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Preface

This book contains eleven original and survey scientific research articles that arose
from invited talks given at International Workshop on Image Processing and Inverse
Problems, held in Beijing Computational Science Research Center, Beijing, China,
April 21–24, 2018.

The purpose of the conference was to bring together international researchers to
exchange ideas, recent achievements on various aspects of image processing and
inverse problems. Conference topics cover image reconstruction, image restoration,
image registration and inverse problems and so on. Deep learning, PDE, Statistics
based methods and techniques were discussed. The newest developments on math-
ematical analysis, numerical algorithm and applications were presented. This book
aims to collect presentation papers which introduce new research trends and show
improved results. It should be a good reference for people working on related prob-
lems, as well as for people working on computer vision and visualization, inverse
problems, image processing and medical imaging.

To ensure the scientific quality of the book, each contributed paper was carefully
reviewed. Special thanks go to all contributors and referees. Without their efforts,
this book would not be possible.

Finally, we wish to thank the conference organizers and supports which were
partially given by the National Nature Science Foundation of China. Many thanks
also go to Springer-Verlag colleagues, Daniel Wang, Banu Dhayalan and Zongren
Peng. Their help and collaboration are kind and effective.

Kowloon Tong, Hong Kong
Beijing, China
Beijing, China

Xue-Cheng Tai
Suhua Wei

Haiguang Liu
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Point Spread Function Engineering for
3D Imaging of Space Debris Using a
Continuous Exact �0 Penalty (CEL0)
Based Algorithm

Chao Wang, Raymond H. Chan, Robert J. Plemmons, and Sudhakar Prasad

Abstract We consider three-dimensional (3D) localization and imaging of space
debris from only one two-dimensional (2D) snapshot image. The technique involves
an optical imager that exploits off-center image rotation to encode both the lateral
and depth coordinates of point sources, with the latter being encoded in the angle
of rotation of the PSF. We formulate 3D localization into a large-scale sparse 3D
inverse problem in discretized form. A recently developed penalty called continuous
exact �0 (CEL0) is applied in this problem for the Gaussian noise model. Numerical
experiments and comparisons illustrate the efficiency of the algorithm.

Keywords Nonconvex optimization algorithms · 3D localization · Space debris ·
Point spread function
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1 Introduction

The area of 3D imaging and localization has been getting increasing attention
in recent years. The use of 3D localization in single-molecule super-resolution
microscopy can obtain a complete picture of subcellubar structures [1, 6, 24]. The
molecules are labeled by some specific fluorescent proteins or oligonucleotides,
which can be regarded as a collection of point sources. Another application of
3D imaging is for space situational awareness (SSA). Currently, there are more
than 20,000 objects in orbit around earth [27], including operational satellites, dead
ones and other human-made debris. 3D localization of micro-scale space debris that
become increasingly abundant with decreasing size can be vital for SSA systems
responsible for the overall protection of space assets. Radar systems can sometimes
detect such space debris objects, but can at best localize them with lower precision
than short-wavelength optical systems. A stand-alone optical system based on the
use of a light-sheet illumination and scattering concept [3] for spotting debris within
meters of a spacecraft has also been proposed. A second system can localize all three
coordinates of an unresolved, scattering debris [7, 25] by utilizing either the parallex
between two observations, or a pulsed laser ranging system, or a hybrid system.How-
ever, to the best of our knowledge there is no other proposal of either an optical or an
integrated optical-radar system to perform full 3D debris localization and tracking in
the range of tens to hundreds of meters. Prasad [17] has proposed engineering point
spread functions for 3D localization by the use of an optical imager that exploits
off-center image rotation. This system encodes in a single image snapshot both the
range z and transverse (x, y) coordinates of a swarm of unresolved sources such as
small, sub-centimeter class space debris, which when actively illuminated can scatter
a fraction of laser irradiance back into the imaging sensor. 2D image data taken with
a specially designed point spread function (PSF) that encodes, via a simple rotation,
changing source distance can be employed to acquire a three dimensional (3D) field
of unresolved sources like space debris. Here, we propose the 3D localization and
tracking of space debris at optical wavelengths by PSF engineering and employing
a space-based telescope.

PSF engineering is widely used in single-molecule super-resolution [10, 15, 16,
19–21]. It is based on choosing a phase pattern that makes the defocused image of a
point source depth-dependent without blurring it excessively. For space-surveillance
and SSA, PSF engineering is just beginning to be considered, with [9, 18] proposing
the optical theory and simulation of a single lobe rotating PSF. Such PSFs have
obvious advantages over multi-lobe PSFs when dealing with high source densities
at low light levels. In [26], we proposed a mathematical formulation of the 3D
localization problem employing such a PSF in the Poisson-noise case. This noise
model characterizes anEMCCDsensor operated in the photon-counting (PC) regime.
However, when conventional CCD sensors operate at low per-pixel photon fluxes and
large read-out noise, a Gaussian noise model describes more accurately this kind of
data noise. In this paper, we consider the latter case.
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The following forwardmodel basedon the rotatingPSF imagedescribes the spatial
distribution of image brightness for M point sources in the observed 2D image:

G(x, y) =
M∑

i=1

Hzi (x − xi , y − yi ) fi + b + N (x, y), (1)

where N is the Gaussian noise operator which is data-independent and b is the
uniform background value. Here Hzi (x − xi , y − yi ) is the rotating PSF for the i-
th point source of flux fi and 3D position coordinates (xi , yi , zi ) with the depth
information zi encoded in Hzi , and (x, y) is the position in the image plane. In the
Fourier optics model [5] of image formation, the incoherent PSF for a clear aperture
containing a phase mask that imposes an optical phase retardation, ψ(s), on the
imaging wavefront is given by

Hz(s) = 1

π

∣∣∣∣
∫

P(u)exp
[
ι(2πu · s + ζu2 − ψ(u))

]
du

∣∣∣∣
2

, (2)

where ζ = π(l0−z)R2

λl0z
is defocus parameter and the imaging wavelength is denoted

by λ. Here ι = √−1, �0 is the distance between the lens and the best focus point,
and P(u) is the indicator function for the pupil of radius R. We use s with polar
coordinates (s,φs) to denote a scaled version of the image-plane position vector, r,
namely s = r

λzI /R
. Here r is measured from the center of the geometric (Gaussian)

image point located at rI = (x, y), and zI is the distance between the image plane
and the lens. The pupil-plane position vector ρ is normalized by the pupil radius,
u = ρ

R . For the single-lobe rotating PSF, ψ(u) is chosen to be the spiral phase profile
defined as

ψ(u) = lφu, for

√
l − 1

L
≤ u ≤

√
l

L
, l = 1, · · ·, L ,

in which L is the number of concentric annular zones in the phase mask. We evaluate
(2) by using the fast Fourier transform. With such spiral phase retardation, PSF
(2) performs a complete rotation about the geometrical image center, as ζ changes
between−Lπ and Lπ, before it begins to degrade significantly for values of ζ outside
this range.

Next, we discuss the problem of 3D localization of closely spaced point sources
from simulated noisy image data obtained by using such a rotating-PSF imager. The
localization problem is discretized on a cubical lattice where the coordinates and
values of its nonzero entries represent the 3D locations and fluxes of the sources,
respectively. Finding the locations and fluxes of a few point sources on a large lattice
is evidently a large-scale sparse 3D inverse problem. Based on the Gaussian statis-
tical noise model, we describe the results of simulation using a recently developed
regularization tool called the continuous exact �0 (CEL0) penalty term [22], which
when added to a least-squares data fitting term constitutes an �0-sparsity non-convex
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optimization protocol with promising results. We use an iteratively reweighted �1
(IRL1) algorithm to solve this optimization problem.

The rest of the paper is organized as follows. In Sect. 2, we describe the CEL0-
based non-convex optimization model for solving the point source localization prob-
lem. In Sect. 3, our non-convex optimization algorithm is developed. Numerical
experiments, including comparisons with other optimization methods, are discussed
in Sect. 4. Some concluding remarks are made in Sect. 5.

2 CEL0-Based Optimization Model

Here, we build a forward model for the problem based on the approach developed
in [21]. In order to estimate the 3D locations of the point sources, we assume that
they are distributed on a discrete lattice X ∈ Rm×n×d . The indices of the nonzero
entries of X are the 3-dimensional locations of the point sources and the values at
these entries correspond to the fluxes, i.e., the energy emitted by the illuminated point
source. The observed 2D image G ∈ Rm×n can be approximated as

G ≈ T (A ∗ X ) + b1 + N ,

where b is background signal, 1 is a matrix of 1s of size the same as the size of G and
N is the Gaussian noise. Here, A ∗ X is the convolution of X with the 3D PSF A.
This 3D PSFA is a cube which is constructed by a sequence of images with respect
to different depths of the points. Each horizontal slice is the image corresponding
to a point source at the origin in the (x, y) plane and at depth z. This tensor A is
constructed by sampling depths at regular intervals in the range, ζi ∈ [−πL , πL],
over which the PSF performs one complete rotation about the geometric image center
before it begins to break apart. The i-th slice of the dictionary is Hzi with certain
depth zi . Here T is an operator for extracting the last slice of the cube A ∗ X since
the observed information is a snapshot.

In order to recover X , we need to solve a large-scale sparse 3D inverse prob-
lem with data-fitting term and regularization term. Since the Gaussion noise is
data-independent, it leads to the use of least squares for the data-fitting term, i.e.,
1
2 ‖T (A ∗ X ) + b1 − G‖2F ,where ‖Y‖F is the Frobenius norm of Y , which is equal
to the �2 norm of the vectorized Y . For the regularization term, we choose the con-
tinuous exact �0 (CEL0) penalty, as described in [4, 22, 23]. It is a non-convex
term approaching the �0 norm for linear least squares data fitting problems and is
constructed as

R(X ) := �CEL0(X ) =
m,n,d∑

u,v,w=1

φ(‖T (A ∗ δuvw)‖F ,μ;Xuvw),
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Fig. 1 The function
φ(a,μ; u) for �2-CEL0 with
μ = 1

-200 -150 -100 -50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

a = 0.5
a = 0.2
a = 0.02
a = 0.01

where φ(a,μ; u) = μ − a2

2

(
|u| −

√
2μ
a

)2
1{

|u|≤
√
2μ
a

}; see Fig. 1, and

1{u∈E} :=
{
1 if u ∈ E;
0 others.

Here δuvw is a 3D tensor whose only nonzero entry is at

(u, v, w) with value 1 and μ is the regularization parameter.
The minimization problem may be stated as

min
X≥0

{
1

2
‖T (A ∗ X ) + b − G‖2F +

m,n,d∑

u,v,w=1

φ(‖T (A ∗ δuvw)‖F ,μ;Xuvw)

}
. (3)

To emphasize that our non-convex optimization model is based on the CEL0 regu-
larization term, we simply designate our optimization model (3) as CEL0.

When combined with a least-squares data fitting term, CEL0 has many good
properties and it does not place any strict requirements on the former. The global
minimizers of the �0 penalty model with a least squares data-fitting term (�2-�0) are,
in fact, contained in the set of global minimizers of CEL0 (3). Aminimizer of (3) can
be transformed into a minimizer of �2-�0. Moreover, some local minimizers of �2-�0
are not critical points of CEL0, which means CEL0 can avoid some local minimizers
of �2-�0.

3 Development of the Algorithm

Note that our optimization model for the Gaussian noise case is non-convex, due
to the regularization term. We first consider an iterative reweighted �1 algorithm
(IRL1) [14] to solve the optimization problem. This is a majorization-minimization
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method which solves a series of convex optimization problems with a weighted-�1
regularization term. It considers the problem (see Algorithm 3, in [14])

min
x∈X F(x) := F1(x) + F2(G(x)),

where X is the constraint set, F is a lower semicontinuous (lsc) function, extended,
real-valued, proper, while F1 is proper, lower-semicontinous, and convex and F2

is coordinatewise nondecreasing, i.e. F2(x) ≤ F2(x + tei ) with x, x + tei ∈ G(X)

and t > 0,where ei is the i-th canonical basis unit vector. The function F2 is concave
on G(X). The IRL1 iterative scheme [14, Algorithm 3] is

{
W (k) = ∂F2(y), y = G(x (k)),

x (k+1) = argminx∈X
{
F1(x) + 〈W (k),G(x)〉} ,

where ∂ stands for subdifferential.
For the Gaussian noise problem (3), we choose

F1(X ) =1

2
‖T (A ∗ X ) + b1 − G‖2F ;

F2(X ) = μ − a2i
2

(
Xuvw −

√
2μ

ai

)2

1{
Xuvw≤

√
2μ
ai

};
G(X ) = |X |;

X = {X | Xuvw ≥ 0 for all u, v, w}.

Here ai = ‖T (A ∗ δuvw)‖F and i = (w − 1)mn + (v − 1)m + u. The algorithm is
summarized as Algorithm 1.

Algorithm 1 Iterative reweighted �1 algorithm (IRL1) for the rotating PSF problem

Require: X (0) ∈ Rm×n×d and G ∈ Rm×n . Set μ.
Ensure: The solution X ∗ which is the minimizer in the last outer iteration.
1: repeat

2: Compute W (k)
uvw =

(
ai

√
2μ − a2i X

(k)
uvw

)
1{

X (k)
uvw≤

√
2μ
ai

};
3: Given G, W (k)

uvw , obtain X (k) by solving

X (k+1) = argmin
X≥0

⎧
⎨

⎩
1

2
‖T (A ∗ X ) + b1 − G‖2F +

m,n,d∑

u,v,w=1

W (k)
uvw|Xuvw|

⎫
⎬

⎭ . (4)

4: until convergence
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Remark The minimization problem in (4) of IRL1 is a weighted �1 model with
nonnegative constraints. In [21], the �1 model “without” nonnegative constraints is
solved by the alternating direction method of multipliers (ADMM).

4 Numerical Results

In this section, we apply our optimization approach to solving simulated rotating
PSF problems for point source localization and compare it to some other competing
optimization methods. The codes of our algorithm and the others with which we
compared ourmethodwerewritten inMATLAB 9.0 (R2016a), and all our numerical
experiments were conducted on a typical personal computer with a standard CPU
(Intel i7-6700, 3.4GHz).

The fidelity of localization is assessed in terms of the recall rate, defined as the
ratio of the number of identified true positive point sources over the number of true
positive point sources, and the precision rate, defined as the ratio of the number of
identified true positive point sources over the number of all point sources obtained
by the algorithm; see [1].

To distinguish true positives from false positives for the estimated point sources,
we need to determine the minimum total distance between them and the true point
sources. Here all 2D simulated observed images are described by 96-by-96 matrices.
We set the number of zones of the spiral phase mask responsible for the rotating PSF
at L = 7 and the aperture-plane side length as 4 which sets the pixel resolution in the
2D image (FFT) plane as 1/4 in units of λzI /R. The dictionary corresponding to our
discretized 3D space contains 21 slices in the axial direction, with the corresponding
values of the defocus parameter, ζ, distributed uniformly over the range, [−21, 21].
According to the Abbe-Rayleigh resolution criterion, two point sources that are
within (1/2)λzI /R of each other and lying in the same transverse plane cannot be
separated in the limit of low intensities. In view of this criterion and our choice of the
aperture-plane side length and if we assume conservatively that our algorithm does
not yield any significant super-resolution, we must regard two point sources that are
within 2 image pixel units of each other as a single point source. Analogously, two
point sources along the same line of sight (i.e., with the same x, y coordinates) that
are axially separated from each other within a single unit of ζ must also be regarded
as a single point source.

As in real problems, our simulation does not assume that the point sources are on
the grid points. Rather, a number of point sources are randomly generated in a 3D
continuous image spacewith certain fluxes.We consider a variety of source densities,
from 5 point sources to 40 point sources in the same size space. For each case, we
randomly generate 20 observed images and use them for training the parameters in
our algorithm, and then test 50 simulated images with the well-selected parameters.
The number of photons emitted by each point source follows a Poisson distribution
with a mean of 2000 photons.
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(a) Observed image (b) Estimated locations in 2D
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Fig. 2 Localizations for the 15 point sources case. “◦” denotes the location of the ground truth
point source and “+” the location of the estimated point source

(a) Observed image (b) Estimated locations in 2D
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(c) Estimated locations in 3D

Fig. 3 Localizations for the 30 point sources case

For adding the Gaussian noise, we use the MATLAB command

G = I0 + b + sigma*randn(Np),

where b is the uniform background noise which we set to a typical value 5. Here,
I0 is the 2D original image formed by adding all the images of the point sources
without noise, and Np = 96 is the size of the images. The noise level is denoted as
sigma and we choose it to be 10% of the highest pixel value in original image I0.
Here, randn is theMATLAB command for the Gaussian distribution with the mean
as 0 and standard deviation as 1.

We test our CEL0 based algorithm for several point-source densities. Figures 2
and 3 consider examples of 15 point sources and 30 point sources, respectively.

From both observed images (see Figs. 2a and 3a), neither the secondary rings
nor the angle of rotation of the PSF are easily identifed, which means we cannot
use a calibration method [8, 16]. In Fig. 2a, there are two overlapping PSF images
corresponding to two different point sources, and our optimization approach is still
able to distinguish and estimate them; see the arrows in Fig. 2a, c.

In Fig. 3, many PSF images are overlapping corresponding to point sources that
are very close. Our algorithm estimates the clusters of these point sources but gives
more point sources than their ground-truth number.
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(b) TL1
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Fig. 4 Localizations from three regularization models (30 point sources)

Next, we compare our algorithm with two other regularization methods: an �1
regularization model [21] as well as a new non-convex model [12, 13, 28] called
transformed �1 (TL1). We use �1 to denote the �1 regularization model whose regu-
larization term is

R(X ) := μ ‖X‖1 = μ

m,n,d∑

u,v,w=1

|Xuvw|.

Following [21], we solve the optimization problem by ADMM. For TL1, the regu-
larization term is

R(X ) := μ

m,n,d∑

u,v,w=1

θ(a;X ) = μ

m,n,d∑

u,v,w=1

|Xuvw|
a + |Xuvw| ,

where a is fixed parameter and determines the degree of non-convexity. We use IRL1
to solve this model with a similar scheme as Algorithm 1. The only difference is

W (k)
uvw = ∂F2(X (k)

uvw) = aμ
(
a + X (k)

uvw

)2 ,

where F2(Y) = μ
m,n,d∑

u,v,w=1

Yuvw

a+Yuvw
.

In Fig. 4, we again consider the 30 point sources case. We see that �2-�1 has more
false positives than other algorithms although it detects all the ground truth point
sources. TL1 and our algorithm have different but fewer false positives.

For further comparisons, we tested 50 different random images and computed the
average of recall and precision rates in each density case for both algorithms; see
Table 1.

In Table 1, we see that our algorithm is better than �1 and TL1 for almost all cases
especially in precision rates. For example, in the cases of 10 and 15 point sources,
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Table 1 Comparisons of �2-�1 with our �2-CEL0. All the results are with post-processing

�1 TL1 CEL0

No. sources Recall (%) Prec. (%) Recall (%) Prec. (%) Recall (%) Prec. (%)

10 94.80 64.04 89.60 68.79 95.80 79.72

15 90.80 61.68 87.07 64.67 93.20 77.68

20 86.60 57.72 83.30 60.78 89.30 72.12

30 88.80 47.51 79.80 56.06 87.20 58.77

40 81.50 42.03 71.15 48.81 77.40 52.87

the precision rate in our algorithm is over 10% higher than the one in �1. In the
higher-density cases, like those with 30 and 40 sources, all methods have more than
5 false positives. We were able to mitigate the latter by further post-processing based
onmachine learning techniques, as in [21].We set themaximum number of iterations
for �1 at 800,which guaranteed its convergence, and for CEL0 regularization andTL1
we set the maximum number of inner and outer iterations at 400 and 2, respectively.
Here we emphasize the advantage of our algorithm in providing a better initial guess
than �1 and TL1 with a similar cost time.

5 Conclusions and Future Work

We have proposed an optimization algorithm, based on a CEL0 penalty term, for
the 3D localization of a swarm of randomly spaced point sources using a rotating
PSF which has a single lobe in the image of each point source. This has distinct
advantages over a double-lobe rotating PSF, e.g. [11, 15, 16, 21], especially in cases
where the point source density is high and the photon number per source is small.
This research focuses on the Gaussian noise case which describes conventional CCD
sensors in low per-pixel photon fluxes and large read-out noise. We note that at high
source densities, the optimization can lead to false positives.

We employed a post-processing step based both on centroiding the locations of
recovered sources that are tightly clustered and thresholding the recovered flux values
to eliminate obvious false positives from our recovery sources. These techniques can
be applied to other rotating PSFs as well as other depth-encoding PSFs for accurate
3D localization and flux recovery of point sources in a scene from its image data
under the Poisson noise model. Applications include not only 3D localization of
space debris, but also super-resolution 3D single-molecule localization microscopy,
e.g. [1, 24].

Applying recently developed machine learning techniques for removing false
positives instead of logistic regression models [21] will be considered. Tests of this
algorithm based on real data collected using phase masks fabricated for both appli-
cations are currently being planned. In addition, work involving snapshot multi-
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spectral/hyperspectral [2] imaging, which will permit accurate material characteri-
zation, as well as higher 3D resolution and localization of space microdebris via a
sequence of snapshots is under way.
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An Adjoint State Method for An
Schrödinger Inverse Problem

Siyang Wei and Shingyu Leung

Abstract We propose a simple algorithm for solving an inverse problem for the
Schrödinger equation. The idea is to apply the gradient descent and the adjoint state
technique. We observe that since the forward operator is self-adjoint, the approach
simply requires to solve the same partial differential equation for both the forward
problem and the adjoint problem. To speed up the computations, we also develop
a cascadic initialization strategy to provide a better initial condition for the inver-
sion process. To be more realistic for real life applications, we incorporate tech-
niques from the level set method to handle cases with only a set of finite number of
Dirichlet-to-Neumann (DN) measurements. Moreover, based on a usual reduction,
this inverse problem can be linked to the standard Calderón inverse problem for the
electrical impedance tomography (EIT). Therefore, our approach might provide a
simple numerical alternative to solve the EIT problem. Numerical examples will
demonstrate that the new formulation is effective and robust.

Keywords Inverse problem · Adjoint state method · Schrödinger equation · EIT

1 Introduction

We consider the following Schrödinger equation

(−� + q) u = 0 in �, (1.1)
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where� ⊂ R
d is an open bounded domain and q ∈ L∞(�) is a potential. Assuming

that zero is not a Dirichlet eigenvalue, we define the Dirichlet-to-Neumann (DN)
map by

�q : u|∂� �→ ∂nu|∂�

where n is the unit outward normal to ∂� on the boundary, which will be denoted
as an operator �q : H 1/2(∂�) → H−1/2(∂�). In this paper, we are interested in
developing a numerical method for solving the corresponding inverse problem, i.e.
given the DN map on the boundary of the domain, we are going to invert for the
potential q in �.

This inverse problem has a wide range of applications including reflection seis-
mology from geosciences assuming a time-harmonic wave description. It also has a
close link to other elliptic inverse problems such as the electrical impedance tomog-
raphy (EIT) [35]. EIT is a noninvasive type of medical imaging, where currents are
applied to the surface of the body ∂� and the induced voltage is used to reconstruct
the interior electrical conductivity and permittivity. The mathematical model of this
imaging technique can be described as follows. We denote the bounded electrical
conductivity inside � by γ(x) > 0. The electric potential or voltage is denoted by
v(x) ∈ H 1(�). Then v(x) satisfies the anisotropic conductivity equation

∇ · γ∇v = 0 (1.2)

with the Dirichlet boundary condition v|∂� = f . The DN map, or the voltage to
current map in the physical application, is given by �γ( f ) = γ∂nv|∂�, where n
denotes the unit outward normal to ∂�. The inverse conductivity problem is to
recover the conductivity function γ(x) inside the domain knowing�γ . This problem
was first proposed in [8] and is commonly known as the Calderón inverse problem.

It is possible to reformulate this Calderón inverse problem into the inverse problem
we are concentrating in this work. If we define a function q ∈ L∞(�) satisfying

(−� + q)
√

γ = 0 (1.3)

and introduce u = √
γ v, we can then easily transform (1.2) into the elliptic equation

(1.1) with the corresponding DN map. In the past few decades, various numerical
approaches have been developed to solve this ill-posed Calderón EIT inverse prob-
lem. These numerical methods can be roughly categorized into two classes. The first
class is a direct method which tries to explicitly construct the conductivity func-
tion. A construction algorithm based on the Born series has been developed in [2].
A bayesian inversion algorithm has been developed in [21], while a factorization
method is proposed in [7]. The second class is iterative methods which tries to invert
the conductivity throughoptimization procedure. For example, theNOSERalgorithm
developed in [12] takes one step of a Newton’s method with constant conductivity
as initial guess. Later, the CNRSER algorithm [14] takes multiple Newton-Raphson
steps and iteratively solves the inverse admittivity problem. Another Newton’s based
approach can also be found in [23].
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Related to the EIT, the level set method has also been incorporated into the opti-
mization procedure to recover piecewise constant conductivity functions [9, 13].
Some other optimization approaches to the piecewise constant case can be found in
[4, 10, 22]. For partial measurements, [18] has recently proposed a direct inversion
approach based on the so-called D-bar method [17, 29, 30].

There are some theoretical results regarding the uniqueness of the solution γ(x).
An early work in [34] showed that the DN map �γ uniquely determines the con-
ductivity in dimension n ≥ 3. For the two dimensional case, [30] proved that a C2

conductivity function can be uniquely reconstructed with respect to the correspond-
ing DN map. More recently, the uniqueness result has been extended to Lipschitz
conductivities in [6]. Clearly we are not able to prove a complete summary of this
research field here. Instead, we refer all interested readers to some survey and review
papers such as [5, 11, 36, 37].

Except through the change of variable to the EIT problem, there are also stability
and uniqueness results directly for the inverse problem for the Schrödinger equation.
Some stability results were first developed in [28]. A Lipschitz-type stability result
has recently been established in [3] which assumes a priori that the potential is
piecewise constant with a bounded known number of unknown values. For the case
with finite number of boundary measurements, it has been recently proven in [1, 15]
that one can still uniquely determine the L∞ potential in the Schrödinger equation.

Even with such a tight connection to the EIT problem, we note that there are very
few numerical procedure to the inverse problem for the Schrödinger equation. In this
paper, we propose an adjoint state method directly to this inverse problem. Because
the forward operator is self-adjoint, the overall algorithm requires to solve the same
type of equations for all the forward problem, the adjoint problem and the regular-
ization problem. Since this key equation is simply a standard linear elliptic partial
differential equation, there are well-developed numerical solvers which, therefore,
make the implementation of the solution procedure very straight-forward.

Moreover, our algorithm can also be regarded as a simple alternative for EIT.
Numerically, it is hard to maintain the positivity of the conductivity function γ when
solving the EIT problem using an iterative approach. Especially in a gradient descent
approach, one has to pick a time step small enough so that the update would not create
a negative conductivity. Otherwise the forward problem itself will then be ill-posed
and, therefore, the numerical procedure will be crashed. Our approach, on the other
hand, has no restriction on the positivity of the potential q. Constructing the solution
to the EIT from that of the inverse problem for the Schrödinger, we could simple
solve (1.3) which is essentially the same PDE for all key steps in our algorithm.

We will first explain our adjoint state approach to recover the Schrödinger poten-
tial q from the DNmap in Sect. 2. In Sect. 3, we provide some implementation details
about the proposed algorithm and will discuss two generalizations of the method. In
the derivation, we assume that measurements can be given on the whole computa-
tional domain. In this section, we first incorporate some common techniques as in
the level set method [31–33] to handle cases with finite number of measurements
on a set of locations on the boundary. Then we will develop a cascadic approach to
improve the overall computational efficiency by providing a better initial condition
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obtained from a coarse mesh. We will give some numerical tests to demonstrate the
effectiveness and the robustness of our proposed algorithm in Sect. 4. Finally, we
conclude the paper in Sect. 5 with some possible future directions.

2 Our Proposed Approach Based on the Adjoint State
Method

In this work we are interested in the Schrödinger inverse problem: we would like
to invert for the potential q(x) inside the domain � from given a finite number of
measurements ∂nu on the boundary ∂�. To achieve this, we propose to invert for
the potential q by a variational approach. The simplest model is to minimize the
the L2-difference between the experimental measurements and those obtained from
solving the Schrödinger equation on the boundary of the computational domain.
Mathematically, we propose the following mismatching energy designed base on the
least squares idea,

E(q) = 1

2

∫

∂�

∣∣∂nu − ∂nu
∗∣∣2 , (2.1)

where ∂nu∗|∂� is the given measurement and ∂nu|∂� is computed by solving (1.1)
together with the boundary condition

u|∂� = u∗|∂� . (2.2)

To minimize the mismatching energy, we compute the Euler-Lagrange equation
and apply the method of gradient descent. We first perturb the potential q by εq̃ ,
which induces a corresponding change in u by εũ. The change in the overall energy
is then given by

δE = ε

∫

∂�

∂nũ
(
∂nu − ∂nu

∗) + O(ε2) . (2.3)

Now, from the state Eq. (1.1), the perturbations in both functions q and u are related
by the elliptic equation

(−� + q)ũ = −q̃u . (2.4)

We need to determine the perturbation in the potential q, denoted by q̃ , so as to
decrease the energy δE . The main difficulty is that the perturbation in E , denoted by
δE , depends implicitly on q̃ through ũ and the partial differential equation (2.4).

To efficiently compute q̃ which minimizes E , we apply the adjoint state method.
Multiplying (2.4) by an adjoint variable λ, integrating it over�, applying integration
by parts, and adding the resulting expression to (2.3), we finally have
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δE

ε
=

∫

∂�

∂nũ
(
∂nu − ∂nu

∗) +
∫

∂�

λ∂nũ +
∫

�

ũ(� − q)λ −
∫

�

λq̃u

−
⎛
⎝

∫

y

∫

z

λx ũ|xmax
xmin

dydz +
∫

x

∫

z

λy ũ|ymax
ymin

dxdz +
∫

x

∫

y

λz ũ|zmax
zmin

dxdy

⎞
⎠ + O(ε) .

Now, if we are able to choose λ satisfying

(−� + q)λ = 0 , (2.5)

with the boundary condition,

λ|∂� = (
∂nu

∗ − ∂nu
)∣∣

∂�
(2.6)

on the boundary ∂�, one can eliminate the dependence of ũ when determining the
gradient of E with respect to q. We call Eq. (2.5) the adjoint state equation. We note
that this adjoint state equation is actually the same as the state Eq. (1.1) since the
operator is in fact self-adjoint.

Ignoring all higher order terms in the energy perturbation, we have

δE

ε
=

∫

�

−λq̃u .

To minimize the energy using the method of gradient descent, one could choose
the perturbation q̃ = λu. This implies that δE = −ε

∫
�

λ2u2 ≤ 0 and the equality

holds when ‖λu‖H 1/2(�) = 0. However, such choice of the gradient direction does
not necessary guarantee the smoothness in the inverted potential q.

To have a stable algorithm, we require a regularity condition on qk that it should be
a smooth function. This regularity seems to be too restrictive in practice. In general,
one only needs qk ∈ C1 to guarantee well-posedness of the state Eq. (1.1). However,
assuming that we assign q̃ = λu directly, it is not clear whether this function would
give us the desired regularity. Even if this perturbation is inC1, the numerical solution
may have jumps or spikes. These irregularities will force one to pick a very small
step-size, ε, in the minimization process. Therefore, to have a faster convergence, we
impose the following elliptic regularity in each iteration. In this work, we propose to
use the descent direction

q̃ = (I − ν�)−1(λu) , (2.7)

with the homogeneous Dirichlet boundary condition

q̃|∂� = 0 (2.8)
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where I is the identity operator and ν ≥ 0 controls the amount of regularity we want.
If we take a larger ν, the resulting q̃ would be smoother. The boundary condition
assumes that we can measure q∗|∂�, which is reasonable. With this particular q̃, we
have

δE = −ε

∫

�

(q̃2 − νq̃�q̃) = −ε

∫

�

(q̃2 + ν‖∇q̃‖2) ≤ 0 .

To start the gradient descent, we need to initialize the iteration by assigning a
potential function q0. In this work, we propose to determine the initial condition by
solving the following elliptic equation

(−� + α) q0 = 0 (2.9)

with the boundary condition q0|∂� = q∗|∂� and the constant parameter α ≥ 0 con-
trolling the regularity in the initial condition. In general, we recommend simply solv-
ing the standard Laplace equation (i.e. with α = 0) to initial the iteration in practice.
For the special casewhen the exact potential q∗ is in fact a constant function, however,
we note that such an initialization process will lead to the exact recovery. Therefore,
in the following numerical examples, we choose a nonzero α for the constant test
case in Sect. 4.1 but α = 0 for other cases.

3 Some Implementation Details

In this section, we first summarize the above algorithm and provide some implemen-
tation details. Even though the above adjoint state method seems to be straightfor-
ward, it requires full measurements on the computational boundary. In this section,
we will also generalize the approach to handle the case with only a set of finite num-
ber of measurements on the computational boundary. In principle, the generalization
can be applied to the case when the measurements are located in the interior of the
domain, but the idea is similar to what we are going to discuss and it will be omitted
here. Finally, because the approach based on the gradient descent converges expo-
nentially, it will take a large number of iterations until the steady state solution. We
are also going to propose a cascadic initialization strategy which seems to be able to
significantly improve the computational efficiency.

3.1 Inversion with Full Measurements

Here we give an algorithm for this Schrödinger inverse problem with full measure-
ments of ∂nu on the boundary.

In the above algorithm, Eqs. (1.1), (2.5) and (2.7) all require to invert the same
linear elliptic operator. Since it is a rather straightforward and standard numerical
procedure to obtain a numerical approximation to the equation, we will omit the
details in the numerical procedure in this article. The iteration size εk can be chosen



An Adjoint State Method for An Schrödinger Inverse Problem 19

Algorithm 1 Full measurements on the computational boundary.
1: Discretize the computational domain using a (N + 1) × (N + 1) mesh. Set k = 0 and initialize

q0 by solving (2.9).
2: while ‖q̃k‖2 ≤ δ or k ≥ kmax for some constants δ and kmax do
3: k = k + 1
4: Obtain uk by solving (1.1) with the boundary condition (2.2) using q = qk

5: Obtain λk by solving (2.5) with the boundary condition (2.6)
6: Obtain q̃k using (2.7) with the boundary condition (2.8)
7: Update qk+1 = qk + εk q̃k

8: end while

to be a small enough constant for simplicity or based on some carefully designed
optimization procedure such as the Armijo-Goldstein rule in the typical line search
method.

Finally, we comment that it is possible to further improve the computational
efficient by replacing the standard gradient descent approach here by a derivative-
based approach as in [24]. In particular, one can apply the quasi-Newton method
defined by qk+1 = qk + εksk where sk = −A−1

k E ′(qk) and Ak is a positive definite
operator satisfying the secant condition

Ak+1(q
k+1 − qk) = E ′(qk+1) − E ′(qk) .

In the iteration, the operator Ak+1 is updated by modifying the previous operator Ak

using procedure like the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method. But
we are not going to further investigate this approach in the article but will leave it as
a future work.

3.2 Inversion with Finite Number of Measurements

In the above discussion, we have assumed that the DN map is given on the whole
computational boundary. In this section, we propose a simple numerical procedure to
relax this assumption so that the inverse problem is more realistic. Mathematically,
we let� ⊂ ∂� be the set of locations where we havemeasurements. The formulation
we are going to propose allows that it be a segment of the boundary or even be more
flexible so that it is just a finite number of sampling locations.

Now, since we have measurements only on �, we replace the original mismatch
functional (2.1) by the following

E(q) = 1

2

∫

�

∣∣∂nu − ∂nu
∗∣∣2 = 1

2

∫

∂�

∣∣∂nu − ∂nu
∗∣∣2 δ(�)

where δ(x) is the Dirac’s delta function. Such modification has no effect in the
forward problem. The adjoint equation itself is still the same as in Eq. (2.5) while
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the corresponding boundary condition (2.6), however, is modified to incorporate the
measurements set � into the formulation,

λ|∂� = (
∂nu

∗ − ∂nu
)
δ(�) . (3.1)

Oncewemodify this boundary condition to the adjoint equation, the whole algorithm
follows and so we are not presenting the overall algorithm here.

Numerically, we follow the standard approach from the level set method [31–33]
and approximate the delta function based on the smoothed Heaviside step function
as follows:

H(x) :=

⎧⎪⎨
⎪⎩
0, x < −η
1
2 + x

2 + η
2π sin( πx

η
), −η < x < η

1, x > η,

δ(x) := H ′(x) = 1

4

[
1 − sign(|x | − η)

] [
1 + cos

(
πx

η

)]
, (3.2)

where η > 0 is a parameter controlling the width of the smoothing window. In the
usual level set method, this parameter η is recommended to be proportional to the
computational mesh size and is given by η = 2.5�x .

Now we consider the boundary potential q∗. In applications where one assumes
the far field potential is a constant or is well-approximated by a constant, one might
assume that these measurements are available on the boundary of the computational
domain so that all previous procedure related to the potential q follows. In some other
applicationswhere themeasurements of theDNmap are sampled uniformly along the
computational boundary given by �, we assume that the potential measurements q∗
are provided at the same set of finite locations. To start the algorithm, we approximate
the measurements on ∂� by interpolation and treat the interpolant on the whole
computational boundary as the given measurements. Then the original dicussion
follows.

Algorithm 2 An inversion algorithm based on the cascadic initialization strategy
1: Pick two constants Mc < M f such that the mesh on the coarsest and the finest levels are given

by
(
2Mc + 1

) × (
2Mc + 1

)
and

(
2M f + 1

) × (
2M f + 1

)
, respectively.

2: Follow Algorithm 1 using a mesh with N = 2Mc .
3: while N is not 2M f do
4: Set N = 2N .
5: Interpolate the latest solution q∞ onto the finer mesh and using it as the initial condition for

Algorithm 1.
6: end while
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3.3 A Cascadic Initialization Approach

In the above algorithms, we have proposed to initialize the iteration by the solution
to a simple elliptic equation (2.9). Such choice unfortunately might not give a good
initial guess for the iteration in practice and the resulting algorithm might perform
inefficiently. It will need a less number of time iterations if one is able to provide an
initial condition closer to the exact solution. To improve the overall computational
efficiency, we propose the following cascadic initialization approach to obtain a
better initial guess for the gradient descent. Such cascadic strategy has been shown
to be very effective in other applications including the computations of the effective
Hamilonian for a class of Hamilton-Jacobi operators [16].

We first invert for the potential on a relatively coarse mesh using the initial condi-
tion proposed above. As discussed above, this initial condition could be very different
from the exact solution and could take a large number of iterations until it reaches
the converged solution. However, the computational cost on a coarse mesh is still
cheap. Now, since the solution to the problem is supposed to be L∞, we propose to
interpolate this coarse mesh solution onto a finer grid and use the interpolant as the
initial condition on the finer grid. To simplify the implementation of the algorithm,
we can double the number of mesh points in each physical dimension by inserting
an extra sampling point in the middle of any two adjacent grid points on the coarse
level. Then this approach can reuse all measurements in the coarse level, yet seems
to provide a good initial condition for the computations on the fine level. Once we
have the converged inversion on this new level, we can repeat the whole process
and further refine the computational mesh. The overall algorithm is summarized in
Algorithm 2.

4 Numerical Examples

In the following examples, the finest mesh is given by 161 × 161 grid points in the
x − y plane. For each of the Schrödinger model below, we have implemented one
case with full measurements on the whole boundary of the computational domain
∂nu, and another case with finite number of measurements on the boundary. In
the case with finite number of measurements of ∂nu|∂�, we have chosen sampling
points uniformly on the boundary ∂� and have applied the delta function (3.2) with
η = 2.5�x , which depends on the mesh size in each level of the cascadic approach.
To speed up the implementation, we are going to also test the cascadic algorithm for
the following cases. To initialize the whole process, we assign the initial condition q0

by solving the elliptic equation (2.9) with the boundary condition q0|∂� = q∗ with
α = 0 for most cases except the constant case where we pick α = 1. We perform the
cascadic approach with 5 levels in total, where the mesh on the coarsest level and
the finest level are given by 11× 11 and 161× 161, respectively.
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(a) (b)

(c) (d)

Fig. 1 (Section 4.1) a The exact constant q, b the inverted potential q from full measurements
and c the relative error, and d the convergence history (Blue solid line: the cascadic approach. Red
dashed line: the direct approach)

4.1 A Constant Model

In the first example, we consider the followingmodel with the exact solution given by
u = ex cos 2y and a constant potential q ≡ −3 with the computational domain given
by [−1, 1]2. We terminate the iterations while

∣∣Ek − Ek−1
∣∣ ≤ 10−8. The numerical

results are shown in Figs. 1 and 2. Figure 1 shows the numerical solution proposed
by our adjoint state method.When full measurements are given on the whole compu-
tational domain, we found that our solution has 4.03% error in the inverted solution
comparing to the exact solution. There are spikes in the convergence history in Fig. 1d
because the cascadic initialization approach refines the mesh and this increases the
number of measurements from the boundary points. Therefore, the mismatch in the
DN map is significantly increased. As the refinement goes on, the magnitude of the
spike decreases since the numerical solution gets closer to the exact solution which
gives a more accurate DN map.

To see how the cascadic initialization improves the computational efficiency, we
directly obtain the solution on the finest mesh 161×161. The corresponding conver-
gence history is plotted on top of Fig. 1d using a red dashed line. Although the total
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(a) (b)

Fig. 2 (Section 4.1) The relative error in the inverted potential q with a 80 and b 20 measure-
ments.eps

number of iterations in the cascadic approach slightly increases, the overall com-
putational time is still greatly improved since the cascadic initialization approach
requires computations mostly on the coarse meshes.

In Fig. 2, we have shown the inverted solutions corresponding to the case when
we only have finite number of measurements on the boundary. In Fig. 2a, we assume
that the boundary potential q∗ is known on the whole computational boundary and
invert the interior potential q using only 80DNmapmeasurements with the sampling
locations uniformly placed on the boundary. The relative error in the solution is now
increased to 4.26%. Even thought the relative error is further increased whenwe keep
reducing the number ofmeasurements to 20, as shown in Fig. 2b, the percentage error
in the solution is still below 4.32% and is still acceptable.

4.2 A Non-constant Model

In this example,weconsider another smooth solutiongivenbyu=exp (sin x + cos y)
on the domain [−1, 1]2 with a non-constant potential q = cos2 x − sin x + sin2 y −
cos y. Note that this potential function q changes sign within the computational
domain. Here, we terminate the iterations when

∣∣Ek − Ek−1
∣∣ ≤ 10−4 is reached

which is larger than the tolerance we use in the previous example. Even though the
choice of such parameter is indeed in general problem-dependent, we find that the
quality of the inverted solution does not significantly depend on this tolerance.

Figures3, 4 and 5 show our computed solutions. Figure 3 shows the solution
obtainedwith full (640)measurements of bothDNmap and the Schrödinger potential
q on the boundary. We can see that the inverted q is almost the same as the exact q.
To better see the convergence in the numerical approach, we plot only the absolute
error in both the initial condition of the potential q and also the final solution. The
largest absolute error in the domain is dropped from around 0.4 in the initial guess
to approximately 0.08 eventually.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 (Section 4.2) a The exact non-constant potential q, b the initial condition for q , c the inverted
solution with full measurements on the boundary, the absolute error in d the initial potential q and
e the final potential q, and f the convergence history

To better investigate how the number of measurements improve the inversion
results, we show in Table 1 some detailed convergence results. We run the same
test case with different number of measurements varying from only 40 to the full
measurements containing 640 measurements. As expected, the more information
we obtained, the better the accuracy in the numerical solution. We obtain a better
approximation of the potential q with more boundary measurements of the DNmap.
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(a) (b)

Fig. 4 (Section 4.2) The absolute error in the inverted potential q using a 40 and b 80measurements
where we assume boundary value of the potential q on the finest mesh

(a) (b)

Fig. 5 (Section 4.2) The absolute error in the inverted potential q using a 40 and b 80measurements
where we assume boundary value of the potential q on the coarsest mesh

Further, we observe that it actually takes more iterations for the case with finite
number of measurements to converge to the steady state solution.

In the above tests, we have assumed full information of the boundary potential
q∗. In practice, however, we might not be able to provide full measurements of the
Schrödinger potential q on the boundary. We show in Fig. 5 the inverted results of
the potential q given 40 and 80 measurements of the DN map respectively, given
Dirichlet boundary condition of the potential q only on the coarsest mesh with mesh
size 11 × 11. Since the boundary value of q is given by interpolation on finer mesh,
we can see errors on the boundary, with only 40 points fixed. However, number of
measurements of q does not influence the error in the potential q inside the domain,
which means that our algorithm could recover the Schrödinger potential given only
finite number of boundary measurements of q.

To test the stability of the algorithm derived by the adjoint state method, we
add a multiplicative Gaussian noise to the DN map ∂nu∗ on the boundary ∂� and
investigate the corresponding effect on the inverted potential. To see the influence
of noise on the inverted results, we perform our algorithm on cases with different
amount of Gaussian noise until the steady state and compare the L2- error in the
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Table 1 (Section 4.2) The required number of iterations and the error in the solutions using different
number of DN map measurements

Number of measurements Number of iterations L2-error in the inverted q

40 75 0.2106

80 72 0.1451

full (640) 11 0.0941

Table 2 (Section 4.2) The required number of iterations and the error in the solutions when the
DN map measurements contain noise

Amount of gaussian
noise

Number of iterations L2 error in q The mismatching
energy

Clean measurements 11 0.0941 8.20e-04

1% noise 13 0.1019 0.1930

5% noise 12 0.1107 0.2330

10% noise 15 0.1212 0.3600

potential q. Table 2 shows these errors with 1–10% noise in the measurement. We
find that as we increase the amount of Gaussian noise, the L2-error in the solution q
increases as well as the mismatching energy.

Finally, to see the improvement in the computational efficiency of our cascadic
initialization approach as described in Algorithm 2, we compare the number of the
iterations required to reach the steady state solution obtained by Algorithm 1 and
Algorithm 2 using the same stopping criteria given by

∣∣Ek − Ek−1
∣∣ ≤ 10−4. Since

Algorithm 2 requires to solve several more elliptic equations in order to update u(x)
corresponding to the Schrödinger potential q(x) after interpolation in each level,
we also look into the overall computation time. We find that Algorithm 1 requires
26 iterations taking 157.971s of the CPU time, while Algorithm 2 takes only 11
iterations in total requiring only 2.472s to reach the final solution. This shows that
the cascadic initialization strategy as developed in Algorithm 2 can significantly
improve the computational efficiency of the inversion method.

4.3 Discontinuous Models

In all discussions above, we have assumed that the potential q is smooth so that one
can impose the Tikhonov regularization in the inversion process. In some applica-
tions, on the other hand, the unknown potential might actually violate such a strong
regularity. In this example, we test the limit of the proposed approach by considering
two examples where the exact potential is discontinuous.
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4.3.1 q = χR+

We first consider the case where q is piecewise continuous to see that whether our
algorithm could recover the interface. In this example, we consider q = χR+ in
the domain [−1, 1]2 with the Dirichlet boundary condition u∗|∂� = sin x sin y. We
stop the iterations when

∣∣Ek − Ek−1
∣∣ ≤ 10−6. Figure 6 shows our inverted results

given by full measurements and 80 measurements of the DN map on the boundary,
respectively. Clearly we are not able to exactly recover the discontinuous potential
but can roughly invert the macroscopic structure in the interior.

4.3.2 A Circular Discontinuity

In the previous test, the potential measurements itself contain discontinuity. In this
case, the discontinuity locates completely inside the domain instead of on the bound-
ary. In this section, we assume the exact potential is given by

q(r) =
{
1, r ≤ a

0, r > a.

We vary the radius a in order to see the effect of distance between the discontinuity
interface and the boundary. We consider the domain [−1, 1]2 and impose the Dirich-
let boundary condition u∗|∂� = exp(x + y). Since the Schrödinger potential q is not
smooth in this case, we set the regularization parameter ν = 0.1 and we stop the
iterations when

∣∣Ek − Ek−1
∣∣ < 10−4. Figures7 and 8 show the inverted results with

radius 1 given full and finite measurements of the DN map on the boundary, respec-
tively. We can see that the circular interface is roughly recovered and the inverted
results preserve the symmetry of q.

Figure 8 shows the results when we set the radius to be 0.8, 0.6, and 0.4, respec-
tively, while all other parameters in the model remain the same. Since the boundary
value of q is 0, our initial approximation of q is constant 0, which is the solution
to the Laplace equation with Dirichlet boundary condition q∗|∂� = 0. We can see
that as the distance between the discontinuity interface and the boundary increases,
the magnitude of inverted results decrease although the shape and location of the
interface can be very roughly recovered.

5 Conclusion

We have proposed a numerical approach for solving an inverse problem for the
Schrödinger equation. The method is developed based on a least squares fitting func-
tional where the gradient is computed using the adjoint state method. To further
improve the computational efficiency of the gradient descent approach, we have
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(a)

(b) (c)

(d) (e)

Fig. 6 (Section 4.3.1) a The initial condition for the potential q . Our inverted potential using b full
and c 80 measurements and their convergence history in (d) and (e), respectively
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(a) (b)

(c) (d)

Fig. 7 (Section 4.3.2) A circular discontinuity model with radius 1. The initial approximation a,
the inverted results obtained by b full measurements, c 80 measurements, and d 20 measurements

Fig. 8 (Section 4.3.2) A circular discontinuity model with full measurements. The radius of the
discontinuity is given by (left) 0.8, (middle) 0.6 and (right) 0.4
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also developed an efficient cascadic initialization approach to reduce the number of
iterations. Numerical results showed the efficiency, stability and fast convergence
behavior of the energy using our method. The method developed in this paper can
also be regarded as an alternative approach for solving the EIT problem with extra
computational cost of solving one standard elliptic equation. We have also demon-
strated the effectiveness of the approach in Sect. 4.2.

Indeed the method has been developed based on smooth potentials q because of
the regularity imposed in computing the gradient. Nevertheless, we have also tested
on discontinuous cases. The inverted solutions clearly cannot recover the location
of the discontinuity, but is still able to estimate the macroscopic structures in the
potential. To better solve the inverse problem with a discontinuous potential, one
might incorporate the level set method [31–33] in the adjoint state method as in [25,
26] for transmission traveltime tomography or in [19, 20, 27] for inverse gravimetry.

A possible future research direction is to apply this inverse solver for the
Schrödinger equation to the EIT problem and to investigate how the efficiency of
the current approach can help solving the inverse problem in the field of medical
imaging.

Acknowledgements The work of Leung was supported in part by the Hong Kong RGC grant
16302819.
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Abstract In this Chapter we discuss multi-modality image registration models and
efficient algorithms. We propose a simple method to enhance a variational model to
generate a diffeomorphic transformation. The idea is illustrated by using a particular
model based on reformulated normalized gradients of the images as the fidelity term
and higher-order derivatives as the regularizer. By adding a control term motivated
by quasi-conformal maps and Beltrami coefficients, themodel has the ability to guar-
antee a diffeomorphic transformation. Without this feature, the model may lead to
visually pleasing but invalid results. To solve the model numerically, we present both
a Gauss-Newton method and an augmented Lagrangian method to solve the result-
ing discrete optimization problem. A multilevel technique is employed to speed up
the initialization and reduce the possibility of getting local minima of the underly-
ing functional. Finally numerical experiments demonstrate that this new model can
deliver good performances for multi-modal image registration and simultaneously
generate an accurate diffeomorphic transformation.
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1 Introduction

Working on a pair of images of the same object taken at different times or acquired
using different devices, image registration aims to either find differences between
them or fuse complementary information to each other which is otherwise not pos-
sible with a single modality. In either case, the key is to find a reasonable spatial
geometric transformation between these two images. Though the task is required
in diverse fields such as astronomy, optics, biology, chemistry and remote sens-
ing and particularly in medical imaging, and much work have been done, getting a
robust model for the task is still a challenge. For an overview of image registration
methodologies and approaches, especially for registering images acquired by the
same modality (e.g. CT-CT), we refer to [17, 18, 33, 35, 40]. For a more recent
survey, see [8]. This Chapter is mainly concerned with registering two images from
different modalities (e.g. CT-MRI or digital-Infrared) and focuses on one impor-
tant question of how to impose a constraint so that the underlying transformation is
diffeomorphic.

The image registration problem can be described as follows: given a fixed image
R (the reference) and a moving image T (the template), both represented by scalar
function mappings over Ω ⊂ R

d −→ R, find a suitable geometric transformation
ϕ(x) = x + u(x), u : Rd −→ R

d such that

G1(T [ϕ]) = G1(T (x + u(x)) ≈ G2(R), (1)

where G1,G2 must be chosen suitably in multi-modality scenario, because only
features or patterns in T, R visually resemble each other, not their given intensities.
In contrast, in mono-modality registration where intensities as well as features in
T, R resemble each other, we haveGi (·) = Id , (i = 1, 2) or T ≈ R pixelwise. In the
special case of parametric models, the solution u (orϕ) is assumed to belong to some
linear spanned space with known Ansatz functions, depending on few parameters
(e.g. affine with 6 parameters in 2D or 12 parameters in 3D). However, not all
problems can be solved by parametric models.

Here, we focus on variational models for deformable non-parametric image reg-
istration where the unknown u sought in a properly chosen functional space is not
assumed to have any parametric forms. The reconstruction problem based on model
(1) is an ill-posed inverse problem and thus regularization techniques are needed to
overcome ill-posedness [7, 11, 13, 14, 21, 30, 31, 47]. Generally speaking, a reg-
ularization technique turns the ill-posed problem (1) into a well-posed optimization
model

min
u∈H

{
J (u) = S(u) + λ

2
D(T (x + u), R)

}
(2)

where the displacement u is a minimizer of the above joint energy functional and λ
is a positive weight which controls the trade-off between them.
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In (2), the first term S(u) is a regularization term which controls the smoothness
of u and reflects our expectations in penalizing unlikely transformations. Various
regularizers have been proposed, such as first-order derivatives-based on total varia-
tion [10, 23], diffusion [15] and elastic regularizer registration models, higher-order
derivatives-based on linear curvature [16], mean curvature [12], Gaussian curvature
[24], and fractional order derivatives based models [50]; refer also to [11, 31, 44,
51, 52].

The second term D(T (x + u), R) is a fidelitymeasure, which quantifies distance
or similarity between the transformed template image T (x + u) and the reference R.
Formono-modal registration, a widely-used data fidelity term D(T (x + u), R) is the
sum of squared differences D = ‖T (x + u) − R‖22 ≡ SSD(T (x + u), R) to mea-
sure the difference between the reference image R and the deformed template image
T (x + u). However for multi-modality registration, the choice of D(T (x + u), R)

is more challenging. The main issue is how to design the right (or rather better)
similarity measures that can support the difference (in features, colours, gradients,
illumination etc.) between images from different modalities (e.g. SSD no longer
makes sense). Various measures have been proposed and tested in the literature.
Designing a measure which is based on the geometric information such as the gra-
dients of the images is a good choice. See for instance the normalized gradient field
(NGF) [22, 26, 39], edges sketching registration [1], normalized gradient fitting
(GT) [22, 43] and Mutual Information [29, 37, 46]. Recently [9] proposed a cross-
correlation similarity measure based on reproducing kernel Hilbert spaces and found
advantages over Mutual Information.

Many models in the literature, of type (2), do not usually contain constraints
to ensure that ϕ(x) is a diffeomorphic map for the mono-modal registration. And
even fewer theoretical or experimental studies deal with diffeomorphic maps for
the multi-modal registration. But non-diffeomorphic maps cause phenomena such
as folding or tearing which are usually seen as non-natural transformations between
the two images, unless λ is small (implying a poor registration fidelity error). Over
the last decade, more and more researchers have focused on diffeomorphic image
registration where folding measured by the local invertibility quantity det(Jϕ) is
reduced or avoided where det(Jϕ) is the Jacobian determinant of ϕ. Under desired
assumptions, obtaining a one-to-one mapping is a natural choice, see [7, 14, 19, 20].

After surveying a few models of type (2) for multi-modal images, this Chapter
shows how to incorporate a suitable constraint into a model so that it can deliver a
diffeomorphic map. We illustrate our idea by a specific model: minimizing a new
functional based on using reformulated normalized gradients of the images as the
fidelity term [43], higher-order derivatives and a new Beltrami coefficient based term
[28, 48]. An effective, iterative scheme is also presented and numerical experimental
results show that the new registration model has a good performance.
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2 Review of Related Models

For a variational image registration model (2), while there exist many choices for a
regularizer S(u) such as the diffusion operator or the Laplacian [8], below, we briefly
review a few of such choices of D(T (x + u), R) for registering a pair of multi-modal
images T, R.

Normalized Gradient Field (NGF) and its variants. The basic idea of NGF
[22, 26, 39] is the use of a derived information from the image intensity, i.e., the
gradient. Similarity measures depending on the gradients or geometry of the images,
which naturally encode information about the shape, can be better. The aim is to
align the gradients ∇T (x + u) and ∇R by minimizing the cosines distance between
them. More precisely, on each point x ∈ Ω , try to find a displacement u(x) such
that cos� = 1 where � is the angle between ∇T (x + u) and ∇R, which leads to
minimizing the similarity term:

DNGF (T (x + u), R) =
∫

Ω

(1 − (cos�)2) dx =
∫

Ω

(1 − (∇nT (x + u) · ∇n R)2) dx,

(3)
where∇nT (x + u) = ∇T (x + u)/|∇T (x + u)| and∇n R = ∇R/|∇R| are normal-
ized unit vectors.An alternative formof theNGF that avoids using terms∇nT (x + u)

and ∇n R which are degenerated in homogeneous regions, reformulate NGF as

DNGF (T (x + u), R) =
∫

Ω

(|∇T (x + u)|2|∇R|2 − (∇T (x + u) · ∇R)2) dx, (4)

Mutual Information (MI). It was firstly proposed in [46] and has been studied in
various literatures (see [29, 37]), showcasing its great capability aswell as limitations.
The basic idea is to compare the histograms of the images by exploiting the following
quantity

DMI (T (x + u), R) = −
∫

R2

pT,R(t, r) log
pT,R(t, r)

pT (t)pR(r)
dtdr, (5)

where pR, pT are probability distributions of the gray values in R and T , while
pT,R is the joint probability of the gray values which can be derived from the joint
histogram. The main drawback ofMI is its sensibility to image quantization and the
difficulty in estimating the joint probability density function (PDF). In addition, the
measure also fails when two features with different intensities in one image have
similar intensities in the other one [27].

Maximum Correlation Coefficient (MCC). It is an extension of well-known
Normalized cross correlation (CC) measure , which is only efficient for mono-modal
images [6, 33], to a measure that is able to handle multi-modal images [9]. The
similarity measure is defined by
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DMCC (T (x + u), R) = (1 − MCC(T, R))p := (1 − max
f,g

CC(M, N ))p, 0 < p < 1,

where M(x) = f (T (x + u), N (x) = g(R(x)), f and g are two measurable func-
tions. ThisMCC formulation does not require estimation of the continuous joint PDF
and offers a powerful alternative to the models based on maximizing MI. However.
the computation of the maximum over all functions f and g is a big challenge. The
recommended approach in [9] is to approximate it based on the theory of reproducing
kernel Hilbert space (RKHS) [2, 5].

3 The New Model

We aim to design a variational model building on the energy of the form (2)

min
u∈H

{
J (u) = S(u) + D(T (x + u), R) + γC(u)

}
(6)

which is comprised of three building blocks: a data fidelity term with similarity
measure D, a regularization term S and a control term C . The emphasis of this
Chapter is how to choose C . To do this for a concrete model, we now specify our
choice of all three terms.

3.1 Data Fitting

We consider a similarity measure based on the gradient information [43]. This mea-
sure is motivated by the standardNGF [22, 32] and it primarily explores the potential
of normalized gradients beyond its standard form.We shall consider normalized gra-
dients fitting combined with a measure based on the triangular similarity inequality.
More precisely, we consider the following fitting term

D(T (x + u), R) = DGF (u) + αDTM(u) (7)

where GF stands for ‘gradient filed difference’ and TM for ‘Triangular Measure’
with

DGF (u) =
∫

Ω

|∇nT (x + u) − ∇n R|2dx,

DTM(u) =
∫

Ω

(|∇T (x + u)| + |∇R| − |∇T (x + u) + ∇R|)2dx.
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3.2 Regularization

A regularizer controls the smoothness. Our primary choice for smoothness control is
the diffusionmodel [15] which uses first-order derivatives and promotes smoothness.
As affine linear transformations are not included in the kernel of the H 1-regularizer,
we desire a regularizer which can penalize such transformation. As such, we add the
regularizer based on second-order derivatives (LLT) to the model which allows to
remove the need of any pre-registration step of affine transformations. The second-
order derivatives allows also getting smooth transformations [52]. Our adopted reg-
ularizer is given by

S(u) = β1

2
S1(u) + β2

2
S2(u) (8)

where

S1(u) =
∫

Ω

|∇u|2dx, S2(u) =
∫

Ω

|∇2u|2dx.

3.3 Invertibility

A diffeomorphic map ensures local invertibility of the map and this is achievable by
a control term C that imposes the constraint det(Jϕ) > 0 at any x ∈ Ω . This latter
idea is much used in the literature with somewhat limited success because either
strong assumptions on T, R or compromised fidelity error are required; see tests
and remarks from [48]. Here, instead of controlling det(Jϕ) directly, we control the
Beltrami coefficient [48] in getting a diffeomorphic map and propose the use of

C(u) =
∫

Ω

φ(|μ(u)|2)dx, (9)

where φ(v) = v2

(v−1)2 and |μ(u)|2 = (∂x1u1−∂x2u2)
2+(∂x2u1+∂x1u2)

2

(∂x1u1+∂x2u2+2)2+(∂x2u1−∂x1u2)
2 .

One notes that our choice of the first two terms S, D for (6) is quite common
while the third term [48] is relatively new to readers. This is the key idea of this
Chapter: an old, non-diffeomorphic, variational model of form (2) can be converted
to a diffeomorphic model by adding a control term such as C from (9). This can be
done in 2D and also in 3D following our recent work. It should be remarked that
model (6) is non-convex so its solutions are not unique (as true for all registration
models). However we can show that the model admits at least one solution in the
space W 2,2(Ω), following the idea of [49].
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4 The Solution Algorithm

Here,we choose first-discretize-then-optimizemethod, namely directly discretize the
variational model to get a discrete optimization problem and then use optimization
methods to solve this resulting optimization problem. In this section we focus on a
Gauss-Newton (G-N) method and in the next section we briefly introduce another
alternating iteration method just before numerical results are shown.

4.1 Discretization

In the implementation, we employ the nodal grid and define a spatial partition

Ωn
h = {xi, j ∈ Ω|xi, j = (xi1, x

j
2 ) = (ih, jh), 0 ≤ i ≤ n, 0 ≤ j ≤ n},

where h = 1
n and the discrete domain consists of n2 cells of size h × h. We dis-

cretize the displacement field u on the nodal grid, namely ui, j = (ui, j1 , ui, j2 ) =
(u1(xi1, x

j
2 ), u2(x

i
1, x

j
2 )). By lexicographical ordering, we reshape four matrices to

two long vectors of dimension R
2(n+1)2×1

X = (x01 , x
1
1 , ..., x

n
1 , . . . , x

0
1 , x

1
1 , ...x

n
1 , x

0
2 , x

0
2 , ..., x

0
2 , . . . , x

n
2 , x

n
2 , ...x

n
2 )

T ,

U = (u0,01 , ..., un,0
1 , . . . , u0,n1 , ..., un,n

1 , u0,02 , ..., un,0
2 , . . . , u0,n2 , ..., un,n

2 )T .

4.1.1 Discretization of Fitting Term

Firstly, set R = R(PX) ∈ R
n2×1 as the discretized reference image and T(PX +

PU ) ∈ R
n2×1 as the discretized deformed template image, where P ∈ R

2n2×2(n+1)2

is an averagematrix from the nodal grid to the cell-centered grid. In order to discretize
∇T and ∇R, we introduce two discrete operators: D1 = In ⊗ ∂1

h and D2 = ∂1
h ⊗ In ,

where

∂1
h = 1

2h

⎡
⎢⎢⎢⎢⎣

−1 1
−1 0 1

... ... ...

−1 0 1
−1 1

⎤
⎥⎥⎥⎥⎦

∈ R
n×n .

Hence, the discretized ∇T and ∇R are [D1T, D2T] and [D1R, D2R] respec-
tively. Set LT = (

∑2
i=1 DiT � DiT + ε).1/2, LR = (

∑2
i=1 DiR � DiR + ε).1/2 and

LTR = (
∑2

i=1 Di (T + R) � Di (T + R) + ε).1/2, where � indicates component-
wise product and (·).1/2 indicates the component-wise square root.
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Then for DGF (u) and DTM(u), we have the following discretizations:

DGF (u) ≈ h2 pT1 p1, DT SM(u) ≈ h2 pT2 p2, (10)

where (using ./ to indicate the component-wise division)

p1 = [D1T./LT − D1R./LR; D2T./LT − D2R./LR]
p2 = LT + LR − LTR.

4.1.2 Discretization of Regularization Term

The first-order regularization term can be discretized into the following form:

S1(u) ≈ h2
n−1∑
i=0

n−1∑
j=0

2∑
l=1

(ui+1, j
l − ui, jl

h

)2 + (ui, j+1
l − ui, jl

h

)2
(11)

by using the forward difference and mid-point rule.
Define B1 = In+1 ⊗ ∂2

h ∈ R
(n+1)2×(n+1)2 , C1 = ∂2

h ⊗ In+1 ∈ R
(n+1)2×(n+1)2 ,

∂2
h = 1

h

⎡
⎢⎢⎣

−1 1
... ... ...

−1 1
0

⎤
⎥⎥⎦ ∈ R

(n+1)×(n+1), A1 =

⎡
⎢⎢⎣
B1 0
C1 0
0 B1

0 C1

⎤
⎥⎥⎦ ∈ R

4(n+1)2×2(n+1)2 ,

where⊗ denotes theKronecker product. Then (11) can be rewritten into the following
form (noting U ∈ R

2(n+1)2×1)

S1(u) ≈ h2UT AT
1 A1U. (12)

The second-order regularization term can be discretized into the following:

S2(u) ≈ h2
n−1∑
i=0

n−1∑
j=0

2∑
l=1

(ui+1, j
l − 2ui, jl + ui−1, j

l

h2
)2 + (

ui, j+1
l − 2ui, jl + ui, j−1

l

h2
)2

+ 2h2
n−1∑
i=0

n−1∑
j=0

2∑
l=1

(ui, jl − ui+1, j
l − ui, j+1

l + ui+1, j+1
l

h2
)2

(13)

by using the central difference, mid-point rule and Neumann boundary conditions
(l = 1, 2): ui,0l = ui,−1

l , ui,nl = ui,n+1
l , u0, jl = u−1, j

l , un, j
l = un+1, j

l .



Multi-modality Image Registration Models and Efficient Algorithms 41

Further define B21 = I2 ⊗ (In+1 ⊗ ∂3
h), B22 = I2 ⊗ (∂3

h ⊗ In+1),C2 = I2 ⊗ (E ⊗
E), τ1 = (n + 1) × (n + 1), τ2 = n × (n + 1), where

∂3
h = 1

h2

⎡
⎢⎢⎢⎢⎣

−1 1
1 −2 1

... ... ...

1 −2 1
1 −1

⎤
⎥⎥⎥⎥⎦

∈ R
τ1 , E = 1

h

⎡
⎢⎢⎢⎢⎣

−1 1
−1 1
... ... ...

−1 1
−1 1

⎤
⎥⎥⎥⎥⎦

∈ R
τ2 .

Then (13) can be rewritten into the following form

S2(u) ≈ h2UT A2U, A2 = BT
21B21 + BT

22B22 + 2CT
2 C2. (14)

4.1.3 Discretization of Control Term

Note that φ(|μ(u)|2) involves only first order derivatives and all ui, j are available at
vertex pixels. Thus it is convenient first to obtain approximations at all cell centers
(e.g. at V5 in Fig. 1) and second to use local linear elements to facilitate first order
derivatives. We shall divide each cell (Fig. 1) into 4 triangles. In each triangle, we
construct two linear interpolation functions to approximate the u1 and u2. Conse-
quently, all partial derivatives are locally constants or φ(|μ(u)|2) is constant in each
triangle.

Set Li, j,k(x) = (Li, j,k
1 (x), Li, j,k

2 (x)) = (ai, j,k1 x1 + ai, j,k2 x2 + ai, j,k3 , ai, j,k4 x1 +
ai, j,k5 x2 + ai, j,k6 ), which is the linear interpolation for u in the Ωi, j,k . Note that
∂x1L

i, j,k
1 = ai, j,k1 , ∂x2L

i, j,k
1 = ai, j,k2 , ∂x1L

i, j,k
2 = ai, j,k4 and ∂x2L

i, j,k
2 = ai, j,k5 . Then

according to the partition in Fig. 1, we have

Fig. 1 Partition of a cell,
nodal point � and center
point ◦. V1V2V5 is Ωi, j,k

V5

V1 V2

V3 V4
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C(u) =
∫

Ω

φ(|μ(u)|2)dx

≈h2

4

n∑
i=1

n∑
j=1

4∑
k=1

φ
( (ai, j,k1 − ai, j,k5 )2 + (ai, j,k2 + ai, j,k4 )2

(ai, j,k1 + ai, j,k5 + 2)2 + (ai, j,k2 − ai, j,k4 )2

)
.

(15)

To simplify (15), define 3 vectors r(U ), r1(U ), r2(U ) ∈ R
4n2 by r(U )� = r1

(U )�r2(U )�, r1(U )� = (ai, j,k1 − ai, j,k5 )2 + (ai, j,k2 + ai, j,k4 )2, r2(U )� = 1
/[(ai, j,k1 +

ai, j,k5 + 2)2 + (ai, j,k2 − ai, j,k4 )2] where � = (k − 1)n2 + ( j − 1)n + i ∈ [1, 4n2].
Hence, (15) becomes

C(u) ≈ h2

4
φ(r(U ))eT (16)

where φ(r(U )) = (φ(r(U )1), ...,φ(r(U )4n2)) denotes the pixel-wise discretization
of u1, u2 at all cell centers, and e = (1, ..., 1) ∈ R

4n2 .
Finally, combining the above three parts (10), (12), (14) and (16), we get the

discretization formulation for model (6):

min
U

J (U ) := h2 pT1 p1 + αh2 pT2 p2 + β1h
2

2
UT AT1 A1U + β2h

2

2
UT A2U + γh2

4
φ(r(U ))eT . (17)

Remark 1 According to the definition of φ and r(U )� ≥ 0, each component of
φ(r(U )) is non-negative and differentiable.

4.2 Optimization Method for the Discretized Problem (17)

In the numerical implementation, we choose a line search method to solve the result-
ing unconstrained optimization problem (17). Here, the basic iterative scheme is

Ui+1 = Ui + θδUi , (18)

where δUi is the search direction and θ is the step length. In order to guarantee a
descent search direction, we employ aGauss-Newtonmethod as the standardNewton
method does not generate a descent direction because our exact Hessian is non-
definite.

4.2.1 Gradient and Approximated Hessian of (17)

Firstly, we consider computing the gradient and approximated Hessian of the dis-
cretized fitting term h2 pT1 p1 + αh2 pT2 p2. Its gradient and approximated Hessian are
respectively:
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{
d1 = 2h2PT (dpT1 p1 + αdpT2 p2) ∈ R

2(n+1)2×1,

Ĥ1 = h2PT (dpT1 dp1 + αdpT2 dp2)P ∈ R
2(n+1)2×2(n+1)2 .

(19)

where dp1 = [�D1 − diag(D1T./t)�;�D2 − diag(D2T./t)�], dp2 = ∑2
i=1

diag(DiT./LT − Di (T + R)./LTR)Di , � = diag(1./LT), t = LT.3, � = ∑2
i=1

diag(DiT)Di and diag(v) is a diagonal matrix with v on its main diagonal.

Remark 2 Evaluating the deformed template image T must involve interpolation
because PX + PU are not in general pixel points. Here in our implementation, we
choose B-splines for the interpolation.

For the discretized diffusion regularizer β1h2

2 UT AT
1 A1U + β2h2

2 UT A2U, its gra-
dient and Hessian are respectively

{
d2 = h2(β1AT

1 A1 + β2A2)U ∈ R
2(n+1)2×1,

H2 = h2(β1AT
1 A1 + β2A2) ∈ R

2(n+1)2×2(n+1)2 .
(20)

Finally, for the discretized Beltrami term βh2

4 φ(r(U ))eT , the gradient and approx-
imated Hessian are as follows:

{
d3 = βh2

4 drT dφ(r) ∈ R
2(n+1)2×1,

Ĥ3 = βh2

4 drT d2φ(r)dr.
(21)

where dφ(r) = (φ′(r1), ...,φ′(r4n2))T is the vector of derivatives of φ at all cell
centers,

⎧⎨
⎩
dr = diag(r1)dr2 + diag(r2)dr1,
dr1 = 2diag(A31U )A31 + 2diag(A32U )A32,

dr2 = −diag(r2 � r2)[2diag(A33U + 2)A33 + 2diag(A34U )A34],
(22)

� denotes a Hadamard product, dr, dr1, dr2 are the Jacobian of r, r1, r2 with respect
toU respectively, [dφ(r)]� is the �th component of dφ(r) and d2φ(r) is the Hessian
of φ with respect to r, which is a diagonal matrix whose i th diagonal element is
φ′′(ri ), 1 ≤ i ≤ 4n2. More details about r1, r2, A31, A32, A33 and A34 are shown in
Appendix 1.

Therefore, combining the above results for 3 terms, we can obtain the gradient

dJ = d1 + d2 + d3 (23)

and the approximated Hessian of (17):

H = Ĥ1 + H2 + Ĥ3. (24)
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4.2.2 Search Direction

With the above approximated Hessian (24), in each outer (nonlinear) iteration, we
solve the Gauss-Newton system

HδU = −dJ (25)

to obtain the search direction δU for (17). Because H is symmetric positive semi-
definite, in our implementation, we choose MINRES with diagonal preconditioning
as the numerical solver [4, 36].

4.2.3 Step Length

Here, we choose a popular inexact line search condition, Armijo condition, which
determines a step length θ that satisfies the following sufficient decrease condition:

J (U + θδU ) < J (U ) + θηdJ T δU. (26)

Here, we set η = 10−4 and use the backtracking approach to find a suitable θ.
In addition, we need to check that r(U ) is smaller than 1 which is the norm of the
discretized Beltrami coefficient. For more details, please refer to [25, 34, 41].

4.2.4 Stopping Criteria

In the implementation, we choose the stopping criteria used in [33]:

(1.a) ‖J (Ui+1) − J (Ui )‖ ≤ τJ (1 + ‖J (U 0)‖),
(1.b) ‖Ui+1 −Ui‖ ≤ τW (1 + ‖X +U 0‖),
(1.c) ‖dJ‖ ≤ τG(1 + ‖J (U 0)‖),
(2) ‖dJ‖ ≤ eps,
(3) i ≥ MaxIter.

Here, eps is the machine precision and MaxIter is the maximal number of outer
iterations.We set τJ = 10−3, τW = 10−2 and τG = 10−2. If any one of (1) (2) and (3)
is satisfied, the iterations are terminated. Hence, a Gauss-Newton numerical scheme
with Armijo line search can be developed and summarized in Algorithm 1.
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Algorithm 1 Gauss-Newton scheme by using Armijo line search for Image Regis-
tration: U ← GNAIR(α,β1,β2, γ,U 0, T, R)
Step 1: Set i = 0 at the solution point Ui = U0.
Step 2: For (17), compute the energy functional J (Ui ), its gradient diJ and

the approximated Hessian Hi by (24).
while “none of the listed 3 stopping criteria are satisfied” do
Solve the Gauss-Newton equation: HiδUi = −diJ ;
Use Line Search to find step length θ;
Ui+1 = Ui + θδUi ;
i = i + 1;
Compute J (Ui ), diJ and Hi ;

end while

4.2.5 Multi-level Strategy

Amulti-level strategy is a standard technique in image registration. In the multi-level
strategy, we firstly coarsen the template T and the reference R by L levels. Then
we can obtain U1 by solving our model (6) on the coarsest level. In order to give
a good initial guess for the finer level, we adopt an interpolation operator on U1 to
obtainU 0

2 as the initial guess for the next level. We repeat this process and can get the
final registration on the finest level. The most important advantage of the multi-level
strategy is that it can save computation time because of less variables on the coarser
level than on the fine level. In addition, it can help to avoid trapping into a local
minimum.

4.2.6 Convergence Result

Our above described Algorithm 1 will converge to a stationary point of our new
model. Details are shown in Theorem 1 of Appendix 2 below.

5 Numerical Results

In this section, we will show some numerical results to illustrate the performances of
our proposed model (6) using Gauss-Newton method calledGNR. We compare with
the standardNGF [32] and theAugmented Lagrangian approach for solving a similar
model [43] called ALMR, which uses the same regularization and fitting terms.
However, the local invertibility of the map is guaranteed by imposing an inequality
constraint on the model. For more details about the augmented Lagrangian method,
we refer to [3, 38, 42] and the reference therein.
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ALMR. Alternating iteration is another popular method which might be applied
to (6). However, below, we shall consider it for a related model [43] that uses a
constrained optimization (different from (6)):

⎧⎨
⎩
min
u∈H

{J1(u) = S(u) + λ

2
DGF (u) + λ

2
DTM(u)},

w.r.t Cε(u) = det (I + ∇u) ≥ ε,
(27)

where imposing the constraint is a competing way of ensuring a diffeomorphic trans-
formation.

To reformulate (27), introducing variables K , p and n, we solve the following
constrained minimization problem:

⎧
⎪⎨
⎪⎩

min
u,K ,p,n

{S(u) + λ

2

∫

Ω

(n − ∇n R)2dx + λ

2

∫

Ω

(|p| + |∇R| − |m|)2 dx},

w.r.t K = T (x + u), p = ∇K , |p|n = p, m = p + ∇R, C > 0.

(28)

Then, the augmented Lagrangian functional corresponding to the constrained
optimization problem (28) is defined as follows:

L1(u, K ,p,n,m,λ1,λ2,λ3,λ4,λ5)

= S(u) + λ

2

∫

Ω

(n − ∇n R)2dx + λ

2

∫

Ω

(|p| + |∇R| − |m|)2 dx

+ r2
2

∫

Ω

(p − ∇K )2dx + r3
2

∫

Ω

(p − |p|n)2dx + r4
2

∫

Ω

(p + ∇R − m)2dx

+
∫

Ω

(T (x + u) − K )λ1dx +
∫

Ω

(p − ∇K ) · λ2dx +
∫

Ω

(p − |p|n) · λ3dx

+
∫

Ω

(p + ∇R − m) · λ4 dx + r1
2

∫

Ω

(T (x + u) − K )2dx + 1

2σ

∫

Ω

Cs(u,λ5) dx,

(29)
where

Cs(u,λ5) = [min{0,σ(C(u) − ε) − λ5})]2 − λ2
5, (30)

ε > 0 is a small parameter, σ > 0 and λi (i = 1, . . . , 5) are the Lagrange multipliers.
The augmented Lagrangian algorithm is shown in Algorithm 2.
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Algorithm 2 Augmented Lagrangian method

1. Initialization: u0, K 0, p0, n0,m0 and λ0
1, λ

0
2, λ

0
3, λ

0
4 and λ0

5.
2. Iterate for k = 1, 2, . . . until a required tolerance:

— compute an approximate minimizers uk+1, Kk+1, pk+1, nk+1 and mk+1 of the augmented
Lagrangian functional with the fixed Lagrange multipliers λk

1, λ
k
2, λ

k
3, λ

k
4 and λk

5:

[
uk+1, Kk+1,pk+1,nk+1,mk+1

]
=

arg min
u,K ,p,n

L1(u, K ,p,n,m,λk
1,λ

k
2,λ

k
3,λ

k
4,λ

k
5).

(31)

— Update Lagrange multipliers

λk+1
1 = λk

1 + r1(T (x + uk+1) − Kk+1), (32)

λk+1
2 = λk

2 + r2(pk+1 − ∇Kk+1), (33)

λk+1
3 = λk

3 + r3(pk+1 − |pk+1|nk+1), (34)

λk+1
4 = λk

4 + r4(mk+1 − pk+1 − ∇R), (35)

λk+1
5 = max{0,λk

5 − σCε(uk+1)}, (36)

In practice, the minimization problem (29) or (31) is decomposed into a number
of sub-problems, each of which can be solved quickly. However, the convergence
of the augmented Lagrangian iterations for this case is not guaranteed due to the
non-convexity of overall registration problem. Currently this is a major weakness
of ALMR while the convergence of GNR (even if a bit slower) can be proved and
hence recommended.

In order to reduce the number of parameters to tune, we set λ = 15, β1 = 0.005,
β2 = 0.1 × β1 r1 = 5, r2 = 10 and r3 = r4 = 100 in all numerical experiments
unless stated otherwise. We consider Nmax = 70 as the maximum number of iter-
ations for ALMR from Algorithm 2 and we stop the iterations before reaching
Nmax = 70 if the following stopping criterion

‖pk + ∇R − mk‖L1√
l × c

≤ τ

is satisfied for a given tolerance τ = 10−3, where l and c are the numbers of rows
and columns in the image

For all compared methods, we set the zero vector as the initial guess U 0. To
measure the quality of the registered images, we use the following quantities

GFer = DGF (u)

DGF (u0)
, (37)

NGFer = DNGF (u)

DNGF (u0)
, (38)
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and
MIer = −DMI (u). (39)

The good result means that it can lead to small GFer, small NGFer and large MIer.
All the codes are implemented by Matlab R2019b on a PC with 3.4GHz Intel(R)
Core(TM) i5-3570 processor and 12 GB RAM.

5.1 Example 1

In this example, we consider a pair of images displayed in Fig. 2a, b. The resolution
is 256 × 256. In order to choose the parameter easily, in this example, we fix α and
set α = 0.01.

Firstly, we consider the model without Beltrami control term, namely γ = 0. For
the parameters of regularizers, we set two pairs (β1,β2) = (50, 2) and (β1,β2) =
(50, 5). The corresponding deformed templates and transformations are shown in
Fig. 2d, e, g, h. From Fig. 2f, i, we can find that the deformed templates generated
by these two pairs of parameters are visually satisfied. In addition, these two choices
give similar measurements: GFer = 0.82, NGFer = 0.81, MIer = 0.58 and GFer
= 0.83, NGFer = 0.84, MIer = 0.57 respectively. However, the first choice leads
to a transformation containing folding because the minimum of the Jacobian deter-
minant of the transformation is negative but the second choice produces a smooth
transformation without folding because the minimum of the Jacobian determinant
of the transformation is positive.

Since first and second order regularizers just control the smoothness, in order to
overcome this drawback, we keep (β1,β2) = (50, 2) unchanged and choose a suit-
able γ. Here, we set γ = 10. Figure 3a, b shows the corresponding deformed template
and transformation. From Fig. 3c, the deformed template is similar visually with the
previous one without controlling the Beltrami coefficient and the measurements are
also similar (GFer = 0.82, NGFer = 0.82 and MIer = 0.57). But the minimum of
the Jacobian determinant of the transformation is positive, which illustrates that the
transformation is diffeomorphic. In the same figure, we also give the result ofALMR
model, which shows again from the overlay of T (ϕ) and the reference R that the
template image T is well registered to R.

Now, we investigate the sensitivity of γ. From Table 1, we can find that when
we fix α,β1 and β2 and change γ, GFer, NGFer and MIer are robust and at the
same time, the minimum of the Jacobian determinant of the transformations are all
positive. This indicates that the Beltrami control term is not sensitive.

In addition, we also investigate the convergence of the algorithm for our model.
Here, we force the relative norm of the gradient of the approximated solution to reach
10−3 although it only runs several iterations by using the practical stopping criteria.
Here, according to Fig. 4, we can find that the algorithm for our model is convergent.
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(a) Reference (b) Template (c) Overlay of T and R

(d) T (ϕ): GFer = 0.82,
NGFer = 0.81, MIer = 0.58
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(e) Bad ϕ with (50, 2)
det(Jϕ) ∈ [−0.17, 3.24]

(f) Overlay of T (ϕ) and R

(g) T (ϕ): GFer = 0.83, ,
NGFer = 0.84, MIer = 0.57
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(h) Good ϕ with (50, 5)
det(Jϕ) ∈ [0.17, 2.30]

(i) Overlay of T (ϕ) and R

Fig. 2 Example 1 without the Beltrami control term: the first row shows the reference, template
and overlay of the reference and template. The second and third rows show the deformed templates
and transformations obtained by two pairs of parameters (β1,β2) = (50, 2) and (β1,β2) = (50, 5),
respectively. The results are visually similar but the transformations are not both one-to-one. The
first choice leads to a mesh with folding because the minimum of the Jacobian determinant of the
transformation is negative
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(a) T (ϕ), GFer = 0.82,
NGFer = 0.82, MIer = 0.57
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(b) GNR ϕ:
det(Jϕ) ∈ [0.05, 3.48]

(c) GNR: T (ϕ) over R

(d) T (ϕ), GFer = 0.97,
NGFer = 0.88, MIer = 0.59

(e) ALMR ϕ:
det(Jϕ) ∈ [0.04, 3.09]

(f) ALMR: T (ϕ) over R

Fig. 3 Example 1: the deformed template and transformation are generated by (β1,β2, γ) =
(50, 2, 10). The results are visually satisfied and the transformation is one-to-one. Second row:
the deformed template obtained by ALMR and its overlay with the reference R

Table 1 Example 1: measurements obtained by using α = 10−2,β1 = 50 and β2 = 2

γ GFer NGFer MIer min det(Jϕ) max det(Jϕ)

1 0.82 0.82 0.57 0.01 3.14

10 0.82 0.82 0.57 0.05 3.48

100 0.82 0.82 0.57 0.06 3.13

1000 0.82 0.82 0.57 0.21 3.11

Hence, this example illustrates that our new control term can effectively control
the transformation and lead to an accurate registration. Meanwhile, the new control
term can make this model more robust.
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(b) Relative norm of the function value

Fig. 4 Example 1: Relative norm of the gradient and relative norm of the function value by the
parameter (α,β1,β2, γ) = (0.01, 50, 2, 10). Here, we can notice that our algorithm is convergent

5.2 Example 2

In this example, we consider another pair of 256 × 256 images (Fig. 5a, b). Again,
in order to reduce the complexity of choosing parameters, we fix α = 10−1 in this
example.

Firstly, we set β1 = 50,β2 = 10 and γ = 0. From Fig. 5d–f, although the
deformed template is satisfied visually, we can find that the resulting transforma-
tion has folding since the minimum of the Jacobian determinant is negative.

As a comparison, we also test the model of the standard NGF [32] with the
same first- and second-order regularizer. Here, we test three pairs of (β1,β2) and
the corresponding results are shown in Fig. 6. We can find that for the fitting term,
if we choose NGF, it is very hard to choose the suitable parameters to get a good
registration, namely, simultaneously get a diffeomorphic transformation and a visu-
ally satisfied deformed template. In order to overcome this difficulty, we keep β1,
β2 unchanged and choose γ as 1, 10 and 100 separately. Figure7 shows that they
can all generate visually satisfied deformed template and diffeomorphic transforma-
tions. Specifically, according to Fig. 7, we can see that the measurements obtained
by these choices are very similar, which again demonstrates that this model can be
more robust through combining the Beltrami control term. We also give the result
of ALMR model in Fig. 8. We can observe from overlay of the registered and the
reference images that allmodelswork fine in producing acceptable registration result.
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(a) Reference (b) Template (c) Overlay of T and R

(d) T (ϕ), GFer = 0.62,
NGFer = 0.68, MIer = 0.83
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(e) GNR: ϕ,
det(Jϕ) ∈ [−0.19, 3.13]

(f) GNR: T (ϕ) over R

Fig. 5 Example 2 by the new model GNR without using the control term C : the resulting trans-
formation is not diffeomorphic although the deformed template is visually satisfied

In summary, when the ALMR, the NGF and the GNR work, the latter has the
largest MIer similarity (indicating better quality). However, NGF (or taking out an
extra control term forALMR andGNR) can fail to deliver a valid result (with negative
det∇ y) if the parameters are not chosen correctly. AlthoughALMR is completive to
GNR (and takes less time to converge in practice), only the convergence ofGNR can
be proved.Hence ourmodelGNR is robust and can be recommended formulti-modal
registration.

6 Conclusions

Image registration is an increasingly important and often challenging image process-
ing task. The quality of the transformation requires suitable control. In this Chapter to
improve a multi-modality registration model, we propose a novel term motivated by
Beltrami coefficient, which can lead to a diffeomorphic transformation. The advan-
tage of the term lies in no bias imposed on its Jacobian of the transformation’s deter-
minant. By employing first-discretize-then-optimize method, we design an effective
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(a) T (ϕ) with GFer = 1.08,
NGFer = 0.96, MIer = 0.50
with (β1, β2) = (0.1, 0.001)

(b) T (ϕ) with GFer = 1.07,
NGFer = 0.96, MIer = 0.53
with (β1, β2) = (0.01, 0.01)

(c) T (ϕ): GFer = 1.14,
NGFer = 0.99, MIer = 0.50
with (β1, β2) = (0.01, 10−4)

(d) T (ϕ) over R (e) T (ϕ) over R (f) T (ϕ) over R
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(g) ϕ

det(Jϕ) ∈ [0.27, 1.94]
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(h) ϕ

det(Jϕ) ∈ [0.54, 1.19]

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(i) ϕ

det(Jϕ) ∈ [−0.89, 4.10]

Fig. 6 Example 2 by the GNR without imposing a control term. Each column shows results of a
different choice of (β1,β2) balancing first- and second-order regularizers: the deformed template,
overlay of T (ϕ) and R, and the transformation. Clearly the last column obtains the incorrect ϕ



54 D. Zhang et al.

(a) T (ϕ): GFer = 0.62,
NGFer = 0.68, MIer = 0.83
with γ = 1

(b) T (ϕ): GFer = 0.63,
NGFer = 0.68, MIer = 0.83
with γ = 10

(c) T (ϕ): GFer = 0.63,
NGFer = 0.68, MIer = 0.83
with γ = 100

(d) T (ϕ) over R (e) T (ϕ) over R (f) T (ϕ) over R
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(g) ϕ: det(Jϕ) ∈ [0.01, 2.54]
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(h) ϕ: det(Jϕ) ∈ [0.01, 3.27]
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(i) ϕ: det(Jϕ) ∈ [0.02, 3.19]

Fig. 7 Example 2 by the new model GNR. By using the control term for each choice of γ (by
column), the resulting transformation is diffeomorphic and the deformed template is also visually
pleasing

solver to solve our proposed model numerically. Experimental tests confirm that our
proposed model performs well in multi-modality images registration. In addition,
with the help of the Beltrami control term, the proposed model is more robust with
respect to the parameters. Future work will investigate extension of this work to a
deep learning framework [45].
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(a) T (ϕ), GFer = 0.51,
NGFer = 0.62, MIer = 0.78

(b) ϕ: det(Jϕ) ∈ [0.11, 3.15] (c) ALMR: T (ϕ) over R

Fig. 8 Example 2 byALMRmodel. The deformed template is also visually close to the reference R

Appendix 1—Computation of the Vector r(U)

First of all, denote the 3 vertices of this triangle by V1 = x1,1, V2 = x2,1 and V5 =
x1.5,1.5 in Fig. 1. Set L(V1) = (u1,11 , u1,12 ), L(V2) = (u2,11 , u2,12 ) at the vertex pixels,
and L(V5) = (u1.5,1.51 , u1.5,1.52 ) at the cell centre (approximated values). Here the
linear approximations are L(x1, x2) = (a1x1 + a2x2 + a3, a4x1 + a5x2 + a6).

After substituting V1, V2 and V5 into L, we get

(
a1
a2

)
= 1

det

(
x12 − x1.52 −x12 + x1.52

−x21 + x1.51 x11 − x1.51

) (
u1,11 − u1.5,1.51

u2,11 − u1.5,1.51

)
, (40)

(
a4
a5

)
= 1

det

(
x12 − x1.52 −x12 + x1.52

−x21 + x1.51 x11 − x1.51

) (
u1,12 − u1.5,1.52

u2,12 − u1.5,1.52

)
, (41)

where det =
∣∣∣∣
x11 − x1.51 x12 − x1.52
x21 − x1.51 x12 − x1.52

∣∣∣∣.
According to (40) and (41), we can formulate two matrices D1 ∈ R

4n2×(n+1)2 and
D2 ∈ R

4n2×(n+1)2 such that

A31 = [D1,−D2], A32 = [D2, D1], A33 = [D1, D2], A34 = [D2,−D1].

Then using the Hadamard product �, we get a compact form for

⎧⎨
⎩
r1(U ) = A31U � A31U + A32U � A32U,

r2(U ) = 1./((A33U + 2) � (A33U + 2) + A34U � A34U ),

r(U ) = r1 � r2 ∈ R
4n2×1.

(42)
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Appendix 2—The Global Convergence of Algorithm 1

In order to discuss the global convergence result of Algorithm 1 for the discretized
optimization problem (17), we first review two lemmas.

Lemma 1 ([25]) For the unconstrained optimization problem

min
U

J (U )

let an iterative sequence be defined by Ui+1 = Ui + θδUi , where δUi =
−(Hi )−1dJ (Ui ) and θ is obtained by Armijo condition. Assume that three con-
ditions are met: (i). dJ be Lipschitz continuous; (ii). the matrices Hi are SPD (iii).
there exist constants κ̄ and M such that the condition number κ(Hi ) ≤ κ̄ and the
norm ||Hi || ≤ M for all i . Then either J (Ui ) is unbounded from below or

lim
i→∞ dJ (U

i ) = 0 (43)

and hence any limit point of the sequence of iterates is a stationary point.

Lemma 2 Let a matrix be comprised of 3 submatrices H = H1 + H2 + H3. If H1

and H2 are symmetric positive semi-definite and H3 is SPD, then H is SPD with
λH3 ≤ λH , where λH3 and λH are the minimum eigenvalues of H3 and H separately.

Proof According to Rayleigh quotient, we can find a vector v such that

λH = vT Hv

vT v
. (44)

Then we have

λH3 ≤ vT H1v

vT v
+ vT H2v

vT v
+ vT H3v

vT v
= vT Hv

vT v
= λH , (45)

which completes the proof.

In the above discretization leading to (17), we do not need to introduce the bound-
ary condition. However for theory purpose, in the following, we will prove our con-
vergence result under the Dirichlet boundary condition (namely, the boundary is
fixed) and this condition is needed to prove the symmetric positive definite (SPD)
property of the approximated Hessian. In practical implementation, such a condition
is not required as confirmed by experiments.

In addition, define an important set X := {U | r(U )� ≤ 1 − ε, 1 ≤ � ≤ 4n2} for
small ε. SoU ∈ X means that the transformation is diffeomorphic. Under the suitable
γ, each Ui generated by Algorithm 1 is in the X .
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Theorem 1 Assume that T and R are twice continuously differentiable. For (17),
by using Algorithm 1, we obtain

lim
i→∞ dJ (U

i ) = 0 (46)

and hence any limit point of the sequence of iterates produced by Algorithm 1 is a
stationary point.

Proof It suffices to show that Algorithm 1 satisfies the requirements of Lemma 1.
Recall r(U ) and we can see that it is continuous. Here, we use the Dirichlet boundary
condition and we can assume that ‖U‖ is bounded. Then r(U ) is a continuous
mapping from a compact set to R4n2×1 and r(U ) is proper. So for some small ε > 0,
X is compact.

Firstly,we show that inX , dJ of (17) is Lipschitz continuous. The termφ(r(U ))eT

in the (17) is twice continuously differentiable with respect to U ∈ X . In addition,
T and R are twice continuously differentiable. So (17) is twice continuously differ-
entiable with respect to U ∈ X and dJ is Lipschitz continuous.

Secondly, we show that in X , Hi = Ĥ i
1 + Hi

2 + Ĥ i
3 is SPD. By the construction

of Ĥ i
1 and Ĥ i

3, they are symmetric positive semi-definite. Hi
2 is symmetric positive

definite under the Dirichlet boundary condition. Consequently, according to Lemma
2, Hi is SPD.

Thirdly, we show that both κ(Hi ) and ‖Hi‖ are bounded. We notice that in each
iteration, Hi

2 is constant and we can set ‖Hi
2‖ = M2. For Ĥ i

1, we get its upper bound
M1 because T is twice continuously differentiable andX is compact. φ is also twice
continuously differentiablewith respect toU ∈ X , thenwe have ‖Ĥ i

3‖ ≤ M3. Hence,
we have

‖Hi‖ ≤ ‖Ĥ i
1‖ + ‖Hi

2‖ + ‖Ĥ i
3‖ ≤ M1 + M2 + M3. (47)

So set M = M1 + M2 + M3 and ‖Hi‖ ≤ M . Set σ as the minimum eigenvalue of
Hi

2. According to Lemma 2, the smallest eigenvalue λmin of Hi should be larger than
σ. The largest eigenvalue λmax of Hi should be smaller than M due to λmax ≤ ‖Hi‖.
So the conditional number of Hi is smaller than M

σ
.

Finally, we can find that (17) has lower bound 0. Hence, by applying Lemma 1,
we complete the proof.
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Fast Algorithms for Surface
Reconstruction from Point Cloud

Yuchen He, Martin Huska, Sung Ha Kang, and Hao Liu

Abstract We consider constructing a surface from a given set of point cloud data.
We explore two fast algorithms tominimize the weightedminimum surface energy in
[Zhao, Osher, Merriman and Kang, Comp Vision and Image Under, 80(3):295–319,
2000]. An approach using Semi-Implicit Method (SIM) improves the computational
efficiency through relaxation on the time-step constraint. An approach based onAug-
mentedLagrangianMethod (ALM) reduces the run-time via anAlternatingDirection
Method of Multipliers-type algorithm, where each sub-problem is solved efficiently.
We analyze the effects of the parameters on the level-set evolution and explore the
connection between these two approaches. We present numerical examples to vali-
date our algorithms in terms of their accuracy and efficiency.

Keyword Surface reconstruction, Semi-implicit method, Augmented Lagrangian
method, Point cloud

1 Introduction

Acquisition, creation and processing of 3D digital objects is an important topic in
various fields, e.g., medical imaging [22], computer graphics [8, 11], industry [4],
and preservation of cultural heritage [16]. A fundamental step is to reconstruct a
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(a) (b) (c)

Fig. 1 Test point clouds. a Five-fold circle (200 points). b Jar (2100 points). c Torus (2000 points)

surface from a set of point cloud data [1], denoted by D ⊆ R
m for m = 2 or 3, such

as in Fig. 1.
We focus on reconstructing a submanifold of codimension 1, denoted by �, i.e.,

a curve in R
2 or a surface in R

3, from the point cloud D. We assume only the point
locations are given, and no other geometrical information such as normal vectors at
each point is known.We explore fast algorithms for minimizing the following energy
proposed in [38]:

Ep(�) =
⎛
⎝
∫

�

|d(x)|p dx
⎞
⎠

1
p

, (1)

where d(x) = miny∈D {|x − y|} is the distance from an arbitrary point x ∈ R
m toD,

p is a positive integer, and dx is the surface area element. This energy is the p-norm
of the distance function restricted on �. In [38], the authors used the fast sweeping
scheme to compute the distances, and the associated Euler-Lagrange equations are
solved by a gradient descent algorithm.

Amongmanyways to represent the underlying surface, e.g., (moving) least square
projection [2, 30], radial basis function [9–11, 13, 18], poisson reconstruction [5, 14,
20, 21, 24], we use the level set method as in [15, 37, 38]. The level set formulation
allows topological changes as well as self-intersection during the evolution [28, 29]
and has gained popularity inmany applications [12, 31, 36].We represent the surface
as a zero level set of φ : Rm → R:

� = φ−1(0) = {x ∈ R
m | φ(x) = 0}.

There are various related works on surface reconstruction from point cloud data: a
convection model proposed in [37], a data-driven logarithmic prior for noisy data in
[33], using surface tension to enrich the Euler-Lagrange equations in [17], and using
principal component analysis to reconstruct curves embedded in sub-manifolds in
[27]. A semi-implicit scheme is introduced in [34] to simulate the curvature and
surface diffusion motion of the interface. In [25], the authors defined the surface
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via a collection of anisotropic Gaussians centered at each entry of the input point
cloud, and used TVG-L1 model [7] for minimization. A similar strategy addresses
an �0 gradient regularization model in [23]. Some models incorporate additional
information. In [26], the authors proposed a novel variationalmodel, consisting of the
distance, the normal, and the smoothness term. Euler’s Elasticamodel is incorporated
for surface reconstruction in [32] where graph cuts algorithm is used. The model in
[15] extends the active contours segmentation model to 3D and implicitly allows to
control the curvature of the level set function.

In this paper, we explore fast algorithms to minimize the weighted minimum
surface energy (1) for p = 1 and 2. We propose a Semi-Implicit Method (SIM) to
relax the time-step constraint for p = 2, and an Augmented Lagrangian Method
(ALM) based on the alternating direction method of multipliers (ADMM) approach
for p = 1. These algorithms minimize the weighted minimal surface energy (1)
with high accuracy and superior efficiency. We analyze the behaviors of ALM in
terms of the parameter choices and explore its connection to SIM. Various numerical
experiments are presented to discuss the effects of the algorithms.

We organize this paper as follows. In Sect. 2, we present the two methods: SIM
and ALM, and we explore their connection. Numerical experiments are presented
in Sect. 3, and effects of the parameters are discussed in Sect. 3.3. We conclude our
paper in Sect. 4.

2 Proposed Algorithms

Let� ⊂ R
m (m = 2 or 3) denote a bounded domain containing the given point cloud

data D, a finite set of points. Using the level-set formulation for a codimension 1
submanifold �, the d-weighted minimum surface energy (1) can be rewritten as:

Ep(φ) =
⎛
⎝
∫

�

|d(x)|pδ(φ)|∇φ| dx
⎞
⎠

1
p

. (2)

Here δ(x) is the Dirac delta function which takes +∞when x = 0, and 0 elsewhere.
Compared to (1), this integral is defined on�, which makes the computation flexible
and free fromexplicitly tracking�.We use p = 2 for SIM introduced in Sect. 2.1, and
p = 1 for ALM in Sect. 2.2. In general, p = 2 is a natural choice, since it provides
better stability and efficiency for a semi-implicit type PDE-based method. For ALM,
we explore p = 1 to take advantage of an aspect of fast algorithm in ADMM setting
such as shrinkage, similarly to the case in [3]. Visually, the numerical results of
surface reconstruction are similar for p = 1 or p = 2 (see Sect. 3).
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2.1 Semi-implicit Method (SIM) to Minimize E2

We introduce a gradient-flow-based semi-implicit method to minimize

E2(φ) =
⎛
⎝
∫

�

d2(x)δ(φ)|∇φ| dx
⎞
⎠

1
2

. (3)

Following [38], the first variation of E2(φ) with respect to φ is characterized as a
functional:

〈
∂E2(φ)

∂φ
, v

〉
= −

∫

�

1

2
δ(φ)

⎡
⎣
∫

�

d2(x)δ(φ)|∇φ| dx
⎤
⎦

−1/2

∇ ·
[
d2(x)

∇φ

|∇φ|
]

v dx

+
∫

∂�

d2(x)δ(φ)

|∇φ| (∇φ · n)v dx

for any test function v from the Sobolev space H 1 where n denotes the outward
normal direction along ∂�. Minimizing (3) is equivalent to finding the critical point

φ such that
〈
∂E2(φ)

∂φ
, v
〉
= 0,∀v ∈ H 1. This is associated with solving the following

initial value problem:

⎧⎨
⎩

∂φ

∂t
= f̄ (d,φ)∇ ·

[
d2(x)

∇φ

|∇φ|
]
in �,

φ(x, 0) = φ0,

(4)

where φ0 is an initial guess for the unknown φ, and f̄ (d,φ) =
1

2
δ(φ)

[∫
�

d2(x)δ(φ)|∇φ| dx
]−1/2

with a boundary condition
d2(x)δ(φ)

|∇φ|
∂φ

∂n
= 0

on ∂�. The steady state solution of (4) gives a minimizer φ∗ of E2(φ). Since our
focus is on the zero level set of φ, we apply reinitialization to φ after every several
iterations to make our scheme more stable. This modifies φ to be a signed distance
function while keeping the location of the zero level set (see Sect. 3.1). Thus, the
effect of the boundary condition is negligible away from the boundary of the image
domain. To utilize the Fast Fourier Transform, we apply periodic boundary condition
for computation.

Here the delta function δ is realized as the derivative of the one dimensional
Heaviside function H : R → {0, 1}. We adopt the smooth approximation of H(φ)

as in [6]:

H(φ) ≈ Hε(φ) = 1

2
+ arctan(φ/ε)/π and δ(φ) ≈ H ′

ε(φ) = ε

π(ε2 + φ2)
(5)
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with ε > 0 as the smoothness parameter. Then f̄ is approximated by its smoothed
version f expressed as

f (d,φ) = 1

2

ε

π(ε2 + φ2)

⎡
⎣
∫

�

d2(x)
ε

π(ε2 + φ2)
|∇φ| dx

⎤
⎦

−1/2

.

We add a stabilizing diffusive term −β�φ for β > 0 on both sides of the PDE
in (4) to consolidate the computation, similarly to [34]:

∂φ

∂t
− β�φ = −β�φ + f (d,φ)∇ ·

[
d2(x)

∇φ

|∇φ|
]

. (6)

Employing a semi-implicit scheme, we solve φ from (6) by iteratively updating φn+1

using φn via the following equation:

φn+1

�t
− β�φn+1 = φn

�t
− β�φn + f (d,φn)∇ ·

[
d2(x)

∇φn

|∇φn|
]

, (7)

where�t is the time-step. This equation can be efficiently solved by the Fast Fourier
Transform (FFT). Denoting the discrete Fourier transform by F and its inverse by
F−1, we have

F(φ)(i ± 1, j) = e±2π
√−1(i−1)/MF(φ)(i, j),

F(φ)(i, j ± 1) = e±2π
√−1( j−1)/NF(φ)(i, j).

Accordingly, the discrete Fourier transform of �φ is

F(�φ)(i, j) =
[
2 cos(π

√−1(i − 1)/M) + 2 cos(π
√−1( j − 1)/N ) − 4

]
Fφ(i, j).

Here the coefficient in front ofFφ(i, j) represents the diagonalizeddiscreteLapla-
cian operator in the frequency domain. Let g1 be the right side of (7), then the solution
φn+1(i, j) of (7) is computed via

φn+1(i, j)

= F−1

(
F(g1)(i, j)(

1 − β�t
[
2 cos(π

√−1(i − 1)/M) + 2 cos(π
√−1( j − 1)/N ) − 4

])
)

. (8)

As for the stopping criterion, we exploit the mean relative change of the weighted
minimum surface energy (1). At the nth iteration, the algorithm terminates if
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|ēkn−1 − ēkn|
ēkn

< 10−4, where ēkn = 1

k

n∑
i=n−k

Ep(φ
i ). (9)

Here the quantity ēkn represents the average of the energy values computed from
the (n − k)th to the nth iteration for some k ∈ N, k ≥ 1.We fix k = 10 and set p = 2
for SIM. We summarize the main steps of SIM in Algorithm 1.

Algorithm 1: SIM for the weighted minimum surface (3)

Initialization: d, φ0 and n = 0.
while the stopping criterion (9) with p = 2 is greater than 10−4 do

Update φn+1 from φn solving (8);
Update n ← n + 1;

end
Output: φn such that {φn = 0} approximates {φ∗ = 0}.

2.2 Augmented Lagrangian Method (ALM) to Minimize E1

In this section, we present an augmented Lagrangian-based method to minimize the
weighted minimum surface energy (2) for p = 1, i.e.,

E1(φ) =
∫

�

d(x)δ(φ)|∇φ| dx. (10)

For the non-differentiable term |∇φ| in (10), we utilize the variable-splitting tech-
nique and introduce an auxiliary variable p = ∇φ. We rephrase the minimization of
E1(φ) as a constrained optimization problem:

{φ∗,p∗} = argmin
φ,p

∫

�

εd|p|
π(ε2 + φ2)

dx, subject to p = ∇φ, (11)

here we replace δ(φ) by its smooth approximation H ′
ε(φ) as in (5). To solve problem

(11), we formulate the augmented Lagrangian functional:

L(φ,p,λ; r) =
∫

�

εd|p|
π(ε2 + φ2)

dx + r

2

∫

�

|p − ∇φ|2 dx +
∫

�

λ · (p − ∇φ) dx,

(12)

where r > 0 is a scalar penalty parameter and λ : Rm → R
m represents the

Lagrangianmultiplier.Minimizing (12) amounts to considering the following saddle-
point problem:



Fast Algorithms for Surface Reconstruction from Point Cloud 67

Find (φ∗,p∗,λ∗) ∈ R × R
m × R

m

s.t. L(φ∗,p∗,λ; r) ≤ L(φ∗,p∗,λ∗; r) ≤ L(φ,p,λ∗; r);
∀(φ,p,λ) ∈ R × R

m × R
m . (13)

Given φn , pn , and λn , for n = 0, 1, 2, . . ., the (n + 1)th iteration of an ADMM-type
algorithm for (13) consists of solving a series of sub-problems:

φn+1 = argmin
φ

L(φ,pn,λn; r); (14)

pn+1 = argmin
p

L(φn+1,p,λn; r); (15)

λn+1 = λn + r
(
pn+1 − ∇φn+1

)
. (16)

Each sub-problem can be solved efficiently. First, we find the minimizer of the
sub-problem (14) by solving its Euler-Lagrange equation:

− r�φn+1 = 2dε|pn|φn

π(ε2 + (φn)2)2
− ∇ · (rpn + λn). (17)

Here � is the Laplacian operator. Following [3], we introduce a frozen-coefficient
term ηφ, for η > 0, on both sides of (17) to stabilize the computation; thus, (14) is
solved using the following equation:

ηφn+1 − r�φn+1 = ηφn + 2dε|pn|φn

π(ε2 + (φn)2)2
− ∇ · (rpn + λn). (18)

We solve this via FFT, similarly to (8) for SIM. Thus, the φ sub-problem is solved
via

φn+1(i, j)

= F−1

(
F(g2)(i, j)(

η − r
[
2 cos(π

√−1(i − 1)/M) + 2 cos(π
√−1( j − 1)/N ) − 4

])
)

.

(19)

Second, the p sub-problem (15) is equivalent to a weighted Total Variation (TV)
minimization, whose solution admits a closed-form expression using the shrinkage
operator [35]. Explicitly, the updated pn+1 is computed via:

pn+1 = max

{
0, 1 − d ε

π(ε2 + (φn+1)2)|r∇φn+1 − λn|
}(

∇φn+1 − λn

r

)
. (20)

Finally, the Lagrangian multiplierλ is updated by (16). The stopping criterion for
the ALM iteration is the same as that for SIM (9), but with p = 1. We summarize
the main steps of ALM in Algorithm 2.
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Algorithm 2: ALM for the weighted minimum surface (10)

Initialization: d, r , φ0, p0, λ0, and n = 0.
while the stopping criterion (9) with p = 1 is greater than 10−4 do

Update φn+1 = argminφ L(φ,pn,λn; r) via (19) ;
Update pn+1 = argminp L(φn+1,p,λn; r) via (20);
Update λn+1 = λn + r(pn+1 − ∇φn+1);
Update n ← n + 1;

end
Output: φn such that {φn = 0} approximates {φ∗ = 0}.

2.3 Connection Between SIM and ALM Algorithms

Note that both SIM and ALM involve solving elliptic PDEs of the form:

aφ − b�φ = g, (21)

for some constantsa, b > 0, and a function g definedon�. For SIM, it is equation (7):

1

�t︸︷︷︸
a

φn+1 − β︸︷︷︸
b

�φn+1 = φn

�t
− β�φn + f (d,φn)∇ ·

[
d2(x)

∇φn

|∇φn|
]

︸ ︷︷ ︸
g

,

and for ALM, it is equation (18):

η︸︷︷︸
a

φn+1 − r︸︷︷︸
b

�φn+1 = ηφn + 2dε|pn|φn

π(ε2 + (φn)2)2
− ∇ · (rpn + λn)

︸ ︷︷ ︸
g

.

We remark interesting connections between SIM and ALM. First, both methods
have stabilizing terms but in different positions on the left side of (21). For SIM, it
is −β�φ, while for ALM, it is ηφ. Second, relating the coefficients of φ, 1/�t in
SIM gives insight to the effect of η in ALM. In general, a large η slows down the
convergence of ALM, while a small η accelerates it (as the effect of 1

�t on SIM).
Figure2 shows convergence behaviors of ALM for different η, using the five-fold
circle point cloud in Fig. 1a. It displays the CPU time (in seconds) for r = 1, ε = 1,
and η varying from 0.05 to 0.5. Note that as η increases, the time required to reach the
convergence increases almost quadratically at first, then stays around the same level.
Third, the correspondence between b = β in SIM, and b = r in ALM allows another
interpretation of the parameter r in ALM. In SIM, a large β smears the solution and
avoids discontinuities or sharp corners, and for ALM, a large r also allows to pass
through fine details. Figure7 in Sect. 3 presents more details, where we experiment
with different r and ε values for the five-fold circle point cloud shown in Fig. 1a.
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Fig. 2 The CPU-time (s) of ALM until convergence for the five-fold circle point cloud in Fig. 1a.
Here r = ε = 1 and η varies from 0.05 to 0.5. The connection between SIM and ALM indicates that
a large η slows down ALM. In this graph, as η increases, the time required to reach the convergence
increases

3 Numerical Implementations, Experiments and Effects
of Parameters

In this section, we describe the implementation details and present numerical exper-
iments. For both SIM and ALM, we vary the value of ε from 0.5 to 1. For SIM, we
use �t = 500. When the point cloud D is in 2D, we set β = 0.1, and when D is in
3D, β = 0.01. For ALM, the value of η ranges from 0.05 to 1, and r from 0.5 to 2.

The code is written in Matlab and executed without additional machine sup-
port, e.g. parallelization nor GPU-enhanced computations. All the experiments are
performed on Intel® Core™4-Core 1.8GHz (4.0GHz with Turbo) machine, with
16 GB/RAM and Intel® UHD Graphics 620 graphic card under Windows OS. The
contours and isosurfaces are displayed usingMatlab visualization engine. No post-
processing, e.g., smoothing nor sharpening, is applied.
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3.1 Implementation Details

We illustrate the details for planar point clouds, i.e., D ⊆ R
2, while the extension to

R
3 is straightforward. Let the computational domain � = [0, M] × [0, N ], M, N >

0, be discretized by a Cartesian grid with�x = �y = 1. When the input point cloud
D requires different values for �x and �y, one can consider the density features
of D, e.g., using the local sample density defined as the radius of the largest inner
empty disk: hD = supx∈� min1<i<|D| ‖x − yi‖2, one can scale the data D up (or
down) such that hD ≥ 0.5 which allows the discretization step �x = �y = 1 being
sufficient in capturing a water-tight surface. After the computation, we transform the
reconstructed surface back to the original scale. For any function u (or a vector field
v = (v1, v2)) defined on �, we use ui, j or u(i, j) to denote u(i�x, i�y). We use
the usual backward and forward finite difference schemes:

∂−
1 ui, j =

{
ui, j − ui−1, j , 1 < i ≤ M;
u1, j − uM, j , i = 1.

∂+
1 ui, j =

{
ui+1, j − ui, j , 1 ≤ i < M − 1;
u1, j − uM, j , i = M.

∂−
2 ui, j =

{
ui, j − ui, j−1, 1 < j ≤ N ;
ui,1 − ui,N , j = 1.

∂+
2 ui, j =

{
ui, j+1 − ui, j , 1 ≤ j < N − 1;
ui,1 − ui,N , j = N .

The gradient, divergence and theLaplacian operators are approximated as follows:

∇ui, j = ((∂−
1 ui, j + ∂+

1 ui, j )/2, (∂
−
2 ui, j + ∂+

2 ui, j )/2);
∇ · vi, j = (∂+

1 v1
i, j + ∂−

1 v1
i, j )/2 + (∂+

2 v2
i, j + ∂−

2 v2
i, j )/2;

�ui, j = ∂+
1 ui, j − ∂−

1 ui, j + ∂+
2 ui, j − ∂−

2 ui, j .

The distance function d is computed once at the beginning and no update is
needed. It satisfies the Eikonal equation:

{
|∇d| = 1 in �,

d(x) = 0 for x ∈ D,
(22)

and discretizing (22) via the Lax-Friedrich scheme leads to an updating formula:

dn+1
i, j = 1

2

(
1 − |∇dn

i, j | + dn
i+1, j + dn

i−1, j

2
+ dn

i, j+1 + dn
i, j−1

2

)
. (23)

We solve (23) using the fast sweeping method [19] with complexity O(G) for G
grid points.

Keeping φn to be a signed distance function during the iteration improves the sta-
bility of level-set-based algorithms. We reinitialize φn at the nth iteration by solving
the following PDE:
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{
φτ + sign(φ)(|∇φ| − 1) = 0,

φ(x, 0) = φn.
(24)

Here the subscript τ represents the partial derivative with respect to an artificial
time, and sign : R → {−1, 0, 1} is the sign function.Wediscretize (24) via an explicit
time Lax-Friedrichs scheme. For k = 0, 1, . . . , K , we update

φ(k+1)
i, j = φ(k)

i, j

− �τ

[
sign(φ(k)

i, j )(|∇φ(k)
i, j | − 1) − φk

i−1, j + φk
i+1, j + φk

i, j−1 + φk
i, j+1 − 4φk

i, j

2

]
,

(25)

with φ(0)
i, j = φn

i, j . In practice, φ
n being a signed distance function near the 0-level-set

is important; thus, it is sufficient to evolve (25) for a small K and update φn with
φ(K ). We fix K = 10 throughout this paper.

3.2 Numerical Experiments of 2D and 3D Point Clouds

For our first experiment, Fig. 3 displays a set of planar curves reconstructed from
2D point clouds confined within a square � = [0, 100]2 ⊂ R

2. We generate the
data using four different shapes: a triangle, an ellipse, a square whose corners are
missing, and a five-fold circle. For these cases, we use a centered circle with radius
30 as the initial guess, shown in Fig. 3a. Figure3b and c display the givenD, as well
as the curves identified by SIM and ALM with r = 1.5, respectively. Both methods
produce comparably accurate results. In the triangle example, corners get as close
as the approximated delta function (with parameter ε) allows for both methods. The
ellipse and square results fit very closely to the respective point clouds. For the five-
fold-circle, there is a slight difference in how the curve fits the edges, yet the results
are very compatible.

Table1 shows the CPU times (in seconds) for SIM, ALM using r = 0.5, 1, 1.5,
and 2, as well as the times for the explicit method in [38] using�t = 20 on the same
data sets. With proper choices of r , ALM outperforms the other methods in terms
of computational efficiency. SIM is stable without any dependency on the choice of
parameters, and its run-times are comparable to the best performances of ALM in
most cases. Both methods are faster than the explicit method in all the examples.

The second set of experiments reconstruct surfaces from the point clouds in 3D:
a jar in Fig. 1b and a torus in Fig. 1c within � = [0, 50]3. In Fig. 4, we show the
reconstructed surfaces using SIM and ALM. A portion of the given point cloud is
superposed for validation in each case. Bothmethods successfully capture the overall
shapes and non-convex features of the jar, as well as the torus. There are only slight
differences in the reconstruction between using SIM with p = 2 and using ALM
with p = 1.
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Fig. 3 The test point clouds: triangle with 150 points, ellipse with 100 points, square with 80 points,
and five-fold-circle with 200 points. a The top row, an identical initial condition applied to SIM
and ALM for different D. b The middle row, the results obtained by SIM. c The bottom row, the
results obtained by ALM using r = 1.5. Both methods give compatible results

Table 1 CPU time (s) for SIM, ALM using r = 0.5, 1, 1.5, and 2, and the explicit method in [38]
with �t = 20 for the point cloud data sets in Fig. 3. Both SIM and ALM shows fast convergence

Object ALM
(r = 0.5)

ALM
(r = 1)

ALM
(r = 1.5)

ALM
(r = 2)

SIM [38]

Triangle − 1.45 1.31 1.48 1.50 5.25

Ellipse 1.22 1.03 1.33 1.37 1.49 3.89

Square − − 0.94 1.20 1.09 2.07

Five-fold
circle

0.83 1.44 1.86 1.22 1.96 4.18

Table2 shows the efficiency of SIM and ALM compared to the explicit method in
[38] for the experiments in Fig. 4. Thanks to the semi-implicit scheme, the time step
can be large and we used �t = 500 in SIM; in the explicit method, we are forced
to use much smaller time step �t = 20 to maintain the stability. The improvement
of run-time in ALM is carefully controlled by the parameters r , ε and η. We choose
r = 1.3, ε = 0.5 and η = 0.6 for both cases. Both SIM and ALM efficiently provide
accurate reconstructions.

The third set of examples show the effect of the distance function d. Notice that
the weighted minimal surface energy (1) is mainly driven by the distance function
d, that is, the given point cloud D determines the landscape of d, which affects the
behavior of the level-set during the evolution. Figure5 shows the evolution using
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(a) (b)

(c) (d)

Fig. 4 The first row shows ALM and SIM applied to the 3D jar point cloud in Fig. 1b. a The result
of ALM with r = 1.3, ε = 0.5, η = 0.6. b The result of SIM. The second row shows the methods
applied to the 3D torus point cloud in Fig. 1c. c The result of ALM with r = 1.3, ε = 0.5, η = 0.6.
d The result of SIM. Both methods are compatible and show good results

Table 2 CPU time (s) of SIM and ALM compared to the explicit method in [38] for the point cloud
data sets of Fig. 4. Both SIM and ALM show fast convergence

Object ALM SIM [38]

Jar 29.69 29.42 74.44

Torus 47.32 33.58 114.20

ALM, applied to different subsets of point clouds sampled from the same bunny face
shape. The densities of the point cloud vary for the three different regions: the face
with n1 points, the head with n2 points, and each ear with n3 points. Figure5 (a)
shows the given point cloud for (n1, n2, n3) = (20, 10, 20), with the 0-level-set of
φn at 15th iteration, (b) for (n1, n2, n3) = (50, 10, 20), at 18th iteration, and (c) for
(n1, n2, n3) = (20, 10, 40), at 20th iteration. These three curves eventually degen-
erate to a point, since the energy model (2) drives curves to have short lengths, i.e.,
the level set tends to shrink. (d) for (n1, n2, n3) = (50, 10, 40) shows the converged
solution. In (a)–(c), denser parts of the point cloud attract the curve with stronger
forces, and the sparser parts of the point cloud fail to lock the curve. In (d), with a
more balanced distribution of points, the curve converges to the correct shape.
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Fig. 5 The effect of the distance function for varying-density point clouds: the face with n1 points,
the head with n2 points, and each ear with n3 points. a the given point cloud is with (n1, n2, n3) =
(20, 10, 20), and shows the 0-level-set of φn at 15th iteration, b (n1, n2, n3) = (50, 10, 20), and
shows 18th iteration, and c (n1, n2, n3) = (20, 10, 40), and shows 20th iteration. These three curves
eventually degenerate to a point. d (n1, n2, n3) = (50, 10, 40) and shows the converged solution.
The potential energy (1) is mainly driven by the distance function d, which affects the level-set
evolution

The fourth set of examples demonstrate the robustness of ALM and SIM against
noise. Figure6 shows the reconstructed curves from clean and noisy data: (a)–(c)
are results of ALM, and (d)–(f) are results of SIM. (a) and (d) in the first column
show results obtained from the clean data, which has 200 points sampled from a
three-fold circle. Gaussian noise with standard deviation 1 is added to both x and
y coordinates to generate noisy point cloud in the second column, (b) and (e). To
show the differences, the third column superposes both results reconstructed from
clean and noisy point clouds. Both ALM and SIM provide compatible results. For
the noisy data, although the reconstructed curves show some oscillations, they are
very close to the solutions using the clean data, respectively.

3.3 Choice of Parameters for ALM and the Effects

The proposed ALM has one parameter r > 0, and the model (2) uses the delta func-
tion, where the smoothness parameter ε > 0 is added to stabilize the computation.
Both parameters have straightforward effects on the level-set evolution from (17).
For example, consider a set of points within a thin-band around the 0-level-set of φn ,
denoted by Bε = {x | −2ε/

√
3 < φn(x) < 2ε/

√
3}. By the continuity of φn , there

exist y and z ∈ Bε such that φn(y) = −ε/
√
3 and φn(z) = ε/

√
3; these values are

the minimum and maximum of the function h(x) = 2εx
π(ε2+x2)2 , respectively. At these

points, (17) takes the following forms:

�φn+1 =
{

−9 d |pn|/(8√3π ε2r) + ∇ · (pn + λn

r ) at y.
9 d |pn|/(8√3π ε2r) + ∇ · (pn + λn

r ) at z.
(26)

The first terms in the right hand side of (26) show that with a smaller value of
ε, there are less number of points in Bε, but the influence from d becomes stronger.
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Fig. 6 The influence of noise on reconstructing three-fold circle with 200 points: a–c ALM and
d–f SIM. The first column shows the reconstructed curves from clean data, and the second column
the reconstructions from noisy data. The third column shows the comparison between the two
reconstructed curves in first two columns

With a larger value of ε, d affects more number of points in Bε, but with a weaker
influence. Varying values of r also modifies the effect of d, while the size of Bε is
not changed.

We also find that ε interacts with r and effectively modifies the shape of the level-
set. Figure7 shows the results for ALM using different combinations of r and ε,
on the five-fold circle point cloud in Fig. 1a. For a fixed r , increasing ε makes the
approximated delta function smoother; consequently, narrow and elongated shapes
are omitted, and the reconstructed curve becomes more convex. For a fixed ε, a larger
r causes loss of more details, as discussed in Sect. 2.3. The speed of convergence
varies for different combinations of r and ε. When the choices are reasonable, the
algorithm converges fast within 2 s. When both r and ε are large, results are not as
good, and the convergence is slow.

Another observation comes from (20). For any point x and n ≥ 0, if the value

Qn(ε, r) := φnπ|r∇φn − λn−1|ε2 − dε + (φn)3π|r∇φn − λn−1|

is positive, then pn(x) = 0, and d has no direct effect on (18) at x in the next
iteration. Regarding Qn(ε, r) as a quadratic polynomial in terms of ε parameterized
by r , the sign of Qn(ε, r) depends on the sign ofφn(x) and the sign of its discriminant
computed via:
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Fig. 7 Results by ALMwith different r and ε. For each column, from top to bottom, ε = 1, 1.5, 2;
and for each row, from left to right, r = 0.5, 0.8, 1, 2. Increasing ε renders the curve less sharp and
more convex. Increasing r induces a stronger diffusion effect on φn

Disc Qn = d2 − 4(φn)4π2|r∇φn − λn−1|2.

The sign of φn(x) is related to the position of x relative to the 0-level-set. The
sign of Disc Qn is determined by comparing the length of a vector difference
r∇φn − λn−1 with the quantity d/(4(φn)2π). By the projection theorem, |r∇φn −
λn−1|2 is bounded below by αn := |λn−1|2 − |Proj∇φnλn−1|2 = |λn−1|2 − |λn−1 ·
∇φn|2/(|λn−1|2|∇φn|2), i.e., the squared residual of orthogonal projection of λn−1

onto ∇φn; therefore, we decide the sign of Disc Qn using r via the following cases:

1. When d2

4(φn)4π2 < αn , for any r > 0, Disc Qn < 0.

2. When d2

4(φn)4π2 ≥ αn:

(a) if r > rnU or r < rnL , then Disc Q
n < 0;

(b) if max{0, rnL} ≤ r ≤ rnU , then Disc Q
n ≥ 0.

Here,

rnU =
|Proj∇φnλn−1| +

√
d2

4(φn )4π2 − αn

|∇φn | and rnL =
|Proj∇φnλn−1| −

√
d2

4(φn )4π2 − αn

|∇φn | .
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When φn(x) > 0, Qn concaves upwards and Qn(0, r) ≥ 0 for any r . If Disc Qn < 0,
Qn is positive for all ε and d has no effect on level set evolution. If Disc Qn ≥ 0, Qn

is positive for ε outside the interval bounded by two roots of Qn , i.e.,

0 < ε <
d − √

Disc Qn

2φnπ|r∇φn − λn−1| or ε >
d + √

Disc Qn

2φnπ|r∇φn − λn−1| .

When φn(x) < 0, Qn concaves downwards, and Qn(0, r) ≤ 0 for any r . In this case,
Qn is never positive: either Disc Qn < 0, i.e., no roots, or Disc Qn ≥ 0 but both roots
are negative.

Notice that the bounds, rnL and rnU , are closely related to the ratio d/(φn)2,
which contributes to the adaptive behavior of ALM. For example, for a point x
where φn(x) > 0, when |φn(x)| is close to 0 but d(x) � 0, rnL < 0 and rnU becomes
extremely large; thus, for a moderate value of r , d has a strong influence on the
evolution of the level-set near x and swiftly moves the curve towards the point cloud.
For a point x which is close to bothD and {φn = 0}, the level-set evolution becomes
more stringent about the minimization of the energy (10).

Figure8 illustrates this effect, for the five-fold circle point cloud in Fig. 1a
with r = 2 and ε = 1. Figure8 shows (a) Disc Qn , (b) rnU , (c) r

n
L , and (d) the

region where d effects the level set evolution. The figures are for iterations n =
2, 3, 4, 7, 8, 10, 11, 13 and 38 (converged). The region inside {φn = 0} always expe-
riences the influence of d, as described above. Figure8a shows that the region outside
{φn = 0} is mostly blue indicating Disc Qn < 0; hence, for almost every point out-
side the 0-level-set, as long as rnL ≤ r ≤ rnU , the landscape of d has strong effects on
the evolution. In (b) and (c), observe that high values of rnU only concentrate near the
0-level-set while rnL remains relatively small in the whole domain; thus, the influence
of d is strong near {φn = 0}. (d) displays the white regions where d explicitly guides
the level-set evolution and the black regions where d has no direct effect. These
results show that, although ALM evolves the level-set globally, it ignores the effects
of d when evolving the regions far away from the level-sets; and it utilizes the values
of d to refine the local structures for the regions of the level-sets close to D.

4 Conclusion

We propose two fast algorithms, SIM and ALM, to reconstruct a codimensional 1
submanifold from unstructured point clouds inR2 orR3 by minimizing the weighted
minimum surface energy (2). SIM improves the computational efficiency by relax-
ing the constraint on the time-step using a semi-implicit scheme. ALM follows an
augmented Lagrangian approach and solves the problem by an ADMM-type algo-
rithm. Numerical experiments show that the proposed algorithms are superior in
computational speed, and both of them produce accurate results. Theoretically, we
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(a) (b)

(c) (d)

Fig. 8 a Disc Qn , b rnU , c r
n
L at certain iterations. d The region (in white) where d explicitly guides

the level-set evolution by ALM. The distance function d refines the local structures and it is only
active near {φn = 0}. This partially explains the efficiency of ALM

demonstrate the delicate interaction among parameters involved in ALM and show
the connections between SIM and ALM. This explains the behaviors of ALM from
the perspective of SIM.
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A Total Variation Regularization Method
for Inverse Source Problem with Uniform
Noise

Huan Pan and You-Wei Wen

Abstract The problem of inverse source problem is considered in this paper. The
main aim of this problem is to determine the source density function from the state
function which is corrupted by uniform noise. Under the framework of maximum
a posteriori estimator, the problem can be converted into an optimization problem
where the objective function is composed of an L∞ norm and a total variation (TV)
regularization term. By introducing an auxiliary variable, the optimization problem
is further converted into a minimax problem. Then first order primal-dual method
is applied to find the saddle point of the minimax problem. Numerical examples
are given to demonstrate that our proposed method outperforms the other testing
methods.

Keywords Inverse problem · Uniform noise · Total variation · L∞-norm
constraint · Linear systems.

1 Introduction

In this paper, we consider the numerical solution of an elliptic inverse source problem
[16, 17]. Inverse source problems arise in many areas of mathematical physics,
and applications in recent year are rapidly expanding to such areas as geophysics,
chemistry, medicine, engineering andmathematical imaging [5, 25]. The phenomena
in these applications are generally described by partial differential equations. An
inverse source problem for an elliptic partial differential equations on the domain
� ∈ R2 with homogeneous Dirichlet boundary condition is given as follows [10]:
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{−∇ · (a(x)∇u) + 〈b(x),∇u〉L2(�) + c(x)u = f (x) in �

u = 0 on ∂�
(1)

where a(x) and c(x) are two given bounded and positive functions in�, b(x) denotes
the velocity of flow, u(x) represents state function, and f (x) is the source density
function. If the coefficients a(x), c(x) and the source function f (x) are directly
given, we need to estimate the state function u(x), the problem in (1) is called a
forward source problem. However, in any physical and engineering problems such
as pollutant detection and imaging science, we can acquire the state function u(x)
at the boundary of the reconstruction region, i.e., the measurement data u(x) is
available, but we need to estimate the source function f (x). It is an inverse source
problem [15]. The main aim of the inverse source problem is to determine f from
the state function u.

We shall focus our attention to find a numerical solution of the inverse source
problem (1) in this paper. The discrete model of (1) can be represented by using
vectors and matrices. With the lexicographical ordering of u and f , their relationship
can be expressed as follows:

Ku = f .

Here K is the matrix generated by the elliptic partial differential equations.
Assume that the size of u is N × M , ui j denotes the ((i − 1)N + j-th component of
u. If the solution u is obtained, the source f can be computed directly by the matrix
and the vector product. The solution u is generally associated with the boundary
value which is an observation with errors, this is that u is corrupted by the noise
n and the observation uδ is given by uδ = u + n. Hence we obtain f = K (uδ − n).
Since the observation data is corrupted by the measurement errors (noise), the source
f can not be calculated by the product of the matrix and the vector. The observation
data uδ can be rewritten as

uδ = K−1f + n.

In mathematics, the inverse source problem is ill-conditioned in the sense of
Hadamard [13, 20], namely, small perturbation (quantization errors) in the mea-
surement data may lead to the lack of stability of numerical inversions. The ill-
conditioning can be alleviated to stabilize the solution by incorporating the priori
source information, and the solution f can be formulated as a minimizer of the fol-
lowing minimization problem

min
f

ψ(uδ, f) + λφ(f).

Here the function ψ(uδ, f) is the data-fitting term to represent the distribution of
the measurement error n, the function φ(f) is the regularization term to represent the
prior knowledge of f , and λ is a regularization parameter.
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In this paper, we assume that themeasurement data u(x) is corrupted by a uniform
distribution noise. This is that ni (the i-th entry of n) are the independent identically
distributed samples with uniform distribution U (−c, c), here c denotes the noise
level. According the distribution function of n, we can derive the data-fitting term
by ψ(uδ, f) = ∥∥K−1f − uδ

∥∥∞, see [10, 27]. In the literatures [2, 13, 18, 19], a
Tikhonov-type function was used to represent the prior knowledge in the inverse
problems.

Numerical difficulty is caused due to non-differentiability of the L∞-norm in the
data-fitting term. In [10, 27], the minimization problem was reformulated into a
constrained one. In [10], a Moreau-Yosida approximation for L∞-norm constraint
was considered, and the authors then applied a semi-smooth Newton method to solve
for the resulting optimality condition. In [27], the L∞-norm constraint was handled
by active set constraints arising from the optimality conditions, and then an efficient
semi-smooth Newton method was applied to find a solution.

In this paper, we consider that the source function is a piecewise continuous func-
tion and apply the total variation (TV) function [24] to represent its prior knowledge.
The TV regularization has been widely used inmany problems such as image denois-
ing [1, 24], image restoration [3, 6], image segmentation [7, 8] and so on. However,
to best of our knowledge, there are few papers using the TV function as a regulariza-
tion term in the inverse source problem.We remark that both the data-fitting term and
the regularization term considered in this paper are non-differentiable, we develop
different numerical scheme to find a minimizer.

The remainder of the paper is structured as follows. In Sect. 2, we review the
inverse source problem and propose total variation regularization method to find
its solution. In Sect. 3, we transform the inverse source problem into an equivalent
minimax problem and then apply first order primal-dual algorithm to solve it. In
Sect. 4, Appling our proposed approach to address given numerical examples of the
Inverse Source Problem. Finally, the Sect. 5 concludes this paper.

2 Total Variation Regularization for Inverse Source
Problem

In this section, we consider a total variation (TV) regularization approach for inverse
source problem. The minimization problem can be written as

min
f

∥∥K−1f − uδ

∥∥∞ + λ ‖∇f‖1 . (2)

Here ‖∇f‖1 denotes the TV norm of f . The TV norm is defined by φ(f) = ‖∇f‖1,
here

(∇f)i, j = ((∇x f)i, j , (∇yf)i, j )

with
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(∇x f)i, j =
{
fi+1, j − fi, j , if i < N ,

0, if i = N ,

(∇yf
)
i, j =

{
fi, j+1 − fi, j , if j < M,

0, if j = M.

We remark that the data-fitting term in (2) is derived by the assumption of uniform
noise in the observation data. Considering an independentU (−δ, δ) random variable
X , where δ stands for the noise level. Since ni (the i-th entry of n) are the independent
identically distributed samples with uniform distribution, the likelihood function is
given by

L∏
i=1

fX (ni |uδ, δ) ∝ I(n1, . . . ,nL ∈ [−δ, δ]),

where the indicator function I(S) equals to 1 if S happens and 0 otherwise. If
at least one ni (i.e., (uδ − K−1f)i ) falls outside of the interval [−δ, δ], the likeli-
hood will be equal to 0. Therefore, the solution of (2) should be any u that satisfies∥∥uδ − K−1f

∥∥∞ ≤ δ. Therefore, the minimization problem in (2) can be rewritten as

min
f

‖∇f‖1 s.t.
∥∥K−1f − uδ

∥∥∞ ≤ δ. (3)

In fact, the minimization problem in (2) and (3) are mathematically equivalent.
Given a regularization parameter λ in (2), there exists a δ such that the solution of (2)
is also the solution of (3). In contrast, given a δ in (3), there also exists a regularization
parameter λ in (2) such that the solution of (3) is also the solution of (2), moreover,
1/λ is the Lagrangian multiplier corresponding the L∞-norm inequality constraint.
It is very important to choose a suitable regularization parameter λ in (2), because λ
balances the data-fitting term and the regularization term and avoids to over-fitting
or under-fitting the data. Compare to tune the regularization parameter λ, it is more
easier to choose the noise level δ because δ is the noise level in the observation
data. When δ is not available, it can be estimated by the method of moments [27].
In this paper, we will focus on the numerical scheme to solve (3). Although many
methods have been proposed in the literature to find the minimizer of TV-based
optimization problem, it is non-trivial to find the minimizer of (3) because both the
TV norm and the L∞ norm are non-differentiable, also the minimizer should satisfy
the inequality constraint. In the next section, we will consider the numerical scheme
to find a minimizer of (3).

3 Primal-Dual Approach

In this section, we find the minimizer of the inverse source problem (3) by trans-
forming it into a minimax problems. Then we solve it by a primal-dual method [9,
11, 14, 22, 23, 26, 30, 31]. We will apply Chambolle-Pock first order primal-dual
algorithm in [9] to seek the saddle point of our minimax problem. We therefore give
a brief introduction of the method here.
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3.1 Chambolle-Pock’s First-Order Primal-Dual Algorithm

In [9], Chambolle and Pock considered solving the minimax problem:

min
v

max
z

�(v) + 〈v, Hz〉 − �(z). (4)

Here �,� are propoer, convex and lower semi-continuous functions, and H is a
linear operator with induced norm ‖H‖. They proposed to solve the problem by a
first-order primal-dual algorithm as follows:

⎧⎪⎪⎨
⎪⎪⎩

v(k+1) = argmin
v

�(v) + 〈v, Hz〉 + 1
2t

∥∥v − v(k)
∥∥2
2 ,

v̂(k+1) = v(k+1) + μ(v(k+1) − v(k)),

z(k+1) = argmax
z

〈̂
v(k+1), Hz

〉 − �(z) − 1
2s

∥∥z − z(k)
∥∥2
2 .

(5)

The parameters s, t > 0 are step sizes of the primal and dual variables respec-
tively, and μ is the combination parameter. In the iterative procedure, proximal-point
iterations are applied to the sub-differentials of the v and z subproblems in (5) with
the primal variable and the dual variable fixed alternately.

3.2 Minimax Problem

Let us describe the notations that wewill use in the followings. For ξ ∈ R
NM × R

NM ,
ξi, j = (ξi, j,1, ξi, j,2) ∈ R

2 denotes the (i + ( j − 1)n)-th component of ξ. Define
the inner product 〈ξ,q〉 = ∑

i, j ξi, jqi, j for ξ,q ∈ R
nm × R

nm . Define ‖ξ‖∞ =
maxi, j |ξi, j |. Define div = −∇T as the discrete version of the divergence operator,
where ∇T is the adjoint of ∇, i.e.,

(div ξ)i, j =
⎧⎨
⎩

ξxi, j i = 1
ξxi, j − ξxi−1, j 1 < i < N
−ξxi−1, j i = N

+
⎧⎨
⎩

ξ
y
i, j j = 1,

ξ
y
i, j − ξ

y
i, j−1 1 < j < N ,

−ξ
y
i, j−1 j = N .

We represent the TV norm using the dual form, i.e.,

‖∇f‖1 = max
‖ξ‖∞≤1

〈divξ, f〉 . (6)

Using the dual formulation, the minimization problem (3) can be written as the
following minimax problem:

min‖K−1f−uδ‖∞≤δ
max

‖ξ‖∞≤1
〈f, divξ〉 . (7)
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Introducing the auxiliary varible r = uδ − K−1f , we obtain f − K (uδ − r) = 0.
We consider Lagrangian function for the resulting equation

L(f, r, ξ, y) ≡ 〈f, divξ〉 + 〈y, f − K (uδ − r)〉 . (8)

Here y is the Lagrange multiplier associated with the equality constraint f −
K (uδ − r) = 0. Hence, we have

max
‖ξ‖∞≤1,y

L(f, r, ξ, y) =
{ ‖∇f‖1 , if f − K (uδ − r) = 0,

∞, otherwise.

Also we have

min
f

L(f, r, ξ, y) =
{ 〈divξ, K (uδ − r)〉 , if divξ + y = 0,

−∞, otherwise.

According to [4, Proposition 5.5.4], we know that theminimum and themaximum
in (8) can be swapped and there exists a saddle point of L. We obtain

min
‖r‖∞≤δ,f

max
‖ξ‖∞≤1,y

L(f, r, ξ, y) = max
‖ξ‖∞≤1

min
‖r‖∞≤δ

〈divξ, K (uδ − r)〉 .

Thus we have the following theorem.

Theorem 1 Define Q(r, ξ) = 〈divξ, K (uδ − r)〉, then we have

min‖K−1f−uδ‖∞≤δ
‖∇f‖1 = max

‖ξ‖∞≤1
min

‖r‖∞≤δ
Q(r, ξ).

Moreover, theminimum in the left-hand side above is attained at f∗ = K (uδ − r∗),
here (r∗, ξ∗) is the saddle point of the function Q(r, ξ).

Now we apply Chambolle-Pock’s first-order primal-dual method (5) to compute
the saddle point of Q(r, ξ), the iterative scheme is given as follows:

rk+1 = argmin
‖r‖∞≤δ

Q(r, ξk) + 1

2s

∥∥r − rk
∥∥2

2 (9)

r̂k+1 = rk+1 + θ(rk+1 − rk) (10)

ξk+1 = argmax
‖ξ‖∞≤1

Q(̂rk+1, ξ) − 1

2t

∥∥ξ − ξk
∥∥2

2 (11)
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3.3 Subproblem for r

The minimization of (9) reduces to

rk+1 = argmin
r

〈
divξk, K (uδ − r)

〉 + 1

2s

∥∥r − rk
∥∥2

2 (12)

= argmin
r

∥∥r − (rk − sK T divξk)
∥∥2

2 (13)

We first introduce the concept of the projection operator.

P(w) = argmin
r∈�

‖r − w‖22 . (14)

In general, the projection onto a general convex set is difficult and computationally
expensive. As the L∞-constraints can be formulated as the bounded constraints, the
corresponding closed-form solution is given by

[P(w)]i =
⎧⎨
⎩

δ, wi ≥ δ.
wi , |wi | < δ.
−δ, wi ≤ −δ.

By using a suitable projection operator, we can view rk+1 as the projection of(
rk+1 − sK T divξk) on �. Thus we obtain

rk+1 = P
(
rk+1 − sK T divξk) . (15)

3.4 Subproblem for ξ

We change themaximization problem for ξ in (11) to aminimization one and obtain:

ξk+1 = argmax
ξ

〈
divξ, K (uδ − r̂k+1)

〉 − 1

2t

∥∥ξ − ξk
∥∥2

2 (16)

= argmin
‖ξ‖∞≤1

− 〈
divξ, K (uδ − r̂k+1)

〉 + 1

2t

∥∥ξ − ξk
∥∥2

2 (17)

Thus
ξk+1 = PA(ξk − t∇K (uδ − r̂k+1))

where A = {
ξ : ‖ξ‖∞ ≤ 1

}
, the gradient projection of (ξk − t∇fk+1) onto the set

A. In the following, we derive a formula for the gradient projection operator
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PA(q) = argmin
p∈A

‖p − q‖22

For any q, by the definition of the set A, the Lagrangian function is

‖p − q‖22 +
∑
i, j

ti, j
(|pi, j |2 − 1

)
,

where ti, j ≥ 0 is the Lagrangian multiplier associated with the constraint |pi, j |2 ≤ 1.
Its complementarity conditions implies that for the optimal ti, j , either ti, j = 0 with
|pi, j |, |qi, j | < 1, or ti, j > 0with |pi, j | = 1 and |qi, j | ≥ 1. In the former case, we have
pi, j = qi, j . In the latter case, the KKT conditions yields pi, j − qi, j + ti, j pi, j = 0 for
all i, j . Therefore, we have ti, j = |qi, j | − 1, and thus pi, j = qi, j/|qi, j |. Hence, we
obtain

(PA(q))i, j = 1

max(1, |qi, j |)qi, j . (18)

4 Numerical Results

In this section, three numerical experiments are implemented to demonstrate the
effectiveness of the proposed method, that is to consider the inverse source problem
(1) with domain � = [0, 1]2. We investigate the influence of noise level on the
numerical results, specifically, set δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. In
order to be able to stabilize the convergence of approximate solution by our proposed
method, choosing primal variation step size s = 5 × 10−8 and dual variation step
size t = 5 × 10−2. We show the exact solution f∗ with size 256 × 256 in Fig. 1a, the
exact data u∗ in Fig. 1b and observation data uδ with noise level δ = 0.1, 0.4, 0.9
respectively in Fig. 2.

In the following experiments, we compare our algorithm(TV) with semi-smooth
Newtonmehthod (SSN) [27], Primal-Dual method (PD) [21] and Forward Backward

(a) exact solution f∗ (b) exact data u∗

Fig. 1 Left: the exact solution f∗ with size 256 × 256; Right: the exact data u∗
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δ = 0.1 δ = 0.4 δ = 0.9

Fig. 2 Observed data uδ corrupted by uniform noise levels with the δ = 0.1, 0.4, 0.9 respectively

method (FB) [12]. The Root-Mean-Square-Error (RMSE) is used to quantitatively
measure the quality of the estimated solution. It is defined as follows:

RMSE = 1√
L

∥∥̂f − f∗∥∥
2

where f∗ denotes the exact solution and f̂ denotes the estimated solution. The smaller
RMSE is, the better the estimated solution is.

We consider the discrete problem (1) and set a(x) = 1 and c(x) = 0. Three differ-
ent functions for b(x) are used in the tests, they are b(x) = −[2, 0], b(x) = −[0, 1]
and b(x) = −[2, 1] respectively. In order to quantitatively measure the accuracy of
the estimated solutions, we show theRMSE values for different noise level in Table1.
We note that the RMSE of recovery data by four methods gradually increase with
the noise level increasing. The RMSE obtained by TV method is smaller than that
obtained by other methods.

We show the estimated solutions obtained by different methods in the Figs. 3, 4
and 5 with different noise levels δ = 0.1, 0.4, 0.9, respectively. We can observe that
there are some jumps in the estimated solutions obtained by SNN method and FB
method. The estimated solutions obtained by PD method look smooth. We remark
that the Tikhonov-type regularization function is applied in the these three methods.
It is obviously that the estimated solutions obtained by the proposed method are
closer to the true solution.

5 Conclusion

In this paper, we study the inverse source problem where observation data are cor-
rupted by uniform noise. Themain contribution of this paper is to develop an efficient
total variation regularization method for solving the ill-posed inverse source problem
of the L∞-norm data fitting. Numerical examples are given to demonstrate that our
proposed method outperforms the other testing methods.
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Table 1 RMSE of estimated solution for different noise levels

δ ‖uδ − u‖2 SSN PD FB TV

a = 1, b = −[2, 0]
0.1 9.36e-03 1.19e-01 1.25e-01 1.34e-01 2.36e-02

0.3 2.80e-02 1.33e-01 1.36e-01 1.39e-01 3.85e-02

0.5 4.68e-02 1.33e-01 1.41e-01 1.48e-01 6.95e-02

0.7 6.55e-02 1.49e-01 1.46e-01 1.53e-01 9.94e-02

0.9 8.42e-02 1.53e-01 1.50e-01 1.58e-01 1.18e-01

a = 1, b = −[0, 1]
0.1 9.93e-03 1.19e-01 1.26e-01 1.35e-01 1.82e-02

0.3 2.97e-02 1.32e-01 1.36e-01 1.41e-01 3.34e-02

0.5 4.96e-02 1.34e-01 1.42e-01 1.47e-01 7.16e-02

0.7 6.95e-02 1.50e-01 1.47e-01 1.55e-01 9.73e-02

0.9 8.93e-02 1.52e-01 1.51e-01 1.60e-01 8.86e-02

a = 1, b = −[2, 1]
0.1 9.24e-03 1.18e-01 1.25e-01 1.27e-01 1.95e-02

0.3 2.77e-02 1.32e-01 1.35e-01 1.37e-01 3.65e-02

0.5 4.62e-02 1.32e-01 1.41e-0 1.43e-01 7.03e-02

0.7 6.47e-02 1.50e-01 1.47e-01 1.50e-01 1.04e-01

0.9 8.32e-02 1.51e-01 1.49e-01 1.52e-01 1.16e-01

SNN FB

PD TV

Fig. 3 Root-mean-square-error (RMSE) values obtained by different methods for different noise
levels. Here δ = 0.1 and a = 1, b = −[2, 0]
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SNN FB

PD TV

Fig. 4 Four algorithms recovering data graphs with noise levels of d = 0.4 based on a = 1, b =
−[0, 1]

SNN FB

PD TV

Fig. 5 Four algorithms recovering data graphs with noise levels of δ = 0.9 based on a = 1, b =
−[2, 1]
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Automatic Parameter Selection Based on
Residual Whiteness for Convex
Non-convex Variational Restoration

Alessandro Lanza, Serena Morigi, and Fiorella Sgallari

Abstract Image restoration is a well-known ill-posed inverse problem whose aim
is to recover a sharp clean image from the corresponding blur- and noise-corrupted
observation. Variational methods penalize solutions deemed undesirable by incorpo-
rating regularization techniques. A popular strategy relies on using sparsity promot-
ing regularizers; it is well known that, in general, nonconvex regularizers hold the
potential for promoting sparsity more effectively than convex regularizers. Recently
a new class of convex non-convex (CNC) variational models has been proposed
which includes a general parametric nonconvex nonseparable regularizer. However,
the performance of this approach depends critically on the regularization parame-
ter. In this paper we propose to use a parametric CNC variational restoration model
within a bilevel framework, where the parameter is tuned by minimizing a measure
of the restoration residual whiteness. Some preliminary numerical experiments are
shown which indicate the effectiveness of the proposal.

Keywords Sparsity-inducing regularization · Variational methods · Ill-posed
problems · Non-convex non-smooth regularization · Optimization · Additive white
gaussian noise.
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1 Introduction

In this paper, we consider the problem of restoring 2-D gray-scale images corrupted
by blur and additive white Gaussian noise (AWGN).

These images can be represented by the discretization of a real valued function
defined on a 2-D compact rectangular domain. Let x ∈ R

n , with n = n1n2, be the
unknown n1 × n2 clean image concatenated into an n-vector, A ∈ R

n×n be a known
blurring operator and ε ∈ R

n be an unknown realization of the noise process, which
we assume white Gaussian with zero-mean and standard deviation σ . The discrete
imagingmodel of the degradation processwhich relates the observed degraded image
b ∈ R

n with x , can be expressed as follows:

b = Ax + ε . (1)

Given A and b, our goal is to solve the inverse problem of recovering an accurate
estimate of x , which is known as deconvolution or deblurring. When A is the identity
operator, recovering x is referred as denoising.

Image deblurring is a discrete ill-posed problem, as such further a priori assump-
tions on the solution can help to determine a meaningful approximation of x . Assum-
ing the image is corrupted by AWGN, then an estimate x∗

λ of x can be obtained as a
solution—i.e., a global minimizer—of the following variational model which is the
sum of a convex smooth (quadratic) fidelity term and a regularization term:

x∗
λ ∈ arg min

x∈Rn
J (x; λ), J (x; λ) := 1

2
‖Ax − b‖22 + λR(x) , (2)

where ‖v‖2 denotes the �2 norm of vector v and λ represents the classical regulariza-
tion parameter which controls the trade-off between data-fidelity and regularization.

The regularizer R(x) encodes a priori knowledge on the solution. Focusing on
the recovery of images characterized by some sparsity property, we consider the
general class of sparsity-inducing variational models described in [15] to determine
solutions x∗

λ which are close to the data b according to the observation model and,
at the same time, for which the transformed solution vector y∗

λ = G(Lx∗
λ) is sparse

with L ∈ R
r×n a linear operator andG : Rr → R

s a possibly nonlinear vector-valued
function—see [15].

The drawback of the proposal in [15], which will be briefly illustrated in Sect. 3,
is that it requires a trial-and-error procedure for tuning the regularization parameter
λ and a manual stopping. This represents a crucial aspect in variational restoration
methods and has been subject of several research works.

We propose an automatic criterion for adjusting the regularization parameter λ.
More precisely, our proposal is based on the key idea that if the restored image is a
good estimate of the target clean image, then the residual image must resemble the
realization of the noise process, thus being spectrally white.
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Hence, starting from a sufficiently small λ value, we iteratively increase λ until a
suitable whiteness maximality criterion is satisfied.

In Sect. 2 we review some related works on the choice of the regularization param-
eter. The class of CNC variational models introduced in [15] is briefly illustrated in
Sect. 3. In Sect. 4 we define the residual whiteness strategy, and Sect. 5 is devoted
to the description of the proposed algorithmic framework. Numerical results are
presented in Sect. 6. Conclusions are drawn in Sect. 7.

2 Related Work

A crucial issue in the regularization of ill-posed inverse problems is the choice of the
regularization parameter. The quality of the solution is affected by the value of λ: a
too large value of λ gives an over-smoothed solution that lacks details that the desired
original solution may have, while a too small value of λ yields a computed solution
that is unnecessarily, and possibly severely, contaminated by propagated error that
stems from the error ε in b.

The discrepancy principle (DP) [22] chooses the regularization parameter so that
the variance of the residual equals that of the noise; the DP thus requires an accurate
estimate of the noise variance and is known to yield overregularized estimates [7].
The sensitivity of λ and of the computed solution to the inaccuracies in an available
estimate of ‖ε‖ has been investigated byHamarik et al. [6], who proposed alternatives
to the discrepancy principle when only a poor estimate of ‖ε‖ is known. Automatic
procedures for selecting the λ parameter based on the DP has been proposed in
literature, see e.g. [9].

Parameter choice methods when no estimate of ‖ε‖ is available are commonly
referred to as “heuristic”, because they may fail in certain situations; see [5].

A large number of heuristic parameter choice methods have been proposed in the
literature due to the importance of being able to determine a suitable value of the
regularization parameter when the DP cannot be used; see, e.g., [3, 7, 22]. These
methods include the L-curve criterion, and generalized cross validation [3].

These methods are outperformed bymore recent criteria based on Steins unbiased
risk estimate (SURE) [4, 18]. SURE provides an estimate of the mean squared error
(MSE), assuming knowledge of the noise distribution and requiring an accurate
estimate of its variance [23].

Recently, the fact that the additive noise is the realizationof awhite randomprocess
and, hence, that the restoration residual image must be uncorrelated, has been used
not only as an a-posteriori performance evaluation criterion (see, e.g., [21]), but
also as a key idea in the design of new fidelity terms [11, 12, 14]. In particular,
by evaluating the resemblance of the residue image to a white noise realization,
one can check, to some extents, the quality of the restored image. In [1, 8, 20,
21] the measures of residual spectral whiteness have been exploited for adjusting



98 A. Lanza et al.

the regularization parameter and/or the number of iterations of the algorithms for
deconvolution problems. Comparisons among several state of the art methods have
been documented in [2].

3 The Class of CNC Variational Models

The considered class of CNC variational models proposed in [15] relies on a general
strategy for constructing non-convex non-separable regularizers starting from any
convex regularizer R : Rn → R of the form

R(x) := �(y) , y := G(Lx) , (3)

with L ∈ R
r×n , G : Rr → R

s a possibly nonlinear vector-valued function with
gi : Rr → R, i = 1, . . . , s, representing its scalar-valued components and� : Rs →
R a sparsity-promoting penalty function [10, 13, 17]. The CNC model associated
with the regularizer R is as follows

x∗
λ = argmin

x∈Rn
JB(x; λ), JB(x; λ) := 1

2
‖Ax − b‖22 + λRB(x), (4)

with the parameterized non-convex non-separable regularizer RB defined by

RB(x) := R(x) − (
R � 1

2 ‖B · ‖22
)
(x), (5)

where � denotes the infimal convolution operator and B ∈ R
q×n is a matrix of

parameters.
According to Proposition 8 in [15], a sufficient condition for JB to be strongly

convex—hence, for the variational model in (4) to admit a unique solution—is that
the matrix B satisfies

BTB ≺ (1/λ)ATA. (6)

A simple yet effective strategy for constructing a matrix BTB ∈ R
n×n satisfying

the convexity condition in (6) has been presented in [15]. Since the matrix ATA ∈
R

n×n is symmetric and positive semidefinite, it admits the eigenvalue decomposition

ATA = V EV T, E, V ∈ R
n×n, E = diag(e1, . . . , en) , V TV = VV T = In ,

(7)
with ei , i = 1, . . . , n, indicating the real non-negative eigenvalues of ATA. By setting

BTB = 1

λ
V �EVT, � := diag(γ1, . . . , γn) , γi ∈ [0, 1) ∀ i ∈ {1, 2, . . . , n} , (8)
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then (6) is clearly satisfied. A special case is to set a unique parameter γ = γi ∈
[0, 1) ∀ i , which corresponds to setting B = √

γ /λ A.
In the present work, which addresses the specific problem of image restoration,

we consider as a first regularization function R in (3) the popular Total Variation
(TV) semi-norm [19]. In this case � is the �1 norm function and L = [DT

h , DT
v ]T,

with Dh, Dv ∈ R
n×n representing finite difference approximations of the first-order

partial derivatives along the horizontal and vertical directions, respectively, then we
have:

R(x) = TV(x) = ‖G(Lx)‖1 =
n∑

i=1

|gi (Lx)|, gi (Lx) =
√

(Dhx)2i + (Dvx)2i .

(9)
It is well known that TV-based reconstructions favor piecewise-constant solutions,
but present staircase effects in the restoration of smooth parts of the images. To
avoid this artifact, in the reconstruction of piecewise-affine solutions, a second-order
extensions of the TV regularizer can be considered which promotes sparsity of the
Hessian Schatten norms instead of the gradient norms. That is, the sumof the Schatten
p-norms of the Hessian matrices computed at every pixel of the image is minimized
[16], where, we recall, the Schatten p-norm ‖M‖Sp of a matrix M ∈ R

z×z is defined
by

‖M‖Sp :=
(

z∑

i=1

σ
p
i (M)

) 1
p

, p > 0 , (10)

with σi (M) indicating the i-th singular value ofmatrixM . Let L = [DT
hh, D

T
vv, D

T
hv]T

with Dhh, Dvv, Dhv ∈ R
n×n representing finite difference approximations of second-

order derivatives along horizontal, vertical and mixed horizontal/vertical directions,
respectively. Then the Hessian Schatten p-norm regularizer is defined by

R(x) = SpH(x) = ‖G(Lx)‖1 =
n∑

i=1

|gi (Lx)| , gi (Lx) =
∥∥
∥∥

[
(Dhhx)i(Dhvx)i
(Dvh x)i(Dvvx)i

]∥∥
∥∥Sp

. (11)

We recall that the Schatten p-norm reduces to the nuclear norm when p = 1.

4 Residual Whiteness

Given a realization ε := { ε(i, j) ∈ R : (i, j) ∈ 	 }, 	 = {1, 2, . . . , n1} ×
{1, 2, . . . , n2} of a 2D n1 × n2 random noise process, that is the series of noise values
corrupting the particular observed image according to the deterministic degradation
model in (1), the sample auto-correlation of ε is a function aε mapping all the pos-
sible lags (l,m) ∈ 
 = {−(n1 − 1), . . . , n1 − 1} × {−(n2 − 1), . . . , n2 − 1} into
a scalar value given by
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aε(l,m) := 1

n

(
ε � ε

)
l,m = (

ε ∗ ε′ )
l,m

= 1

n

∑

(i, j)∈ 	

ε(i, j) ε(i + l, j + m) , (l,m) ∈ 
, n = n1n2 , (12)

where � and ∗ denote the 2-Ddiscrete correlation and convolution operators, respec-
tively, and where ε′(i, j) = ε(−i,− j). Clearly, for (12) being defined for all lags
(l,m) ∈ 
, the noise realization ε must be padded with at least n1 samples in the
vertical direction and n2 samples in the horizontal direction.We assume here periodic
boundary conditions for ε, such that � and ∗ in (12) denote circular correlation and
convolution, respectively. If the noise process ε is white, then it is well known that
the auto-correlation aε satisfies the following asymptotic property:

lim
n→+∞ aε(l,m) = 0 ∀ (l,m) ∈ 
0 = 
 \ {(0, 0)}. (13)

For noise corruptions affecting images of finite dimensions—namely, n < +∞—
we can say that the auto-correlation values for all non-zero lags are small. Some
important examples of distributions of additive white noises are the uniform, the
Gaussian, the Laplacian and the Cauchy [14].

Clearly the nearest to the uncorrupted image is the restored image x∗
λ , the closer

the residual image r∗
λ = b − A x∗

λ is to the realization ε in (1) of awhite noise process.
Our proposal is to seek for the regularization parameter value λ∗ yielding the

whitest restoration residual, which can be formally defined as follows:

λ∗ ∈ arg min
λ∈R+

{
W (λ) := W

(
r∗
λ

)}
, (14)

withW : Rn → R one of the two following residual whiteness measures:

W1
(
r∗
λ

) =
√∑

(l,m)∈
0

(
ar∗

λ
(l,m)

)2

ar∗
λ
(0, 0)

, W2
(
r∗
λ

) = max(l,m)∈
0

∣∣ ar∗
λ
(l,m)

∣∣

ar∗
λ
(0, 0)

. (15)

We notice that, according to definition (12), the term ar∗
λ
(0, 0) represents nothing

else than the sample variance of the residual image r∗
λ .

5 The Proposed Algorithmic Framework

The proposed bilevel framework consists of an iterative procedure for computing an
approximate solution x∗

λ∗ of the class of CNC models proposed in [15] and defined
in (4), or also of the associated purely convex models in (2), with R any sparsity-
promoting convex regularizer of the form in (3) and λ∗ satisfying the whiteness
maximality criterion in (14).
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In Algorithm 1 we report the main computational steps of the overall proposed
bilevel framework for image restoration.

The algorithm starts with a sufficiently small value of the parameter λ yielding a
large value of the residual whiteness measure W in (14)–(15); at each iteration λ is
increased by amultiplicative factor θ > 1 to strengthen the effect of the regularization
term. The iterative procedure is terminated as soon as the residual whiteness measure
stops decreasing, for a certain λ∗ value. Such a scheme relies on the assumption that
the residual whiteness function W (λ) in (14) is monotonically decreasing on the λ

interval between 0 and the function minimizer λ∗. This property of the whiteness
function W (λ) is very hard to be proved theoretically but we verified it empirically
and the evidence of such behavior is reported in Sect. 6.

At each (outer) iteration h of Algorithm 1, the restored image x (h) is computed—
that is, the corresponding optimization problem is solved—by using the Primal-Dual
Forward-Backward (PDFB) algorithm described in [15] for the CNCmodels and the
Alternating Direction Method of Multipliers (ADMM) for the associated purely
convex models. We remark that, for any given λ value, the considered variational
models are strongly convex—hence they admit a unique global minimizer—and the
PDFB and ADMM minimization algorithms are guaranteed to converge towards
such minimizer.

We adopt for efficiency purposes the so called warm-starting strategy to initialize
the algorithm at the next inner optimization step using the estimated values at the
previous step.

The considered CNC variational approach requires the design of a matrix B satis-
fying the convexity condition (6) for the functional JB. Many such matrices B exist,
see [15]. In the following experiments, we set � to be a two-dimensional dc-notch
filter defined by � = I − H where H is a two-dimensional low-pass filter with a
dc-gain of unity and H ≤ I . In our experiments, we set γ = 0.98 and H = HT

0H0

where H0 is the most basic two-dimensional low-pass filter: the moving-average
filter with square support.

6 Numerical Examples

In this section, we report some experimental results aimed at assessing the effective-
ness of the automatic parameter selection procedure illustrated in Sects. 4 and 5 for
image restoration by using the CNC variational models recently proposed in [15]
and briefly outlined in Sect. 3.

We consider the three test images shown in the first row of Fig. 1: qrcodewhich
belongs to the class of piecewise constant images, roof which is a piecewise affine
image, and the popular photographic cameraman image. The test images have been
synthetically corrupted by space-invariant Gaussian blur generated by the Matlab
command fspecial(’gaussian’,band,sigma) with parameters (band,sigma) =
(5,1.5), and AWGN of standard deviation σ = 40, so as to obtain the three degraded
images shown in the second row of Fig. 1. The qrcode and roof images are
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Algorithm 1 Bilevel Framework based on Residual Whiteness

inputs: degraded image b ∈ R
n , blur operator A ∈ R

n×n

outputs: regularization parameter λ∗ > 0, restored image x∗
λ∗ ∈ R

n

parameters: λmin > 0, θ > 1

initialization: h = 0, λ(h) = λmin, W (h) = +∞
repeat

· update iteration counter and regularization parameter:

· h = h + 1, λ(h) = θ λ(h−1)

· compute restored image by solving the optimization problem:

· x (h) = argminx∈Rn JB(x; λ(h))
(
or J (x; λ(h))

)

· compute residual whiteness:

· r (h) = b − Ax (h), and W (h) = W(r (h)), by (15)

until W (h) > W (h−1)

λ∗ = λ(h−1), x∗
λ∗ = x (h−1)

Fig. 1 Original (first row) and degraded (second row) test images qrcode (left column), roof
(center column) and cameraman (right column)

characterized by very sparse first- and second-order derivatives, respectively, hence
the convex TV and Schatten 1-norm regularization terms in (9)–(11) and their non-
convex non-separable counterparts defined according to (5) are suitable to get good
restorations.
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Hence, in the experiments we perform restoration by using the proposed bilevel
framework outlined in Algorithm 1 applied to the two purely convex variational
models

TV−�2 : x∗
λ = argmin

x∈Rn

{
1

2
‖Ax − b‖22 + λTV(x)

}
, (16)

S1H−�2 : x∗
λ = argmin

x∈Rn

{
1

2
‖Ax − b‖22 + λS1H(x)

}
, (17)

and the two associated CNC counterparts

CNC−TV−�2 : x∗
λ = argmin

x∈Rn

{
1

2
‖Ax − b‖22 + λ

(
TV−TV � 1

2 ‖B · ‖22
)
(x)

}
, (18)

CNC−S1H−�2 : x∗
λ = argmin

x∈Rn

{
1

2
‖Ax − b‖22 + λ

(
S1H −S1H � 1

2 ‖B · ‖22
)
(x)

}
. (19)

For all the tests, i.e. for all images and all restoration models, the bilevel frame-
work outlined in Algorithm 1 has been used in order to automatically select the
regularization parameter λ∗ yielding the whitest restoration residual according to
both the whiteness measuresW1,W2 defined in (15); we denote by λ∗

1, λ
∗
2 such two

optimal values and by W ∗
1 := W1

(
λ∗
1

)
, W ∗

2 := W2
(
λ∗
2

)
the associated (minimum)

whiteness measure values.
The (inner) iterations of the minimization algorithms used to determine the

restored image for any given λ value—namely, ADMM for the TV−�2 and S1H−�2
models, PDFB for the CNC−TV−�2 and CNC−S1H−�2 models—are terminated
as soon as two successive iterates satisfy

∥∥x (h) − x (h−1)
∥∥
2∥∥x (h−1)

∥∥
2

< 10−5 . (20)

The quality of the obtained restorations is evaluated by means of both the Signal-
to-Noise Ratio (SNR) and the Structural Similarity Index (SSIM). We indicate by
SNR∗

1, SNR
∗
2 and SSIM∗

1, SSIM
∗
2 the SNR and SSIM values of the restored images

associated with the optimal values λ∗
1, λ∗

2. In order to quantitatively evaluate the
ability of the proposed approach in automatically selecting λ values yielding restored
images of good quality, we also introduce—and compute for each test—the following
quantities:

LQ∗
j = 100

Q − Q∗
j

Q
, Q ∈ {SNR,SSIM}, j ∈ {1, 2}, (21)

where Q denotes the maximum value of the quality measure - SNR or SSIM—
achievable by letting λ vary in its domain. These quantities represent the loss of
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restoration quality (in percentage) yielded by the proposed automatic selection pro-
cedure with respect to the maximum achievable.

In Table1 we report all the obtained quantitative results, whereas in Figs. 2, 3,
4 and 5 we show some visual and graphical results related to the restoration of the
cameraman test image by the four variational models considered. In particular, the
results obtained by using thewhitenessmeasureW1 are in Figs. 2 and 3, bywhiteness
measureW2 in Figs. 4 and 5. Each column in these figures corresponds to a different
restoration model. In the third, fourth and fifth row we report the plots of the SNR
and SSIM values of the restored image and the plots of the whiteness measure of
the restoration residual as functions of the regularization parameter λ, respectively.
The dashed vertical red lines indicate the “optimal” regularization parameter values,
namely those yielding the smallest residual whiteness measures. It is worth noticing
that for all reported tests the residual whiteness measure function W (λ) with both
the choices of W introduced in (15)—shown in the last row of Figs. 2, 3, 4 and
5—exhibit a monotonically decreasing behavior on the λ interval between 0 and the
functions minimizer λ∗.

In the first and second row of Figs. 2, 3, 4 and 5 we show the restored images
obtained by using such optimal λ values and the associated absolute error images,
respectively.

In Table1 the best results are marked in boldface. The results obtained by hand-
tuning λ (labeled as Q) indicate that, as expected, TV-based models perform better
on the piecewise constant images qrcode and cameraman whereas S1H -based
models outperform TV-based models on the piecewise affine image roof. More
precisely, the CNC models perform better than their associated purely convex coun-
terparts. This is due to the stronger sparsity-promoting effect produced bynon-convex
regularization.

For what regards the optimal residual whiteness measures W∗
1 and W∗

2 reported
in the last two columns of Table1, it is worth observing that the lowest results
(in boldface) are obtained in correspondence of the best performing models for
each restoration test. This in principle should allow to use the proposed automatic
parameter selection strategy in order to automatically select the best regularization
term for each problem.

Finally, for any given model, the proposed automatic parameter selection strategy
seems to perform very well as indicated by the small values of the quality losses
LQ∗

j , j = 1, 2, reported in Table 1 and visually supported by the plots in the figures.
Visual inspection and comparison of the restored images are consistent with the

results in Table 1.



Automatic Parameter Selection Based on Residual Whiteness … 105

Table 1 SNR/SSIM results obtained by restoring the test imagesqrcode,roof andcameraman

qrcode Q Q∗
1 Q∗

2 LQ∗
1 LQ∗

2 W∗
1 W∗

2

Q = SNR TV-�2 12.857 12.778 12.682 0.6 1.4 0.3982 1.7928

CNC-TV-
�2

14.262 13.708 13.631 3.9 4.4 0.3947 1.6594

S1H -�2 9.052 8.836 8.520 2.4 5.9 0.4242 4.0721

CNC-
S1H -�2

8.994 8.847 8.514 1.6 5.3 0.4245 4.2746

Q = SSIM TV-�2 0.803 0.803 0.801 0.0 0.3 0.3982 1.7928

CNC-TV-
�2

0.869 0.850 0.849 2.2 2.3 0.3947 1.6594

S1H -�2 0.565 0.565 0.561 0.0 0.6 0.4242 4.0721

CNC-
S1H -�2

0.558 0.557 0.556 0.0 0.4 0.4245 4.2746

roof Q Q∗
1 Q∗

2 LQ∗
1 LQ∗

2 W∗
1 W∗

2

Q = SNR TV-�2 22.927 22.599 22.697 1.4 1.0 0.5096 2.2322

CNC-TV-
�2

22.658 22.658 22.526 0.0 0.6 0.5100 2.2410

S1H -�2 39.567 39.199 39.514 0.9 0.1 0.5025 2.1634

CNC-
S1H -�2

42.171 41.720 41.906 1.1 0.6 0.5002 2.1481

Q = SSIM TV-�2 0.919 0.896 0.916 2.5 0.3 0.5096 2.2322

CNC-TV-
�2

0.913 0.902 0.910 1.2 0.3 0.5100 2.2410

S1H -�2 0.999 0.999 0.999 0.0 0.0 0.5025 2.1634

CNC-
S1H -�2

0.999 0.999 0.999 0.0 0.0 0.5002 2.1481

cameraman Q Q∗
1 Q∗

2 LQ∗
1 LQ∗

2 W∗
1 W∗

2

Q = SNR TV-�2 11.009 10.712 10.808 2.7 1.8 0.3950 1.6809

CNC-TV-
�2

11.125 10.780 10.974 3.1 1.4 0.3946 1.6775

S1H -�2 10.445 10.006 9.938 4.2 4.9 0.3994 1.9923

CNC-
S1H -�2

10.211 9.951 9.821 2.5 3.8 0.3992 2.0405

Q = SSIM TV-�2 0.701 0.699 0.701 0.2 0.0 0.3950 1.6809

CNC-TV-
�2

0.707 0.699 0.707 1.1 0.0 0.3946 1.6775

S1H -�2 0.663 0.663 0.663 0.0 0.0 0.3994 1.9923

CNC-
S1H -�2

0.650 0.648 0.650 0.3 0.0 0.3992 2.0405
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Fig. 2 Visual/graphical results obtained by using the W1 residual whiteness measure
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Fig. 3 Visual/graphical results obtained by using the W1 residual whiteness measure



108 A. Lanza et al.

TV-�2 CNC-TV-�2

0.05 0.1 0.15 0.2 0.25 0.3

7

8

9

10

11

SN
R

0.05 0.1 0.15 0.2 0.25 0.3

4

5

6

7

8

9

10

11

SN
R

0.05 0.1 0.15 0.2 0.25 0.3

0.3

0.4

0.5

0.6

0.7

SS
IM

0.05 0.1 0.15 0.2 0.25 0.3
0.2

0.3

0.4

0.5

0.6

0.7

SS
IM

0.05 0.1 0.15 0.2 0.25 0.3

2

4

6

8

10

12

W
 x

 1
00

0.05 0.1 0.15 0.2 0.25 0.3

2

4

6

8

10

12

14

W
 x

 1
00

Fig. 4 Visual/graphical results obtained by using the W2 residual whiteness measure
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Fig. 5 Visual/graphical results obtained by using the W2 residual whiteness measure
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7 Conclusions

We presented a bilevel framework aimed at equipping the class of CNC variational
models for image restoration proposed in [15] with an effective strategy for auto-
matically selecting the regularization parameter based on maximizing the residual
whiteness. The idea behind our proposal is that if the recovered image is well esti-
mated, the residual image is spectrally white; on the contrary a poorly restored image
exhibits structured artifacts which yield spectrally colored residual images. Numer-
ical results for restoring images characterized by some sparsity properties strongly
indicate that the considered class of CNCmodelswith the proposed automatic param-
eter selection strategy outperforms classical convex models with non-smooth but
convex regularizers. The proposed parameter selection strategy makes the consid-
ered class of CNC models automatic, in the sense that the regularization parameter
is set without requiring any knowledge about the noise variance.
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Total Variation Gamma Correction
Method for Tone Mapped HDR Images

Michael K. Ng and Motong Qiao

Abstract Tonemappingmethods aim to display a high dynamic range (HDR) image
on a common 8-bit liquid crystal display by compressing its dynamic range. Both
color rendering and contrast are two important issues in the development of tone
mapping methods. In this paper, we propose a variational method to generate low
dynamic range (LDR) images by using localized Gamma correction for HDR images
to deal with color rendering and contrast issues. Our idea is to employ a weight
map that controls localized Gamma correction in each pixel, and the weights are
determined by minimizing the differences between the contrast of the original HRD
image and that of the LDR image at nearby pixels. By imposing the regularization
of the weight map, the total variational term for the weights is incorporated in the
objective function forGamma correction process.Numerical results based onwidely-
used HDR images are reported to illustrate the effectiveness of the proposed method
and the visibility of the details in tone mapped images compared with the other
testing methods.

Keywords Gamma correction · Total variation · Tone mapping · Dynamic range

1 Introduction

In this paper, we study how to convert a high dynamic range (HDR) image to a low
dynamic range (LDR) image (or a tone mapped image) such tht a common LCD
device can be used to display appropriately. This is called a tone mapping problem
in the literature [1]. Contrast adjustment and brightness preservation are the key
issues to be addressed in the tone mapping problem. Contrast adjustment refers to
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the compression of the dynamic range of luminance values while preserving the
visibility of fine details in tone mapped images. Brightness preservation means that
the visual perception of the brightness of tone mapped images should be close to that
of original HDR images.

Tone mapping methods are usually employed to generate tone mapped images
from HDR images. There are two approaches of tone mapped operators: global
methods and local methods. Global tone mapped operators compress pixel values of
HDR images by using a uniform scaling function regardless of pixel locations. The
main advantage is that the involved computational task is simple and the speed of
this method is very fast. It is clear that fine image details may be degraded because of
adjusting very low and/or high pixel intensity values. In contrast, local tone mapping
methods consider image details and their spatial locations to design a nonuniform
scaling function for pixel values compression.

Given an HDR image recording the radiance values of three colors (red, green and
blue), the (i, j)-th pixel luminance value H(i, j) of an HDR image in RGB color
space [2] is given by

H(i, j) = 0.2126Rh(i, j) + 0.7152Gh(i, j) + 0.0722Bh(i, j), (1)

where Rh(i, j), Gh(i, j) and Bh(i, j) are radiance values of an HDR image at the
(i, j)-th pixel in RGB color space. The calculation of luminance in other color spaces
can be found in [3]. In [4], Tumblin and Rushmeier employed Stevens power-law
observer model [5] and developed a global tone mapping method by matching the
display device brightness and the real world brightness. Their method is to apply
Gamma correction to the HDR luminance to obtain the LDR luminance:

L(i, j) = c1H(i, j)α. (2)

Here α is a positive number determined by the real world luminance and the
display output luminance, and c1 is a positive number to control the scale of the
output. In [6], Ward simplified the above formula by using a linear scaling formula:
L(i, j) = c2H(i, j). Ward proposed to compute the scaling number c2 based on the
minimum luminance difference between the display and the realworld scene detected
by eye. In [7], Schlick proposed a rational scaling formula to obtain the tone mapped
luminance:

L(i, j) = c3H(i, j)

c4H(i, j) + maxi, j {H(i, j)} , (3)

where c3 and c4 are positive numbers set by the user based on the smallest intensity
level on the display device.

Local tone mapping methods utilize pixel information to determine different scal-
ing functions for HDR luminance values. Chiu et al. [8] considered using a nonuni-
form mapping function based on the reciprocal of the local mean of HDR luminance
values S(i, j) and the LDR luminance is given by
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L(i, j) = H(i, j)

S(i, j)
. (4)

The local mean S(·, ·) is obtained based on the low pass filter on the HDR lumi-
nance H(·, ·). This approach preserves the visibility of fine details quite well. How-
ever, halo effectsmay appear at the transition between dark regions and bright regions
due to the gradient inversion. In [9], Ashikhmin developed a nonuniform adaptation
to compute the tone mapped luminance:

L(i, j) = c5
φ(H(i, j)) − φ(Hmin)

φ(Hmax) − φ(Hmin)
, (5)

where c5 is the maximum luminance value a display output can be generated, and
φ is a piecewise capacity function in which different luminance domains have
different responses to handle dark and bright regions in the picture, and Hmax =
max(i, j){H(i, j)} and Hmin = min(i, j){H(i, j)}. However, experimental results in
[9] have shown that artifacts appear at the regions near the edges.

In [10], Tumblin studied the problem of color rendering and proposed to apply the
Gamma correction to each color channel scaled by the HDR luminance. The pixel
values of red, green and blue channels are further weighted by the logarithm of the
HDR luminance (K (i, j) = log H(i, j)). The resulting scheme is given as follows:

Red channel: Rl(i, j) =
[
R(i, j)

H(i, j)

]γ

× K (i, j) (6)

Green channel: Gl(i, j) =
[
G(i, j)

H(i, j)

]γ

× K (i, j) (7)

Blue channel: Bl(i, j) =
[
B(i, j)

H(i, j)

]γ

× K (i, j) (8)

whereγ is a positive number. In [11],Durand andDorsey applied the bilateral filtering
technique [12] to differentiate edges and smooth regions for tone mapped luminance.
The output of bilateral filter contains the decomposition of H(·, ·) into two layers: a
base layer (i.e., smooth regions) B(·, ·) and a detail layer (i.e., edges). The next step
is to employ B(·, ·) in (2) instead of H(·, ·) and combine such compressed the base
layer and the detail layer together to obtain the tonemapped luminance. Experimental
results have shown that the bilateral-based tonemappingmethod is effective. In order
to implement bilateral filtering, four parameters are required to be set in Gaussian
kernels used in the filtering. Recently, Choudhury [13] extended this idea to employ
the trilateral filter in which only one parameter is required.

Similar to the bilateral-based tone mapping method, the retinex-based tone-
mapping method [14] is studied and developed based on the retinex theory [15].
The idea is to use the retinex algorithm to decompose HDR luminance into two
parts: illuminance (base layer) and reflectance (detail layer), and then generate tone
mapped luminance. In [14], Drago et al. conducted several psychophysical experi-
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ments to determine the required parameters in the retinex algorithm so that the most
“natural” looking of tone mapped images can be created. In [16], Meylan proposed
to use the first principal component of the linearly-encoded luminance image as
an input, and applied a power function to generate an initial global tone mapped
image. Then a local adaptation is applied to the global tone mapped image by using a
surround-based retinex method to obtain the resulting tone mapped image. Recently,
Kim [17] investigated a new k-factor decision method (k-factor is one of the parame-
ters in retinex algorithm) to enhance the appearance and naturalness of tone mapped
images in the compression process. It is interesting to note that these retinex-based
tone mapping methods are aimed at achieving a perceptually natural scene of tone
mapped images to the observers.

Another approach of local tone mapping methods is to use histogram adjustment
techniques on the cumulative distribution of H(·, ·) to figure out how to map HDR
values to LDR values [18]. Here the crucial issue is to select the number of histogram
bins and the width of each bin. In [19], Duan et al. addressed the problem of bin width
determination by using histogram equalization techniques. Their idea is to divide the
dynamic range of HDR luminance into many non-overlapping sub-ranges of LDR
luminance recursively where the histogram in each sub-range should be equalized by
finding a suitable bin width. The computational cost of this method is quite costly. In
[20], Qiu andDuan formulated the tonemapping problem as aminimization problem
as follows:

min
s1,s2,··· ,s255

255∑
k=1

(
sk − k

256

)2

+ λ

255∑
k=1

(∫ sk

0
h(x)dx − k

256

)2

(9)

where the display levels of LDR luminance are the integers in between 0 and 255,
the variables sk are the corresponding end-points of the bins in the HDR luminance,
h(x) is the histogram of the HDR image and λ is a parameter to control the balance
between the two terms. The first term is used to construct a uniform partition of
end-points and the second term is used to determine end-points based on histogram
equalization. However, there is no closed form solution for (9). In [21], Qiu et al.
further reformulated (9). Their idea is to find the number of pixels in each bin instead
of the end-points of the bins so that a closed form solution of the new optimization
problem can be obtained. Experimental results have shown the performance of this
approach is pretty well.

In [22], Shan et al. proposed tominimize the difference between theLDRandHRD
images. They assumed that each pixel has a linear relation with its local neighboring
pixels. Their energy minimization problem is given as follows:

min
{L(i, j)},{pk },{qk }

∑
(i, j)

∑
(u,v)∈N (i, j)

[L(i, j) − pkH(u, v) − qk]
2 +

λ(pk − tk)
2, (10)
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where pk is a pixel-wise parameter mainly responsible for scaling the luminance
value H(i, j), qk accounts for intensity offset adjustment,N (i, j) denotes the neigh-
borhood region centered at the (i, j)-th pixel, tk is a positive constant to guide the
value of pk , and λ is a positive parameter to balance between the two terms. Given
an initial L(i, j), the minimum value for pk and qk can be calculated. Then Shan
et al. minimized the energy functional in (10) with respect to L(i, j) where pk and
qk are fixed. This minimization process alternates between L(i, j) and {pk, qk} until
the iterates converge, and the optimized tone mapped luminance can be obtained.

1.1 The Contribution

In this paper, we consider both Gamma correction and total variation based methods
to dealwith color rendering and contrast issues in the tonemapping problem.Our idea
is to design a weight map such that a Gamma correction can be applied to local HDR
luminance. Here the weights are determined by minimizing the differences between
the contrast of the original HDR image and the contrast of the tone mapped image at
neighbor pixels. The advantage of this approach is to preserve local contrast and keep
the detailed information of an HDR image into an LDR image. On the other hand,
we impose the regularization among the weights, the total variation regularization of
the weight map is incorporated in the objective function. The resulting optimization
model consisting of the data-fitting term and the regularization term is convex, and
it can be solved by using many fast convex optimization solvers. In particular, the
alternating direction of multiplier method is used to test several widely-used HDR
images. The LDR results by the proposed model are compared with the other testing
methods. It can be shown that the proposed model can provide visually very good
LDR images.

The outline of this paper is given as follows. In Sect. 2, we present the proposed
model and the algorithm is given. In Sect. 3, numerical examples are presented to
demonstrate the effectiveness of the proposedmodel and the algorithm. Finally, some
concluding remarks are given in Sect. 4.

2 The Proposed Model

Both color rendering and contrast are two important issues in the generation of
LDR images from HDR images. In [23], it has been studied that human perception
is more sensitive to colorfulness at high luminance levels than at low luminance
levels. Also we are more sensitive to contrast at low luminance levels than at high
luminance levels. In our proposal, we employ a nonuniform weight w(i, j) in the
color rendering and contrast model such that these two components can be adapted
to the local information of the given HDR image. More precisely, the LDR values of
the red, green and blue channels are given by
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Red channel: Rl(i, j) =
[
R(i, j)

H(i, j)

]a/w(i, j)

× K (i, j)bw(i, j) (11)

Green channel: Gl(i, j) =
[
G(i, j)

H(i, j)

]a/w(i, j)

× K (i, j)bw(i, j) (12)

Blue channel: Bl(i, j) =
[
B(i, j)

H(i, j)

]a/w(i, j)

× K (i, j)bw(i, j), (13)

where a and b are two positive numbers to control the scaling of the color rendering
and contrast components in the Gamma correction process. We note that the color
rendering component in (11) is similar to that in (6) and the contrast component in
(11) is similar to that in (2). However, a nonuniform map is used in the model. At
the low (high) luminance level, the contrast component K (i, j)bw(i, j) should be pro-
cessed by making w(i, j) to be large (small). Similarly, at the high (low) luminance
level, the color saturation terms [R(i, j)/H(i, j)]a/w(i, j), [G(i, j)/H(i, j)]a/w(i, j)

and [B(i, j)/H(i, j)]a/w(i, j) should be processed making 1/w(i, j) to be large
(small).

The ratio between the (i, j)-th pixel of the HDR image and its neighborhood
(u, v)-th pixel of the HDR image:

log
R(i, j)

R(u, v)
, log

G(i, j)

G(u, v)
, log

B(i, j)

B(u, v)
,

can be viewed as the contrast of the HDR image at i-th pixel. In order to control
localized Gamma correction in (11), the weights are determined by minimizing the
difference between the contrast of theHDR image and the contrast of the LDR image:

log
R(i, j)

R(u, v)
− log

Rl(i, j)

Rl(u, v)
, log

G(i, j)

G(u, v)
− log

Gl(i, j)

Gl(u, v)
,

log
B(i, j)

B(u, v)
− log

Bl(i, j)

Bl(u, v)
.

The summarized data-fitting term for the red, green an blue channels is given by

�(W) ≡
∑

(u,v)∈N (i, j)

(∥∥∥∥log R(i, j)

R(u, v)
− log

Rl(i, j)

Rl(u, v)

∥∥∥∥
2

2

+
∥∥∥∥log G(i, j)

G(u, v)
− log

Gl(i, j)

Gl(u, v)

∥∥∥∥
2

2

+
∥∥∥∥log B(i, j)

B(u, v)
− log

Bl(i, j)

Bl(u, v)

∥∥∥∥
2

2

)
, (14)
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where W = [wi, j ] is a vector containing the unknown weights at all the pixel loca-
tions, andN (i, j) is the neighborhood pixels with respect to the (i, j)-th pixel loca-
tion. For instance, the pixels in the three-by-three window centered at the (i, j)-th
pixel is employed in the experimental section. We note that

log
R(i, j)

R(u, v)
− log

Rl(i, j)

Rl(u, v)
= log

R(i, j)

Rl(i, j)
− log

R(u, v)

Rl(u, v)
.

Therefore, we observe that the data-fitting term can be considered to calculate the
the difference between the original HRD image and the LDR image in the logarithm
domain and force the difference at nearby pixels to be about the same.

In order to minimize the differences among the weights at the nearby pixel loca-
tions, the total variation regularization T V (W) of the weight mapW is incorporated
in the objective function. The resulting objective function is given as follows:

min
W

T V (W) + μ

2
�(W) (15)

where μ is a positive number to control the balance between the data-fitting term
and the regularization term.

2.1 The Algorithm

In this subsection, we develop an algorithm to solve (15). We first rewrite the data-
fitting term. For the red channel, we note by (11) that

log
R(i, j)

R(u, v)
− log

Rl(i, j)

Rl(u, v)

= log
R(i, j)

R(u, v)
− log

⎛
⎜⎜⎜⎝

[
R(i, j)

H(i, j)

]−bw(i, j)

× K (i, j)aw(i, j)

[
R(u, v)

H(u, v)

]−bw(u,v)

× K (u, v)aw(u,v)

⎞
⎟⎟⎟⎠

= log
R(i, j)

R(u, v)
+ w(i, j)

[
a log

R(i, j)

H(i, j)
− b log K (i, j)

]
−

w(u, v)

[
a log

R(u, v)

H(u, v)
− b log K (u, v)

]

= Rc(i, j) + w(i, j)Rs(i, j) − w(u, v)Rs(u, v), (16)

where

Rc(i, j, u, v) = log
R(i, j)

R(u, v)
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and

Rs(i, j) = a log
R(i, j)

H(i, j)
− b log K (i, j).

Similarly, we have

log
G(i, j)

Gl(i, j)
− log

G(u, v)

Gl(u, v)

= Gc(i, j, u, v) + w(i, j)Gs(i, j) − w(u, v)Gs(u, v) (17)

and

log
B(i, j)

Bl(i, j)
− log

B(u, v)

Bl(u, v)

= Bc(i, j, u, v) + w(i, j)Bs(i, j) − w(u, v)Bs(u, v) (18)

where

Gc(i, j, u, v) = log
G(i, j)

G(u, v)
, Bc(i, j, u, v) = log

B(i, j)

B(u, v)
,

Gs(i, j) = a log
G(i, j)

H(i, j)
− b log K (i, j),

and

Bs(i, j) = a log
B(i, j)

H(i, j)
− b log K (i, j).

For an n-by-m given HDR image, we generate an n-by-m LDR image. According
to (16), (17) and (18), we have the stencil values for the (i, j)-th pixel and its neigh-
borhood pixels described in Tables 1, 2, 3 and 4 in the data-fitting term. By using the
lexicographical ordering, we form

W = [w(1, 1), · · · , w(1,m), w(2, 1), · · · , w(n,m)]t ,

Rc = [Rc(1, 1), · · · , Rc(1,m), Rc(2, 1), · · · , Rc(n,m)]t ,

Gc = [Gc(1, 1), · · · ,Gc(1,m),Gc(2, 1), · · · ,Gc(n,m)]t ,

Bc = [Bc(1, 1), · · · , Bc(1,m), Bc(2, 1), · · · , Bc(n,m)]t ,

and R, G and B are the n-by-n block matrix with m-by-m matrix block for the red,
green and blue channels respectively:

[R]k,k = Rs(i, j), [G]k,k = Gs(i, j),

[B]k,k = Bs(i, j),
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Table 1 The pixel (i, j)-th location and its neighborhood pixels for 1 ≤ i ≤ n and 1 ≤ j ≤ m

. . .
.
.
.

.

.

.
.
.
. . .

.

· · · (i − 1, j + 1) (i, j + 1) (i + 1, j + 1) · · ·
· · · (i − 1, j) (i, j) (i + 1, j) · · ·
· · · (i − 1, j − 1) (i, j − 1) (i + 1, j − 1) · · ·
. .
. .

.

.
.
.
.

.

.

.
. . .

Table 2 The red channel stencil values at the corresponding the pixel locations in Table 1
. . .

.

.

.
.
.
.

.

.

. . .
.

· · · −Rs(i − 1, j + 1) −Rs(i, j + 1) −Rs(i + 1, j + 1) · · ·
· · · −Rs(i − 1, j) Rs(i, j) −Rs(i + 1, j) · · ·
· · · −Rs(i − 1, j − 1) −Rs(i, j − 1) −Rs(i + 1, j − 1) · · ·
. .
. .

.

.
.
.
.

.

.

.
. . .

Table 3 The green channel stencil values at the corresponding the pixel locations in Table 1
. . .

.

.

.
.
.
.

.

.

. . .
.

· · · −Gs(i − 1, j + 1) −Gs(i, j + 1) −Gs(i + 1, j + 1) · · ·
· · · −Gs(i − 1, j) Gs(i, j) −Gs(i + 1, j) · · ·
· · · −Gs(i − 1, j − 1) −Gs(i, j − 1) −Gs(i + 1, j − 1) · · ·
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Table 4 The blue channel stencil values at the corresponding the pixel locations in Table 1
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for 1 ≤ k ≤ nm with k = (i − 1) × m + j ; and

[R]k,l = −Rs(u, j), [G]k,l = −Gs(u, j),

[B]k,l = −Bs(u, j),
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for 1 ≤ k �= l ≤ nmwith k = (i − 1) × m + j and l = (u − 1) × m + v. Therefore,
the data-fitting term is given by

�(W) = ‖RW − Rc‖22 + ‖GW − Gc‖22 + ‖BW − Bc‖22.

The regularization term is given by

∥∥∥∥
[
D ⊗ I
I ⊗ D

]
W

∥∥∥∥
2

= ‖D1W‖2

where D is the first-order finite difference matrix. The objective function in (15) can
be re-written as follows:

min
W

‖D1W‖2 +
μ

2

(‖RW − Rc‖22 + ‖GW − Gc‖22 + ‖BW − Bc‖22
)

(19)

The objective function in (19) is convex, and the minimization problem can be
solved efficiently by many convex optimization solvers. Here we present the alter-
nating method of multipliers to solve the problem. The main idea is use an auxiliary
variable Y to equal to D1W, and set up the the augmented Lagrangian equation of
(19):

L(W,Y,�)

= ‖Y‖2 + �t (Y − D1W) + β

2
‖Y − D1W‖22 +

μ

2

(‖RW − Rc‖22 + ‖GW − Gc‖22 + ‖BW − Bc‖22
)
,

(20)

where � is the Lagrangian multiplier and β is a positive number to force that the
linear constraint Y = D1W is satisfied. The iterative algorithm of the alternating
direction of multipliers is given as follows:

Step 1: Initialize W0, �0 and set k = 0

Step 2: Fix Wk , update Yk+1 by:

min
Y

‖Y‖2 + β

2

∥∥∥∥Y − (D1Wk + �k

β
)

∥∥∥∥
2

2

The above minimization subproblem can be easily solved by using the shrinkage
procedure:
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Yk+1 = max

{∥∥∥∥D1Wk + �k

β

∥∥∥∥
2

− 1

β
, 0

}
×

D1Wk + �k/β

‖D1Wk + �k/β‖2 (21)

Step 3: Fix Yk+1, update Wk+1 by:

min
W

β

2

∥∥∥∥Y − (D1W + �k

β
)

∥∥∥∥
2

2

+
μ

2

(‖RW − Rc‖22 + ‖GW − Gc‖22 + ‖BW − Bc‖22
)

The above minimization subproblem is quadratic in W, and the corresponding
normal equation is solved:

[
Dt

1D1 + μ

β

(
RtR + GtG + BtB

)]

= Dt
1

(
Y − �

β

)
+ μ

β

(
RtRc + GtGc + BtBc

)
. (22)

The stencil values of Dt
1D1 is given in Table 5. Then W can be calculated by

solving the above linear equation.

Step 4: Fix Wk+1, Yk+1, update �k+1 by

�k+1 = �k + β(Yk+1 − D1Wk+1) (23)

Step 5: Iterate Steps 2, 3 and 4 until ‖Wk+1 − Wk‖2 ≤ ε.

In the above algorithm, the computation of Step 2 is to perform entry-wise cal-
culation in (21) and its computational cost is of O(nm) operations. It is required to
solve a linear system in (22) in Step 3. When N (i, j) involves the k-by-k window
centered at the (i, j)-th pixel location, the matrices R, G and B are sparse, and each

Table 5 The stencil values of Dt
1D1 at the corresponding the pixel locations in Table 1
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.

.

.
. . .
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row of these matrices has k2 nonzero entries. For the matrix Dt
1D1, each row has

five entries. We can employ an iterative method to solving the linear system in (22).
The computational cost per iteration is of O(k2nm) operations. In [24], an inexact
alternating direction method of multipliers can be employed in the framework. The
computational cost of the proposed method is of O(k2nm) operations. In the next
section, we show experimental results to demonstrate the usefulness of the proposed
model and algorithm.

3 Experimental Results

In this section, we test the proposed tone mapping method on several widely-tested
HDR images. The following parameters are set for all the testing images as follows:
N (i, j) is a 3-by-3 window centered at the (i, j)-th pixel location; the stopping cri-
terion of ε is 1 × 10−3; the initial guess of W0 is a vector of all ones; the initial
Lagrangian multipliers� is a zero vector; the penalty parameter β is equal to 10; the
scaling parameters a and b are 0.6 and 1.2, and the regularization parameterμ is 103.
In the tests, we compared the proposed method with the other tone mapping meth-
ods. These methods include Drago’s adaptive logarithmic method [25], Ashikhmin’s
method [9], Banterle’s method [26], Durand’s bilateral filter based method [11],
Fattal’s gradient domain based method [27], Reinhard’s photographic method [28],
Paris’s method [29], Yee’s segmentation based method [30]. As a comparison, we
also give LDR images when the weight map is set to be uniform, i.e., W is a vector
of all ones.

In Figs. 1, 3, 5, 7, 9 and 11, we show the LRD pictures obtained by different
methods. In Figs. 2, 4, 6, 8, 10 and 12, we display the zoomed regions of LDR images
obtained by different methods in Figs. 1, 3, 5, 7, 9 and 11 so that we can evaluate
their visual performance. In general, we find that the nonuniform map determined
by the proposed method can provide more visible detailed information of testing
images. For all five testing images, it is clear that the visual performance of using
nonuniform map is better than that of using uniform map (W is a vector of all ones).
In Fig. 1, the LDRpictures by Fattal’s andAshikhmin’smethods show good visibility
of details but their contrast are quite low. The LDR pictures by the bilateral filter
based methods (Durand’s method and Paris’s method) show a good contrast, but
their color in in the sky and cloud seems bleached. In Fig. 2, we see that the contrast
of LDR picture generated by the proposed method is better than those by the other
methods. In Figs. 3 and 4, the door entrance are not clear in the LDR pictures by
Drago’s, Ashikhmin’s, Banterle’s, Durand’s, Reinhard’s and Paris’s methods.We see
that the entrance structure is more clear in the tone mapped image by the proposed
method than the pictures by Fattal’s and Yee’s methods. In Fig. 5, the color rendering
of the LDR picture by the proposed method is better than those of the other pictures,
especially in the region of the attached lamps (see 6). Also the items attached at
handling wall in the right hand side of the LDR pictures by the other methods are
not shown very clearly. The proposed method can give these items with a very good
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(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]

Fig. 1 Vinesunset scene
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Fig. 2 The zoomed region
of Vinesunset scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]

visual appearance. In Fig. 7, the proposed method gives a LDR picture with both
good contrast and color rendering. In particular, the windows shown in the zoomed
region in 8 look very good visually compared with those by the other methods. Their
lightening and colors are not natural in the LDR images by the other methods. In
Figs. 9 and 10, the fine details such as car plate number by the proposed method can
be seen clearly. In Figs. 11 and 12, the contrast of the LDR image by the proposed
method is very good.

In general, we find that the proposed method can provide the details in both bright
and dark regions of the scene which has higher visibility than those by the other
tone mapping methods. The main reason is that the data-fitting term is designed by
using (i) both Gamma correction in color rendering and luminance terms, and (ii) the
nonuniform weight map such that different weights can be applied to different local
regions in HDR images. The use of the total variation in (15) for the nonuniform
weight map can avoid the occurrence of “halo” artifacts which often occur in local
mapping methods.
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Fig. 3 Synagogue scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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Fig. 4 The zoomed region
of Synagogue scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]

4 Concluding Remarks

In this paper, we proposed a variational method for handling tonemapping problems.
We combine the step of compressing the luminance and the step of color rendering
into a variational framework by solving a nonuniform weight map for Gamma cor-
rection. The energy function to be minimized consists of a fidelity term and an total
variation regularization term. The alternating method of multipliers algorithm is
applied to solve the minimization problem. The results on several test HDR images
are shown to compare with other well-known tone mapping methods. The results
have shown that the visibility of fine details in both bright and dark regions by the
proposed methods are more clear than other methods. Also the artifacts around the
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Fig. 5 Indoor scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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Fig. 6 The zoomed region
of Indoor scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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Fig. 7 Nave scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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Fig. 8 The zoomed region
of Nave scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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Fig. 9 Car Park scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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Fig. 10 The zoomed region
of Car Park scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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Fig. 11 Belgium scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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Fig. 12 The zoomed region
of Belgium scene

(a) The proposed method
with µ = 1

(b) A uniform weight map
W = 1

(c) Drago’s method [16] (d) Ashikhmin’s method
[11]

(e) Banterle’s method [28] (f) Durand’s method [12]

(g) Fattal’s method [29] (h) Reinhard’s method [30]

(i) Paris’s method [31] (j) Yee’s method [32]
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edges usually occur in local tone mapping methods can be avoided by using the total
variation regularization.

As a future research work, long range dependency among pixels is also an impor-
tant prior, non-local total variation may be considered in the regularization item.
Moreover, deep learning techniques have shown prominent performance in many
image processing problems including tonemapping. SomeCNNbasedmethods have
been proposed, see [31–34]. It would be interesting to study an approach to integrate
the proposed method with CNN to further improve the performance [35, 36].
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On the Optimal Proximal Parameter of
an ADMM-like Splitting Method for
Separable Convex Programming

Bingsheng He and Xiaoming Yuan

Abstract We proposed an ADMM-like splitting method in [11] for solving convex
minimization problems with linear constraints and multi-block separable objective
functions. Its proximal parameter is required to be sufficiently large to theoretically
ensure the convergence, despite that a smaller value of this parameter is preferred
for numerical acceleration. Empirically, this method has been applied to solve var-
ious applications with relaxed restrictions on the parameter, yet no rigorous theory
is available for guaranteeing the convergence. In this paper, we identify the opti-
mal (smallest) proximal parameter for this method and clarify some ambiguity in
selecting this parameter for implementation. For succinctness, we focus on the case
where the objective function is the sum of three functions and show that the optimal
proximal parameter is 0.5. This optimal proximal parameter generates positive indef-
initeness in the regularization of the subproblems, and thus its convergence analysis
is significantly different from those for existing methods of the same kind in the
literature, which all require positive definiteness (or positive semi-definiteness plus
additional assumptions) of the regularization. We establish the convergence and esti-
mate the convergence rate in terms of iteration complexity for the improved method
with the optimal proximal parameter.

Keywords Convex programming · Splitting method · Positive indefinite proximal
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1 Introduction

Our purpose is finding the optimal (smallest) proximal parameter for the splitting
method in [11] for separable convex programming models. To expose our main idea
and technique more clearly, we focus on the special convex minimization problem
with linear constraints and a separable objective function that can be represented as
the sum of three functions without coupled variables:

min{θ1(x) + θ2(y) + θ3(z) | Ax + By + Cz = b, x ∈ X , y ∈ Y, z ∈ Z}, (1)

where A ∈ �m×n1 , B ∈ �m×n2 , C ∈ �m×n3 ; b ∈ �m ; X ⊂ �n1 , Y ⊂ �n2 and Z ⊂
�n3 are closed convex sets; and θi : �ni → � (i = 1, 2, 3) are closed convex but not
necessarily smooth functions. Such a model may arise from a concrete application in
which one of the functions represents a data-fidelity termwhile the other two account
for various regularization terms. We refer to, e.g., [16, 20–23], for some applications
of (1). The solution set of (1) is assumed to be nonempty throughout.

To recall the splitting method in [11] for the model (1), we start from the aug-
mented Lagrangian method (ALM) that was originally proposed in [15, 18]. Let the
Lagrangian and augmented Lagrangian functions of (1) be given, respectively, by

L(x, y, z, λ) = θ1(x) + θ2(y) + θ3(y) − λT (Ax + By + Cz − b), (2)

and

Lβ(x, y, z, λ) = θ1(x) + θ2(y)

+ θ3(z) − λT (Ax + By + Cz − b) + β

2
‖Ax + By + Cz − b‖2.

(3)

In (2) and (3), λ ∈ �m is the Lagrange multiplier; and in (3), β > 0 is the penalty
parameter. When the three-block separable convex minimization model (1) is pur-
posively regarded as a generic convex minimization model and its objective function
is treated as a whole, the ALM in [15, 18] can be applied directly and the resulting
iterative scheme is

{
(xk+1, yk+1, zk+1) = argmin

{
Lβ(x, y, z, λk)

∣∣ x ∈ X , y ∈ Y, z ∈ Z}, (4a)
λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b). (4b)

If two functions in the objective are treated together and two variables in the
constraints are grouped accordingly, the alternating direction method of multipliers
(ADMM) in [5] can also be directly applied to (1). The resulting iterative scheme
reads as
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⎧⎪⎨
⎪⎩

xk+1 = argmin
{
Lβ(x, yk, zk, λk)

∣∣ x ∈ X }, (5a)

(yk+1, zk+1) = argmin
{
Lβ(xk+1, y, z, λk)

∣∣ y ∈ Y, z ∈ Z}, (5b)

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b). (5c)

Unless the functions and/or coefficient matrices in (1) are special enough, direct
applications of theALM (1.4) and theADMM(1.5) usually are not preferred because
the (x, y, z)-subproblem in (1.5b) and (y, z)-subproblem in (1.5b) may still be too
difficult (even when the functions θi per se are relatively easy). Therefore, generally
the three-block model (1) should not be treated as a one-block or two-block case and
the ALM (1.4) or ADMM (1.5) should not be applied directly.

On the other hand, for specific applications of themodel (1), functions in its objec-
tive usually have their own physical explanations andmathematical properties. Thus,
it is usually necessary to treat them individually to design more efficient algorithms.
More accurately, we are interested in such an algorithm that handles these functions
θi individually in its iterative scheme. A natural idea is to split the subproblem in the
original ALM (1.4) in the Jacobian or Gaussian manner; the corresponding schemes
are as follows: ⎧⎪⎪⎨

⎪⎪⎩
xk+1 = argmin

{
Lβ(x, yk, zk, λk) | x ∈ X

}
,

yk+1 = argmin
{
Lβ(xk, y, zk, λk) | y ∈ Y

}
,

zk+1 = argmin
{
Lβ(xk, yk, z, λk) | z ∈ Z

}
,

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b),

(6)

and ⎧⎪⎪⎨
⎪⎪⎩
xk+1 = argmin

{
Lβ(x, yk, zk, λk)

∣∣ x ∈ X
}
,

yk+1 = argmin
{
Lβ(xk+1, y, zk, λk)

∣∣ y ∈ Y
}
,

zk+1 = argmin
{
Lβ(xk+1, yk+1, z, λk)

∣∣ z ∈ Z
}
,

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b).

(7)

All the subproblems in (6) and (7) are easier than the original problem (1); only one
function in its objective and a quadratic termare involved in the x-, y-, z-subproblems.
But, as shown in [1, 8], neither of the schemes (6) and (7) is necessarily convergent.
Therefore, although schemes such as (6) and (7) can be easily generated, the lack of
convergence may require more meticulous theoretical study and algorithmic design
techniques for the three-block case (1). The results in [1, 8] also justify that design-
ing augmented-Lagrangian-based splitting algorithms for the three-block case (1) is
significantly different from that for the one- or two-block case; and they need to be
discussed separately despite that there is a rich literature of the ALM and ADMM.

Despite of their lack of convergence, the schemes (6) and (7) may empirically
work well, see, e.g., [20, 22, 23]. It is thus interesting to design an augmented-
Lagrangian-based splitting method whose iterative scheme is analogous to (6), (7),
or a fused one of both, while its theoretical convergence and empirical efficiency can
be both ensured. The method in [11] is such one; its iterative scheme for (1) reads
as
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin{Lβ(x, yk, zk, λk) | x ∈ X }, (8a)

λk+ 1
2 = λk − β(Axk+1 + Byk + Czk − b), (8b){

yk+1 =argmin{θ2(y)−(λk+ 1
2 )TBy + μβ

2 ‖B(y − yk)‖2 | y ∈ Y},
zk+1 =argmin{θ3(z)−(λk+ 1

2 )TCz + μβ

2 ‖C(z − zk)‖2 | z ∈ Z}, (8c)

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b), (8d)

where the parameter μ is required to be μ ≥ 2 in [11]. The scheme (1.8) has the
simplicity in sense of that each of the x-, y-, and z-subproblems involves just one
function from (1) in its objective. Its efficiency has been verified in [11] by some
sparse and low-rank models and image inpainting problems. Also, it was used in [2]
for solving a dimensionality reduction problem on physical space.

It is easy to see that the scheme (1.8) can be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argmin
{
Lβ(x, yk, zk, λk)

∣∣ x ∈ X }, (9a){
yk+1 = argmin

{
Lβ(xk+1, y, zk, λk) + τβ

2 ‖B(y − yk)‖2 ∣∣ y ∈ Y
}
,

zk+1 = argmin
{
Lβ(xk+1, yk, z, λk) + τβ

2 ‖C(z − zk)‖2 ∣∣ z ∈ Z}, (9b)

λk+1 = λk − β(Axk+1 + Byk+1 + Czk+1 − b), (9c)

with τ = μ − 1 and thus τ ≥ 1 as shown in [11]. The scheme (1.9) shows more
clearly that it is a mixture of the augmented-Lagrangian-based splitting schemes (6)
and (7), in which the x- and (y, z)-subproblems are updated in the alternating order
while the (y, z)-subproblem is further splitted in parallel so that parallel computa-
tion can be implemented to the resulting y- and z-subproblems. Recall the lack of
convergence of (6) and (7). Thus, it is necessary to regularize the splitted y- and
z-subproblems appropriately in (1.9) to ensure the convergence. Indeed, the terms
τβ

2 ‖B(y − yk)‖2 and τβ

2 ‖C(z − zk)‖2 in (1.9) can be regarded as proximal regular-
ization terms with τ as the proximal parameter.

On the other hand, with fixed β, the proximal parameter τ determines the weight
of the proximal terms in the subproblems (1.9b) and its reciprocal plays the role of
step size for an algorithm implemented internally to solve the subproblems (1.9b).
We hence prefer smaller values of τ whenever the convergence of (1.9) can be
theoretically guaranteed. As mentioned, in [11], we have shown that the condition
τ ≥ 1 is sufficient to ensure the convergence of (1.9).While, numerically, as shown in
[11] and also in [2] (see SectionV, PartB, Pages 3247–3248), it has been observed that
values very close to 1 are preferred for τ . For example,μ = 2.01, i.e., τ = 1.01, was
recommended in [11] and used in [2] to result in faster convergence. This raises the
necessity of seeking the optimal (smallest) value of τ that can ensure the convergence
of (1.9). The main purpose of this paper is to rigorously prove that the optimal value
of τ is 0.5 for the method (1.9). That is, any τ > 0.5 ensures the convergence of (1.9)
yet any τ ∈ (0, 0.5) yields divergence.
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Note that, because of our analysis in [1], without loss of the generality, we can just
assume β ≡ 1. That is, the augmented Lagrangian function defined in (3) is reduced
to

L(x, y, z, λ) = θ1(x) + θ2(y) + θ3(z)

− λT (Ax + By + Cz − b) + 1

2
‖Ax + By + Cz − b‖2; (10)

and the iterative scheme of (1.9) is now simplified as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk+1 = argmin
{
L(x, yk, zk, λk)

∣∣ x ∈ X }, (11a){
yk+1 = argmin

{
L(xk+1, y, zk, λk) + τ

2‖B(y − yk)‖2 ∣∣ y ∈ Y
}
,

zk+1 = argmin
{
L(xk+1, yk, z, λk) + τ

2‖C(z − zk)‖2 ∣∣ z ∈ Z}, (11b)

λk+1 = λk − (Axk+1 + Byk+1 + Czk+1 − b). (11c)

The rest of this paper is organized as follows. We recall some preliminaries in
Sect. 2. In Sect. 3, we show why positive indefiniteness occurs in the proximal reg-
ularization for the scheme (1.11) when τ > 0.5. Then, we provide an explanation
in the prediction-correction framework for (1.11) in Sect. 4; and focus on analyzing
an important quadratic term in Sect. 5 that is the key for conducting convergence
analysis for (1.11). The convergence of (1.11) with τ > 0.5 is proved in Sect. 6; and
the divergence of (1.11) with τ ∈ (0, 0.5) is shown in Sect. 7 by an example. We
estimate the worst-case convergence rate in terms of iteration complexity for the
scheme (1.11) in Sect. 8. Finally, we make some conclusions in Sect. 9.

2 Preliminaries

In this section, we recall some preliminary results for further analysis. First of all, a
pair of

(
(x∗, y∗, z∗), λ∗) is called a saddle point of the Lagrangian function defined

in (2) if it satisfies the inequalities

Lλ∈�m (x∗, y∗, z∗, λ) ≤ L(x∗, y∗, z∗, λ∗) ≤ Lx∈X ,y∈Y,z∈Z(x, y, z, λ∗).

Or, we can rewrite these inequalities as

⎧⎪⎪⎨
⎪⎪⎩
x∗ = argmin{L(x, y∗, z∗, λ∗) | x ∈ X },
y∗ = argmin{L(x∗, y, z∗, λ∗) | y ∈ Y},
z∗ = argmin{L(x∗, y∗, z, λ∗) | z ∈ Z},
λ∗ = argmax{L(x∗, y∗, z∗, λ) | λ ∈ �m}.

(12)
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Indeed, a saddle point of the Lagrangian function defined in (2) can also be
characterized by the following variational inequality:

⎧⎪⎪⎨
⎪⎪⎩
x∗ ∈ X , θ1(x) − θ1(x∗) + (x − x∗)T (−ATλ∗) ≥ 0, ∀ x ∈ X ,

y∗ ∈ Y, θ2(y) − θ2(y∗) + (y − y∗)T (−BTλ∗) ≥ 0, ∀ y ∈ Y,

z∗ ∈ Z, θ3(z) − θ3(z∗) + (z − z∗)T (−CTλ∗) ≥ 0, ∀ z ∈ Z,

λ∗ ∈ �m, (λ − λ∗)T (Ax∗ + By∗ + Cz∗ − b) ≥ 0, ∀ λ ∈ �m .

(13)

We call (x, y, z) and λ the primal and dual variables, respectively.
The optimality condition of the model (1) can be characterized by the monotone

variational inequality:

w∗ ∈ �, θ(u) − θ(u∗) + (w − w∗)T F(w∗) ≥ 0, ∀w ∈ �, (14a)

where

u =
⎛
⎝ x

y
z

⎞
⎠ , θ(u) = θ1(x) + θ2(y) + θ3(z), w =

⎛
⎜⎜⎝

x
y
z
λ

⎞
⎟⎟⎠ , F(w) =

⎛
⎜⎜⎝

−AT λ

−BT λ

−CT λ

Ax + By + Cz − b

⎞
⎟⎟⎠
(14b)

and
� = X × Y × Z × �m .

We denote by �∗ the solution set of (14). Note that the operator F in (14b) is
affine with a skew-symmetric matrix and thus we have

(w − w̄)T (F(w) − F(w̄)) = 0, ∀w, w̄. (15)

3 The Positive Indefiniteness of (1.11) with τ > 0.5

In this section, we revisit the scheme (1.11) from the variational inequality per-
spective; and show that it can be represented as a proximal version of the direct
application of ADMM (1.5) but the proximal regularization term is not positive defi-
nite for the case of τ > 0.5. The positive indefiniteness of the proximal regularization
excludes the application of a vast set of known convergence results in the literature
of ADMM and its proximal versions, because they all require positive definiteness
or semi-definiteness (plus additional assumptions on the model (1)) for the proximal
regularization term to validate the convergence analysis.

Let us first take a look at the optimality conditions of the subproblems in (1.11).
Note that the subproblem (1.11b) are specified as
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yk+1 = argmin
{
θ2(y) − yT Bλk

+ 1

2
‖Axk+1 + By + Czk − b‖2 + τ

2
‖B(y − yk)‖2 | y ∈ Y}, (16a)

and

zk+1 = argmin
{
θ3(z) − zTCλk

+ 1

2
‖Axk+1 + Byk + Cz − b‖2 + τ

2
‖C(z − zk)‖2 | z ∈ Z}. (16b)

Thus, the optimality condition of the y-subproblem in (1.11b) can be written as
yk+1 ∈ Y and

θ2(y) − θ2(y
k+1) + (y − yk+1)T

(−BT λk + BT (Axk+1 + Byk+1 + Czk − b)
+τ BT B(yk+1 − yk )

)
≥ 0, ∀y ∈ Y;

or equivalently: yk+1 ∈ Y and

θ2(y) − θ2(y
k+1) + (y − yk+1)T

(−BT λk + BT (Axk+1 + Byk+1 + Czk+1 − b)
τ BT B(yk+1 − yk ) − BT C(zk+1 − zk )

)
≥ 0, ∀y ∈ Y .

(17a)

Similarly, the optimality condition of the z-subproblem in (1.11b) can be written
as zk+1 ∈ Z and

θ3(z) − θ3(z
k+1) + (z − zk+1)T

(−CT λk + CT (Axk+1 + Byk+1 + Czk+1 − b)
−CT B(yk+1 − yk ) + τCT C(zk+1 − zk )

)
≥ 0, ∀z ∈ Z.

(17b)

Then, with (1.11c), we can rewrite the inequalities (17a) and (17b) as
(yk+1, zk+1) ∈ Y × Z and

(
θ2(y) − θ2(yk+1)

θ3(z) − θ3(zk+1)

)
+
(
y − yk+1

z − zk+1

)T{(−BTλk+1

−CTλk+1

)
+ D0

(
yk+1 − yk

zk+1 − zk

)}
≥ 0, ∀ (y, z) ∈ Y × Z, (18)

where

D0 =
(

τ BT B −BTC
−CT B τCTC

)
. (19)

Obviously, D0 is positive semidefinite and indefinite when τ ≥ 1 and τ ∈ (0, 1),
respectively.

Then, it is easy to see that the scheme (1.11) can be rewritten as
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+1 = argmin
{L(x, yk , zk , λk)

∣∣ x ∈ X }, (20a)(
yk+1

zk+1

)
= argmin

{
L(xk+1, y, z, λk) + 1

2

∥∥∥∥ y − yk

z − zk

∥∥∥∥2
D0

∣∣∣∣ (y, z) ∈ Y × Z
}

,(20b)

λk+1 = λk − (Axk+1 + Byk+1 + Czk+1 − b), (20c)

Comparing (3.5b) with (1.5b) (note that β = 1), we see that the scheme (1.11)
can be symbolically represented as a proximal version of (1.5) in which the (y, z)-
subproblem is proximally regularized by a proximal term. But the difficulty is that
D0 defined in (19) is positive indefinite when τ ∈ (0.5, 1). Indeed, our analysis in
[11] requires τ ≥ 1 and thus the positive semidefiniteness of D0 is ensured. For
this case, the convergence analysis is relatively easy because it can follow some
techniques used for the proximal point algorithm which is originated from [17, 19].
For the case where τ is relaxed to τ > 0.5 and hence the matrix D0 in (19) is
positive indefinite, the analysis in [11] and other literatures is not applicable and
more sophisticated techniques are needed for proving the convergence of the scheme
(1.11) with τ > 0.5.

4 A Prediction-Correction Explanation of (1.11)

In this section, we show that the scheme (1.11) can be expressed by a prediction-
correction framework. This prediction-correction explanation is only for the conve-
nience of theoretical analysis and there is no need to follow this prediction-correction
framework to implement the scheme (1.11).

In the scheme (1.11), we see that xk is not needed to generate the next (k + 1)-th
iterate; only (yk, zk, λk) are needed. Thus, we call x the intermediate variable; and
(y, z, λ) essential variables. To distinguish their roles, accompaniedwith the notation
in (14b), we additionally define the notation

v =
⎛
⎝ y

z
λ

⎞
⎠ , V = Y × Z × Rm and V∗ = {(y∗, z∗, λ∗) | (x∗, y∗, z∗, λ∗) ∈ �∗}.

(21)
Moreover, we introduce the auxiliary variables w̃k = (x̃ k, ỹk, z̃k, λ̃k) defined by

x̃ k = xk+1, ỹk = yk+1, z̃k = zk+1 and λ̃k = λk − (Axk+1 + Byk + Czk − b),
(22)

where (xk+1, yk+1, zk+1) is the iterate generated by the scheme (1.11) from the given
one (yk, zk, λk). Using these notations, we have
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λk+1 = λk − (Axk+1 + Byk+1 + Czk+1 − b)

= [λk − (Axk+1 + Byk + Czk − b)] + B(yk − yk+1) + C(zk − zk+1)

= λ̃k + B(yk − ỹk) + C(zk − z̃k). (23)

Now, we interpret the optimality conditions of the subproblems in (1.11) by
using the auxiliary variables w̃k . First, ignoring some constant terms, the subproblem
(1.11.a) is equivalent to

xk+1 = argmin
{
θ1(x) − xT Aλk + 1

2
‖Ax + Byk + Czk − b‖2 | x ∈ X };

and its optimality condition can be rewritten as

x̃ k ∈ X , θ1(x) − θ1(x̃
k) + (x − x̃ k)T (−AT λ̃k) ≥ 0, ∀ x ∈ X . (24a)

Using (23), yk+1 = ỹk and zk+1 = z̃k , the inequalities (17a) and (17b) can be written
as

ỹk ∈ Y, θ2(y) − θ2(ỹ
k) + (y − ỹk)T {−BT λ̃k + (1 + τ)BT B(ỹk − yk)} ≥ 0, ∀ y ∈ Y

and

z̃k ∈ Z, θ3(z) − θ3(z̃
k) + (z − z̃k)T {−CT λ̃k + (1 + τ)CTC(z̃k − zk)} ≥ 0, ∀ z ∈ Z,

respectively. Thus, the inequality (18) becomes (ỹk, z̃k) ∈ Y × Z and

(
θ2(y) − θ2(ỹk)
θ3(z) − θ3(z̃k)

)
+
(
y − ỹk

z − z̃k

)T{(−BT

−CT

)
λ̃k +

+ (1 + τ)

(
BT B 0
0 CTC

)(
ỹk − yk

z̃k − zk

)}
≥ 0, ∀(y, z) ∈ Y × Z. (24b)

Note that the equality λ̃k = λk − (Axk+1 + Byk + Czk − b) in (22) can bewritten
as the variational inequality form

λ̃k ∈ �m , (λ − λ̃k )T {(Ax̃k + B ỹk + Cz̃k − b) − B(ỹk − yk) − C(z̃k − zk) + (λ̃k − λk )} ≥ 0, ∀λ ∈ �m .

(24c)
Therefore, it follows from the inequalities (24a), (24b) and (24c) that the auxil-
iary variable w̃k = (x̃ k, ỹk, z̃k, λ̃k) defined in (22) satisfies the following variational
inequality.
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Prediction Step

w̃k ∈ �, θ(u) − θ(ũk ) + (w − w̃k )T F(w̃k ) ≥ (v − ṽk )T Q(vk − ṽk ), ∀w ∈ �, (25a)

where

Q =
⎛
⎝ (1 + τ)BT B 0 0

0 (1 + τ)CTC 0
−B −C Im

⎞
⎠ . (25b)

We call the auxiliary variable w̃k = (x̃ k, ỹk, z̃k, λ̃k) as the predictor. Using (23),
the update form (1.11c) can be represented as

λk+1 = λk − (Axk+1 + Byk+1 + Czk+1 − b) = λk − [−B(yk − ỹk ) − C(zk − z̃k ) + (λk − λ̃k )].

Recall we define by v in (21) the essential variables for the scheme (1.11). The new
essential variables of (1.11), vk+1 = (yk+1, zk+1, λk+1), are updated by the following
scheme:

Correction Step
vk+1 = vk − M(vk − ṽk), (26a)

where

M =
⎛
⎝ I 0 0

0 I 0
−B −C Im

⎞
⎠ . (26b)

Overall, the scheme (1.11) can be explained by a prediction-correction framework
which generates a predictor characterized by the step (4.5) and then corrects it by the
step (4.6). As we shall show, the inequality (4.5) indicates the discrepancy between
w̃k and a solution point of the variational inequality (14) and it plays an important role
in the convergence analysis for the scheme (1.11). Indeed, we can further investigate
the inequality (4.5) and derive a new right-hand side that is more preferred for
establishing the convergence. For this purpose, let us define a matrix as

H =
⎛
⎝ (1 + τ)BT B 0 0

0 (1 + τ)CTC 0
0 0 Im

⎞
⎠ , (27)

which is positive definite for any τ > 0 when B and C are both full column rank.
Then, for thematrices Q andM defined in (4.5b) and (4.6b), respectively, it obviously
holds that

Q = HM. (28)

In the following lemma, we further analyze the right-hand side of (4.5) and show
more explicitly the difference of the proof for the convergence of (1.11) with τ > 0.5
from that with τ ≥ 1 in [11].
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Theorem 4.1 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then, w̃k ∈ � and

θ(u) − θ(ũk ) + (w − w̃k )T F(w) ≥ 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
) + 1

2
(vk − ṽk )T G(vk − ṽk ), ∀w ∈ �, (29)

where
G = QT + Q − MT HM. (30)

Proof Using Q = HM (see (28)) and the relation (4.6a), the right-hand side of
(4.5a) can be written as

(v − ṽk)T H(vk − vk+1),

and hence we have

θ(u) − θ(ũk) + (w − w̃k)T F(w̃k) ≥ (v − ṽk)T H(vk − vk+1), ∀w ∈ �. (31)

Applying the identity

(a − b)T H(c − d) = 1

2
{‖a − d‖2H − ‖a − c‖2H } + 1

2
{‖c − b‖2H − ‖d − b‖2H },

to the right-hand side of (31) with

a = v, b = ṽk, c = vk, and d = vk+1,

we obtain

(v − ṽk )T H(vk − vk+1) = 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
) + 1

2
(‖vk − ṽk‖2H−‖vk+1 − ṽk‖2H ).

(32)
For the last term of (32), we have

‖vk − ṽk‖2H − ‖vk+1 − ṽk‖2H
= ‖vk − ṽk‖2H − ‖(vk − ṽk) − (vk − vk+1)‖2H
4.6a= ‖vk − ṽk‖2H − ‖(vk − ṽk) − M(vk − ṽk)‖2H
= 2(vk − ṽk)T HM(vk − ṽk) − (vk − ṽk)T MT HM(vk − ṽk)

= (vk − ṽk)T (QT + Q − MT HM)(vk − ṽk)

4.10= (vk − ṽk)T G(vk − ṽk). (33)

Substituting (33) into (32), we get
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(v − ṽk)T H(vk − vk+1) = 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
)

+ 1

2
(vk − ṽk)T G(vk − ṽk). (34)

Recall that (w − w̃k)T F(w̃k) = (w − w̃k)T F(w) (see (15)). Using this fact, the
assertion of this lemma follows from (31) and (34) directly. �

When G given in (30) is positive definite, as shown in [11], it is relatively easier
to use the assertion (29) to prove the global convergence and estimate its worst-case
convergence rate in terms of iteration complexity, see, e.g., [7, 14] for details and [6]
(Sections 4 and 5 therein) for a tutorial proof. For the matrix G given in (30), since
HM = Q and MT HM = MT Q, we have

MT HM =
⎛
⎝ I 0 −BT

0 I −CT

0 0 Im

⎞
⎠
⎛
⎝ (1 + τ)BT B 0 0

0 (1 + τ)CTC 0
−B −C Im

⎞
⎠

=
⎛
⎝ (2 + τ)BT B BTC −BT

CT B (2 + τ)CTC −CT

−B −C Im

⎞
⎠ .

Then, using (4.5b) and the above equation, we have

G = (QT + Q) − MT HM

=
⎛
⎝ (2 + 2τ)BT B 0 −BT

0 (2 + 2τ)CTC −CT

−B −C 2Im

⎞
⎠

−
⎛
⎝ (2 + τ)BT B BT C −BT

CT B (2 + τ)CTC −CT

−B −C Im

⎞
⎠

=
⎛
⎝ τ BT B −BTC 0

−CT B τCTC 0
0 0 Im

⎞
⎠ . (35)

By using the notation D0 (see (19)), the matrix G can be rewritten as

G =
⎛
⎝D0

0
0

0 0 I

⎞
⎠ .

Obviously, the proximal matrix D0 in (19) can be rewritten as

D0 = (τ − 1)

(
BT B 0
0 CTC

)
+
(

BT

−CT

) (
B,−C

)
. (36)
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Therefore, for τ ∈ ( 12 , 1),G is positive indefinite because thematrix D0 is not so. The
positive indefiniteness of G is indeed the main difficulty of proving the convergence
of the scheme (1.11) with τ > 0.5; and we need to look into the quadratic term
(vk − ṽk)T G(vk − ṽk) more intensively.

5 Investigation of the Quadratic Term
(vk − ṽk)TG(vk − ṽk)

Asmentioned, the keypoint of proving the convergence of the scheme (1.11)with τ >

0.5 is to analyze the quadratic term (vk − ṽk)T G(vk − ṽk) which is not guaranteed
to be positive. In this section, we focus on investigating this term and show that

(vk − ṽk)T G(vk − ṽk) ≥ ψ(vk, vk+1) − ψ(vk−1, vk) + ϕ(vk, vk+1), (37)

where ψ(·, ·) and ϕ(·, ·) are both non-negative functions. The first two terms
ψ(vk, vk+1) − ψ(vk−1, vk) in the right-hand side of (37) can be manipulated consec-
utively between iterates and the last term ϕ(vk, vk+1) should be such an error bound
that can measure how much wk+1 fails to be a solution point of (14). If we find such
functions that guarantee the assertion (37), then we can substitute it into (29) and get
the inequality

θ(u) − θ(ũk) + (w − w̃k)T F(w)

≥ 1

2

(‖v − vk+1‖2H + ψ(vk, vk+1)
) − 1

2

(‖v − vk‖2H + ψ(vk−1, vk)
)

+1

2
ϕ(vk, vk+1), ∀w ∈ �. (38)

As we shall show, all the components of the right-hand side of (38) in parentheses
should be positive to establish the convergence and convergence rate of (1.11). It is
indeed this requirement that implies our restriction of τ > 0.5. We show the details
in Theorem 5.5, preceded by several lemmas. Similar techniques for the convergence
analysis of the ADMM are referred to, e.g. [4, 9, 10, 12].

Lemma 5.1 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then we have

(vk − ṽk)T G(vk − ṽk)

= (1 + τ)‖B(yk − yk+1)‖2 + (1 + τ)‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2
+2(λk − λk+1)T

(
B(yk − yk+1) + C(zk − zk+1)

)
. (39)

Proof First, according to (35), we have
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G =
⎛
⎝τ BT B −BTC 0

−CT B τCTC 0
0 0 Im

⎞
⎠ =

⎛
⎝(1 + τ)BT B 0 0

0 (1 + τ)CTC 0
0 0 Im

⎞
⎠ −

⎛
⎝BT B BTC 0
CT B CTC 0
0 0 0

⎞
⎠

and thus

(vk − ṽk)T G(vk − ṽk) = (1 + τ)‖B(yk − ỹk)‖2 + (1 + τ)‖C(zk − z̃k)‖2 + ‖λk − λ̃k‖2
−‖B(yk − ỹk) + C(zk − z̃k)‖2.

For the term ‖λk − λ̃k‖2 in the right-hand side of the above equation, because x̃ k =
xk+1,

λk − λ̃k = Axk+1 + Byk + Czk − b and Axk+1 + Byk+1 + Czk+1 − b = λk − λk+1,

we have
λk − λ̃k = B(yk − yk+1) + C(zk − zk+1) + (λk − λk+1).

Finally, by a manipulation, we get

(vk − ṽk)T G(vk − ṽk)

= (1 + τ)‖B(yk − yk+1)‖2 + (1 + τ)‖C(zk − zk+1)‖2
−‖B(yk − yk+1) + C(zk − zk+1)‖2
+‖B(yk − yk+1) + C(zk − zk+1) + (λk − λk+1)‖2

= (1 + τ)‖B(yk − yk+1)‖2 + (1 + τ)‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2
+2(λk − λk+1)T

(
B(yk − yk+1) + C(zk − zk+1)

)
.

The lemma is proved. �
For further analysis, we will divide the crossing term 2(λk − λk+1)T

(
B(yk −

yk+1) + C(zk − zk+1)
)
in the right-hand side of (39) into two parts and give their

lower bounds by quadratic terms.

Lemma 5.2 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then we have

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥ (

ψ(vk , vk+1) − ψ(vk−1, vk)
) − 2(1 − τ)

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2), (40)

where

ψ(vk , vk+1) = 1

2

(∥∥∥∥ yk − yk+1

zk − zk+1

∥∥∥∥
2

D
+ (1 − τ)

(
‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2

))

(41)
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with

D =
(

BT

−CT

) (
B,−C

)
. (42)

Proof Recall (18). It holds that

(yk+1, zk+1) ∈ Y × Z,

(
θ2(y) − θ2(yk+1)

θ3(z) − θ3(zk+1)

)
+
(
y − yk+1

z − zk+1

)T

{(−BT

−CT

)
λk+1 + D0

(
yk+1 − yk

zk+1 − zk

)}
≥ 0, ∀(y, z) ∈ Y × Z. (43)

Analogously, for the previous iteration, we have

(yk , zk) ∈ Y × Z,

(
θ2(y) − θ2(yk)
θ3(z) − θ3(zk)

)
+
(
y − yk

z − zk

)T

{(−BT

−CT

)
λk + D0

(
yk − yk−1

zk − zk−1

)}
≥ 0, ∀(y, z) ∈ Y × Z. (44)

Setting (y, z) = (yk, zk) and (y, z) = (yk+1, zk+1) in (43) and (44), respectively,
and adding them, we get

(
yk − yk+1

zk − zk+1

)T{(
BT

CT

)
(λk − λk+1) + D0

[(
yk+1 − yk

zk+1 − zk

)
−
(
yk − yk−1

zk − zk−1

)]}
≥ 0.

Consequently, we have

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥
(
yk − yk+1

zk − zk+1

)T

D0

[(
yk − yk+1

zk − zk+1

)
−
(
yk−1 − yk

zk−1 − zk

)]
. (45)

From (19) and (42) we get

D0 = D − (1 − τ)

(
BT B 0
0 CTC

)
.

Thus, using Cauchy-Schwaez inequality, from (45) we obtain
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(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥
(
yk − yk+1

zk − zk+1

)T {
D − (1 − τ)

(
BT B 0
0 CTC

)}[(
yk − yk+1

zk − zk+1

)
−
(
yk−1 − yk

zk−1 − zk

)]

=
∥∥∥∥ yk − yk+1

zk − zk+1

∥∥∥∥
2

D

−
(
yk − yk+1

zk − zk+1

)T

D

(
yk−1 − yk

zk−1 − zk

)

−(1 − τ)
(
‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2

)

+(1 − τ)

(
yk − yk+1

zk − zk+1

)T (
BT B 0
0 CTC

)(
yk−1 − yk

zk−1 − zk

)

≥ 1

2

∥∥∥∥ yk − yk+1

zk − zk+1

∥∥∥∥
2

D

− 1

2

∥∥∥∥ yk−1 − yk

zk−1 − zk

∥∥∥∥
2

D

−3

2
(1 − τ)

(
‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2

)
−1

2
(1 − τ)

(
‖B(yk−1 − yk)‖2 + ‖C(zk−1 − zk)‖2

)
, (46)

where the last inequality is because of the Cauchy-Schwarz inequality. Manipulating
the right-hand side of (46) recursively and using the notation of ψ(·, ·) (see (41)),
we get (40) and the lemma is proved. �

In addition to (40), we need to the term (λk − λk+1)T
(
B(yk − yk+1) + C(zk −

zk+1)
)
by an another quadratic terms. This is done by the following lemma.

Lemma 5.3 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then, for τ ∈ (0.5, 1), we have

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥ −τ

(
‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2

)
−
(3
2

− τ
)
‖λk − λk+1‖2. (47)

Proof Setting δ = τ − 1
2 . Because τ ∈ (0.5, 1), we have δ ∈ (0, 0.5). Using the

Cauchy-Schwarz inequality twice, we get

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥ − 1

4(1 − δ)
‖B(yk − yk+1) + C(zk − zk+1)‖2 − (1 − δ)‖λk − λk+1‖2

≥ − 1

2(1 − δ)

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2) − (1 − δ)‖λk − λk+1‖2.

Since δ ∈ (0, 0.5), we have
1

2(1 − δ)
<

1

2
+ δ,
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and thus

(λk − λk+1)T
(
B(yk − yk+1) + C(zk − zk+1)

)
≥ −(1

2
+ δ

)(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2) − (1 − δ)‖λk − λk+1‖2.

Substituting δ = τ − 1
2 in the above inequality, we get (47) and the lemma is

proved. �

Recall that we want to bound the quadratic term (vk − ṽk)T G(vk − ṽk) in the
form of (38). Our previous analysis enables us to achieve it; and this is the basis of
the convergence analysis to be shown soon.

Lemma 5.4 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then, for τ ∈ (0.5, 1), we have

(vk − ṽk)T G(vk − ṽk) ≥ (
ψ(vk, vk+1) − ψ(vk−1, vk)

) + ϕ(vk, vk+1), (48)

where ψ(vk, vk+1) is defined in (41) and

ϕ(vk, vk+1) = (
τ − 1

2

)(
2‖B(yk − yk+1)‖2 + 2‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2).

(49)

Proof Substituting (40) and (47) into (39), we get

(vk − ṽk)T G(vk − ṽk)

≥ (1 + τ)‖B(yk − yk+1)‖2 + (1 + τ)‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2
+(

ψ(vk , vk+1) − ψ(vk−1, vk)
) − 2(1 − τ)

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2)
−τ

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2) − (3
2

− τ
)‖λk − λk+1‖2

= (
ψ(vk , vk+1) − ψ(vk−1, vk)

)
+(2τ − 1)

(‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2) + (
τ − 1

2

)‖λk − λk+1‖2.

The assertion of this lemma follows from the definition of ϕ(vk, vk+1) directly.�
Finally, substituting (48) into (29), we obtain the following theorem directly. This

theorem plays a fundamental role in proving the convergence of (1.11) with τ > 0.5.
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Theorem 5.5 Let {wk} be the sequence generated by (1.11) for the problem (1) and
w̃k be defined by (22). Then we have

θ(u) − θ(ũk) + (w − w̃k)T F(w) ≥ 1

2

(‖v − vk+1‖2H + ψ(vk , vk+1)
) − 1

2

(‖v − vk‖2H
+ψ(vk−1, vk)

) + 1

2
ϕ(vk , vk+1), ∀ w ∈ �, (50)

where ψ(vk, vk+1) and ϕ(vk, vk+1) are defined in (41) and (49), respectively.

6 Convergence

As mentioned, proving the convergence of the scheme (1.11) with τ > 0.5 essen-
tially relies on Theorem 5.5. With Theorem 5.5, the remaining part of the proof is
subroutine. In this section, we present the convergence of the scheme (1.11) with
τ > 0.5; a lemma is first proved to show the contraction property of the sequence
generated by (1.11).

Lemma 6.1 Let {wk} be the sequence generated by (1.11) with τ > 0.5 for the
problem (1). Then we have

(‖vk+1 − v∗‖2H + ψ(vk, vk+1)
) ≤ (‖vk − v∗‖2H + ψ(vk−1, vk)

) − ϕ(vk, vk+1),

(51)
where ψ(vk, vk+1) and ϕ(vk, vk+1) are defined in (41) and (49), respectively.

Proof Setting w = w∗ in (50) and using

θ(ũk) − θ(u∗) + (w̃k − w∗)T F(w∗) ≥ 0,

we obtain the assertion (51) immediately. �

Theorem 6.2 Let {wk} be the sequence generated by (1.11) with τ > 0.5 for the
problem (1). Then the sequence {vk} converges to a v∞ ∈ V∗ when B and C are both
full column rank.

Proof First, it follows from (51) and (49) that

(τ − 1

2
)
(
2‖B(yk − yk+1)‖2 + 2‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2

)
≤ (‖vk − v∗‖2H + ψ(vk−1, vk)

) − (‖vk+1 − v∗‖2H + ψ(vk, vk+1)
)
.

Summarizing the last inequality over k = 1, 2, . . ., we obtain
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∞∑
k=1

{
(τ − 1

2
)
(
2‖B(yk − yk+1)‖2 + 2‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2

)}
≤ ‖v1 − v∗‖2H + ψ(v0, v1)

and thus

lim
k→∞ ‖B(yk − yk+1)‖2 + ‖C(zk − zk+1)‖2 + ‖λk − λk+1‖2 = 0. (52)

For an arbitrarily fixed v∗ ∈ V∗, it follows from (51) that, for any k > 1, we have

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H + ψ(vk−1, vk) ≤ ‖v1 − v∗‖2H + ψ(v0, v1). (53)

Thus the sequence {vk} is bounded. BecauseM is non-singular, according to (4.6),
{ṽk} is also bounded. Let v∞ be a cluster point {ṽk} and {ṽk j } be the subsequence of
{ṽk} converging to v∞. Let x∞ be the vector induced by given (y∞, z∞, λ∞) ∈ V .
Then, it follows from (31) that

w∞ ∈ �, θ(u) − θ(u∞) + (w − w∞)T F(w∞) ≥ 0, ∀w ∈ �,

which means w∞ is a solution point of (14) and its essential part v∞ ∈ V∗. Since
v∞ ∈ V∗, it follows from (53) that

‖vk+1 − v∞‖2H ≤ ‖vk − v∞‖2H + ψ(vk−1, vk). (54)

Together with (52), it is impossible that the sequence {vk} has more than one
cluster point. Thus {vk} converges to v∞ and the proof is complete. �

Remark 6.3 Note that the convergence of (1.11) with τ > 0.5 in terms of the
sequence {vk} is proved in Theorem 6.2 under the assumption that both B and C
are full column rank. Without this assumption, weaker convergence results in terms
of {Byk,Czk} can be derived. We refer to Sect. 6 in [11] for details.

7 The Optimality of τ = 0.5

We have proved the convergence of (1.11) with τ > 0.5; the key is sufficiently
ensuring the non-negativeness of the coefficients in the right-hand side of (50). In
this section, we show by an example that any τ ∈ (0, 0.5) may yield divergence of
(1.11). Hence, τ = 0.5 is the watershed, or optimal value, to ensure the convergence
of (1.11).
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For any given τ < 0.5, we take ε = 0.5 − τ > 0 and consider the problem

min{x + ε

2
y2 + ε

2
z2 | x + y + z = 0, x ∈ {0}, y ∈ �, z ∈ �}, (55)

which is a special case of the model (1). Obviously, the solution of this problem is
x = y = z = 0.

The augmented Lagrangian function of the problem (55) with a penalty parameter
of 1 is

L(x, y, z, λ) = x + ε

2
y2 + ε

2
z2 − λT (x + y + z) + 1

2
‖x + y + z‖2;

and the iterative scheme (1.11) for (55) is⎧⎪⎪⎨
⎪⎪⎩
xk+1 = argmin

{
L(x, yk, zk, λk)

∣∣ x ∈ {0}},
yk+1 = argmin

{
L(xk+1, y, zk, λk) + τ

2‖y − yk‖2 ∣∣ y ∈ �},
zk+1 = argmin

{
L(xk+1, yk, z, λk) + τ

2‖z − zk‖2 ∣∣ z ∈ �},
λk+1 = λk − (xk+1 + yk+1 + zk+1).

(56)

Since X = {0}, we have xk+1 ≡ 0. Ignoring constant terms in the objective func-
tion of the subproblems, the recursion (56) becomes

⎧⎪⎪⎨
⎪⎪⎩
xk+1 ≡ 0,
yk+1 = argmin

{
ε
2 y

2 − yTλk + 1
2‖y + zk‖2 + τ

2‖y − yk‖2 ∣∣ y ∈ �},
zk+1 = argmin

{
ε
2 z

2 − zTλk + 1
2‖yk + z‖2 + τ

2‖z − zk‖2 ∣∣ z ∈ �},
λk+1 = λk − (yk+1 + zk+1).

(57)

Further, it follows from (57) that⎧⎨
⎩

εyk+1 − λk + (yk+1 + zk) + τ(yk+1 − yk) = 0,
εzk+1 − λk + (zk+1 + yk) + τ(zk+1 − zk) = 0,
λk+1 = λk − (yk+1 + zk+1).

Thus, the iterative scheme for v = (y, z, λ) can be written as

⎧⎨
⎩

(τ + 1 + ε)yk+1 = τ yk − zk + λk,

(τ + 1 + ε)zk+1 = −yk + τ zk + λk,

λk+1 = λk − (yk+1 + zk+1).

(58)

Without loss of generality, we can take y0 = z0 and thus yk ≡ zk , for all k > 0.
Using this fact and τ + ε = 0.5, we get

{ 3

2
yk+1 = (τ − 1)yk + λk,

λk+1 = λk − 2yk+1.
(59)
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With elementary manipulations, we obtain

⎧⎪⎨
⎪⎩

yk+1 = −2(1 − τ)

3
yk + 2

3
λk,

λk+1 = 4(1 − τ)

3
yk + −1

3
λk,

(60)

which can be written as(
yk+1

λk+1

)
= P(τ )

(
yk

λk

)
with P(τ ) = 1

3

(−2(1 − τ) 2
4(1 − τ) −1

)
. (61)

Let f1(τ ) and f2(τ ) be the two eigenvalues of the matrix P(τ ). Then we have

f1(τ ) = 1

6

(
(2τ − 3) +

√
(3 − 2τ)2 + 24(1 − τ)

)
,

and

f2(τ ) = 1

6

(
(2τ − 3) −

√
(3 − 2τ)2 + 24(1 − τ)

)
.

Certainly, the scheme (60) is divergent if the absolute value of one of the eigen-
values of the matrix P(τ ) is greater than 1. Indeed, it holds that f2(τ ) < −1 for any
τ ∈ (0, 0.5). To see this assertion, we notice that

f2(τ ) < −1 ⇔ (2τ − 3) − √
(3 − 2τ)2 + 24(1 − τ) < −6

⇔ 2τ + 3 <
√
4τ 2 − 36τ + 33

⇔ 4τ 2 + 12τ + 9 < 4τ 2 − 36τ + 33
⇔ τ < 0.5.

Hence, the scheme (1.11) is not necessarily convergent for any τ ∈ (0, 0.5).

8 Convergence Rate

In this section, we derive a worst-case O(1/t) convergence rate in terms of iteration
complexity for the scheme (1.11) with τ > 0.5, where t is the iteration counter.
Hence, although the condition τ ≥ 1 in [11] is now relaxed to τ > 0.5, the same
convergence rate result in [11] remains valid for the scheme (1.11). Similar analysis
is refereed to [11, 13].

First of all, recall (14). If we find w̃ satisfying the inequality

w̃ ∈ �, θ(u) − θ(ũ) + (w − w̃)T F(w̃) ≥ 0, ∀w ∈ �,
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then w̃ is a solution point of (14). As mentioned in (15), we have (w − w̃)T F(w̃) =
(w − w̃)T F(w̃). Thus, a solution point w̃ of (14) can be also characterized by

w̃ ∈ �, θ(u) − θ(ũ) + (w − w̃)T F(w) ≥ 0, ∀w ∈ �.

Therefore, as [3], for given ε > 0, w̃ ∈ � is called an ε-approximate solution of
VI(�, F, θ) if it satisfies

w̃ ∈ �, θ(u) − θ(ũ) + (w − w̃)T F(w) ≥ −ε, ∀ w ∈ D(w̃),

where
D(w̃) = {w ∈ � | ‖w − w̃‖ ≤ 1}.

In the following, we show that based on the first t iterates generated by the scheme
(1.11) with τ > 0.5, we can find an approximate solution of (14), denoted by w̃ ∈ �,
such that

w̃ ∈ � and sup
w∈D(w̃)

{
θ(ũ) − θ(u) + (w̃ − w)T F(w)

} ≤ ε, (62)

where ε = O(1/t). That is, a worst-case O(1/t) convergence rate is established for
the scheme (1.11) with τ > 0.5. Theorem 5.5 is still the basis for the analysis in this
section.

Theorem 8.1 Let {wk} be the sequence generated by (1.11) with τ > 0.5 for the
problem (1) and w̃k be defined by (22). Then for any integer t , we have

θ(ũt ) − θ(u) + (w̃t − w)T F(w) ≤ 1

2t

{‖v − v1‖2H + ψ(v0, v1)
}
, (63)

where

w̃t = 1

t

( t∑
k=1

w̃k
)

(64)

and ψ(v0, v1) is defined in (41) and thus

ψ(v0, v1) = 1

2

(∥∥∥∥ y0 − y1

z0 − z1

∥∥∥∥
2

D

+ (1 − τ)
(
‖B(y0 − y1)‖2 + ‖C(z0 − z1)‖2

))
.

Proof First, it follows from (50) that

θ(u) − θ(ũk) + (w − w̃k)T F(w) ≥ 1

2

(‖v − vk+1‖2H
+ ψ(vk, vk+1)

) − 1

2

(‖v − vk‖2H + ψ(vk−1, vk)
)
.
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Thus, we have

θ(ũk) − θ(u) + (w̃k − w)T F(w) + 1

2

(‖v − vk+1‖2H
+ ψ(vk, vk+1)

) ≤ 1

2

(‖v − vk‖2H + ψ(vk−1, vk)
)
. (65)

Summarizing the inequality (65) over k = 1, 2, . . . , t , we obtain

t∑
k=1

θ(ũk) − tθ(u) + (

t∑
k=1

w̃k − tw)T F(w) ≤ 1

2

(‖v − v1‖2H + ψ(v0, v1)
)

and thus

1

t

( t∑
k=1

θ(ũk)
) − θ(u) + (w̃t − w)T F(w) ≤ 1

2t

(‖v − v1‖2H + ψ(v0, v1)
)
. (66)

Since θ(u) is convex and

ũt = 1

t

( t∑
k=1

ũk
)
,

we have that

θ(ũt ) ≤ 1

t

( t∑
k=1

θ(ũk)
)
.

Substituting it into (66), the assertion of this theorem follows directly. �

For a given compact set D(w̃) ⊂ �, let

d := sup

{
‖v − v1‖2H + 1

2

∥∥∥∥ y0 − y1

z0 − z1

∥∥∥∥2
D

+ 1 − τ

2

(
‖B(y0 − y1)‖2 + ‖C(z0 − z1)‖2

) ∣∣∣w ∈ D(w̃)

}

where v0 = (y0, z0, λ0) and v1 = (y1, z1, λ1) are the initial and the first generated
iterates, respectively. Then, after t iterations of the scheme (1.11), the point w̃t ∈ �

defined in (64) satisfies

w̃ ∈ � and sup
w∈D(w̃)

{
θ(ũ) − θ(u) + (w̃ − w)T F(w)

} ≤ d

2t
= O(

1

t
),

which means w̃t is an approximate solution of VI(�, F, θ ) with an accuracy O(1/t)
(recall (62)). That is, a worst-case O(1/t) convergence rate is established for the
scheme (1.11) with τ > 0.5. Since w̃t defined in (64) is the average of all iterates of
(1.11), this convergence rate is in the ergodic sense.
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9 Conclusions

We revisit the splitting method proposed in [11] for solving separable convex mini-
mizationmodels; and show that its optimal proximal parameter is 0.5when the objec-
tive function is the sum of three functions. This optimal proximal parameter offers
the possibility of immediate numerical acceleration; which can be easily verified by
the examples tested in [2, 11] and others. For succinctness, we omit the presentation
of numerical results. Meanwhile, more sophisticated techniques are required for the
convergence analysis because this optimal proximal parameter generates positive
indefiniteness in the proximal regularization term as well. We establish the conver-
gence and estimate the worst-case convergence rate in terms of iteration complexity
for the improved version of the method in [11] with the optimal proximal parameter.
This work is inspired by the analysis in our recent work [9, 10] for the augmented
Lagrangian method and alternating direction method of multiplies.
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A New Initialization Method for Neural
Networks with Weight Sharing

Xiaofeng Ding, Hongfei Yang, Raymond H. Chan, Hui Hu, Yaxin Peng,
and Tieyong Zeng

Abstract A proper initialization of parameters in a neural network can facilitate its
training. The Xavier initialization introduced by Glorot and Bengio which is later
generalized to Kaiming initialization by He, Zhang, Ren and Sun are now widely
used. However, from experiments we find that networks with heavy weight sharing
are difficulty to train evenwith theXavier or theKaiming initialization.Wealso notice
that a certain simple network can be decomposed in two ways, where one is difficult
to train while the other is easy to train, when both are properly initialized by the
Xavier or theKaiming initialization. In this paper wewill propose a new initialization
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method which will increase training speed and training stability of neural networks
with heavy weight sharing. We will also propose a simple yet efficient method to
adjust learning rates layer by layer which is indispensable to our initialization.

Keywords Learning rate · Neural networks · Weight sharing · Xavier
initialization

1 Introduction

In recent years deep learning methods have achieved remarkable progresses in a
broad range of tasks including object classifications [10, 15], semantic segmentation
[5, 19], natural language processing [2, 3], and speech recognition [1, 12]. In 2016,
AlphaGo, a Go game software powered by deep learning algorithms [22], became
the first Go game software to beat a human champion in a series of 5 Go games.

How to effectively train deep neural networks is an active research area. In the
seminal work of Xavier and Yoshua [6] they observed that a proper initialization of
the learnable parameters played an important role in training a neural network. They
proposed a novel initialization method for layers with activation functions that can
be approximated by linear functions. Later He et al. in [11] extended the method of
Xavier and Yoshua to consider highly non-linear activation functions like the ReLU
or the leaky-ReLU activation functions. Nowadays these two initialization methods
are widely used in deep learning software packages like TensorFlow, PyTorch and
Keras. Since these two initialization methods only differ by a scalar factor called
“gain”, which is decided by the activation function, in this paper we regard them as
one method and call it the Xavier/Kaiming initialization.

The main idea of the Xavier/Kaiming initialization is to maintain a constant vari-
ance for different layers in both the forward and the backward propagations. How-
ever, we notice that when there is heavy weigh sharing for certain parameters, the
activation variances and the variance of the back-propagated gradients are not good
indicators of variances of learnable parameters. As a result, the updates of heav-
ily shared parameters may be much faster than other parameters, and this leads to
difficulties in training. We also noticed that if we multiply one layer by a positive
constant number and then divide this number in another layer, we can define a net-
work which is very difficult to train even if we use the Xavier/Kaiming initialization.
These observations lead us to propose a new initialization.

There are some other initialization methods. In [21] the authors proposed a ran-
dom orthogonal initialization condition based on their analysis of dynamics of deep
learning, and this initialization method is widely used in networks with recurrent
structures [13, 17]. This random orthogonal initial condition is further generalized
in [18]. There are also initialization methods based on the mean field theory [9, 24,
25].

In this paper, we will propose a new initialization method based on the
Xavier/Kaiming initialization. For a fully connected layer with no weight sharing,
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our new method is the same as the Xavier/Kaiming initialization method. However,
our method can cope with weight sharing, which is a common phenomenon for Cir-
CNN implementation of neural networks (described below). We will give various
numerical examples to verify the effectiveness of our initialization method.

Another contribution of this paper is that we introduce a simple yet efficient way
to adjust learning rates of parameters layer by layer (see (13)). The main idea is
to multiply the weight matrix of each layer by a positive constant scalar, and at
the same time change the initialization of layers accordingly. Actually this scalar-
multiplying technique is indispensable to our proposed initialization method which
will be demonstrated below.

This paper is organized as the following. In the next section, we briefly give
the notations and terms used in this paper. In the third section, we introduce the
Xavier/Kaiming initialization and its limitation. In the forth section, we propose our
new method for the fully connected case, and we will show how our new method
can overcome the limitation. Lastly we conclude with possible future research.

2 Neural Networks and CirCNN Implementations

In this section we give the notations and terms used in this paper. We will also
introduce CirCNN networks which will be used in our numerical experiments.

2.1 Single Layer Structure

A typical layer in a multi-layer neural network has the form

y = act(Wx + b), (1)

where x ∈ R
M is the input vector,W ∈ R

N×M is theweightmatrix, b ∈ R
N is the bias

vector, and act is a pointwise activation function (for example the identity function
or the ReLU function γ �→ max(0, γ )). Entries in W and b are usually parameters
to be learned in the training process.

In the training process, a network will go through iterations of forward and back-
ward propagations. Suppose the loss function is denoted by L . In a forward propaga-
tion, one calculates y based on a given x . In the backward propagation, one calculates
∂L/∂W , ∂L/∂x and ∂L/∂b based on a given ∂L/∂y. Suppose that v is a learnable
parameter for this layer. Then after one backward propagation with learning rate r ,
v will be updated by

v − r
∂L

∂v
�→ v,

where ∂L/∂v will be calculated by using ∂L/∂W , ∂L/∂x and ∂L/∂b.
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For any variable z in a layer we use z(0) to denote its value after initialization, and
we use z(1) to denote its value after the first forward and backward propagation. We
introduce a definition here.

Definition 2.1 Assuming the notations and single layer structure as in (1), let z be
a variable in this layer. Then the increment of z, denoted as �z, is defined to be

�z = z(1) − z(0)

when we set the learning rate to be 1.

For a learnable variable v we have �v = −∂L/∂v. For an intermediate variable
Wnm which corresponds to the learnable variable v in the form Wnm = cv, if we
assume that c is a constant scalar (non-learnable) and v only appears in W in this
layer, we have

�Wnm = W (1)
nm − W (0)

nm

= cv(1) − cv(0)

= −c
∂L

∂v

= −c2
∑

(n′,m ′)

∂L

∂Wn′m ′
, (2)

where the last summation is over all entries in W that share the same learnable
parameter v. If v also appears in weights of other layers, the last summation need
also to include the corresponding partial derivatives.

2.2 CirCNN Networks

Most state-of-the-art neural networks contain enormous amounts of learnable param-
eters. For example, theVGGnetwork introduced in [23], which achieved the 1st place
in 2014 ImageNet Challenge, contains more than one million learnable parameters.
How tofindefficientways to reduce thenumber of parameters in deepneural networks
is an active research area [8, 16]. A promising approach is to replace the matrices
and convolutions in a deep neural network by structured matrices and structured
convolutions. This approach has the advantage that the architecture of the network
can be preserved. In [4] the authors proposed to replace unstructured matrices in a
network by block-circulant matrices. In this paper we call any network which uses
the technique in [4] as a CirCNN network. The idea is best illustrated via an example.
We say a matrix is a circulant matrix if it has the form
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⎡

⎢⎢⎢⎣

a1 a2 · · · an−1 an
an a1 · · · an−2 an−1
...

...
...

...
...

a2 a3 · · · an a1

⎤

⎥⎥⎥⎦ .

Note that unlike an unstructured matrix, a circulant matrix is determined if one
knows the first row (or first column) of the matrix. For a fully connected layer of the
form y = act(Wx + b), we sayW is a block-circulant matrix ifW consists of block
matrices, where each block matrix is a circulant matrix. For a fully connected layer,
suppose we replace an unstructured matrix by a block-circulant one with block size
B. Then for this matrix we can reduce the amount of parameters by a factor of B. We
will call this number B the compression ratio of this layer. Note that for one layer,
the number of parameters in the weight matrix W will usually dominate the number
of parameters in this layer. We also note that by using a block-circulant matrix, one
can speed up matrix vector multiplication by exploiting the special structure of such
a matrix [20].

Compressing a neural network by using block-circulant matrices can signifi-
cantly reduce the amount of parameters and thus reduce bandwidth requirement.
It is proved in [26] that the Universal Approximation Property is preserved if one
replaces unstructured matrices by block-circulant ones. This guarantees the expres-
sive power of CirCNN implementations.

3 The Xavier/Kaiming Initialization and its Limitation

In this section we briefly introduce the Xavier/Kaiming initialization. We give exam-
ples of networks to show that the Xavier/Kaiming initialization may not be sufficient
to lead to fast and stable trainings.

For a fully connected layer of the form (1), entries in the matrix W and the
vector b are the learnable parameters. Denote the final loss function as L , then the
Xavier/Kaiming initialization has the following requirements

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mean(Y ) = mean(X) = 0,

var(Y ) = var(X),

mean( ∂L
∂Y ) = mean( ∂L

∂X ) = 0,

var( ∂L
∂Y ) = var( ∂L

∂X ),

(3)

where we assume that all entries in x follow the distribution X , all entries in y follow
the distribution Y , all entries in ∂L

∂x follow the distribution ∂L
∂X , and all entries in ∂L

∂y

follow the distribution ∂L
∂Y . Unless W is a square matrix and the activation function

is a linear function, the above conditions cannot be satisfied simultaneously, but the
following initialization rules are widely used (see [11] for details): the bias vector b
should be initialized as the zero vector, and entries in W should be identically and
independently distributed with mean 0 and variance 2·gain

M+N , where gain is a factor
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determined by the activation function. For the identity function, gain should be 1,
while for the ReLU activation, gain should be 2. In practice the distribution for entries
in W is chosen as either the uniform distribution or the normal distribution. We
note that the Xavier/Kaiming initialization conditions in (3) can maintain a constant
variance for different layers in both the forward and the backward propagations.

We first consider a simple network with no bias of the form

y = W2(ReLU(W1x)), (4)

where x ∈ R
M is the input vector, and W1 and W2 are the parameter matrices of

sizes RM×M and RN×M respectively. Entries in the parameter matrices are learnable
parameters.We can decompose the above network in twoways, each with two layers,
as follows

{
y1 = ReLU(W1x),

y2 = W2y1,
(5a)

{
y1 = ReLU(cW1x),

y2 = 1
c W2y1,

(5b)

where c is a fixed positive scalar. With the sameW1,W2 and x these two decomposi-
tions will give the same final output y2. By applying Xavier/Kaiming initializations
to both networks, we can ensure that for both networks the mean and variance of
the input and output of each layer are the same, and the mean and variance of the
partial derivatives of the input and output of each layer are also the same. Routine
calculations show that we should initialize as follows

{
var(W1) = 2/M,

var(W2) = 2/(M + N ),
(6a)

{
var(W1) = 2/(c2M),

var(W2) = 2c2/(M + N ).
(6b)

We see that when c = 1, the two decompositions and initializations are the same.
To test the effect of the positive scalar c, we test the above two networks on the

MNISTdataset. In this caseM = 784 and N = 10.We set c = 0.01, andwe use SGD
(without moment) as the optimizer. The outputs y2 of both networks are connected
to softmax layers, and we use the cross entropy as the lost function in both cases
(for details see [7]). Please refer to Fig. 1 for the experiment results. The learning
rates for the two cases are tuned by trial and error to find the best value. We observed
that the training of the second network (with c = 0.01) is much difficult than the
training of the first network. As a result we need to use a much smaller learning rate,
which results in slow convergence and a higher final loss value. To help visualize the
difficulty in training the c = 0.01 case, in Fig. 1b, c we also plot distributions of W1
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Fig. 1 a Comparison of decompositions (5a) (represented by c = 1 in the graph) and (5b) with
initializations (6a) and (6b). Plots start from the 31st iteration for better illustration of differences
of curves. b Plot of distributions of W1 in (5a) after initialization and 40000 iterations. c Plot of
distributions of cW1 in (5b) after initialization and 40000 iterations

in (5a) and distributions of cW1 in (5b). It is clear that for the c = 0.01 case, there is
no observable change in the distributions. This indicates that parameters inW1 do not
learn after iterations. This is because of the very small learning rate we have to use
and the small value c = 0.01. On the other hand, for the c = 1 case, the distribution
evolves from the uniform distribution to a bell-curved distribution. This indicates a
successful learning process for parameters inW1.We also noticed that with c = 0.01,
the unstable training process cannot be remedied by batch normalization, which is
introduced in [14] and is widely used to remedy unstable training.

We also tested the effect of the c scalar and batch normalization (BN) on the
VGG16 network with the Cifar10 dataset. We multiply c on the first fully connected
layer of VGG16, and then divide c on the second fully connected layer. The test
results on the validation set are summarized in Table 1. For all tests we used the
Xavier/Kaiming initialization. For c = 100 with no BN, we have to reduce learning
rate to get a good training, while for c = 1000 with no BN the training always
fails (test accuracy can never reach 50%, which is too low for VGG16 on Cifar10).
For these two c values with BN layers, we notice that the VGG16 network can
have stable training with a higher learning rate. However we still have about 1%
accuracy loss. To learn why this happens, in Fig. 2 we plot standard deviations
(std) of the parameters in weight matrices of the first fully connected layers of the
original VGG16 and the c = 1000 case with BN. For the original VGG16, the std
almost keeps constant. This is not surprising, as the Xavier/Kaiming initialization,
when applied to a “normal” network, can stabilize statistics of learnable parameters.
For VGG16 with c = 1000, we observe that the std first increases rapidly and then
stabilizes. The stabilized std is much higher than the std of the parameters just
after initialization by the Xavier/Kaiming method. For the c = 1000 case, the rapid
change in std of learnable parameters and large deviation from initialized values
are undesirable, since the initialized values satisfy the Xavier/Kaiming initialization
which can maintain a constant variance for different layers in both the forward and
the backward propagations, see [6, 11].
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Table 1 VGG16 network with Cifar10. The constant c is multiplied to the first fully connected
layer, and then divided from the second fully connected layer. For c = 1000 without BN, we fail to
find a suitable learning rate to obtain an accuracy ≥ 50%

VGG16 with no BN accuracy
on validation set (best lr)

VGG16 with BN accuracy on
validation set (best lr)

Original 92.24%(2.5 ∗ 10−2) 92.24%(2.5 ∗ 10−2)

c = 100 83.53%(5 ∗ 10−4) 91.03%(5 ∗ 10−3)

c = 1000 <50% 91.24%(5 ∗ 10−3)
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Fig. 2 Plot of standard deviations of entries in the weight matrices of the first fully connected layers
of the original VGG16 (blue line with circles) and the c = 1000 case (red line with triangles)

4 A New Initialization for Fully Connected Layers

In this section we describe our new initialization method for a fully connected layer.
Wewill also give numerical experiments to show the effectiveness of this newmethod.

4.1 Our Initialization Conditions for Fully Connected Layers

As demonstrated in the previous section, one must decompose a network properly
in order to obtain stable training and good network performance. In this subsection
we propose to add a new condition to the Xavier/Kaiming initialization for layers
where the weight matrix does not have sparsity. This new condition can guarantee a
more balanced initialization, and we will demonstrate how to decompose a network
properly to satisfy the new condition.
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We assume that a fully connected layer of a multi-layer network is of the form

⎧
⎪⎨

⎪⎩

Wnm = αvλ(n,m),

sn = ∑
m Wnmxm,

yn = act(sn + bn),

(7)

where α is a fixed positive scalar for this layer that will be determined later, x ∈ R
M

is the input, y ∈ R
N is the output, b ∈ R

N is the bias, v ∈ R
� is the collection of

learnable parameters, act is the activation function, and

λ : {0, 1, · · · , N } × {0, 1, · · · , M} → {0, 1, · · · ,�}

is a function that builds the matrix W from the vector v. In this way we guarantee
that each entry in W corresponds to one element in v, but we allow multiple entries
in W to share the same entry in v. We always use L to denote the loss function. We
only consider SGD (without moment) as the optimizer. In our notation the learnable
parameters are only contained in v and b.

Assuming the notations and single layer structure in (7). We require that any
initialization of (7) should satisfy the following conditions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mean(Y ) = mean(X) = 0,

var(Y ) = var(X),

mean( ∂L
∂Y ) = mean( ∂L

∂X ) = 0,

var( ∂L
∂Y ) = var( ∂L

∂X ),

var(�W ) = var
(

∂L
∂W

)
,

(8)

where ∂L/∂W represents the distribution followed by the entries ∂L/∂Wnm .
We note that the first four conditions in (8) are exactly the Xavier/Kaiming ini-

tialization conditions (3). For a standard fully connected layer with α = 1, the last
condition in (8) will be satisfied automatically. The significance of the last condition
will become apparent when we consider more general fully connected layers with
parameter sharing, like the CirCNN fully connected layers introduced in Sect. 2.2.

For the splitting (5b) of (4) we have α = c, and a simple calculation shows that
(see (2))

var(�W ) = var

(
−c2

∂L

∂W

)
= c4 · var

(
∂L

∂W

)
.

We see that in order to satisfy our initialization conditions (8), c should be equal
to 1. For c = 0.01, even though both initializations (6a) and (6b) satisfy the
Xavier/Kaiming initialization, only the initialization (6a) satisfies our initialization
conditions and it gives a better network decomposition.



174 X. Ding et al.

4.2 New Initialization for CirCNN Fully Connected Layers

For the CirCNN network in [4], the fully connected layers can be expressed as (7)
with α = 1. A routine calculation shows that

�Wnm = �vλ(n,m) = −
∑

λ(n′,m ′)=λ(n,m)

∂L

∂Wn′m ′
, (9)

where the last summation is over all entries in W that share the same learnable
parameter with Wnm . We note that the weight sharing comes from the circulant
matrices in W . We denote Vnm = {Wn′m ′ : λ(n′,m ′) = λ(n,m)}, and we use Bnm to
denote the number of elements in Vnm . Assuming that

{
∂L

∂Wn′m ′
: Wn′m ′ ∈ Vnm

}

is uncorrelated, from (9) we have

var(�Wnm) =
∑

Wn′m′ ∈Vnm

var

(
∂L

∂Wn′m ′

)

= Bnmvar

(
∂L

∂W

)
. (10)

Then we see that the only way to satisfy the last condition in our initialization (8)
is to have Bnm = 1. However, this corresponds to circulant matrices of size 1 × 1,
which simply implies that the CirCNN does not compress the original network at all.

In order to achieve a desirable compression rate, we need to reformulate the fully
connected layer with CirCNN in [4] in the form of (7) and determine a proper value
for the extra positive scaler α. We stress that the scalar α will be a constant for this
layer, and the learnable variables are still only in v and b. Thus by introducing α, we
do not increase the number of learnable parameters, and the increment in the number
of operations for this layer is negligible.

Assume that we wish to compress this layer by a factor of B. Then the circulant
sub-matrices in W should have size B × B. A calculation combining (2) and (10)
shows that

var(�Wnm) = var

(
α2

∑ ∂L

∂Wn′m ′

)
= α4Bnmvar

(
∂L

∂W

)
, (11)

where Bnm = B. Then to satisfy the last initialization condition in (8), we can sim-
ply set α = 1/ 4

√
B. Combining the Xavier/Kaiming initialization conditions, which

constitute the first 4 conditions in (8), we conclude that our initialization leads to the
following rule
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{
var(vλ(n,m)) = gain · √B · 2

M+N ,

α = 1
4√B

,
(12)

where gain should be determined by the activation function.
To sum it up, our new initialization method for CirCNN implemented fully con-

nected layer consists of 3 steps. The first step is to write the layer in the form (7). The
second step is to calculate α and variance by (12). The last step is to initialize entries
in v by independently and identically distributed variables with mean 0 and the vari-
ance calculated in step 2 (one can use either the uniform or the normal distribution),
and initialize the bias vector b as the zero vector.

To see the effect of the positive scalar α on the updates of vλ(n,m) we calculate as
follows. Suppose the learning rate of the SGD optimizer is r , then after one forward
and backward propagation vλ(n,m) is updated by

vλ(n,m) − αr
∑

Wn′m′ ∈Vnm

∂L

∂Wn′m ′
�→ vλ(n,m). (13)

We see that now the effective learning rate for vλ(n,m) changes from r to αr . Thus
by formulating each layer as in (7), we can change the effective learning rate of
learnable parameters layer by layer.

4.3 Numerical Experiments

We demonstrate the effectiveness of our initialization method by numerical experi-
ments.

Example 4.1 Herewe show the training process of a simple networkwith the initial-
ization (12) on the MNIST dataset. The network structure is summarized in Table 2,
and we use CirCNN compression for the first fully connected layer. Note that after
the compression, the total number of learnable parameters is only about 0.76% of
the original model. From the plot of the loss function in Fig. 3a, we see that our
initialization method better suits this CirCNN network.

Example 4.2 In this examplewe consider a simple networkwhere theweightmatrix
of many layers share a common weight matrix V . Details of the network, together
with the initialization of the common weight V by our method (8), is summarized in
(14a) and (14b)
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Table 2 Network structure of Example 4.1. For a compression ratio B ≥ 1, we use circulant
implementation with block size B. The number of parameters for a CirCNN implementation should
be divided by B

Layer Output channel kernel/matrix size Compression ratio

Conv2d 32 3 × 3 × 1 × 32 1

MaxPool

Conv2d 64 3 × 3 × 32 × 64 1

MaxPool

Fc 1568 3136 × 1568 1568

Fc 10 1568 × 10 1
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Fig. 3 a Plot of losses of networks summarized in Table 2. b Plot of losses of network summarized
in (14a). For (b), the plot starts from the 31st iteration for better illustration of differences of curves

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = ReLU(W0x),

W1 = W2 = · · · = W50,

y1 = W1y0,
...

y50 = W50y49,

y = Wy50,

(14a)

{
α = 1/

√
50,

var(V ) = 1/(α2M),
(14b)

where as before, for our initialization theweightmatrices have the formWi = αV for
i = 1, 2, · · · , 50.A comparisonwith our initialization (14b) and theXavier/Kaiming
initialization is summarized in Fig. 3b.
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Table 3 CirCNN implementation of VGG16 on Cifar10. Our initialization method consistantly
outperforms theXavier/Kaiming initialization.Reported results are top-1 accuracy.OriginalVGG16
can achieve 92.24% top-1 accuracy

Number of runs

lr 1 2 3 4 5 Mean

Xavier/Kaiming 10−2 91.19% 91.08% 90.83% 90.81% Fail to
converge

90.98%

5 ∗ 10−3 89.61% 89.69% 89.41% 86.19% 90.10% 89.00%

Our method 2.5 ∗ 10−2 92.36% 92.02% 91.99% 91.85% 91.80% 92.00%

Example 4.3 Lastly we test our initialization method on a CirCNN implementation
of the VGG16 network. For the second fully connected layer in the VGG16 net-
work which has 4096 input channels and 4096 output channels, we use a circulant
matrix with block size 4096. We test on the Cifar10 dataset with 5 runs for both
Xavier/Kaiming and our initialization methods. The original VGG16 network can
achieve 92.24% top-1 accuracy. The test results are summarized in Table 3. On the 5
runs, the network with our initialization consistently outperforms the network with
the Xavier/Kaiming initialization on top-1 accuracy. Because of the CirCNN imple-
mentation,we have to lower learning rates for theXavier/Kaiming initialization.With
a learning rate of 10−2, one training with the Xavier/Kaiming initialization failed to
converge. On the other hand, the learning rate for our initialization is 2.5 ∗ 10−2

which is identical to the learning rate of the original VGG16 network.

5 Conclusion and Future Work

In this paper we identified a limitation of the widely used Xavier/Kaiming initializa-
tion method, and we proposed an efficient initialization method for fully connected
layers. We also proposed a method to adjust the learning rate of parameters in each
layer. Our new initialization method is easy to implement. For networks with heavy
weight sharing, experiments show that our new method has a clear advantage over
the Xavier/Kaiming initialization method.
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Abstract It is well known that the problem of finding the shortest path amid 3-D
polyhedral obstacles is a NP-Hard problem. In this paper, we propose an efficient
algorithm to find the globally shortest path by solving stochastic differential equa-
tions (SDEs). The main idea is based on the simple structure of the shortest path,
namely it consists of straight line segments connected by junctions on the edges of the
polyhedral obstacles. Thus, finding the shortest path is equivalent to determining the
junctions points. This reduces the originally infinite dimensional problem to a finite
dimensional one. We use the gradient descent method in conjunction with Intermit-
tent Diffusion (ID), a global optimization strategy, to deduce SDEs for the globally
optimal solution. Compared to the existing methods, our algorithm is efficient, easier
to implement, and able to obtain the solution with any desirable precisions.
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1 Introduction

Finding the shortest path in the presence of obstacles is one of the fundamental
problems in path planning and robotics. It is one of the enabling technologies that
make it possible for robots or UAVs to traverse cluttered environments. The problem
can be described as follows: given a finite number of obstacles in R2 or R3, what is
the shortest path connecting two given points X , Y while avoiding the obstacles. The
problem has received great attention during the last few decades (See for example [6,
12] and references therein), and many techniques have been developed for polygonal
obstacles in R2, where the problem can be reformulated as an optimization problem
on a graph, and therefore can be solved by combinatorial methods. For example,
by using the shortest path map method, Hershberger and Suri [9] found an optimal
O(n log n) polynomial time algorithm where n is the total number of vertices of all
polygonal obstacles. We refer to [12, 14] for a survey of the results and references
therein. However, Canny and Rief [2] proved that this problem in R3 becomes NP-
hard under the framework known as “configuration space”. This is mainly because
the shortest path doesn’t necessarily pass through the set of vertices of polyhedrons.
Instead, it may go through the interior points of edges, and this makes the optimal
algorithm in 2-D fail.

Two different approaches were developed later to overcome this difficulty. One is
to find a path that is 1 + ε times the length of the shortest one. The idea is to subdivide
the edges in certain ways and adopt the same optimal combinatorial methods which
are effective inR2. Following this idea, Papadimitriou developed an algorithm in [15]
with complexity O( 1

ε
). In a special case where the shortest path is unique, one can

define the precision δ of the problem, which is the difference between the shortest
path and the second shortest path. Given ε < δ, a faster algorithm was developed
in [3] with complexity O(log( 1

ε
) + P(1/δ)) for some polynomial P . The idea is to

apply the approach in [15] to obtain a good initialization within error δ to the shortest
path, and then use a gradient descent strategy to improve the accuracy to ε.

Another commonly used approach divides the problem into two parts: (i) find the
sequence of edges that the shortest path may go through, and (ii) find the optimal
connecting points on those edges. For convex polyhedral obstacles, it is observed in
[19] that the total number of possible sequences are of order O(n7kkk) where n is
the total number of vertices and k is the number of obstacles. Part (ii) is proven to be
NP-hard [7]. A different method, called unfolding technique, was introduced in [17]
under a theoretical computation model in which it assumes any infinite-precision
real arithmetic operation requires constant time. However, this assumption may not
be practical.

On the other hand, several differential equation basedmethods have been proposed
to tackle the shortest path problem with obstacles having smooth boundaries. For
example, a path evolution method finds the solution by solving a 2-point boundary
value ordinary differential equation (ODE), resulting in locally optimal solutions. The
front propagation method finds the global solution by solving an eikonal equation, a
partial differential equation (PDE). The numerical solution of the eikonal equation
can be computed by the fast marching method [18] or the fast sweeping method [20].
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In [5], we proposed a different algorithm called Evolving Junctions on Obstacle
Boundaries (E-JOB) for finding the shortest path. E-JOB is a general framework
which can be applied to environment with obstacles of arbitrary shape (continuous
or discrete) in any dimension (R2,R3 or higher). The key idea is dimension reduction.
It takes advantage of a simple geometric structure of the shortest path, i.e. the shortest
path is composed by line segments and arcs on the obstacle boundaries. The shortest
path is determined completely by the junctions of those segments. In this way, the
problem becomes how to find those junction points on the boundaries. In other words,
the original infinite dimensional problem of finding the whole path is converted to a
finite dimensional problem of finding only the junction points. The optimal position
of those junctions can be determined efficiently by the gradient descent method.
To address the drawback that the gradient descent method usually gets stuck at
local minimizers, a global optimization strategy called intermittent diffusion (ID) is
adopted. This strategy adds randomperturbations to theODEs of the gradient descent
method in a temporally discontinuous fashion, which leads to stochastic differential
equations (SDEs). It obtains the globally shortest path with probability 1 − δ where
δ is an arbitrarily small number. More specifically, by leveraging the recent studies
of convergence rate of Fokker-Planck equations [1, 4, 10, 13], it has been shown
that the time complexity of E-JOB is O(log 1

δ
log 1

ε
).

In this paper, we focus on applying E-JOB to the shortest path problem with poly-
hedral obstacles in R3. The restriction on polyhedral obstacles allows us to achieve
further dimension reductions. For obstacles with smooth boundaries, the implemen-
tation of E-JOB requires computations of geodesic on the boundaries between two
given points. In [5], this is achieved by either traversing the boundaries inR2, or fast
marching on the boundary surfaces in R3. However, for polyhedral obstacles, the
geodesics also has a similar simple structure, i.e. the geodesic between two points
on a polyhedron is a concatenation of line segments whose ending points are located
on polyhedron edges. And to determine the geodesic is equivalent to determining
those junction points. Therefore the overall shortest path connecting X and Y is
merely a conjunction of line segments whose ending points lie on obstacle edges. In
other words, each junction moves in a 1-D interval(edge). This makes the algorithm
extremely simple and efficient.

A feature of this study is that we do not restrict the obstacles to be convex polyhe-
drons. The algorithm we develop can equally be applied to non-convex polyhedrons.
For polyhedrons with Euler characteristic 2, which include all convex polyhedrons
and concave polyhedrons without holes, our algorithm can find the globally optimal
path with probability arbitrarily close to 1 in finite time. However, when dealing
with more sophisticated polyhedrons, for example, polyhedrons with complicated
holes, certain topological problems emerge, and prevent us from obtaining the glob-
ally optimal path. We will discuss this issue at the end of the paper as well as some
possible solutions.

It should be noted that our approach resembles the one in [3] in the sense that
both employ a gradient descent strategy. However, before the strategy can be applied,
the method in [3] requires the assumption that the shortest path is unique, and an
initialization that approximates the shortest path within error δ (precision) to start
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with (achieved by using [15]). Our approach needs neither of them. In fact, our
approach can be viewed as a way to find both the edge sequence and the optimal
connecting points in a unified manner, thanks to the introduction of randomness into
the differential equations. Below, we summarize some advantages of our algorithm:

(1) The algorithm can obtain the shortest path in any precision. This is because only
a system of SDEs needs to be solved which involves no subdivision of edges.

(2) The algorithm is able to handle non-convex polyhedral obstacles.
(3) The algorithm is easy to implement.
(4) The algorithm is fast. Sincewe solve an initial value problem of SDEs, the results

can be obtained efficiently by various established schemes.

The paper is arranged as follows. In Sect. 2, we give the derivation of the algorithm
following the ideas presented in [5]. The algorithm is then presented whose details
followafterwards. InSect. 3,wegive several interesting examples. Finally,wediscuss
the topological issues when dealing with polyhedrons with holes.

2 New Algorithm

In this section, we present our new algorithm for the shortest path problem with
polyhedron obstacles. We start with some mathematical description of the problem,
through which we introduce notations needed in the rest of the paper. The algorithm
follows afterwards and its details are presented at the end of this section.

Let {Pk}Nk=1 be N polyhedral obstacles in R3. Each obstacle Pk is determined
uniquely by its vertices, edges and faces. Denote V, E, F the set of vertices, edges
and faces of Pk respectively. We do not limit the polyhedrons to be convex. However,
we will focus on polyhedrons without holes in this section, i.e. polyhedrons whose
Euler characteristic is 2. The Euler characteristic is defined by

χ = |V | − |E | + |F |.

Polyhedrons with holes will be discussed in the last section. For any edge e ∈ E , it
has a representation

e = (u, v)

where u, v are the coordinates of the ending points of e. Any point x on edge e =
(u, v) can then be represented by the following expression

x(u, v, θ) = θu + (1 − θ)v, (1)

where θ is a scalar in [0, 1]. Thus to determine the position of a point on an edge,
one only needs to find its corresponding θ.



The Shortest Path AMID 3-D Polyhedral Obstacles 185

2.1 Geodesics on Polyhedrons

For any two points x, y on the edges of Pk , we can define the distance dk(x, y)
between them to be the length of the shortest path on Pk connecting x and y. If we
view Pk as a surface in R3, i.e. a two dimensional manifold, then dk(x, y) is nothing
but length of the geodesic on Pk connecting x and y. For instance, for any x and y on
the same surface of a tetrahedron, d(x, y) = ‖x − y‖ since the line segment joining
them is on the surface. For general polyhedrons, the shortest path is composed by a
sequence of line segments connected to each other. To be more specific, the shortest
path can be represented by (x0, x1, x2, . . . , xnk , xnk+1) where x0 = x, xnk+1 = y and
each xi is a point on some edge ei = (ui , vi ). The shortest distance dk(x, y) therefore
equals

dk(x, y) = L(x1, x2, . . . , xnk ) =
nk∑

i=0

‖xi+1 − xi‖.

Denote xi = θiui + (1 − θi )vi , we then have

L(θ1, . . . , θnk ) = L(x1, . . . , xnk ) =
nk∑

i=0

‖θi+1ui+1 + (1 − θi+1)vi+1 − θiui − (1 − θi )vi‖.

It is worth mentioning that both θ and ui , vi are dynamic as we optimize over xi s.

2.2 Structure of the Shortest Path

A path is a curve γ ∈ R3, which is a continuous map

γ(·) : [0, 1] → R3.

We denote L(γ) the Euclidean length of the path γ. We are concerned with the set
of feasible paths F, i.e. paths that do not intersect with any obstacle Pk . The shortest
path connecting X and Y is then given by

γopt = argminγ∈F L(γ).

In [5], we proved that the shortest path has a simple structure, i.e. it is composed
by line segments outside the obstacles and paths on the boundary of the obstacles.
Since all the obstacles here are polyhedrons, the paths on the boundaries of the
obstacles also consist of a sequence of line segments connected by points on the
edges. Therefore, by putting all the connecting points together and relabeling them,
the shortest path connecting X and Y can be represented by (x0, x1, x2, . . . , xn, xn+1)

where x0 = X, xn+1 = Y .
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Let us denote
J (xi ) = ‖xi−1 − xi‖ + ‖xi+1 − xi‖. (2)

Then the length of the path is

L(x1, . . . , xn) = 1

2

n∑

i=1

(J (xi ) + ‖x1 − x0‖ + ‖xn+1 − xn‖). (3)

Again all xi s are on the edges of the obstacles. Denote xi = θiui + (1 − θi )vi , J (xi )
then becomes

J (θi ) = ‖θiui + (1 − θi )vi − xi−1‖ + ‖θiui + (1 − θi )vi − xi+1‖. (4)

2.3 Optimal Path

To find the optimal path, we differentiate J (θi ) with respect to θi to obtain

∇ J (θi ) = (xi − xi−1) · (ui − vi )
‖xi − xi−1‖ + (xi − xi+1) · (ui − vi )

‖xi − xi+1‖ . (5)

So using the method of gradient decent, we can find the optimal position θi following
a system of ODEs,

dθi

dt
= −∇ J (θi ). (6)

In order to find the globally optimal path, we adopt a strategy called Intermittent
Diffusion, i.e. we evolve the following SDE

dθi

dt
= −∇ J (θi ) + σ(t)dW (t) (7)

where σ(t) is a step function andW (t) is standard Brownian motion. More precisely,

σ(t) =
m∑

l=1

σl1[Sl ,Tl ](t) (8)

with 0 = S1 < T1 < S2 < T2 < · · · < Sm < Tm < Sm+1 = T , and 1[Sl ,Tl ] being the
indicator function of interval [Sl , Tl ]. We note that adding dW (t), the so-called white
noise, to the SDE corresponds to having a diffusion process in the classical stochastic
theory. Thus adding white noise perturbations to the SDE on discontinuous intervals
[Sl, Tl ] is like adding diffusion process intermittently. For convenience,we call [Sl , Tl
an intermittent diffusion interval. In this paper, the intervals Sl , Tl ,σl are chosen to be
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random and the magnitude, {σl}, of the random perturbations are selected according
to the following theorem. For more details, see [4].

Theorem 1 If all the obstacles have Euler characteristic 2, then for any small num-
ber ε, there exists τ > 0,σ0 > 0 and integerm0 > 0 such that if Ti − Si > τ ,σi < σ0

and m > m0, then Eq. (7) converges to a global minimizer with probability 1 − ε.

We will postpone the proof until the last section when we discuss the topological
issues.

2.4 Numerical Scheme

In this section, we discuss how to solve Eq. (7).

2.4.1 Discretization of SDE

We use the forward Euler method to discretize equation (7)

θ
j+1
i − θ

j
i

�t
= −∇ J (θ

j
i ) + σ( j�t)

√
�tξ

where ξ ∼ N (0, 1) is a normal random variable. Notice the θi s are updated alternat-
ingly in the Gauss-Seidel fashion.

2.4.2 Initialization

We can use the optimal path whose junctions are restricted to vertices of the obstacles
to initialize the path. This initialization can be obtained efficiently by amethod called
visibility graph . The visibility graph W is a weighted graph whose nodes are the
vertices of all the obstacles as well as the starting and ending points X,Y , and there
is an edge between vertices u ∈ W and v ∈ W if and only if they are visible to
each other, that is, if the line segment uv doesn’t intersect with any obstacles. The
weight of edge uv is simply the Euclidean distance of uv. One thing to notice is that
the visibility graph we construct here is essentially 2D, in the sense that it encodes
whether two points are visible to each other. This is fundamentally different from the
3D reduced visibility graph (3DRVG) [11]. 3DRVG consists of connected planes as
opposed to straight line segments which becomes complicated when there are more
than one obstacles. After the visibility graph is constructed, the initialization is the
shortest path between X and Y on the visibility graph W which can be obtained
efficiently by Dijkstra’s algorithm.
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2.4.3 Evolution when a Junction Reaches a Vertex

In the proposed method, the junctions move according to the SDEs if they are on
the interior of edges. When a junction x = (u, v, θ) reaches a vertex u following the
gradient flow, it continues moving according to different rules depending on whether
the two neighbors of x are on the same obstacle or not. If the neighbors of x are
both on the same obstacle as x , we call x an interior junction, otherwise we call x an
exterior junction. In other words, an exterior junction is one of the two ending points
of the line segments that connect two different obstacles. The following are the rules
for interior and exterior junctions reaching the vertices respectively.

Case 1. x = (u, v, θ = 1) is an interior junction. As an example, see the following
illustration (Fig. 1) where (x1, x2, x, x4) is the path on the obstacle and x1, x4 are
exterior junctions. When x hits u (θ = 1), path (x1, u = x, x4) will have smaller
length than (x1, x2, u = x, x4). In other words, all the junctions adjacent to u will
be dragged to u except the exterior junctions. Hence we remove all the junctions
adjacent to u and add junctions on the edges adjacent to u that haven’t been
occupied which results in a new path (x1, x6, x5, x4).

Case 2. x = (u, v, θ = 1) is an exterior junction. Let z be its neighbor on the same
obstacle and y be the neighbor on another obstacle. x will move to a different
feasible edge uw once it hits u. Edge uw is said to be feasible if

(a) The line segment joining y and u + �θ(w − u) doesn’t intersect with any
obstacle for arbitrarily small �θ.

We collect all the feasible directions and select one of themwith equal possibility,
x then continues evolving according to the flow. Depending on whether neighbor
z is visible, i.e. on the same face as edge uw, the new path are as follows:

i. z is on the same face as uw, then the new path becomes (· · · , y, x ′, z, · · · )
where x ′ ∈ uw.

ii. z is not on the same face as uw, then x is used as an intermittent junction
and the new path becomes (· · · , y, x ′, x, z, · · · ) where x ′ ∈ uw.

For an illustration, see the following example (Fig. 2). The feasible directions are
uv8 and uv2. z is visible to uv8, the path after evolution is simply (y, x ′, z). On
the other hand, z is invisible to uv2, the path after evolution is simply (y, x ′, x, z).

Case 3. x = (u, v, θ = 1) is an exterior junction, and two of its neighbors, z and
y, are on other obstacles. There are two scenarios. One is when x approaching
u, we remove x from the junction list and add new points on the edges adjacent
to u except uv. This is the same scenario as that illustrated in Case 1. The other
is that one can directly connect z and y, and this involves adding and removing
junctions as be discussed in the following subsection.
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Fig. 1 Movement of interior
junction
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Fig. 2 Movement of
exterior junction x . The left
figure corresponds to case (i)
and the right corresponds to
case (ii)

x

y

z

v2

x′
v

u

v8

x

y

z

v2

v

u
x′

v8

2.4.4 Add and Remove Junctions

During the evolution of each point, we may need to add or eliminate junction points.
When twoneighboring junctions x, y are both exterior and xy intersectswith obstacle
Pk1 , Pk2 , · · · , Pkr after evolution, we initialize a path with x, y being the starting and
ending points and {Pki }ri=1 being the obstacles. Denote the new added junctions by
(xn+1, xn+2, · · · , xn+s) where s is the total number of new junctions. Then they are
inserted into the set of junctions in order and the evolution process continues. On the
other hand, when two neighboring junctions x, y are both exterior and x meets y, we
may shorten the path by removing x and y.More precisely, let z1 be the other neighbor
of x and z2 be the other neighbor of y, i.e. the path contains (· · · , z1, x, y, z2, · · · ) as
a fraction. Since x = y, we may connect z1 and z2 directly which shortens the length.
In other words, we have the new fraction (· · · , z1, z2, · · · ). Notice, the line segment
z1z2 may intersect with some obstacles. Again we add the necessary junctions as
described above. The determination of whether a line segment xy intersects with a
face can be done by checking whether the intersection point of the line containing
xy and the surface containing the face lies on the face or not.
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2.5 Algorithm

We present our algorithm below

Input: number of intermittent diffusion intervals m, duration of diffusion
�Tl = Tl − Sl , l ≤ m. diffusion coefficients σl , l ≤ m.

Output: The optimal set Uopt of junctions.

1 Initialization. Find the initial set U of junction points.
2 for l = 1 : m
3 Ul = U ;
4 for xi = (u, v, θ0i ) ∈ Ul

5 for j = 1 : �Tl
6 Update x according to (7), i.e. θ j+1

i = θ
j
i + (−∇ J (θ

j
i ) + σl

√
�tξ)�t ;

7 Update set Ul , i.e. remove junctions from or add junctions to Ul ;
8 end
9 while |θ j+1

i+1 − θ
j
i | > ε (or other convergence criterion)

10 Update x according to (6), i.e. θ j+1
i = θ

j
i − ∇ J (θ

j
i )�t ;

11 Update set Ul ;
12 end
13 end
14 end
15 Compare Uls and set Uopt = argminl≤m L(Ul).

2.6 Complexity Analysis

We now give a brief analysis of the algorithm. Following [16], instead of discussing
the algebraic complexity of the algorithm, we will consider the running time in order
to achieve certain relative error ε.

(1) The initialization is done by constructing the visibility graph and Dijkstra’s
algorithm. Constructing the visibility graph takes O(|V |2)while Dijkstra’s algo-
rithm takes O(|E | + |V | log |V |). These two steps are exact in the sense that the
complexities do not depend on ε. Therefore, they are not counted in the final
complexity.

(2) Inner loop line 5–8 takes O(�Tl) time. This is because Eq. (7) takes constant
time, and so does adding or removing junctions.

(3) Inner loop line 9-12 takes T (ε) time where T (ε) denotes the number of iterations
required until the error is less than ε. If we assume the Hessian matrix of the
gradient is nondegenerate, which is the case for all polyhedral obstacles [3], then
T (ε) = O(log 1

ε
).



The Shortest Path AMID 3-D Polyhedral Obstacles 191

Table 1 Complexity comparison to other Algorithms

Algorithm Complexity

A∗ O(( 1ε )3 log 1
ε )

Papadimitriou [16] O( 1ε )

Choi et. al. [3] (When the shortest path is not unique.) O( 1ε )

Choi et. al. [3] (When the shortest path is unique.) O(log 1
ε )

Let �T = maxi≤l �Ti . Then the total running time is O(m(�T + log 1
ε
)). From

[4], it can be shown that in order to obtain the desired successful probability 1 − δ,
the number of realizations must be of order O(log 1

δ
). Therefore, the complexity is

O(log 1
δ
log 1

ε
). Table 1 shows a complexity comparisonwith some existingmethods.

3 Numerical Examples

We show several examples in this section to illustrate the paths obtained by our
algorithm. The diffusion coefficients are chosen randomly in interval [1, 2] and the
duration of diffusion�Tl is chosen randomly in [5, 20]. The parameterm, the number
of intermittent diffusion intervals {[Sl, Tl ]}m1 , on which the random perturbations are
added to the process, are specified in each example.

Example 1 The first example computes the shortest path between two points on
a hexagonal prism with side length

√
3 and base length 1. In one realization with

m = 10 intermittent diffusion intervals, it finds 3minimizers amongwhich the global
one, as illustrated in the left plot in Fig. 3, is visited 6 times. In this example, one
can easily enumerate all possible combinations to conclude the path obtained with
length L = 2.6 is the global optimal solution.

(a) Occurs 6
times, L=2.600

(b) Occurs 3
times, L=2.623

(c) Occurs once,
L=3.000

Fig. 3 Example 1
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(a) Occurs 13 times, L=7.0803 (b) Occurs twice, L=7.0956

(c) Occurs twice, L=7.3404 (d) Occurs once, L=7.3436

(e) Occurs once, L=7.4314 (f) Occurs once, L=7.5253

Fig. 4 Example 2

Example 2 There are three obstacles in this example (Fig. 4), two cubes and one
hexagonal prism. The algorithm finds 6 local optimal paths in 20 intermittent diffu-
sion intervals, among which the global optimal path occurs 13 times. Below we list
all the local minimizers.

Example 3 In this example (Fig. 5), we demonstrate that our algorithm works for
non-convex obstacles without holes. One obstacle is a rotated cube and the other
one is a larger cube with an unpenetrated indentation. In 20 intermittent diffusion
intervals, the algorithm finds 4 locally optimal path. The globally shortest path is
visited 14 times.
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Fig. 5 Example 3

(a) Occurs 14 times, L=4.4249 (b) Occurs twice, L=4.4599

(c) Occurs 3 times, L=4.6176 (d) Occurs once, L=4.5509

4 Polyhedron with Holes

We say two paths are homotopic if one can be deformed continuously to the other
while keeping its endpoints fixed. More precisely, letX be the space that takes away
all the obstacles, i.e.

X = R3 \
⋃

Pi .

Two paths f0, f1 are path-homotopic if there exists a family of paths ft : [0, 1] → X
such that

(1) ft (0) = x0 and ft (1) = x1 are fixed.
(2) the map F : [0, 1] × [0, 1] → X given by F(s, t) = ft (s) is continuous.

Intuitively, two paths are homotopic if one can be continuously transformed to the
other without passing through the obstacles. Path-homotopy is an equivalence rela-
tion. Thus one can divide all paths into equivalence classes. It is easy to see the
following

Theorem 2 If all the obstacles have Euler characteristic 2, then there is only one
path-homotopy equivalence class in the set of feasible paths F.

Proof Since each Pi has Euler characteristic 2, Pi is homotopic to 2-dimensional
sphere S2. Notice that R3 − B3 where B3 is the 3-dimensional ball is simple-
connected. Therefore, any two path in R3 − B3 are homotopic [8]. Same result holds
for R3 taking away n balls.

With this result, it is simple to obtain the results in Theorem 1.
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Fig. 6 Shortest path with
tunneled cube

(a) L=1.1543 (b) L=1.2659

Proof of Theorem 1 Theorem 2 guarantees that our algorithm is able to visit all
possible paths from any initialization. The rest of the theorem is simply the statement
from [4] and hence omitted.

However, on the contrary, if the obstacle contains holes, for example, a triangulated
torus, there would be multiple equivalence classes. For illustration, see the following
tunneled cube. The shortest path through the hole is 1.1543 while the one that doesn’t
penetrate the hole has length 1.2659. By slightly changing the position of the hole,
the shortest path would be the one that does not pass through it. Therefore, multiple
initializations are needed to ensure that all possible equivalence classes are covered.

A simple idea we can use is to “block” the homotopy equivalence class the current
path belongs to and then reinitialize. “Blocking” means deleting some vertices of the
obstacles such that the reinitialization will force the new path to a different homotopy
class. After the gradient descent settles down at the global minimizer in the current
homotopy class, the path is reinitialized and the algorithm is repeated to get a different
global minimizer. This procedure is repeated until all homotopy equivalence classes
are visited. The two paths in the above example are obtained by this method (Fig. 6).

However, there are two problems with this approach. First of all, the block is
often difficult to form because which vertices should be removed is a complicated
matter, for instance, a well triangulated torus as follows (Fig. 7). Second, the number
of different homotopy classes we need to visit is unknown in advance. For example,
topologically, there are infinitely many homotopy classes for a smooth torus and the
shortest path could wind the torus arbitrary times. In Fig. 8, the shortest path winds
the torus twice.
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Fig. 7 A triangulated torus

Fig. 8 A shortest path
winding a torus twice

A different approach is to use an already established approximation method, for
example [15] as described in the introduction section, to initialize the path. Those
algorithms are able to obtain a path that has length 1 + ε times the length of the
shortest path. Here ε depends on the mesh size. If the mesh size is sufficiently small,
the initialized path and the global minimizer will be in the same homotopy class.
However, the choice of the grid size is a critical and often hard to determine.

As discussed above, our method still applies for polyhedrons with holes provided
that appropriate initializations are taken. Although initialization is a complicated
matter, simple ideas usually work for most cases. We conclude our discussion here
and leave the improvement of initialization methods to our future work.

5 Future Work

The method we propose in this work can be equally applied to a general class of
problems. In detail, consider the following problem

γopt = argminγ∈F L(γ). (9)

Here L is a general functional on F with the form

L(γ) =
∫ 1

0
l(|γ̇(θ)|) dθ (10)
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where l(x) is a convex function. The Euclidean length of the path, which we consider
in this paper, simple corresponds to the case where l(x) = x . It turns out that in this
general setting, the optimal path has the same simple structure as mentioned in this
paper. Therefore, the method can be applied without any essential modification. An
example is l(x) = x2, in which case the functional L represents the oil consumption
of a car. We leave the direction for future exploration.
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Multigrid Methods for Image
Registration Model Based on Optimal
Mass Transport

Yangang Chen and Justin W. L. Wan

Abstract In this survey, we present fast, accurate and convergent numerical meth-
ods for solving non-rigid image registration based on optimal mass transport. To
solve the model equation, we first transform the nonlinear PDEs into an HJB equa-
tion. We apply a mixed standard 7-point stencil and semi-Lagrangian wide stencil
discretization, such that the numerical solution is guaranteed to converge to the vis-
cosity solution of the Monge-Ampere equation. We design a numerical scheme that
converges to the optimal transformation between the target and template images.
Finally, we introduce fast multigrid methods for solving the discrete nonlinear sys-
tem. In particular, we use a four-directional alternating line relaxation scheme as
smoother, a coarsening strategy where wide stencil points are set as coarse grid
points. Linear interpolation and injection are used in prolongation and restriction,
respectively. Our numerical results show that the numerical solution yield good qual-
ity transformations for non-rigid image registration and the convergence rates of the
proposed multigrid methods are mesh-independent.

Keywords Image registration · Optimal mass transport · Monge-Ampere
equation · Multigrid · Monotone discretization scheme

1 Introduction

In many applications, one has to compare two images T (template) and R (reference)
which display the sameobject, but the object inside the images is not spatially aligned,
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or the devices that record the two images are different. The image registration problem
is to find a coordinate transformation φ which transforms the image T to another
image Tφ , such that Tφ is similar and thus comparable to the image R.

One important application of image registration is to compare medical images of
the same patient, such as CT (computed tomography) and MRI (magnetic resonance
imaging) images of a damaged brain, which gives guidance for diagnosis and surgery
[1, 24]. Image registration can also be used for image fusion [26]. Multiple images
of the same object are taken, registered and then merged together, such that the
integrated image provides more useful than the original ones. We refer readers to [2]
for more discussion on applications.

Different approaches have been developed for image registration problems,
including parametrized transformation [30, 44], landmark-based registration [36],
elastic registration [8], fluid registration [14], diffusion registration [18], demon’s
registration [41], flow of diffeomorphism [16, 43], etc. A substantial discussion of
existing methods can be found in [32, 40].

This paper surveys the three recent works of the authors [10–12] and it considers
a non-rigid image registration method based on Monge-Kantorovich mass transport
[9, 20, 22, 23, 33, 37]. Optimalmass transport problems appear inmany applications
andhave beenwidely studied (see e.g. [13, 34, 38]). The use of optimalmass transport
for image registration was first proposed in [22, 23]. This image registration model
treats two images R and T as two mass densities. The goal is to find a mapping
which transforms one mass density T to the other R with mass conservation. Such
transformation is non-unique. By defining a transformation-dependent cost function
and minimizing it, we can obtain a unique optimal transformation. This optimal
transformation has desirable properties. For instance, it is usually diffeomorphic and
does not introduce foldings and crossings.

The primary advantage of this image registration model is that, unlike many other
non-rigid methods that are only applicable for images with small deformations, this
model can be applied to images with large deformations. See Figs. 1 and 2 in [22]
for an example of images with large deformations. Indeed, given any R and T , the
transformed image Tφ under the mass transport formulation can be equal to R [33].

Numerical methods have been developed for solving the image registration model
based on optimal mass transport. In [22, 23], the authors construct an initial mass-
preserving mapping φ0 by solving a nonlinear partial differential equation (PDE),
and obtain a second mass-preserving mapping φs by solving another nonlinear PDE
system, such that φ0 ◦ φs is the optimal transformation. The entire process involves
many intermediate steps. Also, in general, a nonlinear PDE (or PDE system) has
multiple solutions. An immediate challenge is that the nonlinear PDE system in
[22, 23] can give multiple transformations between R and T , which may not be the
optimal transformation.

An alternative approach is to solve an equivalent nonlinear Monge-Ampère equa-
tion. The gradient of the unique globally convex solution corresponds to the optimal
transformation between R and T [22, 27]. The convex solution itself is usually called
a scalar potential that generates the optimal transformation. Some literature has inves-
tigated numerical schemes for the Monge-Ampère equation arising from the image
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registration model [9, 20, 37]. However, for the approach in [20], the computational
cost per pixel must increase to infinity as the image size increases [17]. The methods
in [9, 37] are based on gradient descent, which is essentially equivalent to solving
the Monge-Ampère equation using explicit pseudo-timestepping.

In this survey paper, we present a numerical approach for the image registration
model based on optimal mass transport by solving the equivalent Monge-Ampère
equation. In order to ensure that the numerical scheme yields the optimal trans-
formation between R and T [20, 21], we will adopt a monotone finite difference
discretization method based on our previous work [10], which can be proved that the
resulting numerical solution converges to the viscosity solution [4] of the Monge-
Ampère equation. We will also present efficient multigrid methods for solving the
resulting nonlinear discretized system [11].

Standard multigrid methods turn out to have poor convergence. There are two
major factors behind the poor convergence. One is that the PDE may become
anisotropic along various directions. Standard pointwise smoothers fail to smooth
the error along the weakly connected directions. The other factor is that the result-
ing matrix is non-symmetric, which is a well-known issue when applying multigrid.
Algebraic multigrid (AMG) methods [35, 39] have been used as preconditioners.
However, they are not efficient as stand-alone solvers since AMG methods assess
geometric information indirectly though the strength of connections which is not
effective for the monotone discretization.

To obtain a fast stand-alone multigrid solver for solving Monge-Ampère equa-
tions, we note that wide stencils introduce oscillations locally to the error, and
such oscillations cannot be eliminated by smoothers, including the alternating line
smoothers. However, the oscillations are restricted at the wide stencil points. One
possible solution to capture the oscillations is to use a sophisticated interpolation,
which can be complicated and expensive to set up. Instead, we use a non-standard
coarsening strategy. Specifically, we set wide stencil points as coarse grid points.
The purpose is to directly use the coarse grid points to capture the oscillations. As
the wide stencils are mainly restricted to the singular points or singular lines, setting
wide stencil points as coarse grid points does not significantly increase the number of
the coarse grid points. In our numerical experiments, we illustrate that the proposed
multigrid method has a mesh-independent convergence rate for various problems.

This paper is organized as follows. In Sect. 2, we describe the image registration
model based on optimal mass transport. Section3 describes a finite difference dis-
cretization for the Monge-Ampère equation arising from the mass transport image
registration model. In Sect. 4, we present efficient multigrid methods to solve the
discretized system. Numerical results in Sect. 5 show that our multigrid methods
converge quickly with mesh-independent convergence rate. Image results are also
provided to demonstrate the performance of the registration model. Section6 con-
cludes the paper.



200 Y. Chen and J. W. L. Wan

2 Image Registration Model Based on Optimal Mass
Transport

2.1 Image Registration

Given a template image T and a reference image R, the objective of the image regis-
tration problem is to align the two images. Mathematically, we consider the template
(reference) image as a function defined on the domain �T (�R). For simplicity,
we assume that �T = �R = [0, 1] × [0, 1]. The image registration problem can be
formulated as to find a coordinate transformation φ that minimizes the difference
between ρTφ and ρR , where ρT and ρR are the intensities of the template image and
reference image, respectively, and ρTφ is the intensity of the transformed image, Tφ .
The intensities must be positive and bounded. The difference of the two images is
usually measured by some function such as sum of squared differences

D(ρTφ , ρR) ≡ ‖ρTφ − ρR‖L2(�R). (1)

2.2 Optimal Mass Transport Model

Consider registering two images T and R. If we view them as two piles of soil with
the densities ρT and ρR , then an image registration problem can be interpreted as a
mass transport problem [22, 23, 33]. That is, we consider two piles of soil ρT and
ρR with the same total mass:

∫
x̂∈�T

ρT (x̂)d2 x̂ =
∫
x∈�R

ρR(x)d2x. (2)

The image registration problem becomes to find a coordinate transformation φ :
�R → �T , or x̂ = φ(x) ∈ R

2, such that ρT is transformed to ρR while the total
mass is conserved:

∫
x∈�R

ρT (φ(x))d2φ(x) =
∫
x∈�R

ρR(x)d2x, (3)

or equivalently,
ρT (φ(x)) det[Dφ(x)] = ρR(x), (4)

where Dφ(x) ∈ R
2×2 is the Jacobian of the transformation φ(x).

Under the transformation φ, define the intensity of the transformed image Tφ as

ρTφ (x) ≡ ρT (φ(x)) det[Dφ(x)]. (5)
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Then the transformed template image is equal to the reference image:

ρTφ (x) = ρR(x). (6)

As a result, the mass transport model can transform any template image T to any
reference image R [33].

The mass transport registration (5) is ill-posed. More specifically, there exist
multiple transformations that move the soil ρT to ρR . Among all possible transfor-
mations, one of them requires the “least cost”, which is desirable. Following [5, 22,
23], we aim to find the optimal transformation φ∗(x) that minimizes the following
cost function:

φ∗(x) ≡ argmin
φ(x)

∫
R2

‖x − φ(x)‖2ρR(x)d2x, (7)

which is the weighted least squares displacement of the mass. In essence, (7) regu-
larizes the mass transport registration and makes the transformation between ρT and
ρR unique.

2.3 Monge-Ampère Equation

It has been proved in [27] that the optimal transformation that minimizes the cost
function (7) can be written as

φ∗(x) = ∇u(x), (8)

where u ∈ C(�R) is a strictly convex scalar potential field, and its gradient ∇u
generates the optimal transformation φ∗. Substituting (8) into (4), we have

det[D2u(x)] = ρR(x)

ρT (∇u(x))
, (9)

u is strictly convex. (10)

Equations (9)–(10) is aMonge-Ampère equation.
Due to the nonlinearity, the equation (9) itself, without the convexity constraint

(10), can have multiple solutions [6, 17]. However, the solution of (9) that satisfies
the convexity constraint (10) is unique [20], which we will denote as u∗ whenever
we need to distinguish it from the other solutions. We emphasize that the convexity
of u∗ is equivalent to the optimality of the transformation φ∗ = ∇u∗ [20, 22].
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3 Finite Difference Discretization

In order to design a finite difference scheme that converges to the viscosity solution,
we first convert the Monge-Ampère equation into an equivalent Hamilton-Jacobi-
Bellman (HJB) equation. The equivalence of the two PDEs is first established in [28,
29]. Here we present the equivalent HJB equation as follows:

Theorem 1 Let u ∈ C2(�R) be convex, and let ρT ∈ C(�T ) and ρR ∈ C(�R) be
two positive functions. Then the Monge-Ampère equation (9)–(10) is equivalent to
the following HJB equation

L̂c∗(x),θ∗(x) u(x) = 0, (11)

subject to (c∗(x), θ∗(x)) ≡ arg max
(c(x),θ(x))∈�

L̂c(x),θ(x) u(x), (12)

where the differential operator is

L̂c(x),θ(x) u(x) ≡ −σ11(c(x), θ(x))uxx (x) − 2σ12(c(x), θ(x))uxy(x)

−σ22(c(x), θ(x))uyy(x) + 2

√
c(x)(1 − c(x))

ρR(x)

ρT (∇u(x))
,

(13)
and (c(x), θ(x)) is the pair of control at point x, � = [0, 1] × [−π

4 , π
4

)
is the set of

admissible control. The coefficients are

σ11(c(x), θ(x)) = 1

2
[1 − (1 − 2c(x)) cos 2θ(x)],

σ22(c(x), θ(x)) = 1

2
[1 + (1 − 2c(x)) cos 2θ(x)],

σ12(c(x), θ(x)) = 1

2
(1 − 2c(x)) sin 2θ(x).

(14)

Below, we will describe a monotone finite difference discretization scheme for
the HJB equation (11)–(12).

3.1 Standard 7-Point Stencil Discretization

Consider discretizing the differential operator (13) at a grid point xi, j . We use the
standard central differencing to approximate uxx (xi, j ) and uyy(xi, j ). Regarding the
cross derivative uxy(xi, j ), it can be shown that the standard 7-point stencil discretiza-
tion leads to a monotone scheme in the following two cases:
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Fig. 1 (i) 7-point stencil of
(16); (ii) 7-point stencil of
(18)

• Case 1. When the coefficients (14) at a grid point xi, j satisfy

σ11(ci, j , θi, j ) ≥ |σ12(ci, j , θi, j )|, σ22(ci, j , θi, j ) ≥ |σ12(ci, j , θi, j )|, σ12(ci, j , θi, j ) ≥ 0, (15)

we approximate uxy(xi, j ) using

1

2
(D+

x D+
y + D−

x D−
y )ui, j ≡ 2ui, j + ui+1, j+1 + ui−1, j−1 − ui+1, j − ui−1, j − ui, j+1 − ui, j−1

2h2
.

(16)
• Case 2. When the coefficients (14) at a grid point xi, j satisfy

σ11(ci, j , θi, j ) ≥ |σ12(ci, j , θi, j )|, σ22(ci, j , θi, j ) ≥ |σ12(ci, j , θi, j )|, σ12(ci, j , θi, j ) ≤ 0, (17)

we approximate uxy(xi, j ) using

1

2
(D+

x D−
y + D−

x D+
y )ui, j ≡ −2ui, j − ui+1, j−1 − ui−1, j+1 + ui+1, j + ui−1, j + ui, j+1 + ui, j−1

2h2 .

(18)

Figure1 shows the stencil points of the 7-point stencil discretizations (16) and (18).
As a result, the discretization of the differential operator (13) at xi, j reads

Li, j (ci, j , θi, j ; uh) ≡ −σ11(ci, j , θi, j )D+
x D−

x ui, j − σ12(ci, j , θi, j )(D+
x D±

y + D−
x D∓

y )ui, j

−σ22(ci, j , θi, j )D+
y D−

y ui, j + 2
√

ci, j (1 − ci, j ) fi, j .
(19)

3.2 Semi-Lagrangian Wide Stencil Discretization

However, if neither of Conditions (15) and (17) is fulfilled at the grid point xi, j , then
it is unclear how to directly discretize the cross derivative uxy(xi, j ) in (13) monoton-
ically. Our approach is to consider a semi-Lagrangian wide stencil discretization
[15, 31]. Figure2 illustrates the discretization process. More specifically, we con-
sider eliminating the cross derivative uxy(xi, j ) by a local coordinate transformation.
Let {(ez)i, j , (ew)i, j } be a local orthogonal basis obtained by a clockwise rotation
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Fig. 2 Semi-Lagrangian wide stencil discretization at a grid point xi, j inside the computational
domain

of the standard axes {(ex )i, j , (ey)i, j }, as represented by the grey axes in Fig. 2. By
straightforward algebra, one can show that if the rotation angle is

1

2
arctan

2σ12
(
ci, j , θi, j

)
σ22

(
ci, j , θi, j

) − σ11
(
ci, j , θi, j

) = θi, j ,

then the cross derivative vanishes under the basis {(ez)i, j , (ew)i, j }. As a result, (13)
becomes

− ci, j uzz(xi, j ) − (
1 − ci, j

)
uww(xi, j ) + 2

√
ci, j

(
1 − ci, j

)
fi, j (20)

Here uzz(xi, j ) and uww(xi, j ) are the directional derivatives along the basis (ez)i, j

and (ew)i, j . We note that (20) still depends on θi, j , as the basis (ez)i, j and (ew)i, j

depend on θi, j .
To discretize (20), one may consider applying the standard central differencing

to uzz(xi, j ) and uww(xi, j ). For instance, we approximate uzz(xi, j ) by

1

h2

[
u(xi, j + h(ez)i, j ) − 2ui, j + u(xi, j − h(ez)i, j )

]
. (21)

However, since the stencil is rotated, the stencil points xi, j ± h(ez)i, j may no longer
coincide with any grid points. In such cases, we consider approximating u(xi, j ±
h(ez)i, j ) using bilinear interpolation from the neighboring grid points. However, a
consequence of the bilinear interpolation is that the truncation error of (21) turns out
to be O(1), which is not consistent. In order to maintain consistency, we choose the
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stencil length
√

h, which yields O(h) truncation error. We note that the stencil length√
h is greater than h, which gives rise to a “wide” stencil.
Under the stencil length

√
h, the new stencil points are xi, j ± √

h(ez)i, j and
xi, j ± √

h(ew)i, j , as represented by the grey stars in Fig. 2. The unknown values at
these stencil points are approximated by the bilinear interpolation from their neigh-
boring points, as represented by the black dots in Fig. 2.We denote these interpolated
unknown values as Ihu|xi, j ±

√
h(ez)i, j

and Ihu|xi, j ±
√

h(ew)i, j
. The finite difference dis-

cretizations for uzz(xi, j ) and uww(xi, j ) are then given by

D+
z D−

z ui, j ≡ Ihu|xi, j +
√

h(ez)i, j
− 2ui, j + Ihu|xi, j −

√
h(ez)i, j

h
, (22)

D+
w D−

w ui, j ≡ Ihu|xi, j +
√

h(ew)i, j
− 2ui, j + Ihu|xi, j −

√
h(ew)i, j

h
. (23)

Finally, the discretization of the differential operator (13) at xi, j reads

Li, j (ci, j , θi, j ; uh) ≡ −ci, j D+
z D−

z ui, j − (
1 − ci, j

)
D+

w D−
w ui, j + 2

√
ci, j (1 − ci, j ) fi, j .

(24)

We remark that here we have only discussed the scenario where xi, j is well inside
the computational domain. The scenario where xi, j is near the boundary can be
handled similarly.

3.3 Mixed Discretization

The advantage of the semi-Lagrangian wide stencil discretization (24) is that it is
unconditionally monotone but it is only first order accurate. On the other hand, the
standard 7-point stencil discretization is second order accurate. In order to com-
bine the advantages of both discretization schemes, we will only apply the semi-
Lagrangian wide stencil discretization at the grid points where neither (15) nor (17)
is satisfied. Otherwise, the standard 7-point stencil discretization is applied. The
resulting discretization method can be written as:

The significance of this mixed discretization is that monotonicity is strictly main-
tained at every grid point, and meanwhile, by using the standard 7-point stencil
discretization as much as possible, the numerical scheme is as accurate as possible.

The mixed discretization scheme gives rise to a nonlinear discrete system which
can be written in the following matrix form:

Ah(c
∗
h, θ

∗
h ) uh = bh(c

∗
h, θ

∗
h ), (25)

subject to (c∗
h, θ

∗
h ) ≡ arg max

(ch ,θh)∈�

{Ah(ch, θh) uh − bh(ch, θh)} , (26)

where the matrix Ah ∈ R
nx ny×nx ny and the vectors uh, ch, θh, bh ∈ R

nx ny .



206 Y. Chen and J. W. L. Wan

Algorithm 1Mixed discretization for the HJB equation (11)-(12)
1: for i = 1, , ..., nx do
2: for j = 1, , ..., ny do
3: if (ci, j , θi, j ) satisfies Conditions (15) or (17) then
4: Thediscrete equation at (i, j),Li, j (ci, j , θi, j ; uh), is givenby the standard7-point stencil

discretization (19)
5: else
6: The discrete equation at (i, j),Li, j (ci, j , θi, j ; uh), is given by the semi-Lagrangian wide

stencil discretization (24)
7: end if
8: end for
9: end for

4 Multigrid Methods

Wewill applymultigridmethods for solving (25).We startwithmultigridmethods for
the standard 7-point stencil discretization.More precisely,we consider the casewhere
the standard 7-point stencil discretization can be applied on the entire computational
domain and still results in a monotone scheme. We will leave the discussion of
multigrid for more general mixed stencil discretization to Sect. 4.3.

4.1 Policy-MG Iteration

One family of multigrid methods for solving the discretized HJB equation (25) is
based on a global Newton-like iteration for the nonlinear system, called policy iter-
ation (or Howard’s algorithm) [19, 25]. At each policy iteration, a linear multigrid
solver is applied to solve the linearized system. The algorithm can be written as
follows:

Start with an initial guess of the solution u(0)
h .

For k = 0, 1, ... until convergence:

1. Solve for the optimal control pair (a(k)
h , θ

(k)
h ) under the current solution u(k)

h :

(a(k)
i, j , θ

(k)
i, j ) = arg max

(ai, j ,θi, j )∈�i, j

{
Ah(ah, θh)u

(k)
h − bh(ah, θh)

}
i, j

, (27)

for all xi, j ∈ �. Here �i, j = [0, 1] × [−π
4 , π

4 ) is the control set at xi, j .

Meanwhile, obtain the residual

r (k)
h = Ah(a

(k)
h , θ

(k)
h )u(k)

h − bh(a
(k)
h , θ

(k)
h ). (28)
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2. If ‖r (k)
h ‖ ≤ tolerance: break

Else, use the multigrid V-cycle to solve the following linear system for the solution
u(k+1)

h under the current optimal control pair (a(k)
h , θ

(k)
h ):

Ah(a
(k)
h , θ

(k)
h ) u(k+1)

h = bh(a
(k)
h , θ

(k)
h ) ⇒ u(k+1)

h . (29)

To summarize, in order to solve (25), the inner multigrid V-cycle iteration for
linearized problems is nested in an outer policy iteration. For convenience, we refer
this type of multigrid methods as “policy-MG iteration”.

The advantage of using this approach is that policy iteration is guaranteed to
converge for any initial guess u(0)

h , if HJB equation is monotonically discretized
[3, 7]. Policy iteration consists of two sub-steps. The first sub-step is to solve the
optimization problem at each grid point xi, j ; see (27). Our recent work [10] discusses
speeding up computation of the optimization problem in details. The second sub-step
of the policy iteration is to solve the linear system under a given control pair; see
(29). The second sub-step is our focus of developing multigrid methods.

4.2 MG for 7-Point Stencil

The components of the standard multigrid include pointwise smoother, full coarsen-
ing, full-weighting restriction, bilinear interpolation and coarse grid operator (i.e.,
Galerkin coarse grid operator or direct discretization). However, the standard multi-
grid leads to a poor convergence for the HJB equation. We need to adapt each multi-
grid component to the HJB equation in order to achieve fast convergence.

4.2.1 Nonlinear Smoother

First, we discuss smoothers. We observe that (11) may become anisotropic. For
instance, if c∗ = ε is a small constant close to 0 and θ∗ = 0, then (11) becomes

−εuxx − (1 − ε)uyy + 2
√

ε(1 − ε) f = 0,

which is an anisotropic Poisson equation. It is well-known that when solving
anisotropic equations, the standard pointwise smoothers do not smooth errors along
the weakly connected axis, which causes poor convergence rates [42].

To address anisotropy, we consider using line smoothers. More specifically,
instead of updating the unknowns point by point, we update strongly-connected
grid points collectively. In general, the strongly-connected direction of the 7-point
discretization can change alignment to either the x-axis, or the y-axis, or the diag-
onal axes, in different parts of the computational domain. In view of this, we apply
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four-direction alternating Gauss-Seidel line smoother. Thus, the line smoother is
applied four times: along the x-axis (left to right), the y-axis (top to bottom), the
diagonal axis (top left to bottom right) and the transpose diagonal axis (top right to
bottom left). We summarize the nonlinear smoother in Algorithm 2.

Algorithm 2 Nonlinear four-direction alternating Gauss-Seidel line smoother

1: subroutine ūh = SMOOTH (uh)

2: for i = 1, , ..., nx do
3: for j = 1, , ..., ny do
4: Update the control: (c̄i, j , θ̄i, j ) = arg max

(ci, j ,θi, j )∈�

Li, j (ci, j , θi, j ; uh).

5: end for
6: end for
7: Apply the one-step four-direction alternatingGauss-Seidel line smoother to the linearized system

Ah(c̄h, θ̄h) uh = bh(c̄h, θ̄h), which updates the solution uh → ūh .

4.2.2 Restriction and Interpolation

Once the error becomes smooth along the x , y and diagonal axes after using the
four-direction alternating line smoother, the standard full-coarsening can be applied.
In order to capture the directional feature of the 7-point discretization, we follow [42]
and apply 7-point restriction operators to (19). Using the stencil notation introduced,
the corresponding 7-point restriction operators are given by

R[1] = 1

8

⎡
⎣0 1 1
1 2 1
1 1 0

⎤
⎦ , R[2] = 1

8

⎡
⎣1 1 0
1 2 1
0 1 1

⎤
⎦ , (30)

respectively. The interpolation operator is the scaled transpose of the restriction
operator:

P = 4RT . (31)

4.3 MG for Mixed Discretization

In this section, we will discuss multigrid methods for the more general mixed dis-
cretization, where the semi-Lagrangian wide stencil discretization is applied to part
of the computational domain.Wewill propose global linearizationmultigridmethods
instead of FAS methods. One reason is that mixed discretization with wide stencils
is a more difficult problem than the pure standard 7-point stencil discretization. We
would like to use the Petrov-Galerkin coarse grid operators, which is more robust in
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terms of the accuracy of the error estimate but is incompatible with the nonlinearity
of FAS. Another reason, which will be shown, is that the coarse grids of our pro-
posed approach are no longer square grids, which poses difficulties in defining an
FAS coarse grid problem using direct discretization.

4.3.1 Issues

To start with a simple scenario, we consider solving the mixed discretization of the
following linearized HJB equation:

1

2
uxx + 1

2
uyy = √

f , in �\{(0, 0)},
2 + √

2

4
uxx + 2 − √

2

4
uyy + 1√

2
uxy = 0, at (0, 0),

u = g, on ∂�.

(32)

In other words, we assume that the control is given as (c∗, θ∗) = ( 12 , 0) on the entire
computational domain�, where the standard 7-point stencil discretization is applied,
except that the control is (c∗, θ∗) = (1, π

8 ) at the origin (the center of�), where wide
stencil discretization is applied. Figure3(ii) shows the error after applying the four-
direction alternating line smoother. In particular, the cross section of the smoothed
error shows that a kink appears at the origin (0,0). In general, wherever the wide
stencil discretization is applied at a grid point, a kink appears in a smoothed error.
Unfortunately, such kinks cannot be eliminated by other types of smoothers either.

4.3.2 Coarsening Strategy

Despite kink(s), Fig. 3(ii) shows that, after smoothing, kink(s) are restricted to the
wide stencil point(s), and the error at the other grid points (i.e., the standard 7-
point stencil points) is still smooth. This motivates us to apply full-coarsening to the
standard 7-point stencil points, and consider a special type of coarsening strategy at
the wide stencil points.

Tomotivate our coarsening strategy for wide stencils, we define aC-point as a fine
grid point that is kept in its corresponding coarse grid; and an F-point otherwise. Let
us first consider a one-dimensional cross section of a smoothed error; see Fig. 4(i).
Black dots are C-points, while hollow dots are F-points. Assume that the standard
full-coarsening assigns a wide stencil point (indicated by the red arrow) as an F-
point. Let the black curves represent the underlying fine grid error. On the coarse
grid, let its estimated error match the underlying fine grid error exactly, i.e., let the
values of the black dots sit on the black curve. After linear interpolation of the coarse
grid error, we obtain the interpolated error (grey curve) on the fine grid. Ideally, the
interpolated error (grey curve) should match the underlying fine grid error (black
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(i) Initial error

(ii) Smoothed error

Fig. 3 The error after one step four-direction alternating Gauss-Seidel line smoothing. (i) Initial
error and its cross section along the x-axis. (ii) Smoothed error and its cross section along the x-axis.
A kink appears at the origin (0,0)

curve) as closely as possible. However, since the underlying fine grid error has a
kink at the wide stencil point, the resulting interpolated error turns out to have a
mismatch, as indicated by the red arrow. In other words, if the wide stencil point is
an F-point, a linearly interpolated error will fail to capture the kink accurately.

Instead, our approach is simply setting the wide stencil F-point as a coarse grid
point, i.e., a C-point; see Fig. 4(ii). As a result, interpolation at the wide stencil point
is no longer needed. The error at the wide stencil point is simply copied from the
coarse grid to the fine grid. This yields a more accurate fine grid estimated error, as
indicated by the green arrow.

The above coarsening strategy can be extended to two dimensions. Figure5 illus-
trates the coarsening process. On the fine grid, the black dots are selected asC-points,
and the hollow dots are selected as F-points. Suppose wide stencils are applied to the
three red dots. Then these three dots are all assigned as C-points. The resulting first
coarse grid is a combination of a square grid that comes from geometric coarsening,
and some additional coarse grid points that come from wide stencils. We can con-
tinue to coarsen the square sub-grid and meanwhile keep all the wide stencil points
as C-points, which generates the second coarse grid. Such a coarsening strategy can
be applied recursively until the coarsest level.
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Fig. 4 Coarsening strategy at a wide stencil point. (i) Standard coarsening with linear interpolation
at a wide stencil F-point (red arrow). (ii) Setting the wide stencil point as a coarse grid C-point
(green arrow)

Fig. 5 Wide stencil grid points (red) are kept as C-points as the grid is coarsened from a fine grid
to a coarse grid

One may argue that by setting all the wide stencil points as coarse grid points, the
number of coarse grid points, and thus the computational complexity, will increase.
However, it is observed in numerical simulations that wide stencils typically account
for a negligible proportion of the total grid points in practical applications (such
as image registration). Setting wide stencil points as coarse grid points would not
result in a significant increase of the number of coarse grid points, and would still
approximately maintain the square grid structure as the grid coarsens.

4.3.3 Interpolation

Under the proposed coarsening strategy, all the wide stencil points are excluded
from the set of F-points. In other words, F-points must be the standard 7-point
stencils. Hence, the 7-point interpolation, as described in Sect. 4.2.2, can be used for
interpolating the errors at these F-points.

We note that the coarse grids are no longer square grids; see Fig. 5. However,
each of these coarse grids can be seen as a combination of a square grid and some
additional wide-stencil C-points. Then all the F-points can still be interpolated from
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Fig. 6 Restriction for one-dimensional Poisson equation. (i) h = 1
36 and

√
h = 6h. (ii) h = 1

49
and

√
h = 7h

the C-points on the square grid. The arrows in Fig. 5 show how an F-point can be
interpolated.

4.3.4 Restriction

In both the standard geometric and algebraic multigrid methods, restriction is sim-
ply the transpose of interpolation. However, it does not result in mesh-independent
convergence rates for the non-symmetric matrices Ah arising from the mixed dis-
cretization. We will show such poor convergence in Sect. 5.2. Instead, we propose a
restriction operator R that is different from the transpose of the interpolation P .

Our approach is simply to use injection onwide stencil points. Tomotivate the use
of injection, let us simplify our problem and start with the one-dimensional Poisson
equation

− uxx = 0, x ∈ [−0.5, 0.5]. (33)

We apply the wide stencil discretization at x = 0 and the standard finite difference
discretization on the rest of the computational domain. Figure6 shows that under our
coarsening strategy (which in this case is the same as the standard full coarsening),
the fine grid points with even indices are C-points (black points), and the ones with
odd indices are F-points (hollow points). The wide stencil point is i = 0. A naive
choice of restriction at i = 0 would be the transpose of the linear interpolation, i.e.,
the standard full-weighting restriction:

r H
0 = 1

4
r−1 + 1

2
r0 + 1

4
r1, (34)

where r−1, r0, r1 are the fine grid residuals at i = −1, 0, 1, respectively, and r H
0 is

the restricted residual at the coarse grid point. However, this leads to a poor coarse
grid estimated error. In order to find a better restriction, we investigate two cases.

Case 1: h = 1
36 and

√
h = 6h. Figure6(i) shows that on the fine grid, the stencil

points of i = 0 fall onto i = ±6. In this case, the wide stencil discretization at i = 0
reads −u−6 + 2u0 − u6

(6h)2
= 0. (35)
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The residual at i = 0 is then given by

r0 = −e−6 + 2e0 − e6
(6h)2

. (36)

We notice that i = 0, i = −6 and i = 6 are all C-points. Then a natural construction
of the coarse grid problem at i = 0 is to discretized the Poisson equation using these
three points, or more precisely,

−eH−6 + 2eH
0 − eH

6

(6h)2
= r H

0 , (37)

where the left hand side is a discretization of the Poisson equation on the coarse
grid with the stencil length 6h, and the right hand side is the coarse grid residual
r H
0 . Comparing (36) and (37), we can see that the restriction at i = 0 is a simple
injection:

r H
0 ≡ r0. (38)

Case 2: h = 1
49 and

√
h = 7h. Figure6(ii) shows that on the fine grid, the stencil

points of i = 0 fall onto i = ±7. Unlike the previous case, here the two points
i = ±7 are both F-points. To discretize the Poisson equation on the coarse grid, we
interpolate the errors at i = 7 and i = −7 from their neighboring C-points, which
gives

− 1
2 (e

H−8 + eH−6) + 2eH
0 − 1

2 (e
H
6 + eH

8 )

(7h)2
= r H

0 . (39)

We want to find a restriction, i.e., to rewrite r H
0 as a linear combination of fine grid

residuals, such that it matches the left hand side of (39). One scheme is to use the
linear combination of the following fine grid residuals:

r0 = −e−7 + 2e0 − e7
(7h)2

, r7 = −e6 + 2e7 − e8
h2

, r−7 = −e−6 + 2e−7 − e−8

h2
.

(40)
If we combine r0, r7 and r−7 as follows

r0 + 1

98
r7 + 1

98
r−7 = − 1

2 (e−8 + e−6) + 2e0 − 1
2 (e6 + e8)

(7h)2
, (41)

then (41) matches the left hand side of (39) in the exact sense. Equation (41) defines
a possible restriction, i.e.,

r H
0 ≡ r0 + 1

98
r7 + 1

98
r−7. (42)
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We note that the restriction (41) makes use of the residuals r7 and r−7, which are
the points that the wide stencil point i = 0 connects to. This is different from the
standard full weighting restriction (34), which uses the neighboring points r1 and
r−1. Since the coefficients of r7 and r−7 are small, we simply drop them from (42)
and yield again an injection:

r H
0 ≡ r0. (43)

More generally, given a wide stencil C-point i ∈ C with a stencil length
√

h,
the non-zero restriction weights occur at the set of the F-points that it connects to,
denoted as { j | j ∈ F, Ai, j �= 0}. We can show that the restriction weights are

wi, j = − Ai, j

A j, j
= −

− 1
(
√

h)2

2
h2

= h

2
. (44)

When h is small, the restriction (44) can be left out. In other words, injection is
sufficient for a good coarse grid problem.

We extend the proposed injection at wide stencil C-points from the
one-dimensional Poisson equation to the two-dimensional HJB equation. Note that
the resulting restriction operator Rh is no longer the transpose of the interpolation.
Once the restriction operator is specified, we construct the coarse grid operator by

A2h ≡ Rh Ah Ph . (45)

Since Rh �= PT
h , it results in the Petrov-Galerkin coarse grid operator.

The benefits of injection at wide stencil C-points are two-fold. One is that the
resulting restriction operator and Petrov-Galerkin operator (45) are significantly
sparser than their counterparts if other types of restriction operators are used (such
as AMG restriction). This reduces the computational complexity. The other bene-
fit is that such restriction would lead to an accurate coarse grid error estimate and
eventually a mesh-independent convergence rate (Fig. 7).
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Fig. 7 Example 1: The exact solution is u(x, y) = e
1
2 (x2+y2). (i) Numerical solution. (ii) Norms

of the errors ‖u − uh‖
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5 Numerical Results

In this section, we demonstrate the mesh-independent convergence rates of the pro-
posed multigrid methods for solving the discretized system (25)–(26). Details can
be found in [10, 11].

5.1 Multigrid for Standard 7-Point Stencil Discretization

In Examples 1–2, the standard 7-point stencil discretization can be applied mono-
tonically on the entire computational domain. We compare the performance of two
families of multigrid methods - global linearization methods and full approximation
scheme (FAS). For global linearization methods, the residual tolerances for the outer
policy iteration and the inner multigrid V-cycle are 10−6 and 10−7, respectively.
The Gauss-Seidel smoother, the standard full coarsening and the 7-point restriction
and interpolation are applied. The Petrov-Galerkin coarse grid operators are used
to construct coarse grid problems. For FAS, the multigrid components are the same
as the global linearization methods, except that we use the nonlinear version of the
smoothers and direct discretization coarse grid operators.

Example 1 Consider solving the following equation:

uxx uyy − u2
xy = f (x, y) = (1 + x2 + y2)ex2+y2 , in �,

u(x, y) = g(x, y) = e
1
2 (x2+y2), on ∂�,

where � = (−1, 1) × (−1, 1). The exact solution u(x, y) = e
1
2 (x2+y2) is smooth.

This example is isotropic, so it suffices to apply the less expensive pointwise
Gauss-Seidel smoother. First we show the convergence rates of the global lineariza-
tion method; see the first and second columns of Table1. To understand the reported
numbers, we take the grid size of 32 × 32 as an example. The numbers “8, 7, 2”
mean that it takes 3 policy iterations to converge to the solution of the nonlinear

Table 1 Convergence of the global linearization method and the FAS for Example 1

nx × ny Gobal linearization method FAS

Number of multigrid
V-cycles within each
policy iteration

Total number of
multigrid V-cycles

Total number of
multigrid V-cycles

32 × 32 8, 7, 2 17 8

64 × 64 9, 7, 3 19 8

128 × 128 9, 7, 3 19 9

256 × 256 9, 7, 3 19 9
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problem, where the 1st policy iteration takes 8V-cycles to converge to the solution
of the linearized problem, the 2nd policy iteration takes 7V-cycles, and the 3rd pol-
icy iteration takes 2V-cycles. The table shows that the number of multigrid V-cycles
within each policy iteration ranges from 2–9. The total number of multigrid V-cycles
for solving the nonlinear problem is 17–19, independent of mesh size. As a side
remark, we use the solution of the k-th policy iteration, u(k)

h , as the initial guess of
the multigrid V-cycles at the (k + 1)-th policy iteration. Hence, as policy iteration
converges, the initial guess of multigrid V-cycles becomes more and more precise,
and the number of multigrid V-cycles within each policy iteration decreases.

We compare the global linearization method with the FAS iteration. The last
column of Table1 shows that the total number of the FAS iterations is 8–9 and is
independent of mesh size. We note that for both the global linearization method and
the FAS iteration, the computational cost per multigrid iteration is approximately the
same. Hence, the FAS iteration is less expensive and converges faster.

Example 2 We consider the following equation:

uxx uyy − u2
xy = f (x, y) = 1 + 24(x + y)2, in �,

u(x, y) = g(x, y) = 1
2 (x2 + y2) + (x + y)4, on ∂�.

The exact solution is u(x, y) = 1
2 (x2 + y2) + (x + y)4.

Table2 reports the convergence of the global linearization method using alternat-
ing line smoother and pointwise smoother. Themultigrid V-cycle with the alternating
line smoother converges at 20–32 iterations in total, which is approximately inde-
pendent of mesh size. Conversely, the multigrid V-cycle with a pointwise smoother
converges with more than 70 iterations, and the number of iterations is more than
doubled as nx increases from 32 to 256. This is because the example is anisotropic,
and a pointwise smoother is not efficient in smoothing errors alongweakly connected
directions.

Similar to Example 1, we also compare the total numbers of multigrid V-cycles
given by the global linearization method with the numbers given by the FAS. The

Table 2 Convergence of the global linearization method for Example 2 using alternating line
smoother and pointwise smoother

nx × ny MG with alternating line smoother MG with pointwise smoother

Number of multigrid
V-cycles within each
policy iteration

Total number of
multigrid V-cycles

Total number of
multigrid V-cycles

32 × 32 5,5,5,3,2 20 73

64 × 64 5,6,6,4,2,1 24 94

128 × 128 6,6,7,5,3,1 28 129

256 × 256 7,7,7,6,3,1 32 161
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Table 3 Total number of multigrid V-cycles of the global linearization method and the FAS for
Example 2 using the alternating line smoother

nx × ny Global linearization method FAS

32 × 32 20 5

64 × 64 24 6

128 × 128 28 6

256 × 256 32 6

alternating line smoother is used. Table3 shows that the global linearization method
converges in 20–32 iterations, whereas the FAS converges in 5–6 iterations, which
is significantly faster.

5.2 Multigrid for Mixed Discretization

In this section, we illustrate the multigrid convergence rates for the mixed discretiza-
tion. Thus, we apply four-direction alternating line smoother. At standard 7-point
stencil points, we apply the standard full coarsening and the 7-point restriction and
interpolation. At wide stencil points, we set them as coarse grid points, and use
injection as the restriction. The Petrov-Galerkin coarse grid operators are used for
constructing coarse grid problems.

Example 3 We consider solving the linearized HJB equation (32), where f and
g are the same as in Example 1. Consider applying the wide stencil at the origin
and the standard 5-point stencil discretization everywhere else. We compare the
performance of our multigrid method (Scheme I), the standard multigrid with four-
direction alternating line smoother (Scheme II), and the standard multigrid with
pointwise Gauss-Seidel smoother (Scheme III). For this example, the only difference
between Schemes I and II is that injection is applied at the wide stencil point for
Scheme I, while full-weighting restriction is applied at the same point for Scheme
II. Table4 shows that Scheme III has poor convergence. Scheme II converges in
less than 20 iterations, but the convergence rate grows as nx increases. Scheme I
converges in 5–6 iterations, and the convergence rate is independent of mesh size.

Figure8 explains the convergence observed in Table4 by examining the evolution
of errors during one two-grid cycle. Only the cross sections along the x-axis are
plotted. Start with the same initial error (green lines) for both our and the standard
schemes. The pre-smoothed error (blue lines) is smooth everywhere, except that a
kink appears at the wide stencil point x = 0. Figure8(i) uses our algorithm, where
injection is applied at the wide stencil point x = 0. The resulting coarse grid problem
yields an accurate coarse grid estimated error, i.e., the red line matches the blue line
well. Such accurate coarse grid estimate eliminates the error effectively, and yields
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Table 4 Convergence of linear multigrid V-cycles for Example 3

nx × ny Scheme I: Our MG Scheme II: Standard
MG with alternating
line smoother

Scheme III: Standard
MG with pointwise
smoother

32 × 32 5 7 23

64 × 64 5 9 46

128 × 128 6 12 198

256 × 256 6 17 more than 200

(i) (ii)

Fig. 8 Cross sections of errors along the x-axis. (i) Our algorithm, where injection is used at the
wide stencil point x = 0. (ii) Standard algorithm, where full-weighting restriction is used

a small post-corrected error (black line). Conversely, under the same smoother, if
the standard full-weighting is used at the wide stencil, then Fig. 8(ii) shows that
the coarse grid estimated error (red line) is no longer a good approximation of the
pre-smoothed error (blue line).

Example 4 We use the global linearization method to solve the Monge-Ampère
equation as in Example 1, where

f (x, y) = max

(
1 − 0.15√

x2 + y2
, 0

)
, g(x, y) = 1

2
(
√

x2 + y2 − 0.15)2

on � = (−0.5, 0.5) × (−0.5, 0.5). The viscosity solution is given by u(x, y) =
1
2 max(

√
x2 + y2 − 0.15, 0)2. This is a C1 function where the solution is not smooth

at the ring x2 + y2 = 0.152. Semi-Lagrangian wide stencils are applied near the ring
(Fig. 9).

Table5 reports the convergence of the global linearization method. The number
of outer policy iterations increases from 5 to 10 as nx increases from 32 to 256. Such
increase of outer iteration is related to nonlinearity and the singularity on the ring.

To compare the number of multigrid V-cycles across different mesh sizes fairly,
we compute the average number of multigrid V-cycles per policy iteration. Table5
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Table 5 Convergence of the global linearization multigrid method for Example 4

nx × ny Number of multigrid V-cycles within
each policy iteration

Average number of multigrid V-cycles
per policy iteration

32 × 32 4,5,3,2,1 3.0

64 × 64 4,6,3,2,1 3.2

128 × 128 5,6,4,3,3,2 3.8

256 × 256 6,6,6,6,5,4,3,3,2,1 4.2

shows that the average V-cycle count is approximately a constant ranging from 3.0
to 4.2 as nx increases from 32 to 256. Hence, the inner multigrid V-cycle for solving
linearized systems is nearly mesh-independent.

6 Conclusion

This paper presents a numerical scheme for solving the mass transport registration
model. In particular, we introduce a mixed standard 7-point stencil and wide sten-
cil finite difference discretization. Furthermore, we present multigrid methods for
solving the mixed discretization of the Monge-Ampère equation. We investigate two
scenarios. One scenario is when the standard 7-point stencil discretization is applied
on the entire computational domain. FAS gives the optimal mesh-independent con-
vergence. The other scenario is the general mixed discretization. Global linearization
method is used.We set all wide stencil points as coarse grid points and propose injec-
tion of residuals at wide stencil points. The resulting multigrid methods converge at
mesh-independent rates.
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