significantly for values of  outside
this range.

Next, we discuss the problem of 3D localization of closely spaced point sources
from simulated noisy image data obtained by using such a rotating-PSF imager. The
localization problem is discretized on a cubical lattice where the coordinates and
values of its nonzero entries represent the 3D locations and fluxes of the sources,
respectively. Finding the locations and fluxes of a few point sources on a large lattice
is evidently a large-scale sparse 3D inverse problem. Based on the Gaussian statis-
tical noise model, we describe the results of simulation using a recently developed
regularization tool called the continuous exact ¢y (CELO) penalty term [22], which
when added to a least-squares data fitting term constitutes an £(-sparsity non-convex
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optimization protocol with promising results. We use an iteratively reweighted ¢,
(IRL1) algorithm to solve this optimization problem.

The rest of the paper is organized as follows. In Sect.2, we describe the CELO-
based non-convex optimization model for solving the point source localization prob-
lem. In Sect.3, our non-convex optimization algorithm is developed. Numerical
experiments, including comparisons with other optimization methods, are discussed
in Sect.4. Some concluding remarks are made in Sect. 5.

2 CELO-Based Optimization Model

Here, we build a forward model for the problem based on the approach developed
in [21]. In order to estimate the 3D locations of the point sources, we assume that
they are distributed on a discrete lattice X € R"™>*"*“, The indices of the nonzero
entries of X’ are the 3-dimensional locations of the point sources and the values at
these entries correspond to the fluxes, i.e., the energy emitted by the illuminated point
source. The observed 2D image G € R™*" can be approximated as

GrRTAxX)+bl+N,

where b is background signal, 1 is a matrix of 1s of size the same as the size of G and
N is the Gaussian noise. Here, A % X is the convolution of X with the 3D PSF A.
This 3D PSF A is a cube which is constructed by a sequence of images with respect
to different depths of the points. Each horizontal slice is the image corresponding
to a point source at the origin in the (x, y) plane and at depth z. This tensor A is
constructed by sampling depths at regular intervals in the range, ; € [—7L, wL],
over which the PSF performs one complete rotation about the geometric image center
before it begins to break apart. The i-th slice of the dictionary is H,, with certain
depth z;. Here 7 is an operator for extracting the last slice of the cube A % X since
the observed information is a snapshot.

In order to recover X, we need to solve a large-scale sparse 3D inverse prob-
lem with data-fitting term and regularization term. Since the Gaussion noise is
data-independent, it leads to the use of least squares for the data-fitting term, i.e.,
% 1Z7AxX)+bl -G II% , where ||Y || ¢ is the Frobenius norm of Y, which is equal
to the £, norm of the vectorized Y. For the regularization term, we choose the con-
tinuous exact £y (CELO) penalty, as described in [4, 22, 23]. It is a non-convex
term approaching the £y norm for linear least squares data fitting problems and is
constructed as

m,n,d

R(X) = Depro(X) = Y SUIT (A% Sl 115 Xiws),

u,v,w=1
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where ola, psu) = p— % <|u| — @) ﬂ{lu\<@]; see Fig. 1, and
1 ifuekE; . .
Ler = t Here 6,,, is a 3D tensor whose only nonzero entry is at
0 others.

(u, v, w) with value 1 and p is the regularization parameter.
The minimization problem may be stated as

m,n,d
. 1 2 - .
min { S IT(A*X) +5 =Gl + Y GUTAx )l s Xun) - )

u,v,w=I1

To emphasize that our non-convex optimization model is based on the CELO regu-
larization term, we simply designate our optimization model (3) as CELO.

When combined with a least-squares data fitting term, CELO has many good
properties and it does not place any strict requirements on the former. The global
minimizers of the ¢ penalty model with a least squares data-fitting term (£,-£;) are,
in fact, contained in the set of global minimizers of CELO (3). A minimizer of (3) can
be transformed into a minimizer of £,-£y. Moreover, some local minimizers of £,-£
are not critical points of CELO, which means CELO can avoid some local minimizers
of £5-£.

3 Development of the Algorithm

Note that our optimization model for the Gaussian noise case is non-convex, due
to the regularization term. We first consider an iterative reweighted ¢, algorithm
(IRLT) [14] to solve the optimization problem. This is a majorization-minimization
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method which solves a series of convex optimization problems with a weighted-£;
regularization term. It considers the problem (see Algorithm 3, in [14])

Igéi)r(l F(x) = Fi(x) + F,(G(x)),

where X is the constraint set, F' is a lower semicontinuous (Isc) function, extended,
real-valued, proper, while F; is proper, lower-semicontinous, and convex and F,
is coordinatewise nondecreasing, i.e. F>(x) < Fp(x + te;) with x, x +te; € G(X)
andt > 0, where ¢; is the i-th canonical basis unit vector. The function F» is concave
on G(X). The IRL1 iterative scheme [14, Algorithm 3] is

W® = 0F(y), y = Gx®),
x*D = argmin, y {Fi(x) + (W®, G(x0))},

where 0 stands for subdifferential.
For the Gaussian noise problem (3), we choose

1
Fi(X) =2 IT (A% X) + b1 — Gli%;

ai2 V210 :
F(X) = p — > (/Yuuw - T) H{qué{?};

G(X) = |X;
X ={X | Xyow = 0 forall u, v, w}.

Here a; = |7 (A * dypu)||F and i = (w — 1)mn + (v — 1)m + u. The algorithm is
summarized as Algorithm 1.

Algorithm 1 Iterative reweighted ¢; algorithm (IRL1) for the rotating PSF problem

Require: XY@ ¢ R”"*"*4 and G € R"™*". Set pu.
Ensure: The solution X* which is the minimizer in the last outer iteration.
1: repeat

k k
2:  Compute WLEUL, = (a,-«/2u — a,?;\a;viv) H{Xﬁflﬁﬁ};

3:  Given G, Wu(ﬁzv obtain x® by solving

' 1 m,n,d
2D — aremin 5 IT(Ax2) +b1 — Gl + Y. W& Xuwl ¢t 4)

x=0 u,v,w=1

4: until convergence
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Remark The minimization problem in (4) of IRLI1 is a weighted £; model with
nonnegative constraints. In [21], the £; model “without” nonnegative constraints is
solved by the alternating direction method of multipliers (ADMM).

4 Numerical Results

In this section, we apply our optimization approach to solving simulated rotating
PSF problems for point source localization and compare it to some other competing
optimization methods. The codes of our algorithm and the others with which we
compared our method were written in MATLAB 9.0 (R2016a), and all our numerical
experiments were conducted on a typical personal computer with a standard CPU
(Intel 17-6700, 3.4GHz).

The fidelity of localization is assessed in terms of the recall rate, defined as the
ratio of the number of identified true positive point sources over the number of true
positive point sources, and the precision rate, defined as the ratio of the number of
identified true positive point sources over the number of all point sources obtained
by the algorithm; see [1].

To distinguish true positives from false positives for the estimated point sources,
we need to determine the minimum total distance between them and the true point
sources. Here all 2D simulated observed images are described by 96-by-96 matrices.
We set the number of zones of the spiral phase mask responsible for the rotating PSF
at L = 7 and the aperture-plane side length as 4 which sets the pixel resolution in the
2D image (FFT) plane as 1/4 in units of Az;/R. The dictionary corresponding to our
discretized 3D space contains 21 slices in the axial direction, with the corresponding
values of the defocus parameter, (, distributed uniformly over the range, [—21, 21].
According to the Abbe-Rayleigh resolution criterion, two point sources that are
within (1/2)Az;/R of each other and lying in the same transverse plane cannot be
separated in the limit of low intensities. In view of this criterion and our choice of the
aperture-plane side length and if we assume conservatively that our algorithm does
not yield any significant super-resolution, we must regard two point sources that are
within 2 image pixel units of each other as a single point source. Analogously, two
point sources along the same line of sight (i.e., with the same x, y coordinates) that
are axially separated from each other within a single unit of ( must also be regarded
as a single point source.

As in real problems, our simulation does not assume that the point sources are on
the grid points. Rather, a number of point sources are randomly generated in a 3D
continuous image space with certain fluxes. We consider a variety of source densities,
from 5 point sources to 40 point sources in the same size space. For each case, we
randomly generate 20 observed images and use them for training the parameters in
our algorithm, and then test 50 simulated images with the well-selected parameters.
The number of photons emitted by each point source follows a Poisson distribution
with a mean of 2000 photons.
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(a) Observed image (b) Estimated locations in 2D (c) Estimated locations in 3D

Fig. 2 Localizations for the 15 point sources case. “o” denotes the location of the ground truth
point source and “+” the location of the estimated point source

(a) Observed image (b) Estimated locations in 2D (c¢) Estimated locations in 3D

Fig. 3 Localizations for the 30 point sources case

For adding the Gaussian noise, we use the MATLAB command
G = I0 + b + sigma*randn (Np),

where b is the uniform background noise which we set to a typical value 5. Here,
I0 is the 2D original image formed by adding all the images of the point sources
without noise, and Np = 96 is the size of the images. The noise level is denoted as
sigma and we choose it to be 10% of the highest pixel value in original image T0.
Here, randn is the MATLAB command for the Gaussian distribution with the mean
as 0 and standard deviation as 1.

We test our CELO based algorithm for several point-source densities. Figures 2
and 3 consider examples of 15 point sources and 30 point sources, respectively.

From both observed images (see Figs.2a and 3a), neither the secondary rings
nor the angle of rotation of the PSF are easily identifed, which means we cannot
use a calibration method [8, 16]. In Fig.2a, there are two overlapping PSF images
corresponding to two different point sources, and our optimization approach is still
able to distinguish and estimate them; see the arrows in Fig. 2a, c.

In Fig. 3, many PSF images are overlapping corresponding to point sources that
are very close. Our algorithm estimates the clusters of these point sources but gives
more point sources than their ground-truth number.
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Fig. 4 Localizations from three regularization models (30 point sources)

Next, we compare our algorithm with two other regularization methods: an ¢,
regularization model [21] as well as a new non-convex model [12, 13, 28] called
transformed ¢, (TL1). We use ¢; to denote the £, regularization model whose regu-

larization term is
m,n,d

R = pllXlh=p Y Xl

u,v,w=1

Following [21], we solve the optimization problem by ADMM. For TL1, the regu-
larization term is

m,n,d m,n,d |X |
RX):=p Y b@X)=p y ——=—,
u,v,w=1 u,v,w=1 a+ |Xuvw|

where a is fixed parameter and determines the degree of non-convexity. We use IRL1
to solve this model with a similar scheme as Algorithm 1. The only difference is

ap

W, =0RXh )= ——,
(Cl + )(zfﬁgu)

uvw uvw

m,n,d ¥y
where () =pu Y T
piemy @Y

In Fig. 4, we again consider the 30 point sources case. We see that £,-£; has more
false positives than other algorithms although it detects all the ground truth point
sources. TL1 and our algorithm have different but fewer false positives.

For further comparisons, we tested 50 different random images and computed the
average of recall and precision rates in each density case for both algorithms; see
Table 1.

In Table 1, we see that our algorithm is better than ¢£; and TL1 for almost all cases
especially in precision rates. For example, in the cases of 10 and 15 point sources,



10 C. Wang et al.

Table 1 Comparisons of £2-£1 with our £2-CELO. All the results are with post-processing

12 TL1 CELO
No. sources | Recall (%) |Prec. (%) Recall (%) | Prec. (%) Recall (%) |Prec. (%)
10 94.80 64.04 89.60 68.79 95.80 79.72
15 90.80 61.68 87.07 64.67 93.20 77.68
20 86.60 57.72 83.30 60.78 89.30 72.12
30 88.80 47.51 79.80 56.06 87.20 58.77
40 81.50 42.03 71.15 48.81 77.40 52.87

the precision rate in our algorithm is over 10% higher than the one in ¢;. In the
higher-density cases, like those with 30 and 40 sources, all methods have more than
5 false positives. We were able to mitigate the latter by further post-processing based
on machine learning techniques, as in [21]. We set the maximum number of iterations
for £, at 800, which guaranteed its convergence, and for CELO regularization and TL1
we set the maximum number of inner and outer iterations at 400 and 2, respectively.
Here we emphasize the advantage of our algorithm in providing a better initial guess
than £; and TL1 with a similar cost time.

5 Conclusions and Future Work

We have proposed an optimization algorithm, based on a CELO penalty term, for
the 3D localization of a swarm of randomly spaced point sources using a rotating
PSF which has a single lobe in the image of each point source. This has distinct
advantages over a double-lobe rotating PSF, e.g. [11, 15, 16, 21], especially in cases
where the point source density is high and the photon number per source is small.
This research focuses on the Gaussian noise case which describes conventional CCD
sensors in low per-pixel photon fluxes and large read-out noise. We note that at high
source densities, the optimization can lead to false positives.

We employed a post-processing step based both on centroiding the locations of
recovered sources that are tightly clustered and thresholding the recovered flux values
to eliminate obvious false positives from our recovery sources. These techniques can
be applied to other rotating PSFs as well as other depth-encoding PSFs for accurate
3D localization and flux recovery of point sources in a scene from its image data
under the Poisson noise model. Applications include not only 3D localization of
space debris, but also super-resolution 3D single-molecule localization microscopy,
e.g. [1, 24].

Applying recently developed machine learning techniques for removing false
positives instead of logistic regression models [21] will be considered. Tests of this
algorithm based on real data collected using phase masks fabricated for both appli-
cations are currently being planned. In addition, work involving snapshot multi-
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spectral/hyperspectral [2] imaging, which will permit accurate material characteri-
zation, as well as higher 3D resolution and localization of space microdebris via a
sequence of snapshots is under way.
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