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Part I
Cellular and Physiological Aspects of

Wound Healing



Classification ofWounds and the Physiology
of Wound Healing

Ankit Gupta
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Ang Angiopoietin
BM-MSC Bone marrow mesenchymal stem cell
CTGF Connective tissue growth factor
DAMPs Damage-associated molecular patterns
DETC Dendritic epidermal T-cell
ECM Extracellular matrix
EGF Epidermal growth factor
FGF-2 Fibroblast growth factor-2
GPCR G protein-coupled receptor
HGF Hepatocyte growth factor
IGF Insulin-like growth factor
IL Interleukin
LC Langerhans cells
MC Mast cell
MMP Matrix metalloproteinases
MMP-2 Matrix metalloproteinase-2
NETs Neutrophil extracellular traps
PA Plasminogen activator
PAI Plasminogen activator inhibitor
PARs Pattern recognition receptors
PDGF Platelet-derived growth factor
PGE2 Prostaglandin E2
TGF-α Transforming growth factor-α
TGF-β Transforming growth factor-β
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TNF-α Tumor necrosis factor-α
tPA Tissue plasminogen activator
TRM CD+ resident memory T-cells
TRM Resident memory T-cells
uPA Urokinase plasminogen activator
VEGF Vascular endothelial growth factor.

1 Introduction

Skin is the outermost covering of the body that is frequently exposed to external
stress, pathogens, etc. and acts as a barrier against the outer environment
(Rinnerthaler et al. 2015; Wong et al. 2016; Gallo 2017; Losquadro 2017; Gravitz
2018). It shields internal tissues and organs of the body and provides protection
against mechanical stress, microbial infection, fluid imbalance, maintains thermal
dysregulation, and also permits the sensations of touch, heat, and cold (Richmond
and Harris 2014; Belkaid and Tamoutounour 2016; Chen et al. 2018b; Choi and Di
Nardo 2018; Kwiecien et al. 2019; Kabashima et al. 2019). As the skin is subjected
to a range of external and internal pressures, it is susceptible to various types of
injuries or damage. When the integrity of the multiple layers of skin, mucosal
surfaces, or organ tissue is lost due to any mechanical force (such as accidental or
intentional etiology), disease, or microbial infection, etc., it leads to cellular damage
and the occurrence of wound (Kujath and Michelsen 2008; Wilkins and
Unverdorben 2013; Putnam et al. 2015; Gonzalez et al. 2016; Obagi et al. 2019;
Herman and Bordoni 2020). In other words, loss in the skin, mucosal membrane, or
tissue integrity due to internal or external factors is called as wound (Kujath and
Michelsen 2008; Sarabahi and Tiwari 2012; Wilkins and Unverdorben 2013;
Putnam et al. 2015; Herman and Bordoni 2020). As the skin is constantly subjected
to a variety of stress factors, several kinds of immune cells, including Langerhans
cells (LCs), γδ T-cells, regulatory T-cells (Treg), and resident memory T-cells (TRM)
are recruited into the skin, which plays a vital role in sustaining the physiological
homeostasis (Hikosaka and Wurtz 1989; Liu et al. 2016; Ono and Kabashima 2016;
Sorg et al. 2017; Kabashima et al. 2019). The basic underlying architecture of the
skin and various immunological barriers present in the skin has been highlighted in
Fig. 1.

The occurrence of wounds allows the entry of bacteria, viruses, or external
chemicals into the body, which in turn can reason inflammation and can reason
local infection (wound infection) or systemic infection (septicemia) (Percival 2002).
This is a potential threat to the human organs, body, and sometimes can also lead to
life-threatening conditions. Recent reports suggest that every year worldwide, scores
of people are susceptible to irregular wound healing that in turn leads to long-term
recovery, due to improper treatment, and moderately effective wound healing
therapies (Fife and Carter 2012; Leavitt et al. 2016; Sen 2019; Rodrigues et al.
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Fig. 1 The basic architecture and immunological barrier of the skin. (a) Structural outline of the
varying layers of the skin and its components. The first layer consists of microbes such as bacteria,
fungi, and viruses located at the top of the skin surface, followed by hair follicles and sweat glands.
This forms the first line of defense by producing antimicrobial factors. The second layer is the
epidermis which comprises four distinct strata and possesses the keratinocytes and other immune
cells that are triggered upon infection. The layer below this, known as the dermis, is enriched in
leukocytes and also serves as a reservoir for immune cells recruited through the bloodstream. The
lowermost layer of the skin is called the adipose tissue and subdivided into white and subcutaneous
white adipose tissue. This layer predominantly contains lipid-dependent immune cells and also
provides defense by secreting antimicrobial peptides and factors. (b) Functional overview of each
layer of skin corresponding to the reference mentioned in (a). The figure is adapted from Kwiecien,
K. et al. 2019, Cytokine Growth Factor Rev. (Kwiecien et al. 2019)
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2019). Therefore, wound care and rapid wound healing are critical and have clinical
significance, and therefore more effective therapies of wound healing are needed.

From the early period of human life, the human body is continuously exposed to
various types of injuries and diseases. Therefore, humans have always tried to find
easy and effective ways of wound care and wound healing (to stop bleeding,
minimize microbial infection on wounds, and in accelerating the healing process),
for the successful treatment of different types of wounds (Gottrup and Leaper 2004;
Broughton et al. 2006; Shah 2011; Sarabahi and Tiwari 2012; Jones 2015). Wound
care has evolved over thousands of years and its treatment is an ancient area of
specialization in medical science. Through evolution, the wound healing ability by
regeneration of organs was replaced by repair through inflammation and subsequent
deposits of the matrix proteins at the wound site (Sarabahi and Tiwari 2012). Wound
care has evolved from ancient Greek medical practice (460–136 BC) through the
middle ages (476 AD–1453) to the modern era of wound care (fifteenth century to
twenty-first century) (Sarabahi and Tiwari 2012). During this period, we have
always tried to achieve rapid wound healing to prevent wound infection and to
avoid other clinical complications (Sarabahi and Tiwari 2012). The recent develop-
ments in the branches of cellular pathology, human physiology, molecular biology,
microbiology, surgery, polymer chemistry, and allied fields have helped us substan-
tially in understanding the basic mechanism of the wound healing process. With this
knowledge, clinicians are now trying to find new protocols/methods of wound care
and wound healing (Sarabahi and Tiwari 2012).

Wound healing is a multifaceted biological process that requires the intricate
collaboration of various cell types and their products in sequential steps (Kujath and
Michelsen 2008; Sorg et al. 2017; Kabashima et al. 2019; Rodrigues et al. 2019).
During this process, several types of immune cells are recruited at the wound site in
response to micro-environmental conditions caused by inflammatory challenges
(Singh et al. 2017). These cells and chemical factors help in maintaining homeostasis
upon the inflammatory challenges (Singer and Clark 1999; Gurtner et al. 2008;
Eming et al. 2014; Martin and Nunan 2015; Oishi and Manabe 2018; Lim et al.
2019; Rodrigues et al. 2019). At the same time, the local environment at the site of
infection changes with the improving health status of the individual. It is critical that
physicians understand the fundamental physiological processes involved in the
proper treatment of any cellular damage or any wound. Understanding the physiol-
ogy of a typical trajectory of infection and healing through different phases guides
the way for comprehending the basic principles of wound healing. With the help of
this knowledge, health care professionals can develop the necessary skills to care for
a wound, and the body can accomplish the complex task of tissue repair. Addition-
ally, successful wound healing should be prioritized to reduce morbidity arising out
of improper wound management (Kujath and Michelsen 2008; Gurtner et al. 2008;
Singh et al. 2017).

In this chapter, we talk about two key aspects of wound healing, which are
(i) classification of various types of wounds, and (ii) the cellular physiology of
wound healing. Here, we first discuss the classification of these wound types in
detail, which is fundamental to identifying a particular wound. Proper identification
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of the wound is required for a planned and successful treatment of any patient
without spreading any further contamination/infection and damage to the wound
or the patient’s body. Next, we discuss the cellular basis of wound healing and
provide detailed information on different stages of wound healing. We also provide a
detailed role of the several cell types and chemical factors involved in this process.
Finally, we summarize our current understanding of the fundamental mechanism and
the physiology of wound healing.

2 Classification of Wounds

Various types of trauma can damage the organ tissues and lead to the occurrence of
the wound. Once the body tissues are damaged, proper wound care is required to
achieve complete wound healing. In wound care, we ensure that wounds are
appropriately cleaned, dressed, and treated to stop further infection (Kujath and
Michelsen 2008; Wilkins and Unverdorben 2013; Onyekwelu et al. 2017; Herman
and Bordoni 2020). In wound care, the first and crucial step is to identify the wound
and wound type. For efficient wound management, one requires detailed knowledge
of the reason of tissue damage and occurrence of a wound, likelihood of surgical site
infection, characteristics of the wound, and wound type (Vu et al. 2009; Levy et al.
2013; Mioton et al. 2013; Herman and Bordoni 2020). This is possible only when we
have a demarcation between various wound types or injuries, and the wounds are
properly classified into different classes. Wound classification is also required
because the wounds of a healthy person and a diseased person (a person having
diabetes, malnutrition, patients receiving grafts, or any other disorder) shows a
drastic variation in bacterial contamination, infection, as well as they may also
show a differential ability to achieve wound healing (Percival 2002; Vu et al.
2009; Jones 2015; Onyekwelu et al. 2017; Herman and Bordoni 2020).

Proper classification of wounds can be achieved, when one can accurately predict
the probability of postoperative complications, surgical site infections, and
reoperation (Mioton et al. 2013; Herman and Bordoni 2020). Several medical
practitioners have attempted wound classification, but the disparities observed across
various injuries and associated wounds make it a challenging and complex process
(Belkaid and Tamoutounour 2016; Choi and Di Nardo 2018; Rodrigues et al. 2019).
The main problem with wound classification is the low inter-rater reliability of
wounds among medical professionals (Levy et al. 2013; Onyekwelu et al. 2017;
Herman and Bordoni 2020). Further, wound classification does not effectively work
in neonatal surgical wounds and chronically ill children, and it requires a different
classification scheme for this demography (Baharestani 2007; Vu et al. 2009;
Herman and Bordoni 2020). Once the details of wound characteristics (based on
their etiology, morphology, skin integrity, stage of infection, etc.) have been
documented properly, we have to plan for an optimized treatment to avoid further
contamination and damage to the wound or patient’s body. This is required to select
a suitable treatment protocol at the time of diagnosis. Thus, it is necessary to classify
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wounds in several groups or subgroups for their proper identification, as described
below.

2.1 Classification of the Wounds According to Etiology

Based on the homeostatic response of the wound, it becomes important to classify
them. The severity of the wound depends on the mechanism of injury and any
understated comorbidities of the patient. The first mode of classification discussed
herein is the classification of wounds based on etiology. Etiology is nothing but the
characterization of the wounds based on the comprehensive assessment of the cause
of the injury (Gamelli and He 2003; Spanholtz et al. 2009; Kuhajda et al. 2014).
Some wounds appear easy for the clinicians to classify, whereas some may represent
more complicated tasks to identify. Assessing the root cause of the problem and
rectifying it is also critical in preventing a recurrence of the wound. Thus, intentional
or unintentional wounds depending on the severity, are classified into several
different types, as described below (Table 1). The four main types of wounds,
when classified by etiology, are trauma wounds, burn injuries, penetrating injuries,
and surgical wounds.

2.2 Classification of the Wounds According
to the Rank-Wakefield System

To accurately assess wounds, different management strategies have to be developed.
This depends on the type and extremity of injury, which is of great importance.
Sometimes, injuries of high extremity require amputation. Therefore, it becomes
essential to classify wounds based on the treatment strategy that has to be employed.
One such classification system is the Rank and Wakefield classification (Mackay
1995; Vidyarthi and Gupta 2003; Purcell 2016). According to the Rank and Wake-
field point of view, wounds are divided into two broad categories: tidy and untidy

Table 1 Classification of the wounds according to etiology

Type of
wounds Description References

1. Blunt trauma
wounds

When a blunt object directly comes in contact with the body. Simon et al.
(2020)

2. Burn injuries When a small area of the body or other tissue is affected by
burns.

Spanholtz
et al. (2009)

3. Penetrating
injuries

When the skin is pierced due to the penetration of a foreign
object in the body and leads to an open wound.

Kuhajda et al.
(2014)

4. Incisional
wounds

When an incision/cut is made through muscle causing
damage and disruption to the tissues.

Gamelli and
He (2003)
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wounds (Table 2). This was one of the earliest and simplest modes of classification
and served the purpose of guiding wound management strategies.

2.3 Classification of the Wounds According to the Duration
of Wound Healing

Time plays a vital role in injury management and healing or repair of wounds. Thus,
based on the time frame of the healing process, wounds can be surgically categorized
as acute and chronic. These two terms are considered as references to the cause as
well as the time frame of the wound recovery (Bowler et al. 2001; Moreo 2005;
Morton and Phillips 2016; Powers et al. 2016; Maqsood 2018). The timeframe for
this criterion to be applied and to consider a wound as chronic is approximately
6 weeks. Any wound which can be expected to heal in a shorter period can be
classified as acute (Bowler et al. 2001; Moreo 2005; Korting et al. 2011; Jacobsona
et al. 2017; Maqsood 2018). Chronic wounds are ones that do not proceed through
the standard stages of wound healing in an appropriate and timely fashion. Chronic
wounds are frequently found to stall in the inflammation phase of healing (Quirinia
2000; Alexiadou and Doupis 2012). One of the critical examinations to be performed
on chronic wound patients is the vascular examination since the main driving factor
for potential healing of these wounds is the proper recruitment of immune cells
through the bloodstream. Chronic wounds are also characterized by an absence of
balance in the production and degradation of cells in the wound healing process
(Alexiadou and Doupis 2012; Morton and Phillips 2016; Powers et al. 2016)
(Table 3). The differing types and subtypes of wounds, when classified according
to the duration of wound healing, are described below.

Table 2 Classification of the wounds according to the Rank-Wakefield system

Type of
wounds Description References

1. Tidy
wounds

These are inflicted by sharp objects causing minimal
contamination and tissue remains well-vascularized on
the edge of the skin.
Primary healing occurs with time.

Mackay (1995),
Vidyarthi and Gupta
(2003), Purcell (2016)

2. Untidy
wounds

Results from tearing, crushing, avulsion, vascular
injury, or burns.
These contain devitalized tissue and require debride-
ment of all the devitalized tissue to create a tidy wound
for the initial assessment. Healing occurs through sec-
ondary approaches.

Mackay (1995),
Vidyarthi and Gupta
(2003)

Classification of Wounds and the Physiology of Wound Healing 9



2.4 Classification of the Wounds According to the Integrity
of the Skin

Another method of classification, that is based on the degree of damage to the
integrity of the skin. This method heavily dictates wound management and healing

Table 3 Classification of the wounds according to the duration of wound healing

Type of
wounds Description References

1. Acute
wounds

These arise out of damage to bony structures and
soft tissues, which involves a trauma injury
caused by environmental factors such as knife
cuts, insect bites, burns, etc.

Moreo (2005),
Maqsood (2018)

Scrapes or
abrasion

Skin causes friction when rubbed against rough
surfaces. E.g., Skinned knees and rope burns.

Korting et al. (2011)

Missile or
velocity
wounds

Deep body tissue damage caused by a high-speed
gunshot.

Hamdan (2006), Lone
et al. (2009)

Contusions
or avulsion

Wounds caused due to breaking of bones by a
forcible strike on the body or getting pulled away
from the rest of the bone. E.g., Hit by a ball or loss
of nail, tooth, etc.

Broder (2011)

Cut or crush
wounds

When a sharp or heavy object falls on the body,
causing a slice or cut. Road injuries are also
included in this category, where damage occurs to
the dermis and parts of the hypoderm.

Bowler et al. (2001),
Montella et al. (2014)

Lacerations Tearing of soft body tissues, which can either be
internal or external. E.g., Punching body and
childbirth.

Pergialiotis et al.
(2014)

Radiation
wounds or
ulcers

Injuries caused to the underlying soft tissues by
ionizing radiation. E.g., Chemotherapy.

Jacobsona et al. (2017)

2. Chronic
wounds

These are caused by metabolic perturbations or
tissues injuries which heal slowly.

Morton and Phillips
(2016), Powers et al.
(2016)

Venous/vas-
cular ulcers

Occurs in the lower extremities in the legs also
known as stasis ulcer or dermatitis. Usually seen
in old age groups.

Vasudevan (2014)

Diabetic
wounds/
ulcers

Due to neuropathic conditions and compromised
immune system, the body is unable to prevent
infection and turns small wounds into chronic.

Alexiadou and Doupis
(2012)

Pressure
ulcers

Also known as bedsores and normally found in
the paralytic condition. Due to the immobility of
the body, blood flow is restricted in muscles and
tissues.

Bhattacharya and
Mishra (2015)

Ischemic
wounds

It occurs as a result of a clinical blockage of blood
supply to vascular beds, resulting in glucose and
oxygen shortage for cellular metabolism.

Quirinia (2000)
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strategy since the integrity of the skin is the key component required for proper repair
and regeneration (Bauer and Aiken 1989; John et al. 2014). It is a broad and
straightforward mode of classification since it does not entail many categories or
subtypes. A different version of the same classification emerges when we classify
wounds into superficial and deep wounds (Bauer and Aiken 1989; John et al. 2014).
The major criterion is the capacity of the skin to heal itself, which depends upon the
extent of damage to the skin, which can then leads us to the classification as
superficial, deep dermal, or full-thickness (Table 4). When classified according to
the integrity of the skin, the wounds can be divided into two groups, as described
below.

2.5 Classification of the Wounds According to the Bacterial
Contamination or the Degree of Contamination

It is essential to restrict the spread of injury and infection caused by the wounds, and
for that, it is essential to confirm that the wounds are properly cleaned and appro-
priately dressed. One can surmise that a surgical wound is considered a contaminated
wound when an external object has come into contact with the skin leading to a high
risk of infection (Devaney and Rowell 2004; Sarabahi and Tiwari 2012; Onyekwelu
et al. 2017; Gorvetzian et al. 2018; Herman and Bordoni 2020),. The extent to which
the contamination has occurred dictates the wound management strategy and the
urgency to clean up the wound (Table 5). When there is a presence of wound
contamination, the optimal method of management is to proceed with wound closure
after an initial period of delay. Thus, to classify the condition and cleanliness of
wounds, the Centers for Diseases Control and Prevention (CDC) has established four
classes of the degree of contamination (Devaney and Rowell 2004; Sarabahi and
Tiwari 2012; Onyekwelu et al. 2017; Gorvetzian et al. 2018; Herman and Bordoni
2020), as described below.

Table 4 Classification of the wounds according to the integrity of the skin

Type of
wounds Description References

1. Open
wound

These injuries occur due to skin laceration with or
without tissue loss.

Bauer and Aiken
(1989), John et al.
(2014)

2. Closed
wound

These injuries occur without any disruption in skin
integrity and the skin remains intact.

John et al. (2014)
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2.6 Classification of the Accidental Wounds Based on Their
Origin

A clue to the cause for any skin lesions or wound can be determined from the
physical assessment of the injury. Molecular mechanisms governing skin wound
healing are still not completely understood. This puts the onus on the primary level
of wound assessment and classification to guide wound management strategies.
Clinicians find it difficult to have a unanimous denomination of wounds, since
each tissue that has to heal, or the reason that initiates the wound will dictate a
distinct approach (Ikpeme et al. 2010; Abrahamian and Goldstein 2011; Iyer and
Balasubramanian 2012; Okonkwo and DiPietro 2017; VanHoy et al. 2020; Schaefer
and Tannan 2020; Sveen et al. 2020). The final mode of classification discussed here
involves assessing the root cause or origin of the wound. The major benefit of this
approach is that it expedites the initial step towards wound healing and thereby
improves clinical outcomes. For this purpose, Table 6 briefly describes the classifi-
cation of wounds based on the morphology and pathophysiological process for the
type of damage.

Table 5 Classification of the wounds based on the degree of contamination

Type of
wounds Description References

1. Clean wounds Uninfected surgical wounds where no internal
damage is seen and only skin microflora has
been contaminated such as hernia repair,
exploratory laparotomy.

Sarabahi and Tiwari
(2012), Herman and
Bordoni (2020)

2. Clean-contam-
inated wounds

These wounds occur when surgical wounds
with microbial flora, under an uncontrolled
condition, penetrate the genitourinary tract,
respiratory, and alimentary tract. E.g., Hys-
terectomy, lobectomy.

Margenthaler et al.
(2003), Devaney and
Rowell (2004)

3. Contaminated
wounds

These wounds are marked by the introduction
of microflora in a previously uncontaminated
part of the body due to a major break in
aseptic technique or gross spillage from the
intestinal tract (cholecystectomy with bile
spillage or acute inflammation).

Devaney and Rowell
(2004), Gorvetzian et al.
(2018)

4. Heavily con-
taminated
wounds

These are typically old traumatic wounds in
which necrotic tissues are present that involve
clinical infection, such as infection including
repair of a perforated bowel.

Onyekwelu et al. (2017),
Gorvetzian et al. (2018)
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Table 6 Classification of the wounds according to the origin

Type of wounds Description References

1. Mechanical
wounds

Disruption of the skin integrity including
the mucous layer, caused by any
mechanical force on the body.
Mechanical wounds can be divided into
abraded/abrasion wounds, puncture
wounds, incised wounds, cut wounds,
crush wounds, torn wound, bite wound,
shot wound, etc.

Sveen et al. (2020)

2. Chemical wounds
Acid wounds These occur due to exposure to acids

causing chest pain and vomiting.
VanHoy et al. (2020)

Base wounds Similar to acid wounds but more toxic.
Necrotic tissue becomes liquified, and
lysis of cell and protein occurs.

VanHoy et al. (2020)

3. Wounds caused by
radiation

Tissue damage caused by radiation
exposure.

Iyer and
Balasubramanian
(2012)

4. Wounds caused by
thermal stress
Burning wounds These are skin injuries caused by contact

with hot surfaces, flame, hot liquids, or
steam.

Schaefer and Tannan
(2020)

Freezing wounds Injuries caused by the cold temperature
that leads to contraction of the blood
vessels and results in thrombosis.

Sarabahi and Tiwari
(2012)

5. Wounds caused by
diseases
Bone infection Inflammation of bones by bacteria or

fungus.
Ikpeme et al. (2010)

Diabetes Due to neuropathic conditions and
compromised immune system body is
unable to prevent infection and turns
small wounds into chronic. This is a type
of chronic wound.

Boniakowski et al.
(2017), Okonkwo and
DiPietro (2017)

Gangrene Necrosis caused by bacterial infection
leading to the death of body tissue.

Tan et al. (2018)

Immunosuppressive
disorder wounds

Surgical wounds associated with the
compromised immune system.

Raje and Dinakar
(2015)

6. Surgical wounds An incision/cut usually made during sur-
gery using a scalpel.

Onyekwelu et al. (2017)

7. Microbial infection Penetration of pathogens or microbes
through cuts on the body, causing
diseases.

Aly (1996)

8. Wounds caused by
animals

Wounds caused by an animal bite. Bjornstig et al. (1991),
Abrahamian and Gold-
stein (2011)
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3 Physiology of Wound Healing

A consecutive loss of function in any anatomical structure, which leads to tissue
disruption can be described as a wound. As soon as any damage is done to the tissue,
organ, or body, multiple parallel and interrelated pathways are activated (Singer and
Clark 1999; Gurtner et al. 2008; Eming et al. 2014; Martin and Nunan 2015; Oishi
and Manabe 2018; Lim et al. 2019; Rodrigues et al. 2019). These cellular and
extracellular pathways work in a coordinated manner, and their corresponding
functions must be carried out in the proper sequence, at the appropriate time to
achieve wound healing (Gosain and DiPietro 2004; Guo and Dipietro 2010;
Bielefeld et al. 2013; Sgonc and Gruber 2013; Eming et al. 2014; Bonifant and
Holloway 2019; Rodrigues et al. 2019). Once the healing is completed, these
pathways are stopped in a precise order to avoid extreme reactions or delayed
responses (Bayat et al. 2003; Diegelmann and Evans 2004; Rodrigues et al. 2019).
Despite the intricate nature of wound healing pathways, it is noteworthy that these
mechanisms that regularly take place in the human body are precisely programmed
and work without complication (Guo and Dipietro 2010). Interruptions in these
processes can lead to delayed wound healing and a high risk of patient mortality.

Wound healing is a common phenomenon of repair, growth, and tissue regener-
ation (Hunt et al. 2000; Diegelmann and Evans 2004; Broughton et al. 2006;
Boateng et al. 2008; Velnar et al. 2009; Wang et al. 2018). In other words, this is
a complex and dynamic biological process that requires intricate spatial and tempo-
ral synchronization of various cell types and mediators, interacting in an extremely
sophisticated cascade of cellular events (Hunt et al. 2000; Gonzalez et al. 2016; Sorg
et al. 2017; Kabashima et al. 2019; Rodrigues et al. 2019). During the healing
process, various immune cells, such as neutrophils, monocytes, Langerhans cells
(LCs), γδ T-cells, CD+ resident memory T-cells (TRM), and others are recruited at
the wound site. In response to micro-environmental conditions and different cyto-
kines, these cells maintain homeostasis upon inflammatory challenges (Hunt et al.
2000; Gurtner et al. 2008; Singh et al. 2017; Rodrigues et al. 2019). Details of these
cells and chemical factors are provided in Tables 7 and 8, respectively, and also in
succeeding sections. Since the process of wound repair is continuous, at the time of
injury, various cellular and biological events are activated to restore the integrity of
skin (Hunt et al. 2000; Gonzalez et al. 2016; Sorg et al. 2017; Kabashima et al. 2019;
Rodrigues et al. 2019). Therefore, to better understand this physiological process
that is happening at the wound site and nearby tissues, molecular events in wound
repair are categorized into the following stages: hemostasis, inflammatory phase,
angiogenesis, growth phase, re-epithelialization, and tissue maturation and
remodeling (Hunt et al. 2000; Guo and Dipietro 2010; Sgonc and Gruber 2013;
Eming et al. 2014; Gonzalez et al. 2016; Sorg et al. 2017; Bonifant and Holloway
2019; Rodrigues et al. 2019). These stages of wound healing proceed sequentially
but also overlap with each other (Table 9 and Fig. 2).

The primary response in the process of wound healing is: contraction of the
wounded blood vessels as well as platelet activation to form a fibrin clot, ultimately
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Table 7 Cells involved in wound healing. The table has been reproduced with permission from
Singh S. et al., 2017, Surgery (Singh et al. 2017) and Greaves N. S. et al., J. 2013, Dermatol. Sci.
(Greaves et al. 2013)

Cell type
Time of
action

Growth factors
released Function References

Platelets Immediately
after injury

TGF-α, TGF-β,
IL-1, lipoxins,
leukotrienes,
thromboxane-A2,
TNF-α, serotonin
IGF-1, CTGF,
VEGF, PDGF,
EGF, FGF-2

• Release of inflam-
matory mediators
(EGF, TGF-β,
PDGF, FGF, seroto-
nin, histamine,
thromboxane, pros-
taglandins, bradyki-
nin)
• Activation of the
coagulation cascade
• Thrombus
formation

Abe et al. (2001),
Egozi et al. (2003),
Workalemahu et al.
(2003), Anitua et al.
(2004), Sun et al.
(2009), Johnston
et al. (2011),
Greaves et al.
(2013), Singh et al.
(2017)

Neutrophils 1–48 h TGF-β, CTGF,
TNF-α, IL-1

• Release of proteo-
lytic enzymes and
ROS generation
• Increase vascular
permeability
• Phagocytosis of
bacteria
• Wound
debridement

Egozi et al. (2003),
Werner and Grose
(2003),
Workalemahu et al.
(2003), Strid et al.
(2004), Hu et al.
(2010), Greaves
et al. (2013), Singh
et al. (2017)

Keratinocytes 8 h TGF-β, EGF,
FGF-2, VEGF,
IGF-1, TNF-α,
IL-1, uPA, tPA,
PAI-1

• Releases inflam-
matory mediators
• Stimulate adjacent
keratinocytes
• Neovascularization

Sahni and Francis
(2000), Egozi et al.
(2003),
Workalemahu et al.
(2003), Sun et al.
(2009), Hu et al.
(2010), Greaves
et al. (2013), Singh
et al. (2017)

Lymphocytes 72–120 h IL-1, interferon-γ • Regulates prolifer-
ative phase of
wound healing
• Collagen
deposition

Werner and Grose
(2003), Strid et al.
(2004), Hu et al.
(2010), Mahdavian
Delavary et al.
(2011), Greaves
et al. (2013), Singh
et al. (2017)

Fibroblasts 120 h TGF-β, HGF,
FGF-2, PDGF,
VEGF, CTGF,

• Synthesis of gran-
ulation tissue
• Produces ECM
components

Abe et al. (2001),
Yang et al. (2005),
Conway et al.
(2006), Giannouli

(continued)
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stopping the bleeding (Clark 2003; Geer and Andreadis 2003; Cogle et al. 2004;
Rodrigues et al. 2019). Immediately after clot formation, the injured tissues release
growth factors and pro-inflammatory cytokines (see Table 8 for detail). As soon as
the bleeding is controlled, various inflammatory cells, for instance, neutrophils,
monocytes, and macrophages, are recruited at the wound site to promote the
inflammatory phase. Additionally, the adaptive immune system also gets activated
to fight against a variety of self and foreign antigens (Park and Barbul 2004; Brown
and Watson 2011; Davies et al. 2013a, b; Hoeffel and Ginhoux 2018; Larouche et al.
2018; Rodrigues et al. 2019). In the next phase, closely aligned with the inflamma-
tion phase, new blood vessel formation ensues through angiogenesis (Rodrigues
et al. 2019). This involves the activity of neuromas cell types within the perivascular
space. Here, along with the proliferation of the endothelial cells, circulating progen-
itor cells from the bone marrow and pericytes within the basal lamina also participate
in new blood vessel formation within the perivascular space (Asahara et al. 1997;
Ceradini et al. 2004; Armulik et al. 2011; Ansell and Izeta 2015; Kosaraju et al.
2016; Zhan et al. 2018; Rodrigues et al. 2019). It is then followed by fibroblast
migration and proliferation, synthesis of the matrix proteins, ECM formation,
keratinocyte proliferation, and differentiation, regeneration of hair follicles, etc.
during the growth and proliferative phase of wound healing (Martin 1997; Werner
et al. 2007; Donati et al. 2017; Rodrigues et al. 2019). Finally, the reorganization and
remodeling of ECM, as well as the rearrangement of granulation tissue to scar tissue,
completes the wound healing process, and synthesis as well as cross-linking of
collagen provide stability to the healing tissue. In this section, we discuss each of
these processes in detail to understand the physiology of wound healing (Table 9).

Table 7 (continued)

Cell type
Time of
action

Growth factors
released Function References

IGF-1, Ang-1,
Ang-2, uPA

• Collagen synthesis
• Release of inflam-
matory mediators
and various
proteases

and Kletsas (2006),
Sun et al. (2009),
Greaves et al.
(2013), Singh et al.
(2017)

CTGF connective tissue growth factor; ECM extracellular matrix; EGF: Epidermal growth factor;
FGF-2 Fibroblast growth factor-2; HGF hepatocyte growth factor; IGF-1 insulin-like growth
factor; IL Interleukin; PAI plasminogen activator inhibitor; PDGF platelet-derived growth factor;
TGF-α transforming growth factor-α; TGF-β transforming growth factor-β; TNF-α tumor necrosis
factor-α; tPA tissue plasminogen activator; ROS reactive oxygen species; uPA urokinase plasmin-
ogen activator; VEGF vascular endothelial growth factor
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Table 9 Major stages in the physiological process of wound healing

Phase Main process
Events during the
process Time References

Hemostasis • Vasoconstriction
• Platelet plug for-
mation (primary
hemostasis)
• Coagulation and
reinforcement of
the platelet plug

• Vascular contrac-
tion
• Platelet aggrega-
tion and degranula-
tion
• Thrombus
formation

Immediately
after injury

Mathieu et al.
(2006), Guo and
Dipietro (2010),
Mahdavian
Delavary et al.
(2011), Bielefeld
et al. (2013), Sun
et al. (2014),
Rodrigues et al.
(2019)

Inflammatory
phase

• Release of growth
factors and cyto-
kines by platelets,
immune cells, and
disrupted matrix
• Invasion of
inflammatory cells
(neutrophils,
monocytes,
macrophages)

• Vascular exuda-
tion
• Neutrophil infil-
tration
• Monocyte con-
version to macro-
phage
• Matrix enrich-
ment in proteogly-
cans
• Lymphocyte
infiltration

Day 0–3 Mathieu et al.
(2006), Guo and
Dipietro (2010),
Mahdavian
Delavary et al.
(2011), Bielefeld
et al. (2013), Sun
et al. (2014),
Rodrigues et al.
(2019)

Growth and
proliferative
phase

• Granulation tis-
sue formation and
neovascularization
• Formation of
endothelial cells
and new vessel
• Pericytes in
neovascularization
and wound healing
• Circulating pro-
genitor cells in
neovascularization
and wound healing
• Regeneration of
hair follicles

• Re-epitheliali-
zation
• Angiogenesis
• Fibroblast infil-
tration and prolif-
eration
• Collagen forma-
tion
• ECM formation

Day 3–15 Mathieu et al.
(2006), Guo and
Dipietro (2010),
Mahdavian
Delavary et al.
(2011), Bielefeld
et al. (2013), Sun
et al. (2014),
Rodrigues et al.
(2019)

Tissue
remodeling

• ECM reorganiza-
tion and
remodeling
• Myofibroblast
formation
• Contraction of the
wound
• Cell apoptosis

• Vascular matura-
tion and regression
• Conversion of
fibroblast to
fibrocyte
• Collagen degra-
dation and
formation

Day 15–
Month to
years

Mathieu et al.
(2006), Guo and
Dipietro (2010),
Mahdavian
Delavary et al.
(2011), Bielefeld
et al. (2013), Sun
et al. (2014),
Rodrigues et al.
(2019)
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3.1 Coagulation and Hemostasis

This is the first phase in the process of wound healing, which occurs as soon as any
damage or injury is done on any tissue or organ (Fig. 2, Table 9). This event occurs
on a micro- or macro-vascular scale where various cellular responses promote blood
clotting and prevent exsanguination or blood loss at the site of injury (Mathieu et al.
2006; Guo and Dipietro 2010; Mahdavian Delavary et al. 2011; Bielefeld et al. 2013;
Singh et al. 2017; Rodrigues et al. 2019). The key point of this mechanism is (i) to
prevent exsanguination in order to protect the vascular system and keep the organs
unharmed during the time of injury, and (ii) to provide a scaffold for migrating cells
essential for complete healing (Robson et al. 2001; Velnar et al. 2009; Guo and
Dipietro 2010; Bielefeld et al. 2013; Smith et al. 2015; Singh et al. 2017; Negut et al.
2018; Rodrigues et al. 2019).

Fig. 2 Hemostasis in wound healing. This is the first phase of wound healing, which occurs as soon
as any damage or injury is done on any tissue or organ. In response to the injury, the outermost layer
of the skin works towards preventing excess loss of blood in a process known as vasoconstriction.
Thereafter, the platelets are forced into action, where they release essential factors and drive the
platelet plug formation. The final part of hemostasis stage involves the reinforcement of the platelet
plug through the coagulation process. The figure is adapted with permission from Negut, I. et al.
2018, Molecules (Negut et al. 2018)
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Hemostasis and reparative wound healing are strongly controlled by the balance
between coagulation, endothelial cells, thrombocytes, and fibrinolysis (Falanga
2005; Velnar et al. 2009; Smith et al. 2015). This process is completed in three
steps: (i) Vasoconstriction—contraction of the muscular wall of the blood vessels, in
order to stop the bleeding; (ii) Primary hemostasis—platelet aggregation and platelet
plug formation; and (iii) Secondary hemostasis—activation of the coagulation
cascade and formation of fibrin mesh. These processes in combination form the
thrombus (platelet plug and the fibrin mesh), which then allows the entry of various
immune cells and growth factors to achieve wound healing (Martin 1997; Robson
et al. 2001; Werner and Grose 2003; Falanga 2005; Bielefeld et al. 2013; Rodrigues
et al. 2019).

3.1.1 Vasoconstriction

During this process, the blood vessels constrict rapidly to minimize or stop bleeding
at the injury site. This reflexive contraction of the vascular smooth muscle is
triggered by the molecule endothelin, which is released in response to the damaged
endothelium (Martin 1997; Velnar et al. 2009; Godo and Shimokawa 2017;
Rodrigues et al. 2019). In addition to this, some other molecules such as catechol-
amines, epinephrine, norepinephrine, prostaglandins, and PDGF (platelet-derived
growth factor) also regulate the process of vasoconstriction. Due to increased
acidosis and hypoxia at the wound site, the initial contraction of the vessels tempo-
rarily reduces bleeding and requires further activation of the coagulation cascade for
the complete wound healing (Martin 1997; Robson et al. 2001; Werner and Grose
2003; Falanga 2005; Velnar et al. 2009; Godo and Shimokawa 2017; Rodrigues
et al. 2019).

3.1.2 Primary Hemostasis (Formation of the Platelet Plug)

Blood platelets play a crucial role in this healing phase. Under normal conditions,
anti-thrombotic properties of the endothelial cell layer do not allow platelet activa-
tion, attachment, and aggregation (Nording and Langer 2018; Suzuki-Inoue et al.
2018; Rodrigues et al. 2019). As a primary response to an injury or blood vessel
rupture, the inside-out signaling pathway gets activated, leading to integrin activa-
tion and increased platelet binding to other platelets as well as ECM (Goto 2008;
Golebiewska and Poole 2015). Subsequently, activation of the outside-in signaling
cascade further triggers the plate activation and modifies the actin cytoskeleton or
change in platelet shape. The self-association of activated platelets and their binding
to ECM seals the ruptured blood vessel by forming a “platelet plug” (Goto 2008;
Rumbaut and Thiagarajan 2010; Golebiewska and Poole 2015; Rodrigues et al.
2019). Several molecular factors such as integrins (αIIbβ3, α2β1, etc.), active
molecules (ADP, serotonin, calcium, histamine, etc.), glycoproteins (platelet glyco-
protein Ib-IX-V and glycoprotein VI), thromboxane A2, fibronectin, vitronectin,

Classification of Wounds and the Physiology of Wound Healing 23



thrombospondins, etc. regulate platelet activation and help in the “platelet plug”
formation (Goto 2008; Rumbaut and Thiagarajan 2010; Golebiewska and Poole
2015; Rodrigues et al. 2019).

Platelets also secrete growth factors and cytokines, including PDGF (platelet-
derived growth factor), TGF-β (transforming growth factor-β), IGF (insulin-like
growth factors), and EGF (epidermal growth factor) within the “platelet plug.”
These molecules act as promoters in wound healing by providing the scaffold for
migration of various immune cells, including keratinocytes, leukocytes, fibroblasts,
and endothelial cells, as a reservoir for the subsequent phases of healing (Robson
et al. 2001; Falanga 2005).

3.1.3 Coagulation and Platelet Plug Fortification

This process is called secondary hemostasis, where the platelet plug is reinforced by
fibrin mesh to promote the platelet plug or the thrombus formation (Monagle and
Massicotte 2011; Xu et al. 2016). The “platelet plug” provides the surface for the
coagulation process. Here, the intrinsic and extrinsic coagulation pathways get
stimulated by the exposure of the sub-endothelial matrix and lead to the activation
of factor X. The activation of factor X induces conversion of the precursor molecule
prothrombin into thrombin, which finally leads to cleavage of fibrinogen into fibrin
(Goto 2008; Vojacek 2017; Rodrigues et al. 2019). The factor XIII crosslinks with
fibrin, which then binds to the plate plug and forms a thrombus or secondary
hemostasis plug (Monagle and Massicotte 2011; Xu et al. 2016; Tomaiuolo et al.
2017). The thrombus offers a framework for the migration of various immune cells at
the wound site for the subsequent phases of healing.

3.2 Inflammatory Stage

Inflammation is a primary nonspecific immune response of the body to harmful
environmental signals, such as any pathogen or bacterial infection, any damage or
injury to the cells, or due to any toxic substances (Audial and Bonnotte 2015;
Kuprash and Nedospasov 2016; Watson et al. 2017; Chen et al. 2018a; Negut
et al. 2018). Any cellular and vascular response to injury after an immediate
hemorrhage is characterized as the inflammatory phase (Table 9). The inflammation
can be characterized by swelling, pain, redness of the tissue, and loss of cellular
function (Fig. 3). This is a defense mechanism of the immune cells, where the
principal focus is initiating the wound healing process and suppressing the infection
(Ferrero-Miliani et al. 2007; Medzhitov 2010; Nathan and Ding 2010; Chen et al.
2018a). A variety of mediators are released after injury, like activation of platelets
and their cytokines, and the byproducts of hemostasis, which triggers the inflamma-
tory response from the injured tissue cells and capillaries (Ferrero-Miliani et al.
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2007; Medzhitov 2010; Nathan and Ding 2010; Audial and Bonnotte 2015; Chen
et al. 2018a).

The inflammatory cells are recruited at the wound site through a complex process.
Notably, the injury leads to an immediate increase in intracellular Ca+2, and a
calcium wave (Ca+2) appears during the initial few seconds of the injury. The
increased amount of intracellular Ca+2 modifies gene transcription by activating
protein kinase-C and Ca+2/CaMK (calmodulin-dependent protein kinase) (Tran
et al. 1999; Cordeiro and Jacinto 2013; Audial and Bonnotte 2015). Apart from
the increased amount of intracellular Ca+2, other cellular responses or damage
signals including reactive oxygen species (ROS) gradient (such as H2O2), damage-
associated molecular patterns (DAMPs) (purines, peptides, uric acid, and ECM
components), nitric oxide (NO), lipid mediators, and various chemokines
(CC cytokines and CXC cytokines) activates the transcription-independent path-
ways for the localization of the inflammatory cells (neutrophils, macrophages, mast
cells, etc.) (Jacinto et al. 2001; Lansdown 2002; McNeil and Steinhardt 2003;

Fig. 3 Inflammatory phase in wound healing. Once hemostasis phase is complete, the blood
vessels dilate and recruit the white blood cells, antibodies, growth factors, and enzymes at the
site of injury. The neutrophils begin to mount the typical host response and endeavor to destroy
toxic agents, foreign antigens, and microbes. The other kind of phagocytic cells, the macrophages,
then proceed to autolyze any necrotic tissue. Finally, the keratinocytes, fibroblasts, and endothelial
cells are activated for further stages of wound healing. The figure is adapted with permission from
Negut, I. et al. 2018, Molecules (Negut et al. 2018)
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Halliwell 2006; Kufareva et al. 2015; Audial and Bonnotte 2015; Hughes et al. 2017;
Rodrigues et al. 2019). In combination, these molecules diffuse through epithelial
tissues and trigger instantaneous gene transcription-independent responses through
regulating Tyr kinases receptor and ERK or JNK signaling (Tran et al. 1999;
Cordeiro and Jacinto 2013). These chemotactic damage stimuli, which are produced
by epithelial cells, are sensed by the immune cells present in the nearby tissues
situated in and around the wound site. This triggers the inflammatory response at the
site of injury. As a result, the immune cells are recruited wound sites to clear the
foreign antigens and microbes (Ferrero-Miliani et al. 2007; Nathan and Ding 2010;
Audial and Bonnotte 2015; Chen et al. 2018a).

The inflammatory phase can be divided into (i) early phase and (ii) late inflam-
matory phase. The early phase, which initiates during the late phase of coagulation,
activates the complement cascade of the immune system to stop infection at the
wound site. At this stage, the neutrophils are co-localized at the site of injury in
response to growth factors and cytokines such as TGF-β, complement components
(C3a and C5a), and the molecules released by platelets and bacteria (Velnar et al.
2009; Cerqueira et al. 2016). Here, the neutrophil cells remove foreign antigens or
bacteria through phagocytosis by releasing the ROS (reactive oxygen species) and
proteolytic enzymes (Velnar et al. 2009; Roberts et al. 2018). Once all the foreign
bodies are removed through neutrophils, these cells are eliminated from the wound
site before the initiation of the late phase. During the late phase of inflammation,
various molecules such as cytokines (PDGF, TGF-β) clotting factors, complement
components (C3a and C5a), leukotriene B4, and platelet factor IV, and other
breakdown products attract and recruit another phagocytotic cell macrophage at
the site of injury. Once migrated, these macrophages continue the phagocytosis
process for the clearance of toxic substances. Additionally, these cells provide a
scaffold for various growth factors (TGF-α, TGF-β, EGF, etc.), and activate
keratinocytes, fibroblasts, and endothelial cells for the later stages of wound healing
(Hunt et al. 2000; Diegelmann and Evans 2004; Velnar et al. 2009; Wang et al.
2018).

In response to chemotactic damage signals, a variety of immune cells like
macrophages, neutrophils, dendritic cells, mast cells, and T-cells are recruited at
the site of infection to initiate wound healing and stop further infection (Hunt et al.
2000; Diegelmann and Evans 2004; Broughton et al. 2006; Velnar et al. 2009;
Rodrigues et al. 2019). Each cell has a defined architecture and function in wound
healing, which are as follows:

3.2.1 Neutrophils in Wound Healing

Neutrophils are the most abundant and highly motile type of granulocytes. These
cells are generally found in blood and are recruited as “first responders” at the wound
site. At the time of injury, various surface receptors (GPCRs (G protein-coupled
receptors), integrins Fc receptors, and pattern recognition receptors (PARs), etc.)
present on neutrophils detects stress signals (such as ROS gradient, DAMPs, lipid
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mediators, and chemokines) secreted from the endothelial cells (Robson et al. 2001;
Velnar et al. 2009; Lammermann et al. 2013; Cerqueira et al. 2016; Rodrigues et al.
2019). In response to these signals, neutrophils migrate from the bloodstream
towards the site of injury. Once recruited at the injury site, activated neutrophils
initiate phagocytosis and snuff out toxic agents, foreign antigen, and microbes by
producing toxic granules, proteolytic enzymes, oxidative burst, and neutrophil
extracellular traps (NETs) (Velnar et al. 2009; Thieblemont et al. 2016; Roberts
et al. 2018; Oliveira et al. 2018).

The toxic granules secreted by the neutrophils have specific functions. The
primary granules or Azurophilic granules secreted from neutrophils contain
azurocidin, myeloperoxidase, serine proteases (elastase, cathepsin-G, and protease-
3), and lysozyme; while the secondary granules contain matrix metalloprotease
8 (MMP-8), lactoferrin, human cationic antimicrobial protein (hCAP-18), and
collagenase-2, etc. (Reeves et al. 2002; Faurschou and Borregaard 2003; Wilgus
et al. 2013; Rodrigues et al. 2019). The proteases present in these toxic granules
degrade the basement membrane as well as the ECM and aid the neutrophils in
escaping from the bloodstream and entering the injured tissue or the wound site
(Velnar et al. 2009; McCarty and Percival 2013). These proteases also cleave
laminin, elastin, vitronectin, fibronectin, collagen-IV, and possess antimicrobial
activity. At times, an increase in the neutrophil-derived proteolytic enzyme produc-
tion can result in cleavage of growth factor receptors, growth factors, and ECM
causing tissue damage (Sedmak and Orosz 1991; Rodrigues et al. 2019; Westby
et al. 2020).

The activated neutrophils also secrete NETs into the extracellular space. NETs are
chromatin filaments lined with cytosolic proteins and histones. This is one of the
most important molecules critical for neutrophil-mediated phagocytosis, which is
required to capture the pathogens, foreign antigens, and cell debris present in the
extracellular space through the process of NETosis (Jorch and Kubes 2017;
Rodrigues et al. 2019). The process of vital NETosis helps these cells stay alive
and perform phagocytosis to eliminate bacteria, viruses, and cell debris at the site of
injury (Jorch and Kubes 2017; Rodrigues et al. 2019).

In the initial step of phagocytosis, neutrophils get recruited at the wound site in
reaction to various stress signals such as ROS gradient, DAMPs, lipid mediators, and
chemokines, etc. In response to these signals, neutrophils mobilize towards the
injury site along with the bloodstream. The neutrophils present in the bloodstream
secrets toxic granules that degrade the basement membrane as well as the ECM and
allow neutrophils to enter the site of injury (Velnar et al. 2009; McCarty and Percival
2013). Once recruited at the wound site, neutrophils spread the chromatin filaments
lined with proteases outside of the cell through NETosis (Jorch and Kubes 2017;
Rodrigues et al. 2019). Thereafter, the neutrophils detect antigens using GPCRs, Fc
receptors, integrins, and PARs, and a phagocytic cup is formed to engulf the foreign
antigens and microbes (Jorch and Kubes 2017; Rodrigues et al. 2019). As soon as the
neutrophil engulfs the foreign molecules, the toxic granules, proteolytic enzymes,
oxidative bursts secreted from the cell degrade the internalized molecule and elim-
inate bacteria, viruses, and cell debris at the wound site (Velnar et al. 2009; Braem
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et al. 2015; Jorch and Kubes 2017; Roberts et al. 2018; Rodrigues et al. 2019). Once
the neutrophil-mediated phagocytosis is completed and when neutrophils have
achieved their charge, they undergo necrosis/apoptosis and are thrown away from
the wound surface by macrophages, which is termed as efferocytosis (Bratton and
Henson 2011; Jun et al. 2015; Jorch and Kubes 2017; Rodrigues et al. 2019).

3.2.2 Macrophages in Wound Healing

Macrophages can be defined as monocytes-derived cells that proliferate due to the
differentiation of the monocytes present within the wound (Gordon and Taylor 2005;
Malissen et al. 2014; Gordon et al. 2014; Das et al. 2015; Rodrigues et al. 2019).
Macrophages are critical in the inflammatory response of wound healing. The
M-CSFR is also recognized as CSF1R (colony-stimulating factor 1 receptor), that
is, the receptor for IL-34, and CSF1 or M-CSF (cytokines colony-stimulating factor-
1) controls/regulates the development of macrophages (Greter et al. 2012; Stanley
and Chitu 2014; Easley-Neal et al. 2019). These cells situated in the skin from the
time of development and are recruited at the wound site in response to platelet and
mast cells degranulation which then leads to an increase in stromal-derived factor
1 (SDF1/ CXCL12) and hypoxia-inducible factors (Gordon and Taylor 2005;
Gordon et al. 2014; Das et al. 2015; Gordon and Martinez-Pomares 2017). These
chemical factors also raise additional monocytes and amplify the macrophage
inflammatory response. After recruitment at the wound site, the tissue-resident
macrophage removes toxic metabolites, dead cells, and necrotic tissues through
phagocytosis (Gordon and Taylor 2005; Gordon et al. 2014; Das et al. 2015; Gordon
and Martinez-Pomares 2017).

Macrophage-mediated phagocytosis is a stepwise process wherein during the
early stages of healing, the microbicidal and pro-inflammatory macrophages
(M1-macrophages) release various chemical molecules like IL-6 and IL-1β, and
TNF-β to fight infection (Gordon and Taylor 2005; Das et al. 2015; Gordon and
Martinez-Pomares 2017; Rodrigues et al. 2019). The early macrophages recruited at
the wound site release several chemoattractants, including MCP-1 (monocyte
chemoattractant protein-1), within the damaged tissue, which can raise additional
monocytes and intensify the macrophage inflammatory response (DiPietro et al.
1995; Evans et al. 2013). These M1-macrophages identify and engulf the pathogens
into the phagosomes and kill them through ROS response and oxidative burst
(Slauch 2011; Das et al. 2015; Rodrigues et al. 2019). The M1-macrophages also
secrete MMPs that digest the ECM and thrombus and also activates the conventional
inflammation pathway (Takeuchi and Akira 2010; Malissen et al. 2014; Rodrigues
et al. 2019).

By and large, neutrophils and macrophages both show similar stages of the
phagocytosis process. However, the maturation of phagosomes (early endosomes,
late endosomes, and lysosomes) shown by the macrophage is absent in the neutro-
phil and ensues through fusion with numerous granules comprising proteases and
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antimicrobial agents (Jorch and Kubes 2017; Rodrigues et al. 2019). Both the cells
also show differences in the phagocytic receptors present on the cell surface.

The macrophages also demonstrate a phenotypic conversion from
M1-macrophage (pro-inflammatory macrophage) to alternatively activated macro-
phage (M2-macrophage) (Galli et al. 2011; Rodrigues et al. 2019). These M2
macrophages participate in the process of angiogenesis for the production of new
blood vessels and also in the proliferation stage and re-epithelialization phase of the
wound healing (Rodrigues et al. 2019). The involvement of the macrophages in the
physiology of wound healing has been addressed significantly; however, the knowl-
edge of macrophage origin and their function in wound healing is still not
completely understood (Gordon and Taylor 2005; Slauch 2011).

3.2.3 Mast Cells in Wound Healing

Mast cells (MCs) are ubiquitous resident cells and important for the innate immune
system, and these cells are present in abundance in the barrier organs such as skin
(Kalesnikoff and Galli 2008; Wulff and Wilgus 2013; Komi et al. 2020). MCs
originate in the bone marrow and move to skin and mucosa, a perivascular region
of the connective tissue (Sonoda et al. 1983; Trabucchi et al. 1988; Kaur et al. 2017).
Mast cells, expressed in various tissues, show heterogeneity in phenotype and
functions, which in turn is influenced by the change in the microenvironment
(Nakano et al. 1985; Rao and Brown 2008). MCs primarily function as effector
molecules in initiating allergic reactions by activating acute inflammation, mediating
immunoglobulin E (IgE) reactions, and also help to combat helminth infestations
(Akimoto et al. 1998; Wulff and Wilgus 2013; Rodrigues et al. 2019). These cells
also participate in the re-epithelialization process as well as in the angiogenesis and
help regulate mechanoresponsive mechanisms and promote scarring (Kischer et al.
1978; Akimoto et al. 1998; Foley and Ehrlich 2013).

Mast cells can prevent skin infection by releasing antimicrobial peptides in the
early stages of wound healing (Siebenhaar et al. 2007; Di Nardo et al. 2008; Wang
et al. 2012). These cells generate chymase and tryptase enzymes, histamine, VEGF,
etc., which in turn help in ECM degradation, allow neutrophil flux, and promote
keratinocyte proliferation and re-epithelialization, and enhance collagen synthesis
and fibroblast proliferation (Caughey 2007; Rodrigues et al. 2019), which in con-
junction contributes to wound healing process.

3.2.4 Role of Dendritic Cells (DCs) in Wound Healing

DCs are accessory cells or antigen-presenting cells (APC) that work as key modu-
lators between innate and adaptive immunity and are involved in priming the T-cell
response (Steinman et al. 1983; Said and Weindl 2015; Dixon et al. 2017; Rodrigues
et al. 2019). Within the epidermis, DCs are present as Langerhans cells (LCs)
(Steinman et al. 1983; Romani et al. 2003). Epidermal LCs are considered as the
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first immunological barrier. In humans, these cells possess unique surface receptors
and atypical Birbeck granule (a unique cytoplasmic organelle) (Romani et al. 2003;
Taylor et al. 2005; Said and Weindl 2015). At the time of infection, both Langerhans
and Dendritic cells are found in the skin-draining lymph nodes (Steinman and Cohn
1973; Steinman et al. 1983; Romani et al. 2003; Rodrigues et al. 2019). The dendritic
cells have a stronger antigen-presenting ability as compared to the macrophages
(Hume 2008; Rodrigues et al. 2019). In humans, we observe the presence of CD1C+
DC, CD14+ DC, CD141+ DC, and CD207+ DC at the wound site (Romani et al.
2003; Taylor et al. 2005; Said and Weindl 2015). When the DCs encounter the
antigens, the LCs downregulate e-Catherin expression, which in turn allows their
migration into the draining lymph nodes and activates T-cell mediated adaptive
response (Tamoutounour et al. 2013; Rodrigues et al. 2019). In humans, specific
plasmacytoid dendritic cells (pDCs) are also recruited at the site of injury. This cell
type senses the purines released by the wounded cells and triggers acute inflamma-
tory response and secrets interferon-α and interferon-β (INF-α and INF- β) (Hume
2008; Rodrigues et al. 2019).

3.2.5 T-Cells in Wound Healing

T-cells or T-lymphocytes constitute a significant component of the immune system.
T-cells interact with APCs and proliferate and differentiate into a particular type of
effector T-cell (Skapenko et al. 2005; Wilson and Brooks 2013; Heath and Carbone
2013). Among the two variants (γδ + T-cells and αβ + T-cells), the αβ + T-cells are
found abundantly in the human skin (Mestas and Hughes 2004; Povoleri et al. 2018;
Rodrigues et al. 2019). The γδ + T-cells are of two types: Vγ5- negative or Vγ5-
positive, and allow increased localization of neutrophils and DCs into the skin in
reaction to IL-7 and TNF-α (Rodrigues et al. 2019). DETCs or αβ + T-cells in the
epidermis are the only subtypes of T-cells that produce chemical factors such as
growth factors and cytokines (Jameson et al. 2002, 2004; Rodrigues et al. 2019).
These cells act on the keratinocytes and are crucial in the healing process, which
facilitates wound re-epithelialization and wound closure (Jameson et al. 2002, 2004;
Rodrigues et al. 2019). The DETCs keep examining the epidermis for the infection,
and as soon as it gets any damage signals, the DETCs get activated and change its
morphology (Jameson et al. 2002, 2004; Rodrigues et al. 2019). The activated
DETCs release several growth factors including KGF-1, KGF2, and IF-1, regulating
keratinocyte proliferation at the site of wound and leads to re-epithelialization
(Jameson et al. 2002, 2004; Rodrigues et al. 2019).

The ɑβ + T-cells presenting the CD8+ receptor become cytotoxic T-cells (CD8+
killer T-cells), while the T-cells presenting CD4+ receptor become helper T-cells
(CD4+ helper T-cells) (Skapenko et al. 2005; Wilson and Brooks 2013; Heath and
Carbone 2013; Rodrigues et al. 2019). Upon inflammation, populations of antigen-
specific T-cells become tissue-resident memory T-cells that play a critical role in the
inflammatory response as well as attract antigen-specific memory T-cells towards the
site of inflammation (Mijnheer and van Wijk 2019). Additionally, the CD8+ killer
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T-cells and CD4+ helper T-cells are also found at the site of chronic inflammation
(Skapenko et al. 2005; Wilson and Brooks 2013; Mijnheer and van Wijk 2019). The
specific helper cells (CD4+ helper T-cells) play a key role in the immune-
pathogenesis of autoimmune diseases and can be categorized into two major subsets:
Th1 and Th2 cells (Skapenko et al. 2005; Mijnheer and van Wijk 2019). Here, the
Th1 cells secrete IFN-γ and fight the intracellular bacteria, while the Th2 cells
release IL-4 and IL-13 and fight against helminth infection (Skapenko et al. 2005;
Wilson and Brooks 2013; Zhang et al. 2014; Mijnheer and van Wijk 2019).
Conversely, the CD8+ killer T-cells possess the cytolytic activity and produce
pro-inflammatory cytokines. These killer T-cells secrete TNF and INF-γ and protect
the body against viral infection and tumors (Wilson and Brooks 2013; Zhang et al.
2014; Mijnheer and van Wijk 2019).

3.3 Growth and Proliferative Phase of Wound Healing

Once the initial immune responses are completed and the inflammatory phase is
over, the tissue repair process is initiated (Falanga 2005; Velnar et al. 2009; Negut
et al. 2018; Rodrigues et al. 2019). The main aim of this stage is to ensure the closure
of the wound area through the process of angiogenesis, fibroplasia, and
re-epithelialization (Falanga 2005; Velnar et al. 2009; Gonzalez et al. 2016; Han
and Ceilley 2017; Rodrigues et al. 2019). This phase can be identified by the
initiation of proliferation, phenotypic alteration, and migration of fibroblast and
endothelial cells, followed by ECM deposition as well as granulation tissue forma-
tion (Bauer et al. 2005; Greaves et al. 2013; Gonzalez et al. 2016; Han and Ceilley
2017). Overall, the proliferative phase can be explained by two significant events
(i) granulation tissue formation, angiogenesis, and neovascularization, and
(ii) re-epithelization (Fig. 4, Table 9).

3.3.1 Granulation Tissue Formation, Angiogenesis,
and Neovascularization

In this process, activated fibroblast and endothelial cells support the synthesis of
granulation tissues, ECM, and collagen; it provides support for the further cellular
influx, new blood vessels, and various inflammatory cells (Gurtner et al. 2008;
Velnar et al. 2009; Eming et al. 2014; Rodrigues et al. 2019). The freshly synthe-
sized matrix works as a replacement for the interim network of fibrin and fibronectin
(Velnar et al. 2009). Fibroblasts are present in the body’s connective tissues and
maintain the structural integrity of these tissues (Lynch and Watt 2018; Rodrigues
et al. 2019). These cells have high plasticity and have heterogeneity based on their
activation status (Rodrigues et al. 2019). Fibroblast cells synthesize and remodel the
extracellular matrix, secrete cytokines as well as growth factors, and help in
immunomodulation during the healing process (Lynch and Watt 2018; Rodrigues
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et al. 2019). The lower lineage fibroblast expresses myofibroblast markers such as
α-SMA, which forms a large amount of ECM required for scar formation, and the
collagen fibrils provide higher mechanical strength to the tissue (Rodrigues et al.
2019). The dermal papilla fibroblast contributes to hair follicle development and
regeneration, as well as differentiates into myofibroblasts or smooth muscle cells
(Fujiwara et al. 2011; Rodrigues et al. 2019). The myofibroblast cells dedifferentiate
and release molecular factors such as fibronectin, hyaluronan, periostin, osteopontin,
endothelin, angiotensin, vitronectin, CCN2, and Cx43 and further assist in wound
healing (Velnar et al. 2009; Rodrigues et al. 2019).

The microvascular endothelial cells (ECs) are primarily associated with the
formation of new blood cells; in response to activation signals from adjacent cells,
the ECs migrate within the fibrin/fibronectin-rich clot, whereas the activated ECs
establish and strengthen the interaction with the neighboring perivascular cells
(Rodrigues et al. 2019). Here, the endothelial cells sense the proangiogenic activa-
tion signals such as PDGF-B, FGF, VEGF, TGF-alpha, and angiopoietins, secreted
from the adjacent cells, and start proliferating to initiate the process of angiogenesis

Fig. 4 Growth and proliferative phase in wound healing. During the proliferative phase, tissue
repair and neovascularization occur with the help of keratinocytes and endothelial cells. Initially,
the fibroblasts, with the help of collagen and other ECM factors, drive the granulation tissue
formation. Thereafter, epithelial cells resurface the wound under the command of a cascade of
growth factors in a process known as re-epithelialization. The figure is adapted with permission
from Negut, I. et al. 2018, Molecules (Negut et al. 2018)
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(Tonnesen et al. 2000; DiPietro 2016; Rodrigues et al. 2019). During the process of
angiogenesis, the ECs exhibits heterogeneity and are present as tip cells and stalk
cells (Gerhardt et al. 2003; Rodrigues et al. 2019). Heterogeneity of ECs is regulated
by Notch pathways involving effector molecules (Eg. VEGF), which are generated
by proliferating keratinocytes, subcutaneous adipose stromal cells, and macrophages
in the wound environment (Hellstrom et al. 2007; Suchting et al. 2007; Rodrigues
et al. 2019), which regulates the heterogenicity observed for ECs. During angiogen-
esis, the ECs present at the tip sense VEGF and other signaling molecules secreted
from macrophages, epidermal cells, and the subcutaneous adipose tissues
(Rodrigues et al. 2019). In response to these chemicals, the tip ECs extend their
filopodia and control and organize the formation of new capillaries, and the stalk
ECs trail the tip cells and preserve the integrity of the vascular system (Rodrigues
et al. 2019).

Pericytes and circulating progenitor cells are crucial for the process of
neovascularization during wound healing. The pericyte cells are rooted within the
basement membrane of the vascular system and play a vital role in(de)stabilization
of the microvasculature system and in the generation of a vascular barrier to bacteria
and other external agents (Hall et al. 2014; Rodrigues et al. 2019). Pericytes can wrap
around numerous endothelial cells as they have a large body and extended cell
membrane (Crisan et al. 2008; Hall et al. 2014; Rodrigues et al. 2019). The pericytes
show multipotent regeneration capacity and contribute to wound healing by
interacting with ECs and hematopoietic cells (HCs) and depositing the ECM to the
injury site (Rodrigues et al. 2019). The hematopoietic stem cells and endothelial
progenitor cells (HSCs and EPCs) participate in new blood vessel formation by
binding to endothelial cells at sites of hypoxia/ischemic tissue (Rajantie et al. 2004;
Cogle et al. 2004; Rodrigues et al. 2019). Here, the progenitor cells generated at bone
marrow sense chemokines and are attracted towards increasing chemokine gradients,
and once they are incorporated into sprouting endothelium, they differentiate into
endothelial cells (Takahashi et al. 1999; Rajantie et al. 2004; Rodrigues et al. 2019).

3.3.2 Re-Epithelialization

The term re-epithelialization means restoring an intact epidermis after a cutaneous
injury (Falanga 2005; Velnar et al. 2009; Clark 2014; Rousselle et al. 2019;
Rodrigues et al. 2019). Re-epithelialization can also be defined as the migration of
keratinocytes over the vascularized tissue by producing specific matrix molecules
(Falanga 2005; Velnar et al. 2009; Rousselle et al. 2019; Rodrigues et al. 2019). The
movement of epithelial cells from the epidermis begins within hours after injury over
the denuded surface (Falanga 2005; Clark 2014; Rodrigues et al. 2019). The
epithelial cells form a barrier across new tissue between the wound and the envi-
ronment. The epidermis plays a crucial role in conferring protection against micro-
organisms, extreme temperature, UV radiation, and excessive water loss (Watt 2014;
Rodrigues et al. 2019). The primary cells responsible for epithelialization are the
basal keratinocytes released from the wound edge, and they become activated for
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migration as soon as the injury occurs (Seifert and Maden 2014; Xu et al. 2015;
Rodrigues et al. 2019). Various modulators are involved in successful wound
closure, including cytokines, growth factors, extracellular matrix, cellular receptors,
matrix metalloproteinase, etc. (Rousselle et al. 2019; Rodrigues et al. 2019).

In general, re-epithelialization includes several stages like the movement of
keratinocytes from the wound edge, proliferation of keratinocytes, and its differen-
tiation. Migration of keratinocytes is the early phase of wound re-epithelialization,
wherein the epithelial sheet migrates towards the center of the wound (Odland and
Ross 1968; Rodrigues et al. 2019). This event is observed for a few hours to 1 day
from the time of the injury. This involves flattening and extension of keratinocytes,
the formation of lamellipodia, and ruffling of cytoplasmic projections. Also, events
like the loss of cell-cell and cell-matrix interaction, recantation of intracellular
tonofilament at the end of cytoplasm, and the formation of actin filament are
observed (Odland and Ross 1968; Stenn and Depalma 1988; Takeo et al. 2015;
Galliot et al. 2017). While in the proliferative stage of keratinocytes, cells are
restricted from the foremost edge of the wound (Krawczyk 1971; Clark and Henson
1996; Rodrigues et al. 2019). Therefore, to increase the strength of cells, epidermal
stem cells from interfollicular epidermis present near the hair follicle bulge, or
sebaceous gland proliferate towards the edge of the wound nearly 2 to 3 days after
the injury (Tumbar et al. 2004; Ito et al. 2005; Levy et al. 2007; Gurtner et al. 2008;
Lau et al. 2009; Snippert et al. 2010; Mascre et al. 2012). As the suprabasal layer of
differentiated keratinocytes loses its ability to proliferate, only the basal
keratinocytes can move (Morasso and Tomic-Canic 2005). The proliferation of
keratinocytes is regulated by growth factors name a few EGF, ECM, and integrins
(Michopoulou and Rousselle 2015). There are various other growth factors, includ-
ing FGFs (fibroblast growth factors), HGF (hepatocyte growth factor), HB-EGF
(heparin-binding epidermal growth factor), IGF-1 (insulin growth factor-1), TGF-α,
TGF-β, GM-CSF (epidermal granulocyte-macrophage colony-stimulating factor),
NGF (nerve growth factor) which are secreted by multiple cells during injury.
Simultaneously, wound-related signals are also released, e.g., nitric oxide, which
is synthesized by macrophages (Witte and Barbul 2002; Werner and Grose 2003;
Santoro and Gaudino 2005; Raja et al. 2007; Barrientos et al. 2008; Pastar et al.
2014). Finally, the epidermis is renewed by the proliferation of stem cells, under-
going terminal differentiation of their progeny, leaving the basal layer and moving
towards the surface (Koster and Roop 2007).

In addition to re-epithelialization, keratinocytes have mainly three sites of orig-
ination: the intrafollicular epidermis (IFE) during wound healing; hair follicles and
sebaceous glands; and melanocytes. At the time of injury, interfollicular-derived
stem cells give rise to new progenitors with active keratinocytes, which expand and
repair the wound (Aragona et al. 2017). IFE has been found to produce high levels of
integrins, which are more adhesive as compared to amplifying cells (Jones et al.
1995; Watt 2002b; Nieuwenhuis et al. 2007). Furthermore, there are three main
integrins attached to the basal cells: α3β1 and α6β4 that bind to laminin, α2β1 that
binds to collagen, and αvβ5 that binds to vitronectin; several other integrins are also
present over the basal, lateral, and apical surface (Watt 2002a; Raymond et al. 2007).
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The second most important site from where the keratinocytes can originate in the
hair follicle and sebaceous gland. The role of the hair follicle and sebaceous gland is
to give rise to the hair shaft, whereas the sebaceous gland lubricates the surface of the
skin by releasing lipids. The bulge is present at the hair follicle base and is further
categorized into (a) lower bulge, (b) mid bulge, and (c) upper bulge stem cells. A
secondary hair germ is present below the bulge consisting of progenitor cells derived
from the lower bulge stem cells. To this, the junctional zone and the sebaceous gland
are attached vertically above the hair bulge. The sebaceous glands have four sub-
divisions of stem cells, which include the LRIG1+ stem cells, bulge stem cells, and
LGR6+ stem cells, as well as BLIMP1 expressing cells (Oshima et al. 2001; Barker
et al. 2008; Fuchs and Horsley 2011; Brownell et al. 2011). Also present are
melanocytes, which are dendritic, neural crest-derived cells, producing melanin.
The role of melanin is crucial in the pigmentation of the skin, occurring due to
burns and protects the skin from UV radiation and ROS (Nishimura et al. 2002;
Costin and Hearing 2007; Solanas and Benitah 2013).

3.4 Tissue Maturation and Remodeling in Wound Healing

This is the last stage of wound healing, where the closure of an acute and chronic
wound is achieved, which in turn can go on for several months or sometimes more
than a year (Binstock 1991; Greenhalgh 1998; Velnar et al. 2009; Gurtner et al.
2011; Gonzalez et al. 2016; Negut et al. 2018; Rodrigues et al. 2019). This stage is
also termed as the maturation phase, wherein the development of fresh epithelium
and scar tissue formation occurs once the wound is closed, and the body attempts to
regain normal tissue structure to achieve complete healing (Witte and Barbul 1997;
Greenhalgh 1998; Ramasastry 2005; Gurtner et al. 2011; Rodrigues et al. 2019). In
other words, this stage determines whether the wound will recur or not. The primary
aim of this stage is to reorganize wound tissue, degradation, and regeneration of the
extracellular matrix, leading to normal healing (Hunt et al. 2000; Baum and Arpey
2005). The variety of growth factors such as TGF-β, PDGF, and FGF, are activated
during injury and tissue repair, regulate the remodeling phase (Steenfos 1994;
Amjad et al. 2007). The remodeling phase can also be characterized by the loss of
multiple cell types, i.e., decrease in tissue cellularity occurs (Fig. 5, Table 9). Also,
the disappearance of myofibroblast, fibroblast, pericytes, endothelial cells, and
deposition of ECM (particularly interstitial collagen) takes place (Gurtner and
Evans 2000; Li et al. 2007; Petreaca and Green 2014; Rodrigues et al. 2019).

In the remodeling phase, the reorganization of tissue occurs mainly through
collagen. During this, the wounded tissue has less strength as compared to the
unwounded tissue. To increase the tensile strength, collagen bundles increase in
diameter and recover approximately 80% of the original strength (Robson et al.
2001; Clark 2014; Qin 2016). At this stage, subsequent variations in the composition
and deposition of the ECM matrix take place. Collagen type III, formed during the
proliferative stage, undergoes degradation, and production of robust collagen type I
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increases (Clark and Henson 1996; Greenhalgh 1998; Singer and Clark 1999; Hunt
et al. 2000; Cheung and Anseth 2006; Gurtner et al. 2008; Guo and Dipietro 2010).
The newly synthesized collagen type I matrix is highly organized, in contrast to the
collagen type I bundle. Finally, the wound margins are brought closer to each other,
and connective tissues start to shrink in size. During the remodeling and maturation
process, the density of macrophages, blood vessels, fibroblasts, and inflammatory
cells reduces due to emigration and apoptosis from the wound area (Greenhalgh
1998; Medrado et al. 2003; Hinz and Gabbiani 2003; Rodrigues et al. 2019).
Macrophages are crucial during wound remodeling, wherein a fibrolytic phenotype
is taken up, which helps in breaking the excessive ECM and engulfment of ECM
debris (Rodrigues et al. 2019). At the same time, myofibroblasts move to the border
of the wound and help in the contraction of smooth muscle cells during healing.
However, they also express the “don’t eat me” signal by overexpressing CD47 and
stop phagocytosis of the fibroblast by macrophages (Chawla et al. 2016; Wernig
et al. 2017; Kohale et al. 2018; Rodrigues et al. 2019). Thus, the interaction between
macrophages and fibroblast cells is crucial for the deposition of excessive matrix and

Fig. 5 Maturation and tissue remodeling phase in wound healing. This is the final phase of healing
that occurs after the wound closure has been achieved. It involves remodeling of the initially formed
type III collagen into the more robust interwoven type I collagen. This phase is also driven by a
variety of growth factors, but the density of blood vessels and the amount of cellular activity is
drastically reduced. The maturation phase typically ends with the process of scar formation. The
figure is adapted with permission from Negut, I. et al. 2018, Molecules (Negut et al. 2018)
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collagen, which results in hypertrophic scars (HTS) formation (Greenhalgh 1998;
Rodrigues et al. 2019). Also, the punctured blood vessels formed during angiogen-
esis are repaired, and the newly formed blood vessels are subjected to pruning and
give rise to a stable and well-perfused blood vessel, thereby completing the process
of maturation and remodeling (Rodrigues et al. 2019).

4 Discussion

In this chapter, we have highlighted two critical aspects of wound care and wound
healing, which are the following: (i) Identification of wounds and their classification,
and (ii) Physiological mechanism of wound healing. The occurrence of wounds and
poor wound care is a potential threat to the body tissues and can ultimately cause
damage to the human body organs and result in life-threatening conditions. We show
that identifying wound type such as the reason for tissue damage, the likelihood of
surgical site infection, and characteristics of the wound represent the first and crucial
step in proper diagnosis and treatment of wounds. We also demonstrate that despite
several available classification schemes such as etiology, morphology, the integrity
of skin, stage of infection, etc., we still lack the proper identification of wounds, and
scores of people die every year due to medical complications. Thus, we must find
more effective and promising wound healing therapies with optimum clinical
significance.

Next, we discussed the cellular and molecular mechanisms entailing the wound
healing process. Here, we have first explained the cellular events that happen after
the body encounters any wound, and we list out the involvement of various immune
cells (Table 7) as well as cytokines and growth factors (Table 8) in the physiology of
wound healing. We have presented that the different stages of wound healing are
well defined, are precisely programmed, and work in a synchronized manner without
any complication to achieve tissue repair and restore tissue function. In the past
several years, the process of wound healing has been addressed by various
researchers, but there is still a debate over the recruitment and clearance of several
immune cells in wound healing, and this needs to be investigated. Additionally, most
of our knowledge of wound healing and skin repair is derived from murine models.
As we know that there are several differences in the immune cells recruited at the
wound site, skin architecture, and elasticity, adherence of skin to the underlying
structure, etc. between humans and rodents, we need more studies on human systems
to get a more accurate understanding of this process. Furthermore, the differences in
the time and the actual process of wound healing observed due to variation in
nutrition, age, sex, hormone level, oxygenation, stress level, and disease such as
alcoholism, diabetes, skin fibrosis, and immunosuppressive disorders also demand a
further understanding of wound healing mechanism.

To overcome all these limitations, which lead to impaired wound healing, several
advanced strategies and technologies such as the use of skin grafts, use of ECM and
cell-based therapies, use of the biodegradable scaffold, etc. are being employed to
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facilitate wound healing and to reduce the healing time. However, these advanced
methodologies are moderately effective and need to be standardized for patients with
chronic wounds or other comorbidities for improved and effective wound healing.
Overall, we believe that an improved classification system for various wounds, the
development of newer and advanced strategies for the discovery of cellular alteration
and cellular diversity, as well as other technological advances, will help in achieving
promising, effective, and clinically significant wound healing therapies.
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Mechanisms of Collective Cell Migration
in Wound Healing: Physiology and Disease

Chaithra Mayya, Sumit Kharbhanda, Ashadul Haque, and Dhiraj Bhatia

1 Introduction

Wounds or scars can arise due to physical injuries or as an outcome of a disease
process and can have an accidental or intentional etiology in living organisms (Sen
et al. 2009). The disruption of the integrity of various organs and tissues often leads
to the formation of wounds. For example, skin being an outer barrier of the body is
constantly affected by various external stress factors and has therefore developed a
set of complex mechanisms to protect itself (Hunt 1988). Because of its accessibility
and extraordinary capability to restore tissue integrity, the skin is considered to be
the most preferred organ for exploring response mechanisms toward tissue damage
and its repair (Lawrence 1998). Studies from skin injury and its repair mechanism
have revealed the novel fundamental principles of tissue regeneration and regener-
ative biology (Skover 1991). Right after an injury, wound healing is triggered which
involves an extensive communication between various cellular constituents and their
extracellular matrix (Winter and Scales 1963). The identification of potential thera-
peutic targets for chronic and non-healing wound treatment is extremely challenging
because the physiological complexity and the molecular processes of wound resto-
ration are poorly understood (Strecker-McGraw et al. 2007). Future investigations
must concentrate on developing an integrated research approach combining the
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expertise from genetics, cellular, biochemical differences of normal, and chronic
wounds, which may not only help in understanding the reason for delayed wound
healing but at the same time help the community design better therapeutics for
the same.

In this book chapter, we shed light on the fundamental steps of wound healing
process and try to understand how different external factors affect the wound healing
process. We will also focus on collective cell migration which plays a key role in
migration of adjacent cells to the site of wound. We compare the mechanisms and
factors affecting wound healing in normal cells compared to diseased ones and we
conclude with an insight on the need for combined research efforts in wound healing
for better understanding the process and design molecular tools and technologies for
its repair.

2 Basic Steps in Wound Healing

A complex dynamic mechanism involving a series of highly coordinated physio-
logical events is natural wound healing. A cascade of precisely regulated interactions
among various cellular and immunological systems operate for healing a wound
(Hunt 1988; Sen et al. 2009). Wound healing in healthy individuals consists of three
phases: Coagulation and hemostasis, Inflammatory phase, Proliferative phase and
wound Remodeling phase (Velnar 2009). The process of wound healing begins with
hemostasis and the stimulation of several inflammatory cells. In the intermediate
stage, proliferation and migration of cells, matrix deposition, and angiogenesis
occur. The late stage of wound healing involves remodeling of extracellular matrix
(ECM), forming scarred tissues. Specialized tissues such as liver and skeletal tissues,
however, have distinctive regeneration and tissue repair forms and adopt various
pathways (Lawrence 1998). Additionally, the supportive microenvironment at the
wound surface plays a major role in maximizing the healing potential. However, by
causing disruptions in tissue repair processes that are otherwise precisely regulated,
many local and systemic factors may influence the healing process, resulting in
non-healing or chronic wounds (Eming et al. 2014; Reinke and Sorg 2012; Velnar
2009) (Fig. 1).

2.1 Coagulation and Hemostasis

Blood coagulation, also known as clotting is a process where the blood in liquid form
turns into semisolid blood clot. This is essential to avoid loss of blood. The
coagulation cascade is essential for hemostasis to occur. Immediately after an injury,
the process of coagulation and hemostasis begins. The main purpose of this is to
protect the vascular system so that, after damage, the usual physiological functions
of the vital organs remain intact (Broughton et al. 2006a). Another long-term goal is
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providing a scaffold for the invading migratory cells that are needed in the later
stages of wound healing process (Pool 1977). In order to minimize the loss of blood
after an injury, the damaged ends of the blood vessels constrict rapidly. The reflex
vasoconstriction can incidentally reduce the amount of bleeding or even may cause a
complete cessation of blood leakage at the wound site. The blood clotting process is
elicited by the initiation of coagulation cascade. The platelets then would adhere and
aggregate at the wound site. Two major pathways operate in the coagulation cascade:
the extrinsic pathway and the intrinsic pathway (Smith et al. 2015).

2.1.1 The Extrinsic Pathway

This pathway is also called as the Tissue Factor (TF) pathway, named after a cell
surface integral membrane protein (Morrissey et al. 2012). TF is also called as Tissue
thromboplastin or Coagulation factor III or CD142 (Morrissey et al. 1987). This
single-pass membrane protein is in its glycosylated form which is 46 kDa in size.
Also, it does not require proteolysis for its activity during coagulation. Tissue Factor
is also implicated to play a role during thrombogenesis, inflammation, cancer,
angiogenesis, cellular immune response, and embryogenesis as well (Butenas
2012). They are found abundantly in outermost layers surrounding the blood vessels,
keratinocytes of skin, and more abundantly in certain organs such as kidney and
brain. Their expression is comparatively lesser in synovial tissues and skeletal
muscle tissues (Drake et al. 1989; Fleck et al. 1990; Smith et al. 2015). But, it is

Fig. 1 Timeline for wound healing. The diagram shows main wound healing phases such as
coagulation, inflammation, proliferation, and remodeling. The early stages of healing process would
take place within 60 min up to 48 h, while the later stages of healing is a slow process requiring few
days to months for the wound to repair completely producing scar tissue
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not expressed in vascular endothelial cells and circulating cells, but can be induced
by certain inflammatory factors (Butenas 2012) and hypoxia (Yan et al. 1999). This
protein is expressed only when there is mechanical or chemical injury to the
vasculature exposing it to blood flow. This leads to the binding of Sub-endothelial
TF to circulatory plasma factor VIIa, which is also a glycosylated protein, forming a
complex. This complex formation requires calcium ions as well. This then triggers
blood clotting by activating Zymogen factor IX and factor X into serine proteases,
Factor IXa and Factor Xa. A surge of thrombin is induced, which also is a serine
protease. A cross-linked insoluble fibrin clot is formed as an end product by multiple
feedback reactions of thrombin, which involves efficient cleavage of fibrinogen and
activation of Factor XIII via proteolysis (Butenas 2012; Smith et al. 2015). Tissue
Factor Pathway Inhibitor (TFPI), a plasma serine protease inhibitor inhibits the
TF-fVIIa complex through its direct binding to fXa (Piro and Broze 2005).

2.1.2 The Intrinsic Pathway

Also called the contact pathway, is activated without the involvement of TF. This
pathway initiates when the plasma comes in contact with negatively charged bio-
logical or artificial surfaces (Maas and Renné 2018; Smith et al. 2015). The initiation
of this pathway is through Factor XII (fXII) stimulation, also involving Kininogen
(HK) and Plasma Kallikrein (PK) as its subsequent downstream activators. Unlike
the extrinsic pathway, this does not require Calcium ions for the initiation of cascade.
When blood encounters artificial or biological surfaces there is a change in the
conformation of zymogen fXII converting it to an active form of fXII (fXIIa),
which is a serine protease (Smith et al. 2015). A positive feedback loop occurs
where fXIIa activates plasma prekallikrein to Kallikrein and fXI to fXIa, in turn
hydrolyzing fXII by PK, this amplifying fXIIa. PK further cleaves high molecular
weight Kininogen (HK) from Bradykinin from its precursor protein, further leading
to the activation of thrombin and formation of fibrin clot (Naudin et al. 2017). A
major inhibitor of fXIIa, fXIa, and PK is known as Serpin C1 esterase inhibitor
(C1INH), plays a crucial role in regulating intrinsic pathway (Maas et al. 2011).

Thrombin is a potent platelet activator. At the site of injury after the initiation of
extrinsic or intrinsic pathway, platelets aggregate and cause vasoconstriction which
results in hypoxia, increase in glycolysis, and change in pH (Landén et al. 2016).
After a certain time, vasodilation occurs allowing platelets, keratinocytes, endothe-
lial cells, fibroblasts, and leukocytes to reach the clot. The above cells release various
chemotactic factors like different growth factors and cytokines to activate inflam-
matory processes (Reinke and Sorg 2012). Various growth factors such as
transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF),
insulin-like growth factor-1 (IGF-1), simple fibroblast growth factor (bFGF), and
vascular endothelial growth factor (VEGF) are released from the platelet alpha
granules. PDGF and TGF-β help in engaging neutrophils and monocytes into the
wound site. Meanwhile, VEGF, TGF-α, and bFGF are required for angiogenesis
through the activation of endothelial cells. PDGF also recruits fibroblasts to the
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injury site for collagen and extracellular matrix production, which enable cellular
migration in the subsequent phases of the healing process (Pool 1977) (Fig. 2).

2.2 Inflammatory Phase of Wound Healing

The characteristics of inflammation are redness, swelling, heat, pain, and loss of
tissue function. Inflammation is the second stage of the wound healing mechanism
which starts within a day of injury and lasts for several days to weeks. In case of
chronic non-healing wounds, the inflammatory phase may last significantly longer.
The major goal of inflammation is establishing an immune barrier against the
invading pathogens. The inflammatory phase is divided into two phases, early and
late inflammatory phases (Hart 2002). These symptoms in turn reflect increased
permeability of the vascular endothelium due to the influx of inflammatory cells and
proangiogenic factors by chemokines and immune cells at the site of the wound. This
step is essential in order to remove the cell debris and foreign bodies from the wound
(Ridiandries et al. 2018; Takeuchi and Akira 2010). Rapid migration of neutrophils
and monocytes, as well as macrophages, keratinocytes, mast, and dendritic cells to
the site of injury is a characteristic of this phase. The innate immune system plays a
fundamental role in causing acute immune response thereafter promoting the acti-
vation of acquired immune response. The inflammatory response can be of two
types, Pattern Associated Molecular Patterns (PAMPs) and Damage Associated
Molecular Patterns (DAMPs) (Landén et al. 2016).

Fig. 2 Platelet activation. Platelets can recruit various other biomolecules such as cytokines,
anticoagulation factors, antiangiogenic factors, and growth factors to the wounded area to accelerate
wound healing. Adapted and modified from reference Golebiewska and Poole (2015)
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Pattern Associated Molecular Patterns The type of response triggered by patho-
gens such as bacterial polysaccharides and polynucleotides, foreign to the host cells
is called as PAMPs. They provide ligands for TLRs (Strbo et al. 2014).

The signals are recognized by C-type Lectin Receptors (CLRs), Toll-Like Recep-
tors (TLRs), NOD-like Receptors (NLRs), and Retinoic Acid-inducible genes
(RIG)-I-like Receptors (RLRs). This induces the activation of downstream pathways
such as NFkB and MAPK pathways, leading to cytokines, chemokines, and antimi-
crobials gene expression (Landén et al. 2016; Takeuchi and Akira 2010).

Damage Associated Molecular Patterns This kind of response is stimulated when
host stressed cells such as necrotic cells release certain proteins, DNA, and RNA.
They can activate inflammasomes (Strbo et al. 2014).

2.2.1 Early Inflammatory Phase

The recruitment of neutrophils at the injury site is the first step in response to the
chemokines in order to prevent infection by invasion of pathogens. This corresponds
to the early inflammatory phase. Neutrophils attack and remove invading pathogens,
foreign particles, and damaged tissues by phagocytosis. This phagocytic activity is
crucial because wounds with microbial infection would not heal (Robson 1997).
Infiltration of neutrophils into the site of wound takes place within 24–36 h. Various
chemoattractants, such as formyl methionyl peptides and TGF-β secreted by platelets
and invading bacteria, helps in recruiting neutrophils to the wound site (Robson et al.
2001). Due to biochemical alterations on the membrane surface of Neutrophils, they
become adhesive in nature. This allows them to bind to the endothelial cells that
cover the wound in the post-capillary venules (Hart 2002; Lawrence 1998). The
neutrophils pass through the endothelial surface layer. Chemokines are secreted by
the endothelial cells activating a stronger adhesion system, which are Integrin
mediated (Flanagan 2000). Additionally, chemokines can induce the expression of
Vascular Cell Adhesion Molecule (VCAM), Intracellular adhesion molecule
1 (ICAM1), P-Selectin, and E-Selectin on endothelial cells to promote the adhesion
of neutrophils onto the endothelial cells, which leads to neutrophil extravasation
from the blood vessels to the wound site (Vestweber 2015). Neutrophils are thus
exposed to various chemokines and also release various cytokines like Inter-Leukin
(IL) 1β, IL6, and Tumor Necrosis Factor (TNF)-α to intensify inflammatory
response, further stimulating Vascular Endothelial Growth Factor (VEGF) and IL8
(Reinke and Sorg 2012).

2.2.2 Late Inflammatory Phase

Monocytes migrate toward the site of inflammation after 3 days of injury, differen-
tiating them into macrophages. Like neutrophils, macrophages get into the site of
injury by a myriad of chemoattractants, secreted by platelets and invading
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pathogens. Compared to neutrophils, macrophages have a longer life span and can
work at lower pH (Pierce et al. 1991; Ramasastry 2005). Macrophages act as key
regulators and provide a pool of tissue growth factors, such as TGF-β, and other
biochemical mediators like collagenase and fibroblast growth factor (FGF), which
are essential for the activation of fibroblasts, keratinocytes, and endothelial cells
(Broughton et al. 2006b; Diegelmann and Evans 2004; Hunt et al. 2000; Ramasastry
2005). Macrophages remove cell debris and bacteria through phagocytosis and
Reactive Oxygen Species (ROS) production. They can even stimulate angiogenesis,
fibroplasia and ECM production, and progression toward proliferative phase of
wound healing. Macrophages can also stimulate adaptive immune cells such as
lymphocytes to secrete chemokines and amplify inflammatory response as well as
progress toward the proliferative phase (Landén et al. 2016). At the very end of the
inflammatory phase, lymphocytes get into the wound site by the combined action of
interleukin-1 (IL-1), immunoglobulin G (IgG), and complement immune system
components (Broughton et al. 2006b; Hart 2002; Hunt et al. 2000). The IL-1 plays a
crucial role in collagenase regulation during collagen remodeling, as well as gener-
ation and degeneration of ECM components (Hart 2002; Hunt 1988). This step is
also known to induce an adaptive immune system, however, their role in wound
healing process is yet to be explored (Fig. 3).

Fig. 3 Progression from inflammation to proliferation. This step marks the reduction of
pro-inflammatory cytokines and rise in anti-inflammatory cytokines. The anti-inflammatory mac-
rophages are reduced tissue inflammation, contributing toward angiogenesis and accelerated wound
healing. Adapted and modified from Ellis et al. (2018)
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2.3 Proliferative Phase of Wound Healing

This phase begins with subsiding inflammation and promoting re-epithelialization,
neovascularization, and formation of granulated tissue. Macrophages play a crucial
role in subsiding inflammation and inducing proliferation. They play a vital role in
secreting growth factors such as PDGF, FGF, TGF-α, TGF-β, VEGF, and many
more. These growth factors promote Extracellular Matrix (ECM) formation (Reinke
and Sorg 2012). Such growth factors also induce fibroblast migration towards the
wound site. They proliferate rapidly as fibroblasts enter the wound site and begin to
develop essential extracellular matrix proteins such as fibronectin, hyaluronic acid,
type I and type III collagen, and proteoglycans, which will facilitate further wound
healing processes (Ramasastry 2005; Robson et al. 2001; Witte and Barbul 1997).

2.3.1 Re-epithelialization

A new connective tissue is formed, controlled by regulatory cytokines such as IFN-γ
and TGF-β. These cytokines stimulate fibroblasts to synthesize collagen, fibronectin,
and other substances required for ECM formation, closure of gaps, and restoring
mechanical strength of the wound. The epithelial and non-epithelial cells release
variety of growth factors such as KGF, EGF, NGF, and IGF-1 (Werner and Grose
2003). This phase is also marked by the decrease in contact inhibition by altering cell
adhesion molecules such as desmosomes, hemi-desmosomes, tight junction and
focal adhesion proteins, activation of membrane-associated kinases, increased per-
meability to calcium ions, and cytoskeletal rearrangements in the cells. All these
characteristics act in a synergistic fashion in order to facilitate cell migration.
Dissolution of the fibrin clot is through collagenase and elastase (Jacinto et al.
2001). In case of skin injury, keratinocytes migrate toward chemotactic gradient
established by cytokines such as IL1 which is present over the fibronectin matrix
(Clark et al. 1982). The migration of cells ceases when the cells come in contact with
each other. Small GTPases such as RhoGTPases modulate cytoskeletal structures,
mainly actin, thereby creating a shift in migration and contact inhibition (Reinke and
Sorg 2012).

2.3.2 Neovascularization

Neovascularization or angiogenesis is a complex phenomenon involving cellular,
molecular, and humoral cues. Angiogenesis takes place via two steps: vessel
sprouting and vessel anastomosis. Vessel sprouting requires the orchestration of
anti-inflammatory cytokines and pro-repair macrophages. The pro-repair macro-
phages secrete VEGF, PDGF, bFGF, and serine protease thrombin. The endothelial
cells in the existing blood vessels bind to these growth factors to initiate signaling
cascades. This enables the endothelial cells to secrete various proteases, which
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dissolve basal lamina and proliferate to the wound site. This process is called vessel
sprouting. Matrix metalloproteases further assist in dissolving the lamina to increase
the propagation of the endothelial cells. The newly formed vessel sprouts surround-
ing the tissue form tubular canals which can interconnect with other vessels and
differentiate into mature blood vessels through pericytes and smooth muscle cells.
The initial blood flow would complete the angiogenesis process (Ellis et al. 2018).

2.3.3 Formation of Granulated Tissue

This is the last step of the proliferation stage. Fibroblasts, granulocytes, and macro-
phages are mainly involved during this phase. The congregated fibroblasts contract
the wounded region by pulling the wounded edges together mediated by integrins
and cytoskeletal machinery (Li et al. 2005). The fibronectin/fibrin-rich matrix is
slowly replaced by loose bundles of fibroblasts, type III collagen, and new blood
vessels (Ellis et al. 2018; Reinke and Sorg 2012). The major cells playing a role
during this phase are fibroblasts. Fibroblasts secrete hyaluronic acid, collagen,
glycosaminoglycans, proteoglycans, and fibronectin, which are the constituents of
the ECM. Fibroblasts are also known to secrete PDGF-βb, TNF-α, and IL6, which
would also induce re-epithelialization (Takehara 2000). Fibroblasts are influenced
by TGF-β secreted by Pre-repair macrophages. Re-epithelization is initiated by EGF,
KGF in case of keratinocytes and TGF-α as well (Schultz et al. 1991). Since a dense
matrix is formed as a provisional wound matrix, this might lead to scar formation.
This tissue is highly vascular, which appears red and can be traumatized easily
(Reinke and Sorg 2012). The end of this phase is marked by the replacement of
maturing fibroblasts by differentiating myofibroblasts (Desmouliere et al. 2014;
Hinz 2007).

2.4 Remodeling Phase of Wound Healing

The final stage of wound healing is the remodeling phase that takes place from day
21 to a year or more, depending on the severity of the wound. During this process,
fresh epithelium growth, and final scar tissue formation occur (Velnar 2009). The
granulation of the tissue stops by apoptosis of fibroblast cells. With less metabolic
activity, the wound is now avascular and non-cellular (Greenhalgh 1998). Smooth
muscle actin (SMA) are secreted by myofibroblast cells are responsible for contrac-
tile force generation. They also release MMPs to degrade collagen, which was
formed during granulation formation (Desmouliere et al. 2014; Hinz et al. 2012).
The ECM goes through several changes during the final stage of wound healing, the
notable one being the substitution of Type III collagen with stronger Type I collagen
in small parallel bundles (Ellis et al. 2018; Reinke and Sorg 2012). The end result of
this process would be a fully formed mature scar formed with high tensile strength,
however, the original strength of the tissue is forever lost (Velnar 2009).
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3 Single Cell Migration

Single cell migration is regulated by the molecular mechanism inducing single cell
polarization. The small GTPase protein belonging to RHO family of proteins plays
an important role in establishing cell polarity. Along with this small GTPase protein,
RAC and CDC42 activate the cytoskeleton rearrangement from the leading edge,
which includes active actin polymerization. The formation of filopodia and
lamellipodia is due to actin polymerization. Further, this also promotes the interac-
tion of integrin with ECM. In the back end of cell, RHO protein starts distinct
signaling which results in actomyosin contraction (Pollard and Cooper 2009).

There are multiple factors involved in the single cell migration such as Intracel-
lular signaling and extracellular mechanical cues. Cell migration requires actin
polymerization at the leading edge assisted by integrins and focal adhesion mole-
cules in order to bind to the 2D matrix. However, conditions are totally different in
3D matrix which resembles in vivo conditions. Actin polymerization starts in the
front and myosin-driven contraction forces lead to the detachment of the cell at the
rear position (Ridley 2003). Growth factors such as insulin, EGF, VEGF,
TGF-alpha/beta, and ECM ligands also affect cell migration.

New adhesions form adhering to their new attachment sites at the leading edge of
the cells. These adhesions form complexes that become more stable and constitute
integrins, focal adhesion proteins which bind to the ECM in the matrix (Hood and
Cheresh 2002). RhoA protein activates the myosin II motor which produces con-
tractile forces from the leading edge of the migratory cell. This results in the net
forward directional movement of the cell (Ridley 2003).

Extracellular mechanical cues affect the cell migration and are mainly studied in a
physiological condition which 3D matrix. In 3D matrix, cell behaves differently with
respect to the 2D matrix. Cells present in 3D matrix display a morphological distinct
phenotype when compared to 2D. The main components of the 3D matrix are
collagen and fibrin which make the matrix dense, affecting cell migration. Matrix
metalloproteinases (MMPs) are the class of enzymes present in the plasma mem-
brane, for example, Basigin/CD147. This family of enzymes cleaves the ECM
matrix, which generates cell-scaled tracks helping in cell migration (Wolf and Friedl
2009). Without proteolytic activity, cells experience exceptional distortions and
barely get through ECM pores in 3D lattices (Wyckoff et al. 2006). This results in
retardation of migration of cell as to cross small pores, nucleus has to be deformed so
that cell is able to migrate. As we know there are multiple types of cell in a
multicellular organism, all distinct type of cells shows different migration patterns
such as nerve cell is long and thin which can be modelled in 1D while in tumor cell
with proteolytic activity can migrate easily in 3D matrix while if Proteolytic activity
is lost, cells need to deform its nucleus for cell migration.

Stiffness of the matrix also affects the cell migration. One can make cells move in
a unidirectional way just by modelling the stiffness of the matrix. The stiffness of 3D
matrix decreases due to cross linking collagen by lysyl oxidase resulting in higher
cell migration and metastasis in tumor cells (Levental et al. 2009).
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4 Collective Cell Migration

Wound healing involves movement of a large number of cells in a synchronized way
resulting in new tissue formation. It is a similar process seen during the develop-
mental process of multicellular organisms. However, Collective cell migration is
also seen in tumor formation and angiogenesis. Hence, an in-depth knowledge of the
wound healing mechanism is necessary. In collective cell migration, cells move in
one direction and show a similar pattern of movement which is not seen in single cell
migration. Cells also respond to the environment they are in; this helps cells to form
better coordination between 2 cells so that all cells follow similar movement which is
required in wound healing.

If cells are closely bound/ attached to each other, they can show collective
migration but if they are distinct apart, they are free to move in any direction
which results in single cell migration. In the cohesive cell group, the outer cells
lead the other cells present in the bunch in a particular direction. These cells sense the
microenvironment which helps in the migration of whole cell cluster. The cells
which are present outside in the cluster get a higher level of signals such as
chemoattractants. These outermost cells also play a vital role in ECM remodeling
which is required for collective cell migration. Cells present inside the cluster rely on
the cell–cell interaction for the movement and to collectively polarize. Further, cells
present inside the cluster can also influence the actions of the outer cells of cluster,
which can affect the collective cell migration (Fig. 4).

5 Mechanism of Collective Cell Migration

In a cluster of cells, cells are interconnected by mechanical integrity, cell–cell
cohesion, and intercellular signaling. Cell junctions play a vital role in collective
cell migration.

5.1 Adherens Junctions

Coupling of the migratory cells is mediated by cadherins and immunoglobulin
family proteins residing on the plasma membrane. In cancer cells, the suppression
of E-cadherin combined with the overexpression of N-cadherin and neural cell
adhesion molecules triggers the aggregate movement in which intercellular interac-
tions are maintained. This approach is referred to as the fragmented transformation
of epithelial–mesenchymal transition (Lee et al. 2006).
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5.2 Desmosomes

During wound healing, migration of keratinocytes retains cell–cell junction (Shaw
and Martin 2009). Furthermore, desmosomal proteins localized in membrane inter-
act during migration of the aggregate in advanced epithelial tumor (Christiansen and
Rajasekaran 2006).
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5.3 Integrins

Integrins are the plasma membrane proteins, which help the cell in cell–ECM
interaction. Recently, it was shown that alpha5beta1 integrin interacts with fibro-
nectin which results in cell migration (Casey et al. 2001). If inactivates the beta1-
integrin, cell–cell cohesion is lost which results in loss of collective migration and
results in the migration of single cell (Hegerfeldt et al. 2002).

5.4 Growth Factors and Chemokines

Single cell polarization, migration, and persistence of migration are influenced by a
variety of growth factors and chemokines as well. There are multiple growth factors
involved in collective cell migration and wound healing such as TGF-alpha and beta,
PDGF, VEGF, Serotonin, TNF-alpha, Leukotrienes, Interleukin-1, Lipoxins, and
Interferon gamma. These growth factors are produced by various cells responsible
for wound healing for paracrine and autocrine signaling of the cluster of cells (Steed
1997).

5.5 Cell–Cell and Cell–ECM Interactions

Intercellular adhesion and cell–ECM interaction are responsible for the morpholog-
ical change in the tissue. Extracellular domain of Cadherin receptor is significant for
intercellular adhesion (Shapiro and Weis 2009). Heterodimeric integrin receptor
helps the cell to interact with the ECM. Integrin after interacting with ECM generates
mechanical and chemical signals. ECM fibers also control the migration of cells and
provide the directional cues. When the cluster of cells is migrating, cells present in
the outermost receives the mechanical cues. Cadherins promote the signaling for the
actin polymerization and also form adherent junctions, which maintain the integrity
of the cluster of cells. Inactivation of Cadherins alters the collective cell dynamics
(Shapiro and Weis 2009). If cadherins are inactivated and Integrins show the active
binding to ECM, this will result in the breakdown of cluster and random movement
of cells will be observed.

Cadherin plays a significant role in cell chemotaxis and interprets the chemical
cues. Cadherin is required for the cell polarization and transmits the signal to the
cells present inside the cluster. The cells present outside in the cluster are responsible
for the direction and migration path. These cells adapt the matrix in 3D and produce
MMPs, which cleaves the proteins present in ECM and make a path for the migration
of cells.

Once the cells start migrating from the cluster, the cells present inside are
polarized and push the cells from interior of the cluster for the movement.
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Actomyosin contraction along with focal adhesion maturation at the leading edge of
the cells enables the cells to contract from the rear edge. Further, the signal is
transmitted to the cells present inside the cluster from outside and activation of
small GTPase protein belonging to RHO family results in the activation of actomy-
osin. This allows cells to contract themselves at the rear edge.

Mechanosensing is necessary for the cells which are present inside a cluster.
During cell migration, cells sense the forces exerted by the preceding cells. Cells
sense the physical properties through their microenvironment via focal adhesions
and adherens junctions. Mechanotransducers are the key protein, which help cells in
mechanosensing. Mechanotransducers experience a conformational change after
extending, uncovering a new protein connection domain and initiating biochemical
flagging, which thus can adjust the strength of adhesion (Das et al. 2015). Under
tension, α-catenin experiences a conformational change which brings about
expanded junctional steadiness (Yonemura 2011). At the time a fraction of cells
can participate in the pulling force and stop the cluster to migrate. There can be “tug-
of-war” between the cells in the cluster during migration which can even break the
focal adhesion and junction between the cells. This suggests that cells present
outside the cluster are not solely responsible for the movement. The individual
cells present inside the cluster sense gradient and chemotaxis and determine the
polarity of the cluster. If the size of cluster is small, cells have the freedom to polarize
in any direction and can show migration in different directions.

Cells change direction during migration upon collision with other cells where the
cell–cell contacts induce inhibitory actions over migratory cells (top). This leads to
change in cytoskeletal rearrangement ultimately leading to change in cell polarity
and migration (bottom). Many membrane resident molecules interact at cell–cell
contact sites triggering the activation of reaction cascades ultimately activating
RHOA activation and RAC inhibition. Opposite phenotype happens on the leading
edge of cells, i.e., RAC is activated, microtubules and actin machinery are organized
preparing cells for protrusions leading to directed cell migration. Adapted and
modified from Mayor and Etienne-Manneville (2019).

6 Factors in Wound Healing Process (Fig. 5)

6.1 Nutrition

It is well known that nutrition plays a significant role in wound healing. In 1747,
James Lind, a Scottish Surgeon showed that wound repair is enhanced by taking
citrus fruits. Angiogenesis and collagen deposition are reduced, which affects the
fibroblast function in the malnutrition state of the organism. Vitamin A, Carbohy-
drates, and omega-3 fatty acids play a vital role during wound healing (Campos et al.
2008). Carbohydrates being the source of energy for the cell play an essential role in
repairing the wound. Glucose is the major energy source required for the organism
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which produces ATP. ATP provides energy required for angiogenesis and formation
of new tissue in wound healing.

Proteins are one of the major factors which affect the wound healing process.
Fibroblast proliferation, collagen synthesis, wound remodeling can be altered by the
deficiency in proteins. In addition, protein deficiency will also alter the activation of
immune cells. There are multiple amino acids such as arginine, proline, and lysine,
which play a vital role in collagen synthesis which provide the outcome as wound
healing.

Vitamin A promotes wound healing process by an increased proliferation of
fibroblasts and collagen synthesis. Vitamin C is also important for the wound healing
process as its deficiency leads to improper immune response, which increases the
risk of wound infection. Vitamin C deficiency may lead to decreased angiogenesis
and increase in capillary fragility.

6.2 Hypoxia

As the local vascular supply is disrupted in wound, they become hypoxic to some
extent. For re-epithelization, sufficient oxygen is required which induces wound
healing. The elder patients going through surgery or having peripheral vascular
disease have bad healing capacity whereas hyperbaric oxygen induces wound repair.
However, oxygen is also essential for the deposition of collagen in ECM as it acts as
a substrate for the hydroxylation of proline and lysine amino acids. It has also shown
that proper supply of oxygen reduces the risk of wound infection (Kurz et al. 1996).

Fig. 5 Multiple
physiological and body-
related factors affect the
mechanisms of efficiency of
wound healing. We have
briefly summarized the
effects of some of the key
factors such as Nutrition,
Hypoxia, Age, Diabetes,
Smoking, Stress, etc. in the
limit of the scope of this
book chapter. Multiple other
factors are as well affecting
the process of wound
healing and the readers are
requested to refer to
dedicated reviews for the
elaborative description
of same

Mechanisms of Collective Cell Migration in Wound Healing: Physiology and. . . 69



6.3 Smoking

Smoking reduces the fibroblast migration and proliferation and also affects the
immune system function, downregulation and collagen deposition. In addition,
smoking shows effects like chemotaxis, migration dysregulation and oxidative
bactericidal mechanism which results in poor wound healing (Sørensen 2012).

6.4 Stress

Many diseases such as cancer, diabetes, cardiovascular disease are linked to stress.
Delayed wound healing is shown in the student going under academic’s stress such
as examination. Stress leads to anxiety and depression. Due to the anxiety and
depression, a person can get into poor sleep patterns, improper eating habits, less
exercise, and sometimes consume alcohol. Further, in stressed state, there is a change
in concentration of adrenal and pituitary hormones. These conditions play a negative
role during wound repair.

6.5 Diabetes

Diabetes dysregulates the cellular function such as defect in chemotaxis of leuko-
cyte, phagocytosis, impaired T-Cell immunity, and dysfunction in fibroblasts and
epithelial cells which affect wound healing capacity. In addition, Neuropathy caused
by diabetes can also affect the healing of the wound (Gary Sibbald and Woo 2008).
VEGF is required for the wound healing process. However, during diabetic state,
VEGF concentration is reduced which can impair wound healing process (Quattrini
et al. 2008).

6.6 Age

Wound healing capacity is inversely proportional to the age, i.e., with an increase in
age, wound healing capacity decreases, and vice versa. This is due to the altered
inflammatory response and delayed T-cell activation and alteration in the production
of chemokines. It has been shown that if an aged person performs regular exercise,
wound healing can be fast due to the production of anti-inflammatory molecules due
to exercise (Keylock et al. 2008).
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7 Conclusions

Complete understanding of mechanisms involved in wound healing has direct
implications in clinical relevance. The primary focus for epithelial cells is to migrate
collectively and restore the barrier generated or broken during wounds. Therapeutic
approaches can only be developed once we fully uncover the molecular mechanisms
underlying different aspects of collective cell migration at the wound site. One
special focus is on growth factors that stimulate or enhance the migration of cells.
Possible perspective therapeutics might involve the incorporation of cell migration
enhancing growth factors in bandages and applied at the site of wound that would
promote cell migration of epithelial layers to heal the wounds. For example, apply-
ing prostaglantin E2 (PGE2) on mouse skin wound enhanced the cell migration
leading to better wound healing efficiencies.

Multiple fundamental cellular processes in development, health, physiology, and
disease involve largely collective cell migration. Despite tremendous progress in
dissecting mechanisms of it our knowledge of collective cell migration still remains
limited. The larger questions which will involve the integrated approaches would be
how various signals—biological, chemical, physical, mechanical are integrated and
regulate cellular movements. What makes or keeps the leader cells as leaders in
terms of cytoskeletal machinery and membrane organization. What kind of forces
operate at different layers of cells and how are they regulated during the process of
wound healing. What makes cells behave differently in collective migration than
individual migrations. The kind of questions can be answered by better coordination
between experimental biologists and mathematical modelling of the same to dissect
out the patterns and parameters involved in cell migration leading to wound healing.
Collective cell migration has been recognized to play pivotal roles in processes like
tissue regeneration, morphogenesis, and disease biology with focus on cancer
biology. Understanding the molecular mechanisms and ground rules in wound
healing will not only help us understand the process better, but we can apply those
observations in designing better therapeutics for the same.
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Natural Products as Wound Healing Agents

Eman A. Khalil, Sara S. Abou-Zekry, Diana G. Sami, and Ahmed Abdellatif

1 Introduction

Chronic wounds are of increasing importance due to the economic burden of
prolonged patient care and associated cost. Poor circulation and oxygenation due
to venous and arterial insufficiency are major contributing factors to the incidence of
chronic and non-healing wounds (Emanuelli et al. 2016; Jhamb et al. 2016; Guest
et al. 2018). Diabetes and its complications are other precipitating factors for chronic
wounds. Pressure ulcers or Bedsores are especially a problem for immune-
compromised, elderly and bedridden patients leading to costly and prolonged care.

With a cost above USD10 billion annually (Raghav et al. 2018), there is a
considerable need for effective wound care products worldwide, especially in
developing countries where the healthcare systems are struggling to cope with
other health problems. Therefore, wound management and prevention remains a
challenge for healthcare (Sibbald et al. 2012). Inappropriate use of antibiotics causes
antimicrobial resistance which often leads to poor wound healing, chronicity, and
poor general condition. With the rise of bacterial resistance, natural products provide
an excellent alternative to commercial antibiotics and other traditional wound care
products.
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2 Wound Management

Preventive actions are essential to prevent the incidence of chronic wounds in
diabetic and bedridden patients. The prevention of chronic wounds includes proper
skincare and nutrition as well as awareness of healthcare workers to ensure proper
patient mobility to prevent pressure ulcers (Langemo et al. 2015).

Debridement and cleaning of necrotic tissues from the wound to decrease infec-
tion are usually performed mechanically or biologically. Enzymes used in biological
debridement may cause inflammation, and surgical techniques often remove both
healthy and infected necrotic tissues, therefore, slowing the healing process
(Falabella and Chen 2009). In some cases, larvae are used for maggot debridement,
which removes only necrotic tissues. Skin grafts are sometimes used to cover
resistant ulcers with healthy tissue (Han and Ceilley 2017). Tissue substitutes have
gained interest recently due to their availability, biodegradability to promote healing
(Han and Ceilley 2017; Maarof et al. 2016). The drawback of these scaffolds is their
high cost (Han and Ceilley 2017).

Several growth factors are sometimes used to promote tissue regeneration and
wound healing. Platelet-derived growth factor (PDGF), epidermal and fibroblast
growth factors, show promising results (Barrientos et al. 2014). Hyperbaric oxygen,
negative pressure, and Vacuum-Assisted Closure are non-invasive techniques used
to enhance blood flow and oxygenation in the wound area to accelerate healing (Nain
et al. 2011). These devices are noisy and expensive and are not recommended for
patients on an anticoagulant.

The first line of treatment for wounds should be topical treatment with antibiotics.
The chronic use and abuse of antibiotics, especially in low-income countries, leads
to bacterial resistance and complicates wound care (Tsourdi et al. 2013). The topical
application of drugs is useful in wound healing as it provides a higher concentration
of the active ingredient at the wound site. Unfortunately, wound covering and
multiple drug applications are required.

Different types of dressings are used for wound treatment; the choice of the kind
of wound dressing hinge on the location and status of the wound. Vaseline gauze is
cheap but may cause damage to the granulation tissue due to the need to frequently
change the dressing, films are occlusive and retain moisture. Hydrocolloids cannot
be used on infected wounds, and hydrogels are commonly used on dry wounds.
Other synthetic polymers such as foams and hydro-fibers minimize trauma to the
wound and have an absorptive capacity to remove exudate (Han and Ceilley 2017).

Antibiotic resistance and the cost associated with synthetic dressings can con-
tribute to poor healing and chronic wounds. Many natural products are available at a
reasonable cost. They are commonly used by folk medical practitioners in different
cultures may provide an alternative to synthetic dressings and commonly used
antibiotics. Below we discuss some examples of these natural products.
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3 Natural Products for Wound Care

3.1 Phytotherapy

Natural medicinal plants are widely used topically for wound healing. Ginkgo,
Green tea, Aloe vera, Ginseng, and olive oil, as well as other plants, are effective
in wound healing (Pazyar et al. 2014). Phytochemicals help in treating inflammatory
conditions and might aid in skin tissue regeneration. Plant bioactive components
(phytochemicals) may improve tissue regeneration by removing oxidative stress and
reducing inflammation by inhibition of Nuclear Factor Kappa B (NF-κB). More
research is needed to illustrate the molecular targets of such active components and
the development of effective wound care formulations (Shah and Amini-Nik 2017).
We will discuss how some phytochemicals could help in wound healing.

Turmeric from the rhizome of Curcuma longa. Turmeric has antioxidant, anti-
inflammatory, antidiabetic, antimicrobial, and wound healing potential (Gupta et al.
2012). The main component of turmeric is curcumin, which is useful in wound
healing (Sami et al. 2020).

Curcumin inhibits arachidonic acid metabolism and downregulates lipoxygenase,
Cyclooxygenase 2, and inducible nitric oxide synthase (iNOS) enzymes (Rao 2007).
As a result, curcumin has anti-inflammatory and anti-oxidative properties; and pre-
vents oxidative damage in human keratinocytes and fibroblasts. Proteases in
curcumin might aid in stopping bleeding, and it could be a potential natural therapy
to control severe pain associated with burns (Cheppudira et al. 2013). Further studies
are needed to reveal the specific molecular targets of different Turmeric extract
components.

Turmeric is used for many skin conditions, such as psoriasis.Wound dressingmade
from turmeric is effective as antibacterial, anti-inflammatory, and promotes rapid
wound healing in diabetic and non-diabetic animals (Meizarini et al. 2018). It also
accelerated the healing of alveolar osteitis after tooth extraction (Lone et al. 2018).

Oregano is an essential oil extracted from Origanum vulgare family Lamiaceae
(Olmedo et al. 2014). Oregano contains mainly phenol isomers carvacrol and
thymol, as well as their precursor monoterpenes γ-terpinene and p-cymene. Oregano
shows antimicrobial, antifungal, anti-inflammatory, and antioxidant effects (Boateng
and Catanzano 2015; Boateng and Diunase 2015).

Pomegranate juice and peel contain a considerable amount of bioactive poly-
phenols, such as tannins, flavanols, and gallic acid. The peel which represents half of
the fruit weight has higher polyphenolic compounds with promising wound healing
potential (Ismail et al. 2012; Mo et al. 2014).

Pomegranate peel extract gel is effective as a wound healing agent in experimen-
tal animals. Rats treated with 5.0% gel showed wound closure in 10 days, while
those treated with lower concentration (2.5%) took longer. While control rats’
wounds healed in 16–18 days (Chidambara Murthy et al. 2004). Pomegranate peel
based-ointment improved wound closure and epithelialization (Hayouni et al. 2011).
In diabetic rats, pomegranate gel promoted rapid healing, collagen regeneration,
fibroblast infiltration, vascularization, and epithelialization (Yan et al. 2013).
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Overall, the healing promoting potential of plant extracts was been verified in
animal models of wound healing. The safety and efficacy of these plant extracts must
be verified in human-controlled studies to be able to accept them as a standard of care
in wound treatment. Such plants improved collagen deposition, epithelialization, and
vascularization in diabetic and non-diabetic animal models. The list of plants is
extensive (for a full review see Agyare et al. (2016)). Here are some examples;
Catharanthus roseus (Nayak and Pinto Pereira 2006), Calotropis gigantea
(Deshmukh et al. 2009), Ageratum conyzoides (Oladejo et al. 2003). Chromolaena
odorata (Koca et al. 2009), Kigelia Africana (Agyare et al. 2013a), Carica papaya
(Higashimori et al. 2005; Nayak et al. 2007; Gurung and Skalko-Basnet 2009).
Combretum mucronatum (Kisseih et al. 2015), Jatropha curcas (Shetty et al. 2006),
Occimum sanctum (Goel et al. 2010). Table 1 shows a summary of some other plants
used in wound models.

3.2 Apitherapy (Honey Bee Products) for Wound Healing

3.2.1 Honey

Honey is used in folk medicine for burns and wounds due to its remarkable benefits.
Honey contains many bioactive components such as vitamins, amino acids, and
enzymes (Bagde et al. 2013). Honey differs in its chemical and biological properties
depending on the environment, season, and type of plants that bees feed on. Honey is
considered to be a better choice in the treatment of burns and pressure ulcers relative
to the amniotic membrane, silver sulfadiazine, and nitrofurazone dressings (Günes
and Eser 2007).

Honey-based wound dressings possess potent antimicrobial activities on both
Gram-positive and negative bacteria (Fawole et al. 2012; Sarhan and Azzazy 2015;
Abou Zekry et al. 2020). The antimicrobial effect of honey is due to the presence of
methylglyoxal (MGO) (Adams et al. 2008; Mavric et al. 2008; Israili 2014). Honey
also lowers the pH of the wound area, which provides skin fibroblasts with better
growth conditions, and hinders bacterial growth (Lee et al. 2011; Oryan et al. 2016;
Gethin et al. 2008). Honey also maintains its antibacterial activity in the presence of
catalase, which is usually present in chronic wounds. Honey also has an anti-
inflammatory role, and it promotes angiogenesis (Molan 2006; Tonks et al. 2007).
Manuka honey also stimulates monocyte toll-like receptor 4, which leads to the
activation of TNF-α, and interleukins 1-β, and 6. Such factors are critical for wound
repair and tissue regeneration (Tonks et al. 2007).

Animal studies showed that wounds treated with honey have improved epitheli-
alization, vascularization, and granulation tissue formation (Haryanto et al. 2012;
Alizadeh et al. 2011). Folk medicine and clinical studies proved the effectiveness of
honey over the years. Scientific studies also proved the benefits of honey as an
analgesic, and in reducing swelling, and skin discoloration (Vijaya and Nishteswar
2012; Nikpour et al. 2014).
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Table 1 Plant extracts used in wound healing models

Plant Wound model Outcome

Abies cilicica,
and Cedrus
libani

Incision wounds in rats,
treated with 1% ointment
Excision wound in mice

Improved tensile strength at
day 10, 33–40% compared to
control 2%
Enhanced wound closure

Tumen et al.
(2011)

Blumea
balsamifera

Excision wound in mice
treated with 10 and 20% in
olive oil daily

Enhanced wound healing
Reduced the inflammatory
cells and increased collagen
formation

Pang et al.
(2014)

Centella
asiatica

0.2% topical solution of
asiaticoside in Streptozotocin-
diabetic rats
1 mg/kg oral in guinea pigs
excision wounds

Significant increase in
hydroxyproline, and tensile
strength
Enhanced collagen deposition
and epithelialization

Agyare et al.
(2013a)

Croton
adamantinus

Excision wound in mice,
treated with 1% for 3 days

Enhanced wound closure, and
epithelialization. Improved
collagen deposition

Ximenes
et al. (2013)

Croton
zehntneri

Excision wound in mice
treated with 20% oil twice
daily

Improved wound healing
Enhanced fibroblasts and col-
lagen deposition

Cavalcanti
et al. (2012)

Cymbapogon
nardus

Excision wound in diabetic
mice, treated with essential oil

Accelerated wound healing
Reduced inflammatory
cytokines

Kandimalla
et al. (2016)

Eucalyptus
globulus

Excision wound in rats treated
with 16.6% nano-emulsion

Improved wound healing Sugumar
et al. (2014)

Justicia flava Excision wound treated with
7.5% extract

Improved angiogenesis,
collagenation, and
re-epithelialization

Agyare et al.
(2013b)

Lannea
welwitschii

Excision wound in rats treated
with 7.5% extract

Improved healing and tensile
strength
Enhanced angiogenesis, colla-
gen deposition, and wound
re-epithelialization

Agyare et al.
(2013b)

Lavandula
angustifolia

Excision wound treated with
1% essential oil

Decreased wound area in the
early phase of healing
Increased transforming growth
factor B, and myofibroblasts

Mori et al.
(2016)

Lavandula
spicata

Excision wound in rats,
treated with lavender ointment
4%

Enhanced wound closure
Well organized dermis and
faster keratinization

Ben Djemaa
et al. (2016)

Origanum
vulgare and
Curcuma
longa

Excision wound in diabetic
rats, treated with ointment and
nanomaterial formulations

Enhanced wound healing,
lower infection, improved col-
lagen deposition by day
10 compared to day 21 in
control

Sami et al.
(2020)

Origanum
vulgare and
Salvia triloba

Incision wound in rats and
excision wound in mice,
treated once/day with

Improved tensile strength at
day 10, 45% compared to 14%
in control

Suntar et al.
(2011)

(continued)
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3.2.2 Bee Venom

Bee Venom is medically used for many conditions such as chronic pain, arthritis,
tumors, and wound healing. It also has antimicrobial and anti-inflammatory proper-
ties (Abou Zekry et al. 2020; Lee et al. 2005, 2010).

The efficacy of Bee Venom on wound healing has been proven on deep wounds
on diabetic and non-diabetic mice (Han et al. 2011; Hozzein et al. 2018) using
traditional gauze dressing as well as in rats using nanomaterial dressing (Abou Zekry
et al. 2020). Collagen deposition and wound closure rates were significantly
improved by bee venom. Bee venom also reduced fibronectin, transforming growth
factor-β1 (TGF-β1), and vascular endothelial growth factor (VEGF) and promoted
healing by inhibiting fibrosis, and increasing epithelialization. Bee venom could be
viewed as a potential treatment for enhancing wound healing, especially in diabetic
wounds (Hozzein et al. 2018).

3.2.3 Propolis

Propolis or bee glue is the material used by bees for the construction of the beehive. It is
composed mainly of resin and wax (80%), and essential oils (10%) (Gomez-Caravaca
et al. 2006; Huang et al. 2014). It is commonly used in skincare products due to its anti-
inflammatory, antioxidant, and antibacterial properties. It is useful in the treatment of
acne vulgaris, and it improved wound healing in human diabetic ulcers and increased
collagen content in wounds significantly (Henshaw et al. 2014; Olczyk et al. 2014).

Table 1 (continued)

Plant Wound model Outcome

ointment, Origanum 12.5%,
and Salvia 7.5%, with olive oil

Accelerated wound healing
and re-epithelialization

Pinus
halepensis
and Pinus
pinea

Excision wound in mice,
treated with 1% ointment
Incision wound in rats treated
with 1% ointment

40–54% better wound contrac-
tion
80–125% higher collagen con-
tent after 7 days of treatment
Better tensile strength at
10 days

Suntar et al.
(2012)

Plectranthus
tenuiflorus

Excision wound in rats,
treated with 10% solution

Complete re-epithelialization
by day 14 and healing by day
18

Khorshid
et al. (2010)

Pupalia
lappacea

Excision wound treated with
1% to 20% extract ointment

Increased collagen deposition,
re-epithelialization, granula-
tion tissue formation, and
angiogenesis

Udegbunam
et al. (2014)

Rosmarinus
officinalis

Excision wound in diabetic
rats treated with oil for 3 days

Enhanced wound closure
Dense well organized collagen
Higher vascularization, and
extracellular matrix deposition
by day 15

Abu-Al-
Basal (2010)

Modified from Perez-Recalde et al. (2018)
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3.2.4 Royal Jelly

Royal jelly is a jelly-like secretion of the worker bees that contains proteins (18%),
carbohydrates (15%), and lipids (3–6%). Royal jelly contains many bioactive com-
pounds (Sugiyama et al. 2012). It has proven its effectiveness in both wound-healing
models (Kim et al. 2010), and in diabetic foot ulcers, possibly due to its effect on the
wound blood vessels and collagen regeneration, as well as its antimicrobial activity
(Siavash et al. 2015).

4 Marine Extracts for Wound Care

The ocean is rich in an extraordinarily diverse range of natural bioactive compounds.
Marine organisms and their bioactive compounds are parts of thousands of promis-
ing pharmaceutical substitutes. Many studies confirmed that marine extracted mac-
romolecules combined with bioactive molecules or synthetic polymers could
promote skin healing and tissue regeneration (Chandika et al. 2015). Compounds
such as chitin, fucoidan, collagen, carrageenan, alginate, chitosan, and other mole-
cules have been successfully used to improve wound healing (Yeo et al. 2012).

4.1 Marine Collagen

Marine collagen is an abundant protein in the body of vertebrates; it also forms more
than 50% of the skin and plays a crucial role in providing a scaffold for different cell
types. It is involved in cell proliferation, differentiation, migration, and attachment
(Anand et al. 2013; Kasoju et al. 2013). Collagen can be obtained from many
sources, which, unfortunately, carries a risk of potential disease spread (Song et al.
2006).

Recently, collagen from marine organisms has grabbed the attention in tissue
regeneration development due to its high potential in clinical applications plus its
low risk in the transmission of diseases to human recipients (Hoyer et al. 2014).
Salmon collagen showed significant wound healing properties in research studies
(Shen et al. 2008). Collagen films implanted in rats improved the morphological
appearance of the rat dermis and significantly enhanced new blood vessel formation.
Other marine organisms (Fig. 1) are promising sources of marine collagen.

4.2 Marine Chitin

Marine chitin and Chitosan are abundant in nature. The exoskeleton of marine
crustaceans (Fig. 2) is the major source of chitin. Byproducts of the food industry
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such as crab and shrimp shells are readily available and provide an endless source of
chitin. Chitin and chitosan are effective in wound healing, and as antimicrobials, and
they were used with other polymers for wound dressing and skin tissue engineering
(Hu et al. 2007; Kurita 2006; Nwe et al. 2009). Hydrogel wound dressing made from
crab shell chitin enhanced the healing environment, and blood vessel formation, and
increased granulation tissue in deep wounds (Murakami et al. 2010).

4.3 Marine Fatty acids

Marine fatty acids, are primary precursors of several mediators and take part in the
synthesis of membrane phospholipids. Therefore, they have essential functions in
inflammation, chemotaxis, hemostasis, and stimulating epithelial cell proliferation
(Ziboh et al. 2000; Calder 2006).

Marine extracted fatty acids (Fig. 3) from different sources, were examined for
their wound healing potential. Fatty acids extracted from mollusks (Mytilus
galloprovincialis) and gastropods (Rapana venosa) (Badiu et al. 2010), and sea
cucumber (Stichopus chloronotus) (Fredalina et al. 1999a), showed

Fig. 1 Marine sources of collagen. (a) Salmo salar (Atlantic Salmon), image source https://www.
alibaba.com/product-detail/Scottish-Salmon-salmo-salar_137741088.html (b) Oncorhynchus keta
(Chum salmon), image source https://knowyour.fish/resources/species-profiles/chum-salmon (c)
Stomolophus meleagris (jellyfish), image sources https://www.carolinanature.com/pix/jelly
fish0394.jpg (d) Stichopus Japonicus, image source https://www.shutterstock.com/search/
stichopus+japonicus (e) Lates calcarifer, image source http://www.marinespecies.org/aphia.php?
p¼taxdetails&id¼278957
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Fig. 2 Marine sources of chitin. (a) Snow Crab, image source https://chefs-resources.com/seafood/
shellfish/crab-species/snow-crab/ (b) Squid bone, image source https://en.wikipedia.org/wiki/
Cuttlebone#/media/File:Cuttlefish-Cuttlebone2.jpg (c) Shrimp Shells, image source https://energis.
com.au/2015/12/shrimp-shells-to-solar-cells/#post/0 (d) Fungal Mycelium, image source https://
alexhyde.photoshelter.com/image/I0000Pm3ZvENDy.k

Fig. 3 Marine polyunsaturated fatty acids (PUFAs) extracted from gastropods, sea cucumber, and
mollusks. (a) Mytilus galloprovincialis (b) Rapana venosa, image source https://www.flickr.com/
photos/117184384@N07/29527502712 (c) Stichopus chloronotus (Greenfish Sea Cucumber),
image source https://www.flickr.com/photos/animaliaproject/8375094218
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anti-inflammatory effects and reduced the healing time, as well as, increased vascu-
lature and collagen formation in wound models.

Sea cucumbers are cylindrical echinoderms rich in fatty acids and are unique for
their regenerative power. There are approximately 1500 species of these marine
invertebrates, which are commonly used for traditional medicinal purposes in
Southeast Asia. Several animal studies showed that wounds treated with topical
application of sea cucumber extract showed improved healing in comparison to
controls (Fredalina et al. 1999b; Masre et al. 2012).

4.4 Marine Alginate

Marine Alginates are polysaccharides extracted from brown seaweed, such as
Sargassum, Eclonia maxima, Ascophyllum nodosum, Macrocystis pyrifera, and
Laminaria japonica (d’Ayala et al. 2008; George and Abraham 2006). Alginate
wound dressings are well accepted in wound management, due to their antibacterial
properties, ability to maintain a moist physiological environment, facilitating wound
healing by absorbing excess wound fluid. Additionally, alginates can be
manufactured in different forms such as films, foams, gels, wafers, and nanofibers
(d’Ayala et al. 2008; Gombotz andWee 1998). They are also used in deep wounds as
an alternative to grafting.

5 Fish Skin Grafting

Split Skin Grafts are one of the standards of care for deep wounds and full-thickness
burns (Puri et al. 2016). When autologous grafts are a problem due to the large size
of burns, doctors often rely on cadaveric and pigskin for temporary coverage.
Unfortunately, cadaveric and pigskin grafts carry the risk of infection and immune
response (Moss et al. 1994).

Acellular fish skin is an alternative source of xenograft, providing a safe and
effective, skin substitute, (Yang et al. 2016; Baldursson et al. 2015). Acellular fish
skin has also been used in chronic wounds (Yang et al. 2016). The skin of some
species (e.g., Atlantic cod) is rich in omega-3 polyunsaturated fatty acids, and
eicosapentaenoic and docosahexaenoic acids, which are effective anti-inflammatory
and antibacterial agents (Magnusson et al. 2015). Fish skin is an ideal choice in
treating wounds where cadaveric skin is not available due to its availability and the
minimal processing required in the preparation of fish skin to maintain its three-
dimensional structure (Alam and Jeffery 2019).

86 E. A. Khalil et al.



6 Modern Delivery Systems for Natural Products

Several new delivery systems were developed to improve the therapeutic potential of
natural products, such as including hydrogels, nano-scaffolds, and nanoparticles
(Johnson and Wang 2015; Sarabahi 2012). Hydrogels are water-based gels that are
effective in rehydrating necrotic tissue allowing its removal without damage to
neighboring healthy tissues (Sarabahi 2012). Hydrogels may be conjugated or
loaded with other bioactive materials and other nano-formulations such as curcumin
and oregano (Sami et al. 2020) as well as other material such as hyaluronic acid
(HA) (Sharma et al. 2018), these hydrogels were effective in reducing infection and
improving wound healing but were inferior to ointment preparations in animal
studies (Sami et al. 2020).

7 Nanomaterial in Wound Care

Nanomaterials provide an excellent addition to wound care products as they enhance
drug penetration, provide controlled release, increase their stability and protect them
from being degraded; therefore, minimal amounts of drugs can be used to avoid
toxicity (Goyal et al. 2016; Kalashnikova et al. 2015). Nanomaterials for wound care
are superior to conventional dressings, due to their physical characteristics such as
the large surface-to-volume ratio, and high porosity, which enhance exudate absorp-
tion and achieve better wound permeation (Miguel et al. 2018). Nanomaterials
absorption through the skin is hypothesized to occur through inter and intracellular
routes as well as via skin appendages (Fig. 4) (Palmer and DeLouise 2016). The only
limitation of nanomaterials, either nanofibers or nanoparticles, is the cost and the
difficulty of large-scale commercial production (Chen et al. 2018).

Chitosan is a widely used biopolymer for nanoparticle preparation due to its
availability, biodegradability, and biocompatibility (Kamat et al. 2016). The
antibacterial and antifungal nature of chitosan makes it a good wound healing
agent (Katas et al. 2013). Chitosan nanoparticles are promising nanocarriers for
drug delivery due to their safety as they are synthesized using non-toxic solvents
(Agnihotri and Aminabhavi 2004). They also have high antimicrobial activity due to
their spherical character and positive charge, which interacts with the negative
charge of the bacterial cell membrane resulting in membrane disruption, and cell
death (Divya et al. 2018; Jayakumar et al. 2010).

Nanofibers offer great advantages over current commercial dressings, as they
have a structure similar to the extracellular matrix. Nanofibers may be loaded with
growth factors and other bioactive materials for wound healing to promote angio-
genesis, decrease infection, and accelerate wound healing rate (Rath et al. 2016).
Polyvinyl alcohol is a common chemical used for the synthesis of nanofibers due to
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its proven biocompatibility (Abou Zekry et al. 2020; Sarhan et al. 2016; Puppi et al.
2011). It is usually combined with many natural products to improve wound healing
in human and animal studies (Sami et al. 2020; Abou Zekry et al. 2020; Sarhan et al.
2016).

8 Conclusions

Folk medicine remains a rich source for potential wound healing products. In times
of antibiotic resistance and economic difficulties, many societies around the world
go back to their roots and use traditional natural products for wound care. Evidence-
based biomedical research proved many of these natural products as effective wound
healing products either in their raw form or as modern formulations. New drug
delivery tools increase the local availability of the drug and enhance wound healing.
Nanomaterials are promising tools of drug delivery for wound healing, however,
they remain limited due to the high cost and difficulty of industrial-scale production
of such nanomaterial. More clinical trials are needed to ensure the safety and efficacy
of these products for human use in mainstream wound care. The challenge remains
to identify, isolate, and characterize the active ingredients from these natural prod-
ucts, and to identify their mechanisms of action.
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Wound Healing Agents from Natural
Sources

Subramani Parasuraman and Pandurangan Perumal

1 Introduction

Wounds are injuries including cuts, scratches, scrapes, and punctured skin that break
the skin or other tissues of the body. Wound healing is the body’s response to injury
in an effort to restore normal structure and function through regeneration and repair.
The wound healing process starts in the moment of injury and comprises various
steps including hemostasis, inflammation, proliferation, re-epithelialization, and
angiogenesis. Wound healing can be accomplished by either a primary union or a
secondary union.

Wound healing is a complex process. The failure in wound healing process leads
to the progression of nonhealing chronic wounds. The wound healing process is
affected by many factors including age and sex hormones, nutrition, oxygenation,
stress, diabetes, obesity, infection, medications, alcoholism, and smoking and it
leads to the development of chronic wounds.

The wound can be managed by hyperbaric oxygen therapy, debridement (removal
of dead or inflamed tissue), dressing (films, gauze, hydrogel dressings, hydrocolloid
dressings, dressings containing silver or alginates, and foam dressings), medications,
ultrasound and electromagnetic therapy, negative pressure wound therapy, skin
grafts, and patient education (Wound Care Treatment Methods; Cologne 2006).

Anti-inflammatory agents, analgesics, antimicrobials agents, and hemostatic
agents are the commonly used medications for the management of wounds. Natural
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substances (e.g., silver, honey, and plant extracts) are also used for the management
of the wound. Centella asiatica and Aloe vera are commonly known for their wound
healing activity (Kumar 2017). But, in folk medicine, various plant extracts are used
for the management of the wound which is not well documented. In this chapter, the
importance of natural sources for the discovery of drug candidates for the manage-
ment of wounds is discussed.

2 Drug

A World Health Organization (WHO) Scientific Group defined a drug as “any
substance or product that is used or intended to be used to modify or explore
physiological systems or pathological states for the benefit of the recipient”
(World Health Organization 1972).

3 Sources of Drugs

The drugs were discovered by trial and error method, until the end of the nineteenth
century. Basically, drugs are obtained from plants, animals, marine organisms,
microbiological, minerals, synthetic and semisynthetic sources, and recombinant
deoxyribonucleic acid (r-DNA) technologies.

Plant sources of drugs are obtained from plant parts and plant phytoconstituents.
Plant sources are considered the oldest sources. Medicinal plants are generally used
as substances to treat or prevent diseases. The early documented records of herbal
medicines dating back to 5000 years in India and China indicates the importance of
medicinal plants in the healthcare system (Parasuraman 2018). In ancient times,
most drugs were derived from plants. Examples of plant parts that can be used are
leaves, flowers, fruits, seeds, roots, barks, and stems. For example, digitoxin and
digoxin are obtained from the leaves of Digitalis purpurea (Plantaginaceae) which
are cardiac glycosides. Vincristine and vinblastine are the anticancer drugs obtained
from the flowers of Vinca rosea (Apocynaceae). Strychnine is obtained from the
seeds of Strychnos nux-vomica (Loganiaceae) which acts as a central nervous system
stimulant. Reserpine is obtained from the roots of Rauwolfia serpentina
(Apocynaceae) which is a hypotensive agent. Atropine is obtained from the bark
of Atropa belladonna (Solanaceae) which is an anticholinergic (Rates 2001).

In the aspect of animal sources, hormones play a very vital role in the treatment of
diseases or deficiencies by replacement therapy. Insulin is the most commonly used
hormone to treat diabetes mellitus to maintain the blood sugar level. Insulin is
obtained from the pancreas of bovine or porcine (Aronoff et al. 2004). The cod
liver oil contains high levels of omega-3 fatty acids, vitamin A and D which are
obtained from the liver of codfish.

Mineral sources are obtained from some minerals including acids, bases, and salts
such as potassium chloride. For example, iron therapy is used to treat anemia, kaolin
and activated charcoal are used as antidiarrheal agent.
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Synthetic drugs are chemically synthesized in the laboratory. Some of the drugs
are obtained earlier from natural sources and nowadays synthesized in the labora-
tory. The main advantages of chemically synthesized drugs are that the quality can
be controlled, the process is easier and cheaper, more safe and potent, and it is
suitable for large-scale production. Examples of synthetic sources are meperidine
(analgesic), diphenoxylate (antidiarrheal), and co-trimoxazole (antimicrobial). Semi-
synthetic drugs are normally obtained from natural drugs and their chemical struc-
tures are altered to improve their pharmacological properties. Examples of
semisynthetic drugs are diacetylmorphine, ethinyl estradiol, ampicillin, and atropine
bromide (Rates 2001).

DNA recombinant technology involved restriction endonucleases enzymes that
cleavage of DNA at specific sequences, and the gene of interest is coupled to rapidly
replicating DNA. The new genetic combination has been inserted into bacterial
cultures and allows the production of genetic material. For example, human insulin
can be produced by using recombinant DNA technology by the modification of
porcine insulin. Due to the variation in the amino acid chain of porcine and human
insulin, the amino acids alanine of porcine insulin at the 30th position of the B chain
is changed with threonine to convert it into human insulin (Khan and Firoz 2015).

4 Current Perspectives on Drug Discovery from Natural
Sources

The increase in the global population has overburdened the existing resources for the
discovery of new drugs. The rise of new diseases and increasing resistance of
microbes to the currently available drugs is also increasing at an alarming rate.
Factors such as food habits, sedentary lifestyles, and changing environments have
been attributed to change in the normal disease patterns. New pathways of tolerance
are evolving and spreading globally, threatening our ability to manage widespread
infectious diseases, resulting in prolonged sickness, disability, and death
(Venkateskumar et al. 2019). Hence, the discovery of new drugs or searching the
new leads from natural sources is essential.

Globally, natural products are playing an important role in preventing and treating
human disease. Natural product drugs are obtained from various sources including
terrestrial microorganisms, marine organisms, terrestrial vertebrates, invertebrates,
and terrestrial plants. Between 1981 and 2002, about 28% of the new chemical
entities launched on the market are natural products or natural product-derived
drugs. From 2000 to 2005, over 20 new drugs introduced onto the market were
from natural sources (Chin et al. 2006). Nearly 75,000 higher plant species have
been estimated to exist on Earth, and only 10% have been used in traditional
medicine. Around 1–5% is tested for its biological activity and is considered to
have a therapeutic value (Koparde et al. 2019).

According to the World Health Organization (WHO), about 80% of the world’s
population is relying on plant-based systems of drugs for their primary healthcare
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needs, and plants contribute 80% of the raw materials in the traditional medical
system. The traditional medicine system accounts for 40% of all healthcare provided
in China, and the usage of traditional medicine serves the demands of developed
countries (Parasuraman 2018). Globally, the market for and acceptance of herbal
products has grown from day to day. The adverse effect of allopathic drugs contrib-
utes to a rise in the usage of herbal medications that led to the rapid growth of the
herbal medicines industry.

There are many newly emerged diseases in these few decades such as acquired
immune deficiency syndrome (AIDS), Ebola, and coronavirus disease 2019 and still
do not have any cure for them. Tuberculosis is reemerged diseases that are resistant
to chemotherapeutic agents that are available nowadays. However, synthetic chem-
ists have failed to solve these health challenges. Thus, drugs from natural sources are
another alternative way to solve these health challenges, as they are less costly,
widely accepted, and less toxic when compared to allopathic medicine. The search
for active constituents present in the plant began in the nineteenth century. Later
many compounds were isolated from the plant including morphine, codeine, atro-
pine, and digoxin. Many anticancer drugs are obtained from natural sources which
include doxorubicin, etoposide, irinotecan, and vinblastine (Moshi 2005).

The multidisciplinary study approach has provided an impetus to find specific
pharmacophores as the site of action other than the extension of therapeutic arma-
ment and herbal therapy. Different approaches to herbal medicines contribute to
further drug development efforts in both single molecules of drug and polyherbal
formulation (Parasuraman and Perumal 2020).

5 Natural Sources as Wound Healing Agents

5.1 Plant Sources of Wound Healing Agents

The use of plant and plant-based substances has a long history in the treatment of
various diseases. Many plants are used for the treatment of wounds in folk medicine
and many plants are experimentally tested for their wound healing activity. In
Table 1, the plants which are screened for their wound healing activity are listed.
The clinical efficacy of Ageratina pichinchensis (Asteraceae), Angelica sinensis
(Apiaceae), Alchemilla vulgaris (Rosaceae), Aloe vera (Liliaceae), Calendula
officinalis (Asteraceae), Lavandula stoechas (Lamiaceae), Mimosa tenuiflora
(Leguminosae), Origanum vulgare (Labiatae), Radix astragali (Leguminosae),
Rehmanniae radix (Scrophulariaceae), and Salvia miltiorrhiza (Lamiaceae) are
reported elsewhere (Lordani et al. 2018). The plants’ secondary metabolites such
as alkaloids, glucosinolates terpenoids, and phenolics possess wound healing
activity.

(+)-Epi-α-bisabolol: It is a sesquiterpene alcohol present in the leaves of Lippia
dulcis (Verbenaceae), Peperomia galioides (Piperaceae), and Matricaria
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chamomilla (Asteraceae). Villegas et al. (2001) isolated the (+)-epi-α-bisabolol from
Peperomia galioides and reported its wound healing activity. α-bisabolol is known
for its antioxidant, anti-inflammatory, anti-infective, and antiplasmodial activities.
And it also inhibits melanogenesis by lowering intracellular cyclic Adenosine
monophosphate (cAMP) levels in dermal hyperpigmentation (Kamatou and Viljoen
2010).

4-Hydroxybenzaldehyde (4-HBA): 4-HBA is phytoconstituent ofGastrodia elata
(Orchidaceae) and it accelerates acute wound healing by promoting keratinocyte cell
migration (Ha et al. 2000; Kang et al. 2017).

Alkannins/Shikonins: Alkannins/shikonins are chiral-pairs of naturally occurring
isohexenylnaphthazarins and found in the roots of Alkanna tinctoria (Boraginaceae),
Onosma echioides (Boraginaceae), Lithospermum erythrorhizon (Boraginaceae),
and Echium italicum (Boraginaceae). Alkannins/shikonins are present in more
than 150 species that belong to genera of Alkanna, Arnebia, Echium, Lithospermum,
and Onosma of the Boraginaceae family (Papageorgiou et al. 2008; Sagratini et al.
2008). Karayannopoulou et al. (2011) and Nikita et al. (2015) reported wound
healing activities of alkannins/shikonins in animal models. Alkannins/shikonins
are known for their wound healing activity (Papageorgiou et al. 2008).

Arnebin-1: It is a naphthoquinone derivative from the plant root of Arnebia nobilis
(Boraginaceae). Arnebia nobilis root extract is commonly used to treat wounds in
India (Thangapazham et al. 2016). It has a pro-angiogenic effect and promotes the
wound healing process by increasing Endothelial nitric oxide synthase (eNOS),
Vascular endothelial growth factor (VEGF), and Hypoxia-inducible factor 1-alpha
(HIF-1α) expression levels in diabetic rats (Zeng and Zhu 2014; Zeng et al. 2015).

Asiatic Acid: It is a phytoconstituent of edible plant Centella asiatica belongs to
the Apiaceae family. Centella asiatica has been identified as a medicinal herb that
finds traditional applications in the treatment of leprosy and wound. It was men-
tioned as a wound-healing plant in the French pharmacopeia in 1884 and has been
used in ancient traditional Chinese culture for the past 2000 years, and also has a
history connected with the Ayurvedic medicine that dates back to about 3000 years
ago (Nabi et al. 2019). Asiatic acid is a triterpenic acid and showed numerous
pharmacological activities including anticancer, anti-inflammatory, antioxidant,
cardioprotective, gastroprotective, hepatoprotective, and neuroprotective properties.
It also showed beneficial effects in the management of Alzheimer’s, cerebral ische-
mia, dementia, hyperglycemia, liver fibrosis, metabolic syndrome, Parkinson’s
diseases, obesity, and wound (Nagoor Meeran et al. 2018). In in vitro experiments,
Asiatic acid showed concentration-dependent enhancement of collagen type I and
type III synthesis in fibroblasts cells and the action is mediated through the
Transforming growth factor-beta (TGF-β)/Smad pathway (Wu et al. 2012a). Asiatic
acid derivatives namely “ethoxymethyl 2-oxo-3,23-isopropylidene-asiatate” also
showed the strongest and the fastest wound healing activity in in silico experiments
(Jeong 2006).
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Asiaticoside: It is a triterpenoid saponins of Centella asiatica (Apiaceae)
(Sh Ahmed et al. 2019). Asiaticoside exhibited wound healing activity in rabbits
by increasing the formation of granulation tissue and collagenase triggered
re-epithelialization (Ozdemir et al. 2016). Asiaticoside also induced type-I collagen
synthesis in human dermal fibroblast cells (Mukherjee et al. 2015).

Baicalin: It is a flavone glycoside and is one of the main phytoconstituents respon-
sible for the pharmacological actions of Scutellaria baicalensis (Lamiaceae), a
Chinese herb used for the treatment of psoriasis. This compound exhibited antiviral
activity, anti-inflammatory activity, and photoprotective effects. In psoriatic patients,
baicalin blocks the pathological changes of keratinocytes (Bonesi et al. 2018). The
nanohydrogel preparation of baicalin exhibited wound healing activity and this
effect may be due to its antioxidant and anti-inflammatory properties. Baicalin has
the ability to inhibit nitric oxide and Tumor necrosis factor-α (TNF-α) which is
playing a key role in the inflammatory pathway (Manconi et al. 2018).

Calophyllolide: It is neoflavone isolated from the seeds of Calophyllum
inophyllum (Calophyllaceae). It exhibited wound healing activity in the incision
wound model in mice. Calophyllolide (6 mg/animal; topical application) accelerates
wound closer rate by around 80% and 97% at day 7 and day 14 post-treatment
whereas povidone-iodine (100 mg/animal; topical application) promoted closure of
the wound area by around 71% and 93% at day 7 and day 14 post-treatment,
respectively (Nguyen et al. 2017).

Chlorogenic Acid: It is an ester of caffeic acid with quinic acid (phenolic acids),
found in apples, carrots, pears, sweet potatoes, tomatoes, coffee, and tea. A high
concentration of chlorogenic acid is found in coffee (Gagliardini et al. 2017). In both
in vitro and in vivo experiments, chlorogenic acid exhibited significant wound
healing activity (Moghadam et al. 2017; Chen et al. 2013).

Curcumin: Curcumin, a polyphenol from the rhizome of Curcuma longa (turmeric
plant), belongs to the Zingiberaceae family. The medicinal values of turmeric have
been known for thousands of years. In Asian countries, turmeric is traditionally used
as an antioxidant, anti-inflammatory, antimutagenic, antimicrobial, and anticancer
agent (Hewlings and Kalman 2017). Curcumin and its preparations are well reported
for its wound healing activity. The wound-healing effect of curcumin is attributed to
its anti-inflammatory, anti-infectious, and antioxidant properties (Akbik et al. 2014).
Mohanty et al. (2012) reported the wound healing properties of curcumin-loaded
oleic acid-based polymeric bandages in Sprague Dawley male rats.

Deoxyelephantopin: It is a sesquiterpene lactone present in Elephantopus scaber
and Elephantopus carolinianus (Asteraceae). Deoxyelephantopin exhibited antican-
cer activity against breast, cervical, colon, liver, lung, and nasopharyngeal cancer
(Mehmood et al. 2017). It also showed hepatoprotective activity against
lipopolysaccharide/d-galactosamine (LPS/D-GalN)-induced fulminant hepatitis in
rodents (Huang et al. 2013). Singh et al. (2005) reported the wound healing activity
of deoxyelephantopin. It showed a significant wound healing activity in excision
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(0.2% gell; topical application), incision (0.2% gel; topical application), and dead
space wound (4 mg/kg, b.w.; systemic application/oral) models in rodents.

Ellagic Acid: It is a phenol compound present in several fruits including pome-
granates and vegetables. Primarizky et al. (2017) reported the wound healing activity
of ellagic acid in incision wound model in rats. In another study, ellagic acid not
effectively increases the collagen levels in dermal wound rats and also not inhibited
neutrophil infiltration (Mo et al. 2014). Mo et al. studied the wound healing effect of
ellagic acid using linear incision, excision, and burn wound models and found that
ellagic acid has wound healing activity, but does not increase the collagen levels.
Ellagic acid is also not associated with any deformations or exuberant granulation
that might have occurred in the healing process (Mo et al. 2014).

Emodin: It is a trihydroxyanthraquinone and phytoconstituent present in
Reynoutria japonica (Polygonaceae), Ventilago leiocarpa (Rhamnaceae), Cassia
nigricans (Caesalpinaceae), Cassia obtusifolia (Fabaceae), Embelia ribes
(Myrsinaceae), Rheum officinale (Polygonaceae), and Aspergillus ochraceus
(Trichocomaceae). Emodin is known to have anti-allergic, antibacterial, anticancer,
antidiabetic, anti-inflammatory, anti-osteoporotic, antiviral, hepatoprotective, immu-
nosuppressive, and neuroprotective activities (Dong et al. 2016). Tang et al. (2007)
reported wound healing activity of emodin (at the dose levels of 100, 200, and
400 μg/ml; topical application) using excisional wound model in rats.

Entagenic Acid: It is a phytoconstituents from the seed kernel of Entada pursaetha
or Entada rheedii (Leguminosae). This plant is indigenous to Africa, Asia, Australia,
and Madagascar. Entagenic acid exhibited wound healing activity in rats. Entagenic
acid also showed inhibitory activity against Glycogen synthase kinase 3 beta
(GSK3B) protein (target for wound healing activity through Wnt signaling pathway)
with minimum binding (�8.79 kJ mol�1) and docking (�8.95 kJ mol�1) energy in
in silico studies (Vidya et al. 2012).

Ferulic Acid: Ferulic acid is a natural antioxidant and an abundant phenolic
phytochemical found in vegetables and fruits, such as tomatoes, rice bran, and
sweet corn. Ghaisas et al. studied the wound healing activity of ferulic acid in
diabetic rats using the excision wound model and the results indicate that ferulic
acid can promote wound healing and inhibiting oxidative stress in diabetic rats
(Ghaisas et al. 2014). Isoferulic acid is an isomer of ferulic acid that exhibited
anti-inflammatory action (Gadallah et al. 2020).

Gallic Acid: It is a phenolic compound present in number of land plants. Gallic acid
is a strong antioxidant and anti-inflammatory agent. In in vitro experiments, gallic
acid exhibited wound healing activity by accelerating the cell migration of
keratinocytes and fibroblasts (Yang et al. 2016). Preparation of gallic acid also
exhibited the wound healing activity and substantially increases TGF-β expression.
In wound healing process, inflammation is a crucial phase followed by the prolifer-
ation and maturation phase which is inhibited by gallic acid by blocking the nuclear
factor κB (NF-κB) pathway (Karatas and Gevrek 2019).
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Honey: Honey is a sweet and viscous food substance made by honey bees. Bees
collect honey from the sugary secretions of plants (floral nectar) or from secretions of
other insects (honeydew). Vijaya and Nishteswar (2012) reported the clinical effect
(wound healing) of honey. It promotes the natural healing process and also possesses
anti-inflammatory action.

Juglone: Juglone is a toxic isomer of lawsone present in almost all of the parts of
the walnut tree (Chudhary et al. 2020). Juglone ameliorates wound healing by
increasing the activation and/or expression of Cell division control protein 42 homo-
log (Cdc42), Ras-related C3 botulinum toxin substrate 1 (Rac1), and Alpha-p21-
activated kinases (α-PAK) (Wahedi et al. 2016).

Kaempferol: It is a flavonoid and found in many edible vegetables including
apples, blackberries, broccoli, brussels sprouts, cucumbers, grapes, green beans,
green tea, lettuce, onions, peaches, potatoes, raspberries, spinach, squash, and
tomatoes (Calderón-Montaño et al. 2011; Liu 2013). Kaempferol is known to have
anticancer, anti-inflammatory, antioxidant, cardioprotective, hepatoprotective, and
neuroprotective activities (Ren et al. 2019). Kaempferol exhibited wound healing
activity in both diabetic and nondiabetic animals using excisional and nondiabetic
incisional wound models in rats at a concentration of 1% w/w ointment (Özay et al.
2019). Ambiga et al. isolated kaempferol from flowers of Ipomoea carnea
(Convolvulaceae) and studied its wound healing activity using incision and excision
wound models in rats. In both models, kaempferol exhibited significant wound
healing activity by the increased weight of the granulation tissue and hydroxyproline
content in the incision wound model and by the reduction in the wound area, a faster
rate of epithelialization, an increased dry weight of the tissue, and increased
hydroxyproline content in excision wound model (Ambiga et al. 2007).

Lawsone: It is also known as hennotannic acid. Lawsone is a naphthoquinone and
is one of the phytoconstituents of Hina/Lawsonia inermis (Lythraceae). Hennotannic
acid is a red-orange dye and known to have antibacterial, antifungal, antiparasitic,
antitumor, and antiviral activities (López López et al. 2014). Mandawgade and Patil
reported wound healing activity of lawsone in rodents using excision and incision
model at the dose levels of 50 � 3 mg/kg (per oral) and 0.1 w/w (topical/ointment).
In both models, lawsone exhibited significant wound healing activity (Mandawgade
and Patil 2003). Lawsone preparations also showed a significant wound healing
activity in rodents (Bascha et al. 2016).

Luteolin (30,40,5,7-Tetrahydroxy Flavone): It is a naturally occurring flavonoid
present in flowering plants including Martynia annua (Martyniaccae) and Reseda
luteola (Resedaceae) (Lodhi et al. 2016; Cristea et al. 2003). In Chinese traditional
medicine, plants rich in luteolin have been used for the treatment of cancer, hyper-
tension, and inflammatory disorders (Lin et al. 2008). Lodhi and Singhai (2013)
reported the wound healing activity of luteolin and the effect is due to its capacity to
enhance tissue antioxidant levels.
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Madecassic Acid: It is a natural pentacyclic triterpenoid and first isolated from
Centella asiatica belonging to the Apiaceae family. Various extracts of Centella
asiatica are well reported for their wound healing activity (Somboonwong et al.
2012). Asiatic acid (aglycone), madecassic acid (aglycone), asiaticoside (glyco-
sides), and madecassoside (glycosides) are triterpenoid compounds present in
Centella asiatica and these compounds are ingredients with pharmacological activ-
ities (Wu et al. 2012a). Asiatic acid and madecassic acid is also stimulating collagen
I secretion in dermal fibroblast cells (Bonte et al. 1994).

Mannose-6-Phosphate: It is the major sugar in Aloe vera (Asphodelaceae). In
rabbits, mannose-6-phosphate effectively prevented flexor tendon adhesion forma-
tion after anastomosis by inhibiting transforming growth factor β1 (Xia et al. 2012).
A randomized, interventional clinical trial (Phase II) was carried out in 2008 to
investigate the efficacy and safety of mannose-6-phosphate in accelerating the
healing of split-thickness skin graft donor sites (Bush 2008). This compound is
also used for the treatment of fibrotic disorders (US6093388A) (Ferguson and BTG
International Ltd 2000).

Oleanolic Acid: Oleanolic acid is one of the common pentacyclic triterpenoid
compounds commonly found in apple, pomegranate, lemon, mandarin, bilberries,
pears, grapes, persimmon, jujube, and olives (Žiberna et al. 2017). Moura-Letts et al.
reported the wound healing activity of oleanolic acid, isolated from Anredera diffusa
(Family: Basellaceae) (Moura-Letts et al. 2006). Oleanolic acid also exhibited
antidiabetic, anticancer, and antioxidant activates (Wang et al. 2011a, b; Žiberna
et al. 2017).

Picroliv: It is an active hepatoprotective principle isolated from Picrorhiza kurroa
(Plantaginaceae) (Girish and Pradhan 2012). Picroliv improved re-epithelialization,
neovascularization and migration in endothelial, dermal myofibroblasts, and fibro-
blasts cells into the wound bed and upregulates the expression of VEGF and
α-Smooth muscle actin (α-SMA) (Singh et al. 2007).

Quercetin: It is a bioflavonoid present in more than 20 plants including Allium
cepa (Amaryllidaceae), Allium fistulosum (Amaryllidaceae), Asparagus officinalis
(Asparagaceae), Apium graveolens (Apiaceae), Brassica oleracea (Brassicaceae),
Calamus scipionum (Calamoideae), Camellia sinensis (Theaceae), Capparis
spinosa (Capparaceae), Centella asiatica (Apiaceae), Coriandrum sativum
(Apiaceae), Hypericum hircinum (Clusiaceae), Hypericum perforatum
(Hypericaceae), Lactuca sativa (Asteraceae), Malus domestica (Rosaceae), Morus
alba (Moraceae), Moringa oleifera (Moringaceaei), Nasturtium officinale
(Brassicaceae), Solanum lycopersicum (Solanaceae), Prunus avium (Rosaceae),
Prunus domestica (Rosaceae), and Vaccinium oxycoccus (Ericaceae). Quercetin is
known for its antiatherosclerotic, antihypercholesterolemic, antihypertensive, anti-
inflammatory, and antiobesity activities (Anand David et al. 2016). Quercetin and its
preparations exhibited wound healing activity in preclinical studies (Gomathi et al.
2003; Jangde et al. 2018).
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Taspine: It is an alkaloid present in Croton lechleri (Euphorbiaceae) andMagnolia
x soulangiana (Magnoliaceae). Porras-Reyes et al. reported the wound healing
activity of taspine (at dose levels of 10–250 μg/rat with body weight of 280–320
g) using a linear incision model in rodents. Taspine at 250 μg showed significant
increases in mean breaking strength and wound tensile strength (Porras-Reyes et al.
1993).

Ursolic Acid: Ursolic acid is a lipophilic pentacyclic triterpenoid, found in rose-
mary, lavender, marjoram, thyme, organum, apple fruit peel, and berries. It exhibits
anti-inflammatory, antioxidant, anti-carcinogenic, antiobesity, antidiabetic,
cardioprotective, neuroprotective, hepatoprotective, anti-skeletal muscle atrophy,
and thermogenic effects (Seo et al. 2018; Parasuraman et al. 2020). Pravez and
Patel (2014) reported the wound healing activity of stearoyl glucoside of ursolic acid
using excision and incision wound models. Naika et al., reported wound healing
activity of ursolic acid isolated from Clematis gouriana using in silico (against
glycogen synthase kinase 3-β) and in vivo (using excision and dead space wound
models) studies (Naika et al. 2016).

5.2 Wound Healing Potential of Marine Organisms

In recent years, the study of marine organisms for their bioactive potential has
expanded, and now one-third of the available medicines are either natural products
or have been produced based on nature-borne lead materials, and almost 60% of
drugs approved/and pre-New Drug Application (NDA) candidates (not including
biologicals) for the pharmacotherapy of cancer are of natural origin (Porras-Reyes
et al. 1993). Approximately 15,000 pharmacologically active substances have been
extracted from marine organisms, many of which are structurally unique and absent
in terrestrial organisms. The ocean provides an opportunity to explore newer lead
molecules as it has more than 13,000 molecules and these are secondary metabolites.
The majority of bioactive molecules have been isolated from benthic animals, such
as ascidians, bryozoans, cnidarians, echinoderms, mollusks, polychaetes, and
sponges. The reports say that only 5% of our oceans have been studied and current
research trends focus on the intensive search of this vast and diversified marine
ecosystem for the exploration of potent bioactive compounds. In the past few years,
researchers and pharmaceutical firms have been making efforts to discover new
pharmacological agents from marine sources (Venkateskumar et al. 2019).

The red pigment isolate of Vibrio sps, bioactive compounds from Micrococcus
sp. OUS9, low molecular weight fucoidan of Undaria pinnatifida (Alariaceae),
organic and aqueous extracts of Ceratothoa oestroides (Cymothoidae), extract of
Fucus vesiculosus (Fucaceae), methanolic extract of Padina gymnospora
(Dictyotaceae), methanol-water layer and n-hexane layer fractions of Starfish, com-
pounds of Astragalus species (cycloastragenol, astragaloside IV, cyclocephaloside I
and cyclocanthoside E) and Sea-star coelomic fluid (SCF) extract of Sea-star
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Astropecten indicus (Astropectinidae) were exhibited wound healing activity in
preclinical studies (Baveja et al. 2018; Sevimli-Gür et al. 2011; Shiva Krishna
et al. 2019; Kumari et al. 2020; Park et al. 2017; Sofrona et al. 2020; Baliano et al.
2016; Craciun et al. 2015; Dai et al. 2016). The marine sources are the most
unexplored area for the search of lead for drug discovery. Hence, exploration of
marine sources may give the new lead for drug discovery.

5.3 Antioxidant Therapies for Wound Healing

The wound is an injury and several factors such as accidental traumas or surgery
contribute to wound generation. Wound healing is the natural process that results in
the restoration of the structural and functional integrity of damaged tissues. Several
biochemical and cellular pathways involving in the wound healing process and
deficiencies in this pathway may result in the failure of the wound healing process.
Additionally, oxygen- and nitrogen-centered reactive species are known to play vital
roles in regulating healing. In wound sites, reactive species may be in high concen-
trations which can cause harmful effects on cells and tissues and promote oxidative
stress (Barku 2019). This Reactive oxygen species (ROS) play an essential role in
the mechanism of the normal wound-healing response (Dunnill et al. 2017).

Physiologic antioxidant defenses include the ROS-detoxifying enzymes super-
oxide dismutase, catalase, glutathione peroxidases, and peroxiredoxins; endogenous
and exogenous low-molecular-weight antioxidants such as vitamin C, vitamin E,
glutathione, and phenolic are nonenzymatic defenders against ROS (Fitzmaurice
et al. 2011). Green leafy vegetables and fruits are rich sources of low-molecular-
weight antioxidants, which can enhance and accelerate the wound healing process by
inhibiting free radicals and neutralizing reactive oxygen species.

Herbal wound products are remarkably growing and it induces the healing by
modulating inflammatory mediators such as cytokines, eicosanoids, nitric oxide, and
other growth factors. In the traditional medicine system, combinations of herbs such
as polyherbal/herbomineral formulations are used to have better
pharmacotherapeutic activity (Aslam et al. 2016). The plants have complex enzy-
matic (superoxide dismutase, catalase, glutathione peroxidase, and glutathione
reductase) and nonenzymatic (ascorbic acid, glutathione, proline, carotenoids, phe-
nolic acids, flavonoids, and tannins) antioxidant defense systems to prevent the toxic
effects of free radicals (Barku 2019). The antioxidant properties of the herbs may
enhance and accelerate the wound healing process. MEDIHONEY® Gel contains
100% active Leptospermum honey in a hydrocolloid suspension and indicated for
Wound and Burn dressing. Honey is known for its antioxidant, antibacterial, and
wound healing activates and is approved by the United States Food and Drug
Administration (FDA) for wound healing applications (Fitzmaurice et al. 2011).
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6 Future Prospective

Skin is the protective barrier and wound on the skin may lead to serious morbidity
and mortality. The wound-healing process is affected by numerous factors including
humidity and oxygenation, infection, stress, increasing prevalence of acute and
chronic wounds, and patient-related factors such as age, lifestyle, and health status.
Wound healing is an important physiological process; when it fails, the quality of a
patent’s life becomes worst, especially in patients with chronic metabolic disorders.
Currently, one-third of the adult population is living with diabetes and 6.5 million
cases of chronic skin ulcers annually (Dreifke et al. 2015). In 2016, the global
Wound Healing market was valued at approximately US$22.01 billion and is
projected to register a cumulative annual growth rate of over 3.7% by 2022 (Polerà
et al. 2019). The cost of the management for chronic and nonhealing wounds is
increasing which may affect the patient’s quality of life. Hence, the search for new
lead or drugs from natural sources is essential to reduce the cost of the treatment. In
the traditional medicine system, numerous herbs are reported to have wound-healing
properties and those plants are used in folk medicine to treat wounds. The plant and
marine sources are extensively studied for their wound-healing activity (preclinical
studies) and further clinical studies are required to explore the possible effect on
humans.

Nature always has been a valuable source of drugs and about 80% of the world’s
population is dependent on plant-based systems of medicine for their primary
healthcare needs. During the past 30 years, up to 50% of the approved drugs by
the regulatory agencies are from natural products (plant products or their deriva-
tives). In the area of cancer, around the 1940s to date, 85 out of 175 small molecules
are being either from natural products or their derivatives (Veeresham 2012). The
utility of natural products as sources of new drugs/lead is still alive and well. Hence,
exploring the natural sources or their derivatives for new drug discovery may give
numerous drug molecules for the management of wounds, as well as other diseases.
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Wound Healing: Understanding Honey
as an Agent

Victor B. Oti

1 Introduction

Honey, is a supersaturated solution that is sweetened and viscous in nature, which is
derived from the gathering and modification of nectar by honey bee (Apis mellifera)
(Vallianou et al. 2014; Okpala 2019). Honey has been depicted to be a God gift to
humanity and globally, it is one of the ancient items used as food. Honey has fructose
(40%), glucose (40%), water (20%), vitamins, enzymes, organic acids, and minerals;
its pH is 3.6 and a specific weight of 1.4 (Manyi-Loh et al. 2011). It is non-toxic,
non-irritant, and can be available easily and not too costly, and has been playing role
in healing wounds over thousands of years (Molan 2006; Majtan 2011; Aziz and
Abdul Rasool Hassan 2017). There are many clinical evidences that reported the
effectiveness of honey in this usage and application in the past few years ago but the
efficacy behind honey was available in just recent times (Aziz and Abdul Rasool
Hassan 2017; Medhi et al. 2008; Ede et al. 2017). The physical and biological
properties of honey are understood in healing of wounds, having numerous bioactive
compounds which have potential in enhancing wound healing processes (Frydman
et al. 2020; MEDIHONEY®HCS 2013; Gambo et al. 2018). The therapeutic
property of honey in healing of wounds is as an outcome of the synergistic role of
chemical debridement of devitalized and dead tissues from ulcerations by engulfing
of oedema and catalase which is usually done by the hygroscopic characteristics of
it, the enhancement of epithelization and granulation from the edges of wounds, the
microbial honey features, its nutritional features and the hydrogen peroxide produc-
tion (Mandal and Mandal 2011; Clark and Adcock 2018). Treatment of wounds with
honey is simple and does not cost much, it possesses bactericidal content, due to its
high viscosity, it creates an obstacle physically, forming an ecosystem that is slightly
wet which shows to be significant and enhances healing of wounds (Frydman et al.
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2020; Jull et al. 2015; Samarghandian et al. 2017). Full healing has shown in an
observational group study of sick people in 2 weeks, a positive result was shown in
most situations, and in a clinical trial that is controlled, individuals showed better-
ment but the differs in recovery time when compared to the control groups (Jull et al.
2008a). Honey’s physical features only will impact the wound healing domain
positively and its processes, in a specific manner due to the acidic character of
honey, its low pH and studies have agreed that wound surface acidification acceler-
ates recovery by facilitating the oxygen that is giving out from haemoglobin (Clark
and Adcock 2018). Furthermore, pH is less favourable for the activity of protease
that helps reduce the destruction of the matrix that is used in repairing tissues. The
increased honey osmolarity that is hinged on its enhanced content of glucose plays a
significant function in wound healing processes, reasonable findings depict sugar
pastes as favourable in wound healing (Okpala 2019; Maddock 2012). If blood
movement under injury is enough to restore liquid that was cellularly unavailable,
after which the role of the osmolarity of glucose on the outside literally develops an
efflux of lymph in which such outflow is of high importance to the healing process
(Hixon et al. 2019). Wounds are damage to the physiological compartment in the
cells of the skin and an insult to its functionality in protecting and its connection to
where organs and tissues lie underneath. Wounds that are acute are often caused by
damage that is external, for example mechanical damage, Ultraviolet radiation,
thermal radiation among others while chronic wounds are result from internal
damages in the form of a circulatory compromise (Molan and Rhodes 2015; Sarheed
et al. 2016). They include diabetic ulcer and leg ulcer. When circulation is not
sufficient, tissue necrosis may result due to inadequate tissue nutrients and thus
potentiates proinflammatory cytokines. Wound healing processes exhibit the
overlapping of the haemostasis, inflammatory, growth or proliferation, and
remodelling phases in specified durations (Sarheed et al. 2016). The process begins
with the haemostasis which is achieved in few minutes, then the bacteria and debris,
which get eliminated during the inflammation phase from the wound. After the
inflammation phase, invasion of blood vessels and creation of new epithelium and
connective tissues, as well as contraction of the wound, this is the proliferation phase
that takes place. The remodelling phase is the stage where collagens are aligned on
tension lines, and the remaining tissues are eliminated through apoptosis (Hixon
et al. 2019). Militating factors in the healing process include old age, poor circula-
tion, and infection among others. Microbial load control of a wound is one of the
most significant aspects to look into when you want an optimal environment for
healing to occur (Ruttermann et al. 2013). A bacterial level that is higher than
105 bacteria in 1 g in tissues of wound was reported to impact negatively in the
process of wound healing, especially chronic and surgical wounds (Ede et al. 2017).
Honey-treated wounds heal within a mean of 13 days faster than the silver sulfadi-
azine treatment in a study (Aziz and Abdul Rasool Hassan 2017). Significant
findings from pre-clinical, animal model studies, and clinical researches have
reported honey’s ability in healing wounds (Aziz and Abdul Rasool Hassan 2017;
Medhi et al. 2008; Gambo et al. 2018; Jull et al. 2008a; Hussain 2018; Hosseini et al.
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2020; Smaropoulos and Cremers 2020). This chapter will look at honey as an agent
for wound healing.

2 Brief Explanation on Wound

Wounds are disarrangement or disruption of the skin cells integrity and its operations
and a nuisance to its functionality in the protection and connection of organs and
tissues that are underlined (Sarheed et al. 2016; Boateng et al. 2008). Wounds can be
primarily as a result of accidental tear, cut, scratch, extreme temperature, pressure,
chemicals, and electrical current, infection and/or disease (which might include:
ulcers, diabetes, cancers among others) (Gottrup et al. 2005; Song and Salcido
2011). Wounds can be either superficial, partial thickness, or complete thickness
in nature (Sarheed et al. 2016; Alavi et al. 2016).

2.1 Wound Types

2.1.1 Acute Wounds

Wounds that are acute can heal at a short time void of complications and has a skin
integrity loss feature that suddenly happens (Sarheed et al. 2016). The acute wounds
may be either traumatic or surgical in nature. Fibroblasts, platelets, keratinocytes
among others facilitate healing and restored the integrity of tissues (Boateng et al.
2008; Gottrup et al. 2005; Janis et al. 2010).

2.1.2 Chronic Wounds

Prolonged wounds heal in a longer time and has predictors associated with weak
epidermal and dermal tissue integrity (Sarheed et al. 2016; Gottrup et al. 2005; Song
and Salcido 2011). Predisposing factors either change the balance between
the immune system of the patients and wound bioburden or damage the cycle of
the healing process (Janis et al. 2010; Moffatt 2005). With respect to duration, if the
wound did not show any signs of healing or did not heal in 2 weeks, it is referred to
as a wound that is chronic (Gottrup et al. 2005). Factors could hamper with perfusion
of the vessel leading to wounds that are chronic (e.g. vascular ulcers), related to
metabolic changes, e.g. diabetes which can cause ulcer of the foot due to diabetes
(Alavi et al. 2016). Resistant microbial presence, prolonged healing and inflamma-
tion phase, and tissue with friable granulation among others are features of chronic
wounds (Sarheed et al. 2016; Janis et al. 2010).
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2.2 Aspect of Wound Healing Phases

The wound healing process is grouped into four (4) major interactive phases as
discussed below (Fig. 1) (Bowler et al. 2011).

2.2.1 Phase of Haemostasis

The haemostasis phase is marked by microvascular wounds and the discharge of
blood features at the site of the wound (Sarheed et al. 2016; Moffatt 2005). There is a
touch between platelets and the damaged blood vessels and binds to the wall. Such
adherence triggers the platelets to discharge the growth factors, cytokines, and
various negotiators of inflammation, which brings about the collections of platelets
and activating the inherent and external coagulation mechanisms shape a clot of fibre

Fig. 1 Wound healing phases (Sarheed et al. 2016; Ruttermann et al. 2013; Bowler et al. 2011).
Wound healing phases often begin with haemostasis where blood components are released at the
site of the wound. The inflammation phase commences together with haemostasis but in some cases
few minutes after injury and can last for about 3 days. In the proliferative phase, the inflammatory
cells that remain generate cytokines to begin development of new blood vessels. The remodelling
phase, rearrangement of collagen along strain lines, and tissues that are beyond limits are eliminated
through cell death
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that prevents post destruction of blood. The healing cascade is triggered by the
growth factors released by the platelets (Reinke and Sorg 2012).

2.2.2 Phase of Inflammation

This phase begins together as haemostasis commences but in some cases a few
minutes after injury up to 1 day and can stay up to around 3 days (Eming et al. 2007).
Grouped platelets contain vasoactive amines like histamine and prostaglandins,
other amines that is in granules extracted by the cellular mast which led to higher
microvascular water content and dilation of blood vessels in reaction to injury,
resulting in liquid hydrolysis into the intracellular room. This gives space for the
movement of exudates that is rich in proteins and monocytes through and across the
wound tissue which causes oedema (Bowler et al. 2011). These are typical signs of
the inflammatory processes; within about 24 h sufferers begin to talk about distress at
the site of injury (Sarheed et al. 2016; Eming et al. 2007).

2.2.3 Phase of Proliferation

The phase of proliferation starts just after the end of the inflammation. The surviving
proinflammatory cytokines generate signalling molecules to introduce angiogenesis,
that is necessary to preserve a substantial blood flow inside the bed of the wound
(Sarheed et al. 2016). Red blood cells that are newly generated often cause the
development of the epithelial cells (made up of extracellular matrix and collagen)
and make available the nutrients that are needed (Wilkins et al. 2012).

2.2.4 Phase of Remodelling

In the phase of remodelling, the rearrangement of collagen along strain lines, and
tissues that are beyond limits are eliminated through cell death (Sarheed et al. 2016;
Ruttermann et al. 2013). This phase often happens when the wound is closed
superficially.

2.3 Factors that Affect Wound Healing

Factors that affect wound healing are discussed below.
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2.3.1 Oxygen Presence

The presence of oxygen is essential for tissue repair and infection resistance, and is
used by adenosine triphosphate for cellular energy production (Gottrup 2004). It
performs on various stages of recovering process by stimulating the development of
new blood vessels, segmentation of keratinocytes, relocation, re-epithelialization,
multiplication of fibroblasts and formulation of collagen, and encourages decelera-
tion of wounds (Sarheed et al. 2016). Oxygen and transient hypoxia when injury
occurs is important in stimulating the recovery process by triggering cytokine
production and growth variables from fibroblasts, macrophages, and keratinocytes.
Prolonged injuries that have oxygen tissue strain of not more than 20 mmHg is
usually hypoxic relative to natural rates of 30–50 mmHg (Rodriguez et al. 2008).
Through impaired vascular flow, predictors of prolonged injury like diabetes or
advanced age could trigger weak oxygen presence (Guo and Dipietro 2010). Inte-
grative revascularization treatments have been used in diabetic foot ulcers to reverse
the hypoxic conditions. Thus, it was also found that such methods can cause harsh
effects to diabetes patients (Sarheed et al. 2016).

2.3.2 Bioburden from Wound

Intact skin acts on the surface of the skin itself to regulate the microbial community.
The subcutaneous tissue is uncovered as dignity is compromised due to injury,
creating a suitable space for microbial colonization and growth (Gardner and Frantz
2008). But this does not necessarily lead to infection due to the bridge between the
immune system and the wound’s bioburden (Sarheed et al. 2016).

2.3.3 Wound Infection

Microflora of the skin is available in approximately 105 microbial cultures, and has
no challenges clinically (Moffatt 2005). However, when tempered, microbes grow
and invade tissues, initiating a chain of microbial mechanisms that trigger a response
that is inflammatory in nature which can result in a deferred healing process and
destruction of tissues (Sarheed et al. 2016; Bowler et al. 2011; Eming et al. 2007).
Infection occurs when it damages host tissues. Among other negative effects of
wound infection is inflammation that is delayed as a result of long-term rise in
cytokines of inflammatory cells. This makes the injury proceed to a prolonged phase
and healing is halted within the 3 months stipulated time (Bowler et al. 2011). The
long-term swelling is linked to elevated matrix metalloproteinases stages that have
the ability to degrade extracellular matrix, a major feature of the wound healing’s
proliferation stage which happens because elevated stages of proteases come at the
risk of reduced levels of protease inhibitors that happens in nature. From a micro-
biological point of view, infection of wounds is the presence of microbes that
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multiplies at the site of the injury, which suppresses the immune system of the host.
It hinders injury to heal by the discharge of microbial poisons and shows infection
which is symptomatic and sign that is active (Reinke and Sorg 2012).

2.3.4 Wounds Associated Bacteria

Open wounds that are infected can accommodate a myriad of bacteria, including
Escherichia coli, Pseudomonas aeruginosa, and methicillin-resistant Staphylococ-
cus aureus (MRSA) (Weese et al. 2007). Overall, wounds that are infected are
polymicrobial in nature and most often are infected with pathogenic bacteria
which are in the domain, mucosal indigenous microorganisms, and adjacent skin
microflora (Moffatt 2005; Weese and van Duijkeren 2010). Microbes of the bacterial
origin are the major organism that leads to infections of wounds apart from other
microbes that use skin as their habitat, but in certain mixed infections other microbes
such as fungi have been found. Gram-positive bacteria like; S. aureus and E. coli
predominate in the first phase of formation of chronic wound (Sarheed et al. 2016).
In the last step, Pseudomonas species are generally seen and can penetrate layers that
are deep in wound, leading to serious injury of the tissues. Others might include
aerobic bacteria, for example Staphylococcus (such as methicillin-resistant
S. pseudintermedius) and Streptococcus species (S. pyogenes), and anaerobic bac-
teria which are seen in about 50% of injuries that are prolonged (Weese et al. 2007;
Weese and van Duijkeren 2010).

2.3.5 Prolonged Wounds and Formation of Biofilm

A biofilm is an anchoring community of microorganisms characterized by cells
embedded in a secreted extracellular polymeric substances (EPS) matrix that adhere
in an irreversible manner to a substratum or interface or to each other, and it shows a
changed phenotype with regards to the transcription of genes (Garrett et al. 2008).
First, a film that is conditioned is formed and consists of starch and proteins stick on
the area that is solid. It prepares the surface to take in the first cellular biofilm of the
incipient. Second, bacteria approach and begin to adhere to the area by Van der
Waals forces and the likes as well as the electrostatic current on the surface of the
bacteria which is negative (Donlan and Costerton 2002). The attached bacteria are
wrapped in a polymer matrix called EPS. The organism adsorption causes quorum
sensing that is involved in the gene expression and its regulation with regards to
changes in the density of the cellular numbers (Bowler et al. 2011). This results to
biofilm change phenotypically, producing response of harmful factors to signals
from other organisms in the biofilm. Such factors that have a coverage that is
generated from EPS lead to an enhanced antimicrobial resistance. Recommendations
that EPS may spontaneously react with antimicrobial agent has been suggested
which halts their approach to bacteria and exerting antibacterial activity (Sarheed
et al. 2016). Biofilms also protect bacteria from host defences by coating the sugar
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coating, while they emit substances in the film that impairs phagocyte entry. This
knowledge is paramount to intervention modalities for chronic wounds. In manage-
ment of clinical injury, cleaning the wound quickly is imperative and the elimination
of foreign bodies and necrotic tissue from the area that surrounds the injury to
increase the potential for healing of wounds, which is also called debridement
(Wolcott et al. 2008).

3 Aspect of Honey

Honey is a sweet, viscous, supersaturated solution derived by the gathering and
modification of sap by honeybees (Bogdanov et al. 2008). Bees are known to
produce honey, which is a winter food source. Bees can soar about 55,000 miles
approximately to get sap from about two million floras and create around honey of
one pound. Bees of the worker’s class throw up honey and partially digest it
beforehand packing them in a honeybunch (Ajibola et al. 2012). In the honeycomb,
they spread the honey with their extensions to properly disperse the sap and prevent
fermentation of the solution. Honeybees inject the solution’s antibacterial function
during pollen collection and ripening. The difference in honey depends on the origin
of the plant, and hundreds of variations of them have been documented (Wang and
Li 2011). Since honey is highly variable and the substance structure is hinged on the
bud from where it is manufactured as many products of plant origin, its antibacterial
activity might differ depending on the type of honey (Khan et al. 2007). To research
on honey’s therapeutic properties and its mechanism of deed, it is important to
confirm the arrangement of the ingredient. The diet reported in honey is low when
relates to the actual intake per day, but its importance is hinged on its varied
functional properties (Hussain 2018). Honey is mainly composed of 95% dehydrated
bulk carbohydrates. Furthermore, it has substances other than those mention above
like amino acids, proteins, aromatic compounds, organic acids, amino acids, vita-
mins, minerals, and polyphenols (Mandal and Mandal 2011). It is composed of a
number of different properties, which gives honey its ideal ability to enhance injury
recovery. Honey has a low water content, which provides a moist healing environ-
ment (Mandal and Mandal 2011; Mandal et al. 2011). The extraordinary thickness of
it acts as a shielding obstacle against cross-contamination and subsequent infection.
It possesses a 3.6–3.7 pH range in which almost all bacteria and most bacteria cannot
thrive grow in such toxic domain (Samarghandian et al. 2017). Furthermore, it
encourages the creation of lymphocytes that help the reactions of the body’s immune
system. One key antibacterial constituent in this liquid is H2O2. Although, despite
low levels of hydrogen peroxide, some honey effectively control bacteria (Mandal
et al. 2011). Rapid healing was noted, especially burns, and the long-standing ulcers
healed due to honey’s ability to accelerate the process of recovery (Song and Salcido
2011). This liquid does not possess any bad reactions in system unlike most
antimicrobial agents do, but it has an operative antibacterial property against hardy
strains, e.g. MRSA (Samarghandian et al. 2017; Ajibola et al. 2012). Honey also has
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excellent cleansing properties and is a unique way to reconstruct damaged tissue
with minimal scarring. Honey possesses antioxidant and anti-inflammatory proper-
ties in addition to the aforementioned (Song and Salcido 2011; Janis et al. 2010). In
recent years, the concept of its usage as a remedy has become brighter and more
popular (Gambo et al. 2018; Samarghandian et al. 2017; Hussain 2018). Some
studies have shown that ancient treatments once have considerable controlled
proof to back the miraculous function of honey in the treatment of injuries and
other diseases (Hussain 2018; Khan et al. 2007; Mandal et al. 2011).

3.1 Types of Honey

There are many different types of honey, including Manuka honey (New Zealand),
Medihoney, Jerry Bush Honey (Australia), Kanuka Honey, Grass Honey, Beech
Honey, Blueberry Honey, Sage Honey, Clover Honey, Buttercup Honey, Dew
Honey among others (Fig. 2). It is known to inhibit more than 80 types of bacteria
and other organisms (MEDIHONEY®HCS 2013; Bogdanov et al. 2008; Ajibola
et al. 2012). Medihoney trademark is one of the initial medically certified honey as a
professional injury management medical product in the America, Australia, and
Europe (Manyi-Loh et al. 2011; MEDIHONEY®HCS 2013). As reported by
Maddock, honey may interfere with the reaction of fibronectin and Streptococcus
pyogenes on destroyed cell surface (Maddock 2012). Thus, the agent against bacteria
which is inherent in honey is primarily due to osmotic pressure and the enzymatic

Fig. 2 Different types of honey (MEDIHONEY®HCS 2013; Clark and Adcock 2018; Bogdanov
et al. 2008; Ajibola et al. 2012). Honey has different types, which is mostly based on their country of
origin and plant species
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production of H2O2 (MEDIHONEY®HCS 2013). The production of reduced levels
of H2O2 has been shown to improve tissue oxygenation required for tissue
re-development. Components other than H2O2 in honey that increase the activity
of antibacterials include phenolics, lysosomes, flavonoids, and other components
that are not discovered (Bernstein 2013). Increased osmolality (17% water, 83%
sugar) and reduced pH (3.6–3.7) enhances the function of antibacterial by preventing
bacterial multiplication and promoting cure. Although, there is a dire concern in
surface antibacterial agents usage in managing wound infections (Hussain 2018;
Molan 2011; Kateel et al. 2016).

3.2 The Role of Honey in the Wound Healing Process

Honey’s role in the wound healing process cannot be overemphasized (Fig. 3). They
are grouped under the following subheadings.

3.2.1 Cross-Contamination Prevention

The sticky nature of honey not only provides a wet injury domain and creates space
for the re-growth of skin cells throughout the injury, but also gives a protective
boundary that protects the patient by stopping cross-contamination (Manyi-Loh et al.
2011; Tan et al. 2009). Infections of the wound and subsequent colonization by
bacteria are caused by microorganisms derived from the inner skin of the patient,
flora of the respiratory and gastrointestinal tracts via interaction with outside envi-
ronmental surfaces, air, water which are contaminated, and dirty palms of hospital
practitioners can occur (Wilkins et al. 2012; Tan et al. 2009).

3.2.2 Stimulation of Tissue Growth

Tissue regrowth is imperative in process of managing injury. Honey causes the
development of fresh capillaries, the fibroblasts generation which is used in place of
connective tissue in the skin deeper layers, and synthesize collagen fibres that create
energy for repair (Okpala 2019; Rozaini et al. 2004). Furthermore, it triggers
regrowth of cells of the epithelium that create novel skin covers on the recovered
wounds, impedes the development of keloid and scarring, and eliminates the want
for skin grafts in large wounds (Maddock 2012; Kateel et al. 2016).

3.2.3 Self-degrading Debridement

Studies have reported that the process of wound healing, which creates the domain of
such wet injury provided by honey, enhances self-degrading debridement processes
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(Molan 2002, 2006; Wilkins et al. 2012). Lymph is often drawn from deeper tissues
due to the increased osmotic pressure as well as usual washing of bed of the injury
(Simon et al. 2009). In fact, the protease contained in the lymph contributes to
debridement role. Odours occur in injury which is dominated by anaerobic organ-
isms like Clostridium species and Bacteroides, and in rod-like bacilli like; Proteus
and Pseudomonas due to the metabolic properties of proteins. As a result, it produces
a bad odour chemicals like sulphur and ammonia substances in the final product
(Vallianou et al. 2014; Manyi-Loh et al. 2011). It is interesting to know that honey
gives bacteria a substituted sugar source and when processed, produces lactic acid.

Fig. 3 The mechanisms of honey in wound healing processes (Vallianou et al. 2014;
Samarghandian et al. 2017; Molan and Rhodes 2015). Firstly, due to its antibacterial activity, it
produces an environment that is free from infection which enhances healing of wounds. Further-
more, honey possesses a great acidity level that is bactericidal in nature. Secondly, honey that
promotes wound healing is its role in stimulating host cells to achieve healing. Honey triggers the
generation of cytokines by monocytes. Interestingly, honey enhances the growth of T and B
lymphocytes that help generate antibodies and enhance foreign cell phagocytosis
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3.2.4 Bioburden

Honey has been reported to have significant antibacterial action against myriad
pathogenic bacteria of wounds and biofilms (Vallianou et al. 2014; Mandal and
Mandal 2011; Garrett et al. 2008). Surprisingly, honey has been used to heal
refractory wounds and has been shown to infect a myriad of multidrug-resistant
organisms, like; vancomycin-resistant enterococci (VRE), MRSA, and multidrug-
resistant P. aeruginosa, which has been reported to be active in in vitro researches.
Research by Rendell et al. (2001) demonstrated that acidification of wounds has
been shown to promote healing because of the low pH that promotes the sum of O2

unburden from haemoglobin in the vessels. Apparently, acidification stops the
ammonia created by bacterial breakdown, in addition to lysozyme, hydrogen per-
oxide, and phenolic compounds, from harming body tissues (Williams et al. 2009;
Oyeleke et al. 2010).

3.2.5 Anti-inflammatory Effect

Honey has anti-inflammatory properties and has been shown in clinical and in vitro
studies of human burns (Manyi-Loh et al. 2011; Hixon et al. 2019; Adebolu 2005).
Prospective penalties of successfully dealing with swelling comprise quick drop of
ache, oedema, and exudate. In addition, scars of the hypertrophics are reduced by
evading long-term swelling that can lead to fibrosis (Manyi-Loh et al. 2011).
Decreasing swelling then may reduce exudate production and dressing exchanges
frequently, reducing dressing costs, control interval, and needless injury to the bed of
the injury and the sufferer (Molan and Rhodes 2015).

3.3 Aspects of Honey Properties.

The aspects of the healing properties of honey with their useful effects are summa-
rized in Table 1.

3.3.1 Antibacterial Action

Honey has exhibited diverse antibacterial activities on infected wounds (Ede et al.
2017). Various studies have found minimum inhibitory concentrations (MICs) of
honey in wide classes of pathogenic bacteria that contaminate injuries (Okpala 2019;
Ede et al. 2017; Gambo et al. 2018). The stage is often below 10%; honey’s
concentration is generally much lower than that existing beneath the injury. Reduced
susceptibility is often recorded on pathogenic fungi wounds with honey, with an
MIC of honey ranging from 10 to 50% (Gambo et al. 2018). Honey has shown to
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have a wide spectrum of antibacterial action and it halts both Gram-positive and
Gram-negative bacteria from proliferating, and also aerobic and anaerobic organisms
(Vallianou et al. 2014). Of specific choice to the professionals of injury management
is their efficacy to bacteria that shows wide antimicrobial resistance like VRE,
coagulase-negative Staphylococci, Pseudomonas, MRSA, Stenotrophomonas
maltophilia, and Acinetobacter baumannii (Song and Salcido 2011). Medical pro-
fessionals has shown interest in the outcomes of a prolonged concept “resistance
training” experiment with four bacteria that contaminated injury in which there was
definite perpetual reduction in honey’s vulnerability and mutants of the isolates that
shows resistant in honey were absent. The researchers conclude that as far as high
levels of this agent honey are clinically kept, the danger of the organisms that gains
resistance to this agent is minimized. Similar researches have reported that honey
fight organisms in a biofilm environment, and wound healing with antibiotics and
silver has proven ineffective (Garrett et al. 2008).

3.3.2 Anti-inflammatory Effect

Honey has long been used as an anti-inflammatory substance (Hussain 2018). Much
evidence that honey has actions against swelling is exhibited from a myriad of
studies. In a clinical point of view, many reports that this natural agent reduces
exudate and swelling, minimizes damaging and also possess sedative activity when
it is used to swollen burns and injuries (Khan et al. 2007; Nagane et al. 2004).
Straight indication of anti-inflammatory actions in the hospital setting possesses
biological and chemical components in the arrangement of reduced stages of lipid
peroxide and malondialdehyde in biopsy samples in histologically burned honey
clinical trials. A reduction in the amount of inflammatory cells presence has been
observed (Molan 2002). There are scientific observations that this agent possesses a

Table 1 Overview of the healing properties of honey with their useful effects

Property Attributed factors Role References

Antimicrobial Acidity, increased
osmolarity, H2O2, and
non-peroxide
components

Inhibitory and/or
microbicidal, pain
reduction,
immunostimulatory

Okpala (2019), Manyi-Loh
et al. (2011), Ede et al.
(2017), and Gambo et al.
(2018)

Antioxidant Phenolic acids,
flavonoids

Prevent formation of
free radicals

Molan (2011) and
Baltrusaityte et al. (2007)

Anti-
inflammation

White blood cell
(leucocytes)

Decreases inflamma-
tion, reduces scarring
in wounds

Molan and Rhodes (2015),
Hussain (2018), and Molan
(2011)

Immunological Macrophages,
leucocytes

Cytokine synthesis,
provides substrate for
glycolysis

Manyi-Loh et al. (2011) and
Tonks et al. (2007)

Malodour Volatile acids Reduces malodour in
wounds

MEDIHONEY®HCS
(2013) and Gethin (2011)
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primary anti-swelling property and not an advanced action due to the activity against
bacteria in the agent that eliminates the organisms that cause swelling is because of
different of the anti-swelling effects reported in studies that involve burns and injury
as the study population. In prototypes of animal origin, these aseptically generated
wounds were found to have little or no bacteria (Mandal and Mandal 2011; Hixon
et al. 2019). Honey’s anti-swelling activity also reduced the severity of mucositis in
head and neck radiotherapy, reduced the symptoms of dyspepsia, and in various
clinical trials that reduced the number of bleeding sites in the gingiva in testing its
use. It has been reported to treat gingivitis (Molan 2011; Subrahmanyam et al. 2001).
It has also been shown to relieve various ophthalmological inflammatory conditions,
relieve pain in unhealed lower extremity sores, and also in kids who were operated of
tonsils. Findings retrieved from studies that involve animal origin also show
anti-swelling effect: Triggered colitis chemically in mice is reduced and before
administration of the natural agent to mice is associated with subsequent gastric
inflammation due to ethanol administration prevented the occurrence (Molan 2011).
Five hundred (500) microlitres of 50% injection of honey into the mice’s paws in
60 min before lipopolysaccharide jab resulted in reduced inflammation, less reaction
to discomfort, as well as reduced levels of prostaglandin E2 and nitric oxide (Kassim
et al. 2010).

In a burn clinical trial in which silver sulfadiazine was related to this natural
agent, honey reported a reduced stages of inflammatory markers, reduced
malondialdehyde stages, and small numbers of swelling cells are shown in biopsy
specimens (Molan and Rhodes 2015). Several findings of anti-swelling action in
scientific burns and injuries with little or no bacteria present indicate that there are
little or no bacteria due to the aseptically created wounds secondary effects of
honey’s antibacterial activity in eliminating inflammatory bacteria (Ede et al.
2017; Molan and Rhodes 2015; Bilsel et al. 2002; Prakash et al. 2008). The actions
of anti-swelling by honey were also reported in hospital-based studies to minimize
the extent of neck and head mucositis radiation therapy and to irritation of the
gingiva therapy. The anti-swelling property of honey is demonstrated in hospital-
based studies to cure dyspepsia and has been shown to be excellent in alleviating
different swelling situations in ophthalmology. This agent is also shown to reduce
ache that comes with the operation of the tonsils in kids as well as for uncured lower
limb ulcers (Molan and Rhodes 2015). In Laboratory investigations with mice, this
agent showed a key role in minimizing peritoneal bonds after caecum operation,
which usefulness as a therapeutic agent for colitis that is triggered chemically and
hinders irritation of the gastrointestinal tract (GIT), which is triggered by doses of
alcohol. Injecting 50% honey inside mice paws before inoculating injecting
lipopolysugars lead to reduced inflammation, decreased feeling of discomfort, and
reduced levels of markers of inflammations (Kassim et al. 2010). Research that
involves carrageenan-triggered oedema in mice paw, pre-treatment with honey
resulted in a minimized dose-dependent oedema and clampdown of nitric oxide
synthase induced enzyme, IL-6, COX-2, and tumour necrosis factor-alpha (TNF-α)
gene expression. Anti-inflammatory activity of honey is due to the current herbal
phenolic compounds. Although, there was no relationship between the levels of
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actions of anti-swelling seen in the phenolic compounds that are observed and in
honey (Kassim et al. 2010). The phenolic component may be involved because it is a
group of compounds that exhibits inflammatory cytokine TNF-α synthesis stoppage,
but in recent times, it is an added main honey’s non-phenolic constituent. Although,
a unique constituent of anti-swelling was found, it is rather a protein that functions
differently (Kassim et al. 2010). This honeybee-derived protein, aparbumin-1, has
been found as an element in honey that halts macrophage phagocytosis, which is the
initial stage in a series of swelling responses to necrotic soft tissue as well as
microorganisms. Studies confirmed methylglyoxal, which is a compound seen
only in large amounts in honey, acts in response with aparbumin-1 to saccharify.
Glycated aparbumin-1 is a considerable tougher stopper of phagocytosis than the
unchanged aparbumin-1 seen in honey. Solution of about 0.5% of honey resulted in
the stoppage of phagocytosis of about 67% (Hussein et al. 2012).

3.3.3 Antioxidant Activity

Since ROS acts as a messenger and amplifies the feedback of the inflammatory
response, honey’s antioxidant activity may also contribute to its anti-inflammatory
effect, a process that is blocked by phenolic antioxidants (Molan 2011). The use of
antioxidants on wounds was shown to minimize swelling, and the key role of honey
in making burn healing better was reported to be due to its antioxidant function
(Molan 2011; Subrahmanyam et al. 2003). Phenolics and methyl syringate are
abundant in honey and have been proven as intoxicating superoxide scavengers,
which might be probably used to eliminate the key ROS messengers that amplify
swelling (Inoue et al. 2005).

3.3.4 Immune Stimulating Effect

The elimination of honey’s antibacterial infection can be further enhanced by its
immunostimulatory effect (Molan and Rhodes 2015), and thus, the anti-
inflammatory effect of honey always weakens it to some extent. If in any way
immune reaction triggers back the cure of injuries by encouraging control contam-
ination, it certainly contributes to curing via motivation and development of restored
tissue (Molan and Rhodes 2015; Molan 2011). Frequent hospital-based findings
show that a fast cure is obtained if injuries are healed with honey, and related reports
were found in different studies of animal models (Molan 2011; Majtan et al. 2010;
Majtan 2014). These findings may be considered the result of honey-suppressing
infections. Thus, in laboratory observations with skin burn ulcer on pigs and mice
under operations situations, the injuries were found devoid of bacterial cells and the
application of honey further enhanced healing rate (Majtan et al. 2010; Majtan
2014).

In vitro studies have demonstrated that honey’s immunostimulatory activity on
white blood cells results in cytokines synthesis that leads to cell trigger and
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development (Molan and Rhodes 2015). At a 1% concentration of honey, it was
reported to trigger monocyte discharge of TNF-α. However, the triggering of
swelling is usually reflected as detrimental, the anti-swelling effects of honey
modulate this swelling response (Molan 2006; Molan and Rhodes 2015). Thus,
when 1% honey was applied to swollen macrophages, which are generated by
activation of monocytes by opsonized zymosan and lipopolysaccharide, TNF-α
release was not increased and honey formed in respiratory bursts. It suppressed the
formation of reactive oxygen intermediates (Tonks et al. 2003). In a related devel-
opment, at 1% concentration of honey, TNF-α from monocytes, a cytokine known to
play a role in tissues in vivo, interleukin-1 beta (IL-1β), and found to stimulate IL-6
release repair (Majtan et al. 2010). Honey has also shown to trigger angiogenesis
in vitro in the mice aortic ring test, with honey concentrations up to approximately
0.2% (Rossiter et al. 2010).

3.3.5 Debriding Action

Debridement with honey was reported in some hospital-based studies that involve
burns (Molan 2011; Esmon 2004). One such study reported that honey has the ability
to alter eschar development, but in situations where silver sulfadiazine was used,
eschar was formed (Thomson 2011). Several researches that reported honey to be
potent in debridement of injuries has been found in repository of hospital-based
findings on the efficacy of honey as an agent of debridement (Molan 2009, 2011).
Studies that are carried out in hospital settings also report honey as an excellent
unusual choice for operational debridement for genital necrotizing fasciitis manage-
ment (Molan 2011). Clinical trials comparing honey and hydrogels for wound
debridement showed no statistically significant differences, but found that honey
gave better debridement (Gethin and Cowman 2009). Outcomes when related to
those online from different researches, and in the loss of wounds of the venous leg,
honey was retarded than larval treatment, but greater to some cadexomer iodine,
hydrogels, enzymes, and hydrocolloids. It was concluded that in experiments with
adjacent rabbits on experimental wounds, honey-soaked gauze treated wounds were
kept clean and saline-soaked gauze treated wounds resulted in concentrated dark
scabs (Molan 2011). A report backed the insinuations that honey leads to wound
debridement (Molan 2011). It has been postulated that honey enhances plasmin
action, an enzyme that particularly degrades fibrin but is incapable of degrading
collagen matrix required for tissue amendment. Treating cultures of inflamed mac-
rophages can increase plasmin activity because honey skyrocketed plasmin action in
the liquid and honey halt macrophage synthesis of plasminogen activator inhibitor
(PAI) (Molan 2011; Esmon 2004). Plasminogen activator inhibitors usually block
the transformation of plasminogen, the enzymatically sedentary originator of plas-
min, to energize plasmin. Since swelling enhances PAI synthesis, it is expected that
honey will reduce PAI production, as honey’s anti-inflammatory action has been
established (Esmon 2004).
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3.3.6 Malodour Activity

Malodour of wounds are a result of combined products of anaerobic organisms,
especially bacteria, e.g. Bacteroides, facultative anaerobes (P. aeruginosa), and also
volatile fatty acids synthesized from dead tissue (Gethin and Cowman 2009). Honey
possesses myriad bactericidal, damaging, and halting roles on bacterial cells (Molan
2006) and also makes use of its sugar to minimize volatile acids which possess the
ability to minimize malodour of wounds (Pieper 2009), which is a sure clinical gain
for patients (Gethin and Cowman 2009; Gethin 2011). A study by Gethin and
Cowman (Gethin and Cowman 2005) found a case series of eight participants that
involves patients aged 22–82 years old and an array of chronic and acute wounds
which were around for about 18 months. All the injury except ulcer of mixed causal
agents and rheumatoid was healed (94 and 54%, respectively) after a month of using
honey as a therapy. Malodour of the wound occurs in three participants and
pre-therapy with honey removed the odour fully.

3.3.7 Anti-pain Activity

Pain reduction is a significant part of quick wound healing (Wilkins et al. 2012).
Reports by observed information show that treatment of wet injury with honey is
able to increase the healing rate and decrease pain that is linked with injuries when
related to injuries that are not wet (Hussain 2018). Different clinical results that were
reported with respect to honey usage have healing properties, anti-pain activity
(Okpala 2019; Pieper 2009), and scar minimizing are also reported (Dunford et al.
2000; Molan 2001). Antibacterial activity of honey negates wound infection and
thereby retards recurring inflammation that is caused by infection. The double role
gives a strong anti-pain effect and also enhances healing. Worthy to note is that
honey also gives a domain that is wet for the tissues of the wound and creates a
physical barrier between tissue and bandages. By guiding the strict use of dressings
to bed of wounds, bandage changes lead to less pain and tissue destruction (Molan
2002). By meticulously evaluating the injury, the initial aim of healing can be
investigated and precise honey application can be suggested.

3.4 Mechanism of Action of Honey

Honey’s effectiveness largely relates to its therapeutic characteristics like antioxi-
dant, anti-swelling, and antimicrobial actions among others (Samarghandian et al.
2017; Hixon et al. 2019). Furthermore, it strengthens the body’s defence system and
triggers the development of cells. Most of the features that make honey a great
treatment agent have been described briefly above. Scientists have discussed the
ingredients in honey that help enhance the antimicrobial activity (Gambo et al.
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2018). The central ideas are low acidity, osmotic action, and H2O2 action. This
natural agent is known for its composition of glucose and partly water, and these
sugars and water molecules interact strongly to keep other microorganisms largely
free of water molecules. Unrestricted H2O is measured as water activity (aw), which
is as low as 0.562–0.62 for this agent. Bacteria are suppressed in such a toxic
domain. Although, the outcomes of researches that relates the efficacy of nature
with the effects of adulterated honey, which has the same concentration of sugar and
water, show that honey has additional elements that can inhibit bacteria (Vallianou
et al. 2014). The low acidity of honey is due to the existence of gluconolactone that is
synthesized due to the catalytic activity of maturing sap (Molan 2006). Most times,
honey’s reduced pH prevents a myriad of organisms from breeding at an optimal pH
range. Thus, in the experimental environment, the culture liquid has a deactivating
activity on the natural agent and prevents its stoppage. Hydrogen peroxide is
synthesized by glucose oxidase (located in the hypopharynx of the honey bee)
and, when diluted, its action is enhanced 2500–50,000 times. The level of this
compound that is found in honey can be evaluated by the quantity of catalase and
glucose oxidase (Mandal and Mandal 2011). At increased concentrations, this
compound could lead to the destruction of proteins and cells in tissues by producing
oxygen radicals. It is interesting to know that some dim honey positively suppressed
organisms, notwithstanding the addition of catalase, which justified that extra
non-peroxide features were effective (Bernstein 2013; Mittal et al. 2012). Honey
displays non-peroxide antibacterial action and its major factors which destroy
microbes have not yet been determined. However, it is believed that this ingredient
comes from the unique floral source from which honey originated. Honey is labelled
as “non-peroxide”when it exhibits antibacterial activity, even though it is exposed to
catalase, which destroys hydrogen peroxide (Bittmann et al. 2010). Experiments by
Snow and Manley-Harris (Snow and Harris 2004) relate the effects of a tenfold
surplus of catalase with the usual quantity of catalase that is used to terminate H2O2.
There was an insignificant association among H2O2 and non-peroxide, demonstrat-
ing that the non-peroxide action of the antibacterial agent was not because of the
remaining H2O2 that honey possesses (Snow and Harris 2004). Although, the
therapeutic mechanism of honey is not still known, nevertheless it is thought to be
derived from a wide array of honey phytochemicals. Discovery was done recently
which shows that H2O2 action only does not result to DNA strand scission, slightly it
is the link attraction among H2O2 and the phenolic constituents existing in honey
(Bernstein 2013). Further experiments have shown that elimination of H2O2 by
catalase prevents bacterial DNA breakdown, but polyphenols pull out from honey
are mediated by the Fenton reaction in the company of Cu (II) and H2O2. The
plasmid DNA was fragmented to small quantity, honey polyphenols showed
pro-oxidant action that damages DNA (Bernstein 2013). Therefore, oxidative stress
induced by phenol/hydrogen peroxide describes the tool of this agent’s antibacterial
action and DNA destroying effects (Jaganathan and Mandal 2009). Inflammation is a
key stage in treating injuries, and this natural agent has been shown to trigger
intracellular monocytes to discharge the cellular messengers’ cytokines TNF-a,
1, and IL-6 that mediate immune responses. Furthermore, honey encourages the
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synthesis of T, B, and neutrophils that help immunity. In chronic wounds, sustained
swelling could stop restoration and leads to destruction (Mittal et al. 2012). In
extreme swelling, white blood cells discharge prostaglandins, causing ache. Other
biochemical messengers encourage inflammation, restricting blood movement via
capillaries and starving the damaged tissue for the nutrients and O2 it needs. Species
of reactive O2 are generated and can wear away body matters. Unnecessary fibro-
blast action results in scarring and fibrosis. Because honey has an enhanced anti-
swelling effect, applying it on a wound reduces the effects of white blood cells,
reducing ache, scarring, and injury exudate (Mandal and Mandal 2011). Anti-
swelling effect of honey is related to its phenolic composition, the findings of
experiments conducted on rat paw swelling show that extracts of honey methanol
and ethyl acetate reduce inflammatory markers and signs. Through suppression of
swelling, reduction of ache, and minimization of mediators of swelling examined
(PGE2 and NO) (Clark and Adcock 2018). The presence of polyphenols and
flavonoids in honey enhances its antioxidant action, it is known as honey’s capacity
to hunt free radicals. These free radicals tend to be detrimental to human system due
to the fact that they create havoc to the body’s proteins and DNA and lead to the
destruction of cells. Honey’s antioxidant action is also pointed towards its capacity
to halt the early development of free radicals rather than its capacity to hunt free
radicals. Swelling is the body’s normal reaction to contamination and wound and
produces superoxide. Superoxide is changed to H2O2, producing highly reactive
peroxide radicals (Brudzynski and Lannigan 2012). Peroxide radicals are produced
due to the Fenton reaction and are catalyzed by metal ions (Fe3+ and Cu2+). The
presence of polyphenols and flavonoids in honey appropriate these metal ions in
composite with biological particles, and this process has made honey a very strong
antioxidant. Polyphenols hinder severe prolonged diseases like carcinoma, diabetes,
and cardiovascular disease which result due from oxidative trauma (Brudzynski et al.
2012). Specifically, polyphenols in honey have been shown to inhibit oxidative
degradation reactions. Inoue et al. (2005) evaluated the antioxidant activity of
different honey using a radical of 1, 1-diphenyl-2-picrylhydroazyl (DPPH) and
(methyl (CH3), hydroxyl (OH), and superoxide anion (O2-)) hunting system.
Honey of the buckwheat type showed the maximum hunting action against radicals
of hydroxyl and DPPH, and Manuka honey hunts especially for superoxide anion
radicals because of its increased methyl silicate amount. Apparently, the honey
polyphenols are strongly associated with the antibacterial, antioxidant, and anti-
swelling activity of honey (Inoue et al. 2005).

4 Honey and Its Role on Wounds

In the human system, honey is able to minimize oxidative reactions, considering the
important antioxidant components characterized by its ability to feed on free radicals
(Molan 2011). Furthermore, flavonoids and other polyphenols in honey are capable
to impound ions of metals in the form of complexes in order to halt the free radicals
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formation (Baltrusaityte et al. 2007). Hence, honey would exert its antioxidant
properties to stop free radicals formation triggered by ions of metals, for example
Fe3+ and Cu2+. Honey can as well trigger body immune system to fight infection. To
be more specific, it encourages the multiplication of T and β lymphocytes in cells as
well phage-producing H2O2, which is a major component of their bacteria
destroying activity (Molan and Rhodes 2015; Molan 2011). Also, the mechanisms
of action of honey include antimicrobial, antioxidant, and peroxide generator, which
enhance its ability of inducing pro-inflammatory cytokine production, and retards
biofilm formation, halt progression of bacterial cell cycle, together with its capacity
to retard wound pH and modulate pain perception (Samarghandian et al. 2017;
Hussain 2018; Bowler et al. 2011; Wolcott et al. 2008). Regardless of wounds
severity, honey serves promising to occupy a convincing position especially in the
processes of treating injury. Ingle et al. (2006) carried out a study that is randomly
controlled on wound healing with honey. Honey among ancient wound treatment
substances was shown to create moist healing environs, particularly harmless to
(human) body (internal/external) tissues yet stimulating both healing processes and
epithelialization. Increasingly gaining acceptance as mainline wound care, there still
remains some concerns about honey’s potency, stability, and contamination from
natural sources, all of which have brought about some increases in products’
licensing, regulation, and standardization (Ingle et al. 2006). How honey gets
applied to a wound, and how it gets supplemented in wound dressing, is believed
to influence its healing efficacy (Molan 2006, 2011). This is because wound exu-
dates can either activate or dilute its healing properties. Indeed, advances continue to
increase about honey’s wound healing properties, how it is used, its product avail-
ability, and development around the globe. Yaghoobi et al. (2008) reviewed the
evidence of using honey scientifically in treating injuries as an agent of anti-
swelling, antioxidant, antibacterial, and against viruses. In its traditional perspec-
tive/sense, honey was reported to remain very promising in treating burn, wounds
that are infected, and those that resist cure as well as boils, ulcers, pilonidal sinus, as
well as diabetic foot ulcers (DFUs) (Yaghoobi et al. 2008). Honey was also shown to
be efficacious in treating venous ulcers and malignant wounds as it would improve
wound hygiene, especially when it is used in coating the dressing (Bernstein 2013).
Oryan et al. (Oryan and Zaker 1998) researched both meta-analysis and narrative
studies of biological features and therapeutics role of honey in curing injuries. Their
study revealed that good quantities of lipids, amino acids, carbohydrates, proteins,
minerals, and vitamins in honey help in wound healing, as it provides minimum
trauma during redressing (Oryan and Zaker 1998). Also, medicinal values and
wound-healing properties can differ across honey types and can improve the results
of curing injuries by minimizing unnecessary scar development. Honey not only
helps in both limiting and preventing bacterial infection, but also, reduces the
bioburden of (emerging/existing) wound(s) (Vallianou et al. 2014). This function
is derived from its biochemical properties associated with peroxide generation via
intrinsic glucose oxidase activity. Honey possesses both hydroscopic and mechano-
physical properties, by hampering biofilm development to limit the degree/extent of
wound oedema (Hussain 2018; Vandamme et al. 2013). Besides, honey’s wound
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healing potential prevails via mechanisms of antimicrobial action, immunologic
modulation, and physiological mediation (Molan and Rhodes 2015). Primarily, an
injury must have occurred before the processes of wound hypoxis can then start to
take place, which subsequently gets followed by bacterial colonization specifically
around the wound itself. After honey is applied, both clinical and (proposed)
mechanisms can take place, through inflammatory, proliferations, and remodelling
phases, after which the wound healing it would subsequently target to become
accomplished (Clark and Adcock 2018; Maddock 2012). Besides, the clinical uses
of honey would cut across acute, chronic, and mixed acute/chronic wounds. Majtan
(2011) found several honey models and their biological roles, which are able to
induce wound-healing capacities. The immunomodulatory action of honey on
immune/cutaneous cells takes place during the process of wound healing (Majtan
2014). Upon its application to any given wound, honey basically begins to either
inspire or hinder the discharge of some factors as MMP-9, cytokines, and Reactive
Oxygen Species (ROS), from safe and cutaneous cells and this is very much
dependent on the condition of wound (Majtan 2014). Moreover, honey can equally
induce emitting of proinflammatory cytokines and MMP-9, which is agreed to take
place during the inflammatory and proliferative wound-healing phases. By control-
ling inflammation of wounds, honey has shown great promise to bring an end to any
of such prolonged inflammation of wounds, in the view to reduce the raised levels of
proinflammatory cytokines, MMP-9, as well as ROS (Molan and Rhodes 2015;
Majtan 2014). Honey’s wound healing activity/potential involves a great deal of
processes, from sanitizing the surrounding of wound location and indeed, the
capacity to remain very efficacious in both healing and repair processes, so as to
eventually reduce the scar formation. More promisingly, honey depicts great poten-
tial to help heal wounds that may seem medically complex to solve
(MEDIHONEY®HCS 2013; Hixon et al. 2019).

5 Empirical Studies of Wound Healing using Honey

Evidence of using honey to heal wounds has been reported by several researchers
(Okpala 2019; Clark and Adcock 2018; Molan 2011). Positive honey reports of
wound healing were found in randomized controlled trials (RCTs) and clinical trials
(Molan 2006, 2011; Malik et al. 2010). The profits of using honey to treat wounds
have also been shown in several researches with multiple wounds, allowing honey to
be compared with other treatments (Motallebnejad et al. 2008; Rashad et al. 2009).
Researches that are clinically carried out include burns that are either partially thick
or surface, surgical injuries that are infected, prolonged ulceration of the leg purulent
myositis pus, and donor location from split-thickness skin grafts, a type of necro-
tizing fasciitis. Fournier’s gangrene, and a catheter performed at the exit site of the
central vein (Malik et al. 2010; Baghel et al. 2009; Sami et al. 2011). Evidence that
honey is not harmful is found in the lack of hostile properties shown in quite a
number of studies (Molan 2011; Sami et al. 2011). Patients are often reported to have
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severe pain in honey, when the wound is swollen and also because of the acidity
content in honey (Molan 2011). Nerve endings of the nociceptor that notice sourness
are sensitized by swelling. This is a scientific evaluation that honey susceptibility
reduces in times when the amount of honey required to enable honey’s anti-
inflammatory action is retained in the wound bed explain inflammation (Vandamme
et al. 2013). The justification for the honey’s act to enhance destruction of wound
infections and to promote recovery is obviously justified nevertheless poorly
acknowledged due to the lack of advertising (Bernstein 2013; Molan 2011). What
little is known about honey by wound care professionals is another bioactivity that is
also associated with encouraging the recovery of injury: anti-swelling role, antiox-
idant role, stimulating self-degrading debridement, encouraging cell development
for the healing of tissues and osmosis (Okpala 2019; Hussain 2018).

The study compared the activities of silver sulfadiazine and honey in the burns
therapy (Aziz and Abdul Rasool Hassan 2017; Jull et al. 2015; Vandamme et al.
2013). They found that the thorough cure period for surface thick injuries had a usual
healing time reduction of 5 days, indicating that honey was highly preferred. The
percentage of wounds that were treated and the amount of injuries contaminated that
undergone sterilization were as well considerably higher for honey related to less
harmful silver sulfadiazine. Research by Jull et al. (2015) reported a poor value
indication of a difference between orthodox cure and honey therapy of mild severe
injuries. The average variance in the period of treatment between these two methods
was statistically insignificant. Two studies on the time-to-heal outcome of venous
leg ulcers treated with honey impregnation and normal care or hydrogel therapy
were uncertain if honey enhances wound cure (Jull et al. 2015). Examination of
every study showed harsh outcomes (whether treatment is in-line with therapy or
without therapy) revealed considerably further trials stated among a set of honey,
such as worsening discomfort and ulcers. There was uncertainty if this therapeutic
agent could minimize the contamination rate of leg ulcers. Research by Kateel et al.
(2016) posited that surface application of honey was greater in action than superior
to orthodox therapeutic methods in the treatment of DFUs in three of the five studies,
which are randomly controlled, but two of the five RCTs cured of two treatments and
there was no difference. No adverse events were also reported. Jull et al. (2015)
reported that there was no statistically significant association between honey cure
and saline gauze after 4 months or the healing of undesirable wound pads after a
month. There was inadequate proof to comment on the activity of honey on the
infection of diabetic foot ulcers. One study likewise observed honey’s activity on
DFUs in RCTs of four persons. The report showed that the association is insignif-
icant statistically in cure rates of regulated sets and honey (Tian et al. 2014).
Vandamme et al. (2013) study did not find enough backup for anti-inflammatory
effects, deodorant effects, debridement effects, or injury discomfort and found an
insignificant good antibacterial activity that points honey as favourable. Studies have
shown that it is uncertain if honey improved recovery in a prolonged injury of varied
populace when compared to regular povidone-iodine and film dressing (Jull et al.
2015). The honey-treated wounds healed an average of 13 days faster than the silver
sulfadiazine-treated wounds. Harsh outcomes like bulimia, irritation, contractures,
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and hypertrophic scarring were found in 4% of honey groups when related to the
28% of silver population (Jull et al. 2008b). The research determined the
antibacterial action of honey from the source and adulterated ones on the develop-
ment and biofilm establishment of Streptococcus mutans. The honey from the source
showed reduced growth and larger zones of inhibition than the adulterated wells
(Nassar et al. 2011). Various researches have reported that honey is active in limiting
oral pathogens. S. mutans is the major bacterium that causes tooth decay, including
other bacteria that produce microbial communities on the tooth surface, called tooth
biofilms. Living organisms synthesize lactic acid that decalcifies teeth (Nassar et al.
2011). At 100% concentration, honey shows excellent outcomes counter to
P. aeruginosa, S. aureus, and other organisms that is found in contaminated core
canals. Recent researches by Gambo et al. (2018) and Ede et al. (2017) have found
the antibacterial activity of honey showed antibacterial activity against a test bacte-
rium in which S. aureus was more active than P. aeruginosa (Gambo et al. 2018),
while, P. aeruginosa has the highest MIC (50 mg/ml) (Ede et al. 2017). They both
conclude that honey activity is successful in inhibiting pathogenic bacterial isolates
and should be considered as a therapeutic agent for wound infections (Ede et al.
2017; Gambo et al. 2018). Recent studies reported medical-grade honey (MDH) as
having pro-healing and antimicrobial characteristics, especially for paediatric severe
wounds (Smaropoulos and Cremers 2020). Hosseini et al. (2020) reported that honey
accelerates wound healing and has a promoting effect on wounds more than any
other natural product. In a 2020 study by Frydman et al. (2020), Manuka Honey
Microneedles (MHM) have been proven to possess marvellous bactericidal effect
especially against MRSA at concentrations below 10%, vacuum-treated honey was
the most bactericidal, showing as high as bacterial concentrations reported to kill
8 � 107 CFU/ml. Treatment of wounds assays showed that at a concentration of
0.1%, cooked honey reported an incomplete closure of the wound, whereas vacuum-
treated honey tended to have closure of wound that is faster (Frydman et al. 2020).

6 Conclusion

This chapter briefly described the use of honey as a potential wound healing agent.
Since ancient times, honey has been used as an important nutritional medicine. It has
antibacterial, anti-inflammatory, immune-stimulating, antioxidant, and malodorous
properties that may help combat infectious agents and wound healing. With the
advent of antibiotics, pharmaceutical companies have focused on the development of
potentially harmful and exorbitant antibiotics. In the new era, antimicrobial resis-
tance has resulted in researchers to look at the efficacy of old therapies. They are
currently exploring honey’s mechanism of action, an appreciable number of studies
have succeeded in determining the biochemical reasons for their activity. Honey’s
effectiveness as a wound healing tool has been clearly shown, thus, the once
abolished solution has recently developed general interest as an established thera-
peutic solution.
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7 Future Prospects for Using Honey in Wound Healing

The future outlook of honey and its use in wound healing revolves around the
following:

1. Clinical trials should focus on discovering new antibacterial properties of honey.
This provides a variety of treatment options for different infectious agents.

2. An approach that is systematic is imperative in the assessment and identification
of injury infections which will help clinicians treat patients with wound
infections.

3. Honey researchers are now investigating into honey’s mechanism of action, and
most have recorded substantial breakthroughs in the validation of the biochemical
explanations towards this regard.

4. Researchers have started to demonstrate the abundant composition of phenols
which is in honey that halts malignant cell growth and gives antitumour function
(Jaganathan and Mandal 2009).
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Role of Medicinal Plants in Wound Healing:
An Ethnopharmacological Approach

Foram Patel, A. Doshi Ankita, and Darshee Baxi

1 Introduction

Wound is defined as the anatomical rupture of the tissue that can be due to chemical,
microbial, thermal, physical, or immunological changes (Ikobi et al. 2012). Resto-
ration of the structural and functional integrity of the wound is a dynamic process
involving a cascade of various phases like inflammation process, tissue formation,
and tissue remodeling. The wound healing capacity may vary based on the wound
environment and the individual’s health status (Kerstein 1997). As per the retro-
spective survey carried out by Sen in 2019�8.2 million people have wounds with or
without infections that results in $28.1 billion to $96.8 billion Medicare cost.
Treatment cost of surgical wounds, diabetic foot ulcers, and other chronic wounds
with physiological complications like aging, metabolic disorders, obesity imposes
huge challenges at economic, clinical, and social front. Economically, the annual
usage of wound care products is expected to reach $15–22 billion by 2024. Looking
to the increasing number of cases and economic burden, “WOUND” is incorporated
as one of the categories by The National Institutes of Health’s (NIH) Research
Portfolio Online Reporting Tool (RePORT) (Sen 2019).

There are various agents available for restoring and healing the wound. To name a
few, antibiotics and antiseptics, desloughing agents, chemical debridement (hydro-
gen peroxide, Eusol), collagenase ointment, wound healing promoters, etc. (Raina
et al. 2008). However, owing to the higher treatment expenses, side effects, and drug
resistance, public attention is moved towards utilization of the ethnobotanical
knowledge as primary healthcare to address their healthcare needs and concerns
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(Robinson and Zhang 2011). As per the World Health Organization (WHO),
approximately 70–80% of the world’s populations depend on nonconventional
medicines that are mainly of herbal origin for healthcare (Stephen et al. 2014).
The most ancient and traditional medicinal system of India, “THE VEDIC MEDI-
CINE,” attributes to a holistic approach to health and personalized medicine
(Semwal et al. 2015).

This chapter aims to discuss various traditional plants used for the treatment and
management of different types of wounds.

2 Types of Wound and Pathophysiology

Owing to the increasing complexities of wound repair, choosing appropriate diag-
nosis and to know about the related risk, classifying various types of the wound is
very imperative (Devaney and Rowell 2004; Irfan-Maqsood 2018). Wounds that
have been caused by burn usually classified based on its cause, colour, location,
etiology, depth of injury, degree of contamination, wound healing duration, etc.
(Baranoski and Ayello 2008; Chard 2008; Gomez and Cancio 2007; Tiwari 2012).
Cutaneous wounds are formed due to some external factors like accidental injuries
and internal factors like prolonged diseased conditions, e.g., diabetes. Wounds are
basically classified as chronic wounds and acute wounds, depending on their healing
period.

Chronic Wound Due to aging, obesity, diabetes, and cardiovascular diseases, rate
of the chronic wounds is expected to rise in the future (Powers et al. 2016). This type
of wound does not follow timely and orderly healing process (Mustoe 2004; Moreo
2005). Such wounds are categorized into (1) venous/vascular ulcers: It is very
common type of wound and more prevalent in legs (Nelson et al. 2006; Jones and
Nelson 2007). The major events consist of activation of polymorphonuclear cells
(PMN), endothelial cells, platelet aggregation, and internal edema (Brem et al.
2004). (2) Diabetic ulcers: Majorly the small wound injuries in the diabetic patient
remain unnoticed for longer period of time owing to compromised neurological
actions. Additionally, partially functional immune system will not allow the speedy
recovery of the injury that leads to diabetic ulcers (Mustoe 2004; Moreo 2005).
(3) Pressure ulcers: Paralytic patients are most prone to such conditions due to the
immobility of the body. The ratio of the blood pressure, the blood capillaries, and
blood flow disturbs markedly. (4) Ischemic wounds: In such wounds, the blood
supply gets restricted to the injured part that results in less or no supply of oxygen
and glucose, and hence the metabolism and repair process get either slow or halted
(Xue et al. 2009). Apart from all these conditions, microbial colonization at wound
cause inflammation in the chronic condition wherein the proteinase-induced tissue
degradation caused due to anaerobic condition lead to the severity of the chronic
wound (Darenfed et al. 1999).

178 F. Patel et al.



Acute Wound It is defined as the type of wound caused by an external injury like
trauma or surgery. Such wounds heal in stipulated time and order as it follows an
accurate balance of generation and degradation of cells and extracellular matrix
(Bowler 2002). Types of acute injuries are briefly described as follows; superficial
wounds that may occur due to puncturing of the skin by nails or knives. Scrapes that
occurs due to rubbing of skin with some rough surfaces. Avulsions or Contusions are
produced by pulling any body part or forceful strike. Crush or cut occurs when
person has been injured with some sharp instrument like a knife or when some heavy
object result in crushing of the tissue. Childbirth is an example of the wound known
as lacerations wherein tremendous force is required in order to tear the tissues.
Velocity wounds are caused by gunshots or ballistic trauma where high-speed
objects enter the body, injuring the tissue integrity (Muhammad et al. 2016).

3 Mechanism of Wound Healing

Compromised wound healing leads to the poor quality of life that results in less
active lifestyle (Hopman et al. 2009; Edwards et al. 2013). Chronic wounds are
characterized by a longer wound healing period with prolonged or halted prolifer-
ation phase. The USA claims approximately 25 billion dollars on wound manage-
ment annually (Sen et al. 2011). Wound healing is a crucial physiological
collaborative process that depends on the critical interplay between cellular and
biochemical processes (Shaw and Rognoni 2020). The normal wound healing
process is basically divided into four steps, i.e., hemostasis, inflammation, prolifer-
ation and repair, and lastly remodeling (Reinke and Sorg 2012; Morton and Phillips
2016) (Fig. 1). Any disturbances in these cascadual events lead to the formation of
chronic ulcers and/or excessive scarring (Landén et al. 2016).The major steps of the
wound healing process are as follow;

Hemostasis This phase of the repair begins within minutes to hours of injury
(Queen et al. 2004). The very first response to the injury is the constriction of the
blood vessels, but the spasm relaxes soon. In order to seal the blood vessel, the army
of the platelet reaches to the wound and starts secreting vasoconstrictors, i.e.,
serotonin along with initialization of the blood clotting events (Reinke and Sorg
2012). In ATP dependent fashion, platelet adheres to Type I collagen for forming the
hemostatic plug and also activate proteins like fibronectin, vitronectin, and
thrombospondins which collectively aid for migration of keratinocyte, fibroblasts,
and other immune cells (Balaji et al. 2015). Eventually, platelet degranulation
stimulates the release of several immune-modulators like IL-1α, IL-1β, IL-6, IF-γ
and tumor necrosis factor (TNF)-α to activate the complement system that in turn
releases histamine, which causes capillary dilation. This event allows the switching
of the hemostasis phase to the inflammation phase by accelerating the migration of
immune cells to the wound site (Ellis et al. 2018).
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Inflammation The inflammatory stage of the wound healing represents initially by
erythema, swelling, and warmth. This phase generally lasts for 3–4 days. However,
the events greatly overlay with phase one. The events of this phase are very tightly
regulated by the release of various factors by timely cellular communication. Briefly,
the inflammatory phase consists of the following events. This phase facilitates
infiltration of neutrophils and monocyte to the injury site, wherein they repair tissue
and engulf foreign organisms (Bianchi and Manfredi 2009). The broken fibrin gets
digested by fibrinogen. The key regulators like TNF-α, IL-1β, IL-6, CXCL8,
CXCL2, and monocyte chemo-attractant protein-1 (MCP-1) level increases at
greater extent in order to stimulate angiogenesis, boosting keratinocyte and fibro-
blast levels and also aid in adhesion of keratinocytes to dermal layer (Theilgaard-
Mönch et al. 2004). Macrophage secretes many forms of the matrix metalloproteases
(MMPs) that helps to remove dead tissues (Field and Kerstein 1994).

Proliferation and Repair Onset of the proliferation phase will occur on day 4 of
the injury, and it usually last till 21 days. This phase is characterized by angiogen-
esis, collagen deposition, tissue granulation, and re-epithelializing of the wound
surface. Briefly, Fibroblast is the main player of tissue granulation along with type
III collagen. The re-establishment of the vascular channels, i.e., angiogenesis is
carried out by pericyte cells by regenerating the outer lining of the endothelial
cells. The epithelialization is initiated by the proliferation and migration of the
keratinocytes from the wound edge to the center by migration of the epithelial
stem cells. Keratinocytes, macrophage, platelets are known to secrete epidermal
growth factor (EGF), keratinocyte growth factor (KGF), and transforming growth
factor-α (TGF-α) that may help promoting re-epithelialization (Iorio et al. 2015).

Wound Remodeling Remodeling usually commences around 2 weeks post-injury
and continues till approximately 1 year, depending upon the individual’s health
status. This phase is marked by scar formation (Landén et al. 2016) and the slowing
of angiogenesis. During this process, the protein collagen type III is replaced by the
collagen type I, which is stronger in nature (Wynn 2004). Lastly, the contraction of
the wound is promoted by the myofibroblasts (Yannas et al. 2017) that eventually
differentiate into fat cells (Plikus et al. 2017).

4 Traditional Approach for Enhancing Wound Healing
and Its Ethnopharmacological Validation

Day by day, the process of drug discovery is becoming extremely costly, riskier, and
inefficient. Failure of developed drugs and serious innovation deficit is the major
concerns of big pharmaceutical companies. As a result of which, there has been a
remarkable shift to multi-targeted drugs based on the traditional Medicare knowl-
edge. Reports state the usage of specific plant parts for the treatment of wounds. In
this chapter, we have presented various medicinal plants and polyherbal
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formulations that display wound healing properties. Table 1 summarizes the list of
the plants, their scientific and common name, part of the plant used for the healing
purpose, status of their pharmacological validation, and inform about the In Vivo
and In Vitro studies that have been carried out.

All the plants listed in Tables 1 and 2 display the wound healing activity for
different types of wounds when used alone or as polyherbal decoction respectively.
Elevated wound contraction, increased tensile strength, proliferation of fibroblast,
angiogenesis, differentiation of keratinocytes, re-epithelization, and remodeling are
the key features of the wound healing process that have been observed during the
treatment with plant extracts. The biomarkers of the wound healing process, i.e.,
hydroxyproline, hexuronic acid and hexosamines are found to be increased upon
treatment using listed medicinal plants. Chronic wounds are characterized by the
prolonged period of wound recovery. Microbial infections at wound site increase
complications in the wound healing in such conditions. Tables 1 and 2 mention
about the plants with antimicrobial and antifungal activities that might be added
advantage provided by these plants for treatment of the microbial infection at the
wound site. Reactive oxygen species are the toxic products that cause oxidative
stress during the inflammatory phase of the wound healing process. Plant secondary
metabolites such as alkaloids, phenols, triterpene, etc. are known to have free radical
scavenging abilities, and hence such plants are considered as beneficial for wound
care. As per our observations, listed members in Tables 1 and 2 have been demon-
strated powerful antioxidant properties that makes them utilized for wound treat-
ment. The plant extract of Acanthaceae members reported significantly reduced
wound size in rat excision wound model by enhanced collagenation, angiogenesis,
and re-epithelialization (Agyare et al. 2013a). A. aspera and A. sessilis leaves are
known to use in wound care in the Ethiopian region. The results of the scientific
studies proved the remarkable increase in neovascularization, epithelization, and in
numbers of fibrocytes in order to organize epidermal layer. Ointment of methanol
leaf extract, ethanol, and chloroform extract cream of P. lappacea is a well-known
African folklore medicine for the treatment of chronic wounds, skin infections, and
boils (Agyare et al. 2009). The methanolic root extract of the Buchanania lanzan
Spreng displayed increase in the tensile strength of the incision and excision wound
model as compared to the methanolic extract of the fruit (Chitra et al. 2009; Pattnaik
et al. 2013). Some of the studies have reported the isolation of potent bioactive
compounds from plant extracts for wound healing. For instance, Centella asiatica
(L.) is known for the treatment of burns and post-operative hypertrophic scars.
Isolates from this plant, i.e., asiaticoside and triterpene (asiatic acid, madecassic
acid, and madecassoside) are the prime components responsible for wound healing
(Somboonwong et al. 2012). Protocatechuic acid from the n-butanol fraction of
Trianthema portulacastrum L. (Yadav et al. 2017), calophyllolide from
Calophyllum inophyllum (Nguyen et al. 2017), Flavonoids [hyperoside,
isoquercitrin, rutin and (�)-epicatechin] and naphthoquinones (hypericins) from
Hypericum perforatum (Suntar et al. 2010a), leutolin from Martynia annua (Lodhi
and Singhai 2013), emblin compound from Embelia ribes Burm. (Swamy et al.
2007), quinone compound, embelin from Embelia ribes Burm. (Swamy et al. 2007)
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and calceorioside B, homoplantaginin (hispidulin-7-O-glucoside), and
plantamajoside from the aerial parts of Plantago major subsp. major L. (Genc
et al. 2020) have also demonstrated their active role in the wound healing process.
The ethanolic extract of theWoodfordia fruticosa flower found immune-modulatory
effects during the primary phase of wound healing. Levels of pro-inflammatory
cytokines TNF-α, IL-6, and anti-inflammatory cytokine IL-10 levels were found to
be up-regulated (Verma et al. 2013). Amongst polyherbal preparations, ampucare
was found to be most effective.

5 Conclusion

This chapter displays a vast variety of medicinal plants and polyherbal formulations
showing wound healing properties that are tested and validated using In Vivo and In
Vitro models. In spite of the rich knowledge regarding the traditional Medicare
system, there is a lack of clinical evidences for most of these formulations. Other
major challenge includes variation in the scientific proofs from the observations of
the tribal communities. This may be because, the researchers screen the pharmaco-
logical compound using organic solvent systems and sometimes water, whereas
traditionally it is being used as paste or juice of the fresh plant material and
sometimes they also being mixed with some other plant species so as to impart
synergistic effects. Our observations also confirm that the polyherbal formulations
are more effective for wound care even at low doses. Most of the available studies
display the extent to which specific plants component or polyherbal formulation is
effective in the wound healing process. It, therefore, behooves the strong need of the
hour to find out novel bioactive compound(s) of the available formulations by
characterizing the plant extracts in order to study its molecular targets, which can
be beneficial to all for wound care.

References

Abood WN, Al-Henhena NA, Abood AN, Al-Obaidi MMJ, Ismail S, Abdulla MA, Al Batran R
(2015) Wound-healing potential of the fruit extract of Phaleria macrocarpa. Bosn J Basic Med
Sci 15(2):25

Abu-Al-Basal MA (2010) Healing potential of Rosmarinus officinalis L. on full-thickness excision
cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J Ethnopharmacol 131
(2):443–450

Adetutu A, Morgan WA, Corcoran O (2011) Antibacterial, antioxidant and fibroblast growth
stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of
Nigeria. J Ethnopharmacol 133(1):116–119

Agarwal PK, Singh A, Gaurav K, Goel S, Khanna HD, Goel RK (2009) Evaluation of wound
healing activity of extracts of plantain banana (Musa sapientum var. paradisiaca) in rats. Indian
J Exp Biol 47(01):32–40

208 F. Patel et al.



Agyare C, Asase A, Lechtenberg M, Niehues M, Deters A, Hensel A (2009) An
ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medic-
inal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. J
Ethnopharmacol 125(3):393–403

Agyare C, Bempah SB, Boakye YD, Ayande PG, Adarkwa-Yiadom M, Mensah KB (2013a)
Evaluation of antimicrobial and wound healing potential of Justicia flava and Lannea
welwitschii. Evid Based Complement Alter Med. Article ID 632927. https://doi.org/10.1155/
2013/632927

Agyare C, Dwobeng AS, Agyepong N, Boakye YD, Mensah KB, Ayande PG, Adarkwa-YiadomM
(2013b) Antimicrobial, antioxidant, and wound healing properties of Kigelia africana (Lam.)
Beneth. and Strophanthus hispidus DC. Adv Pharmacol Sci 2013:692613

Ahamed BMK, Krishna V, Malleshappa KH (2009) In vivo wound healing activity of the
methanolic extract and its isolated constituent, gulonic acid γ-lactone, obtained from Grewia
tiliaefolia. Planta Med 75(05):478–482

Annan K, Houghton PJ (2008) Antibacterial, antioxidant and fibroblast growth stimulation of
aqueous extracts of Ficus asperifolia Miq. and Gossypium arboreum L., wound-healing plants
of Ghana. J Ethnopharmacol 119(1):141–144

Anuar NS, Zahari SS, Taib IA, Rahman MT (2008) Effect of green and ripe Carica papaya epicarp
extracts on wound healing and during pregnancy. Food Chem Toxicol 46(7):2384–2389

Arunachalam K, Parimelazhagan T (2013) Anti-inflammatory, wound healing and in-vivo antiox-
idant properties of the leaves of Ficus amplissima Smith. J Ethnopharmacol 145(1):139–145

Asif A, Kakub G, Mehmood S, Khunum R, Gulfraz M (2007) Wound healing activity of root
extracts of Berberis lyceum Royle in rats. Phytother Res 21(6):589–591

Aslam MS, Ahmad MS, Mamat AS, Ahmad MZ, Salam F (2016) Antioxidant and wound healing
activity of polyherbal fractions of Clinacanthus nutans and Elephantopus scaber. Evid Based
Complement Altern Med. 2016:4685246

Atiba A, Ueno H, Uzuka Y (2010) The effect of aloe vera oral administration on cutaneous wound
healing in type 2 diabetic rats. J Vet Med Sci 73(5):583

Bahadır-Acıkara Ö, Özbilgin S, Saltan-İşcan G, Dall’Acqua S, Rjašková V, Özgökçe F, Šmejkal K
(2018) Phytochemical analysis of Podospermum and Scorzonera n-hexane extracts and the
HPLC quantitation of triterpenes. Molecules 23(7):1813

Balaji S, Watson CL, Ranjan R, King A, Bollyky PL, Keswani SG (2015) Chemokine involvement
in fetal and adult wound healing. Adv Wound Care 4(11):660–672

Balekar N, Nakpheng T, Katkam NG, Srichana T (2012) Wound healing activity of ent-kaura-9
(11), 16-dien-19-oic acid isolated from Wedelia trilobata (L.) leaves. Phytomedicine 19
(13):1178–1184

Baranoski S, Ayello EA (2008) Wound care essentials: practice principles. Lippincott Williams &
Wilkins, Philadelphia

Barua CC, Begum SA, Sarma DK, Pathak DC, Borah RS (2012) Healing efficacy of methanol
extract of leaves of Alternanthera brasiliana Kuntze in aged wound model. J Basic Clin Pharm
3(4):341

Begashaw B, Mishra B, Tsegaw A, Shewamene Z (2017) Methanol leaves extract Hibiscus
micranthus Linn exhibited antibacterial and wound healing activities. BMC Complement Altern
Med 17(1):337

Belachew TF, Asrade S, Geta M, Fentahun E (2020) In vivo evaluation of wound healing and anti-
inflammatory activity of 80% methanol crude flower extract of Hagenia abyssinica (Bruce) JF
Gmel in mice. Evid Based Complement Altern Med 2020:9645792

Bhandirge SK, Tripathi AS, Bhandirge RK, Chinchmalatpure TP, Desai HG, Chandewar AV
(2015) Evaluation of wound healing activity of ethanolic extract of Pongamia pinnata bark.
Drug Res 65(6):296–299

Bhaskar A, Nithya V (2012) Evaluation of the wound-healing activity of Hibiscus rosa sinensis
L. (Malvaceae) in Wistar albino rats. Indian J Pharmacol 44(6):694

Role of Medicinal Plants in Wound Healing: An Ethnopharmacological Approach 209



Bhat PB, Hegde S, Upadhya V, Hegde GR, Habbu PV, Mulgund GS (2016) Evaluation of wound
healing property of Caesalpinia mimosoides Lam. J Ethnopharmacol 193:712–724

Bianchi ME, Manfredi AA (2009) Dangers in and out. Science 323(5922):1683–1684
Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34

(6):419–427
Brem H, Sheehan P, Boulton AJ (2004) Protocol for treatment of diabetic foot ulcers. Am J Surg

187(5):S1–S10
Chah KF, Eze CA, Emuelosi CE, Esimone CO (2006) Antibacterial and wound healing properties

of methanolic extracts of some Nigerian medicinal plants. J Ethnopharmacol 104(1–2):164–167
Chandra P, Yadav E, Mani M, Ghosh AK, Sachan N (2015) Protective effect of Lygodium

flexuosum (family: Lygodiaceae) against excision, incision and dead space wounds models in
experimental rats. Toxicol Ind Health 31(3):274–280

Chard R (2008) Wound classifications. AORN J 88(1):108–110
Chaudhari M, Mengi S (2006) Evaluation of phytoconstituents of Terminalia arjuna for wound

healing activity in rats. Phytother Res 20(9):799–805
Chen WC, Liou SS, Tzeng TF, Lee SL, Liu IM (2012) Wound repair and anti-inflammatory

potential of Lonicera japonica in excision wound-induced rats. BMC Complement Altern
Med 12(1):226

Chen J, Jayachandran M, Xu B, Yu Z (2019) Sea bass (Lateolabrax maculatus) accelerates wound
healing: a transition from inflammation to proliferation. J Ethnopharmacol 236:263–276

Chitra V, Dharani PP, Pavan KK, Alla NR (2009) Wound healing activity of alcoholic extract of
Buchanania lanzan in Albino rats. Int J ChemTech Res 1(4):1026–1031

Choudhari AS, Raina P, Deshpande MM, Wali AG, Zanwar A, Bodhankar SL, Kaul- Ghanekar,
R. (2013) Evaluating the anti-inflammatory potential of Tectaria cicutaria L. rhizome extract
in vitro as well as in vivo. J Ethnopharmacol 150(1):215–222

Choudhary GP (2008) Wound healing activity of the ethanol extract of Terminalia bellirica Roxb.
fruits. Indian J Nat Prod Res 7(1):19–21

da Silveira Vasconcelos M, Gomes-Rochette NF, de Oliveira MLM, Nunes-Pinheiro DCS, Tomé
AR, Maia de Sousa FY et al (2015) Anti-inflammatory and wound healing potential of cashew
apple juice (Anacardium occidentale L.) in mice. Exp Biol Med 240(12):1648–1655

Darenfed H, Grenier D, Mayrand D (1999) Acquisition of plasmin activity by Fusobacterium
nucleatum subsp. nucleatum and potential contribution to tissue destruction during periodonti-
tis. Infect Immun 67(12):6439–6444

Demilew W, Adinew GM, Asrade S (2018) Evaluation of the wound healing activity of the crude
extract of leaves of Acanthus polystachyus Delile (Acanthaceae). Evid Based Complement
Altern Med 2018:1–9

Deshmukh PT, Fernandes J, Atul A, Toppo E (2009) Wound healing activity of Calotropis
gigantea root bark in rats. J Ethnopharmacol 125(1):178–181

Dev SK, Choudhury PK, Srivastava R, Sharma M (2019) Antimicrobial, anti-inflammatory and
wound healing activity of polyherbal formulation. Biomed Pharmacother 111:555–567

Devaney L, Rowell KS (2004) Improving surgical wound classification—why it matters. AORN J
80(2):208–223

Dwivedi D, Dwivedi M, Malviya S, Singh V (2017) Evaluation of wound healing, anti-microbial
and antioxidant potential of Pongamia pinnata in wistar rats. J Tradit Complement Med 7
(1):79–85

Edwards H, Finlayson K, Courtney M, Graves N, GibbM, Parker C (2013) Health service pathways
for patients with chronic leg ulcers: identifying effective pathways for facilitation of evidence
based wound care. BMC Health Serv Res 13(1):86

Ellis S, Lin EJ, Tartar D (2018) Immunology of wound healing. Curr Dermatol Rep 7(4):350–358
Ezike AC, Akah PA, Okoli CO, Udegbunam S, Okwume N, Okeke C, Iloani O (2010) Medicinal

plants used in wound care: a study of Prosopis africana (Fabaceae) stem bark. Indian J Pharm
Sci 72(3):334

210 F. Patel et al.



Ezzat SM, Choucry MA, Kandil ZA (2016) Antibacterial, antioxidant, and topical anti-
inflammatory activities of Bergia ammannioides: a wound-healing plant. Pharm Biol 54
(2):215–224

Field CK, Kerstein MD (1994) Overview of wound healing in a moist environment. Am J Surg 167
(1):S2–S6

Fikru A, Makonnen E, Eguale T, Debella A, Mekonnen GA (2012) Evaluation of in vivo wound
healing activity of methanol extract of Achyranthes aspera L. J Ethnopharmacol 143
(2):469–474

Gál P, Toporcer T, Grendel T, Vidová Z, Smetana K Jr, Dvořánková B et al (2009) Effect of Atropa
belladonna L. on skin wound healing: biomechanical and histological study in rats and in vitro
study in keratinocytes, 3T3 fibroblasts, and human umbilical vein endothelial cells. Wound
Repair Regen 17(3):378–386

Ganeshkumar M, Ponrasu T, Krithika R, Iyappan K, Gayathri VS, Suguna L (2012) Topical
application of Acalypha indica accelerates rat cutaneous wound healing by up-regulating the
expression of type I and III collagen. J Ethnopharmacol 142(1):14–22

Gangwar M, GautamMK, Ghildiyal S, Nath G, Goel RK (2015)Mallotus philippinensisMuell.Arg
fruit glandular hairs extract promotes wound healing on different wound model in rats. BMC
Complement Altern Med 15(1):123

Gebrehiwot M, Asres K, Bisrat D, Mazumder A, Lindemann P, Bucar F (2015) Evaluation of the
wound healing property of Commiphora guidottii Chiov. ex. Guid. BMC Complement Altern
Med 15(1):282

Genc Y, Dereli FTG, Saracoglu I, Akkol EK (2020) The inhibitory effects of isolated constituents
from Plantago major subsp. major L. on collagenase, elastase and hyaluronidase enzymes:
potential wound healer. Saudi Pharm J 28(1):101–106

Ghosh PK, Gaba A (2013) Phyto-extracts in wound healing. J Pharm Pharm Sci 16(5):760–820
Ghosh S, Samanta A, Mandal NB, Bannerjee S, Chattopadhyay D (2012) Evaluation of the wound

healing activity of methanol extract of Pedilanthus tithymaloides (L.) Poit leaf and its isolated
active constituents in topical formulation. J Ethnopharmacol 142(3):714–722

Gomes FS, Spínola CDV, Ribeiro HA, Lopes MT, Cassali GD, Salas CE (2010) Wound- healing
activity of a proteolytic fraction from Carica candamarcensis on experimentally induced burn.
Burns 36(2):277–283

Gomez R, Cancio LC (2007) Management of burn wounds in the emergency department. Emerg
Med Clin North Am 25(1):135–146

Govindarajan R, Vijayakumar M, Chadana Venkateshwar R, Shirwaikar A, Mehrotra S,
Pushpangadan P (2004) Healing potential of Anogeissus latifolia for dermal wounds in rats.
Acta Pharma 54(4):331–338

Gupta N, Jain UK (2011) Investigation of wound healing activity of methanolic extract of stem bark
of Mimusops elengi Linn. Afr J Tradit Complement Altern Med 8(2):98–103

Gupta A, Kumar R, Pal K, Banerjee PK, Sawhney RC (2005) A preclinical study of the effects of
seabuckthorn (Hippophae rhamnoides L.) leaf extract on cutaneous wound healing in albino
rats. Int J Low Extrem Wounds 4(2):88–92

Gupta A, Kumar R, Upadhyay NK, Pal K, Kumar R, Sawhney RC (2007) Effects of Rhodiola
imbricata on dermal wound healing. Planta Med 73(8):774

Gupta A, Upadhyay NK, Sawhney RC, Kumar R (2008) A polyherbal formulation accelerates
normal and impaired diabetic wound healing. Wound Repair Regen 16(6):784–790

Gupta A, Verma S, Gupta AK, Jangra M, Pratap R (2015) Evaluation of Prosopis cineraria (Linn.)
Druce leaves for wound healing activity in rats. Ann Pharm Res 3:70–74

Gurung S, Škalko-Basnet N (2009) Wound healing properties of Carica papaya latex: in vivo
evaluation in mice burn model. J Ethnopharmacol 121(2):338–341

Gutierrez RP (2006) Evaluation of the wound healing properties of Acalypha langiana in diabetic
rats. Fitoterapia 77(4):286–289

Hemmati AA, Aghel N, Rashidi I, Gholampur Aghdami A (2011) Topical grape (Vitis vinifera)
seed extract promotes repair of full thickness wound in rabbit. Int Wound J 8(5):514–520

Role of Medicinal Plants in Wound Healing: An Ethnopharmacological Approach 211



Hopman WM, Harrison MB, Coo H, Friedberg E, Buchanan M, Van DenKerkhof EG (2009)
Associations between chronic disease, age and physical and mental health status. Chronic Dis
Can 29(3):108–116

Ikobi E, Igwilo CI, Azubuike CP, Awodele O (2012) Antibacterial and wound healing properties of
methanolic extract of dried fresh Gossypium barbadense leaves. Asain J Biomed Pharm Sci
21:32–39

Iorio V, Troughton LD, Hamill KJ (2015) Laminins: roles and utility in wound repair. Adv Wound
Care 4(4):250–263

Irfan-Maqsood M (2018) Classification of wounds: know before research and clinical practice. J
Genes Cells 4(1):1–4

Jain N, Jain R, Jain A, Jain DK, Chandel HS (2010) Evaluation of wound-healing activity of Acorus
calamus Linn. Nat Prod Res 24(6):534–541

Jaiprakash B, Chandramohan D (2006) Burn wound healing activity of Euphorbia hirta. Anc Sci
Life 25(3–4):16

Jayapal J, Tangavelou AC, Panneerselvam A (2014) Studies on the plant diversity of Muniandavar
sacred groves of Thiruvaiyaru, Thanjavur, Tamil Nadu, India. Hygeia 6(1):48–62

Jia Y, Zhao G, Jia J (2008) Preliminary evaluation: the effects of Aloe ferox Miller and Aloe
arborescens Miller on wound healing. J Ethnopharmacol 120(2):181–189

Jitvaropas R, Saenthaweesuk S, Somparn N, Thuppia A, Sireeratawong S, Phoolcharoen W (2012)
Antioxidant, antimicrobial and wound healing activities of Boesenbergia rotunda. Nat Prod
Commun 7(7):901–912

Jones JE, Nelson EA (2007) Skin grafting for venous leg ulcers. Cochrane Database Syst Rev (2).
https://doi.org/10.1002/14651858.CD001737.pub3

Joshi A, Sengar N, Prasad SK, Goel RK, Singh A, Hemalatha S (2013) Wound-healing potential of
the root extract of Albizzia lebbeck. Planta Med 79(09):737–743

Joshi A, Joshi VK, Pandey D, Hemalatha S (2016) Systematic investigation of ethanolic extract
from Leea macrophylla: implications in wound healing. J Ethnopharmacol 191:95–106

Kakade AS, Pagore RR, Biyani KR (2017) Evaluation of wound healing activity of polyherbal gel
formulation. World J Pharm Res 6:501–509

Kamath JV, Rana AC, Roy Chowdhury A (2003) Pro-healing effect of Cinnamomum zeylanicum
bark. Phytother Res 17(8):970–972

Karodi R, Jadhav M, Rub R, Bafna A (2009) Evaluation of the wound healing activity of a crude
extract of Rubia cordifolia L (Indian madder) in mice. Int J Appl Res Nat Prod 2(2):12–18

Kavitha AN, Deepthi V, Nayeem N (2013) Design, formulation and evaluation of a polyherbal
ointment for its wound healing activity. Pharmacophore 4(5):175–180

Kerstein MD (1997) The scientific basis of healing. Adv Skin Wound Care 10(3):30–36
Kim M, Lee HJ, Randy A, Yun JH, Oh SR, Nho CW (2017) Stellera chamaejasme and its

constituents induce cutaneous wound healing and anti-inflammatory activities. Sci Rep 7
(1):1–12

Kiran K, Asad M (2008) Wound healing activity of Sesamum indicum L seed and oil in rats. Indian
J Exp Biol 46(11):777–782

Kodati DR, Burra S, Kumar GP (2011) Evaluation of wound healing activity of methanolic root
extract of Plumbago zeylanica L. in wistar albino rats. Asian J Plant Sci Res 1(2):26–34

Kokane DD, More RY, Kale MB, Nehete MN, Mehendale PC, Gadgoli CH (2009) Evaluation of
wound healing activity of root of Mimosa pudica. J Ethnopharmacol 124(2):311–315

Kumar S, Rajput R, Patil V, Udupa AL, Gupta S, Rathnakar UP et al (2011) Wound healing profile
of Asparagus racemosus (Liliaceae) wild. Curr Pharm Res 1(2):111–114

Kundu A, Ghosh A, Singh NK, Singh GK, Seth A, Maurya SK et al (2016) Wound healing activity
of the ethanol root extract and polyphenolic rich fraction from Potentilla fulgens. Pharm Biol 54
(11):2383–2393

Landén NX, Li D, Ståhle M (2016) Transition from inflammation to proliferation: a critical step
during wound healing. Cell Mol Life Sci 73(20):3861–3885

212 F. Patel et al.

https://doi.org/10.1002/14651858.CD001737.pub3


Latha LY, Darah I, Jain K, Sasidharan S (2012) Pharmacological screening of methanolic extract of
Ixora species. Asian Pac J Trop Biomed 2(2):149–151

Lingaraju GM, Krishna V, Joy Hoskeri H, Pradeepa K, Venkatesh, Babu PS (2012) Wound healing
promoting activity of stem bark extract of Semecarpus anacardium using rats. Nat Prod Res 26
(24):2344–2347

Lodhi S, Singhai AK (2013) Wound healing effect of flavonoid rich fraction and luteolin isolated
from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac J Trop Med 6
(4):253–259

Luo P, Li X, Ye Y, Shu X, Gong J, Wang J (2018) Castanea mollissima shell prevents an over
expression of inflammatory response and accelerates the dermal wound healing. J
Ethnopharmacol 220:9–15

Maan P, Yadav KS, Yadav NP (2017) Wound healing activity of Azadirachta indica A. juss stem
bark in mice. Pharmacogn Mag 13(Suppl 2):S316

Majumder P, Paridhavi M (2019) A novel poly-herbal formulation hastens diabetic wound healing
with potent antioxidant potential: a comprehensive pharmacological investigation. Pharm J 11
(2):324–331

Malviya N, Jain S (2009) Wound healing activity of aqueous extract of Radix paeoniae root. Acta
Pol Pharm 66(5):543–547

Manjunatha BK, Vidya SM, Rashmi KV, Mankani KL, Shilpa HJ, Singh SJ (2005) Evaluation of
wound-healing potency of Vernonia arborea Hk. Indian J Pharmacol 37(4):223

Manjunatha BK, Krishna V, Vidya SM, Mankani KL, Manohara YN (2007) Wound healing
activity of Lycopodium serratum. Indian J Pharm Sci 69(2):283

Mondal S, Suresh P (2012) Wound healing activity of Cleome rutidosperma DC. roots. Int Curr
Pharm J 1(6):151–154

Moreo K (2005) Understanding and overcoming the challenges of effective case management for
patients with chronic wounds. Case Manager 16(2):62–67

Morton LM, Phillips TJ (2016) Wound healing and treating wounds: differential diagnosis and
evaluation of chronic wounds. J Am Acad Dermatol 74(4):589–605

Muhammad AA, Arulselvan P, Cheah PS, Abas F, Fakurazi S (2016) Evaluation of wound healing
properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced
diabetic animal model. Drug Des Devel Ther 10:1715

Mukherjee PK, Suresh B (2000) The evaluation of wound-healing potential of Hypericum
hookerianum leaf and stem extracts. J Altern Complement Med 6(1):61–69

Mulisa E, Asres K, Engidawork E (2015) Evaluation of wound healing and anti-inflammatory
activity of the rhizomes of Rumex abyssinicus J.(Polygonaceae) in mice. BMC Complement
Altern Med 15(1):341

Murthy S, GautamMK, Goel S, Purohit V, Sharma H, Goel RK (2013) Evaluation of in vivo wound
healing activity of Bacopa monniera on different wound model in rats. Biomed Res Int
2013:972028

Murti K, Kumar U (2012) Enhancement of wound healing with roots of Ficus racemosa L. in albino
rats. Asian Pac J Trop Biomed 2(4):276–280

Murti K, Kumar U, Panchal M (2011) Healing promoting potentials of roots of Ficus benghalensis
L. in albino rats. Asian Pac J Trop Med 4(11):921–924

Mustoe T (2004) Understanding chronic wounds: a unifying hypothesis on their pathogenesis and
implications for therapy. Am J Surg 187(5):S65–S70

Nagori BP, Solanki R (2011) Role of medicinal plants in wound healing. Res J Med Plant 5
(4):392–405

Naji S, Zarei L, Pourjabali M, Mohammadi R (2017) The extract of lycium depressum stocks
enhances wound healing in streptozotocin-induced diabetic rats. Int J Low Extrem Wounds 16
(2):85–93

Nasir MM, Mahammed NL, Roshan S, Ahmed MW (2016) Wound healing activity of poly herbal
formulation in albino rats using excision wound model, incision wound model, dead space
wound model and burn wound model. Int J Res Dev Pharm Life Sci 5:2080–2087

Role of Medicinal Plants in Wound Healing: An Ethnopharmacological Approach 213



Nayak BS (2006) Cecropia peltata L (Cecropiaceae) has wound-healing potential: a preclinical
study in a Sprague Dawley rat model. Int J Low Extrem Wounds 5(1):20–26

Nayak BS, Mohan K (2007) Short communication influence of ethanolic extract of jasminum
Grandflorum linn flower on wound healing activity in rats. Indian J Physiol Pharmacol 51
(2):189–194

Nayak BS, Suresh R, Rao AVC, Pillai GK, Davis EM, Ramkissoon V, McRae A (2005) Evaluation
of wound healing activity of Vanda roxburghii R. Br (Orchidacea): a preclinical study in a rat
model. Int J Low Extrem Wounds 4(4):200–204

Nayak S, Nalabothu P, Sandiford S, Bhogadi V, Adogwa A (2006) Evaluation of wound healing
activity of Allamanda cathartica L. and Laurus nobilis L. extracts on rats. BMC Complement
Altern Med 6(1):12

Nayak BS, Anderson M, Pereira LP (2007) Evaluation of wound-healing potential of Catharanthus
roseus leaf extract in rats. Fitoterapia 78(7–8):540–544

Nayak BS, Raju SS, Chalapathi Rao AV (2008) Wound healing activity of Persea americana
(avocado) fruit: a preclinical study on rats. J Wound Care 17(3):123–125

Nayak BS, Sandiford S, Maxwell A (2009) Evaluation of the wound-healing activity of ethanolic
extract of Morinda citrifolia L. leaf. Evid Based Complement Altern Med 6:351–356

Nayak BS, Kanhai J, Milne DM, Swanston WH, Mayers S, Eversley M, Rao AC (2010) Investi-
gation of the wound healing activity of Carapa guianensis L.(Meliaceae) bark extract in rats
using excision, incision, and dead space wound models. J Med Food 13(5):1141–1146

Nayak BS, Ramdeen R, Adogwa A, Ramsubhag A, Marshall JR (2012) Wound-healing potential of
an ethanol extract of Carica papaya (Caricaceae) seeds. Int Wound J 9(6):650–655

Nelson EA, Cullum N, Jones J (2006) Venous leg ulcers. Clin Evid 15:2607–2626
Nguyen VL, Truong CT, Nguyen BCQ, Vo TNV, Dao TT, Nguyen VD, Bui CB (2017) Anti-

inflammatory and wound healing activities of calophyllolide isolated from Calophyllum
inophyllum Linn. PLoS One 12(10):0185674

Okoli CO, Akah PA, Okoli AS (2007) Potentials of leaves of Aspilia africana (Compositae) in
wound care: an experimental evaluation. BMC Complement Altern Med 7(1):1–7

Özbilgin S, Acıkara ÖB, Akkol EK, Süntar I, Keleş H, İşcan GS (2018) In vivo wound-healing
activity of Euphorbia characias subsp. wulfenii: isolation and quantification of quercetin
glycosides as bioactive compounds. J Ethnopharmacol 224:400–408

Panda V, Thakur T (2014) Wound healing activity of the inflorescence of Typha elephantina
(Cattail). Int J Low Extrem Wounds 13(1):50–57

Patel NA, Patel M, Patel RP (2011) Formulation and evaluation of polyherbal gel for wound
healing. Int Res J Pharm 1(1):15–20

Pattanayak SP, Sunita P (2008) Wound healing, anti-microbial and antioxidant potential of
Dendrophthoe falcata (Lf) Ettingsh. J Ethnopharmacol 120(2):241–247

Pattnaik A, Sarkar R, Sharma A, Yadav KK, Kumar A, Roy P et al (2013) Pharmacological studies
on Buchanania lanzan Spreng. A focus on wound healing with particular reference to anti-
biofilm properties. Asian Pac J Trop Biomed 3(12):967–974

Pawar RS, Chaurasiya PK, Rajak H, Singour PK, Toppo FA, Jain A (2013) Wound healing activity
of Sida cordifolia Linn. in rats. Indian J Pharm 45(5):474

Pawar RS, Toppo FA, Mandloi AS, Shaikh S (2015) Exploring the role of curcumin containing
ethanolic extract obtained from Curcuma longa (rhizomes) against retardation of wound healing
process by aspirin. Indian J Pharm 47(2):160

Pirbalouti AG, Azizi S, Koohpayeh A (2012) Healing potential of Iranian traditional medicinal
plants on burn wounds in alloxan-induced diabetic rats. Rev Bras 22(2):397–403

Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y et al (2017) Regeneration of
fat cells from myofibroblasts during wound healing. Science 355(6326):748–752

Powers JG, Higham C, Broussard K, Phillips TJ (2016) Wound healing and treating wounds:
chronic wound care and management. J Am Acad Dermatol 74(4):607–625

Queen D, Orsted H, Sanada H, Sussman G (2004) A dressing history. Int Wound J 1(1):59–77

214 F. Patel et al.



Raina R, Parwez S, Verma PK, Pankaj NK (2008) Medicinal plants and their role in wound healing.
Online Vet J 3(1):21

Rasal AS, Nayak PG, Baburao K, Shenoy RR, Mallikarjuna Rao C (2009) Evaluation of the healing
potential of Schrebera swietenioides in the dexamethasone-suppressed wound healing in
rodents. Int J Low Extrem Wounds 8(3):147–152

Rathi BS, Bodhankar SL, Baheti AM (2006) Evaluation of aqueous leaves extract of Moringa
oleifera Linn for wound healing in albino rats. Indian J Exp Biol 44(11):898–901

Reddy BS, Reddy RKK, Naidu VGM, Madhusudhana K, Agwane SB, Ramakrishna S, Diwan PV
(2008) Evaluation of antimicrobial, antioxidant and wound-healing potentials of Holoptelea
integrifolia. J Ethnopharmacol 115(2):249–256

Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49(1):35–43
Robinson MM, Zhang X (2011) The world medicines situation 2011. WHO, Geneva
Romero-Cerecero O, Zamilpa A, Díaz-García ER, Tortoriello J (2014) Pharmacological effect of

Ageratina pichinchensis on wound healing in diabetic rats and genotoxicity evaluation. J
Ethnopharmacol 156:222–227

Roy P, Amdekar S, Kumar A, Singh R, Sharma P, Singh V (2012) In vivo antioxidative property,
antimicrobial and wound healing activity of flower extracts of Pyrostegia venusta (Ker Gawl)
Miers. J Ethnopharmacol 140(1):186–192

Saenthaweesuk S, Jitvaropas R, Somparn N, Thuppia A (2015) An investigation of antimicrobial
and wound healing potential of Allium ascalonicum Linn. J Med Assoc Thai 98:S22–S27

Sanwal R, Chaudhary AK (2011) Wound healing and antimicrobial potential of Carissa spinarum
Linn. in albino mice. J Ethnopharmacol 135(3):792–796

Sasidharan S, Logeswaran S, Latha LY (2012) Wound healing activity of Elaeis guineensis leaf
extract ointment. Int J Mol Sci 13(1):336–347

Schmidt C, Fronza M, Goettert M, Geller F, Luik S, Flores EMM et al (2009) Biological studies on
Brazilian plants used in wound healing. J Ethnopharmacol 122(3):523–532

Selvaraj N, Lakshmanan B, Mazumder PM, Karuppasamy M, Jena SS, Pattnaik AK (2011)
Evaluation of wound healing and antimicrobial potentials of Ixora coccinea root extract.
Asian Pac J Trop Med 4(12):959–963

Semwal DK, Mishra SP, Chauhan A, Semwal RB (2015) Adverse health effects of tobacco and role
of Ayurveda in their reduction. J Med Sci 15(3):139

Sen CK (2019) Human wounds and its burden: an updated compendium of estimates. Adv Wound
Care 8(2):39–48

Sen S, Chakraborty R, De B (2011) Challenges and opportunities in the advancement of herbal
medicine: India’s position and role in a global context. J Herbal Med 1(3–4):67–75

Shakeel F, Alam P, Anwer MK, Alanazi SA, Alsarra IA, Alqarni MH (2019) Wound healing
evaluation of self-nanoemulsifying drug delivery system containing Piper cubeba essential oil.
3Biotech 9(3):1–9

Shanbhag TV, Sharma C, Adiga S, Bairy LK, Shenoy S, Shenoy G (2006) Wound healing activity
of alcoholic extract of Kaempferia galanga in Wistar rats. Indian J Physiol Pharmacol 50
(4):384–390

Shaw TJ, Rognoni E (2020) Dissecting fibroblast heterogeneity in health and fibrotic disease. Curr
Rheumatol Rep 22(8):1–10

Shetty BS, Udupa SL, Udupa AL, Somayaji SN (2006a) Effect of Centella asiatica L
(Umbelliferae) on normal and dexamethasone-suppressed wound healing in Wistar Albino
rats. Int J Low Extrem Wounds 5(3):137–143

Shetty S, Udupa SL, Udupa AL, Vollala VR (2006b) Wound healing activities of bark extract of
Jatropha curcas Linn in albino rats. Saudi Med J 27(10):1473–1476

Shirwaikar A, Shenoy R, Udupa AL, Udupa SL, Shetty S (2003) Wound healing property of
ethanolic extract of leaves of Hyptis suaveolens with supportive role of antioxidant enzymes.
Indian J Exp Biol 41(3):238–241

Role of Medicinal Plants in Wound Healing: An Ethnopharmacological Approach 215



Shivananda Nayak B, Dan Ramdath D, Marshall JR, Isitor G, Xue S, Shi J (2011) Wound-healing
properties of the oils of Vitis vinifera and Vaccinium macrocarpon. Phytother Res 25
(8):1201–1208

Shivhare Y, Singour PK, Patil UK, Pawar RS (2010) Wound healing potential of methanolic extract
of Trichosanthes dioica Roxb (fruits) in rats. J Ethnopharmacol 127(3):614–619

Singh M, Govindarajan R, Nath V, Rawat AKS, Mehrotra S (2006) Antimicrobial, wound healing
and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. J Ethnopharmacol
107(1):67–72

Somboonwong J, Kankaisre M, Tantisira B, Tantisira MH (2012) Wound healing activities of
different extracts of Centella asiatica in incision and burn wound models: an experimental
animal study. BMC Complement Altern Med 12(1):1–7

Soni A, Dwivedi VK, Chaudhary M, Shrivastava SM, Naithani V (2010) Efficacy of ampucare: a
novel herbal formulation for burn wound healing versus other burn medicines. Asian J Biol Sci
3(1):18–27

Soujanya K, Reddy KS, Kumaraswamy D, Reddy GV, Girija P, Sirisha K (2020) Evaluation of
wound healing and antiinflammatory activities of new poly-herbal formulations. Indian J Pharm
Sci 82(1):174–179

Stephen-Haynes J, Gibson E, Greenwood M (2014) Chitosan: a natural solution for wound healing.
J Community Nur 28(1):48–53

Subramoniam A, Evans DA, Rajasekharan S, Nair GS (2001) Effect of Hemigraphis colorata
(Blume) HG Hallier leaf on wound healing and inflammation in mice. Indian J Pharm 33
(4):283–285

Sudsai T, Wattanapiromsakul C, Tewtrakul S (2016) Wound healing property of isolated com-
pounds from Boesenbergia kingii rhizomes. J Ethnopharmacol 184:42–48

Suguna L, Singh S, Sivakumar P, Sampath P, Chandrakasan G (2002) Influence of Terminalia
chebula on dermal wound healing in rats. Phytother Res 16(3):227–231

Sumitra M, Manikandan P, Suguna L (2005) Efficacy of Butea monosperma on dermal wound
healing in rats. Int J Biochem Cell Biol 37(3):566–573

Süntar IP, Akkol EK, Yalçın FN, Koca U, Keleş H, Yesilada E (2010a) Wound healing potential of
Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside. J
Ethnopharmacol 129(1):106–114

Süntar IP, Akkol EK, Yılmazer D, Baykal T, Kırmızıbekmez H, Alper M, Yeşilada E (2010b)
Investigations on the in vivo wound healing potential of Hypericum perforatum L. J
Ethnopharmacol 127(2):468–477

Süntar I, Koca U, Keleş H, Akkol EK (2011) Wound healing activity of Rubus sanctus Schreber
(Rosaceae): preclinical study in animal models. Evid Based Complement Altern Med
2011:816156

Süntar I, Akkol EK, Keles H, Yesilada E, Sarker SD, Arroo R, Baykal T (2012) Efficacy of Daphne
oleoides subsp. kurdica used for wound healing: identification of active compounds through
bioassay guided isolation technique. J Ethnopharmacol 141(3):1058–1070

Swamy HK, Krishna V, Shankarmurthy K, Rahiman BA, Mankani KL, Mahadevan KM et al
(2007) Wound healing activity of embelin isolated from the ethanol extract of leaves of Embelia
ribes Burm. J Ethnopharmacol 109(3):529–534

Talekar YP, Apte KG, Paygude SV, Tondare PR, Parab PB (2017) Studies on wound healing
potential of polyherbal formulation using in vitro and in vivo assays. J Ayurveda Integr Med 8
(2):73–81

Taranalli AD, Kuppast IJ (1996) Study of wound healing activity of seeds of Trigonella foenum
graecum in rats. Indian J Pharm Sci 58(3):117

Teoh SL, Latiff AA, Das S (2009) The effect of topical extract of Momordica charantia (bitter
gourd) on wound healing in nondiabetic rats and in rats with diabetes induced by streptozotocin.
Clin Exp Dermatol 34(7):815–822

216 F. Patel et al.



Theilgaard-Mönch K, Knudsen S, Follin P, Borregaard N (2004) The transcriptional activation
program of human neutrophils in skin lesions supports their important role in wound healing. J
Immunol 172(12):7684–7693

Tiwari VK (2012) Burn wound: how it differs from other wounds? Indian J Plast Surg 45(2):364
Udegbunam SO, Udegbunam RI, Muogbo CC, Anyanwu MU, Nwaehujor CO (2014) Wound

healing and antibacterial properties of methanolic extract of Pupalia lappacea Juss in rats. BMC
Complement Altern Med 14(1):157

Udupa SL, Shetty S, Udupa AL, Somayaji SN (2006) Effect of Ocimum sanctum Linn. on normal
and dexamethasone suppressed wound healing. Indian J Exp Biol 44(1):49–54

Umachigi SP, Kumar GS, Jayaveera KN, Dhanapal R (2007) Antimicrobial, wound healing and
antioxidant activities of Anthocephalus cadamba. Afr J Tradit Complement Altern Med 4
(4):481–487

Upadhyay A, Chattopadhyay P, Goyary D, Mazumder PM, Veer V (2013) Eleutherine indica
L. accelerates in vivo cutaneous wound healing by stimulating Smad-mediated collagen pro-
duction. J Ethnopharmacol 146(2):490–494

Vafi F, Bahramsoltani R, Abdollahi M, Manayi A, Hossein Abdolghaffari A, Samadi N, Amin G,
Hassanzadeh G, Jamalifar H, Baeeri M, Heidari M, Khanavi M (2016) Burn wound healing
activity of lythrum salicaria l. and hypericum scabrum l. wounds. WNDS20160929-2. Epub
ahead of print. PMID:27701123

Verma N, Amresh G, Sahu PK, Mishra N, Rao CV, Singh AP (2013) Wound healing potential of
flowers extracts of Woodfordia fruticosa Kurz. Indian J Biochem Biophys 50(4):296–304

Villegas LF, Fernández ID, Maldonado H, Torres R, Zavaleta A, Vaisberg AJ, Hammond GB
(1997) Evaluation of the wound-healing activity of selected traditional medicinal plants from
Peru. J Ethnopharmacol 55(3):193–200

Wynn TA (2004) Fibrotic disease and the TH 1/TH 2 paradigm. Nat Rev Immunol 4(8):583–594
Xue C, Friedman A, Sen CK (2009) A mathematical model of ischemic cutaneous wounds. Proc

Natl Acad Sci 106(39):16782–16787
Yadav E, Singh D, Yadav P, Verma A (2017) Attenuation of dermal wounds via downregulating

oxidative stress and inflammatory markers by protocatechuic acid rich n-butanol fraction of
Trianthema portulacastrum Linn. in Wistar Albino rats. Biomed Pharmacother 96:86–97

Yannas IV, Tzeranis DS, So PT (2017) Regeneration of injured skin and peripheral nerves requires
control of wound contraction, not scar formation. Wound Repair Regen 25(2):177–191

Role of Medicinal Plants in Wound Healing: An Ethnopharmacological Approach 217

https://www.ncbi.nlm.nih.gov/pubmed/27701123


Mainstreaming Traditional Practices
for Wound Management

Bharat Patel, Vijay Kothari, and Niyati Acharya

1 Introduction

A significant public health issue remains to be the successful management of wounds
(Järbrink et al. 2016), and delay to cure, or elongation of the wound healing cycle
contributes to the additional economic and social burden on health care facilities,
staff, and patients. A wound can be defined as a disruption in the continuity of the
epithelial lining of the skin or mucosa. Injury, due to surgery or accident, results in
destruction of tissue, disruption of blood vessels and extravasations of blood con-
stituents, and hypoxia. Wound healing is a very complex and dynamic process and
has three phases (inflammatory phase, proliferative phase, and maturation phase)
which works by replacing devitalized and damaged cellular structures and layers of
tissue. The damaged tissue is repaired by many underlying biochemical events
integrated into an organized cascade of processes. Many developing countries
have witnessed the prevalence and tremendous rise of different types of wounds
such as chronic and acute wounds, pressure ulcers, venous stasis ulcers, and diabetic
ulcers. Developing countries have exponentially increased average lifespan, which
has contributed to the development of many degenerative diseases (Frykberg and
Banks 2015).

Curing of wounds has been a matter of interest for many, starting from the days of
Sushruta in Ancient India. Sushruta Samhita provides two different sections
concerned with the healing of such wounds and mentions more than 100 plants
both individually and in combination for the treatment of wounds. Sushruta not only
listed techniques and medications for getting a clean wound supported by healing,
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but also the medicines for managing scars associated with wounds (Kumar et al.
1994; Udupa et al. 1970). Traditional medicine (also known as indigenous or folk
medicine or alternative medicine) knowledge database has been established over
generation to generation in different cultures before the context of modern medicine
has been used to manage various diseases. Traditional medical practices in human
cultures before the introduction of modern science have been ancient and culturally-
based medical practices. In accordance with the social and cultural heritage of
particular nations, traditional medicine practices differ widely. The challenges of
sustaining health and managing diseases are faced by the establishment of a medical
system in every human society.

Around 80% of the population in Asian countries depends on traditional medicine
for their basic health care-related needs. The uses of herbal, Ayurveda, Siddha,
Unani, Acupuncture, and some other non-medical expertise and procedures are
known as traditional or indigenous traditional medicines (World Health Organiza-
tion 2002). The World Health Organization (WHO) defines natural remedies as
“public health, strategies, values and skills that incorporate medicines based on
plants, animals and minerals, spiritual medications, home remedies and exercises,
used individually or jointly to cure, evaluate as well as prevent disease or establish
quality of life-being” (World Health Organization 2019). Many traditional systems
of medicine (TSM) like Ayurveda and Siddha from India, Traditional Chinese herbal
medicine (TCM) from China, Traditional African Medicine (TAM) from Africa and
Native American medicine are the classical examples of successfully adopted TSM
practices. For certain traditional medicine procedures worldwide, the usage of plant
species in the treatment of acute and chronic wounds is very popular. Depending on
it, several species have been tested for their wound healing action throughout the
tropical and subtropical parts of the world. But several medicinal plants and prom-
ising bioactives still need to be tested in terms of modern, more powerful, and cost-
effective wound healing product development. The use of medicinal plants, animal
products, methods of preparation, type of care and attention given to patients vary
among different cultures in the traditional approach to wound care; however,
severity and cause of the wound are some significant considerations. Generally,
traditional medicines were overlooked by the modern medical systems after
allopathy medicine was introduced to the world. Ayurveda, the Indian traditional
system of medicine, is the most ancient system but still facing evidence-based issues
with respect to global acceptance. Nevertheless, recent research and developments
have arisen a positive wave in the perceptions of traditional medicines with respect
to conventional medicine. In terms of wounds, modern medicine is slightly different
from traditional practices. Traditional methodologies concentrate on natural
resources such as water, plants, animals, and minerals, and the majority of the
world’s population continues to value and practice them widely. In modern medi-
cine, the most frequently used antiseptic drugs for preliminary care of wounds
contain povidone-iodine/or its combination, chlorhexidine, hydrogen peroxide-
based preparation, silver nitrate formulations, silver sulfadiazine, and topical antibi-
otics. The routine clinical settings are typically used for the burns, cuts, and scratches
of acute skin infections. Nevertheless, a continuous or overuse of topical antibiotics
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can trigger problems related to antimicrobial resistance amongst pathogens. Thus,
consideration should be given to find an alternative methodology that improves the
healing process, whether it generally progresses or is inhibited by different agents
such as corticosteroids or anti-inflammatory agents. Natural bioactive research is
always focused on ethno-botanical knowledge, and several drugs used today have
been developed from such traditional medicinal plants. Traditional medicinal plant
preparations have been successful in wound management because of their multifac-
torial advantages, including disinfection, debridement, and the provision of an
appropriate environment for natural healing processes (Ghadi et al. 2016).

Evidence-based scientific claims on natural alternatives help to promote herbal
cures as a complementary or alternative treatment. Traditional medication has begun
to be accepted by people to fulfill their health needs through natural ways. The
Indian government has also expressed their commitment and ability to facilitate the
correct usage of traditional medicines. The Indian Medical Research Council has
been releasing many publications and has established several scientific advisory
panels working on conventional medicines and also promoting alternative therapies
for the better management of various diseases (Tandon and Yadav 2017). Involve-
ment of the alternative approach in mainstream therapy can only be possible with the
wider acceptance of such practices with scientific evidence. Issues regarding stan-
dardization and commercialization, clinical evidence, and regulatory framework for
such treatments must be resolved in order to ensure the safety and efficacy of such
products globally.

2 Traditional Medicines and Wound Therapy

Majority of traditional systems of medicine advocate the use of plant-, animal-, and
mineral-based products. They offer a wide range of medicinal plants to treat skin
conditions, including cutting, injuries, and burns. Wound healing is a dynamic and
orderly followed series of overlapping, interacting physiological processes with the
four most important phases like coagulation, inflammation, proliferation/migration/
re-epithelialization/granulation, and remodeling/maturation (Reinke and Sorg 2012;
Xue and Jackson 2015). Many medicinal plant-based preparations have been
reported to be used for the management of wounds because of their incredible ability
to influence the process of wound healing at all different phases. Extensive research
in the area of wound healing and management through plant-derived medicinal
products has been carried out, and most of the studies involve screening of plant
extracts and fractions for wound healing activity followed by bioactivity guided
isolation of active principles. Many plant drugs from Ayurveda and TCM have well
established their use in wound healing due to the presence of phenolics, flavonoids,
essential oils, and polysaccharides. Some plant species like Aloe vera, Centella
asiatica, Panax ginseng, Curcuma longa, Shorea robusta, Carthamus tinctorius,
Argyreia speciosa, Angelica sinensis, Azadirachta indica, Hypericum perforatum
have been reported with promising healing potential, and many of them are present
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in some popular products in several global markets. The combination of antioxidant,
antibacterial, anti-inflammatory, and analgesic properties of many of the herbal
products used for wounds. Products may be taken by mouth or applied directly to
the wounds.

Some of the plants which were evaluated pharmacologically for their wound
healing activity with possible underlying mechanisms have been listed in Table 1.
Some available marketed formulations were also complied with for their activity in
wound healing (Table 2).

2.1 Advantages of Drug Delivery System for Traditional
Medicines

Many of the bioactives having wound healing potential like curcumin, asiaticosides,
bacosides, and wide variety of flavonoids belong to the class of compounds having
poor solubility and permeability, which ultimately results in poor bioavailability.
Poor bioavailability of phytochemicals might also be due to their high intrinsic
activity, poor absorption, rapid metabolism, and clearance from the body. With the
advent of novel drug delivery systems, target-based delivery of bioactive have
differing benefits over traditional wound formulations. Drug delivery system tech-
nology is effective in supplying wound healing medication at a fixed rate and
delivery of actives at the target site, reducing the toxic effects with better drug
bioavailability. Incorporation of bioactive into the suitably delivery system often
significantly improves solubility, stability, reduced toxicity, enhanced biologic func-
tion, improved tissue macrophage transportation, stable absorption, and lessen
physiochemical degradation (Reddy et al. 2012; Martins et al. 2015). The advanced
nano formulations have smaller particles and a large volume-to-surface ratio that
raises the probability of biological contact and absorption at wound location (World
Health Organization 2019). These are suitable for repeated topical distribution of
medications, provoking cell to cell reactions, cell proliferation, vascularization, cell
signaling, and biomolecules needed for successful wound healing (Mihai et al.
2019). Micelles, hydrogel, nanoparticles, nanofibrer, and nanoemulsions are widely
explored approaches for the target delivery of different bioactives like aloemannans,
curcumin, epigallocatechin gallate, and dihydroquercetin (Marziyeh et al. 2018).

2.2 Quality Issues and Analytical Challenges
for the Traditional Medicines

The detection and verification of bioactives and the safety of the subsequent herbal
medicines are one of the main concerns in modern therapeutics. The analysis and
standardization of traditional medicine are subjective but phytochemical screening
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Table 1 Important traditional medicinal plants with wound healing actions

Botanical name

Vernacular
name of the
plant Details

Wound healing
activity References

Achyranthes
aspera Linn.

Aghedo Aqueous extract of
leaves at 800 mg/kg
in Swiss albino mice

Anti-inflammatory
activity, antioxidant
activity

Bhosale
et al. (2012)

Acacia catechu
Wild

Kher (Baval) Heartwood extract Antioxidant activity,
anti-inflammatory
action, tissue protec-
tant, and analgesic
activities

Stohs and
Bagchi
(2015)

Abies
webbiana Lindl

Tallish patra Leaves extract at
400 mg/kg p.o. in
Sprague Dawley rat

Anti-inflammatory
activity

Nayak et al.
(2004)

Azadirachta
indica

Neem 5% ointment of leaves
extract on rat

Anti-inflammatory,
antibacterial, antifun-
gal, and antiviral
properties

Barua et al.
(2010)

Tinospora
cordifolia

Galo/Giloy 5% ointment of leaves
extract on rat

Anti-inflammatory,
antibacterial
properties

Barua et al.
(2010)

Asparagus
racemosus

Shatavari Whole plant extract at
500 mg/kg

Anti-inflammatory
activity and preven-
tion of ulceration

Vema et al.
(2017)

Berberis
aristata

Daru Haridra Hydro-alcoholic
extract of bark at
200 mg/kg in Wistar
albino rats

Anti-granuloma
activity and anti-
inflammatory

Kumar et al.
(2016)

Caesalpinia
bonducella

Kaanchakaa Hydroethanolic
extract of seeds in
Wistar rats

Anti-inflammatory Ra et al.
(2019)

Terminalia
browniii

Saaj Methanolic extracts
of bark at 150 mg/kg
in wistar rats

Anti-inflammatory Mbiri et al.
(2016)

Curcuma longa Haldar 20% of ethanolic
plant extract in albino
rats

Inhibited the growth
of wound associated
pathogens and
increased the rate of
wound healing

Dons and
Soosairaj
(2018)

Cynodon
dactylon

Drow Aqueous extract of
the plant (15% w/w)
on Wister rats

Wound healing prop-
erty through its
antioxidative activity

Biswas
et al. (2017)

Emblica
officinalis

Amla Bark extract on
Wistar rats

Fast contraction of
wound and
antioxidant

Talekar
et al. (2017)

Vitex negundo Nirgundi/
Nagod

Leaves extract on
Wistar rats

Fast contraction of
the wound and anti-
oxidant activity

Talekar
et al. (2017)

(continued)
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Table 1 (continued)

Botanical name

Vernacular
name of the
plant Details

Wound healing
activity References

Euphorbia
characias
subsp. wulfenii

Thor 1% ointment of hex-
ane, ethyl acetate, and
methanol extract of
aerial parts of on
Swiss albino mice

Antioxidant, anti-
inflammatory, and
wound healing
activity

Özbilgin
et al. (2018)

Apis cerana
indica

Madh Medical grade honey
on rats

Reduced inflamma-
tion and cleared
infection

Maruhashi
(2020)

Terminalia
chebula

Harde/
Haritaki

10% of fruit extracts
in Wistar rats

Anti-inflammatory
activity

Nasiri et al.
(2015)

Terminalia
bellirica

Baheda Extract of leaves and
fruits at 300 mg/kg in
Wistar rat

Potent anti-
inflammatory activity
and promotes ulcer
protection

Akter et al.
(2019)

Rubia
cordifolia

Manjistha Methanolic extract of
roots and fruits in
Wistar rat

Anti-inflammatory,
antibacterial, and
antioxidant effects

Meena and
Chaudhary
(2015)

Glycyrrhiza
glabra

Jethi Madh 3% aqueous extract of
G. glabra in Sprague
Dawley rats

Promoting acceler-
ated wound healing
activity

Zangeneh
et al. (2019)

Luffa echinata Kukadvel Hydro-alcoholic
extract of fruit in
in vitro activity

Antioxidant and anti-
inflammatory activity

Bhatt et al.
(2019)

Operculina
turpethum

Nasotar Hydro-alcoholic leaf
extract in in vitro
activity

Antioxidant and
anti-inflammatory
activity

Sphaeranthus
indicus

Gorakhmundi Hydro-alcoholic fruit
extract in in vitro
activity

Antioxidant and
anti-inflammatory
activity

Cressa cretica Rudanti Hydro-alcoholic leaf
extract in in vitro
activity

Antioxidant and
anti-inflammatory
activity

Corchorus
depressus

Bahufali Hydro-alcoholic root
extract in in vitro
activity

Antioxidant and anti-
inflammatory activity

Bhatt et al.
(2019)

Cassia absus Chimed Hydro-alcoholic seed
extract in in vitro
activity

Antioxidant and
anti-inflammatory
activity

Acalypha
indica

Vanchhi-
kanto

Leaves and flowers
extract on Sprague
Dawley rats

Antioxidant activity
also used for bedsores
and wounds treatment

Yeng et al.
(2019)

Aloe Vera Kuvarpathu/
Dhritkumari

Pulp of leaves of
Wistar albino rats

Antiseptic, antiulcer,
antibacterial, antioxi-
dant, anti-
inflammatory, and
wound healing
properties

Purohit
et al. (2012)

(continued)
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Table 1 (continued)

Botanical name

Vernacular
name of the
plant Details

Wound healing
activity References

Bryophyllum
pinnatum

Ghaimari Petroleum ether,
alcohol (400 mg/kg
orally), and water
extract (2% suspen-
sion topically) of
leaves of the plant on
Wistar albino rats

Anti-inflammatory
and wound healing
property

Khan et al.
(2004)

Calotropis
gingantea

Aakdo Methanolic extracts
of the root on Wistar
albino rats

Analgesic and anti-
inflammatory activity

Maiti et al.
(2017)

Centella
asiatica

Brahmi In vitro scratch assay
on human dermal
fibroblast (HDF) and
human dermal
keratinocyte (HaCaT)
In vivo activity of
asiaticoside rich frac-
tion of leaves extract
in rabbit (40%, 10%,
and 2.5%, w/w
topically)

Antioxidative activ-
ity, wound healing
activity, and ability to
induce collagen
synthesis

Azis et al.
(2017)

Elephantopus
scaber Linn.

Galjibhi Ethanolic extract
whole plant of in vitro

Antioxidant and anti-
inflammatory activity

Qi et al.
(2020a)

Euphorbia
nerrifolia Linn.

Bhungara
Thor

Hydro-alcoholic
extract of aerial parts
of on in vitro activity

Analgesic effect and
anti-inflammatory

Qi et al.
(2020b)

Jatropha
curcas

Ratanjot 10 and 15% cream
from latex on mice

Angiogenesis activity Balqis et al.
(2018)

Ocimum
sanctum

Tulsi Aqueous extract of
leaves on rabbits

Anti-inflammatory,
immune modulatory
and free radical scav-
enging activity

Gupta et al.
(2016)

Ficus
benghalensis

Banyan Aqueous extract of
leaves on Sprague
Dawley rats

Antioxidant, wound
healing

Chowdhary
et al. (2014)

Ficus religiosa Pipal Aqueous extract of
leaves on Sprague
Dawley rats

Antioxidant, wound
healing
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Table 2 Preclinical reports on wound healing activity of some herbal formulations

Formulation Ingredients

Animal
species
under
study Wound healing actions References

Polyherbal
cream

5% aqueous extracts of
Chenopodium album,
Coccinia indica,
Momordica dioica,
Praecitrullus fistulosus,
and Trichosanthes dioica

Wistar
rats

Increased fibroblasts
cells collagenation and
angiogenesis

Shivhare
and Jain
(2020)

Gel and butter 5% ethanolic extract of
Juca (Libidibia ferrea)

Dogs Dermal healing through
wound fibroplasia also
exhibited antimicrobial
activity

Américo
et al. (2020)

Nano disper-
sion ointment

1% grape seed extract
(proanthocyanidins)

Wistar
rats

Inhibits the inflamma-
tory response also
improves the cell adhe-
sion and proliferation

Rajakumari
et al. (2020)

Chitosan-
based gel
formulation

Vitexin Sprague
Dawley
rats

Increased cell prolifera-
tion and provide
re-epithelization

Bektas et al.
(2020)

Castor
oil-based
ointments

2, 4, and 6% w/w of
extracts of Zingiber
officinale, Curcuma
longa, Aloe barbadensis,
Citrus aurantium, and
Emblica officinalis

Wistar
rats

Anti-inflammatory and
wound healing effects

Soujanya
et al. (2020)

Jatyadi
Ghrita (Ayur-
vedic dosage
forms)

Jati—Jasminum sambac;
Nimbapatra—
Azadirachta indica;
Patolapatra—
Trichosanthes dioica;
Katuka—Picrorrhiza
kurroa;
Darvi—Berberis
aristata, Nisha—
Curcuma longa;
Sariva—Hemidesmus
indicus;
Manjishta—Rubia
cordifolia;
Abhaya—Terminalia
chebula;
Madhuka—Glycyrrhiza
glabra;
Naktahva—Pongamia
pinnata;
Siktaka-Honey bee wax;
Tuttha—purified blue

Wistar
rats

The period of epitheliza-
tion of the burn wound
significantly decreased,
improvement in the per-
centage of wound
contraction

Dhande
Priti et al.
(2012)

(continued)
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Table 2 (continued)

Formulation Ingredients

Animal
species
under
study Wound healing actions References

vitriol;
Sarpi-Ghee

Jatyadi Taila
(Ayurvedic
dosage forms)

Jati—Myristica
fragrans; Nimba—
Azadirachta indica;
Patolapatra—
Stereospermum
suaveolens;
Naktamala—Pongamia
pinnata;
Sikta-Honey bee wax;
Madhuka—Glycyrrhiza
glabra;
Kushta—Saussurea
lappa; Haridra—
Curcuma longa;
Daruharidra—Berberis
aristata;
Manjishta-Rubia
cordifolia; Katurohini—
Picrorhiza kurroa;
Padmaka—Prunus
puddum; Lodhra—
Symplocos racemosa;
AbhayaTerminalia
chebula; Nilotpala—
Nymphaea stellata;
Tutthaka—copper sul-
fate; Sariva—
Hemidesmus indicus;
Naktamala beeja—seeds
of Pongamia pinnata;
Taila and water

Wistar
rats

The period of epitheliza-
tion of the burn wound
significantly decreased,
improvement in the per-
centage of wound
contraction

Dhande
Priti et al.
(2012)

Cannabidiol
with 2%
tween 80 in
saline

5 and 10 mg/kg given i.p Wistar
rat

Anti-inflammatory effect
in the early phase of
wound healing process
in oral wounds

Klein et al.
(2018)

Electrospun
curcumin/gel-
atin-blended
nanofibrous
mats

1 g of gelatin, 0.1 g of
curcumin per 10 ml of
trifluoroethanol

Sprague
Dawley
rat

Persistent inflammatory
response inhibition and
decreased monocyte
chemoattractant protein-
1 expression by fibro-
blasts, mobilization of
wound site fibroblasts by
activating the Wnt sig-
naling pathway

Dai et al.
(2017)

(continued)
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methods followed by marker specific identification and characterization is the most
common approach to ensure the quality of raw material and finished products.

Following substantial developments in modern scientific production, the quality
assurance techniques applicable to herbal goods also have a large void. For research
and development, the focus was put on utilizing single, fast, and therefore econom-
ical (i.e., TLC, HPTLC) methods for primary qualitative analysis or by using
colloquial techniques (i.e., HPLC, UV, NMR) to allow the quantitative analysis of
target or indicator molecules as well. UV spectroscopic research is being used to
identify the marker molecules from the traditional herbs qualitatively and quantita-
tively. Infrared spectroscopy, NMR, and Mass Spectroscopy are being used to
elucidate the structure of biologically active components. For standardization of
herbal formulations, the usage of spectrophotometric techniques and marker mole-
cules has its own merits and demerits. Certain chromatographic techniques like
HPLC, HPTLC, and GC have broad applicability in the characterization of bio-
actives but are not cost-effective and lacking in real time application for polyherbal
formulation standardization. (Laguerre et al. 2007; Mukherjee et al. 2011; Butt et al.
2018).

Innovations in genetic analysis have led to many advances in DNA marker
techniques as an important tool for standardization and material validation for
wound healing herbs (Ganie et al. 2015). The usage of DNA barcoding allows the
recognition of individual bioactive using small standard DNA areas, defined as a
barcode system of DNA. DNA barcoding is commonly used by the science com-
munity and industry for molecular recognition to address a broad variety of problems
of taxonomy, molecular phylogenetic, population genetics, and biogeography. Work
on DNA barcoding has made major progress in current years in the field of
traditional medicines, as examined by Qiu et al. (2017). With the help of LC-MS
and next-generation DNA sequencing techniques are used to detect the presence of
adulterants and contaminants in place of the authentic herbal drugs in market
formulations. cDNA microarray strategies have been proposed to understand the
ability of bio actives like asiaticoside to induce functional gene expression in human
dermal fibroblasts in in vitro study.

Table 2 (continued)

Formulation Ingredients

Animal
species
under
study Wound healing actions References

Polyherbal
2% and 5%
gel

Methanolic extract of
aerial parts with 4:4:2
proportion of each of
Datura stramonium
Linn., Plumbago
zeylanica Linn.,
Argemone Mexicana
Linn. respectively

Wistar
albino
rats

Antimicrobial activity,
promoted the wound
healing process and
accelerated remodeling
of damaged tissue

Dev et al.
(2019)
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2.3 Regulatory Concerns

Traditional medicine is a great source for the new drug discovery with the principles
of ethnopharmacology as a successful strategy to be followed. Although a plethora
of natural products have been tested for their wound healing properties in vitro and
in vivo, very few have reached the level of clinical trials and even rarer have been
launched successfully in the market as approved medicines. Assimopoulou and
Karapanagioti (2016) has reviewed many traditional plants from different cultures
and reported that around only 6% of plants have been systematically investigated
pharmacologically for their wound healing potential. In the perspective of this, more
intensified efforts and emerging development are required to exploit the full poten-
tial of nature to design novel wound management dosage forms (Assimopoulou and
Karapanagioti (2016). Further drug development is a very time-consuming process,
and many natural therapeutics have not sufficiently complied with the global stan-
dards for wider acceptance. Country-specific regulations and lack of harmonized
regulatory guidance for marketing and sale of safe and efficacious herbal products
are some of the major features hampering the mainstreaming of such therapeutics.

2.4 Safety Aspects

Traditional medicines are usually deemed safe, focusing upon their long-term usage
in different traditions. Scientific progress has helped to develop numerous wound
healing products to help cure wounds and associated problems. But following
administration, instances of significant adverse effects on the skin through allergic
reaction, rashes, and other skin-related problems have been found with some natural
products. The toxicity was linked in many instances to pollutants and to use of
adulterant and non-authenticated sources of the drug. Many of the TWM (traditional
wound medicine) being used as natural remedies, though, may also be highly
poisonous in some instances. Ultimately, if not correctly tested, wound medicine
can pose a chance of harmful consequences on the skin and surrounding mucosa.
Therefore, the determination of the safety aspects and clinical toxicity studies are
some of the major concerns (Wilson 2005). For an instance, honey is considered safe
to be given as a wound healing agent, rarely leading to allergic reactions or adverse
effects. However, some clinical studies reported that the use of honey may result in
itching, as well as the interaction between honey and the wound site may be painful
because of its acidic nature. However, with the growing number of clinical studies on
the safety and therapeutic efficacy of herbal products, many more herbs can be
implemented with full range of safety information being used in wound
management.
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3 Bridging the Ayurveda–Allopathy Gap for Wound
Management

Modern medicine practitioners are normally informed of the framework of western
medicine, their activity and sign of usage, drawbacks, and their role in medical care.
Though traditional medicine practices mention quite a large number of herbal/herbo-
mineral formulations for use in wound management, their widespread use in the
modern world will be possible only after these formulations are characterized in
terms of their chemical constituents and dosage, their wound healing potential is
validated through carefully designed experiments, and the molecular mechanisms
associated with their biological activity are elucidated. As a demonstration of how
the modern scientific approach can be applied for studying traditional polyherbal
formulations, we are presenting two examples here: Panchvalkal and Herboheal.

Panchvalkal is a polyherbal Ayurvedic formulation prescribed for diverse indi-
cations, such as burns, bedsores, non-healing ulcers, etc. (Joshi and Vaidya 2013).
Though it was since long assumed that its wound healing potential in part may be
dependent on its antimicrobial properties, it was pending since long to elucidate the
molecular mechanisms associated with its possible activity against wound-infec-
tive bacteria. The first report describing the quorum-modulatory effect of this ancient
formulation on different pathogenic bacteria viz. Serratia marcescens,
Chromobacterium violaceum, and Staphylococcus aureus appeared in 2018 (Patel
et al. 2018); wherein Panchvalkal at 250–750 microgram/ml, besides altering the
production of the quorum sensing-regulated pigments in these bacteria, also exerted
in vitro effect on antibiotic susceptibility, hemolytic potential, and catalase activity
of the pathogens. In vivo assay did confirm the protective effect of this panchvalkal
formulation on the nematode host Caenorhabditis elegans challenged with the
pathogenic bacteria. Repeated exposure of S. aureus to panchvalkal was not found
to induce resistance in this bacterium. Besides being capable of interfering with
bacterial intercellular communication, this formulation also was reported to possess
moderate prebiotic property. More details on its clinical use are available in Palep
et al. (2016) and the monograph on this formulation edited by Joshi and Vaidya
(2019). Recently a group led by one of the authors of the current chapter identified
molecular targets of this formulation in the notorious pathogenic bacterium Pseu-
domonas aeruginosa (Patel et al. (2019a)). This formulation in vitro was found to be
capable of affecting QS-regulated traits (biofilm, pyocyanin, pyoverdine) of Pseu-
domonas aeruginosa. It raised the susceptibility of the test bacterium to cephalexin
and tetracycline antibiotics. Even repeated exposure of the bacterium to PF did not
cause reversal of the effect of Panchvalkal formulation (PF) on QS-regulated traits of
P. aeruginosa. In vivo efficacy of PF was demonstrated in the model worm host
Caenorhabditis elegans, wherein PF-treated bacteria could kill lesser worms than
their PF-unexposed counterparts. The whole transcriptome study indicated ~14% of
the P. aeruginosa genome getting expressed differently under the influence of
PF. Major mechanisms through which Panchvalkal seemed to display its anti-
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virulence effect are the generation of nitrosative and oxidative stress, and disturbing
metal (molybdenum and iron) homeostasis, besides interfering with QS machinery.

Another polyherbal wound-care formulation, whose example we are presenting
here is “Herboheal” whose formulation traces back to the folklore use of its crude
form by certain tribal populations. Its antipathogenic efficacy against three
multidrug-resistant strains of gram-negative bacterial pathogens often associated
with wound infections was investigated by Patel et al. (2019a). Herboheal at
�0.1% v/v inhibited in vitro production of QS-regulated pigments in
C. violaceum, S. marcescens, and P. aeruginosa by 19–55%. It seemed to disturb
bacterial QS by acting as a signal-response inhibitor. This formulation suppressed
the hemolytic activity of all three bacteria by�18–69%, while eliciting their catalase
activity by �8–21%. Herboheal inhibited P. aeruginosa biofilm formation up to
40%, reduced surface hydrophobicity of P. aeruginosa cells by �9%, and increased
(25%) their susceptibility to lysis in presence of human serum. Exposure of these test
pathogens to Herboheal (�0.025% v/v) could effectively reduce their virulence
towards the nematode host C. elegans.

Repeated subculturing of P. aeruginosa on the Herboheal-supplemented growth
medium was not found to induce resistance to Herboheal in this notorious pathogen,
and this polyherbal preparation also exerted a post-extract effect (https://doi.org/10.
32388/359873) on P. aeruginosa, wherein virulence of the Herboheal-unexposed
daughter cultures (of the Herboheal-exposed parent culture) was also attenuated.
Molecular mechanisms associated with anti-infective property of Herboheal against
another important pathogen, Staphylococcus aureus, were investigated by Patel et al.
(2019b). This formulation had an inhibitory effect on bacterial growth and
QS-regulated pigment (staphyloxanthin) production at �0.025%v/v. It not only
inhibited S. aureus biofilm formation, but eradicated pre-formed biofilm too effec-
tively. This formulation raised bacterial susceptibility to human serum heavily while
compromising its hemolytic potential. Herboheal-treated bacteria expressed signif-
icantly reduced virulence towards the nematode worm C. elegans. Even repeated
exposure of S. aureus to this polyherbal formulation was not observed to give rise to
resistant phenotype. Whole transcriptome analysis indicated genes associated with
virulence, quorum sensing, hemolysis, enzyme activity, transport, basic cellular
processes, and transcriptional regulators as the major targets of Herboheal in
S. aureus.

Above mentioned studies validate the traditional use of two different polyherbal
formulations in wound care by demonstrating their efficacy against pathogenic
bacteria commonly present in infected wounds. Information on the molecular targets
of both above polyherbal formulations identified in two different pathogens can be
useful in the development of novel anti-infectives against wound-infective bacteria.
Such investigations on traditional formulations from a modern science perspective
are a good demonstration of the therapeutic utility of the “polyherbalism” concept,
inherent to many traditional medicinal practices of Asian origin. It also exemplifies
the utility of modern “omics” tools for validation of the traditional medicine.
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4 Latest Technologies for Wound Management

With the advent of the modern nano material concept, wound treatment materials are
currently being marketed in the form of nano scaffolds, gels, films, and woven
fabrics. The discovery of electrospinning is an advanced and effective method that
produces fine fibers using electrical fields that can be reduced to nanometers that
produce fiber pads for wound care. Because of the scaffolding design, these nano
fibrous pads help in cell proliferation and can facilitate absorption of nutrients,
exchange of gases, and excretion of waste (Zhang et al. 2007). Publications on
electrospun matrices combined with allopathic drugs with various fiber phenotypes
are known in different fields of study (Wilson 2005). Electrospinning matrices
introduced for traditional medicines have generated considerable attention in the
medical profession. This is considered to be made of complex carbohydrates, hemi-
celluloses, anthraquinones, and antioxidants that can be spread on wounds for
topical use (Marziyeh et al. 2018). It is also well known that curcumin spontaneously
facilitates the production of collagen during the wound healing process. Chitosan
nanoparticles loaded with curcumin impregnated in collagen-alginate scaffolds have
been used successfully for diabetic wound healing with better tissue regeneration
(Karri et al. 2016).

Chronic skin wound healing is a dynamic physical phenomenon that is controlled
by various types of cells, growth factors, chemokines, and cytokines. Traditionally,
wound healing mechanisms are categorized into four synchronized stages of inflam-
mation, swelling, multiplication, and renovating how every wound needs to go
through to recover naturally (Williams et al. 1950). Active components such as
growth factors (GFs) and wound healing peptides have drawn many concerns based
on their mechanisms capable of facilitating one or more stages of healing. Numerous
formulations loaded with specific GFs were formulated for localized delivery, i.e.,
epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), nerve
growth factor (NGF), platelet-derived growth factor (PDGF-BB), etc. Many
hydrogel-based formulas have been reported for their tissue engineering potential
in wound therapy (Malafaya et al. 2007; Hasnain et al. 2010).

These days, dressings on most wounds are still unable to solve problems of
resistance to bacterial infection, protein absorption, and elevated incidence of exu-
dates. The key to satisfactorily solving the problem may be the use of inorganic
substances like clay minerals, metal cations, zeolites, etc. Such products have
demonstrated biocompatibility and the ability to promote cell adhesion, prolifera-
tion, cell differentiation, and absorption. Inorganic ingredients offer improved phys-
icochemical and biological properties of wound dressings and have proved to be
promising and easily accessible products in the treatment of chronic types of wounds
(García-Villén et al. 2020). Hydrogel with natural inorganic clay material and spring
water has been reported to accelerate wound healing with better biocompatibility in
comparison to powder samples at the same concentration (Saghazadeh et al. 2018).

Researchers also have contributed significant attention to lipid nanoparticles
(LNPs) because of their high flexibility, increased adhesion to skin and film
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formation, allowing hydration and skin integrity to be maintained, as well as more
successful absorption through the skin barriers. Owing to the natural adhesive
properties and ability to promote the healing process, some natural and biocompat-
ible polysaccharides, including alginate, are commonly used as a wound dressing
(Lee and Mooney 2012).

5 Preclinical and Clinical Research

The growing interest for Traditional Wound Healing Medicine (TWHM) by the
consumer and the immense potential of natural products has resulted in the com-
bined and holistic approach towards treatment aspects. TWHM therapy is based on
largely traditional use and clinical experience (Dorai 2012). Comprehensive
accounts on usefulness and observations from generation to generation provide
some evidence of the efficacy of wound medicine. Nevertheless, there is a require-
ment for a clinical study to get further proof of its protection and efficacy. Investi-
gating any function of traditional medicine in maintaining health, establishing a
rational approach to policymaking in traditional medicine and, finally, focusing on
how to harmonize classical medicine with modern medicine is the need of time.
Several plant species are being medically tested by various preclinical pharmaco-
logical methods and later on patients in clinical trials.

Preclinical reports on plant drug extracts rich in phytochemicals, and bioactives
like curcumin, asiaticoside, quercetin, arnebin-1, etc. are promising to offer cost-
effective therapeutics for chronic wound healing and skin regeneration
(Thangapazham et al. 2016). Unraveling possible modes of action with exact
molecular mechanisms and targets of natural products can offer new insights into
the therapeutics benefits of such bioactives in wound healing in the skin and other
tissues.

Following the principles of ethnopharmacology, systematic screening of plant
constituents may lead to a successful strategy for drug development. Assimopoulou
and Karapanagioti (2016) has reported that the majority of approved medicines for
wound healing are based on references of the traditional medicine systems,
supporting this strategy as one of the most promising one to guide the drug
development process. However, only 6% of plants have been systematically inves-
tigated pharmacologically for their wound healing potential, and more intensified
efforts and emerging advancements are needed to exploit the potentials of nature for
the development of novel medicines (Assimopoulou and Karapanagioti 2016).

The total number of natural products that successfully underwent clinical trials in
patients with wounds, ulcers, and burns is relatively very small compared with
preclinical trials reported. This could be due to the clinical trial failures attributed
to poor bioavailability, difficulties in administration and efficacy, instability, and
safety-related factors.

Majority of trials reported for the formulations have used topical application of
such bioactives for external wounds, burns, and ulcers. Further, combining such
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bioactives with any biomaterials can help solve bioavailability-related constraints
and can deliver the actives to the target sites more effectively. With the help of strong
preclinical and clinical background only, substantial therapeutic claims for the
traditional medicines can be proposed. Many traditional wound care formulations
have reached the world market by testing the ethno-medicinal arguments of various
ancient traditions.

Many plants from Ayurveda and from TCM have been evaluated and reported to
have wound healing effects owing to their antimicrobial, antioxidant, anti-
inflammatory, and angiogenesis inducing effects. The active ingredients, bioactiv-
ities, clinical uses, formulations, methods of preparation, and clinical value of
36 medical plant species have been described by Shedoeva et al. (2019). So many
species are famous wound healing products used by many cultures and ethnic groups
around the globe, such as Centella asiatica, Curcuma longa, and Paeonia
suffruticosa. Out of those listed plants, many of them, for e.g., Arctium lappa,
Angelica sinensis, Paeonia Suffruticosa, Centella asiatica, Lithospermum
erythrorhizon have been reportedly available and used in the form of ointment
successfully for wound care. Aloe vera and Sophora flavescens gels and essential
oils from sources like Blumea Balsamifera, Boswellia sacra, Calendula Officinalis,
Camellia Sinensis, Carthamus tinctorius, Cinnamonum cassia, Commiphora
myrrha, Lonicera japonica have been extensively utilized for the preparation of
spray and oils for wound management (Shedoeva et al. 2019).

We have enlisted some of the most studied traditional plants with the wound
healing effects reported along with the preclinical details in Table 1. Preclinical
evaluation of the various wound healing formulations with their mechanism of
action is listed in Table 2. While clinical evaluation of different natural products
and formulations have been listed along with clinical outcome in Table 3.

6 Limitations

Heavy metal intoxication and the presence of some endotoxins and aflatoxins in raw
material are two major issues associated with traditional medicines and or Herbal
Medicinal Products (HMPs).

Long-term use of traditional medicine has been found to contain heavy metal
toxins, which can cause serious problems. The use of Ayurvedic herbal medicine
products has been linked with lead, mercury, and arsenic poisoning. Estimated
values on daily ingestion of such heavy metals have to be established compared
with global regulatory standards.

Out of more than 6000 Ayurvedic medicines, it is estimated that 35–40% of the
Ayurvedic medicines intentionally contain at least one metal. These metal-
containing medicines are prepared through specific detoxification processes called
the Shodhana process, involving multiple heating/cooling cycles and the addition of
specific herbs and liquid medium.
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Many herbal extracts/products are found contamin wated with endotoxins (Yang
et al. 2002) depending upon the method of preparation, storage, and experimental
conditions. Endotoxins are lipopolysaccharides (LPS) correlated with gram-negative
bacteria’s cell membrane, which have distinct biological consequences.

Yang et al. (2002) reported that aqueous extract from Chromolaena odorata and
polyphenolic extract from Cudrania cochinchinensis has mitogenic effects due to
the presence of such LPS. The herbal extracts also would need to be screened for
endotoxin and often should be examined for the impact of an LPS from E. Coli in
wound healing effects and skin cell development effects in in vitro and in vivo
models. Such LPS of E. coli origin on both normal human skin fibroblasts and
keratinocytes in culture have shown stimulatory effects.

7 Future Aspects Towards Wound Care and Management

The growing usage of traditional drugs and treatments needs more clinically relevant
support for the concepts underlying interventions and treatment efficacy. Recent
wound care developments in the theoretical and biological sciences, coupled with
advancements in genomics and proteomics, may play a major role in the validity of
such therapies. Current rehabilitation involves healing medication and its delivery to
the location of concern and fulfilling that aim in clinical care. Gene and stem cell
therapies are evolving as a modern and successful path for improving wound healing
pathology. Gene encoding for growth factors or cytokines has demonstrated the
strongest ability to promote the healing of wounds. New approaches to functional
genomics may help in the understanding of the cellular processes associated with
tissue morphogenesis and enable molecular signals and routes to be classified
(Eming et al. 2014). Genomics and proteomics tools will be used to profile the
individual wounds to customize the treatment for patients. Gene therapy or cell-
based therapy that delivers angiogenesis growth factors and recombinant protein
medications can bring benefits over other tissue repair therapies. New growth factor
requirements, such as angiogenic gene sutures, autologous stem cell transplantation,
genetically altered tissue-engineered structures, and growth factor impregnated
dressings or sprays, are currently under study as promising future trends in wound
healing therapeutics (Yamakawa and Hayashida 2019).

The new drug delivery vehicles, created by nanotechnology, raise the innovative
and stimulating potential of controlled and continuous delivery of drugs through the
impenetrable skin barrier is a splendid clinical application of wound treatment
options. Small size is a core aspect, but in order to obtain effectiveness as a topical
delivery method, nanoparticles must also possess some intrinsic properties. Conse-
quently, such ingredients must be capable of adapting as a portion of their design and
targeted to applicable pathological variations.

The reactive oxidative species play a major role in significant cell damage at high
amounts and may result in cellular proliferation, which also hinders the recovery
process by disrupting cell components, DNA, proteins, and lipids (André-Lévigne
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et al. 2017). Therefore, if herbal extract has antioxidant ability and an increased
antimicrobial function, it may be a successful therapeutic agent to speed up the cycle
of wound healing. Oxidative trauma frequently takes a significant part in the cure of
compromised wounds. This oxidative stress can trigger harm to developing tissue
(Amini-Nik et al. 2018; Nethi et al. 2019).

Microcirculation is typically impaired in the case of burning wounds, due to a
reduction or interruption of blood supply, which in effect induces ischemia and
eventually reperfusion, which therefore creates oxidative stress. In theory, therapy
that might improve blood supply or scavenge the free radicals could mitigate the
harmful effects of oxidative stress. Therefore, by regulating oxidative stress, anti-
oxidants rich herbal extracts may be predicted to encourage rapid epithelization.
Botanicals with good antioxidant or free radical scavenging operation may play an
important role in tissue regeneration also (Hasnain et al. 2010).

In specific in vivo tests, both pharmaceutically and biologically, the herbal
extracts facilitate faster wound healing than control and non-medicated classes.
Numerous herbal extracts encourage the healing process that consists of active
agents such as triterpenes, alkaloids, flavonoids, tannins, saponins, anthraquinones,
and other biomolecules. In experimental animals, a number of secondary plant
isolates like alkaloids, terpenoids, phenolics have been found as active constituents
responsible for implementing tissue repair (Thakur et al. 2011), as a result, many
medicinal plants and bioactives were cited and known to have effects on wound
healing and antioxidant properties.

The capacity to precisely interpret the microbiota has been transformed with the
introduction of DNA barcoding techniques. Yet, knowledge of how the cutaneous
microbiome progressively shifts during typical stages of wound healing is limited.
The wound microbiota comprises living microbial communities (“microbiota”)
which communicate in the damaged tissues to each other and to their environments.
The wound microbiota’s function in compromised healing and development to
problems associated with infection is a field of ongoing research that has gained
from advancements in next-generation sequencing technologies. Finding alternative
ways to modulate the microbiome in the hope of improving wound healing is of
utmost importance, with increasing concerns about antibiotic over-prescription and
the development of pharmacological resistance (Burmeister et al. 2018).

8 Conclusion

In this chapter, we have highlighted wound healing potential of traditional medicines
with respect to the conventional modern medicines available for wound treatment.
Factors affecting the development of promising wound healing agents have also
been discussed so as to offer such bioactives as one of the mainstream therapeutic
options for wound management. Different approaches for the target delivery of such
potential classes of compounds can provide wider acceptance and better clinical
outcomes. Quality issues and analytical techniques, safety and regulatory concerns
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along with the clinical reports on traditional medicines and formulations have been
discussed to suggest the better future implementation of such therapies.

We present all observations in the assumption that we have had a lot to consider
from existing approaches, some of which might certainly offer different ingredients
and strategies for the clinical complexity of today. Combining traditional and
modern expertise will produce better wound healing treatments with less adverse
effects.
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Traditional Probiotics, Next-Generation
Probiotics and Engineered Live
Biotherapeutic Products in Chronic Wound
Healing

Shilpa Deshpande Kaistha and Neelima Deshpande

1 Introduction

Wounds are injuries that break the skin and other body tissues (Bryant and Nix
2012). These may be caused by cuts, abrasions, chemical, radiation or temperature
(hot or cold) burns, gunshots, surgery or an underlying metabolic condition such as
diabetes mellitus, atherosclerosis, arteriosclerosis or renal damage (Martin and
Nunan 2015). Based on their ability to heal, wounds are broadly classified as acute
wounds that typically follow the natural progression of healing irrespective of the
severity of injury typically within 4 weeks of injury onset. On the contrary, ‘wounds
that fail to go through the normal healing phases in an orderly and time bound
manner, usually taking more than three months to heal despite adequate diagnosis
and intervention measures are classified as chronic wounds’ (Frykberg and Banks
2015). Chronic wounds may occur superficially in the skin epidermis and dermis or
may be present in deep tissues. All acute wounds may progress into chronic wounds
based on infection type, inadequate blood supply, pressure on wound or incorrect
hygiene and wound care. Microbial infections are the largest cause of progression of
acute wounds into chronic wounds and strategies to prevent pathogenic infections
that hinder the wounds healing process are important to address (Drago et al. 2019).

Usual wound treatment strategies include tissue debridement, compression,
hyperbaric oxygen therapy, restoration of arterial inflow, removal of pressure,
management of underlying systemic conditions and the use of antibiotic regimens
(Han and Ceilley 2017). Despite the application of such integrated management,
chronic wounds often appear to be arrested in the inflammatory stage without further
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progression to the curative proliferation and remodelling phases. Typically, an
aggressive proinflammatory milieu and the presence of pathogenic microorganisms
perpetuate the fight mode of the system without allowing a moderation of events in
favour of healing (Frykberg and Banks 2015). Polymicrobial biofilms hosting a
myriad of pathogens are capable of orchestrating a cellular and biochemical storm
disrupting wound healing events (Scalise et al. 2015; Drago et al. 2019). Staphylo-
coccus aureus, Pseudomonas aeruginosa and Enterococcus faecalis, are some of the
main biofilm-forming organisms associated with wound infections. Biofilms
harbouring multiple drug-resistant (MDR) pathogens further decrease the effective-
ness of antimicrobial therapy (Scalise et al. 2015). The complex interplay of biofilm-
forming pathogens and chronic inflammatory milieu in recurrent chronic wounds
challenges the current wound treatment efficacy and alternative methods are increas-
ingly being explored (Scalise et al. 2015). The increasing global antibiotic resistance
threat further demands that we approach the problem by looking at out-of-the-box
solutions.

A non-conventional strategy for chronic wound care would be to address one of
the root causes of poor wound healing that involves bringing to balance the natural
host–microbe interaction (Kadam et al. 2019). Live biotherapeutics (LBP) consist of
biological products containing living organisms that can help in prevention, treat-
ment and cure of disease or conditions (Charbonneau et al. 2020). LBP encompass
within them different types of biotics and their products. Amongst these are
(a) traditional probiotics are ‘micro-organisms originally derived from fermented
foods and faecal matter, scientifically proven to confer health benefits on host’
(b) Next generation probiotics are defined as ‘live commensal microorganisms
identified on the basis of comparative microbiome analyses that, when administered
in adequate amounts, confer a health benefit on the host’, (c) Genetically engineered
LBPs include probiotics genetically engineered to be safe and those that can act as
biosensors, delivery agents etc. in addition to their general health benefits (Martín
and Langella 2019).

Beneficial microorganisms inhabiting the human body popularly known as
human microbiota play a crucial function in our health (Drago et al. 2019). Cutane-
ous dysbiosis is hence considered one of the primary causes of disruptive pathogen-
esis and delayed wound healing in chronic wounds (Sanford and Gallo 2013).
Recent metagenomics studies comparing microbiome of healthy and non-healthy
subjects have provided evidence that the use of beneficial microbiota or replenish-
ment of unhealthy tissues with beneficial microbiota can help in reversing disease
onset and severity (Sanford and Gallo 2013). The ‘gut-brain-skin axis’ model gives
credence to the interrelationship between intestinal microbiome, emotional
well-being, systemic as well local inflammations (Arck et al. 2010). The skin
encompasses complex neuroendocrine and associated lymphoid tissues as well as
phylogenetically diverse microbial communities defining its unique physiology and
wellness (Slominski 2005). Gut microbiota influences the cutaneous tissue by
enhancing absorption of nutrients with systemic immunomodulatory and hormonal
effects (Cani 2018). Hence oral probiotics have distal wellness effects on cutaneous
tissues while topical applications have also shown promising results (Yu et al. 2020).
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In this chapter, the non-vaccine preventive and therapeutic application of micro-
organisms and their products in the form of Live biotherapeutic products (LBP),
which includes traditional probiotics, next generation probiotics and engineered live
biotherapeutics administered orally or directly to the infected site for the treatment of
cutaneous chronic wounds will be discussed. Some relevant terminologies related to
LBP are defined in Box 1.

Box 1 List of Terminologies
Live Biotherapeutic Product (LBP): ‘A biological product that contains live
organisms and is applicable to the prevention, treatment or cure of a disease or
condition of human beings; and is not a vaccine, virus or delivery vector’
(Martín and Langella 2019).

Probiotic: ‘Live microorganisms that, when administered in adequate
amounts, confer a health benefit to the host’ (Martín and Langella 2019).

Prebiotic: ‘A non-digestible compound that, through its metabolization by
microorganisms in the gut, modulates composition and/or activity of the gut
microbiota, thus conferring a beneficial physiological effect on the host’
(Martín and Langella 2019).

Synbiotic/Conbiotic: ‘Dietary supplements that are a combination of
probiotics and prebiotics that benefit the host by improving the survival and
implantation of live microbial dietary supplements in the gastrointestinal tract,
by selectively stimulating the growth and/or by activating the metabolism of
one or a limited number of health-promoting bacteria’ (Martín and Langella
2019).

Parabiotic: ‘Non-living cells which when administered in sufficient
amounts confer benefits to consumers’ (Martín and Langella 2019).

Postbiotics: ‘Intracellular soluble products or metabolites secreted by live
cells which confer physiological health benefit and replace administration of
live or non-viable bacteria’ (Martín and Langella 2019).

Genobiotic: ‘Probiotics that has as main mechanism of action that brings to
a clinical improvement the change in gene expression’ (Gorreja 2019).

Metagenomics: ‘Collective genome of microorganisms from an environ-
mental sample obtained directly by isolating the genome and circumventing
culture techniques prior to using sequencing methodologies’ (Escobar-Zepeda
et al. 2015).

Metabolomics: ‘Comprehensive analysis of all the metabolites present in a
sample’ (Escobar-Zepeda et al. 2015).

Microbiome: ‘Complete collection of micro-organisms with their genome
present in an environment’ (Berg et al. 2020).

Microbiota: ‘Set of micro-organisms inhabiting an environment or host’
(Berg et al. 2020).

(continued)
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Box 1 (continued)
Next Generation Sequencing: ‘High throughput, massively parallel genome

sequencing technologies that low cost and very fast compared to traditional
DNA sequencing methods’ (Escobar-Zepeda et al. 2015).

Next Generation Probiotics (NGP): ‘Live microorganisms identified on the
basis of comparative microbiota analyses that, when administered in adequate
amounts, confer a health benefit on the host’ (Martín and Langella 2019).

Engineered Live Biotherapeutic Product: ‘Live Biotherapeutic organisms
genetically engineered or modified for the prevention, treatment or cure of a
disease or condition of human beings’ (Ozdemir et al. 2018).

2 Chronic Wounds and Factors Impeding Their Healing

Chronic wounds are the cause of significant morbidity, mortality and high economic
costs for patients (Olsson et al. 2019). Lack of proper wound healing in an orderly
and timely fashion is characterized by chronic inflammation with increased levels of
reactive oxygen species (ROS), protein degrading enzymes and cytokines leading to
cellular senescence and microbial colonization (Morton and Phillips 2016; Zhao
et al. 2016; Rahim et al. 2017). Multiple systemic and local factors can contribute to
non-healing chronic wounds, i.e. age, vascular supply, nutritional factors, immune
function and metabolic disorders (Balsa and Culp 2015). These types of wounds last
for approximately 12 months and may recur in 60–70% of the patients resulting in
high rates of morbidity (Frykberg and Banks 2015). Based on differential diagnosis,
chronic wounds may be categorized as arterial/ischemic ulcers, diabetic ulcers,
pressure/decubitus ulcers, venous ulcers and post-operative wound complications
in patients with co-morbidities (Frykberg and Banks 2015).

Arterial/Ischemic Ulcers These occur due to inadequate oxygen and nutritionally
rich blood supply (perfusion) to the affected body part resulting in tissue necrosis
and ulceration. The common etiological factors include diabetes mellitus and its
complications including vasculitis, peripheral neuropathy, peripheral artery disease,
arteriosclerosis, atherosclerosis, joint immobility, hypertension, trauma injury or
injury due to improper footwear, renal failure etc. These are usually observed on
lower extremities such as lower legs, ankles, heels or toes (Morton and Phillips
2016). Arterial ulcers are typically characterized by well-defined rounded margins
with a punched-out crater. Outer skin or nails have pale, taut, dry appearance with
hair loss, grey or yellow fibrotic base, low temperature, poor pulse and underlying
deep wounds. Wounds are typically painful and when untreated can result in
complications such as tissue necrosis and require amputation in severe conditions
(Morton and Phillips 2016).

Diabetic Ulcers These are major complications of uncontrolled diabetes mellitus
reported in about 15% of patients being treated for ulceration and gangrene in the
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lower extremities (Frykberg and Banks 2015). Frequently underlying aetiologies
include neuropathy, trauma and peripheral artery disease. Diabetic ulcers are graded
based on severity as grade 0 (intact skin), grade 1 (superficial ulcer), grade 2 (deep
ulcer to tendon, bone, or joint), grade 3 (deep ulcer with abscess or osteomyelitis),
grade 4 (forefoot gangrene) and grade 5 (whole foot gangrene). In almost 85% of
such infections, amputation is the final outcome (Zhao et al. 2016).

Pressure/Decubitus Ulcers When undue pressure is exerted on body parts such as
joints, back or heel for extended periods of time due to impaired movement, it causes
restriction of blood flow to the tissue parts resulting in sores (Morton and Phillips
2016). This is typically observed in hospital patients undergoing post-surgical
operative complications, rehabilitation centres and home care bed-rest prescribed
populations.

Venous Ulcers Chronic venous diseases such as varicose veins and chronic venous
insufficiency often result from improper functioning of the venous valves. This
causes blood to pool in veins resulting in inflammation, pain and subsequent
ulceration. These are observed in lower extremities such as lower leg or ankles
and usually present as large, superficial wounds with irregular margins. The associ-
ated oedema and atrophy causes loss of skin pigmentation. Venous leg ulcers (VLU)
is a type of recurrent chronic wound estimated to affect quality of life style, work
productivity and high health care costs (Morton and Phillips 2016).

Post-operative Wound Complications in Patients with Co-morbidities Certain
patients show an increased risk of post-operative wound infection complication
and dehiscence due to co-morbidities such as poorly controlled diabetes, hypothy-
roidism, nutritional deficiencies, peripheral vascular diseases, immunosuppressive
conditions, cancer and tobacco smoking (Delmore et al. 2017). Nutrition deficiencies
cause slow metabolic processes leading to poor wound healing post-surgery.
Reduced blood circulation leads to ischemia and compromised oxygen delivery
creates hypoxic conditions conducive to chronic non-healing surgical wounds.
Dysregulated and suppressed healing inflammatory conditions in such patients
also lead to delayed repair and increased incidence of wound infections and dehis-
cence following surgery.

2.1 Pathophysiology of Chronic Wound Healing

Normal wound healing consists of four phases which include homeostasis, inflam-
mation, proliferation and remodelling (Fig. 1) (Morton and Phillips 2016). Homeo-
stasis sets in an hour after injury and involves blood clotting and vasoconstriction.
Platelets and epithelial cells release chemokines, cytokines and growth factors which
help recruit leucocytes to areas of injury for the healing process (Ridiandries et al.
2018). Inflammation phase may occur from 5 to 7 days and is the interplay of the
immune cells and any ensuing infectious organisms. Phagocytic cells such as
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macrophages and neutrophils are recruited to pathogen-associated molecular pat-
terns (PAMP) of wound microbiota to prevent bacterial growth and phagocytose any
cellular debris. Wound macrophages also secrete growth factors to stimulate vascu-
larization and formation of a provisional extracellular matrix (ECM). Complement
and plasma proteins including antibodies enhance phagocytosis and antibody-
mediated cytotoxicity. Proliferation phase may last from 2 to 20 days based on
severity and is characterized by tissue granulation, angiogenesis and epithelializa-
tion. Angiogenesis in response to increased cytokines and growth factors such as
epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) and
tumour growth factor-β (TGF-β) and fibroplasia helps in the synthesis of granulation
tissue. In the healing phase, modulators such as interleukin 4 (IL4), interleukin
10 (IL10), glucocorticoids, prostaglandins induce reparative M2 macrophage

Fig. 1 Normal wound healing phases, chronic wound events and reversal effects by Live
Biotherapeutic application. (a) Normal wound healing: Depiction of pathophysiological phases
and events in normal wound healing process which include homeostasis, inflammation, prolifera-
tion and remodelling. (b) Chronic wounds: Corresponding events occurring in chronic wounds at
each of the phases leading to the development of non-healing wound. (c) Effect of LBP adminis-
tration in reversing the events in each phase leading to wound healing
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phenotype. The M2 macrophages secrete growth factors that induce cellular prolif-
eration, anti-inflammatory cytokines and phagocytose neutrophils in the wounds. In
the remodelling phase, provisional ECM matrix is replaced by proteoglycan and
collagen molecules (Bryant and Nix 2012; Martin and Nunan 2015).

In chronic wounds, this normal wound healing process remains disrupted and
does not usually proceed beyond the inflammation or proliferation phase despite
intervening wound management strategies (Baczako et al. 2019). Several factors
contribute to the delayed wound process that stretches beyond the normal 3-month
period observed for acute or healing wounds (Morton and Phillips 2016; Han and
Ceilley 2017). Co-morbidity factors such as diabetes, obesity, vascular insufficiency,
recalcitrant microbial infections, nutritional deficiency, ageing and factors such as
pressure and oedema in the wound environment significantly hamper the process
(Frykberg and Banks 2015). Increased pro-inflammatory cytokines, toxic ROS and
proteases lead to tissue degradation impairing wound healing. Inflammatory milieu
represented by an abundance of neutrophils is considered a biological marker for
chronic wound inflammation (Zhao et al. 2016). Neutrophils are one of the major
causes of an overproduction of pro-inflammatory cytokines such as interleukin-1 β
(IL1β) and Tumour Necrosis Factor α (TNFα), ROS and proteases that cause direct
damage to the extracellular matrix and cellular membranes leading to cell senes-
cence. Levels of various matrix metalloproteinase (MMP) such as collagenase,
gelatinase A, gelatinase B, stromelysin, neutrophil elastase and serine proteases
are markedly elevated in pressure ulcers and chronic venous leg ulcer wounds in
comparison to acute wounds (Lazaro et al. 2016). Wound fluid from chronic venous
leg ulcers is found to be rich in inflammatory cytokines TNFα and IL1β produced by
activated macrophages and neutrophils that increase MMP production with decrease
in Tissue Inhibitor of Metallo Proteinases (Morton and Phillips 2016). Growth
factors are signalling molecules that regulate cellular migration, differentiation as
well as proliferation. Deregulation of various growth factors such as platelet-derived
growth factor (PDGF), VEGF, EGF, basic fibroblast growth factor (bFGF) and
granulocyte-macrophage colony-stimulating factors (GMCSF) has been reported
in chronic wounds, events not observed in acute wounds. Lack of this anti-
inflammatory-inducing environment results in poor resolution of the inflammation
driving events and the future healing events of cellular proliferation remain in limbo
(Baczako et al. 2019). In addition, wound environments such as hypoxia, wound
desiccation, wound pressure and temperature provide multiple signals for sustaining
the state of chronic inflammation and delaying the wound healing process (Han and
Ceilley 2017). Diminished angiogenesis is a marked feature causing decreased cell
migration of endothelium progenitor cells, keratinocytes and fibroblasts essential for
tissue regeneration (Zhao et al. 2016). An important pathogenic factor is the presence
of biofilm-forming wound pathogens that are refractory to the immune response and
antibiotic regimens and perpetuates the non-healing wound saga (Rahim et al. 2017).
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3 Chronic Wound Microbiology

Most microorganisms in clinical settings are found to exist in community living
mode popularly referred to as microbial biofilms. These are typically found attached
to substrata (biotic or abiotic, solid–liquid or air-–liquid interface) wherein the
community flourishes covered by a self-secreted exopolymeric matrix protecting
its residents from the immune system or antimicrobial products (Donlan and
Costerton 2002). In the human body, normal microbiota may consist of true path-
ogens, opportunistic pathogens or commensals, all of which are reported to exist as
natural biofilms (Sanford and Gallo 2013). Infectious diseases including chronic
wounds are largely a tug-of-war between the immune response and the virulence of
the infectious agent (Scalise et al. 2015). Dysbiosis of natural microbiota plays a
significant role in augmenting pathogenic biofilm infections that prolong the inflam-
matory stage of wound healing by activating neutrophils and macrophages and
creating an inflammatory cytokine storm contributing to poor healing in chronic
wounds (Metcalf and Bowler 2013; Drago et al. 2019).

Wounds can be contaminated with both normal skin microbiota and invading
pathogens, such as the multiple drug-resistant biofilm-forming ESKAPE organisms:
‘Enterococcus caecum, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp’
amongst other bacteria and fungi. Pathogenic biofilms in wounds have been found
to be polymicrobial (widely influenced by location and environmental factors),
highly resistant to immune factors and antimicrobial treatments which are typically
the cause of persistent and recurrent infections (Wu et al. 2019). As a microbial
biofilm matures it can adapt to the changes in its surrounding by quorum sensing
signalling, allowing it to thrive in the pervading settings. Biofilms are reported to be
present in only 6% of acute wounds but over 90% of chronic wounds (Drago et al.
2019). Scanning electron microscopy of 50 chronic wound specimens were found to
contain biofilms in 6% of acute wounds and 60% biofilms in chronic wounds.
Molecular sequence analyses with denaturing gradient gel electrophoresis showed
polymicrobial communities and strict anaerobic bacteria not detected by culture
methods (James et al. 2008).

The major evidence that biofilms physically impair wound healing comes from
murine, porcine and rabbit ear wound models wherein the presence of pathogenic
biofilms significantly delayed healing and required antibiotic or debridement as
treatment regimens (Metcalf and Bowler 2013; Pereira et al. 2017). In the mouse
chronic wound model, Ps. aeruginosa biofilm delayed wound healing without
affecting the general health of the mice (Metcalf and Bowler 2013). Clinical
evidence in several case studies also highlights that biofilms exist in wounds. A
Global Wound Biofilm Expert Panel has provided a clinical focus on identification,
management and care of biofilms in chronic wounds for improved patient care
(Schultz et al. 2017).

The role of wound microbes and their compositional diversity in non-healing
chronic wounds is presented by the following studies. In a recent report, a Bayesian
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statistical model was used to model patient-to-patient variability in the identification
of microbiome changes in wounds versus healthy skin. No effect of tissue debride-
ment was found in wound microbiome of 20 outpatients with chronic wounds while
Enterobacter, a facultative anaerobic bacteria was significantly associated with
reduced healing (Verbanic et al. 2020). Next generation DNA sequencing profiled
Diabetic Foot Ulcers (DFU) microbiome of 39 patients who had not received any
oral or topical antimicrobial in 14 days before the study. While short-duration DFU
showed only the presence of Streptococcus agalactiae in two cases and S. aureus in
three cases, respectively, longer-duration DFU (�6 weeks) were highly
polymicrobial ranging from 19 to 125 different bacteria (average, 63) (Malone
et al. 2017).

In a retrospective multicentre surveillance study with 792 diabetic foot patients
from which 1803 causative organisms were isolated, 48.5% of the patients had
polymicrobial infections. The pathogen profile included 22.2% S. aureus, 7.7%
methicillin-resistant S. aureus (MRSA), 21.8% Enterococcus spp., 9.4% Ps.
aeruginosa, 8.9% Proteus mirabilis, 7.9% E. coli, 7.5% Klebsiella spp., 6.6%
Coagulase negative Staphylococci (CoNS), 5.9% anaerobics and 2.3% fungi. Of
these 15.8% were moderate and 34% high biofilm formers, respectively (Al-Joufi
et al. 2020).

Two thousand nine hundred sixty-three patients (chronic diabetic foot ulcers
(DFU) N ¼ 901; Venous leg ulcers (VLU) N ¼ 916; decubitus ulcers N ¼ 767;
non-healing surgical wounds N ¼ 370) were analyzed for the chronic wound
microbiota by 16S rDNA pyrosequencing. A high prevalence of Staphylococcus
(63%) and Pseudomonas aeruginosa (25%) was found in all wounds in addition to
anaerobic and commensal bacteria (Wolcott et al. 2016). Anaerobes found in chronic
wound microbiome include Prevotella, Peptoniphilus, Peptostreptococcus,
Anaerococcus and Fingoldia (Choi et al. 2019). A more comprehensive study of
40 different chronic DFU using bacterial tag FLX amplicon pyrosequencing
(bTEFAP) technology found that Corynebacterium sp. was the most prevalent
amongst other obligate anaerobes such as Bacteroides, Peptinophilus, Fingoldia,
Anaerococcus and Peptostreptococcus spp. (Dowd et al. 2008a). Other major genera
included frequently cultured organisms such as Streptococcus, Serratia, Staphylo-
coccus and Enterococcus spp. The authors also introduced the concept of functional
equivalent pathogroups (FEP) as ‘consortia of genotypically distinct bacteria that
symbiotically produce a pathogenic community’ (Dowd et al. 2008a). A survey of
bacterial biofilm diversity in chronic wounds (DLU, VU and PU) using denaturing
gradient gel electrophoresis (DGFE), pyrosequencing and full ribosome shotgun
sequencing, reports that major populations included Staphylococcus, Serratia,
Stenotrophomonas, Pseudomonas, Peptoniphilus, Enterobacter and Finegoldia
spp. (Dowd et al. 2008b). In another study by the same group, a comparison of
microbiome on contralateral intact skin versus diabetic ulcer reveals higher diversity
on intact skin. Wounds showed higher incidence of anaerobic bacteria
(Peptoniphilus, Finegoldia, Anaerococcus) and opportunistic pathogens such Cory-
nebacterium, Staphylococcus and E. coli. Significant differences in diversity were

Traditional Probiotics, Next-Generation Probiotics and Engineered Live. . . 255



found between intact skin and wound samples with distinct similarities between
different wound samples (Gontcharova 2010).

A longitudinal study of 88 type II diabetics with chronic foot ulcers microbiome
over 10 weeks using 16S rDNA PCR and sequencing revealed a significantly less
biodiversity than control skin. The most abundant genera on diabetics included
Staphylococcus followed by Corynebacterium, Acinetobacter and unclassified
Enterobacteriaceae (Gardiner et al. 2017).

Polymicrobial nature of 40 separate venous leg ulcer infections were evaluated
using bTEFAP titanium and metagenomics approaches (Wolcott et al. 2009).
Majority of the uncharacterized bacteria belonged to Bacteroides, Staphylococcus
and Corynebacterium species. Streptococcus, Finegoldia, Peptoniphilus, Proteus
and Pseudomonas were also found in the wounds. However, individual wounds
were found to have distinct site-specific biofilm-based microbial footprints. Inter-
estingly, in this study other microorganisms were mapped to Apicomplexa (related
to Plasmodium yoelii) and fungi such as Candida albicans, C. glabrata and Asper-
gillus were also genetically mapped but not verified (Wolcott et al. 2009). Sequence
reads closely related to dsDNA viruses such as human herpesvirus, human adeno-
virus, Staphylococcus phage, Bacteriophage B3, Corynebacterium phage and
closely related retro transcribing virus amongst others were also identified using
gene identification (Wolcott et al. 2009).

In a comprehensive study comparing microbiota of skin versus four types of
chronic wounds, S. aureus, Proteus, Helcococcus, Enterobacter and Pseudomonas
genera were found in pre-debridement wound samples, while Micrococcus,
Paracoccus and Kocuria in control skin samples. A comparison of organisms
based on their oxygen requirement revealed that the abundance of facultative
anaerobes was 20.8 � 29.7% (Enterobacter) in unhealed wounds versus
5.32 � 7.21% (Corynebacterium) in healed wounds (Verbanic et al. 2020).
Fusobacterium and Actinobacillus were found to be strongly associated in the initial
phases of healing proving the resilience and stability of skin microbiota in an equine
wound healing model (Kamus et al. 2018).

The role of mycobiota (fungi) or fungal-bacterial biofilms also plays a significant
part in chronic non-healing wounds. A cross-sectional study of mixed aetiology
without standardized treatment reported that 23% of chronic wounds contained fungi
using molecular biology methods (Dowd et al. 2011). Nuclear ribosomal internal
transcribed spacer (ITS1) sequencing was used to longitudinally profile
100 non-healing diabetic foot ulcers wherein 80% of the wounds contained fungi,
while culture-based techniques only identified fungi in 5% of colonized wounds.
Cladosporium spp. was the most abundant species followed by Candida spp.
(albicans > parasilopsis > tropicalis > glabrata > smithsonii) (Kalan et al. 2016).

These studies suggest that dominant pathogenic organisms colonize most chronic
wounds, which differ significantly in composition and diversity from commensal
bacteria.
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3.1 Commensals in the Cutaneous Microbiome

Based on culture studies and 16S rDNA metagenomic sequencing, majority of
cutaneous microbiota can be grouped into four phyla, Firmicutes (24%),
Bacteroidetes (7%), Proteobacteria (17%) and Actinobacteria (52%) and includes
Staphylococcus spp., Micrococcus spp., Acinetobacter spp., Corynebacterium spp.
and Propionibacteria spp. (Martin et al. 2010). The sub-epidermal compartments
contain higher numbers of Proteobacteria such as Burkholderia spp. and Pseudo-
monads; Actinobacteria and lower Firmicutes (Byrd et al. 2018). Moist areas of the
skin (navel, axilla, groin, sole of feet, inner knee and inner elbow) are abundant in
members of phyla Firmicutes (Staphylococcus spp.) and Actinobacteria (Coryne-
bacterium spp.). Sebaceous sites (back area, forehead, nasal sides, behind ears)
which form the anaerobic and lipid-rich environments are rich in Actinobacteria
while dry areas (forearms, hands, legs etc.) of the skin have varying biodiversity of
the four phyla (Sanford and Gallo 2013). Microbial inter-variability is often found
between individuals while intra-variability is found between various body sites and
niches. Even so, the dominant genera remain stable and include Staphylococcus,
Propionibacterium and Corynebacterium followed by Streptococcus and Pseudo-
monas in interpersonal variability (The Human Microbiome Project Consortium
2012). Besides bacteria, fungi and viruses are also present as commensals. High
throughput sequencing for pan mycobiome analysis shows that Malassezia genus is
the most predominant represented byM. restricta followed by Aspergillus, Candida
and Cryptococcus (Kalan et al. 2016). Metagenomic sequencing has identified
Human Papilloma Virus and Polyomavirus as common species of cutaneous virome
followed by Circoviruses and bacteriophages of the abundantly found bacterial
genera (Hannigan et al. 2015). Analyses of human skin virome determined by
purification of virus-like particles (VLPs), deep sequencing, ‘clustered regularly
interspaced short palindromic repeat’ (CRISPR) identification and network analyses
techniques shows the persistence of temperate cutaneous phages, which may con-
tribute to novel gene transfer amongst the microbiome (Hannigan et al. 2015).

Commensal or mutualistic microbiota are known to confer health benefits by
production of antimicrobial products, maintaining pH, competition for space and
nutrition, immunomodulation and strengthening the epithelial barrier functions (The
Human Microbiome Project Consortium 2012; Martín and Langella 2019). Surface
level proliferation of non-pathogenic wound microbiota which do not cause invasion
of underlying tissue are typically tolerated by the host and recent studies show that
they may actually help in the wound healing and repair processes (Sanford and Gallo
2013).
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4 Non-conventional Treatment Strategies of Chronic
Wounds: Live Biotherapeutics

Typically, advanced wound care strategies are applied if failure of even 50% wound
area reduction is observed after 4 weeks of conventional treatment (Frykberg and
Banks 2015). A healing approach that brings balance to the system by replenishing
the useful and removing the harmful elements can be the key to treating chronic
wounds. A direct application of our understanding of healthy human microbiome
has led to the exploration and development of a novel class of non-conventional
treatment strategies known as live biotherapeutics.

Live biotherapeutics (LBP) includes both well-defined live naturally occurring
and genetically engineered organisms for the prevention and treatment of a disease
or condition (Martín and Langella 2019; Rouanet et al. 2020). The medicinal use of
microorganisms as pharmaceutical products is being referred to as live
biotherapeutics by the US Food and Drug Administration (US FDA) and the
European Pharmacopeia (Ph.Eur). The FDA defined these as ‘a biological product
that (1) contains live organisms, such as bacteria (2) is applicable to the prevention,
treatment or cure of a disease or condition of human beings; and (3) is not a vaccine’
and by PhEur as ‘medicinal products containing live micro-organisms (bacteria or
yeasts) for human use’ (Dreher-Lesnick et al. 2017; Rouanet et al. 2020). The
desirable criteria in a LBP include safety for all age groups, non-toxicity, antibiotic
and antifungal sensitivity, genetic stability, high survivability in acidic environ-
ments, biofilm forming so as to create an effective barrier against pathogens, high
shelf life, ease of high biomass production and environmentally safe with low-risk
biocontainment (Rouanet et al. 2020).

4.1 LBP Benefits and Their Modes of Action

LBP are considered as administration of safe organisms that can confer health
benefits and curative effects to humans (Martín and Langella 2019). Several mech-
anisms proposed for the positive effect of live organisms are discussed below and
depicted in Fig. 2.

4.1.1 Adhesion, Aggregation Ability and Colonization

The ability to form a protective lining over host surfaces is an important criterion for
potential probiotics that results in transient colonization of epithelial lining and
provides competition to pathogens (Pereira and Bártolo 2016). Adhesion, aggrega-
tion and biofilm formation ensures low rates of LBP clearance and an opportunity for
the organisms to multiply and produce metabolites that promote immunomodulation
and stimulate host metabolic pathways (Monteagudo-Mera et al. 2019). Adhesions
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depend on cell surface hydrophobicity as well as the presence of adhesion promoting
surface components.

Cellular aggregation refers to the property of cells to aggregate and precipitate.
Lactobacillus spp. secrete cell aggregation factors that mediate self-aggregation as
well as act as pheromone-like factors that induce surface protein adhesins (Miljkovic
et al. 2015). Moreover, recent studies also show that probiotics (Lactobacillus
rhamnosus, L. plantarum, L. reuteri and L. fermentum) themselves are potent
biofilm formers and secrete quorum sensing signalling autoinducer peptides (AIP)
and quenching molecules that influence host cells as well as other biofilm-forming
pathogens (Spangler et al. 2019). In vitro studies with different epithelial cell lines
assess the adherence ability of probiotics and pathogen antagonism (Lopes et al.
2017; Rosignoli et al. 2018).

Fig. 2 Live biotherapeutics and their beneficial properties
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4.1.2 Competitive Exclusion

Beneficial probiotics have the ability to exert vigorous competition to incoming
pathogens for ecological niche and nutritional resources. Reduction in pH and
regulating the oxidation–reduction potential in the body by probiotic consumption
alters environments which create colonization resistance for pathogenic organisms.
The metabolites and local conditions created by probiotics help to normalize com-
mensal microbiota in the gut epithelium (Abatenh et al. 2018). In a human
keratinocyte culture model, L. reuteri ATCC 55730 reduced keratinocyte death
due to S. aureus by competitive exclusion (Prince et al. 2012).

4.1.3 Enhance Epithelial Barrier Integrity

Probiotics are found to enhance epithelial cell barriers which is a major defence
mechanism used to prevent invasiveness of pathogenic organisms (Abatenh et al.
2018). The mechanism pertains to the ability of bacteria to adhere to epithelial tissue,
form biofilms and produce metabolites that help maintain homeostasis in epithelial
barrier function. Probiotics enhance goblet cell expression and secretion of mucin
along the intestinal tract and mucosal surfaces, preventing bacterial movement and
provide a protective layer (Liu et al. 2020). The surface layer proteins of
L. plantarum interact with TLR domains and induce gene expression of F-actin
distribution increasing trans epithelial resistance (TER) levels and enhancing tight
junction stability (Liu et al. 2011). They are also reported to increase extracellular
signal-regulated kinases (ERK) phosphorylation resulting in reduced host cell apo-
ptosis (Prado Acosta et al. 2016). Short-chain fatty acids (SCFA) particularly
butyrate, which is the preferential energy source for colonic epithelial cells are
produced by probiotics which also boost tight junction protein expression, secretion
of mucin by goblet cells and reduce enterocyte senescence (Yan et al. 2007).

4.1.4 Antimicrobial Properties

The commensal microbiota contributes to host health by inhibiting pathogenic
growth and creating colonization resistance by the production of antimicrobial
products (Fijan 2016). Antimicrobial substances produced by probiotics include
organic acids (formic acid, acetic acid, phenyl lactic acid, lactic acid, benzoic
acid), acetaldehyde, acetoin, diacetyl and short-chain fatty acids (SCFA) as well as
carbon dioxide, hydrogen peroxide and bacteriocins (Fijan 2016; Abatenh et al.
2018). Lantibiotics, a class I bacteriocins containing lanthionine/βmethyllanthionine
residues such as gallidermin, epidermin, hominicin are abundantly produced by
S. gallinarum, S. epidermidis and S. hominis, respectively (Götz et al. 2014).
Coagulase negative Staphylococcus species are reported to produce bacteriocins,
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heat-stable antimicrobial peptides as well quorum sensing signalling molecules for
interspecies communication (O’Sullivan et al. 2019).

Topical application of human skin microbiota protects against S. aureus by the
production of strain and species-specific antimicrobial peptides that are synergistic
with defensins such as LL37 in pigskin and mice model (Nakatsuji et al. 2017). In a
recent survey, 21 different bacteriocins produced in seven human body sites char-
acterized by colony mass spectrophotometry, were found to inhibit opportunistic
Gram-positive pathogens such as Cutibacterium acne, S. epidermidis and MRSA.
16S rDNA sequencing revealed Bacillus spp. (licheniformis, endophyticus and
safensis) and Coagulase Negative Staphylococcus spp. (capitis, hominis,
epidermidis, simulans, warneri) as the antimicrobial producing microbiota
(O’Sullivan et al. 2019).

Staphylococcus epidermis, commensal bacteria-laden polyethylene glycol
dimethacrylate (PEG-DMA) was used to decolonize Methicillin-Resistant
S. aureus USA300 by the production of SCFA such as acetic, propionic acid and
butyric in a skin wound mice model (Kao et al. 2017). Transcriptional analysis of
commensal S. epidermis inhibiting S. aureus biofilm revealed that the
non-proteinaceous small molecule products modulated several S. aureus gene
expression including biofilm formation (Glatthardt et al. 2020). Phenol-soluble
modulins (PSM) production by S. epidermidis can cause targeting cytolysis of
Streptococcus pyogenes and S. aureus in conjunction with host immune antimicro-
bial peptides (AMP) (Cogen et al. 2010).

Lactobacillus plantarum culture supernatant was found to contain pro-healing
and anti-pathogenic compounds such as antimicrobials (5-methyl-hydantoine,
benzoic acid, mevalonolactone etc.); biosurfactants (distearin, di-palmitin, and
1,5-monolinolein); anesthetics (barbituric acid derivatives) and quorum sensing
autoinducer (AI-2) precursors (4,5-dihydroxy-2,3-pentanedione and 2-methyl-
2,3,3,4-tetrahydroxytetrahydrofurane) (Ramos et al. 2015).

4.1.5 Biosurfactants

Amphipathic molecules produced by microbes as secondary metabolites that can
influence surface/interfacial tensions of fluids are biosurfactants. Probiotic
biosurfactants possess antimicrobial, antiadhesive and antibiofilm properties
(Hajfarajollah et al. 2018). L. plantarum and Pediococcus acidilactici produce
biosurfactants that inhibit adhesion and biofilms in S. aureus CMSS 26003 by
affecting the expression of quorum sensing and biofilm genes such as cidA, sarA,
icaA, dltB, sortase A, agrA (Yan et al. 2019). Cell-derived biosurfactants Lactoba-
cillus jensenii and L. rhamnosus demonstrated antimicrobial and antibiofilm activ-
ities against multiple drug-resistant A. baumannii, S. aureus and E. coli
(Sambanthamoorthy et al. 2014).
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4.1.6 Antimetabolites

Bacterial microbiome produces metabolites such as folates, indoles, serotonin,
gamma aminobutyric acids, SCFA (acetate, propionate, butyrate) and
trimethylamine N oxides which can bind to host membrane and nuclear receptors
causing physiological changes that can be beneficial or be the cause of inflammation
and disease (Abatenh et al. 2018; Liu et al. 2020). Lactococcus lactis and L. reuteri
bacterial metabolites induce anti-inflammatory T regulatory cell differentiation by
increasing transcriptional upregulation of Fox P3 and IL10 gene expression. The
metabolites also suppressed CD11c and MHC Class II expression on dendritic cells
(Fu et al. 2018). Lactobacillus plantarum DC400 co-cultured with
L. sanfranciscensis DPPMA174 produced plantaricin (PlnA), a pheromone that
shows antimicrobial activity, induces proliferation of human keratinocyte NCTC
2544 cells and increases keratinocyte growth factor 7 (FGF7), VEFG-A,
transforming growth factor-β1 (TGF-β1), and interleukin-8 (IL-8) genes (Pinto
et al. 2011).

4.1.7 Antioxidant Properties

Antioxidant properties of probiotics regulate oxidative damage to lipids, proteins
and nucleic acid caused by excessive and unmanaged ROS and hydroxyl radicals
generated in diseased conditions (Wang et al. 2017). The antioxidant properties of
different probiotic strains are attributed to various mechanisms, which include
(1) metal ion chelating ability and preventing ions from catalyzing oxidation reac-
tions; (2) Production of antioxidant metabolites such as glutathione, butyrate and
folate; (3) Downregulation of host ROS generating oxidases (NADPH, COX-2,
Cytochrome P450); (4) Upregulating host antioxidant metabolites by overcoming
vitamin B group deficiencies by probiotic supplementation and (5) Regulating host
signalling pathways (Nrf2-Keap1-ARE transcription elements, NFκB, MAPK, PKC
pathways) for promoting genes encoding antioxidant and detoxifying enzymes
(Wang et al. 2017).

4.1.8 Endocrine Effectors

Microbe–host interaction influencing changes in hormonal levels is now being
actively studied as microbial endocrinology (Neuman et al. 2015). Quorum sensing
molecules such as autoinducers crosstalk with host hormone signalling pathways.
Host hormones also affect bacterial growth and gene expression which in turn
influences host behaviour. L. reuteri mediated vagus nerve mediated pathway
controlled upregulation of hormone oxytocin resulted in enhanced wound healing.
The bacteria triggered oxytocin also activated CD4+ FoxP3+ CD25+ T regulatory
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cells providing transplantable wound healing in naïve Rag 2-deficient mice
(Poutahidis et al. 2013).

4.1.9 Angiogenic Activity

Angiogenesis is crucial for proper wound healing and probiotics such as Bacillus
polyfermenticus (B.P) used for treatment of intestinal disorders cause an increase in
cellular migration, permeability and tube formation in human intestinal microvas-
cular endothelial cells. B.P treatment of mice colitis model showed increased IL8
production with reduced rectal bleeding and disease severity. The mechanism of
angiogenesis induction was dissected to be NFκB/Interleukin 8/CXCR-2 dependant
manner (Im et al. 2009).

4.1.10 Immunomodulatory

Recent studies show that probiotics have an effect on innate, humoral and cellular
immunity (Clarke et al. 2010; Naik et al. 2012; Thaiss et al. 2016; Cheng et al. 2019;
Delgado et al. 2020). Pathogen recognition receptors such as Toll-Like Receptors
(TLR) and NOD-like receptors (NLR) are triggered by probiotic-associated molec-
ular patterns (PAMP) such as flagella, pili, surface layer proteins (SLP), capsular
polysaccharides, lipoteichoic acids and lipopolysaccharide (Thaiss et al. 2016).
These, in turn, activate MyD88, MAPK, NF-kB and other signalling pathways that
regulate growth factors, cytokine and chemokine-induced inflammation and enhance
epithelial functions (Liu et al. 2020). Lactobacilli in various studies are shown to
stimulate intra-epithelial T cells, NK cells, dendritic cells, macrophages and neutro-
phils (Salas-Jara et al. 2016; Abatenh et al. 2018).

Functional genomic studies demonstrate that probiotics play an immunomodula-
tory role by influencing inflammation related gene expression and are referred to as
Genobiotics (Gorreja 2019). Probiotics play a major role in the T cell differentiation
into Treg (Fog P3+)/Th1/Th2 type cells and the antibody isotypes being produced.
Lactobacillus reuteri can indirectly boost wound healing via upregulation of oxyto-
cin via T regulatory cells (Poutahidis et al. 2013).

Commensal bacteria such as Roseburia intestinalis, Bacteroides fragilis,
Akkermansia muciniphila can cause an increase in anti-inflammatory IL10 and
IL22 cytokine production (Gurung et al. 2020). The production of SCFA by skin
commensals suppresses skin inflammation by upregulating Treg-specific transcrip-
tion factors FoxP3 and IL10 (Schwarz et al. 2017).

4.1.11 Nutritional Amendments

Probiotics such as Lactobacilli and Bifidobacterium are natural producers of water-
soluble vitamin B group, vitamin K and digestive enzymes such as esterases, lipases,
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Co-enzymes A, Co-enzyme Q, NAD and NADP (Gu and Li 2016). Oral L. reuteri
NCIMB 30242 was used in a placebo-controlled, double blind, randomised, parallel
arm, multicentre study which showed increased serum 25-hydroxyvitamin D com-
pared to placebo group (Di Marzio et al. 2008). Probiotics enhance the absorption of
nutrients, vitamins and minerals and induce amino acids and organic acid production
(Quigley 2019). Bacteroides ovatus is a probiotic species capable of digesting
xyloglucans using enzymes not found in humans (Larsbrink et al. 2014). Probiotics
hence play a major role in fulfilling nutritional deficiencies leading to a robust
immune system capable of defending against pathogens and accelerating the
wound healing process.

The above-mentioned LBP benefits are highly genus and strain specific. While
many can be used for systemic health and disease amelioration, tailored LBP
prescription seems to be necessitated based on a detailed analysis of the microbiome
dysbiosis, metabolic profiling and requirements of a patient-specific disease condi-
tion (Lin et al. 2019). In Fig. 1, the role of LBP in chronic wound healing depicts
how oral or topical application can reverse the destructive turn of events that are
characteristic of chronic wounds and re-establish the normal wound healing process.

4.2 Live Biotherapeutic Products Types and Their
Application for Chronic Wounds

Live biotherapeutic Products (LBP) is a terminology for a pharmaceutical product
containing live organisms that can be used for the prevention/treatment/cure of
diseases (Martín and Langella 2019). Topical LBP administration can affect the
cutaneous wound environment while oral systemic administration can also help in
wound healing. Gut microbiota influences skin immunity by enhancing a balanced
systemic immune response (Salem et al. 2018). With disturbed gut immunity,
intestinal pathogens and metabolites enter the bloodstream and gather in the cuta-
neous tissue causing disease. The ‘gut-brain-skin’ hypothesis suggests that gut
microbiome modulation using probiotics can influence distal effects such as neuro-
nal skin inflammation and even hair follicle development (Arck et al. 2010).

The following kinds of LBP will hence be considered in their role in chronic
wound healing: traditional probiotics, next-generation probiotics and engineered live
biotherapeutics.

4.2.1 Traditional Probiotics

‘Probiotic’ means ‘for life’ in the Greek language. The traditional definition of
probiotics endorsed by World Health Organization (WHO), Food and Agriculture
Organization and United Nations (FAO) and The International Associate for Probi-
otic and Prebiotics (ISAPP) is as follows: ‘Probiotics are live organisms that, when
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administered in adequate amounts, confer a health effect on the host’ (Hill et al.
2014). Around 1900, Russian scientist Elie Metchnikoff, showed that live bacteria
(Lactobacillus bulgaricus) in fermented foods (yogurt and milk) improved the
gastrointestinal tract functions. In 1965, Lilly and Stillwell introduced the term
‘Probiotics’ (Gasbarrini et al. 2016).

Traditional Probiotics (TP) include specific bacterial strains of Lactic Acid
Bacteria (LAB) such as Lactobacillus (rhamnosus, lactis, acidophilus, plantarum,
casei, delbrueckii subsp. bulgaricus, gasseri, fermentum, reuteri, johnsonii,
paracasei and salivarius); Bifidobacterium (animalis subsp. lactis,
longumadolescentis, animalis, bifidum, breve); Propionibacterium acidilactici,
Leuconostic mesenteroides, Enterococcus faecium, Streptococcus thermophiles
etc. Saccharomyces boulardii, a yeast probiotic has been compared with bacterial
probiotics and found to be highly effective in treatment and prevention of diarrhoea
and intestinal illness associated with long-term antibiotic usage, Clostridium difficile
infections, and traveller’s diarrhoea (Chamberlain and Lau 2016). Topical probiotics
for skin also include Nitrosomonas eutropha, an ammonia oxidizing soil bacteria
with antibacterial, anti-inflammatory properties used for removal of skin wrinkles
(Notay et al. 2020). The lysate from Vitreoscilla filiformis, a non-pathogenic Gram
negative bacteria isolated from thermal spa waters, is being used for beneficial skin
effects with atopic dermatitis and seborrheic dermatitis symptoms (Gueniche et al.
2008).

The major origin of traditional probiotics is fermented non-digestible carbohy-
drates, dairy-based foods and intestinal origin microorganisms. GRAS (generally
recognized as safe) status has been conferred on traditional probiotics due to their
ubiquitous appearance, fermentative metabolism and contribution to host enteric
health. A combination of prebiotics (foods supporting probiotics) and probiotics are
referred to as conbiotic or synbiotic and now considered a type of functional food
(Martín and Langella 2019; Charbonneau et al. 2020). Traditional probiotics are
known to produce antimicrobial peptides, antioxidant compounds, regulate mucosal
IgA production, maintain intestinal epithelial cell integrity and even modulate bile
acid production and secretion (Abatenh et al. 2018). Therefore, such probiotics
which provide a distinct health benefit may be included in the category of live
biotherapeutics.

The other major category for probiotics are the normal commensal human body
microbiota. Gut microbiome directly or indirectly affects metabolic functions,
immune system and protection against pathogens (Cani 2018).

Recent research suggests that the microbiome is a regulator of the ‘gut-brain- skin
axis’ influencing the three-way communication between the central, enteric and
cutaneous system involving the nervous, immune and endocrine signalling (Arck
et al. 2010; Salem et al. 2018). A hypothetical model of how the ‘gut-brain-skin axis’
can be a useful model to understand the role of LBP administrations in mitigating
disease conditions as well as enhance wound healing is depicted in Fig. 3. For the
treatment of chronic wound diseases, LBP may be administered orally (probiotic as
dietary supplement), or topically at the site of the wound. A plethora of LBP benefits
may be exerted at the intestinal levels which are communicated to the brain. A
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release of stress-relieving neuropeptides can modulate the systemic inflammatory
response including sites of chronic wounds and induce reparative processes. Oral
probiotics can systemically downregulate inflammatory responses and compress
wound repair healing processes by rapid collagen deposition as well as promoting
skin allostasis (Salem et al. 2018). Topical application of specific probiotics leads to
altering wound microbiome, enhanced re-epithelization and immune response mod-
ulation (Erdman and Poutahidis 2014).

Several in vitro, mice and human experiments suggest that probiotic supplemen-
tation has many beneficial effects on skin health as well as in healing of cutaneous
wounds (Table 1). Treatment with probiotics L. brevis producing high
exopolysaccharide showed accelerated progress from granulation formation to
re-epithelialization in cutaneous wound site in Wistar rat model (Heydari Nasrabadi
et al. 2011). LAB also produces lactic acid and other antimicrobial products that
prevent the growth of pathogenic wound organisms (Liu et al. 2011; Ramos et al.
2012; Rosignoli et al. 2018; Yan et al. 2019; Sürmeli et al. 2019; Ong et al. 2020). A
large number of in vitro, experimental and in vivo studies show efficient antagonistic
activity of probiotics against wound pathogens S. aureus, Ps. aeruginosa,

Fig. 3 Live bio-therapeutics and the ‘Gut-brain-skin axis’ for chronic wound healing and repair.
Oral application of LBP leads to several benefits to gut enterocytes. These are shared to brain via
neuropeptides (e.g. serotonin) and systemically to enhance repair in affected body tissues such as
chronic wounds. A healthy brain provides signals of tissue regeneration through oxytocin. Topical
application of LBP leads to increased wound healing through beneficial properties exerted at the site
of wound as well as through the cutaneous associated lymphoid tissues (CALT)
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A. baumanii and E. coli (Wieërs et al. 2019). In an in vitro study, antimicrobial
efficacy of probiotic combination SYNBIO (1:1 L. rhamnosus IMC501 and L.
paracasei IMC 502IN) was demonstrated against chronic ulcerative lesion isolated
bacteria. Co-aggregation and adherence of SYNBIO to human keratinocytes
(HaCaT cells) and human fibroblast (NHF) was also found which could create a
protective shield preventing pathogen biofilm formation (Coman et al. 2020). In an
in vivo human plasma biofilm model, wound pathogens S. aureus, Ps. aeruginosa,
S. epidermidis, E. faecium and C. albicans were challenged to probiotics B. lactis,
L. plantarum and commensal S. cerevisiae. L. plantarum was found to inhibit Ps.
aeruginosa biofilm completely with differential effect on other pathogens.

Using in vitro human epidermis model, topical treatment with heat-treated
L. johnsonii NCC 533 (HT La1) reduced radiolabelled S. aureus adhesion by 74%
and induced the expression of antimicrobial peptide hBD-2 (Rosignoli et al. 2018).
Further, in an open-label multicentre study, topical lotion application containing HT
La1 twice daily for 3 weeks to 31 atopic dermatitis patients with S. aureus load was
correlated with local clinical improvement as well as controlled S. aureus coloniza-
tion (Blanchet-Réthoré et al. 2017).

Novel LAB probiotic wound healing patch containing LAB in an adhesive gas
permeable membrane producing nitric oxide gas was tested on ischaemic wounds in
a New Zealand white rabbit model over 21 days and showed statistically significant
wound healing (Jones et al. 2012).

Effect of probiotics on re-epithelialization has also been recorded. Primary human
keratinocyte monolayers were scratched and treated with lysates of L. reuteri,
L. rhamnosus GG, L. fermentum or L. plantarum. Increased rates of
re-epithelialization were recorded with L. rhamnosus GG lysate. Keratinocyte pro-
liferation was increased upon treatment with L. reuteri. L. rhamnosus GG treated
scratches revealed elevated expression of wound healing chemokines such as
CXCL2 and its receptor CXCR2 using microarray analysis (Mohammedsaeed
et al. 2015). Treatment of keratinocytes infected with S. aureus with 108cfu/ml of
live L. rhamnosus GG/spent culture fluid was found to increase viability of infected
keratinocytes by 65% and 57%, respectively. The mechanisms involved were
competitive extrusion and growth inhibition by live bacteria and inhibition of
adhesion to keratinocytes (Mohammedsaeed et al. 2014).

Cutaneous probiotics such as S. thermophilus increase amounts of ceramides and
phosphorylcholine through sphingomyelinase production in keratinocytes to
improve skin barrier functions and promote wound healing (Di Marzio et al.
2008). A meta-regression analysis of six animal studies with random effect model
estimated that bacteria probiotic therapies (70% kefir gel, L. fermentum,
L. plantarum, L. reuteri, L. brevis) are effective in treatment of cutaneous wounds
(Blanchet-Réthoré et al. 2017).

In diabetes rat model, perioperative supplementation of Probiatop® (four probi-
otic strains consisting of L. paracaei LPC-37, L. rhamnosus HN001, B. lactis
HN019 and L. acidophilusNCFM (dose 109 cfu) or maltodextrin as control provided
5 days prior to induction of second-intention wound resulted in better healing
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possibly due to increased vascularization, collagen type 1 deposition and reduced
inflammatory response (Campos et al. 2020).

In an oral probiotic supplementation study with 60 humans (aged 40–85 years)
suffering from grade 3 DFU, increased wound healing with a decrease in metabolic
parameters such as fasting glucose levels, lipid profiles and inflammatory markers
were recorded. Thirty individuals received probiotic capsules (L. casei,
L. acidophilus L. fermentum and B. bifidum) while 30 were treated with placebo in
addition to standard wound care treatment (Mohseni et al. 2018).

A case study of diabetic woman, age 83 years, suffering from chronic limb
ischemic wound infected with MDR K. pneumonia, E. faecalis and P. mirabilis
infections was reported. The wound was topically treated with a mixture of 100 bil-
lion cfu lyophilized probiotics bacteria of L. plantarum NCIBMB 43029 (20%),
L. acidophilus NCIBMB 43030 (20%) and Streptococcus thermophilus NCIMB
30438 (40%) three times a week for 24 days with no systemic or topical antibiotic
treatment. The wound condition stabilized in 2 weeks following topical probiotic
application with tests negative for E. faecalis (day 12 post application) and
P. mirabilis and K. pneumoniae (day 21 days post application), respectively.
Metabolomic profiling by Nuclear Magnetic Resonance (NMR) analysis of the
infected wound showed a change in at least 30% of the metabolites including
decreased pyrimidine (indicative of infection resolution), polyamine putrescine
(involved in protection from oxidative stress, phagolysosomes and biofilm forma-
tion,), lysine (reduced bacterial proteolytic activity) and 2,3-butenediol
(K. pneumonia metabolite) levels (Venosi et al. 2019).

L. plantarum was topically applied on venous ulcer lesions of 14 diabetics and
20 non-diabetic patients for 30 days. Tissue debridement, granulation formation and
complete healing were observed in 43% diabetics and 50% non-diabetics with
decreased PMN, enhanced IL8 levels in ulcer bed cells, apoptosis/necrotic cell
death and induced wound healing (Peral et al. 2010).

Pre-operative probiotic or synbiotic administrations can contribute to reduction in
post-operative surgical wound dehiscence in patients with co-morbidities such as
diabetes, hypertension, ageing, cancer surgery and pre-existing immunocompro-
mised conditions. A meta-analysis investigating randomized controlled trials testing
probiotic efficacy in controlling infection related complications in colorectal surgery
concluded that multi-strain probiotics have reduced surgical site and non-surgical
site infections. This was largely attributed to immunomodulation and pathogen
inhibition by probiotic administration (Liu et al. 2017). In a randomized controlled
double-blind study, efficacy of oral probiotic formulation containing L. acidophilus
LA5, B. lactis BB-12, L. plantarum, Saccharomyces boulardii (5.5� 109 cfu) given
1 day prior operation and continued for 15 days’ post-operation was tested in
colorectal surgery patients. Treated patients showed statistically significant lower
wound infections, post-operative pneumonia and requirement of mechanical venti-
lators (Kotzampassi et al. 2015).

Nutritional benefits, reduced pathogenic load and further immunomodulation
appear to be the major contribution of probiotic administration for wound healing
and repair. Although several in vitro and animal studies indicate positive effects of
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probiotics on wound healing, there are far fewer human studies targeting chronic
wounds.

4.2.2 Next Generation Probiotics (NGP)

Beneficial micro-organisms useful in prevention, cure or treatment of disease,
identified using comparative genomics and next generation sequencing technology,
are referred to as Next Generation Probiotics (NGP) (Martín and Langella 2019).
Metagenomics approaches, next generation sequencing and computational technol-
ogies are used for screening and characterization of microbial isolates from specific
sites and associated diseases, bypassing the traditional microbial culture and cloning
methods. Using metagenomic approaches, nucleic acid material directly extracted
from body tissues is amplified using polymerase chain reaction (PCR) with primers
targeting conserved bacterial regions. The DNA sequence of the amplicons is then
determined using high throughput Next Generation Sequencing (NGS) technology.
Comparative genomics and computational softwares are used for phylogenetic
analysis and identification of microbiome at particular body sites or tissues
(Hodkinson and Grice 2015).

Increased awareness about the human microbiome using NGS technology and the
association of disease with dysbiosis is used to identify beneficial commensal
microbiota that can be used to restore tissue homeostasis. Identification of
microbiota in wounds or disease conditions irrespective of the polymicrobial nature
and heterogeneity in terms of spatial and nutritional requirements can help determine
novel biomarkers of diseased tissue. Measurements of microbial population dynam-
ics, inflammatory markers and wound healing progression can be conducted in
consort with administration of probiotics or microbiome transplantation (Hodkinson
and Grice 2015). Identification of previously unknown species can also be
performed using advances in culturomics using high throughput culture conditions
and mass spectrometry (MALDI-TOF MS) (Bilen et al. 2018). New information
regarding the molecular burdens of pathogen and commensals at wound sites now
offers a precise and targeted preventive and curative approach for disease ameliora-
tion (Chang et al. 2019).

Strategies for isolation of NGP require comprehensive information and analyses
of microbiota composition, their metabolome and host responses from big data study
groups involving healthy, disease and experimental sets. Akkermansia muciniphila,
Bacteroides fragilis, Faecalibacterium prausnitzii, Christensenella minuta, and
Pasabacteriodes goldsteinii are some of the NGP under investigation (Chang et al.
2019). NGP bacterial species such as Bifidobacteirum longum, Eubacterium
limosum, Enterococcus hirae, Enterococcus faecium, Collinsella aerofaceins and
Burkholderia cepacia show promising effects as anticancer immunotherapeutics
(Cani and Van Hul 2015). Akkermansia muciniphila is a potential key NGP candi-
date which modulates endocannabinoid system which is a regulatory component in
targeting obesity, type 2 diabetes and inflammation (Cani et al. 2014).
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There are some encouraging reports of beneficial commensals identified using the
next generation sequencing technologies in wound healing and care. Comparative
metagenomics of healthy and diseased skin microbiome show distinct differences in
the biodiversity and microbial loads and several such studies on chronic wounds are
discussed previously in the section on wound microbiology. There are however no
NGP related human studies with chronic wound infections. Promising data have
been obtained with microbiome reconstitution studies in Atopic Dermatitis, a recur-
rent chronic skin inflammatory disease associated with S. aureus pathogenesis.
Commensal Coagulase Negative Staphylococci (CoNS) isolated from AD patients
were found to be deficient producers of antimicrobial activity against pathogenic
S. aureus in comparison with CoNS isolated from skin of healthy volunteers. An
antimicrobial peptide producing CoNS, S. hominis A9 (1 � 105 cfu) was used for
autologous microbiome transplantation onto AD patients. Once a day application
reduced S. aureus colonization while twice a day application for a week completely
inhibited S. aureus growth in AD patients (Nakatsuji et al. 2017).

Treatment with Roseomonas mucosa, a commensal isolated from healthy volun-
teers improved AD outcome in mice and cell culture model while R. mucosa from
AD patients worsened symptoms. In an open-label phase I/II safety and activity trial
with 10 adults and 5 paediatric patients (‘the Beginning Assessment of Cutaneous
Treatment Efficacy for Roseomonas in Atopic Dermatitis trial; BACTERiAD I/II’),
R. mucosa treatment resulted in a significant reduction in disease severity, S. aureus
count and topical steroid requirement. No treatment complications or adverse effects
were observed (Myles et al. 2018). Successful microbiome transplant studies in AD
provide hope that such studies can be conducted for chronic wound healing using the
appropriate microbiome diagnostics.

Most studies with NGP are in various stages of in vitro or in vivo animal studies
with few targeted towards chronic wound healing. However, many NGP candidates
are involved in regulating metabolic syndromes and disorders including inflamma-
tion and hence can be beneficial in wound healing and repair according to the ‘gut-
skin-brain axis’ hypothesis (Arck et al. 2010). Our recent understanding of chronic
wound microbiome can be translated into the oral or local application of identified
NGP commensals for wound healing and repair. Skin dysbiosis hence can be
effectively treated by administering topically or systemically distinctly identified
beneficial probiotics tailored to a particular chronic wound (Tsiouris et al. 2017).

4.2.3 Engineered LBP

Current probiotics are designed for general health and wellness and do not particu-
larly target treatment of a specific condition. Moreover, these typically form transient
microbiota and are not retained for long durations (Abatenh et al. 2018). Even the
identification and reconstitution of generalized microbiota does not provide
guaranteed treatment of diseases. The use of genetically engineered live organisms
for disease diagnosis and treatment has been envisaged by the combination of
synthetic probiotic biology, system engineering and molecular metabolomics
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(Ozdemir et al. 2018). Development of engineered probiotics producing specific
substances relevant and customized to a certain condition either constitutively or
upon induction promise to be next-gen pharmaceutical products (Sessions et al.
2017). Live engineered probiotics that also detect presence of biomarker chemicals
indicative of an altered metabolism or condition will be useful as biosensors
(Charbonneau et al. 2020). While most studies have focussed on engineering of E.
coli and L. lactis, recent studies are focused on developing genetically engineered
beneficial commensal microbiota as they are better at colonization and may increase
success in treatment strategies (Praveschotinunt et al. 2019). Bioengineered
probiotics offer great promise as delivery agents for antibiotics, bacteriocins,
immune stimulants, growth factors as well as antagonists for harmless metabolites
at the site of disease (Wang et al. 2017; Charbonneau et al. 2020). Other applications
include diagnosis and detection of disease by introducing pathogen-related quorum
sensing systems into probiotics (Zhou et al. 2020).

Engineered Lactobacillus casei BL23 producing superoxide dismutase (SOD) or
catalase (CAT) treatment of mice with Crohn’s disease had lower intestinal inflam-
mation, increased gut enzymatic activity and faster recovery (LeBlanc et al. 2011).
An auxotrophic strain of S. epidermis NRRL B-4268 containing three deletions of
alanine biosynthetic genes (two Alanine racemases alr1, alr2 and d-alanine amino-
transferase dat) was designed as a live LBP, the growth of which can be controlled
using d-alanine in the absence of antibiotics or genes coding for antibiotic resistance.
S. epidermis colonized on cultures human skin model in vitro and increased the
expression of human β defensins when supplemented with d-alanine (Dodds et al.
2020).

Introducing biomolecules in chronic wound environments deficient in factors
responsible for vascularization, re-epithelialization and immunomodulation serve in
enhancing wound healing. A key role of chemokines in regulating wound healing by
angiogenesis and leukocyte recruitment for the synthesis of growth factors and
cytokines has been delineated (Ridiandries et al. 2018). Preclinical studies in mice
administered with CCL2, CCL21, CXCL12 and CXCR4 antagonist were shown to
improve wound healing. Recombinant CXCL12 delivering transformed Lactobacil-
lus reuteri were administered topically to wounds in mice (Vågesjö et al. 2018). An
increased proliferation of dermal cells and macrophages with TGF-β production was
observed. Lactobacillus caused decreased local pH inhibiting peptidase CD26
activity with increase in local CXCL12. Treatment of hind limb ischemia model in
mice with the CXCL-12 Lactobacilli accelerated wound closure. However, in severe
hyperglycemic mice, rCXCL12 Lactobacillus was able to normalize blood flow in
the wound but help in closure only at day 1 after induction and but not thereafter.
Using an in vitro wound re-epithelialization model, CXCL12 producing L. reuteri
treatment caused increased keratinocytes and macrophages proliferation. Treatment
was found to be safe and only locally functional as neither bacteria nor the chemo-
kine was found systemically (Vågesjö et al. 2018). The technology was used to
develop ILP100, a novel investigational new product using a novel drug delivery
technology by Ilya Pharma which is approved for first-in-human/Phase I trial
(https://www.ilyapharma.se/).
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Aurealis Therapeutics developed a genetically engineered Lactococcus lactis
probiotic (AUP-16) producing three products human basic fibroblast growth factors
(FGF2, bFGF), IL4 and macrophage colony stimulating factor (CSF1) for treatment
of non-healing wounds and regenerative diseases, which has clinical trial application
approval for DFU patient trial by German Health Authority Paul-Ehrlich-Institute
(https://aurealistherapeutics.com/aurealis-therapeutics-receives-clinical-trial-applica
tion-approval-for-aup-16-diabetic-foot-ulcer-patient-trial/).

Such studies provide the basis for the development of engineered biologics
promoting chronic wound healing.

5 Regulatory and Intellectual Property Issues

According to Roots Analysis, a business research and consulting group, the LBP
market is projected to exponentially expand at the rate of 38% annually with the
USA market alone being worth 2.1 billion by the year 2030 (https://www.
rootsanalysis.com/microbiome-contract-manufacturing/). Several pharmaceutical
companies are interested in investing in the initiative and therefore regulatory and
intellectual property issues need formulation. Stringent safety regulatory protocols
are mandated due to the living nature and multifactorial mode of action of LBP
(El Hage et al. 2017). It is imperative that LBP are tested for safety, efficacy, quality
of manufacturing and consistency in well-controlled human clinical trials (Rouanet
et al. 2020).

LBP are considered as pharmaceutical products in comparison to probiotics,
which are essential dietary supplements, though many are now being considered
under LBP. Traditional probiotics intended for use as dietary supplements are
regulated by the USA Food and Drug Administration (FDA) Center for Food Safety
and Applied Nutrition and do not require FDA approval before being sold as food
products or supplements (Venugopalan et al. 2010). The safety and authenticity of
the product are monitored by the Dietary Supplement Health and Education Act
(DSHEA) of 1994 that also ensures Current Good Manufacturing Practices (GMP)
requirements in probiotic production. The law allows manufacturers of probiotics to
make health claims for the products which must be substantiated by experts in the
field. They also can declare a structure/function claim that states that the product
does not affect normal functioning of the human body. While in Europe, disease-
specific health claims cannot be made with dietary supplements. Such claims
(supported with scientific evidence) can be made with an FDA mandated disclaimer
statement (http://internationalprobiotics.org/regulation-probiotics-usa/). A category
of medicinal foods in the USA permits probiotic categories to be administered under
physicians’ supervision and intended for a specific disease condition (Lewis et al.
2019).

Unlike other Microbiotic Medicinal Products (MMP), LBP are clearly defined
and identified by both the US FDA and European Pharmacopoeia. According to the
European Union, LBP are ‘medicinal products containing live micro-organisms
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(bacteria or yeasts) for human use’ and exclude faecal microbiota transplants and
gene therapy) as per Directive 2001/83/EC (‘Council Directive (EC) 2001/83 of
6 November 2001 on the Community Code Relating to Medicinal Products for
Human Use’. 2001). In the USA, the Center for Biologics Evaluation and Research
(CBER) under the Food and Drug Administration (FDA) is yet to approve LBP as a
medicinal product (Dreher-Lesnick et al. 2017). Any substance to be used as a drug
must be approved by the FDA or an Investigational New Drug (IND) application
must be sought. In 2016, regulatory considerations were put forth for conducting
human clinical trials with LBP (U.S. Department of Health and Human Services
2016).

An engineered LBP as a therapeutic application must be with a well-characterized
microorganism in the form of investigational new drug application (IND)
(Charbonneau et al. 2020). Each engineered LBP strain is unique regarding proper-
ties related to by-products, colonization, distribution, persistence, clearance, phar-
macokinetics and toxicity. The mode of application may differ being oral, topical or
systemic depending on the type of disease or condition as in the case of chronic
wounds. Additionally, issues regarding the stability of exogenously inserted genetic
material as well horizontal transfer of antibiotic/virulence genes must be addressed.
Biocontainment of engineered LBP within the target site as well as prevention of
engineered LBP from contaminating the environment are some of the issues that
regulatory bodies are currently focussing on (Lee et al. 2018). No engineered LBPs
have yet been approved for human use, although several natural LBP are now in
clinical development stage and proof of concept are awaited for the development of
future protocols.

6 Challenges and Future Outlook

The foremost challenge for the development of LBP as mainstream therapeutics for
chronic wound healing is that most of the current probiotic studies are with hetero-
geneous strains and often uncontrolled. This has created a general public perception
linking probiotics to health providing fortified foods and nutritional supplements.
There is, however, little clinical research-based evidence to correlate the two effects.
A review of literature brings forth a gap between translation from in vitro and in vivo
laboratory studies to clinical application which requires large-scale human clinical
trials. Today, people have access to probiotics over the counter. A limited under-
standing of the beneficial role of the different formulations, strains, dosage require-
ments for a particular chronic wound healing condition remains. Even professional
opinions of the health benefits about probiotics remain invalidated. Several health
organizations are already pointing out that the indiscriminate use of probiotics as
health supplements may lead to the junking of a potentially useful strategy due to
lack of proper understanding of the host–LBP interaction. Change in this perception
requires major investments from regulatory bodies, government health departments
and physicians.
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LBPs are currently perceived as adjuncts to conventional approaches to disease
treatment. Major advantages of engineered LBP are that they can be used as delivery
agents for drugs and antibodies. It is foreseen that LBP will be conjoined with
alternative treatments in different bioformulations (herbal, antibiotics, cancer ther-
apy, drug molecules, nanoparticles etc.) delivered in diverse pharmaceutical formats
such as lozenges, capsules and wound dressings. In most cases, antibiotic-resistant
probiotics are being used in order to sustain their colonization. This, however,
remains a risk particularly in the use of probiotic strains in immunocompromised
patients and must be addressed.

Even though several new species have been identified through metagenomic
approaches, the majority of beneficial live organisms are difficult to culture in the
current paradigm. Production of LBP as a product involves several more steps
beyond screening and characterization. Current Intellectual Property laws for bio-
logicals prevent the patenting of live and naturally occurring microorganisms but
allow patenting of genetically engineered organisms. All LBP would have to go
through a series of pharmaceutical clinical trials. The final phases of pharmaceutical
product development are randomized, placebo-controlled, double-blind, clinical tri-
als with well-designed study models that can provide evidence for the clinical
benefits of prescribing LBP. Delivery systems and encapsulation need to be stan-
dardized and the risk associated with genetic mutations must be considered. Toxicity
and environmental safety issues regarding its release and subsequent consequences
must be worked out. The other challenges pertaining to commercialization of the
products lies with developing adequate and expert manpower as well as infrastruc-
ture for LBP mass production, and formulating industry standards with regards to
reproducibility issues and safe manufacturing practices.

The potential application of LBP in chronic wound healing can be revolutionary.
A targeted approach of using next generation molecular techniques and systems
biology to understand the deficient microbiome and metabolic profiles in chronic
wound patients followed by tailored reconstitution with a live biotherapeutics
product has far-reaching potential.
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Role of Probiotics in Wound Healing

Amandeep Singh, Arpna Devi, and Uttam Kumar Mandal

1 Introduction

A wound can be described as an injury or damages in the body part, particularly in
which rupture is formed in the skin or tissue (Velnar et al. 2009). This may occur due
to various reasons; among them, the most common are thermal, physical damage, or
medical and physiological conditions. According to a retrospective analysis in 2018,
Medicare beneficiaries identified that globally around 8.2 million people had
wounds with or without infections (Sen 2019). As per the market analysis, the global
wound care market has witnessed a steady increase. In 2014, the estimated global
market was around $2.8 billion, and it is expected to reach up to $15 billion by 2022
and $22 billion by 2024 (Sen 2019). This sharp rise signifies the importance as well
as the gravity of the problem, which needs special attention to address the problem of
the wound and wound-related complications.

Various types of wound are classified as lacerated, contusion, abrasion, ulcer,
incised wound, and burn wound. Laceration wound may be defined as a type of
wound which is produced by shredding of soft body tissue. It is craggy and rugged in
nature. This type of wound is often infected with bacteria from the object that causes
a cut. Contusion is the injured and destructed blood vessels beneath the skin
resulting from a rush in the skin. Abrasion, in line with the meaning of the word,
is a type of wound which is produced by rubbing the skin against a rough surface.
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The ulcer is an open wound that is mainly produced on the skin in case of impaired
blood circulation, pressure, and injury. If this type of wound is not treated in time, it
can cause severe medical complexity and ultimately may take an extended time for
healing. Incised wound results from cutting off the skin with a sharp object or
incising that causes laceration. This type of wound is usually long and deep. Burn
wound is another unique type of wound that is initiated by hot liquids, electricity,
fire, extreme heat of the Sun, and chemicals. Burn wounds are classified as the first-
degree, the second-degree, and the third-degree burn, where the degree of burn is
evaluated on the bases of size and depth of the burn.

2 Wound Healing Procedure

Wound healing is a natural repairing process of damaged tissue. Usually, wound
healing is a well-ordered and distinguished biological procedure that takes care on its
own. In the wound healing process, there is the involvement of some mediators and
several cellular components such as growth factor or cytokine, microvascular cells,
fibroblasts, keratinocytes, immune surveillance cells, blood cells like WBC and
platelets, extracellular matrix, parenchymal cells, etc. (Falanga 2005; Singer and
Dagum 2008; Bunman et al. 2017). The whole process of wound healing is classified
under four phases, namely hemostasis, inflammatory, proliferative, and maturation.
Elsewhere they are alternatively described as coagulation/ inflammation, granulation
and tissue formation, and matrix remodeling or scar formation phase.

2.1 Coagulation/Inflammatory Phase

Instantly afterward the injury, the platelets bind with the impaired blood vessels, a
hemostatic reaction starts which increases the blood-clotting cascade, avoids
extreme bleeding, and offers tentative defense to the injured area (Fig. 1a). Simul-
taneously, blood platelets deliver various cytokines, apoptosis-inducing agents, and
growth factors (Weyrich and Zimmerman 2004). The main elements of platelets
release transforming growth factors are platelet-derived growth factor (PDGF),
TGF-A1 and TGF-2 and some proactive cells like macrophages, neutrophils, and
leukocytes (Delavary et al. 2011). Phagocytic and leukocytes cells deliver reactive
species and proteases that have antibacterial properties and protect the wound from
unknown pathogens and harmful bacteria. The phase of inflammatory is followed by
the apoptosis of proactive cells; it starts progressively in some days after the
formation of the wound. The agreeable mechanism of action of inflammation is
not much understandable. Many reported studies recommend that cytokines, such as
interleukin 1, bioactive lipids, and TGF-A1 such as lipoxins, resolvins, and
cyclopentenone prostaglandin are the major component in this process (Gilroy
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et al. 2004; Eming et al. 2007). The main purpose of all these elements in the
inflammatory process is still under investigation.

2.2 Proliferative Phase: Granulation and Tissue Formation

After the completion of the proactive phase, the new phase, i.e., the proliferative
phase (Fig. 1a, b) starts. Growth factors formed by residual migration of epidermal,
inflammatory cells and dermal cells act in juxtacrine, autocrine, and paracrine ways

Fig. 1 Representation of various stages of wound healing. (a) Coagulation/inflammatory phase, (b)
Proliferative phase: granulation and tissue formation, (c) Matrix remodeling and scar formation
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to produce or preserve its cellular proliferation and cellular migration. All actions are
important in the development of granulation tissue and epithelialization (Falanga
2005).

The dermal and epidermal cells start to shift and propagate towards the wound
site. The appropriate blood supply is required for the distribution of nutrients, gas,
and metabolite exchange for the effective wound healing procedure. Initiation of an
angiogenic response is equally important. The procedure of wound healing initiates
instantly after the injury at the low level of oxygen, resulting in disturbance of blood
vessels. This causes the creation of pro-angiogenic factors. The infected site is
enriched by fibroblast PDGF, vascular endothelial growth factor (VEGF), and
growth factor 2 (FGF-2) delivered by platelets and afterward by resident cells
(Humar et al. 2002). These all are essential receptors for injury-induced angiogenic
initiation. In the reaction of process, endothelial cells degrade basement covering
that drifts to wound bed, proliferates and forms cell to cell associates and thus
ultimately forming new blood vessels (Folkman and Klagsbrun 1987). Currently,
it has been confirmed that endothelial progenitor cells (EPCs) also take part in
wound thermbolysis. Generally, EPCs are help in the blood flow in retort to the
injury and it present into the bones (Asahara et al. 1997; Liu and Velazquez 2008;
Leone et al. 2009). Consequently, EPCs embed into the refurbished microvascula-
ture, pleasing place adjoined to endothelial cells and contiguous to the injured area.

Mobilization of endothelial progenitor cell is transmitted by nitric oxide,
metalloproteinases (MMP), VEGF, and matrix, specifically MMP-9. EPC engraft-
ment and perhaps distinguishing happen in reaction to stromal cell-derived factor
and has turn into probable freshly, insulin-like growth factor (IGF) (Leone et al.
2009; Maeng et al. 2009).

2.3 Matrix Remodeling and Scar Formation

Wound reconstruction and re-epithelialization are vital steps at this stage. This
occurs due to epidermal and dermal cell migration and proliferation resulting from
usual blood flow at the wound site (Fig. 1c). Fibroblasts multiply the surrounding by
the extracellular matrix (ECM), and wound constitutes granulation tissue insertion
with recently developed blood vessels. At the same time, a provisional matrix
containing fibronectin, hyaluronic acid, collagen III, and fibrin gradually substitute
ECM primarily containing collagen I. Then occurs shrinking of wound and matrix
modification (Fig. 1c) (Wang et al. 2012). Wound contraction is principally attained
by distinguishing myofibroblasts or fibroblasts that produce in respond to TGF-A.
Tissue tension is induced in the influence of a few matrix proteins (e.g., tenascin C,
α-smooth muscle actin (α-SMA), ED-A fibronectin) (Hinz 2007). Fibroblast-
produced contraction power is subsequently put out to ECM through ECM
receptor-dependent and cytoskeleton-associated, mechanic coupling focal adhesion
complexes, i.e., integrin receptors (Hinz 2007). Further mechanism escorted shrink-
ing of the wound is fibroblast motility in significant matrix rearrangement. This
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energetic and reciprocated procedure engages a delay sequence of ECM production
and deterioration in a fibroblastic or stromal cell.

At this juncture, matrix modified enzymes, specifically MMPs, take part in the
modification of the matrix microenvironment in the favor of the recovery process.
Lastly, apoptosis of fibroblastic cells resulting in the development of a new cellular
granulating tissue with tensile strength related to normal skin (Fig. 1c) (Ehrlich et al.
1999). Even though the significance of apoptosis in granulation tissue modification
and lesion production is generally admitted, the stimulation responsible for apoptosis
is not completely defined. It is indicated that FGF-2, TGF-A, and TNF can cause a
rise in the total apoptotic cells during the final process of healing (Desmouliere et al.
1995; Akasaka et al. 2004).

3 Strategies for Wound Healing

Conventional treatment of wound involves the use of antimicrobial agents as
ointment, cream, and other semi-solid dosage forms. In developing countries, people
still rely on these conventional medications (Nimia et al. 2019). However, they are
not preferred by the majority of the patients. These medical preparations are messy,
stick and stain clothes; their applications by finger or applicator produce pain to the
affected area and incur the possibility of further microbial contamination. Woven
gauze impregnated with antimicrobial agents is preferred by hospital staff and
clinicians. It requires force to remove during subsequent applications and lead to
patient discomfort, pain, and mechanical debridement. This negatively impacts
sleep, standard of life, and movement of daily living of the patients. Patients need
to take pain killers orally or intravenously, which is inconvenient to older people and
children. The post-burn injury leaves hypertrophic scars up to 67% of the affected
persons, and they suffer from physical impairments, social stigma, and many a time a
distinct syndrome called dysmorphophobia (Hawkins et al. 2018).

It is very clear from the previous study that wounds should be healed by
protecting them from contamination and loss of moisture, which is achieved with
the help of wound dressing (Hanna and Giacopelli 1997). However, in doing so,
wound dressing delays or impairs wound healing. A good and effective wound
dressing should have an impression of biological and structural features of the skin
extracellular matrix and should deliver systematized oxygen permeability (Okur
et al. 2020). According to the nature of the action, wound dressings are divided
into three different classes: bioactive, inert/passive, and interactive (Okur et al.
2020). Various conventionally available wound dressings and their characteristics
features are highlighted in Table 1. These dressings, the majority of them being inert
or passive, bioactive and interactive in nature, have various drawbacks like sticki-
ness, cytotoxicity, dryness issues, and not used in third-degree burns. This triggers
the search for alternative and superior wound healing agents devoid of above-
mentioned patient non-compliance issues.
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From the earlier times, it has been believed that the wounds heal when they are
kept dry. But this concept was changed, and the idea of moist wound healing
emerged after the famous claim and scientific explanation by George Winter in
1960. According to one of his landmark studies, he opined that epithelial cells
require more energy during the dry wound healing and consuming much time, and
if a moist wound occurs, they require less time as compared to dry wounds (Winter
1962). Various other studies say that moist wound healing can accelerate the
inflammatory response and also helps to enhance cell proliferation and wound
healing in deeper dermal wounds (Bryan 2004). Since then, the concept of advanced
medicated dressings made of hydrogel, hydrocolloid, alginate, silicone sheets, etc.
have been introduced as advanced strategies of wound healing (Ousey et al. 2016).

4 Probiotics as Wound Healing Booster

As per the definition of WHO, probiotics are living organism when they take in
specific amount gives positive effects on the host (O’Toole et al. 2017). The most
consistently used probiotic microorganisms are Lactobacillus acidophilus,
Bifidobacterium bifidum, Saccharomyces boulardii, Lactobacillus rhamnosus, and
Bacillus coagulans. Administered orally, they are effective for the treatment of

Table 1 Commonly available wound dressings and their characteristic features

Dressing
type Formulation Disadvantages

Inert/
passive

Gauzes • Adhere to wounds
• Interrupt the wound pallet when removed
• Acceptable mainly for minor wound
• Not used for third-degree burns supervision
• Wounds with desiccate escharing

Hydrocolloids • Applied in the wound with high exudates
• Can be cytotoxic
• Support an acid pH at the application site

Bioactive Alginates • Less use in no or less exudating wounds
• Responsible for lack of moisture
• Escharing
• Change daily

Collagens • Not prescribe to administration in wounds with necrosis
• Third-degree burns

Hydrofibers • Inflammation of the wound dressing causing to extension and
reduction of adhesion

Hydrogels • May cause an excess amount of water
• Weak mechanical properties

Interactive Semi-permeable
films

• Used an extra sheet for hydrogels and foams

Semi-permeable
foams

• Can cause dryness and scabbing
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gastroenteritis, enteral dysbacteriosis, and pediatric post-antibiotic-associated diar-
rhea in humans. Presently, a variety of probiotics are being explored for wound
healing because of their immunomodulating activity (Nole et al. 2014). Strains of
Lactobacillus and Bifidobacterium have exhibited in vitro efficacy for wound
healing against commonly used pathogens like Staphylococcus aureus and Staphy-
lococcus epidermidis (Sikorska and Smoragiewicz 2013; Misic et al. 2014). Topi-
cally probiotics have been investigated by various in vitro studies and animal models
for chronic wound therapy in burn-related wounds, gastric ulcers, diabetic and
non-diabetic foot ulcers (Peral et al. 2009).

As effective wound healing agents, probiotics can provide the following advan-
tages (McFarland 2009):

• It can reduce the chances of systemic sepsis.
• It is considered safe from its established and safe oral use.
• It will lead to or promote a positive bacterial balance in the skin.
• It will improve in skin’s innate immunity.
• It is free from any type of unwanted effects.
• It is very compatible, and formulation of topical use would be easy to prepare.
• It is not much expensive.

4.1 Mechanism of Probiotic in Wound Healing

Wound healing action of probiotics is based on their battling with the pathogens at
the wound site for adhesion and utilization of nutrients and growth factors. These
help probiotics in the prevention of microbial colony formation and modulation of
host immune response (Oelschlaeger 2010). Additionally, probiotics generate low
molecular weight substances that is lactic acid and bacteriocins (Sikorska and
Smoragiewicz 2013; Sonal et al. 2014). Probiotics have immunomodulatory abilities
by activating transcriptional pathways and T-cell activation that are linked to
cytokines. Moreover, there are some elements, i.e., bacterial components or its
byproducts which activate specific receptors of the human body that initiate the
inflammatory process. The wound healing mechanism is based on the same theory of
beneficial actions obtained by probiotics in the gastrointestinal tract where bacteria
host interactions involve epithelial cells, regulatory T lymphocytes, and dendritic
cells (Wong et al. 2013). Furthermore, one study by Peral et al. (2009) has shown
that probiotics may act in wound healing through the competitive inhibition of
pathogenic P. aeruginosa and some disturbances in communication pathways of
bacteria (Wong et al. 2013). All these activities of probiotics mentioned above can
reduce bacterial load at the wound site, regulate inflammatory cell infiltration and
thus promote wound healing (Peral et al. 2009, 2010; Brachkova et al. 2011).
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4.2 Efficacy of Probiotics for Different Types of Wounds

When the skin undergoes any kind of injury, it is contaminated with the airborne
pathogen. The skin cohesion, as well as integrity, is compromised. The whole
process of natural wound healing has been described in Sect. 2. These stages are
further impacted by the development of oxidative stress (Knackstedt et al. 2020). In
recent past, growing trend has been observed to study the efficacy of probiotic
microorganisms to address wound infection and improve the speed of the healing
process (Fardin and Keri 2021). Burn wound is a special type of wound caused by
fire, chemicals, radiation, and electricity. An overall increase in the healing process
was observed when burn wounds were treated with Saccharomyces cerevisiae
(Oryan et al. 2018). Meticillin-resistant Staphylococcus aureus (MRSA) is one of
the most widely stated disease pathogens able to infect burn wounds (Karska-
Wysocki et al. 2010). Some studies have shown the ability of L. acidophilus,
L. casei to be effective against MRSA and efficacious for burn wounds. In another
study, Prince et al. (2012) tested the efficacy of L. reuteri, L. rhamnosus.

For burn-related wounds caused by S. aureus, the researchers proposed this
efficacy as the pathogen’s ability to induce keratinocyte cell death. In a recent
study, Jones et al. (2012) reported the healing efficacy L. fermentum loaded patches
for wounds caused by S. aureus. An increased wound closure concurrent with the
development of probiotic-induced nitric oxide (gNO) was established.

Diabetic foot ulcer is another chronic type of complication whose treatment is
quite challenging as this is prone to microbial infection, which takes further delay in
the healing process. There are many reports where efficacies of probiotics like
Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus fermentum, and
Lactobacillus casei have been established against the treatment of diabetic foot ulcer
(Sekhar et al. 2014; Mohseni et al. 2018; Amini et al. 2021). Gastric ulcer is another
complicated disease where use probiotics like Lactobacillus rhamnosus, Lactoba-
cillus gasseri, Lactobacillus acidophilus, Lactobacillus rhamnosus, Saccharomyces
boulardii, Lactobacillus acidophilus, and Bifidobacterium longum have shown
proven track record of good wound healing activity (Lam et al. 2007; Khoder
et al. 2016; Dharmani et al. 2013).

5 Systemic and Topical Use of Probiotics for Wound
Healing

Probiotics can be effective in two ways: Topical application will outcompete the
growth of biofilm-forming pathogens and help immune systems too overall boosting
the healing process. Oral supplementation of probiotics boosts the immune system
and defense mechanisms that can work at distant places (where wounds are present).
Probiotics can promote the process of healing by modulating the inflammatory
response. In one study, Valdez et al. (2005) reported the efficacy of a topical
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probiotic containing Lactobacillus plantarum for the treatment of burn wounds
infected with Pseudomonas aeruginosa. The observation was reconfirmed by Peral
et al. (2009) by a different study. In humans, Lactobacillus plantarum, while put on
to second- and third-degree burns, was equally beneficial as silver sulfadiazine in
declining the infection probability, promoting granulation tissue, and wound
healing. Skin commensals, organisms that reside on the skin, have also shown
beneficiary action for wound healing. In one study, Lopes et al. (2017) claimed
that Propioniferax innocua, a skin commensal, has the ability to deteriorate
established biofilms. Staphylococcus caprae is capable to provide antimicrobial
activity in opposition to methicillin-resistant S. aureus and inhibit S. aureus coloni-
zation in a mouse model (Paharik et al. 2017). Staphylococcus epidermidis gives
antimicrobial activity that particularly focuses on S. aureus and S. pyogenes and
suppresses swelling via lipoteichoic acid (Lai et al. 2009; Periasamy et al. 2012;
Christensen and Brüggemann 2014). In another study, Wang et al. (2014) proved the
efficacy of probiotic bacteria C. acnes in the mouse model to treat wound infection
caused by S. aureus through the creation of propionic acid. Few more studies with
the proof of beneficiary actions of probiotics are summarized in Table 2 (Cinque
et al. 2011).

6 Challenges in the Utilization of Probiotics for Wound
Healing

In spite of the promising aspect of probiotics for wound treatment, it has not emerged
as a medical product yet. There are few concerns that need to be addressed. The
improvement in new technologies to preserve the probiotics viability for effective
delivery as topical formulation is a challenging task. It will permit the delivery of
probiotics as an intact entity and will reach their target site. Considering the issue of
bacterial viability in stressful environments, such as lyophilization and high temper-
atures, present studies have attention on enhancing the viability of probiotics (Rokka
and Rantamäki 2010). Another major concern is that the probiotic bacteria may
translocate into the bloodstream, causing sepsis and bacteremia. The safety of topical
use of probiotics as wound healing agents has not been investigated extensively.
Their possible entry to the systemic circulation might be a major concern to the
immune-compromised patients apart from the chance of additional infection of the
existing wounds by the probiotics (Wilmink et al. 2020). There is an immunological
concern about the capacity of skin microflora in the wound healing procedure. It is
already established that the lack of microbiota can reduce healing time (Canesso
et al. 2014). On the other side, cases of wound infections increase only because of
exogenous bacteria control into the systemic and local elements of patient skin.
Thus, it is possible when equilibrium is attained within bacteria and host that permits
wound healing progression (Robson 1997). Microbial microflora can negatively
influence the wound healing procedure.
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Table 2 Published research works on wound healing activity of Probiotic

S. No Probiotic
Route of
administration

Animal/
human Outcome References

1 Bacillus subtilis Topical Male
Wistar
rats

The probiotic strain
was found to be use-
ful ulcer healing

Shahsafi
(2017)

2 Lactobacillus brevis Topical Male
Wistar
rat

The study demon-
strated a momentous
reduction in swelling
and an accelerating
of wound healing

Zahedi
et al. (2011)

3 Lactobacillus
plantarum

Topical Mice L. plantarum showed
potential effect for
treatment of
P. aeruginosa burn
wound infection

Valdez
et al. (2005)

4 Recombinant
Escherichia coli

In vitro physi-
cally
wounded
monolayer
model

– The study proved to
be a significant mile-
stone against the
clinical application
of probiotic vehicle
for wound healing
processes

Choi et al.
(2012)

5 Lactobacillus
plantarum

Topically Male
Wistar
rats

The study showed to
decrease in swelling
and promoting of
wound healing in rats

Heydari
et al. (2011)

6 Lactobacillus
plantarum

Topical Rabbit Lactobacillus
plantarum showed
great capacity as a
therapeutic agent in
reducing scarring
and burn wound
infection

Satish et al.
(2017)

7 Lactobacillus
paracasei LPC-37,
Lactobacillus aci-
dophilus NCFM,
Lactobacillus
rhamnosus HN001,
and Bifidobacterium
lactis HN0019

Oral Rat The study showed a
rapid contraction of
wound size in rats by
decreasing the pro-
active phase, speed-
ing up fibrosis, and
deposition of
collagen

Tagliari
et al. (2019)

8 Lactobacillus
reuteri

Topical Sprague
Dawley
male
rats

Lactobacillus reuteri
successfully stimu-
lated the wound
healing procedure
and produced
encouraging results

Khodaii
et al. (2019)

9 Lactobacillus
acidophilus

Orally Human This study indicates
the antibacterial effi-
cacy and

Jebur
(2010)

(continued)
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7 Conclusion

This chapter highlights the basics of wound healing mechanism and pathophysiol-
ogy involving various steps such as coagulation/inflammatory phase, proliferation
phase granulation tissue formation, and matrix remodeling. Apart from conventional
and some emerging novel strategies, use of probiotic for effective wound healing has
shown promising new areas. Various studies of probiotics in animal and human
models have confirmed compact in various skin conditions. Topical applied
probiotics for burn infections have shown to decrease the pathogen load. Therefore,
the possible use of probiotics for wound infections stays worthy to explore in the
future. As such, there is no probiotic-based formulation available in the market that
claims directly to be used for the treatment and management of wound. But, given
enough scientific evidence with further research and patient-friendly dosage forms,

Table 2 (continued)

S. No Probiotic
Route of
administration

Animal/
human Outcome References

immunological prop-
erties of Lactobacil-
lus acidophilus
through investigation
of burn wound path-
ogenic agents with
susceptibility testing

10 Saccharomyces
cerevisiae

Topical Male
Sprague
Dawley
rats

The topically applied
S. cerevisiae
improved the resto-
ration procedure of
burned wounds with
additional beneficial
actions

Oryan et al.
(2018)

11 L. bulgaricus,
L. plantarum, and
L. acidophilus

Topical Female
mice

The combination of
these probiotics
showed rapid wound
healing

Al-
Mathkhury
and
Al-Aubeidi
(2008)

12 Kefirsa natural
probiotic

Topical Rat The kefir natural
probiotic gives better
healing to serious
burn as contrast to
conventional silver
sulfadiazine
treatment

Huseini
et al. (2012)

aKefir is fermented milk drink like a thin yogurt that is prepared from kefir grains enriched with
Probiotic bacteria like Bifidobacterium bifidum, Streptococcus thermophilus, Lactobacillus aci-
dophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus kefiranofaciens, Lactobacillus
helveticus, Lactococcus lactis, and Leuconostoc species
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probiotics can prove effective alternative treatment options for various acute and
chronic wounds.
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Use of Probiotic Bacteria and Their
Bioactive Compounds for Wound Care

Sarita Devi and Prasun Kumar

1 Introduction

Various commensal microbes start to inhabit the human body at birth and remain
throughout one’s existence. In comparison to harmful and infective microbes that
can destroy the host barriers and cause disease pathogenesis, commensal microor-
ganisms found in symbiotic communities are adapted for survival without sacrificing
the integrity of the host (Thursby and Juge 2017; Lukic et al. 2017). Exploration of
the human body and the functional integration and harmonization of microbiomes
has shown that the microbiota has a vital influence on various biological functions
like modulation of the immune system and fortification against infections (Lukic
et al. 2017). The significance of commensal microbes in keeping up host well-being
has been identified initially in gut microbiome investigation. The germ-free animals
have been shown to be more susceptible to pathogen invasion (Kamada et al. 2012),
have disrupted mucosal wound healing (Hernández-Chirlaque et al. 2016), and are
more vulnerable to chemical poisoning (Breton et al. 2013). The methods that alter
its composition to strengthen the physiological, immunological and metabolic func-
tions of the host have become increasingly significant due to the major systemic and
local consequences of the gut microbiome. This resulted in the discovery of advan-
tageous microbial species (symbiotic) and increased host well-being. The lactic acid-
producing microorganisms (Lactobacillus and Bifidobacteria) are among the most
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broadly investigated microbes, most often alluded to as probiotics, which have
health benefits (Belkaid and Hand 2014).

The WHO (World Health Organization) has described the probiotic microbes as
“live microbes that confer a health benefit on the host when administered in adequate
amounts” (Mahajan and Singh 2014). These are live microbes (yeast or bacteria,
predominantly, Fig. 1), the normal microbiome’s members, which can equilibrate
the human microflora and results in the predominance of advantageous microbes for
the body (Tsiouris and Tsiouri 2017). These microorganisms help to reduce the level
of low-density lipoproteins and contribute to down-regulate inflammation and the
host’s immune response (Hakansson and Molin 2011; Jones et al. 2012a; Wong et al.
2013). They are consumed as microbial food supplements. Different terms are used
in the literature on nutrition for non-digestible fermented carbohydrates, which alter
the gut microbiome (prebiotics) by endogenous bacteria, and combinations of
probiotic microbes and prebiotics as synbiotics (Patel and Denning 2013). The
probiotic microbes have been accounted for to be advantageous for treating or
preventing various inflammatory cutaneous (skin) diseases (Hacini-Rachinel et al.
2009), respiratory tract infections (McFarland 2011), diabetes prevention and con-
trol (Rad et al. 2016), gastrointestinal (GI) disorders (Ringel-Kulka et al. 2011;
Demers et al. 2014), ulcerative colitis (Abdin and Saeid 2008) and urogenital
infections (Reid et al. 2001) to give some examples. Recent studies have also
emphasized the use of non-viable compounds of probiotic microbes, known as

YeastYeaYY stBacterial Species

Skin

Viruses Molecular tools

Fig. 1 Different inhabitants of skin microbiota
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postbiotics, as a more stable probiotics alternative (Tsilingiri et al. 2012; Volz et al.
2014; Christensen and Brüggemann 2014). Postbiotics have gained significant
importance in treating various disorders related to inflammation, where the utiliza-
tion of live microbes carries the perils linked with excessive immune system
activation.

The mode of action of microbes (probiotics) is attributed to their capability
towards the immune response improvement, contend with harmful microorganisms
for adherence at specific locations, antagonize the pathogenic microbes, and antimi-
crobial substance fabrication (Mahajan and Singh 2014). The probiotics’ health
benefits include prevention and treatment of several diseases and conditions such
as lactose intolerance, gastrointestinal disorders, necrotizing colitis, irritable bowel
syndrome, inflammatory bowel disease, allergies, numerous cancers, Upper respira-
tory infections, urogenital infections, Arthritis, AIDS, different oral health diseases
such as prevention of dental caries, halitosis and periodontal diseases and many other
effects which are under exploration (Mahajan and Singh 2014). The outcome of
numerous clinical studies suggests that the probiotic microbes may use their advan-
tageous effect for the treatment and prevention of various disorders to accomplish
human well-being. The typical foods containing probiotics include kefir, yogurt,
miso, sauerkraut (non-pasteurized), tempeh, sourdough bread, kimchi, and pickles
(in brine, not vinegar), e.g. the L. acidophilus containing yogurt, which gives the
yogurt, its valuable gastrointestinal health-related properties (Rezac et al. 2018).

The studies further suggest that some microbial probiotic strains and the mixture
of probiotics such as a milk drink kefir (fermented) can have a positive influence on
the wound repair process either by per os administration or topical application
(Rodrigues et al. 2005; Huseini et al. 2012; Bourrie et al. 2016). The main reason
for mortality and morbidity is impaired wound healing for a substantial portion of the
population (Menke et al. 2007). Moreover, a higher degree of focus and research
investigation is required to assess novel pharmaceutical compounds that can enhance
wound healing and reduce the occurrence of chronic wounds and ulcers due to the
substantial financial encumbrance and social influence of wound demands (Frykberg
and Banks 2015). This book chapter reviews current information about probiotics on
both GI epithelium and skin associated with their therapeutic properties. It also
addresses their antimicrobial potential and identifies molecular and cellular mecha-
nisms of action, suggesting innovative approaches to treating wound healing
disorders.

2 Effect of Probiotics on Skin Microflora

The inherent microbiota flourishing within the gut of any individual is known to play
an important role in gut-health, but what about our skin? Many millions of microbes
live there, and during wound healing, the probiotic microbes may have enormous
ability to prevent infections. The skin can serve as a physical barrier with numerous
functions, e.g. thermoregulation, fluid homeostasis, metabolic and neurosensory
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functions, immune responses and primary protection against infection as the skin’s
harsh environment prevents many microorganisms from inhabiting its surface
(Romanovsky 2014; Sugiura et al. 2014). The skin contains two different kinds of
microbe, i.e. resident and transient microbial strains (Table 1). The coagulase-
negative Staphylococci (S. epidermidis), Propionibacteria (P. avidum, P. acnes
and P. granulosum), Bacillus sp., Acinetobacter, Micrococci, and Corynebacteria
are the most common resident species of skin. The transient microbial species
include E. coli, P. aeruginosa, and S. aureus. The resident species are capable of
establishing and reproducing the microbial colonies skin, thus offering an advanta-
geous environment, while transient often refers to non-advantageous microbes
which cannot produce colonies on the skin surface (Christensen and Brüggemann
2014).

In the competitive exclusion of antagonistic microbes that cause skin infection,
skin processing proteins, sebum, and free fatty acids, the microbiota of the skin have
a significant function. Intriguingly, the inhabitant microflora can be seen as “bene-
ficial” to the healthy host but can be detrimental to the host with disrupted skin
integrity (Cinque et al. 2011). The harmful microbes are preparing to advance into
the body to colonize it at the point when the skin barrier is injured. This is especially
perilous if the antibiotics-resistant harmful microbe in question causes significant
harm to skin or other tissues (Cinque et al. 2011). Normally, S. aureus is present in
the nose regions of about 30% of the population and generally does not cause skin
damage. However, when the skin barrier is broken, S. aureus may result in serious
infections. S. aureus is notorious for biofilms production, as soon as it occurs, the
microbe appends to a surface, e.g. the sugar molecules and the skin create a matrix
(protective) around the microbe. These films are generally antibiotic-resistant and
are thus pose major health jeopardy (Kumar et al. 2020). S. aureus can cause sepsis
when it spreads to the blood, the main cause of a child’s death who has experienced
serious burn injuries (Sakr et al. 2018). Another harmful microbe P. aeruginosa, also

Table 1 List of different probiotic strains

Lactobacillus Bifidobacterium Enterococcus Lactococcus Streptococcus
L. acidophilus
L. casei
L. brevis
L. fermentum
L. curvatus
L. gasseri
L. reuteri
L. johnsonii
L. rhamnosus
L. salivarius
L. plantarum

B. thermophilum
B. animalis
B. breve
B. longum
B. infantis
B. adolescentis

E. faecium
E. faecalis

L. lactis S. thermophilus

Propionibacterium Saccharomyces Kluyveromyces Leuconostoc Pediococcus
P. jensenii
P. freudenreichii

S. cerevisiae
S. boulardii

K. lactis L. mesenteroides P. acidilactici

Source: Lew and Liong (2013)
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identified to develop biofilms, is frequently present in infected wounds caused by
burns. Normally present in a gut, this pathogenic microbe attacks and colonizes the
skin, accompanied by other body organs, e.g. the lungs and liver in immune-
compromised persons such as blistered patients by burns (Church et al. 2006).

The microorganisms may even cause atopic dermatitis (AD), rosacea, eczema,
acne, and psoriasis. Although there are insufficient investigations following the
probiotic’s approach for the treatment of microbiota associated cutaneous diseases,
it is fascinating to believe that usage of probiotic (topical) may be helpful for the
prevention and/or treatment of microorganisms-related skin disease (Simmering and
Breves 2009; Krutmann 2009). Significant evidence is also available in the prior art
showing that probiotic microbes are effective for atopic dermatitis prevention,
mostly in children during the post- and pre-natal periods (Martinelli et al. 2020).
The controversial evidence remains, however, that the probiotic strains are success-
ful in treating atopic dermatitis, and for this, further research is required. While
presently not acknowledged as standard dermatological clinical procedures, some of
the investigational studies are also there, indicating promising outcomes in wound
healing, acne vulgaris, photo-protection with probiotics, and eczema treatment.
While such outcomes are encouraging, more large-scale trials must be carried out
before the incorporation of such treatment modalities into clinical practice (Rather
et al. 2016).

Although the precise “probiotics-action” mechanism on the skin is not clear, it
was proposed that microbial strains may produce a shielding barrier that averts
overlaying malicious microbes (known as bacterial interference) from being detected
by skin cells. Such an incidence can hinder the communication of Langerhans cells
and keratinocytes with the immune system, thus avoiding an immune response
(Fijan et al. 2019). It has likewise been noticed that antimicrobial properties of
probiotics, such as antibiotics, may be used as alternatives to traditional therapies. In
addition, the probiotics’ immune-modulating effects help to reduce immune
responses such as inflammation, redness and irritation (Lukic et al. 2017).

Stokes and Pillsbury conjectured a correlation in 1930 between an individual’s
stress or emotional state and stomach health, which further affects the well-being of
the skin. They were well ahead of their time with their observations and hypothesis,
and recent studies provide convincing proof of the correlation between these three
different anatomical regions (Bowe and Logan 2011). A somewhat different
approach to improving the skin’s microbiota is done in the field of cosmetic
treatments by topical treatment. A variety of items are available in the market, the
majority of them are in the form of probiotic skin care creams. Although most
research on the probiotics beneficial effects on the health status of skin have been
performed through the oral administration, there is substantial proof that direct
application on the skin is also a viable mode of treatment (Guéniche et al. 2008;
Huseini et al. 2012). Future research could help to elucidate variations in the
effectiveness of probiotics administered topically and orally. While antibiotics are
used in wound care, the resistance to multiple drugs is widespread and infections
persist. Various alternatives are being searched by scientists. Can microbes have
much-needed strategies to avert infections that are life-threatening?
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3 Fermented Probiotic Supernatant/Extract and Wound
Healing

According to the theory of the gut–brain–skin axis, the use of probiotics modulates
the microbiome that may have significant benefits on skin inflammation and skin
homeostasis (Arck et al. 2010).

Increasing evidence suggests that microbial compounds, such as fragments of the
cell wall, intra- and/or extra- cellular metabolites and even dead bacterial cells, can
evoke some skin immune responses and improve the function of the skin barrier.
Antimicrobial and immunomodulatory activities have been confirmed in extracts
(cell-free) of lactic acid bacteria that have probiotic potential, indicating the use of
probiotics in non-viable forms (Iordache et al. 2008). The alternative option may be
natural cell components and metabolites in cases where the delivery of live cells is
not feasible. In addition, at room temperature, cell metabolites and components are
more stable than viable cells and are thus more acceptable for topical applications.
Human clinical trials have shown that probiotics exert not only dermal benefits via
the gastrointestinal pathway, but also via topical applications. By means of in vitro
studies, Iordache et al. (2008) showed that the expression of soluble virulence factors
by opportunistic dermal pathogens such as Pseudomonas aeruginosa and Staphylo-
coccus aureus was inhibited by cell-free extracts of lactic acid bacteria with probi-
otic potentials such as Lactobacillus plantarum, L. casei and Enterococcus faecium
and decreased their adherence ability to the cellular substrate represented by HeLa
cells. Meanwhile, Guéniche et al. (2010) observed a statistically significant change
after the use of cell lysate from Bifidobacterium longum sp. versus placebo in
different inflammation-related parameters, such as a reduction in vasodilation,
oedema, TNF-alpha release, and mast cell degranulation, using human skin explants
(ex vivo) model. Three nanogel formulations consisting of probiotic supernatants
(Bacillus subtilis sp. natto, Lactobacillus reuteri and L. fermentum) loaded chitosan
nanogels have been prepared from the corresponding culture (Iordache et al. 2008).

The characterization of the chitosan nanogels was done previously by Zetasizer,
FTIR and TEM. The efficacy and dressing activity of the prepared formulations were
evaluated by examining wound closure and histological trials in Sprague-Dawley
rats. The findings showed that all formulations of probiotic lysate had advantages
over the mechanism of wound healing. Nevertheless, Bacillus subtilis natto has an
enhanced wound healing rate, which is well understood in pathology research. It is
suggested as a promising candidate for wound healing purposes by the favourable
effects of probiotic lysate nanogels, including rational wound closing rate, good
wound appearance, and adequate histological observation through in vivo analysis
(Ashoori et al. 2020). Tsiouris et al. (2017) suggest that as a pharmacological
treatment of wounds, sterile kefir extracts (70% kefir gel, L. fermentum, L. brevis,
L. reuteri, L. plantarum) are more effective than the probiotic treatment of yeast
(S. boulardii). While several studies and patents on the use of probiotic extracts for
topical application on the skin have been published, the underlying mechanisms or
the specific compounds responsible for the benefits of bacterial extracts on the skin
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remain unclear. The growing demand for probiotic dermal formulations further
increases the need to understand the specific mechanisms of action. This chapter
of the book is intended to report on the bacterial compounds that contribute to
beneficial dermal effects and certain potential mechanisms of action of different
bioactive compounds from probiotic supernatant or extract (Fig. 2).

Fig. 2 Role of different bioactive compounds derived from probiotics in skincare (Source: Lew
and Liong 2013)
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4 Bioactive Compounds from Probiotics for Wound
Healing

4.1 Hyaluronic Acid

The macromolecule hyaluronic acid is formed by polymerizing approximately
2000–25,000 repeating units of two sugar molecules, N-acetyl glucosamine and
glucuronic acid (Chong et al. 2005). The hyaluronic acid’s molecular weight,
depending on the source, could range from 104 to 107 Da. In dermatology,
hyaluronic acid has been used extensively as a biomaterial for stimulating wound
healing and for bioengineering purposes. Besides, being utilized in cosmetic and
dermatology goods, it is also broadly utilized in ophthalmology, drug delivery and
pharmacology rheumatology (Kogan et al. 2007; Lew and Liong 2013). In most
mammalian skin, hyaluronic acid is found to serve as a matrix. The hyaluronic acid
is essential to preserve the structure of the standard stratum corneum and to maintain
various epidermal barrier’ functions. The hyaluronic acid also has a role in a number
of other significant functions in the skin, e.g. in controlling cell proliferation,
differentiation and tissue repair and in water immobilization in tissues. It also
helps facilitate the water-soluble molecules and ion solutes transportation and retains
the extracellular dermal matrix owing to its high-water binding ability. The
hyaluronic acid is highly osmotic in nature that is significant for regulating tissue
hydration during inflammatory processes (Weindl et al. 2004).

It has also been documented that by triggering β-defensin-2 via Toll-like recep-
tors, the hyaluronic acid (low molecular weight) enhances epithelial protection
(Gariboldi et al. 2008). β-Defensins, which are expressed in many body tissues,
most remarkably epithelial surfaces and leukocytes, are the prevailing antimicrobial
peptides involved in the host’s response against bacterial infections (Menendez and
Finlay 2007). Gariboldi et al. (2008) have stated that in all layers of the epidermal
compartment, the low molecular weight hyaluronic acid treatment for murine skin
enhanced mouse β-defensin-2 release.

It has been revealed by Taylor et al. (2004) that after injury, the fragments of
hyaluronic acid are released, resulting in augmented chemokine IL-8 expression in
the cells of the endothelium, thus stimulating the same to identify wound and initiate
wound repair, while, during wound repair, the hyaluronic acid’s antioxidant prop-
erties averted oxygen free radicals’ damage on tissue granulation (Trabucchi et al.
2002). Moreover, the exogenous hyaluronic acid plays a supportive role in wound
repairing due to its capability to retain moisture, thus promoting various physiolog-
ical processes, e.g. provisional matrix’s proteolytic degradation to facilitate epithe-
lial migration, regeneration and remodelling (Chantre et al. 2019).

Commercially, Hyaluronic acid is obtained from rooster combs and few Strepto-
coccus Group C (attenuated strains), which, as part of their capsule, naturally
produce this compound. A detailed description has been documented of various
sources from which hyaluronic acid can be extracted. It has been described that
hyaluronic acid preparation from microbial sources contains very less contaminating
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nucleotides, endotoxins and proteins, than those from animal sources (Shiedlin et al.
2004). In order to produce hyaluronic acid, very few microbial strains are known to
date, e.g. Pasteurella multocida (Gram negative) and group A and group C strepto-
cocci (Gram positive). It was described for the first time in 2009 that hyaluronic acid
is produced by S. thermophilus YIT2084 (a putative probiotic strain) in milk broth
through fermentation (Izawa et al. 2009). S. zooepidemicus fermentations have also
been reported to produce hyaluronic acid (low molecular weight, <200 kDa) under
optimized fermentation conditions (Lew and Liong 2013). Recently, an alternative
has emerged to produce higher hyaluronic acid yield by fermenting recombinant
microbial strains that are Generally Recognized As Safe (GRAS).

4.2 Sphingomyelinase

Sphingomyelinase enzyme, from glucosylceramide and precursors of
sphingomyelin, produces phosphorylcholine and ceramides for the extracellular
lipid bilayers development in the stratum corneum (Slotte 2013). Its activity has
been shown to be significant for skin barrier function (Bocheńska and Gabig-
Cimińska 2020). A drop in stratum corneum’ ceramide results in epidermal barrier
dysfunction and water loss (Mizutani et al. 2009), including a deprivation of
protection against bacteria and antigens. In addition, the reduced stratum corneum’s
ceramide levels have been advised as a potential contact dermatitis’s aetiological
factor, atopic dermatitis, irritant dermatitis and psoriasis (Murata et al. 1996;
Berardesca et al. 2001). It is present in the interstices of stratum corneum and
epidermal lamellar bodies and has been graded as the basis of their pH optima as
neutral, acidic and alkaline sphingomyelinase. The soluble glycoprotein with an
optimum activity at acidic pH (pH 5.0) is identified as the acidic sphingomyelinase.
The neurological disorder Niemann–Pick syndrome resulted from the absence of this
enzyme in humans. It was identified that persons suffering from Niemann–Pick
syndrome also exhibited an aberration in the homeostasis of the permeability barrier
of skin with very slow recovery kinetics resulting in acute disruption of the barrier
(Lew and Liong 2013). Taking into account that acid Sphingomyelinase is contained
in the outer part of the epidermis, the production of ceramides, the acid
Sphingomyelinase is therefore responsible and further for basal permeability barrier
functions. Moreover, the skin ageing has been related to a reduction in inner
epidermal acid Sphingomyelinase (Jensen et al. 2005). The neutral
sphingomyelinase, on the other hand, is associated with the cell membrane and,
during permeability barrier repair, is significant for cell signalling through increased
ceramide accumulation (Kreder et al. 1999). In aged skin, the decreased neutral
Sphingomyelinase activity in the outer and inner epidermal layers was found (Lew
and Liong 2013), possibly due to decreased proliferation rates, resulting in decreased
barrier repair capacity. Mice deficient in TNF-induced neutral Sphingomyelinase
activation indicated a smaller increase in epidermal proliferation upon barrier dis-
ruption and abridged barrier repair capacity (Kreder et al. 1999). The neutral
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Sphingomyelinase activities in lesional and non-lesional atopic dermatitis skin were
also reported to be reduced, linked with impaired keratins expression and cornified
envelope proteins, which are vital for skin barrier functions (Lew and Liong 2013).

Sphingomyelinase is found in mammalian cells and various microbes (bacteria
and yeast), with large Sphingomyelinase activity variations among different micro-
bial strains. The microbial Sphingomyelinase is a secretory protein released into the
media from cells, whereas mammalian neutral Sphingomyelinase is a membrane-
bound protein (Di Marzio et al. 2001). The alkaline sphingomyelinase can be
extracted from probiotic microbes and is an enzyme located exclusively in the
intestinal brush border and bile that hydrolyses sphingomyelin into sphingosine,
sphingosine-1-phosphate and ceramide, contributing to apoptosis of epithelial cells.
In premalignant and malignant intestinal epithelia and in ulcerative colitis tissues,
decreased levels of alkaline sphingomyelinase have been identified (Soo et al. 2008).
Reduced alkaline sphingomyelinase levels have been observed in premalignant and
malignant epithelial and ulcerative colitis tissues (Soo et al. 2008).

4.3 Lipoteichoic Acid

One of the immune-stimulating structural constituents of both non-pathogenic and
pathogenic Gram-positive bacterial cell walls is called lipoteichoic acid that has very
critical role in bacterial growth and physiology (Villéger et al. 2014). Prior investi-
gations revealed that Lipoteichoic acid could serve as a major pathogen-associated
molecular pattern, resulting in nitric oxide (NO), activation of NF-ĸB (nuclear
transcription factor), pro-inflammatory cytokines and other pro-inflammatory medi-
ators’ production (Kao et al. 2005; Lebeer et al. 2012). An infection or injury in the
host’s body is followed by the inflammatory reaction to restore and preserve
homeostasis. The lipoteichoic acid from S. aureus (a pathogenic Gram-positive
bacteria) may, however, induce chronic inflammation and resulting in septic
shock, an example of systemic inflammatory response syndrome development
(Lew and Liong 2013). The structure-activity correlation investigations of
lipoteichoic acid revealed that important strain-specific variations may occur,
although, most lipoteichoic acid molecules have a similar basic structure. Unlike
Lipoteichoic acid from S. aureus, Lew and Liong (2013) isolated lipoteichoic acid
from beneficial probiotics, e.g. L. plantarum that induced tolerance by protection
against the pro-inflammatory cytokines production associated with TNF-α sepsis.

Lipoteichoic acid has been found to promote skin protection against microbial
infections through toll-like-receptor induction upon topical application (Sumikawa
et al. 2006). In the cutaneous pathogen recognition system, the toll-like receptor
activation initiates the release of antimicrobial peptides (soluble effectors) that
maintain dermis sterility (Lai et al. 2010). The most popular forms of antimicrobial
peptides that contribute against skin bacterial infections, in the host response are
human β-defensins and cathelicidins. Various Lactobacilli and Bifidobacteria spe-
cies have adequate amounts of Lipoteichoic acid to upsurge dermal cellular defence
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against microbial infection (Lew and Liong 2013). Lipoteichoic acid also contrib-
uted to cutaneous wound healing by activating human β-defensins, in addition to the
antimicrobial properties, and accomplished a number of immune-modulatory func-
tions, performing not only as pro-inflammatory agents but also as a main connexion
between the adaptive and the innate immune system (Diamond et al. 2009).

4.4 Peptidoglycan

The polymerization of N-acetylmuramic acids and β(1–4)-linked N-
acetylglucosamine, cross-linked by short peptides containing alternating D- and L-
amino acids produce peptidoglycan (PG) that is considered as the main structural
constituent of microbial cell wall responsible for upholding the shape and to provide
shield against osmotic lysis (Dziarski 2003). Peptidoglycans are particularly copious
in Gram-positive bacterial strains, where it accounts for around 90% of the cell
wall’s weight and thickness up to 80 nm (Lew and Liong 2013). On the other hand,
the cytoplasmic membrane under the lipopolysaccharide-containing outer mem-
brane of Gram-negative bacteria is surrounded by a relatively thin layer of peptido-
glycan (thickness < 10 nm). Although the structure and development of the
peptidoglycans are amazingly preserved across bacterial species, it has been found
that the chain lengths depend on the bacterial species and various conditions of
growth (Lew and Liong 2013).

By stimulating the innate immunity system through Toll-like receptor 2, the
peptidoglycan plays a crucial role in the skin’s protection against pathogenic
microbes resulting in the secretion of numerous chemokines and cytokines that are
involved in immune responses (Niebuhr et al. 2010). It has also been demonstrated
that the peptidoglycan has the capability to activate NF-kB (nuclear factor) and
triggers the interleukin-8 production abundantly from keratinocytes, indicating that
peptidoglycan plays a vital role in the chemokines and cytokines production from
keratinocytes (Matsubara et al. 2004). Numerous other peptidoglycan recognition
molecules also recognize the peptidoglycan, including the nucleotide oligomeriza-
tion domain-containing proteins (CD14), peptidoglycan lytic enzymes (lysozyme
and amidase) and a family of Peptidoglycan recognition proteins (PGRPs, Dziarski
2003; Kumar et al. 2010). These molecules induce the responses of the host to
microbes, mediate the antimicrobial peptides or degrade Peptidoglycan and
chemokines release that results in recruitment of phagocytic cells to the site of
infection (Dziarski and Gupta 2005; Lew and Liong 2013). The microbe-derived
molecules like peptidoglycan have been reported to be able to induce or increase the
expression of human β-defensins in whole skin keratinocytes of the humans, con-
tributing to the stimulation of host’s innate immunity (Sørensen et al. 2005).
Lactobacilli peptidoglycan stimulates innate immune response through Toll-Like
Receptor 2 and also to increases the IL-12 production and other regulatory factors by
macrophages, which further results in skin protection (Paradis-Bleau et al. 2007;
Lew and Liong 2013).
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4.5 Lactic Acid

Lactic acid is an organic acid, classified as one of the α-hydroxy acids, with one
hydroxyl group attached to the alpha position of the acid and produced by microbial
fermentation or chemical synthesis. The lactic acid produced by chemical synthesis
mostly consists of the racemic mixture (DL-lactic acid), while L(+)- or D(�)-lactic
acid (optically pure) can be derived through fermentation using appropriate micro-
organisms (Wee et al. 2006; Tang and Yang 2018). At sufficient concentrations,
Lactobacilli strains may produce lactic acid to show antibacterial activity against the
majority of the pathogenic microbes on the skin (Lew et al. 2013). They metabolize
carbohydrates with at least 50–85% lactic acid, either homo-fermentatively or
hetero-fermentatively, for production of the main end product, i.e. lactic acid (Yeo
and Liong 2010). Lactic acid has been extensively utilized for a long time in skin
care products and cosmetic regiments, e.g. exfoliants, moisturizers and emollients
(Smith 1996). One of the causes that lactic acid (α-hydroxy acids) is frequently used
as a chemical peeling agent and an exfoliator is because of its profound effect on skin
desquamation. The induction of skin desquamation is done by the dissociation of the
cellular adhesions, which occurs via the chelating action of α-hydroxy acids as a
result of reduced concentration of epidermal calcium ions. The reduced epidermal
calcium ion level also tends to promote cell growth and delays cell differentiation,
resulting in younger-looking skin (Soleymani et al. 2018). Moreover, due to its
ability to boost the function of the stratum corneum barrier, it has the potentials for
various skin applications and also improves the ceramide’s production by
keratinocytes. The improved ceramide 1-linoleate to oleate ratio has a significant
role in enhancing the functions of the skin barrier (Yamamoto et al. 2006). Pasricha
et al. (1979) have investigated lactic acid’s antimicrobial activity against dermal
pathogens, e.g. beta haemolytic Streptococci, S. aureus, Proteus species, E. coli and
P. aeruginosa. Owing to its non-toxic and non-sensitizing properties, the long-
lasting topical use of lactic acid cream has been suggested as a preventive remedy
for acne vulgaris, in addition to its antimicrobial activity.

4.6 Acetic Acid

Acetic acid is produced both chemically and by microbial fermentation at industrial
level. Heterofermentative lactic acid bacteria can produce acetic acid via the hexose
monophosphate or pentose pathway (Yeo and Liong 2010). The acetic acid usage
has been described from time to time as a topical agent in the treatment of microbial
infections and also been used to treat superficial infections and burns. When several
antibiotic-resistant strains cause infection and where therapeutic options are insuffi-
cient, it has been suggested as the best remedy (Nagoba et al. 2008). It has been
shown that acetic acid exerts antibacterial effects on several microbes, including
S. aureus and P. aeruginosa (Lew and Liong 2013).
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4.7 Diacetyl

Some strains of the genera Streptococcus, Leuconostoc, Lactobacillus and
Pediococcus can produce diacetyl, also referred to as 2,3-butanedione. Lactobacilli
andBifidobacteria strainsmight produce diacetyl (concentrations up to 30mgml�1 s),
signifying their possibility for antimicrobial dermal activities with maximum sensi-
tivity compared to Gram-positive bacteria against Gram-negative bacteria and fungi
(Lew et al. 2013). Although the majority of the Gram-negative bacteria,
e.g. Bartonella sp. Borrelia burgdorferi, P. aeruginosa, Pasteurella multocida,
Vibrio vulnificus, Klebsiella rhinoscleromatis, Helicobacter pylori and S. typhi, are
not typical skin microflora residents, it has been suggested that they cause cutaneous
infections. Diacetyl, at a very low concentration of 100 ppm, has been proved to be
bactericidal against E. coli and S. aureus (Lanciotti et al. 2003). A pathogen
S. aureus has appeared as a major infectious microbe of skin and soft tissue,
including cellulitis, folliculitis and impetigo (Miller and Cho 2011), and one of the
most common skin pathogens identified is E. coli (Doern et al. 1999). The diacetyl’s
antimicrobial activity has been well acknowledged, but, there is very little research
available on topical application of diacetyl and considerable investigations are
needed to establish its effects on the skin and other tissues.

4.8 Antimicrobial Substances

The growing attention has been given to the possible topical application of probiotic
microbial strains’ ability to produce potent antimicrobial toxins (i.e. H2O2, organic
acids, bacteriocins and bacteriocin-like substances) to effectively avert pathogen
adhesion and outcompete undesired microorganisms (Fig. 3) (Gillor et al. 2008;
Cinque et al. 2011). The compositions comprising probiotic microbes, spores and
their products, have been described by Farmer (2005), apposite for topical usage on
the skin, can be utilized to impede the growth of microbes and combinations thereof.
Different treatment approaches and therapeutic systems to prevent the growth of
pathogens and combinations thereof through topical application of pharmaceutical
compositions, comprising of isolated species of Bacillus, spores or an extracellular
product of B. coagulans (a supernatant or filtrate of a fermented B. coagulans
culture) are also disclosed in the invention.

Spigelman and Ross (2008) have also given a composition and method for the
probiotic microorganisms’ application to skin surfaces to avert or constrain patho-
genic microorganisms’ contamination. The probiotic microorganisms include bac-
teria, yeast or fungi. The appropriate probiotics should be selected on the basis of one
or more unique characteristics, the desired characteristics being the competitive
exclusion of pathogenic microbes from the surface to which they are applied,
antibiotic sensitivity, human tissue adherence, a high resistance to oxygen and acid
and antimicrobial activity. More specifically, the procedure consists of multiple
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methods of application (e.g. wiping paper, spraying and lotions) of one or more
probiotic microbes to a wide range of surfaces (e.g. hospital equipment, fixtures and
human skin), effectively avoiding, at least partially, their infection, invasion, growth
and cross-contamination by pathogenic microorganisms.

The technique depends on the probiotic’s capability to produce isolated colonies
to generate a protective layer that can prevent and eliminate pathogenic microbes
unable to survive on top of other bacteria. Depending on various factors such as the
therapeutically effective amount, type, probiotic application mode or the degree of
contamination of the biological or non-biological surface, the probiotic application is
recommended for a suitable period. The method, therefore, suggests the usage of a
single or a multitude of diverse probiotic microbes, serially adding multiple layers of
bacteria to combat single or many resistant kinds of pathogenic microorganisms.
Numerous lactic acid bacterial species producing a number of bacteriocins, includ-
ing Lactobacillus, Pediococcus, Lactococcus, Leuconostoc, Carnobacterium and
Propionibacterium have been reported in relation to the potential use of bacteriocin-
producing strains as probiotic and bio-protective agents (Mokoena 2017).
Lactococcus sp. HY 449 bacteriocin was capable of preventing the growth of skin
inflammatory bacteria, e.g. S. epidermidis, S. aureus, P. acnes and Streptococcus
pyogenes (Oh et al. 2006). The bacteriocin’s inhibitory effect used in the research
work done by Oh et al. (2006) was triggered by the bacteriolytic activity on the cell
membranes and cell walls of P. acnes. Acknowledgments to its antimicrobial
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Fig. 3 Demonstration of potential mechanisms of action of probiotics’ antagonistic effects
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properties, bacteriocin from Lactococcus can be used for many purposes in cosmetic
applications.

The eubiotic product, according to Teodorescu (1999), is a mixture of three
probiotic Lactobacillus acidophilus LR, LV and LD strains, the association in the
mixture in equivalent parts before lyophilization, for the treatment and maintenance
of tegument. In order to abolish pathogenic microflora and to be immune to cosmetic
composition, this eubiotic substance is capable of preserving the skin pH at physi-
ological values.

4.9 β-Defensins

Lactobacillus extracts can induce dose-dependent β-defensins production in skin
cells, which may be useful in reducing or preventing the growth of skin microbial
populaces (Sullivan et al. 2009). The effective quantity of Lactobacillus extract is
applied to a skin wound or an open cut that may have been in direct contact with soil
or unwanted microbes on a chronic basis, added to clean skin to uphold a hale and
hearty skin flora. These extracts can also be beneficial in treating acne. Indeed, when
applied consistently over a 2-month span, the L. plantarum extract containing topical
compositions/lotions is shown to lessen the occurrence of both inflamed and
non-inflamed acne lesions.

Furthermore, the extracts were used as a preservative in cosmetic or pharmaceu-
tical items, especially L. plantarum, which has a wide range of activity against
Gram-negative and Gram-positive bacteria. Acne vulgaris is a multifactorial disorder
characterized by P. acnes hyper-colonization, inflammation and immune responses.
In an in vivo study, the synbiotic capability of Konjac glucomannan hydrolysates
and probiotic bacteria to inhibit P. acnes growth has recently been reported, indi-
cating that it may be promising to develop a new probiotic therapy alternative to
minimize the acne episodes (Cinque et al. 2011).

5 Probiotics, Infections and Intestinal Wound Healing

In antimicrobial treatment of pathogens, the close association of lactic acid bacteria
and Bifidobacteriawith epithelial cells makes them ideal probiotic candidates (Lukic
et al. 2017). Lactic acid bacteria and Bifidobacteria use their interaction with gut
epithelial cells to hinder pathogens’ growth directly and capability to enhance tissue
repair mechanisms and host mucosal defence systems. In combating overt and
opportunistic pathogens, these properties are of paramount importance.
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5.1 Probiotics: Direct Inhibition of Pathogens’ Growth

The antimicrobials’ production, pathogens displacement from mucus and epithelial
cells, removal of pathogens by co-aggregation and quorum quenching are
recommended direct probiotic action mechanisms against pathogens. The organic
acids, H2O2, reuterin, diacetyl and bacteriocins are the antimicrobials produced by
probiotic strains. The anti-pathogenic activity against Gram-negative pathogens is
essentially due to the production of organic acids by numerous probiotic strains,
from both lactic acid bacteria and Bifidobacteria (Piqué et al. 2019). Hydrogen
peroxide producing Lactobacilli (L. jensenii, L. fermentum and L. acidophilus)
have been associated with abridged count of Gram-positive bacteria (fastidious
anaerobe), including Prevotella, Bacteroides, Mycoplasma sp. and Gardnerella
(Atassi et al. 2006; Breshears et al. 2015). L. reuteri produced a well-known
antimicrobial metabolite Reuterin (3-hydroxypropionaldehyde) and thought to
exert its influence through the thiol groups’ oxidation in the target pathogenic
microorganisms (Schaefer et al. 2010). Importantly, without killing beneficial micro-
organisms, reuterine will precisely inhibit the growth of harmful gut bacteria,
causing L. Reuteri to kill gut invaders while keeping the microbiota of the natural
gut intact. Reuterin also exhibits antimicrobial activity against the common chronic
wound pathogen, Staphylococcus (Arqués et al. 2008). Diacetyl is produced by
Lactobacilli, another metabolic product that also shows a broad range of antimicro-
bial ability against Gram-negative and Gram-positive pathogens (Kang and Fung
1999; Langa et al. 2014).

Bacteriocins, the second class of metabolites from probiotic strains, are very
small peptides by microbes that display a wide spectrum of antimicrobial activity
both in vitro and in vivo (Minami et al. 2009). S. salivarius, (producing bacteriocin),
a commensal of oral epithelium, is a potential inhibitor of S. pyogenes (a pathogen)
triggers pharyngitis and cutaneous infections (Heng et al. 2011). Both in adults and
children, S. salivarius’s prophylactic oral administration has shown beneficial effects
in preventing recurrent infections of S. pyogenes (Di Pierro et al. 2013).

The potential of auto-aggregation by several microbial strains (probiotics),
including Bifidobacterium longum, L. delbrueckii and L. rhamnosus, confer the
antimicrobial ability to co-aggregate with other microorganisms that include the
common wound pathogens Candida albicans and S. aureus (Barzegari et al. 2020).
In addition to co-aggregation and antimicrobial metabolites’ production, probiotic
microbes can move intestinal pathogens from the epithelium of the gut or stomach.
The specific surface molecules obtained from Lactobacilli (extracellular polysac-
charides) have the ability of displacement, which further allow L. paracasei to
competitively adhere to gut epithelial cells and displace the harmful microbes
(Rutherford and Bassler 2012).

The inhibition of harmful microbes’ quorum sensing (QS) system is another
emerging antimicrobial mechanism of lactic acid-producing microbes. Quorum
sensing refers to an intercellular communication mechanism that microorganisms
use to modify cell-population density-based gene expression to form biofilm and
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confer virulence (Pastar et al. 2013; Kumar et al. 2020). Majority of the pathogens,
including microbes usually found in chronic wound infections (e.g. P. aeruginosa
and S. aureus), use quorum sensing for resistance to host defence, virulence and
biofilm formation (Lukic et al. 2017). Nevertheless, probiotics can interfere with the
quorum sensing of pathogens. Specifically, L. plantarum has been shown to prevent
the quorum sensing signalling molecules (acyl-homoserine-lactone) production by
P. aeruginosa, along with the decrease in the formation of biofilm (Valdez et al.
2005).

5.2 Epithelial Barrier and Probiotic Effects

The probiotics can enhance the epithelial barrier’s function, thereby limiting path-
ogen invasion, besides direct antimicrobial effects on harmful microorganisms,
(Ohland and MacNaughton 2010). By improving expression and controlling the
localization of tight junction proteins both in vivo (Karczewski et al. 2010) and
in vitro (Anderson et al. 2010), they have a well-defined function in strengthening
the gastrointestinal barrier, e.g. increased occludin, claudin and zonula occludens
1 expression in the gut in newborn piglets resulting from oral administration of
L. reuteri (Yang et al. 2015). In the same way, following oral administration of
L. plantarum, occludins and zonula occludens 1 were recruited to the tight junction
region (Karczewski et al. 2010). Additionally, a mixture of eight distinct probiotic
bacterial strains stimulates the suppression of chronic inflammation by epithelial
barrier function fortification, which have been shown in the murine models of
chronic ileitis (Ewaschuk et al. 2008).

In addition to Lactobacilli, the probiotic strain belonging to genus
Bifidobacterium has also shown similar effects. The expression and trans-epithelial
resistance of tight junction proteins occluding and zonula occludens 1 were
increased by B. infantis in human gut epithelia. Improved trans-epithelial resistance
has also been correlated with enhanced cell signalling events significant for extra-
cellular signal-regulated kinases phosphorylation, barrier formation and p38 (Fijan
et al. 2019). In order to verify the effects of probiotics on wound healing in the
gastrointestinal tract, various experimental models, including acetic acid-induced
ulcers, full thickness wounds and intestinal anastomoses, have been extensively
examined. The beneficial effects of Lactobacilli in these studies were largely
mediated by stimulation and activation of fibroblast proliferation and/or migration
by the epithelial cells (Lukic et al. 2017).

Aside from improving the epithelium repair, the presence of L. plantarum has
been shown to linked with increased production of collagen in the intestine
(Nasrabadi et al. 2011), and similar skin effects have been shown in hairless
mouse model with UVB induced skin photo-ageing after oral administration of
L. acidophilus (Lukic et al. 2017). Given that the chemokines, cytokines and growth
factors have regulated the epithelial cells’ and fibroblasts’ functions (Pastar et al.
2014), the epidermal barrier fortification by probiotics is closely linked with their
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impact on immune components. Probiotics also have an effect on innate immune
components of the intestinal barrier by inducing β-defensin, which is known to
promote wound healing in addition to its function in fighting intestinal pathogens
(Lukic et al. 2017).

In vivo murine studies have revealed that commercially available probiotic
microbial mixture can be utilized for the stimulation of the vascular endothelial
growth factor (VEGF) and transforming growth factor β (TGF β) expressions
(Dharmani et al. 2013), while Saccharomyces boulardii containing probiotic formu-
lation was shown to stimulate insulin-like growth factor (IGF), epidermal growth
factor (EGF) and its receptor activity (EGFR) (Fordjour et al. 2010). Additionally,
L. rhamnosus has been reported to stimulate hypoxia-inducible factor 2α (a master
controller of progenitor stem cell recruitment during tissue repair) in vivo (Wang
et al. 2011).

6 Chronic Wounds and Probiotic Therapy

Considering the potential role of skin microbiota and biofilms in skin-related
diseases, the investigators have begun to investigate probiotics for the chronic
wounds’ treatment e.g. kefir extracts (natural probiotic compounds) containing
topical gels have been applied to infected burn wounds in rats and have shown
improved collagen formation and epithelialization compared to controls treated with
silver sulfadiazine (Lukic et al. 2017). The probiotics administered to mice (orally)
were able to modulate interleukin-10 levels and skin immune cell density after an
injury caused by UV radiation, indicating that these beneficial microbes in cutaneous
tissues can exert strong immune-modulatory effects (Guéniche et al. 2006). The
investigators have also isolated microbes from burn wounds and demonstrated that
most of the microbial strains were extremely vulnerable to L. acidophilus (Jebur
2010). Via competitive inhibition of pathogenic microbe P. aeruginosa and disrup-
tion of bacteria–bacteria communication pathways, i.e. quorum sensing,
L. plantarum has a potential role in the topical treatment of wounds (Peral et al.
2009). Some of the useful tools for reconstructive surgery include bio-prostheses and
implants, but they are at greater risk for formation of biofilm and chronic infection.
Therapies based on probiotics can play a role in reducing these complications, e.g.,
surfactants obtained from probiotics have been shown in a voice prosthesis model to
lessen pathogenic microbial colonization and extend graft function (Rodrigues et al.
2004). Some probiotic strains are capable of producing oxidative reactions that
impede the growth of fungi and the formation of biofilms (Reid et al. 2006). These
impacts may be due to pathogenic microbial adhesion changes and can also be used
prophylactically in high-risk patients. However, in clinical environments such as
infected (contaminated) mesh, contracture or extrusion for the breast implant, and
other prosthetic complications, the use of probiotics remains unproven but is con-
sidered as a field of considerable research potential (Wong et al. 2013).
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Some experiments have revealed the feasibility of manipulating microbial prop-
erties to facilitate wound healing through the application of principles in tissue
engineering, e.g., investigators have produced a topical patch containing nitric
oxide producing probiotics (e.g. lactic acid bacteria), a molecule well recognized
to enhance the synthesis of fibroblast collagen and increase tissue blood flow
(Isenberg et al. 2005). This bacteria-impregnated patch substantially improved
wound closure in infected and ischemic wounds in rabbits measured after 3 weeks
(Jones et al. 2012b). Further, investigations are needed in order to understand the
probiotics’ role and possible delivery mechanisms for non-healing wounds. In
conjunction with traditional approaches to wound healing, probiotic-based therapies
could be a significant adjunct for potential paradigms of wound treatment. The
genetically modified microorganisms or engineered microbial by-products may
play a role in regulating interactions of host-bacteria or bacteria–bacteria to facilitate
the repair of cutaneous tissue in addition to the exogenously administered probiotic
strains.

7 Probiotics and Cutaneous Wound Healing

Bifidobacteria and Lactobacilli are the most widely studied potential probiotics for
numerous dermatological conditions, including non-healing wounds (Baquerizo
Nole et al. 2014). The protective abilities of probiotic microbes against skin patho-
gens have been demonstrated in numerous in vitro experiments with human
keratinocytes (Lukic et al. 2017). The probiotic strains, L. rhamnosus and
B. longum, similar to their impact on the gut epithelium, have been shown to
mend tight junction functions and expression of zonula occludens 1, claudin 1 and
occludin in S. aureus infected keratinocytes (Sultana et al. 2013). Unlike
L. rhamnosus, B. longum augmented the claudin 4 expression, another major tight
junction protein (Sultana et al. 2013), proposing that B. longum can affect tight
junction function through a substitute mechanism by lessening para-cellular perme-
ability and therefore averting the pathogen invasion.

Furthermore, the Toll-like Receptor 2 activation increases the tight barrier func-
tion in keratinocytes as well as gut epithelial cells (Yuki et al. 2011). B. longum’s
modulation related to functions of tight junction seems to be Toll-like Receptor
2 dependent as tight junction protein levels and trans-epithelial electrical resistance
cease to upsurge when Toll-like Receptor 2 is neutralized or blocked, respectively
(Sultana et al. 2013). The implications of the commonly used L. rhamnosus, on the
other hand, on keratinocytes are Toll-like Receptor 2-independent, indicating that
this probiotic species utilizes another method to augment tight barrier function
(Sultana et al. 2013). The mitogen-activated protein kinase pathway, known to
increase tight barrier function through modulation of extracellular signal-regulated
kinases and p38 (Lukic et al. 2017), is a possible pathway involved in this process
(Lukic et al. 2017).
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The probiotic species (L. plantarum and L. reuteri) also possess the capability to
upsurge tight barrier function in primary human keratinocytes (Sultana et al. 2013).
L. rhamnosus and L. reuteri also improve re-epithelialization through enhanced
keratinocyte migration and cellular proliferation (Mohammed et al. 2015). The
probiotics are also able to cause re-epithelialization through chemokines induction,
e.g. L. rhamnosus augmented the chemokine CXCL2 and its receptor CXCR2
expressions that stimulates proliferation and migration of keratinocyte during normal
wound healing (Mohammed et al. 2015). Although the majority of probiotic
microbes have been advantageous for function associated with keratinocyte,
L. fermentum deceases viability of keratinocyte and re-epithelialization (Mohammed
et al. 2015; Lukic et al. 2017), demonstrating strain-specific effects once again.

The antibacterial activities of already established probiotics, e.g. reduction of
pathogen adhesion and inhibition of pathogen growth, are the methods of fortifica-
tion against cutaneous wound infections. The protective effect exhibited by
L. rhamnosus by S. aureus growth inhibition in infected keratinocytes is yet
unknown mechanism (Mohammedsaeed et al. 2014). The probiotics like
L. rhamnosus and L. casei Shirota exhibited antimicrobial activity that is not due
to acid (Mohammedsaeed et al. 2014), hydrogen peroxide or bacteriocin production
(Vesterlund et al. 2004), featuring a number of protective mechanisms by probiotics.
Additionally, L. plantarum extract, by interfering with its quorum sensing system,
disrupt P. aeruginosa’s pathogenic characteristics, a widespread chronic wound
pathogen. Through inhibition of P. aeruginosa virulence factors pyocyanin, elastase
and rhamnolipid, this extract without live probiotics was able to reduce biofilm
growth and bacterial adhesions (Ramos et al. 2012).

Lactobacilli can also, by competitive exclusion, inhibit pathogen invasion into
keratinocytes. L. rhamnosus and L. reuteri are capable to impede the initial S. aureus
adhesion to keratinocytes and displace already attached S. aureus to human
keratinocytes (Mohammedsaeed et al. 2014; Lukic et al. 2017). The pertinent
molecules that contribute in S. aureus exclusion and displacement from
keratinocytes derived from human are still unidentified, but they depend on moon-
light proteins: a class of multi-functional bacterial adhesins that may, among many
functions, bind to epithelial cells (Kainulainen and Korhonen 2014). The enolase
from L. crispatus, an example of a moonlight protein, can bind to collagen-I and
laminin (Antikainen et al. 2002), while L. plantarum enolase binds to fibronectin and
avert S. aureus adhesion to epithelial cells (Castaldo et al. 2009). A mechanism for
displacement, as illustrated by L. rhamnosus, will enable probiotics not only to
protect keratinocytes from infection but also to rescue them, both of which are
important features for potential clinical applications. The supernatants, lysates and
metabolites from probiotic microorganisms have been extensively investigated
in vivo and in vitro to address protection of utilizing live probiotic bacteria topically,
showing beneficial effects similar to live microorganisms (Mohammedsaeed et al.
2014; Lukic et al. 2017).

In vivo wound repair investigations were mainly focused on topical application of
probiotics that support in vitro data, showing enhanced wound repair via increased
tissue repair and reduced bacterial load in rodent wound models (Rodrigues et al.
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2005). L. plantarum (topical application) inhibited colonization of wounds caused
by P. aeruginosa in a mouse model with burns by clearing Pseudomonas from the
liver, spleen and skin, via lessening apoptosis and increasing phagocytosis and
(Valdez et al. 2005). Even the use of kefir (mixture of lactic acid bacteria and yeasts)
has resulted in improved healing with antifungal and antibacterial effects (Lukic
et al. 2017).

L. plantarum (topical use) has interfered with pathogen colonization caused by
S. aureus, S. epidermidis and P. aeruginosa in human burn wounds (Peral et al.
2009). Topically applied L. plantarum Treatment with lessened bacterial load and
encouraged wound repair is found to be comparable with silver sulfadiazine treat-
ment. One possible mechanism underlying L. plantarum’s antimicrobial/anti-
pathogenic characteristics is that P. aeruginosa and L. plantarum stimulate reverse
effects on the infection (Hessle et al. 2000). L. plantarum (Gram-positive bacteria)
activates the secretion of interleukin-12, which activates natural killer cells and
cytotoxic T cells to secrete IFNγ, while Gram-negative pathogen P. aeruginosa
favourably stimulates interleukin �10, which prevents those functions (Hessle et al.
2000). The antagonistic inflammatory response regulation, however, does not
account for antibacterial effects of L. plantarum on S. aureus, a Gram-positive
pathogen. Topical use of L. plantarum also boosted wound healing in human chronic
venous ulcers (Peral et al. 2010) infected predominantly with P. aeruginosa and
S. aureus, stimulated a continuous process of healing that decreased microbial load
and triggered the granulation tissue formation (Peral et al. 2010; Lukic et al. 2017).
Polymorphonuclear cells screened from the ulcer bed showed augmented
interleukin-8 production, decreased apoptosis percentage and necrosis upon
L. plantarum treatment. Taking its antimicrobial and immunomodulatory effects in
humans into account, L. plantarum, by controlling interleukin-8 levels and control-
ling the entry and activity of Polymorphonuclear cells travelling from peripheral
blood to the ulcer, is thought to inhibit pathogen colonization (Peral et al. 2010).

8 Future Perspectives

The new insight and healing potential of advantageous microbial probiotics are
illustrated in the book chapter as an alternative and healthy approach to treating
patients with skin-related wounds/disorders. The examination of microbiota, includ-
ing beneficial microorganisms by using high-throughput genomic technologies, will
elucidate new pathways and molecular mechanisms that can improve our knowledge
of how commensal microbes, including non-healing wounds, can cope with different
diseases. Moreover, it is important to identify cross-communication among the
beneficial microorganisms and the host’s respective pathways. The selection of
bacterial species is of particular significance, because the impacts of probiotic
bacteria can be highly strain-specific. Their incorporation as an integrative therapy
provides new possibilities to treat patients with wound healing disorders, taking into
account the studies expended on probiotics and their important role in human health.
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9 Conclusions

Based on recent in vitro and in vivo research, this book chapter documents the ability
of cellular components or probiotic metabolites to promote skin health and derma-
tological advancement. Although numerous investigations have indicated encourag-
ing potentials of probiotics and their supernatants for skin health, we predict that
such an argument for skin health is still at its early stages, with the requirement of
more comprehensive final topical applications and human trials (well-designed) to
validate the exact doses required, safety and regulatory compliances, possible side
effects, host dependency, and, essentially, the precise mechanisms for indirect and
direct actions of the live cells and/or therapeutic compounds. The microbial coloni-
zation occurs immediately after injury, and the cross-talk between the innate immune
response, pathogens and microflora almost simultaneously begins. Cutaneous
microbiota has an advantageous impact on the wound curing process through several
potential processes, both positively and harmfully, dependent on the microorganisms
prevailing in the area of the wound. The identification of microorganisms derived
from the nonspecific immune (innate) response is essential for triggering the process
of wound healing, and particularly for the preliminary stage of severe (acute)
inflammation. The microbe S. aureus, however, can cause infection, impaired
healing of chronic and acute wounds. Besides the microflora on skin, the gastroin-
testinal microorganisms may similarly influence the wound curing process, by
influencing, indirectly or directly, several features that control the therapeutic poten-
tial, e.g. blood pressure, tissue oxygenation levels, immune response and inflamma-
tions. Furthermore, several mechanisms have been recognized as to how the gut
microbiome could affect the energy metabolism of the host and thus the incidence of
indications of metabolic syndrome, e.g. Diabetes, hypertension, obesity and hyper-
lipidemia, which were also associated with very slow wound healing. For a substan-
tial portion of the population, impaired wound healing is a major reason for
morbidity and mortality. Taking the above seriously, the scientific community
guides the investigation to a deeper understanding of the cross-talk amongst host
immune response and microorganisms, with the objective of developing new
methods for therapeutic wound care based on the therapeutic use of probiotic
microbes. The probiotics are advantageous host microbes and, on the basis of
evidence so far, may have a positive effect on the wound curing process. Probiotics
administration has been associated with improvements in the topical and per os
wound curing process. Is the management of the human microbiome, gastrointesti-
nal as well as cutaneous, essentially crucial for the chronic wounds and ulcers
treatment therapies that have eluded us so far, or is it just another factor that needs
to be taken seriously for this therapeutic entity to be treated? Time is going to say.
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Development of Novel Anti-infective
Formulations for Wound Disinfection

Regalin Rout

1 Introduction

A wound infection is the localization of pathogenic microorganisms which have
invaded into viable tissue surrounding the wound. This leads to inflammation and
damage of tissues as well as delays the healing process. Though there are some
infections which are self-contained and heal on their own, some infections if not
treated can be life-threatening and need medical attention (White et al. 2006; Cutting
and White 2005). Nowadays, wound care has acquired global attention in the
healthcare sector to improve the research, and to fasten the healing process, the
wound needs to be protected from infection from microorganisms (Maxson et al.
2012). Basically wound healing entails a three-step process according to some
authors such as inflammation, proliferation, and maturation/remodeling, whereas
nowadays it is described as a four-step process such as hemostasis, inflammation,
proliferation, and maturation (Broughton et al. 2006).

The functional aim of these processes is to heal the wound through different
stages such as prevention of loss of blood, cleaning the area of infection, and finally
repairing the wound site. This hemostasis phase is included in the inflammation
process in the three-phase approach. These processes are programmed and time
bound to heal the wound successfully and appear in a programmed manner. Certain
factors such as oxygenation, infection, age and sex hormones, stress or anxiety,
diabetes, obesity, medications, alcohol, smoking, and nutrition obstruct the process
of wound healing, which demands further research to improve the healing process as
well as protecting the wound before it gets fatal. More research on information
relating to these factors could lead to improvement of healing of wounds. The
different stages of wound healing are described as follows and in Fig. 1.
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1.1 Hemostasis

Hemostasis begins when an injury occurs in our body. It is the first and foremost
stage of healing process. It starts with vascular constriction followed by blood
clotting. When the blood vessel shrinks, it eventually slows down the blood flow
platelets and adheres together to close the gap in the blood vessels. Then with the
process of clotting the platelet binds with threads of fibrin. Then the platelets attach
to the sub-endothelium surface of the ruptured blood vessel’s epithelial wall
followed by the adherence of the strands of fibrin. Once the fibrin mesh starts, the
blood is converted to a gel form with the release of the protein prothrombin. The
release of prothrombin initiates clot formation which retains the platelets and blood
cells in the site of wound. Though the clot or thrombus is an important factor in the
healing stages of wound, sometimes it may lead to strokes or heart attacks if it enters
through the circulatory system after detaching from the vessel walls.

1.2 Inflammation

Hemostasis which is immediately followed by inflammation is the second stage that
happens in wound healing. It begins right after the bleeding is controlled, and the
inflammatory cells are migrated to wound infection area (Gosain and DiPietro 2004;
Broughton et al. 2006; Campos et al. 2008). This phase is basically characterized by
removal of damaged cells or debris, pathogens, and bacteria from the site of
infection. During the stage of healing process, the neutrophils, growth factors, and
enzymes cause swelling with redness and pain at the wound site. Though inflam-
mation is a natural process of wound recovery, it could be challenging if it is
prolonged or excessive. This happens mostly in immunocompromised individuals
(Midwood et al. 2004). Therefore, reduction of this phase is often the main goal in
therapeutics. As this induces proliferative phase of healing, it is a necessary part in
the complete process.

 

Haemostasis Inflamma�on Prolifera�on Matura�on 

Wound healing 

Fig. 1 Sequential order of different stages of wound healing
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1.3 Proliferation

The proliferative phase which is also known as rebuilding phase is the third step to
wound healing and overlaps with the inflammatory phase. The wound is remodeled
with novel tissues that are made up of collagen and extracellular matrix when it
comes to the step of contraction. In this stage, the macrophage recruits fibroblasts
which create collagen fibers. In the presence of adequate oxygen and vitamin C,
granulation of tissue forms at the site of the wound bed. Oxygen along with two
amino acids proline and lysine is required for the collagen synthesis, whereas
vitamin C is needed for the hydroxylation of proline to hydroxyproline, an amino
acid present in collagen. Fibroblasts form a collagen bed during the process of
granulation to fill the defect and produce new capillaries. The edges of the wound
are pulled together to reduce the size of infection. Finally, the process of epithelial-
ization occurs in which the epithelial cells enter the site of injury and resurface it to
provide protection from the outer environment. This is a fast process when wounds
are kept moist and hydrated. This humidity can be retained if the wounds are dressed
within 48 hours after the injury to optimize the final process of proliferation, i.e.,
epithelialization (Broughton et al. 2006; Campos et al.).

1.4 Maturation

Maturation which is also called as remodeling stage occurs when the wound is
completely healed. It is also the concluding phase of wound healing. This phase
includes transformation of collagen from type III to type II. The phase starts to work
in the third stage of infection and continues up to 2 years (Mancl et al. 2013). In this
stage, the cells that are involved in repairing the wound are eliminated by the process
of apoptosis. Collagen fibers are aligned along the tension lines and cross link
occurs. This reduces the thickness of the scar and makes the skin stronger than
before. The final resulting scar will never have the original strength of the wound,
and only about 80% of the tensile strength (Broughton et al. 2006; Campos et al.
2008; Midwood et al. 2004).

In the abovementioned phases, it is found that wound healing is a much complex
and fragile process. Certain exogenous and endogenous factors can regulate such
events as well as influence the process of healing. It can also be affected by some
systemic disorders, such as diabetes, immunosuppression, venous disease, and
metabolic deficiencies in the elderly. Apart from this, smoking and cortico-therapy
also hinder the process of early healing of wound.

It is already found that wounds are also susceptible to certain pathogenic bacteria
such as Pseudomonas aeruginosa (Gram-positive) and Staphylococcus aureus
(Gram-positive) which colonize in skin wounds, thereby producing biofilms. Once
the biofilms are produced, bacterial cells are aggregated and immobilized in an
adhesive matrix of extracellular polymeric substances (Kumar et al. 2013, 2020;
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Wolcott et al. 2010). This leads to the weak penetration of antibiotics and subse-
quently makes the elimination of bacteria difficult due to the host clearance mech-
anisms, i.e., antibodies and phagocytes through the microbial biofilm (Kumar et al.
2013, 2020; Breidenstein et al. 2011; Mah et al. 2003; Taylor et al. 2014; Ovington
2003). In addition, toxins produced from bacteria lead to an excessive, detrimental
inflammatory response such as development of antibiotic resistance and delayed
wound healing followed by prolonged hospitalization (Rajpaul 2015; Wilson 2003).
Therefore, wound infections and its healing have emerged as a big cause of death
and burden toward the healthcare system (Kish et al. 2010; Hannigan et al. 2015;
Howell-Jones et al. 2005; Rajanbabu and Chen 2011). Based on the above scenario,
different anti-infective therapies and formulations were suggested which will be
described in this chapter.

2 Anti-Infective Formulations for Wound Disinfection

2.1 Antimicrobial Therapy for Treating Chronic Wounds

Due to the emergence of multidrug resistance, treatment of wound infection leads to
the invention of different anti-infective formulations. Among those antimicrobial
peptides (AMPs) are short-amino-acid chains that are involved in resolving the
wound infections (Kalia et al. 2014; Rajanbabu and Chen 2011; Zasloff 2002).
They also play a vital role in defending against pathogenic microorganisms and
also take part in modulation of immune response. They are believed to be evolu-
tionarily conserved in all living kingdoms from prokaryotes to eukaryotes (Giuliani
et al. 2007). Based on their secondary structure, they are divided into beta-sheet,
alpha-helical loop, and extended peptides. A lot of research has already been done on
beta-sheet and alpha-helical groups as they are the two most frequently occurring
groups in nature. Each AMPs consist of 100 amino acid residues with a cationic
charge from +2 to +9, lysine, arginine, and hydrophobic residues (Martin et al. 1995:
Huang et al. 2010; Dorica-Mirela and Ionel 2009; Huang et al. 2011; Halstead et al.
2015). It has a broad spectrum of antimicrobial activity toward the microbes that also
include drug resistant bacteria which is not hindered by any biological fluids,
exudates, or biofilms. AMPs act faster at numerous sites of the wound infected
area reducing the chance of resistance as well as any further microbial infection
(Gottrup et al. 2014; Lai and Gallo 2009; Felgueiras and Amorim 2017a, b;
Malmsten et al. 2007).

In the process of wound healing, biomolecules are invaded at the site of infection
and induce the consecutive phases of healing. Several antimicrobial agents including
AMPs being part of our immunity system provide protection against foreign
invaders. Once the infection appears, proteases are cleaved at specific sites to release
heparin-binding epidermal growth factors (HB-EGF) and amphiregulin. These
HB-EGF induce the expression of epidermal AMPs to fasten wound healing due
to the presence of their antimicrobial properties (Pasupuleti et al. 2007). In the
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hemostasis phase, the cleavage of proteins like fibrinogen or thrombin occurs via the
complement and coagulation cascades which leads to production of many AMPs
with antimicrobial activity from the fragments of those proteins (Felgueiras and
Amorim 2017a, b).

During the inflammatory phase, neutrophils entered the site of wound infection
which are known to be one of the most significant producers of AMPs. Monocytes
and lymphocytes enter the site of infection once the neutrophils are already
in. Neutrophils also contain α-defensins which are known as human neutrophil
peptides (HNPs) in azurophilic granules, cathelicidins when stored in specific
granules, and calgranulins in the cytosol (Borregaard and Cowland 1997; Ganz
1987). Despite the fact that defensins are commonly used in neutrophil
phagolysosome because of their antiviral and antibacterial activity, they also pro-
mote bacterial phagocytosis. Besides phagocytosis, macrophages also play an
important role in inflammation and chemotactic activity toward monocytes, T
cells, and immature dendritic cells (Ganz et al. 1985; Edwards and Harding 2004).
Like other AMPs, cathelicidins also possess a broad spectrum of antimicrobial
activity against bacteria, fungi, and viruses. They are trimmed by proteinase 3 into
the AMP, hCAP-18, once they are released from the granules (Rodríguez-Martínez
et al. 2008). This hCAP-18 is also known as LL37. These cathelicidins are liable for
the expression of the vascular endothelial growth factor (VEGF) and by producing
monocytes it also transactivates the epidermal growth factor (EGFR). This leads to
the migration of keratinocytes to the site of wound infection (Tokumaru et al. 2000;
Sørensen 2016).

In the proliferation stage, it is found that the epidermal keratinocytes, like hBD-2,
hBD-3, RNase7, and psoriasin, possess most of the AMPs that are involved in
healing. During this phase, the LL37 and calgranulins such as S100A8 (calgranulin
A)/S100A9 (calgranulin B) reach their peak of expression. It is found that many
defensins belong to the same ancestral gene due to which the neutrophils (inflam-
mation) and keratinocytes (proliferation) share the same AMPs and antimicrobial
proteins. The expression of these defensins is basically dependent on the phases of
wound healing (Roupé et al. 2010; Nurjadi et al. 2012). Upon a cut or infection, the
EGFR activation in epidermal keratinocytes induces the expression of beta defensin-
3 (hBD-3). Unlike beta defensins the expression of calgranulins, S100A8, or
S100A9 is induced by the activation of growth factors or by pro-inflammatory
cytokines. This leads to linking growth and tissue regeneration with expression by
AMPs (Nurjadi et al. 2012; Steinbakk et al. 1990). Certain epidermal AMPs such as
nBD-3 and RNase7 showed antibacterial activity against Staphylococcus aureus,
whereas psoriasin is effective against Escherichia coli and calgranulins against the
strain Candida albicans (Gläser et al. 2005; Zanger et al. 2010; Niyonsaba et al.
2007). This shows that epidermal AMPs have a broad spectrum of antibiotic activity
that helps in wound healing. Apart from protecting the wound from foreign
attackers, the AMPs are also involved in other non-antimicrobial functions.

It is also found that hBD-2, hBD3, and psoriasin have chemoattractant properties.
The former activates dendritic cells via TLR-4 because of its chemoattractant
properties toward immature dendritic cells and memory T cells. This is also involved
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in inducing the expression of keratinocytes as well as in its proliferation, migration,
and cytokine production (Röhrl et al. 2010). hBD-3 takes part in activating the mast
cells and increases its vascular permeability. This also induces the second-level
expression of keratinocyte differentiation markers, thereby simultaneously promot-
ing the proliferation of endothelial cells (Roupé et al. 2010; Abdillahi et al. 2012).
During the remodeling phase, the highly antimicrobial collagen type VI gives
protection to the connective tissue of the skin (Ye et al. 2018.).

2.2 Antibacterial Agents in Wound Dressings

2.2.1 Antibiotics

Though it is found that many bacteriostatic or bactericidal antibiotics contribute in
wound healing, their influence on wound repair is still unnoticed. Among several
effective antibiotics against microorganisms, only quinolones, aminoglycosides,
tetracyclines, and cephalosporins have been proved to be useful as antimicrobial
wound dressings for effective wound healing which is later described in Table 1.

The above table is precise information regarding the method of action of the
antibiotics involved in wound dressings as it is already known that antibiotics
interfere with certain bacterial functions and metabolic pathways. They inhibit
some of the bacterial pathways such as inhibition of synthesis of bacterial cell wall
and interfere with the synthesis of proteins. They also obstruct in blockage of certain
metabolic pathways and inhibit the synthesis of nucleic acids (Kohanski et al. 2010;
Rai et al. 2016). Though antibiotics have already proved to be useful for the wound
treatment, their irregular usage may lead to antibiotic resistance (Kalia et al. 2014;
Pîrvănescu et al. 2014). Researchers already found that some microorganisms like
S. aureus and P. aeruginosa considerably developed resistance against antibiotics
(Friedman et al. 2016). It is already found that 70% of bacteria causing wound
infections are resilient to some regularly used antibiotics (Chávez-González et al.
2016). This leads to an urgent demand for finding different substitutes which can be
used for wound healing such as essential oils (Shrestha et al. 2014) and nanoparticles
(Pîrvănescu et al. 2014).

2.2.2 Natural Antimicrobials for Wound Infections

Because of the increasing antibiotic resistance against contagious strains, researchers
are now focused on the huge collection of bioresources. Most of them in the
collection are naturally available herbs. There are certain natural agents such as
garlic, curcumin, ginger, clove, goldenseal, and oregano with antimicrobial proper-
ties. It has also been reported that some wounds have complex polymicrobial
infections that are caused due to activities of certain natural agents (Seow et al.
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2014). The antimicrobial properties of essential oils and honey have already been
confirmed by studies.

2.2.3 Essential Oils

Essential oils also abbreviated as “EOs” are plant secondary metabolites and are a
derivative product of leaves, twigs, seeds, barks, and roots of plants. These isolated

Table 1 List of antibiotics contained within wound dressings

Antibiotic
Material used during wound
dressing Susceptible species References

Amoxicillin
(class:
quinolones)

Sponges collected from bacterial
cellulose

Escherichia coli,
Candida albicans,
Staphylococcus
aureus

Liu et al.
(2018)

Ciprofloxacin
(class:
quinolones)

Calcium alginate films E. coli, S. aureus,
Pseudomonas
aeruginosa

Contardi
et al. (2017)

Films and nanofiber mats of
Povidone

E. coli, Bacillus
subtilis

Li et al.
(2017)

Electrospun fibers based on
thermoresponsive polymer poly(N-
isopropylacrylamide), poly(l–lactic
acid–co-ɛ-caprolactone)

E. coli, S. aureus Pamfil et al.
(2017)

Hydrogels from 2-hydroxyethyl
methacrylate/citraconic anhydride-
modified collagen

S. aureus Anjum et al.
(2016)

Tetracycline
(class:
tetracycline)

Cotton fabric enclosed with
chitosan-poly(vinyl pyrrolidone)–
PEG

E. coli, S. aureus Khampieng
et al. (2014)

Doxycycline
(class:
tetracycline)

Poly(acrylic acid) nanofiber mats S. aureus, Strepto-
coccus agalactiae

Michalska-
Sionkowska
et al. (2018)

Gentamicin
(class:
aminoglycosides)

Thin films made from collagen,
chitosan and hyaluronic acid

E. coli, S. aureus,
P. aeruginosa

Ahire et al.
(2017)

Sodium carboxymethyl cellulose
loaded with antibiofilm agents
(xylitol and
ethylenediaminetetraacetic acid)

S. aureus, Bacillus
subtilis,
P. aeruginosa,
E. coli

Khampieng
et al. (2014)

Kanamycin
(class:
aminoglycosides)

Nanofibers made with a combina-
tion of polyethylene oxide and
hyaluronic acid

Listeria
monocytogenes,
P. aeruginosa

Rădulescu
et al. (2016)

Cefuroxime and
cefepime (class:
cephalosporins)

Biocompatible nanostructured com-
posite based on naturally derived
biopolymers (chitin and sodium
alginate)

E. coli, S. aureus Etebu and
Arikekpar
(2016)
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metabolites from plants consist of wound repairing properties such as antioxidant,
anti-inflammatory, anti-allergic, antiviral, antimicrobial, and regenerative (Agyare
et al. 2016). The antimicrobial properties of plant-based metabolite for wound
healing lie in different chemical constituents such as cinnamaldehyde, thymol,
geraniol, menthol, and carvacrol (Semeniuc et al. 2017; Scagnelli 2016;
Aumeeruddy-Elalfi and Mahomoodally 2016). The presence of these constituents
is based on their isolation processes such as hydro-distillation, microwave-assisted
extraction, microwave-generated hydro-distillation, steam distillation, microwave
steam diffusion, and ultrasound-assisted extraction (Aumeeruddy-Elalfi et al.
2016; Kavoosi et al. 2013). Numerous publications explained that antimicrobial
properties of essential oils are mostly dependent on their constituents. The constit-
uents found are mostly thymol, cinnamaldehyde, geraniol, and carvacrol. EOs attack
lipids and phospholipids of the cell membrane (Altiok et al. 2010). In the bacterial
cell wall, EO is involved in the cytoplasm outflow and decrease in pH, whereas its
role in impairment of certain cellular processes such as ATP biosynthesis, DNA
transcription, and protein synthesis is also seen. The role of interference of EOs in
the cytoplasmic membrane is also described by other groups. This occurs by
interfering with the transportation of nutrients through the cell membrane and
coagulation of bacterial cell matter (Walsh et al. 2003).

After so many in vitro tests, usage of EO toward multidrug resilient microorgan-
isms proved to be beneficial because of its no or very minute effects on the resistance
development in comparison to antibiotics (Sienkiewicz et al. 2014; Zenati et al.
2014; Liakos et al. 2014). EOs of other plant-based products such as thyme,
peppermint, lavender, cinnamon, rosemary, eucalyptus, and lemon grass have been
found to possess antimicrobial properties. Over and above their antibiotic and
antiseptic properties, essential oils have antimicrobial properties as they been used
in wound dressings (Liakos et al. 2015; Nogueira et al. 2014). Sometimes during the
treatment of wound infections, EOs may be required in high concentrations or a
repetitive application which may arise in some adverse effects (Table 2).

Helichrysum Essential Oil

Helichrysum essential oil is useful in healing wound infections because of its anti-
inflammatory, antifungal, and antibacterial properties. It contains arzanol a sub-
stance that plays an important role in healing because of its anti-inflammatory
properties (Popoola et al. 2015). Helichrysum oil helps to prevent scarring by
regenerating new cells because of its antioxidant properties (Ammon 2006). This
oil increases collagen production and thereby reduces skin rashes and infections.
This oil may cause sunburn as it is sensitive to sun. It is not advisable to use in case
of any recent surgery or internal hemorrhaging.
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Frankincense Essential Oil

Frankincense essential oil is also known to be beneficial for the skin by soothing the
skin and evening out the complexion. It is also useful for the treatment of scars as it
kills microorganisms. This oil enhances the growth of new skin cells, tightens the
skin, and diminishes the scars. Because of the presence of the active ingredient
boswellic acid, it shows anti-inflammatory benefits (Boukhatem et al. 2013). This
essential oil sometimes causes skin irritation and abdominal problems. This oil is not
recommended to use if you take blood thinners.

Table 2 Description about essential oils that play a major role in healing scars

Essential Oils

Effective
time
period Benefits References

Helichrysum
essential oil

More than
3 months

Anti-inflammatory, antifungal,
and antibacterial properties

Popoola et al. (2015),
Ammon (2006)

Frankincense
essential oil

1 month Improves skin tone and kills
bacteria

Boukhatem et al. (2013)

Geranium
essential oil

1 month or
more

Antibacterial and anti-
inflammatory properties

Ferdaous et al. (2016)

Lavender
essential oil

1 week Antibiotic, antioxidant, and anti-
septic properties

Mori et al. (2016), Bai et al.
(2014), Imane et al. (2017),
Kwakman et al. (2010)

Carrot seed
essential oil

1 month Antibacterial and antifungal
properties

Shinde et al. (1999)

Cedar wood
essential oil

1 month Anti-inflammatory and analgesic
properties; may treat acne

Lauren et al. (2016), Marino
et al. (2001)

Hyssop
essential oil

3
months or
more

Heals wounds, prevents infec-
tions, and reduces the appearance
of wrinkles and acne scars

Fatemeh et al. (2011), Pariya
et al. (2015)

Vitamin E oil 3 weeks or
more

Boosts collagen production Nesrine et al. (2013)

Tea tree oil 1 month Antiviral, antibacterial, and anti-
fungal nature

Appendino et al. (2007),
Edmondson et al. (2011),
Evandri et al. (2005)

Neroli essen-
tial oil

1 month Reduces pain and inflammation Ammar et al. (2012),
Valerón-Almazán et al.
(2015)

Rosehip seed
oil

6 weeks Improves wrinkles and acne Kim et al. (2017)

Coconut oil 10 days Softens the skin and reduces
inflammation

Varma et al. (2019), Nevin
and Rajamohan (2010)

Almond oil 1 month Comprises vitamin E; soothes and
moisturizes the skin

Ahmad (2010)
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Geranium Essential Oil

Geranium oil is used for the treatment of skin burns or scars by soothing inflamma-
tion and improving the skin tone. It also stimulates new cell growth and helps in
making the scars less visible due to its antiseptic, antimicrobial, and antibacterial
nature. It is found that rose geranium oil is very effective for the prevention and
treatment of inflammatory skin conditions which can be visible within a month
(Mori et al. 2016). Precautions should be taken in case of patients having high blood
pressure or cardiovascular diseases.

Lavender Essential Oil

Lavender commonly known as Lavandula angustifolia is a well-known traditional
medicine used all over the world. It inhibits the growth of infection caused by
microorganisms because of its antibiotic, antioxidant, and antiseptic properties
(Imane et al. 2017). The antibacterial activity of lavender oil is mainly due to the
presence of two components, i.e., linalool and linalyl. Their EO contains excess
amounts of constituents like linalool, linalyl acetate, 1,8-cineole, and camphor. In
vitro studies with lavender EO showed strong antibacterial activity and inhibition of
the growth of microbial strains such as E. coli, S. aureus, and P. aeruginosa
(Kwakman et al. 2010). For surface disinfection, lavender EO was used in the
form of a prophylactic or topical application. This oil encouraged wound healing
in the primary phase which includes stimulation of collagen production, differenti-
ation of fibroblasts, and also fastening the establishment of granulation tissue (Bai
et al. 2014).

This oil helps to prevent scars by promoting cell and tissue growth. It was found
in 2016 that this oil shows potential in wound healing as well as is a natural remedy
for repairing damaged skin tissues (Mori et al. 2016). It also increases collagen
production and regeneration of tissue, thereby encouraging wound healing or
repairing especially in the early phase of treatment. It fastens wound healing by
shrinking its size by topical application.

Carrot Seed Essential Oil

Carrot seed essential oil is also having beneficial effects toward wound scars. This is
due to its antibacterial and antifungal properties. It is also useful in treating older
scars and the results can be visible in a month. This is an inexpensive oil to be used
for wound healing (Shinde et al. 1999).
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Cedar Wood Essential Oil

Cedar wood oil has the potential in treating the skin scars and acne. It has the
property to lower inflammation and helps in pain relieving. The results can be seen
after a month of consistent use. It also causes allergic reactions.

Hyssop Essential Oil

Hyssop essential oil assists in repairing damaged skin like the abovementioned oils.
It also possesses antiseptic, antifungal, antimicrobial, and antibacterial properties. It
has the potential to heal wound infections and reduce the wrinkles and scars
produced from acne (Fatemeh et al. 2011). A publication in 2011 shows that this
essential oil can be used for medicine (Pariya et al. 2015). The results with the use of
hyssop oil can be visible within few months. Hyssop oil is not recommended to be
used in case of epilepsy and hypertension patients. It should also not be used in
higher doses.

Vitamin E Oil

Vitamin E oil prevents scars and retains the moisture of the skin while boosting the
production of collagen. It protects the skin from damage caused by UV radiation.
The results can be visible after a few weeks of use. It may cause allergic reactions,
skin rash, and itchiness. Studies have shown that it improves the cosmetic appear-
ance of scars significantly (Nesrine et al. 2013).

Tea Tree Oil

Melaleuca alternifolia which is commonly known as tea tree oil is a very well-
known EO for its use as traditional remedies. Extraction of this oil is mainly from the
leaves and terminal branches of the Melaleuca alternifolia. The final product after
extraction is a combination of 100 different components such as monoterpenes and
sesquiterpenes (Appendino et al. 2007). Among these the mixture of terpinen-4-ol
and 1,8-cineole is the highly active component having analgesic, antiviral,
antibacterial, antifungal, antiprotozoal, and anti-inflammatory properties. Because
of its healing properties in history, it has importance in modern medicine. Nowadays,
its useful components are used in dermatological creams and ointments.

Numerous data show that wound infections upon treatment with tea tree oil
integrated into functional dressings and were investigated against microorganisms.
For example, an electrospun polycaprolactone nonwoven mat covered with a layer
of chitosan and containing tea tree EO was studied against S. aureus in vitro. This
data showed inhibition of growth of S. aureus when exposed to tea tree oil
(Edmondson et al. 2011). Likewise, it is also found that chitosan loaded with tea
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tree oil exhibits antimicrobial activity and inhibits the growth of strains such as
S. aureus, E. coli, and C. albicans (Evandri et al. 2005).

Neroli Essential Oil

Neroli essential oil is also known to be used for the treatment of scars and a variety of
skincare conditions. This is mostly used for reducing pain and inflammation at the
wound infection site. It is known as a good healer because of its antimicrobial,
antifungal, and antioxidant properties. The effects can be visible after a month of
prolonged use. It also causes skin irritation and allergic reactions. It is one of the
expensive essential oils used for wound healing (Ammar et al. 2012; Kim et al.
2017).

Rosehip Seed Oil

Rosehip seed oil is a relatively less expensive essential oil. This oil is used for the
improvement of skin condition, treatment of scars, wrinkles, and acne. In 2015,
researchers found that rosehip seed oil is used for the healing of the appearance of the
scars after surgery (Kim et al. 2017). It is also seen that using the oil twice a day for a
period of 12 weeks found significantly less discoloration, atrophy, and redness. The
results can be seen after 6 weeks of use. This oil causes irritation and allergic reaction
and is not recommended to use in case of diabetes, kidney stones, or anemia. It can
be used as a carrier oil for essential oils.

Coconut Oil

Coconut oil helps to reverse skin damage, moisturize skin, and heal skin disorders
because of the presence of fatty acids and micronutrients in it. Owing to its
antioxidant and anti-inflammatory properties, it also improves in healing skin con-
ditions (Varma et al. 2019.). It also increases collagen production and also moistur-
izes and softens the skin. In 2019, an ongoing research found that coconut oil
also protects skin cells from inflammation (Nevin and Rajamohan 2010). The
research to find out the real mechanism of action is still continuing. Sometimes it
causes irritation or allergic reaction after consistent use of 10 days (Nevin and
Rajamohan 2010).

Almond Oil

Almond oil has the potential to reduce the appearance of scars. This oil has
numerous benefits toward skin cells as it contains vitamin E. Due to the presence
of vitamin E, it hydrates, soothes, and moisturizes dry or damaged skin. It also helps
in rejuvenating the skin cells and improves the skin complexion and tone. Owing to
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its anti-inflammatory properties, it improves the skin tone soon. It also helps in
reducing the stretch marks and itching. The results can be visible after a month of
use. It is not advisable to use this oil if you have diabetes and any recent surgery
(Zeeshan 2010).

2.2.4 Honey

Honey is derived from the collection of nectar by the honeybee, Apis mellifera, and
is then modified to honey. Honey has been used as a traditional medication since
decades, whereas the science behind its efficacy has been recently discovered.
Besides its use as a natural healer for controlling diseases such as cardiovascular,
gastrointestinal tract ailments, and upper respiratory tract infections, it is also used in
healing wound infections (Kwakman et al. 2010). It is not just a sugary syrup that
helps in wound dressings, but it helps in healing the wounds because of the presence
of certain bioactive components. These components help in reducing inflammation,
granulation, angiogenesis stimulation, and wound epithelialization (Aumeeruddy-
Elalfi et al. 2016). Numerous publications have ascribed several factors about
honey’s bacteriostatic and bactericidal activity which are as follows:

• Its acidic nature (pH:3.4–6.1) encourages macrophages to eliminate bacteria and
helps in microbial biofilm inhibition (Molan 2006).

• The high osmolality in its chemical composition obstructs microbial development
(Israili 2014).

• Owing to certain components such as hydrogen peroxide, lysozyme, antioxidants,
flavonoids, phenolic acids, methylglyoxal, and bee peptides, it possesses
antibacterial activity (Boateng and Diunase 2015; Simon et al. 2009). Particu-
larly, inhibition of bacterial growth occurs via hydrogen peroxide, thereby trig-
gering oxidative damage to pathogen macromolecules. It prevents the growth of
microorganisms upon reacting with the bacterial cell wall, as well as with
intracellular lipids, proteins, and nucleic acids (Kuś et al. 2016).

• There are 14 different varieties of honey that are responsible for its high efficacy
toward microorganisms that take part in infection in wounds. Investigations
published by Kus et al. have shown that cornflower, buckwheat, and thyme
honey were the most effective ones among the different types of honey and
inhibit the growth of bacterium S. aureus (Sherlock et al. 2010). Honey from
Ulmo tree (Ng and Lim 2015), melaleuca (Jantakee and Tragoolpua 2015), and
longan flower (Cooper 2014) inhibits the growth of MRSA microorganisms.

• Floral source, species of bee, and geographical distribution basically determine
the composition of honey. To overcome certain limitations that exist in the
traditional honey such as deactivation of glucose oxidase by spores, only honey
with certified activities is recommended. This introduces medical honey in the
market; e.g., chestnut, manuka, thyme, and revamil (Packer et al. 2012) are
compared with “traditional honey” with good certainty and quality. Nowadays,
few companies produce dressings containing Manuka honey such as Actilite®,
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Algivon®, MediHoney®, and Activon Tulle® (Aumeeruddy-Elalfi and
Mahomoodally 2016).

• Manuka honey is extracted from Manuka tree which comprises antibacterial
activity in biological fluids (Aumeeruddy-Elalfi and Mahomoodally 2016). The
antibacterial properties are not only because of the hydrogen peroxide but also
due to the high amounts of the antibacterial compound (methylglyoxal) (Bulman
et al. 2017). Manuka honey also obstructs the growth of MRSA microorganisms
and S. pyogenes, along with gram-negative strains such as E. coli and
P. aeruginosa (Lu et al. 2014). It also restricts establishment of microbial biofilm
at the infection sites of wounds (Yang et al. 2017a, b). Manuka honey is used in
wound dressings as it possesses anti-inflammatory and antibacterial activity along
with wound repair efficacy. From researchers such as Yang and coworkers,
Manuka honey is found to be a functional antibacterial agent that has antibacterial
activity against MRSA as well as other bacteria such as E. coli, and P. aeruginosa
(Saikaly and Khachemoune 2017).

• As per the clinical beneficial effects of honey, based on randomized controlled
trials a recent report was published (Rai et al. 2009). Several publications even
show varied effects depending on the type of wound, and it has also been found
that honey has some detrimental effects. Therefore, more research and clinical
trials are essential for establishment of clinical benefits of honey to reduce the
wound infections.

2.3 Nanoparticles

With the discovery of nanoparticles the field of nanoscience emerged in 1959 as one
of the fastest growing developments in medicine in the twenty-first century. Ever
since its application in medicine, nanoparticles have the potential to be used for the
improvement of current therapies and diagnostics as we have already mentioned
about the occurrence of multidrug resistance as a major problem in wound disinfec-
tion. Treatment of wounds with such multidrug-resistant bacteria has become a
major task due to the failure of antibiotics in controlling the infection (Yang et al.
2017a, b). In this regard, nanoparticles are considered to be a promising replacement
as they exhibit bactericidal activity against several pathogens compared to the
conventional antibiotics. Their potential in wound disinfection cannot be ignored
with their diminished side effects and no microbial resistance (Kumar et al. 2018).

A nanoparticle upon invading a bacterial cell wall discharges toxic metal ions or
reactive oxygen species (ROS), thereby achieving its bactericidal effect. Upon
contact with bacterial cell wall, the negatively charged groups attract positively
charged nanoparticles at bacterial surfaces by establishing van der Waals forces,
receptor–ligand, and hydrophobic interactions (Kandi and Kandi 2015; Simões et al.
2018; Baek and An 2011). By entering the cell wall of bacteria, nanoparticles also
interfere with metabolic path and cellular organelle such as mitochondria. Besides
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bacterial cell wall, certain extra factors can also affect the tolerance of bacteria
toward nanoparticles.

Depending on the mechanism of nanoparticle toxicity, susceptibility of microor-
ganisms is determined. For example, S. aureus and Bacillus subtilis are less suscep-
tible, whereas E. coli is very vulnerable to CuO and ZnO NPs (Ashkarran et al.
2012). Its toxicity depends on the composition, modification, and intrinsic properties
of nanoparticles. Silver nanoparticles are higher effective toward strains of E. coli
and S. aureus than Cu nanoparticles (Lu et al. 2009; Pramanik et al. 2012). CuO
nanoparticles exhibit higher toxicity against E. coli, B. subtilis, and S. aureus than
zinc nanoparticles. The toxicity of Cu nanoparticles is directed by several factors
such as high temperature, aeration, low pH, and bacteria concentration (Zewde et al.
2016).

Silver nanoparticles are found to be extensively used against microbes as they
possess inhibitory action toward more than 650 microbial species and antibiotic
resistant bacteria (Volkan et al. 2016).

Wounds that are non-healing due to infection are still a challenge to consider.
Therefore, designing of advanced novel materials that could be used at wound site
for dressings is required. Recent publications showed that the use of nanoparticles
in wound dressings has the potential to become ideal candidates for the delivery of
beneficial molecules and drugs to the wound site to improve the healing. In this
chapter, we present the incorporation of several antibiotics, essential oils, honey, and
inorganic nanoparticles, allowing the creation of composite materials for multi-
pharmacological goals during the process of wound healing.
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1 Introduction: Silver in Medicine

1.1 Ancient Use: Silver Compounds

Silver, a lustrous metal, has been known globally since ancient times. Metallic silver
was known to the Chaldeans since 4000 BC, especially for making valuable goods.
Traditionally the royal families used silver in tableware. It is interesting to note that
silver came into medicinal use during the first millennium AD. Primeval Egyptians,
Romans, Phoenicians, Greeks and others used silver to preserve freshness to prevent
spoilage of water, milk, food (Alexander 2009). North Americans used to drop a
silver coin in water for its preservation and for a long-distance transportation prior to
the discovery of refrigerators. Persian King (600 to 530 BC) would drink water only
if it is brought in silver vessels.

These ancient simple practices of preservation of water and food got connected to
antimicrobial properties of silver much later when microbes were discovered (1665)
and their role in infections was established (1884). However, the question arises
whether silver is soluble enough in the water to impart a protective effect for health?
As silver is sparingly soluble in water, just a few parts per trillion, it is believed that
the potential ligands of goblet forming silver salts give rise to its antimicrobial
potential. Most silver salts viz. silver sulfadiazine, silver halides and silver nitrate
being water soluble have antimicrobial properties and oligodynamic effects.

Silver nitrate was discovered in the thirteenth century. However, its medicinal use
came into existence in 1614, when it was used internally by Angelo Sala as a
counterirritant, purgative, and for the treatment of brain infections. Carl Siegmund
Franz Crede, a German obstetrician, in the 1880s effectively used silver nitrate eye
drops for treating gonorrhoeal ophthalmia (ophthalmia neonatorium) in infants. The
practice of using 1% solution of silver nitrate, reduced the incidence of gonorrhoeal
ophthalmia to 0.13% from 7.8% (Schneider 1984). Systematic studies of silver ions
were conducted by Vonnaegele. He reported the effect of silver against 650 species
of unicellular organisms, proposing its promising bactericidal effects (Searle 1920).
Colloidal silver also has been shown to be effective in puerperal sepsis,
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staphylococcal sepsis, tonsillitis, acute epididymitis, and other infectious diseases
(Duhamel 1912; Sanderson-Wells 1916; Brown 1916).

It is only by the twentieth century, the use of metallic silver for water purification
was scientifically established. Later it was expanded for the treatment of wound and
eye infections and for dental hygiene including the prevention and correction of
pyorrhoea, gingivitis, and bad breath. Traditionally silver was used as a blood
purifier, for the prevention of palpitation of the heart and for the reatment of
offensive breath has been reported in 980 AD. Swallowing silver was also found
to be useful in stopping epileptic seizures. In India, the Ayurvedic system of
medicine describes the use of processed metals viz. gold, silver, lead, mercury for
various disease conditions. The use of silver in Ayurvedic therapeutics dates back to
the period of Charaka (300 BC) (Galib 2011).

1.2 Modern Trends: Ionic Versus Metallic Silver

Historically silver has been used for a medical purpose in different forms— as an
additive in ceramic (zeolite) or in glass matrix, as silver salts (chlorides, nitrates,
sulphides) or as elemental silver, though the nomenclature emerged much later.
The Microbicidal capacity of different silver forms was mainly dependent on their
capacity to release silver ions (Das et al. 2005). Silver nitrate has been mentioned in
the Pharmacopeia in Rome in 69 B.C. (Hill and Pillsbury 1939), whereas, record of
its medicinal use has been found in 702–705 AD. Colloidal silver was first used in
1891 (vide infra). Consumption of silver by humans over millennia bespeaks its
safety. In India, 275 tons of silver is consumed every year in metallic form (Silver
foil) as an additive in foods and sweets (Das et al. 2005).

With the advancement of nanomedicine in the twentieth century, several products
containing metallic silver in nano form (<100 nm particle size) have been devel-
oped. The advantage of nano-silver over traditional forms is mainly due to its nano
size with large effective surface area. This allows it to be used at extremely low
concentrations without side effects compared to silver ions or silver nitrate. In the
early twentieth century, medicinal nanoscale silver colloids became available com-
mercially under trade names Collargol, Argyrol, and Protargol and thereafter their
use became widespread within 50 years (Nowack et al. 2011). Collargol, a silver
preparation with 10 nm particle size was used as early as in 1897 (Nowack et al.
2011). The estimated worldwide production and use of nano-silver by 2011 was
320 tons per year (Nowack et al. 2011). Among the 1300 nanotechnology-based
marketed metallic products one fourth comprise nano-silver (Munger et al. 2014).
Compared to ionic silver (chemical forms), nano-silver has distinct physicochemical
properties which lead to their efficacy as an antibacterial, anti-viral, and anti-
inflammatory agent (Yardley 1998).
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1.3 SilverSol®: Coated Nano Silver

SilverSol®, developed by American Biotech Labs (ABL), USA using a patented
technology,—(US6743348B2 United States) is a uniquely engineered colloidal
silver preparation having microbicidal, wound healing and several other activities
(Holladay et al. 2001). A decade of efforts by ABL has resulted in the development
of SilverSol®. The term “sol” specifies the chemical nature of the silver preparation
as ‘a pure mineral permanently suspended in the water where the mineral’s charge is
transferred to the entire body of the water’. The elemental form of zero-valent
metallic silver particles is coated with silver oxide, with particle size ranging
between 5 and 50 nm. The nano size confers multidimensional bioactivity and
high stability to the product. SilverSol® is the only patented engineered product in
the world, containing nano-silver particles with proven safety and multidimensional
efficacy at extremely low concentrations. A wide variety of SilverSol® formulations
available both in liquid and gel forms are colourless, odourless, and tasteless.

1.4 The Multidimensional SilverSol®

The nano-silver particles in SilverSol® have a unique structural arrangement, which
confers a wide range of activities to SilverSol® at extremely low concentrations.
SilverSol® has significant antimicrobial activity, effective against several microbes,
including fungi, bacteria, protozoa and viruses, which makes it efficacious in various
infectious conditions such as Malaria, Influenza, human immunodeficient viral
(HIV), and Hepatitis B viral infections, vaginal infections, oral and urinary tract
infections. Severe infectious conditions caused by antibiotic-resistant bacteria—
MRSA and VRE can also be treated successfully with SilverSol®. Besides antimi-
crobial activity, SilverSol® has been shown to possess activity in cancer cell lines.
Several in vitro and in vivo studies; conducted to confirm its potential, have yielded
positive results with clinical evidence in Malaria, MRSA infections, HIV, pain,
inflammation of various origins as well as in wound healing of various aetiology.
SilverSol® oral products have also been used as immune enhancers.

The current review focuses on the promising effects of various SilverSol®

products in the treatment of acute and chronic wounds. It also gives its detailed
attributes regarding safety, efficacy and pharmacology. Physicochemical properties
and regulatory status of the product are also described. Clinical cases with complex,
infected wounds of varied aetiology and severity, treated with SilverSol® have been
described in a separate section. Case histories of over 22,000 patients undergoing
various dental procedures treated with SilverSol® products have been summarized.
Quicker healing time with relief from post-surgical pain and swelling was found to
be prominent in these patients.
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2 Silversol® Technology

2.1 History of SilverSol® Discovery

Dr. William D. Moeller (Photograph 1), an entrepreneur; transitioned in the
mid-1970s from a highly successful insurance career to become part owner and
CEO of multiple mining companies, including American Consolidated Mining
Company and Clifton Mining Company. Along with his sons, he developed property
in and around Gold Hill, Utah, USA. A former mining boomtown during the turn of
the twentieth century, Gold Hill is riddled with valuable mineral deposits. Its original
operations ceased after World War II as the demand for metals waned (https://en.
wikipedia.org/wiki/Gold_Hill_Utah). William and his team picked up where the old
miners left off, assaying, drilling, and mining the veins for their famously high levels
of copper, silver, gold, lead, and tungsten.

William had a great talent and tenacity when it came to solving problems. He was
able to focus and engineer a way to solve complex problems. He acquired the mining
property from the scattered owners with small plots, gradually building a block of
mining claims that incorporated about 13 square miles of land. During the 1990s, the
prices of precious metals dropped to historic lows. William overcame this hurdle by
diversifying into the application of silver, which had been a mainstay in medicine
prior to the advent of antibiotics. He teamed up with Robert Holladay—an electri-
cian and chemist, and Herbert Christensen—an engineer, and together they began to
research colloidal silver products and the manufacturing methods for them. Their
efforts resulted in the formation of nano-silver with antimicrobial and other proper-
ties that are far better than those of the usual colloidal silver, due to their innovative
tetrahedral structure coating. William was not only successful in obtaining patents to
protect the invention but was also successful in getting FDA approvals for several
versions of the product.

Photograph 1: Dr. William D. Moeller (1936–2014)
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Today ABL, the company founded by Williams, has continued the original spirit
of advancing the manufacturing and providing highly effective and very stable forms
of medicinal silver. Along with universities and government labs, and in close
collaboration with other research groups, such as Viridis Biopharma Pvt. Ltd.
(VBPL) from Mumbai (India), they spent the next decade researching the silver
particles they had created and testing them against a large number of varied
microorganisms. The vast experimental data that was generated proved that
SilverSol® was capable of killing most pathogenic bacteria including Yersinia pestis
causing bubonic plague and also many yeasts, fungi and viruses (Roy et al. 2007;
Pedersen et al. 2008; Pedersen and Moeller 2009; Revelli et al. 2011). They also
proved it was safe for use on and in humans and animals (Munger et al. 2014). They
showed that if taken orally it did not harm the probiotics and when used topically on
a wound, it protected the wound from infection, expedited the healing, reduced the
inflammation and pain (Revelli et al. 2011), and reduced the formation of scar tissue
(Pedersen and Moeller 2009). This unmatched silver technology created by William
and his team is known worldwide as SilverSol® Technology. Over 400 major studies
conducted including published clinical studies demonstrate the capability of the
technology. SilverSol® besides safe was found to be highly effective against path-
ogens that are difficult to manage. It is making waves on many disease fronts,
including treatments for ailments like Malaria (Pedersen and Hedge 2010),
MRSA, and HIV (Pedersen et al. 2008), to name but a few. The studies done in
various government laboratories in US, showed the killing of infectious viruses viz.
SARS and H5N1 by the technology (Pedersen et al. 2008).

William’s diligent work led to the technology obtaining several US FDA clear-
ances, as well as clearances and approvals by other international governments. It has
garnered more than 70 US and international patents, with numerous new patents
currently pending. Before he died, William’s goal was to change the medicinal
history of the world. Having sold more than 22,000,000 units of SilverSol Technol-
ogy products worldwide and having helped improve the lives of hundreds of
thousands of patients, it is safe to say he achieved his goal.

2.2 Characterization of SilverSol®

SilverSol®, a colloidal solution of silver is a 2-phase stable solution of metallic
silver. The crystalline solid phase of ultrahomogenous silver in the liquid phase of
water forms solid state epitaxy—an amazing phenomenon of metallic aquasols in
which the crystalline templet imparts its structure to the amorphous solid phase,
imposing the amorphous phase to crystallize as per the crystalline template. In
SilverSol®, silver in Ag4O4 forms a thin coating around metallic silver suspended
in water. This confers a unique tetrahedral structure to SilverSol®, wherein metallic
nano-silver particles are surrounded by 4 AgO and 2 water molecules (Fig. 1). This
structure, while being stable, also imparts multidimensional biological properties to
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SilverSol® nanoparticles (NPs) without any side effects (Sect. 2.3 safety studies).
This is of key importance, as the safety of the NPs is a major concern in
nanomedicine.

The phase analysis of SilverSol®, using advanced material science has been
reported by Roy et al. They conducted phase equilibrium studies of the biphasic
SilverSol®. Various techniques viz. Differential thermal analysis (DTA),
Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron
microscopy (SEM), and Transmission electron microscopy (TEM) were used for
the solid phase analysis. On the other hand by using Fourier-transform infrared
spectroscopy (FTIR), UV–VIS, and Raman spectroscopy the liquid water phase was
analysed. The readers may refer to the paper published by the group for the detailed
methodology and the data (Roy et al. 2007). Some salient features highlighting the
peculiar distinctive characteristics of SilverSol® as enlisted below:

• The water phase of the SilverSol® was reported to be pure and the purity was
maintained in the presence SilverSol® nano particles.

• Transmission electron microscopy revealed that the particle size of nano-silver
ranged between 10–50 nm with a median around 30 nm. It was observed that the
bigger particles of 20–30 nm size comprised of a group of 5–7 nm particles,
seized together by relatively weak bonds (vide infra). These 5 nm, metallic,
silver-containing ‘mobile’ units, with oxide cover (in the form of layers or
‘skins) around them, confer stability and unique bio-activity to SilverSol®.

• Roy et al. also compared SilverSol® to several silver colloids that were commer-
cially available. Using Raman Spectroscopy, the SilverSol® could clearly be
distinguished from any of the silver colloids, as well as from the deionized
water and the HPLC water. This led to the conclusion that while the water was
pure in the presence of metallic silver, its structural arrangement was different
than that of HPLC and deionized water (Roy et al. 2007).

Oxygen

Silver (Ag)

Metallic Nano-silver
Particle

Ag4O4 Molecule

3D Structure

Fig. 1 Tetrahedral structure of SilverSol®
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Later in 2011, an interesting study was conducted by Revelli and the group. They
observed using TEM and photoelectron spectroscopic imaging (PSI), various micro-
organisms treated with SilverSol® and demonstrated the localization of silver NPs
within the microbes. Using TEM, they observed the localisation of clustered silver
NPs both within Escherichia coli and Staphylococcus aureus but not in several other
bacterial strains studied. However, when the PSI technique was used, all treated
strains showed dispersed silver particles localized within all the bacterial cells
(Revelli et al. 2011).

2.3 Safety Studies of SilverSol®

Recently, Metallic NPs with a wide range of composition and size, have been
introduced for the treatment and diagnosis of several ailments and diseases. This
has, however, led to an increase in human exposure to several metals including
silver. The safety of metallic NPs is an ongoing concern due to their accumulation in
the body which is likely to cause some side effects (Magaye et al. 2012). It has been
shown that NPs can have varied degree of cellular uptake and toxicity through their
interactions (influenced by their size, shape, charge, and the constituent material)
with biological systems (Albanese et al. 2012). Almost a quarter of currently
available commercial nanoproducts used for the medicinal purpose are made up of
nanoscale silver (Munger et al. 2014) which have extensive medicinal and surgical
applications (Rai et al. 2014; Lee and Jun 2019). It is therefore the responsibility of
the manufacturer to ensure the safety of their silver NP product.

2.3.1 Safety of SilverSol®: Unique Structure

The unique arrangement of metallic silver and its oxide in water (vide supra) ensures
the essential non-toxicity and the safety of SilverSol®. Safety of SilverSol® has been
established both for topical application and oral administration. It is widely known
that excessive oral intake of ionic (soluble form) silver, may cause irreversible
blackening of the skin termed as Argyria. Trop et al. reported raised liver enzymes
and argyria when silver-based dressing was used in burn patients (Trop et al. 2006).

2.3.2 Safety of SilverSol®: Ultra-Low Effective Dose

SilverSol® containing 10–40 ppm silver is more efficient, about 1000 times than
other forms of colloidal or ionic silver, in destroying pathogens. On the contrary,
some silver products contain up to 300,000 ppm silver (Sellman 2010). Consump-
tion of at least 900 mg of silver in a year (2.4 mg/day for 1 year) is needed to develop
Argyria. The recommended dosage of 10 ppm SilverSol®—½ to 1 spoon (15–30 μg
in 1.5–3 ml) once or thrice a day is 50 times less than the dose needed to develop
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argyria. As per the Environmental Protection Agency (EPA) standards, 5 μg/kg body
weight silver per day (350 μg/day for a 70 kg adult) can safely be taken by an adult
(https://www.govinfo.gov/content/pkg/FR-1999-08-17/html/99-21253.htm). Con-
sidering this cut-off, consumption of 6 tablespoon 10 ppm ASAP solution every
day by an average weight person would not cross the safety limits even if continued
up to 72 years. Besides these safety calculations, a complete safety profile of
SilverSol®, has been established by ABL by conducting more than 30 studies.
Some of them are enlisted below.

2.3.3 Cytotoxicity Studies In Vitro

ASAP 10 ppm silver solution was studied on Murine fibroblast cell line—L929 by
Nelson Laboratories USA using agar overlay test method. In brief, in a 6 well plate,
L929 cells were grown to 80% confluency. Over the cell mat, a layer of 1% agar was
put, on which the discs containing 100 μl of 10 ppm ASAP solution were placed.
The plates were then incubated. The effect of silver that diffuses through the agar
layer was studied on cell growth. The results were assessed in terms of the zone
around the disc as per the criteria stated in the United States Pharmacopeia &
National Formulary. The score of cytotoxicity due to ASAP was 1 as compared to
the positive control—latex natural rubber, which gave a score of 4 (Nelson Labora-
tories Report 2013).

2.3.4 Animal Toxicity Studies

Acute oral toxicity ASAP 22 ppm solution was tested in rats as per the guidelines of
the Federal Hazardous Substances Act (FHSA) regulations, 16 CFR 1500 (NAMSA,
California report 1999). ASAP 22 ppm, 5 gm/kg (a dose 50 times higher than that of
the human dose) was given to rats. There was no significant toxicity or mortality
observed in rats monitored over 14 days. Another study was conducted at Shri CB
Patel Research Centre, Mumbai, India, using 10 and 32 ppm ASAP solutions. A
dose of 50 ml/kg body weight was injected into the peritoneal cavity of Swiss albino
mice. There was no mortality and no organ toxicity seen at the end of 72 h, which
implied that the safety criteria as per the USP requirements were met.

2.3.5 Selective Inaction on Probiotics

Colloidal silver has emerged as an effective antimicrobial agent, acting across a wide
spectrum of the microbial population. Chemical compounds and antibiotics are
effective over a smaller range of microbes, whereas colloidal silver can kill over
600 types of microorganisms. Interestingly, it has been reported by VBPL that
SilverSol® 10 and 22 ppm does not kill bacteria used in probiotics. In an in vitro
study, SilverSol® 10 and 22 ppm was studied against two marketed probiotics—
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Lactisyn (containing Lactobacillus lactis, Lactobacillus acidophilus, Streptococcus
lactis and Streptococcus thermophilus) and Kyo-Dophilus® (containing Lactobacil-
lus acidophilus, Bifidobacterium bifidum and Bifidobacterium longum). There was
no inhibition of bacteria in the formulation when grown in presence of ASAP (Data
on file at ABL). Another more extensive study conducted at Dr. Ron W Leavitt’s
laboratory, Brigham Young University, in 2004 showed similar results. They
showed ASAP to be bactericidal against the pathogens tested at varying degrees
but not against the various bacteria used as probiotics viz. Lactobacillus,
Bifidobacterium and Streptococcus species. They used several concentrations of
ASAP 32 ppm (0.13 ppm to 16.0 ppm) in broth microdilution assay against standard
ATCC bacterial cultures. Based on Minimum inhibitory concentration (MIC)
results, they reported that the growth of Bifidobacterium was not affected at all at
the highest concentration (16 ppm) and growth of Lactobacillus was marginally
affected at 4 and 8 ppm. Whereas all pathogens tested were inhibited at MIC of
2 ppm (Data on file at the ABL). The study concluded that the consumption of
probiotics in conjunction with ASAP would be beneficial.

2.3.6 Clinical Safety: Effect on Haematology and Metabolic Markers

Clinical safety of silver and other metallic NP has been a continuous concern.
Several in vitro and in vivo studies have been shown the safety of SilverSol® as
described in Sect. 2.1.3 to 2.1.5. However, it is important to ensure the clinical safety
of SilverSol®. Munger et al. conducted a Phase 1 clinical study. Healthy volunteers
were given 10 and 32 ppm SilverSol® for 14 days and the effect on biological
systems was evaluated.

The first prospective double-blind placebo-controlled crossover study in the
60 healthy volunteers was conducted by Munger et al. This systematic study was
conducted as par the ‘International Conference on Harmonisation of Technical
Requirements for Registration of Pharmaceuticals for Human Use’ Guidelines for
Good Clinical Practice and the Declaration of Helsinki, with the approval from the
Institutional Review Board—University of Utah (Munger et al. 2014). The study
registration was done with Clinical-Trials.gov (identifier: NCT01243320). Total
36 subjects received orally placebo as 15 ml sterile water or 15 ml 10 ppm oral
SilverSol® solution and 24 subjects received 32 ppm oral silver particle daily for
14 days. At the end of 14 days, there was 3 days wash out period, after which the
volunteers received a crossover dose of sterile water or dose of respective silver
particles. All the subjects were investigated at baseline and at the end of 3, 7 and
14 days for physical examination, medical and drug history, a panel of metabolic
markers, hematology and urine analysis. There were no significant changes in
clinical or physical findings and in the metabolic, hematologic or urine analysis.

In the above-mentioned study, eighteen subjects receiving 10 ppm and eleven
subjects receiving 32 ppm SilverSol®, also underwent cardiac and abdominal MRIs
post 3–14 days of treatment. There were no morphological or structural changes
noted. The markers of oxidative damage and inflammation—hydrogen peroxide
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production or peroxiredoxin protein expression and pro-inflammatory cytokine
RNA expression analysed in these volunteers were unchanged. IL-8, IL-1α, IL-1β,
MCP1 (Monocyte chemoattractant protein-1) and NQO1 (NADH quinone
oxidoreductase-1) showed no statistical difference between the subjects treated
with active silver and placebo solutions.

2.4 Efficacy of SilverSol®

The activity of SilverSol® has been shown in vitro and in vivo studies. Studies
conducted in human suffering from several illnesses too have indicated its efficacy.
ABL so far has conducted more than 400 studies at 60 different private,
U.S. government, university and military labs across the world. All the data collec-
tively confirm the activity, efficacy and safety of SilverSol® (Data on file at
the ABL).

2.4.1 Microbicidal Activity In Vitro

Traditionally use of ionic silver (silver nitrate) as an antimicrobial was most popular.
It was used as both bacteriostatic and bactericidal (Ricketts et al. 1970; Berger et al.
1976b; Tilton and Rosenberg 1978; Ritchie and Jones 1990), antifungal (Miller and
McCallan 1957; Brown and Smith 1976; Berger et al. 1976a), protozoicidal, (Wysor
and Zollinhofer 1972) and antiviral (Coleman et al. 1973) agent. However, it was not
so effective against bacterial spores, cysts of Entamoeba histolytica and
Mycobacteria (Zanger et al. 2008). In case of Pseudomonas aeruginosa a
non-linear order of death was observed with silver ion (Brown and Anderson
1968). Whereas a rapid bactericidal action of silver ion (silver nitrate 0.5 and 1 μg/
ml) was observed in water but not in broth (Ricketts et al. 1970). Several other forms
of silver viz. silver citrate, lactate and proteinate, and silver sulfadiazine have also
been developed.

Ravelin in 1869 (Ravelin 1869) was the first to report antimicrobial effect at
extremely low concentrations of metallic silver and other metal derivatives. Von
Naegeli found that metallic silver at 0.0000001% (1 ppm) concentration would kill
the common fresh-water Spirogyra (Von Naegelli 1893). Germination of Aspergil-
lus niger spores was prevented by metallic silver at 60 ppm (0.00006%) (Russell and
Hugo 1994). Interestingly, SilverSol® too kills nearly all microorganisms at similar
concentrations 10–50 ppm including the ones resistant to antibiotics.

In the studies conducted with standard ATCC culture and resistant strains;
SilverSol® showed antimicrobial potential. An in vitro study was conducted using
SilverSol®- Silver Water Dispersion™ Solution (De Souza et al. 2006). Eight
microorganisms viz. Shigella flexneri, Salmonella typhi, S. aureus 6538 P. Bacillus
subtilis, Candida albicans, MDR (multiple-drug resistant) strains of E. coli and
P. aeruginosa, methicillin-resistant S. aureus were treated individually with Silver
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Water Dispersion™ and nineteen commonly used antibiotics. Further synergistic
activity of Silver Water Dispersion™ was studied by the group using it in a
combination with individual antibiotics. MICs of Silver Water Dispersion™ and
the antibiotic solutions were determined using the macro-dilution test. The agar cup
method was used for zone of inhibition studies using individual antibiotics and
synergistic combinations. MIC of Silver water dispersion™ Solution was found to
be in the range of 2–17 ppm, the lowest inhibitory concentration was against S. typhi.
The highest inhibitory concentration was found to be against B. subtilis. Total
96 tests were conducted to determine the synergistic activity of Silver Water
Dispersion™ in combination with other standard antibiotics. Five combinations
were found to be synergistic- with amakacin, cefoperazone, ceftizidine (against
MDR—E. coli and P. aeruginosa) and kanamycine, 89 were additive, and two
were antagonistic—with amoxicillin and oxacillin.

Microbicidal activity of ASAP nano-silver solution was reported by Bhat et al.
against drug-resistant pathogens—bacteria and Candida. The resistant bacteria
studied included Methicillin-resistant Staphylococcus aureus (MRSA),
Vancomycin-resistant Enterococcus faecalis, drug-resistant Escherichia coli,
ESBL (extended-spectrum β-lactamase) producing Klebsiella pneumoniae, drug-
resistant Pseudomonas aeruginosa, Salmonella typhi, and Shigella flexneri were
isolated from clinical samples. The inhibitory and microbicidal effects of ASAP
were determined by broth dilution and suspension test. S. aureus ATCC 25923 and
E. coli ATCC 25922 were used as controls. Bacteria were found to be more
susceptible than Candida. It was observed that an exposure time of around
30–60 min would kill bacteria while C. albicans was killed after 120 min of
exposure to ASAP (Bhat et al. 2009).

In another study by Revelli et al., the activity of 10 ppm SilverSol®was compared
with 5 antibiotics—Erythromycin, Ofloxacin, Tetracycline, Penicillin and
Cefaperazone. MIC was also determined against Streptococcus pyogenes
(ATCC 19615), Streptococcus gordonii (ATCC 10558), Escherichia coli O157:
H7 (ATCC 43895), Streptococcus mutans (ATCC 25175), Streptococcus
pneumoniae (ATCC 6303), E. coli (S.E. 163 Luria Strain B ATCC 11303), Klebsi-
ella pneumoniae (ATCC 13883), S. typhimurium (ATCC 14028), Enterobacter
aerogenes (ATCC 13048), P. aeruginosa (ATCC 27853), Streptococcus faecalis,
Shigella boydii, Staphylococcus aureus, Klebsiella oxytoca, Salmonella enterica
subsp. arizonae and, Enterobacter cloacae. MIC for the majority of gram-negative
organisms tested was found to be 2.5 ppm and for P. aeruginosa, Shigella boydii,
and K. oxytoca showed lower MICs (1.67 ppm, 2.19 ppm, 1.25 ppm, respectively)
(Revelli et al. 2011).

Recent collaborative studies conducted at Texas Tech University have investi-
gated the antibacterial activity of SilverSol® Gel (Ag-gel). The group investigated
the inhibitory activity of Ag-gel against bacteria causing tooth decay and plaque
formation (Tran et al. 2019). The activity of Ag-gel was first tested against individual
bacteria and colony forming units (CFU) were monitored. the effect of Ag-gel on
biofilm formation was determined by placing suspensions of these bacteria (approx-
imately 4 � 102 CFU—colony forming units of each) on a 6 mm paper disc. Ag-gel
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0.5 gm was applied on the inoculated discs which were then placed on the growth
medium in plates. Micro-aerobic conditions were generated using EZ GasPak in a jar
in which the plates were incubated at 37 �C for 24 h. Biofilm formation was
monitored by scanning electron microscopy. In the CFU assay, Ag-gel inhibited
100% growth of all the test bacteria, as against in the placebo gel and in the blank
cellulose disc wherein bacterial growth was seen to be as high as 6 logs. In the
biofilm formation assay, S. salivarius, S. sanguis, S. mutans and the mixture of all
three strains developed microcolonies on the cellulose discs indicating the formation
of typical biofilms. In presence of Ag-gel, no such biofilm formation was seen.

In another study done by the group, synergistic action of silver colloidal gel
(Ag-gel) with 5% Betadine solutions was determined against both Gram negative
and Gram-positive bacteria. The experiments were carried out using colony forming
unit assay, and confocal laser scanning microscopy. Ag-gel alone inhibited
the growth of all the bacteria, except Klebsiella pneumoniae CI strain. On the
contrary, bactericidal activity was not seen when 5% Betadine was used alone. Inter-
estingly, Ag-gel in combination with 5% Betadine solution, completely eliminated
even K. pneumoniae (Tran et al. 2020).

SilvrSTAT® 32 PPM hydrogel—one of the products of SilverSol® used as an
antibacterial wound dressing gel has shown significant bactericidal effect as seen in
the comparative kill curves with currently available silver products approved for use
in wound management. In-vitro comparison of kill curves for SilvrSTAT® (32 ppm
silver) exemplify clinical relevance of SilvrSTAT® over silver sulfadiazine cream
(10,000 ppm), for eradication of MDR microbes in infected wounds (Fig. 2)—Data
on file at ABL.
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2.4.2 Clinical Efficacy of SilverSol®

Multidimensional SilverSol® products have demonstrated clinical effects in numer-
ous ailments, besides wound healing. This section gives an overview of these
studies.

In 4 various hospitals, about 120 studies have been conducted in patients with
various illnesses viz. eye infections, upper respiratory tract infections, retroviral
infections, malaria, external cuts, abdominal pain and diarrhoea, urinary tract infec-
tions, sore throats, bronchitis, vaginal yeast infections, ear infections, gonorrhoea,
pelvic inflammatory disease, various mouth problems, etc. Almost all the patients
treated orally with 10 ppm SilverSol® recovered within 1 week (Data on file
at ABL).

In Ghana, West Africa studies were conducted at three hospitals by Dr. Kwabiah,
Dr. Sackey, Dr. Abraham at Air Force Station Hospital, Korie-Bu Teaching Hospital
and at the Justab Clinic/Maternity respectively. Fifty-eight patients were treated by
their attending physicians in respective hospitals using ASAP 10 ppm Solution as an
alternative to antibiotics both as an oral and topical application depending upon the
illness. Orally the dosages given were 5–10 ml twice or thrice a day for infections
including malaria, HIV, fungal skin infections, upper respiratory and urinary tract
infections, peptic ulcers, infectious abscesses, sore throat and pelvic inflammation.
In case of halitosis and gingivitis it was used as a mouth wash, and in vaginal yeast
infection as a douche. ASAP drops were used for eye infections such as conjuncti-
vitis, ear infections viz. otitis media and upper respiratory tract infections such as
sinusitis and rhinitis. Within 7 days all the patients showed a complete recovery. The
details of all these studies are deposited as ABL’s proprietary records and we are not
describing these studies here in detail as the focus of the article is wound healing.

SilverSol® products, 10 ppm and 30 ppm SilverSol® liquid as well as the 32 ppm
SilvrSTAT™ Hydrogel, have been used effectively in dental surgeries
(e.g. extractions, bone grafts, Guided Tissue Regeneration, Periodontal, Laser,
Dental Implant and Endodontic surgeries). A profound ability of these products
has been demonstrated by Willoughby AJM in treating oral infections and speeding
up wound healing without negatively impacting the oral microbiome (and probiotic
bacteria) or gut health. The readers can visit www.ddsource.com to for specific
dental protocols and learn more. Some of the data has been given in a separate Sect.
3.6.8 below.

2.5 Bioavailability and Pharmacodynamics of SilverSol®

After an oral administration of SilverSol®, its concentration in urine and blood was
measured by Munger et al. in a study conducted in healthy volunteers (Munger et al.
2014). In this study, healthy volunteers were given 15 ml of 10 ppm and 32 ppm
SilverSol® for 14 days. Blood and urine were collected on the 14 day at �2 h of

368 A. de Souza et al.

http://www.ddsource.com


ingestion of the last dose. In the group receiving a 10 ppm dose, blood samples were
also collected at �24 h. after ingestion of the last dose on the third and seventh day
of administration. Silver concentration was measured by using ICP-MS. In the
10 ppm dosing group, 42% of the subjects showed peak silver concentration
(mean concentration 1.6 � 0.4 μg/L) in the serum at the end of 14 days. In the
group receiving the higher dose –32 ppm, 92% of the subjects showed peak silver
levels in the serum with the mean value 6.8� 4.5 μg/L. There was no silver detected
in the urine irrespective of time and dose.

As to the drug interaction, SilverSol® does not interfere with most of the other
pharmaceutical compounds but works synergistically with medications. If taken in
conjunction with antibiotics, it will work synergistically to increase the antibiotic
effectiveness by tenfold (Sellman 2010). Importantly, its antibacterial action does
not affect the beneficial gut flora. The nano-silver particles in SilverSol® do not
interfere with the hydrochloric acid production in the stomach. They do not fall out
of suspension and hence do not accumulate in the tissues or the skin reducing risk of
developing Argyria, (i.e., blue man syndrome) (Roy et al. 2007).

2.6 SilverSol®: Regulatory Status and Products

Different forms of silver nano products viz. silver citrate, lactate, proteinate and
nitrate have been listed in pharmacopoeias and formularies around the world. The
old British National Formulary included a silver nitrate lotion, but it was removed
from the 1993 issue (BNF 1993). and only silver sulphadiazine came thereafter.
Cream of silver sulphadiazine and ophthalmic solution of silver nitrate have been
included in The USP XXII (USP 1990). Other silver products such as silver metal,
silver protein, silver acetate, silver nitrate, and silver sulphadiazine have been
mentioned in Martindale, The Extra Pharmacopoeia (Martindale 1993).

In the case of SilverSol® products, several approvals from various regulatory
agencies in the US, India and Canada have been received by ABL and VBPL.
Product licence for Silver Biotics Antimicrobial Wound Cream and Silver Biotics
Antimicrobial Hand & Body Wound Lotion has been given in Canada. Similar
products for dental applications have been available under the brand names
OraSIL™ and CuraSIL®. US FDA has given marketing approvals to various
SilverSol® products viz. ASAP OTC® Wound Dressing Gel, SilvrSTAT®

Antibacterial Wound Dressing Gel, AGRX Wound Wash Antibacterial Silver Skin
and Wound Cleanser (Prescription), and AGX Wound Wash Antibacterial Skin and
Wound Cleanser (Over the Counter). The FDA has recently approved the SilverSol®

gel as a prescription medicine for its use in the management of diverse wounds viz.
caused by first and second degree burns, abrasions, lacerations, diabetic ulcers, skin,
tears, and surgical wounds (Sellman 2010). In India, VBPL has been granted product
licenses by FDA; for Colloidal Silver Solution 10 ppm, Amorphous hydrogel with
32 ppm colloidal silver, Amorphous hydrogel Wound dressing with 32 ppm colloi-
dal silver and Colloidal Silver Solution 40 ppm. In 1991, the USEPA established an
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oral reference dose of 0.005 mg/kg/day for silver. According to this recommenda-
tion, in the case of SilverSol® the daily intake limit of silver, for an average size
adult, would be about an ounce/day of a 10-ppm product.

Considering the wider application of SilverSol®, a large number of products in
gel or liquid form with different strengths are being produced and marketed by ABL.
The main treatment categories where SilverSol® can be used, are immune support,
skin and wound care, and oral care. These products are prepared without any
artificial ingredients, dyes or flavours, preservatives or additives and are gluten
free, 100% vegetarian and probiotic friendly.

3 Wound Healing

3.1 Global Challenge of Wound Healing

Would healing, controlled by several biological and molecular events, is a complex
physiological cascaded process of damage repair involving three major phases viz.
(1) cell migration and proliferation (2) extracellular matrix deposition and
(3) remodeling. This normal course of healing may get impaired or delayed in
certain pathophysiological and metabolic conditions viz. uncontrolled diabetes,
diabetic neuropathy and vascular diseases resulting in the formation of chronic
non-healing wounds (Mustoe et al. 2006). Infection of such wounds; especially
with drug resistant microorganisms further complicates the management. Such
situations often pose a therapeutic challenge to a medical practitioner.

Chronic wounds, due to prolonged morbidity pose a humanitarian and economic
burden both at the individual and at the national level. Foot ulcers are common in
diabetes (around 15–25%) (Marston 2006) which can become chronic and
nonhealing due to complications of diabetes leading to a need of amputation of
lower extremities in 12% of them (Greer et al. 2013). The costs involved with the
healing of an ulcer can be up to US$45,000 (Paquette et al. 2002). In addition, the
detrimental consequences on the patient’s quality of life because of diminished
mobility and significant loss of productivity will have a socioeconomic impact. In
addition, acute and emergency wound care resulted through trauma, surgery and
burns requires several procedures and high cost. In developed countries, the treat-
ment cost of chronic wounds has been estimated to be 1–3% or even more of the total
health care expenditure (Olsson et al. 2019). The prevalence of chronic wounds was
reported to be 6% in 2016 in Wales, UK, which resulted in to about 5.5% cost to the
National Health Services (NHS) (Phillips et al. 2016). Worldwide, the annual
average cost for wound care has been reported to be around $2.8 billion in 2014
and it is estimated to rise up to $3.5 billion by 2021 (Settipalli 2015). Skin scarring is
an additional burden implicated in wound healing, which can bring about an annual
cost of US$12 billion.

Overall, wound healing is a great challenge both in case of handling acute
emergencies and managing chronic non-healing wounds. Healthcare professionals
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and patients look for novel medicine, medical devices, and newer treatment modal-
ities, that can offer better treatment options to improve healing rates, minimizing
complications and reduce hospital stays. This has created great attention for both the
scientific fraternity and the commercial enterprises. The current market of wound
healing products surpasses US$15 billion annually and the amount spent per year for
handling wound scarring is about US$12 billion (Sen et al. 2009). Innovative
biotechnology-based treatment procedures and medical devices are being developed
for improved wound management. The SilverSol® products for wound healing,
developed using advanced technology are at the top of the list, scientifically
addressing various aspects of wound healing viz. safety, efficacy, faster healing
and reducing morbidity.

3.2 Historical Aspect of Wound Healing

Wounds and their management have been a part of human existence since the time
man first arrived on earth. It is interesting to examine the methods and preparations
used to heal wounds over the centuries. One of the oldest records of wound
management—the Smith Papyrus, was discovered by Dr. Edwin Smith—a well-
known scholar in 1862. The writings (discovered by Smith) date back to around
2600 BC and cover many aspects of patients’ care. It describes the cleaning and
suturing of wounds, the use of antiseptics, adhesives such as acacia gum and resins,
and bandaging. The resin coated bandages that were used to wrap mummies were
used for wound dressing. Over thousands of years, a variety of materials have been
used for wound healing such as spider webs, dung, various species of animal and
insects, vinegar, beer, wine, honey, leaves and tree bark. The first description of
‘three healing gestures”—washing the wounds, making the plasters, and bandaging
the wound was found to be recorded on mud tablets during 2200 BC (Ackerknech
1982; Richard 1991; Yardley 1998). An interesting description of using a bandage
for wound healing was found in Mesopotamian culture. It states that “mix in milk
and beer (the bandage) in a small copper pan; spread on the skin; bind on him
(on patient’s wound), and he shall recover” (Farrar and Krosnick 1991). Egyptians
used adhesive bandages which contained honey and grease for the protection of
wounds from infection and vegetable fibres’ lint to aid drainage of the wound.
Honey has been used for thousands of years and is still a part of many advanced
wound dressings. Even in India, a long before the birth of Christ, honey was used for
wound care. Greek Physician Hippocrates practiced 3 measures for wound healing—
(1) cleaning and drying the wound edges (2) bringing wound edges as close as
possible to accelerate healing and (3) applying warm or cold wine as an antiseptic
(Farrar and Krosnick 1991; Brown 1992; Yardley 1998). This description interest-
ingly covers the modern concept of ‘The TIME’ in wound management (vide infra).
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3.3 Challenges in Wound Healing: Current Practices
and Novel Approaches

A wound, whether minor or major causes a lot of suffering to the patient due to pain,
swelling and inflammation. It can cause temporary disability to prolong immobility
and affect the overall quality of life. However, inflammation of the wound, the first
response of the body to an injury, induces migration of various polymorphic
mononuclear blood cells and monocytes to the site of injury to remove cell debris
and bacteria by phagocytosis. This initial inflammation is needed for initiating the
proliferative phase of the damage-repair cascade. Under normal physiological con-
ditions, the body follows the damage repair cascade—(1) cell migration and prolif-
eration (2) extracellular matrix deposition and (3) remodeling, which leads to wound
healing. Under such normal physiological condition, therapeutic management of
wounds includes supportive drug/non-drug modalities to enhance the natural pro-
cess. Various wound dressings and treatments have been evolved considerably to
handle such conditions. However, in case of impaired physiological condition as in
diabetes, or for severe wounds, their management is a foremost challenge. Wounds
tend to become chronic, infectious and non-healing in patients with co-morbidities
(vide supra). Such complex wounds that include lacerations, diabetic-, pressure-, and
venous- ulcers, infectious third-degree burns require a systematic management
strategy, simultaneously addressing inflammation, infection and impaired physio-
logical process.

The inflammation phase is a part of a wound healing process at the initial stage of
an injury (vide supra). However, prolonged inflammation can lead to tissue damage
and hamper the natural healing process. Infection of wounds is a major concern that
complicates wound management. Especially wounds that take longer to heal are
more prone to infections. Skin is a natural habitat for common bacteria such as
Staphylococcus epidermidis, and various other species viz. Staphylococcus and
Corynebacterium, Brevibacterium, Proprionibacterium acnes, Pityrosporum,
hence, serves as a potential source of wound contamination (Bowler et al. 2001b;
Broughton et al. 2006; Schreml et al. 2010). Normally wounds can heal in presence
of these bacteria, but colonization of bacteria in slow healing wounds may hamper
the healing process. Cell debris and local hypoxia at the site of the wound promote
bacterial colonization and subsequent chronic infection. Colonization by drug-
resistant bacteria viz. MRSA and VRE further complicate wound healing. Prolifer-
ating bacteria at the site of the wound penetrate deeper healthy tissue resulting in
tissue damage and uncontrolled inflammation, leading to severe wound. β-
haemolytic Streptococcus pyogenes and Streptococcus agalactiae, Staphylococcus
aureus, Proteus, Klebsiella, Pseudomonas, Escherichia coli, Stenotrophomonas,
Acinetobacter, and Xanthomonas are common pathogens that can infect wounds
(Bowler et al. 2001a; Ovington 2003).

Prolonged inflammation and severe infection of wounds affect the normal wound
healing process. Infections reduce the essential growth factors and degrade fibrin that
required for natural healing. Moreover, prolonged, and uncontrolled inflammation
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induces tissue damage, supports bacterial growth and collectively hampers the
healing process. Biofilms formed by colonizing bacteria further create a hypoxic
environment that damages tissues, supports bacterial growth and hampers fibroblast
proliferation and collagen production required for the natural wound healing pro-
cess. These factors collectively cause wound complications (Anderson and Hamm
2012; Okur et al. 2020). Besides these factors, other co-morbidities such as immune
suppression and smoking have a negative influence on the wound healing process.

With the advancement of science and technology wound repair has become more
organized through a holistic approach involving wound factors, local tissue factors,
patient factors, and environmental factors. Increasing knowledge of the mechanisms
of wound healing and advancement of technology has led to the expansion of
superior wound healing modalities, such as hyperbaric oxygen therapy,
bioengineered skin and tissue equivalents and negative pressure wound therapy
(Wu et al. 2010). The details of such advancements are covered by others in this
book. However, the authors would like to mention here that the ‘The TIME’ concept
is now considered to be an essential Wound Care Process. It covers 4 important
measures of wound healing namely T—Tissue, Removal of devitalized tissue, I—
Inflammation/Infection and its prevention & control, M—Moisture Management
and E—Edge Protection. SilverSol® wound healing products made from silver NPs
address all these aspects of ‘The TIME’ concept.

3.4 Silver in Wound Healing

Hippocrates (400 BC) mentioned in his medical writing, beneficial effects of silver
in healing and in disease-alleviating properties. He highlighted an ability of silver in
tissue repair and wound healing and applied silver preparations for the treatment of
ulcers. Marion Sims; an American physician in 1852, who was a pioneer in the field
of surgery and known as the “father of modern gynaecology” used fine silver wires
to close the fistulas after surgical repair of vesico-vaginal fistula. He also employed
silver catheters for urinary diversion until complete healing of repairs (Sims 1884).
Later, Halsted, an American surgeon, who stressed upon the strict sterile practices
during surgical methods, treated wound infections using silver foil (Hill and
Pillsbury 1939). In 1520 the Swiss physician Paracelsus used Silver nitrate as a
medication for wounds,’ both for an internal therapy and for a topical application
(Alexander 2009). Later during the period of 1800–1900 silver nitrate was effec-
tively used to treat complicated wounds like skin ulcers, compound fractures, and
oozing wounds. Crusius treated burn injuries with silver nitrate in the 1890s (Alex-
ander 2009). The first record of applying colloidal silver on the wound as an
antiseptic was found in 1891 (Grier 1968). Roe in 1915, an ophthalmic surgeon
used successfully colloidal silver to treat infected corneal ulcers (Roe 1915).

Though the knowledge of using silver in wound healing is age-old, efforts to
develop newer forms of silver for optimizing delivery, efficacy and safety are still on
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even today. SilverSol® qualifies all these aspects to be a successful medicinal
product.

3.5 SilverSol® in Wound Healing

SilverSol® is a breakthrough among the currently available advanced wound-healing
technologies. It offers a next generation therapy for the treatment and management
of severe, chronic and infectious wounds that are difficult to manage. The clinical
efficacy of SilverSol® products has been proven in wounds of varied etiology such as
acute and traumatic wounds, lacerations, diabetic-, pressure-, and venous- ulcers,
infectious wounds, third degree burns, MRSA and VRE infected wounds. It is
among the few nano-silver technologies which have received FDA approvals for
various formulations for wound healing. Various formulations manufactured using
the SilverSol® technology are available under brand names such as Armor Gel™,
ASAP OTC™ Wound dressing gel, AGRX Wound Wash, Antibacterial Silver Skin
and Wound Cleanser (Prescription), and AGXWound Wash, Antibacterial Skin and
Wound Cleanser (Over the Counter). SilvrStat®, Megaheal, Hyrdoheal, and Silverex
Heal are some of the approved prescription varieties of the SilverSol® gel available
for the treatment of lacerations, first- and second-degree burns, diabetic ulcers, skin
tears, abrasions, various surgical wounds, and MRSA and VRE infected wounds.

3.6 SilverSol®: Mechanisms of Action

SilverSol® consists of metalic nano-silver with a silver oxide coating. Being metallic
in nature, it acts through quite a different mechanism as compared to that of ionic
silver. Various silver products irrespective of the form of silver present in them,
require ionization of the metallic silver for their antimicrobial activity. The highly
reactive Positively charged silver ions (Ag+) are highly reactive and kill microbes by
binding to proteins, DNA, RNA, and chloride ions of microbes which are negatively
charged. These ionic silvers can steal 1 electron, however, the SilverSol® metallic
nano-silver has the ability to steal multiple electrons.

Conventional silver products hence (ionic form) impart their effect through the
direct contact with microbes—chemical reaction. SilverSol® technology works by
catalytic action, which allows the silver NP to first destroy the pathogens and then
instantly recharge and “kill” continually—like a rapid-fire machine gun (Sellman
2010). This makes SilverSol® incredibly powerful, destroying pathogens thousands
of times more effectively than a simple colloidal or ionic silver. This explains why
other silver solutions/suspensions need to be used at concentrations up to
300,000 ppm of silver, while SilverSol® performs effectively even at 5–30 ppm.
In addition, ionic silver can also bind to negatively charged particles viz. proteins
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and chlorides in the wound bed fluid, reducing the bioavailability of ionic silver.
Hence the high concentration of silver will have to be used for maintaining
prolonged activity.

It is also known that microbes develop resistance to ionic silver but not to metallic
silver by sequestering silver in its more innocuous state—ionic or sulphide form and
thereby detoxify the silver. However, as reported by Revelii et al., silver present in
SilverSol® being metallic, accumulates in most bacterial cells in a quite different
form—as small particles seen by PSI technique (vide supra) (Revelli et al. 2011).
Secondly, each silver NP in SilverSol® remains always embedded with a resonant
frequency, which allows the particles to have a continuous impact on things, without
direct contact with them. Moreover, the particles also have an electrostatic charge
that adds to its effect.

The unique wound healing action of SilverSol® has also been attributed to its
stimulatory effect on stem cell regeneration (Sellman 2010). The two properties of
metallic silver viz. high conductivity and bactericidal action impart the overall
efficacy to SilverSol®. In addition, SilverSol® has been shown to be non-toxic to
healthy cells in cytotoxicity experiments in vitro. This has an added advantage as
local application of SilverSol® as the wound site will not have any damaging effect
on healthy tissue.

SilverSol® is effective in wound healing. It exerts effects of silver at 3 levels
namely, prevention or clearing of infections, improving healing process, and con-
trolling inflammation. This ultimately speeds up the wound healing and reduces pain
leading to a positive clinical outcome. SilverSol® has shown promising clinical
efficacy in infectious wounds through its remarkable bactericidal activity even
against MRSA and VRE. Several case studies demonstrating the effect of SilverSol®

in the treatment of wounds of varied etiology and severity are discussed in the
following section.

3.7 Effect of SilverSol® in Wound Healing: Case Studies

This section describes various case studies to illustrate the efficacy of various
SilverSol® branded products (ARMOR GEL™, MEGAHEAL, ASAP OTC,
SilvrSTAT®, Silver Biotics Pet Vet Veterinary Gel) used for the treatment of various
skin infections, and wounds of varied etiology including mild cuts, lacerations, first
and second degree burns, pressure ulcers, traumatic wounds, and chronic wounds. In
addition, SilverSol® in a gel form, wound wash and dressing has been used in tens of
thousands of patients undergoing dental procedures. The wound healing potential of
these SilverSol® products viz. wash solution ASAP™ (10 ppm) and a gel
SilvrSTAT™ (32 ppm) was evident through the remarkable recovery in these
patients. A separate subsection is dedicated to summarizing effects in a large number
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of cases undergoing dental procedures. It opens another avenue for wound healing in
oral care and focal infections (vide infra).

3.7.1 Use of SilverSol® in Mild to Moderate Wounds

Case 1 A 11-year-old female got a large abrasion on the elbow and hip due to a
scooter accident. After thorough washing of wounds with water, ARMOR GEL™
was applied to the affected area once for the first 2 days, and every 2 days after that.
Wounds were covered with bandages, which were changed and each time the
ARMOR GEL™ was reapplied. The bandages were discontinued after day 7, but
the ARMOR GEL™ was still applied once daily up to day 10. A complete recovery
was seen by day 12 (Figs. 3 and 4).

Case 2 A 22-month-old male child got a deep injury on the forehead. The wound
was approx. 2 cm. long and 0.75 cm deep. It was cleaned and sutured at the hospital.
Bacitracin was applied to the wound and was protected with a bandage. After
returning home, ARMOR GEL™ was applied instead of bacitracin. The gel was
then reapplied with the bandage change—1–4 times in a day (a repeated application
was needed as being small, the child tended to remove the bandage). A bandage and
ARMOR GEL™ were continued till day 9 after removing the sutures by a physician
on day 5. Complete healing was achieved by day 9 (Fig. 5).

Initial Wound Day 1 Day 3 Day 5 Day 7 Day 12

Fig. 3 CASE 1

Initial Wound Day 1 Day 3 Day 5 Day 7 Day 12

Fig. 4 CASE 1
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3.7.2 Use of SilverSol® in Superficial Pellet Wounds

Case 3 (Published) SilverSol® product Megaheal amorphous hydrogel was used
for multiple pellet wounds. A 35-year-old male patient was injured accidentaly by
shotgun. The wounds caused by multiple pellets were superficial and had not
damaged bones and distal neurovascular status been intact. Musculoskeletal injuries
were significant. Supportive treatment was given along with broad spectrum antibi-
otics and anti-tetanus therapy. After washing the wounds with saline, Megaheal was
applied thrice a day which was followed by dressing. Patient followed every fifth
day, showed gradual healing of the wounds and painless shading of remnants pellet.
A complete healing was achieved by 2 weeks. The detailed case report is available as
a published paper (Dharmshaktu et al. 2016).

3.7.3 Use of SilverSol® in Surgical Wounds

Case 4 A 63-year-old female had multiple surgical wounds. ARMOR GEL™ was
applied to the wounds and were covered with bandages. It was reapplied 5 times
daily every time with the new dressing. No other treatment or products were used for
wound healing. Pictures of the wounds were taken on day 1 and day 28 (Fig. 6).

Fig. 5 CASE 2

Fig. 6 CASE 4
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Case 5 A 52-year-old diabetic male undertook the voluntary corrective repair of
hallux valgus and pre-dislocated second metatarsophalangeal joint (MPJ) right foot.
The Silver hydrogel was applied to sutures immediately after surgery and every third
day throughout the post-surgical care. The patient’s sutures were removed on day 18.
There was no indication of dehiscence/pull out or any sign of infection (Fig. 7).

Case 6 A 56-year-old female patient underwent plantar digital neuroplastic surgery
to her third interspace right foot. The Silver hydrogel was used after surgery with
dressing which was changed every third day till the 15th day. On day 15 sutures were
removed. There was no pull-out, dehiscence or infection seen (Fig. 8).

Case 7 A 72-year-old male diabetic patient had to go for surgical resection of his
fourth metatarsal head which was secondary to acute osteomyelitis. After surgery on
the day 3 silver hydrogel was applied to the surgical wound with the change of
dressing. Thereafter on every third day repeated dressing with hydrogel application
was continued for 21 days. The wound healed completely by day 21 (Fig. 9).

Case 8 (Published) A 34-year-old female is a case of drug abused (IV Dilaudid
injection) who developed an abscess to her right foot. Incision and drainage proce-
dure (I&D) was urgently needed. After I&D, SilvrStat® was applied for 4 days. The
dressing was changed weekly thereafter till the coaptation of tissue. Sutures were
removed on day 21 without signs of infection, dehiscence or pull out (Lullove and
Bernstein 2015).

Fig. 7 CASE 5

Fig. 8 CASE 6
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Case 9 A 38-year-old female had a brown-recluse spider bite at the right medial
lower leg. The wound so caused was irrigated and an ovine forestomach dermal
template was used to obtained wound closure along with silver hydrogel application
and collagen dressing. At the end of 6 weeks, there was no evidence of cytotoxicity
with the collagen dressing or recurrence of infection. The wound healed completely
thereafter (Fig. 10).

Case 10 Surgical wound with MRSA infection—A female patient after mastectomy
got her wound infected with MRSA. Silver Sol gel was applied 4 times a day for
5 weeks. A series of photographs reveal gradual healing and complete resolution in
5 weeks (Fig. 11).

3.7.4 Use of SilverSol® for Skin Diseases

Case 11 A 5-year-old child suffering from eczema involving the bottom sides, and
toes of the right foot. He was treated with the repeated application ARMOR GEL™
24 ppm 2–3 times a day. On each application of ARMOR gel, after it could absorb,
the Silver Biotics Skin Cream was applied over. After the open cracks and wounds

Fig. 9 CASE 7

Fig. 10 CASE 9
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healed, only the skin cream was used daily. There was complete healing of eczema
without any sacring by day 21 (Fig. 12).

Case 12 A 10-year-old female suffering from ringworm infection with inflamed and
painful skin was treated with ARMOR GEL™ local application twice a day and
the affected area was left uncovered. The infection got completely cured by day
10 (Fig. 13).

3.7.5 Use of SilverSol® in Burns

Case 13 A 62-year-old male got a wound because of the spillage of hot grease onto
the foot. The patient had diabetes and had undergone a liver and kidney transplant.
The wound was covered with a bandage after the application of ASAP OTC and
ARMOR GEL™ (24 ppm) hydrogel-wound dressing at the hospital. The ASAP
OTC was then reapplied every day at the time of bandage change for 30 days.
Thereafter only ASAP OTC was used on the wound which was completely healed
by day 128 (Fig. 14).

Fig. 11 CASE 10

Fig. 12 CASE 11
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Case 14 A 1.5-year-old female child burnt her hand on a stove burner. The patient
was hospitalized for 3 days and treated by a physician for severe second degree
burns. After being discharged, ARMOR GEL™ (24 ppm hydrogel wound dressing)
was used topically whenever the dressings were changed. Skin grafts were suggested
by the physician but were put on hold. At the physician’s direction, the product used
was switched from ARMOR GEL™ to the prescription version SilvrSTAT® from
around day 17. The wounds were healed completely by day 105 (Fig. 15).

Case 15 A 62-year-old male underwent a laser procedure that was done for
hyperpigmentation. His hand got burnt during the procedure. The patient’s wound
was cleaned after the examination by a physician. The wound was covered with a
bandage after the application of ASAP OTC/ARMOR GEL™ (24 ppm hydrogel
wound dressing). The bandage was changed once a day with the application of
ASAP every time until day 8. After day 8, only ASAP OTC was used on the wound,
and it was applied 3–4 times per day. Complete healing was seen by day 27 (Fig. 16).

Case 16 An 88-year-old woman had complex wounds due to burns which was
needed skin implantation. But the skin grafting was not successful due to her age and

Fig. 13 CASE 12
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Fig. 14 CASE 13

Fig. 15 CASE 14

382 A. de Souza et al.



compromised immunity. The patient recovered completely as the wound healed by
67 days of treatment with SivrSTAT® (Fig. 17).

3.7.6 Use of SilverSol® for Complicated Wounds

This section covers several complicated cases with traumatic laceration, diabetic
wounds, infectious wounds (MRSA), various ulcers due to diabetes or
vasculopathies, pressure ulcers (bed sores) etc. Several cases have shown recovery

Fig. 16 CASE 15

Fig. 17 CASE 16
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from ulcers with various severity when treated with SilverSol® products. Some
representative cases have been shown below.

Case 17 Diabetic wound infected with MRSA—A 71-year-old male diabetic
patient with peripheral artery disease and past medical record of having sensory
neuropathy, hypertension and dyslipidaemia. He was suffering from a complex
wound located at the lateral left hallux extending to the dorsal left foot, secondary
to his co-morbid conditions. Wound cultures were done which showed intense
growth of MRSA along with Proteus vulgaris and Enterobacter cloacae. The
wound was cleaned with debridement weekly and SilverSTAT® was applied daily
with Adaptec dressing. A complete wound resolution was seen at the final evaluation
on day 45 (Fig. 18).

Case 18 Diabetic wound infected with MRSA—A 70-year-old diabetic patient
with an amputated limb suffered from a chronic wound. After amputation, the pros-
thetic device could not be fitted for 1 year due to the non-healing wound that further
became complicated with MRSA infection. On the use of SilvrSTAT®, the wound
healed completely within 4 months, and the patient became well enough for pros-
thetic fitting (Fig. 19).

Case 19 Traumatic serious laceration—A 47-year-old healthy male got a traumatic
laceration about 2.5-inch-long to the eye and forehead. The orbital bone was broken,
and a serious hematoma developed on both eyelids and the bridge of the nose. The
wound was cleaned and closed by suturing that required eighteen stitches over the

Fig. 18 CASE 17
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eye and ten at the forehead. SilverSol® liquid was given orally two teaspoons twice a
day and SilverSol® gel was applied topically 4 times a day. Pictures were taken at the
hospital immediately after suturing and every day thereafter. Complete healing
occurred by day 7 (Fig. 20).

Fig. 19 CASE 18

Fig. 20 CASE 19
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Case 20 Chronic Diabetic Ulcer A 70-year-old female patient presented with a
wound that had not healed for 13 months. The wound was located at plantar medial
right foot hallux. Medical history included diabetes; rheumatoid arthritis; hyperten-
sion and end stage renal disease. Treatment by debridement every 2 weeks and daily
application of SilverSTAT® with Adaptic dressing brought about complete resolu-
tion of the wound by the final evaluation on day 52 (Fig. 21).

Case 21 and 22: Chronic Diabetic and Pressure Ulcers
ASAP wound dressing was used in 2 cases one having diabetic foot ulcers and the
other having chronic pressure ulcer for 6 months. Both the cases were treated with
SilverSol® and they showed recovery by 65 days and 3½ months of treatment
respectively (Fig. 22).

Case 23: Bullous Pemphigoid MRSA Infected Wound
A 48-year-old woman having MRSA infection with Bollous Pemphigoid (autoim-
mune) complication was treated with SilverSol®. Oral administration of two table
spoons twice a day of SilverSol® liquid was prescribed. The SilverSol® gel was
given for topical application once a day at the time of bandage change. The treatment
led to a reduction in MRSA infection and autoimmune attacks on tissues. Wound
epithelialization was seen after 10 days of treatment (Fig. 23).

Case 24: Diabetic Ulcer A 70-year-old diabetic female patient with sensory neu-
ropathy developed ulceration. Earlier history indicated suffering from rigid bunion
deformity, end stage renal disease, hypertension, and dyslipidaemia.

The patient was diagnosed having chronic neuropathic clinical infection Wagner
grade 2, IDSA-no (Infectious Diseases Society of America) associated with the ulcer
located at plantar medial right foot first metatarsophalangeal joint. Wound cultures
report indicated moderate infection with Oxacillin-susceptible S. aureus and light

Fig. 21 CASE 20
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growth of gram-negative rods. The patient’s treatment included debridement and
cleaning of the wound every 2 weeks. SilverSTAT® application with adaptic
dressing was done daily. A Complete wound resolution occurred by the final
evaluation on day 55 (Fig. 24).

Case 25 (published) A 33-year-old patient was seen in the hospital for an infected
right great toe ulceration. The patient had the previous history of diabetic foot
infections and this was the third occurrence on the same foot. The Patient encoun-
tered extreme pain of his right foot when he was brought to the hospital. Investiga-
tions revealed a 2.0 cm diameter ulcer to the medial aspect of the right great toe and a
4 cm tunnel from the proximal plantar first MPJ to distal plantar right great toe. No
probing to the bone was identified. Past medical history included IDDM (for
26 years); depression; asthma; left great toe amputation (in 2012) The patient was
allergic to Erythromycin and iodine. The patient was given operative treatment

Diabetic foot ulcer

Pressure ulcer - present for 6 months prior to using Silver Sol gel

30 June 2008

11 Sept 2008 13 Oct 2008 10 November 2008 2 January 2009

4 July 2008 18 July 2008 August 2008

Fig. 22 CASE 21, 22

Fig. 23 CASE 23
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which included debridement and incision/drainage of the abscess. Post-operative
treatment included the application of SilverSTAT® every 3 days (Lullove and
Bernstein 2015).

Case 26 A 58-year-old patient presented with an open wound to the left foot. The
patient underwent a scheduled split thickness skin graft from the left thigh as a donor
site. Past medical history included NIDDM and hypertension. Post-surgery,
the patient was treated with SilverSTAT® to protect the donor site, viz. the left
anterior thigh, and the application was changed every 3 days (Fig. 25).

Case 27 A 68-year-old non-diabetic patient came to the hospital for an initial
consultation for a non-healing wound to the right foot. The patient was unable to

Fig. 24 CASE 24

Fig. 25 CASE 26
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relate further information regarding the wound, however, he stated that he had
problems walking and was also complaining of pain. The patient underwent inter-
ventional angioplasty, which showed occlusion of the peroneal artery of the
right leg.

The patient was operated for osteomyelitis of the fifth metatarsal. The patient was
placed on negative pressure wound therapy for 2 weeks. Also, SilverSTAT® was
placed into the wound and the incision on the foot was protected with a collagen
dermal template with ECM. The wound completely epithelialized by post op day 44.
The integrity of the incision dorsally without large evidence of adhesion scarring or
fibrosis was easily seen (Fig. 26).

3.7.7 Horse Leg Wound Healing Using PetVet Gel

Case 28 The cause of the wound was unknown. The horse was kept in an outdoor
corral, and the owner thought it may have been caused by a cougar or possibly by
another horse. There was a large flap of skin missing from the wound and it was
infected. The attending vet suggested that putting the horse down was probably the
best option due to the infection, the wound’s large surface area, and the inability to
cover the wound due to its location. The owner was familiar with the Silver Biotics
Pet Vet gel and opted to try and heal the wound first. The Silver Biotics Pet Vet gel
was applied to the wound once daily by the owner and left uncovered. No other
wound healing products were used. The tissue regrew and the wound completely
closed after about 6 months. The infection quickly subsided and did not reoccur. It
continued to heal to almost unnoticeable conditions, with both the skin and hair
growing back, and almost no scar tissue formation (Fig. 27).

Fig. 26 CASE 27

SilverSol® a Nano-Silver Preparation: A Multidimensional Approach to. . . 389



3.7.8 SilverSol® in Dental Pain Infection and Inflammation: Case
Studies

Andrew Willoughby, Reconstructive General Dentist from Canada and one of the
co-authors of this chapter, used over 14 years SilverSol® products on his patients as a
topical application during various dental surgeries viz. extractions, bone grafts,
Guided Tissue Regeneration, Periodontal, Laser, Dental Implant and Endodontic
surgeries. He has developed dozens of novel clinical protocols for specific surgical,
endodontic and periodontal treatments utilizing these nano-silver products for var-
ious dental procedures. He has evaluated and assessed the efficacy and performance
of the 10 ppm and 30 ppm SilverSol® liquid as well as the 32 ppm SilvrSTAT™
Hydrogel. Willoughby has confirmed the effect of these products in reducing the
twelve most common oral pathogens and the formation of biofilms by them. He
monitored DNA of these pathogens in saliva applying the polymerase chain reaction
(PCR) test.

His exhaustive dental research with SilverSol® has demonstrated its profound
ability to treat oral infections and speed up wound healing without negatively
impacting the oral microbiome (and probiotic bacteria) or gut health. When utilized
as a part of an integrated clinical protocol, Willoughby found that these Nano-silver
products effectively eradicated bacterial infections associated with gum disease,
tooth decay and dental infections, as well as accelerated wound healing and reduced
inflammation. The fact that these products prevented post-operative/surgical infec-
tions and ultimately contributed to better patient outcomes far more effectively than
other commonly used chemical disinfectants and antiseptics. He reported his find-
ings and experiences using a combination of direct visual observations, intra-oral
pictures, digital x-rays, computed tomography scans, ortho-pantographs, oral DNA
tests and periodontal probing on over 22,000 patients having undergone almost
39,000 procedures for 20 different dental conditions (Fig. 28). He used different

Fig. 27 CASE 28
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Nano-silver products alone or in combination with 1–3% dilute H2O2 (Table 1).
Willoughby states his experience in his report “. . .After the use of these Nano-silver
products (both during and after surgery) on thousands of my dental patients, the
antimicrobial/wound healing benefits of this technology are truly impressive. . . .the
products help create a noticeable reduction in post-operative infection rates, accel-
erate healing times along with a clinically significant reduction in pain and swelling
. . .” Corroborating Dr. Willoughby’s clinical research, other leading Dental Implant
surgeons have experienced very similar clinical outcomes with these Nano-silver
products.

700 (2.4%)

330 (1.1%)

Inplant

GTR1

FGGs

Pedical Graft

Bone Graft

Periodontal surgeris

Tooth Extraction

Biopsies

Laser surgeries

Crown lengthening

Gingivectomies/plasties

Apicoectomies

NS Root canel

Nicotine stomatitis

Xerostomia

candidiasis & Chelitis

Periodontal therapies

Infections

Pulpotomies/ctomies/Apexogenesis (Children)

Pulpotomies/ctomies/Apexogenesis (Adult)

275 (0.95%)

47 (0.16%)

140 (0.48%)

100
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5000 (17%)
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(3.5%)
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1800
(6.2%)

200 (0.69%)

Fig. 28 Various dental procedures for which SilverSol® products were used

Table 1 SilverSol® products used for dental procedures

1 Silverstat® Antimicrobial gel during the procedure followed by a 10-day regimen of ASAP
10 ppm + 3% diluted H2O2 mouth rinse (3�daily)

2 ASAP 10 ppm + 3% diluted H2O2 rinsing followed by ASAP 10PPM for final rinse during
the procedure

3 ASAP 10 ppm during the procedure

4 ASAP 10 ppm + 3% diluted H2O2 rinsing followed by SilverStat ®
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3.7.9 Oral Care and Focal Infection: (Proposed?) Role of SilverSol®

The oral cavity and teeth are one of the major sites that provide favourable environ-
ment for the growth of microbes. Poor oral care can lead to biofilm formation.
Adental plaque containing such biofilms can have higher than 1011 microbes/mg
(Li et al. 2000). Such oral microflora comprisings of mainly anaerobic gram-
negative rods of diverse species. Apical periodontitic teeth can harbour around
200 species and marginal periodontitic teeth can harbour more than 500 species
(Moore and Moore 1994; Tronstad 1992). It is now well accepted that such a focal
infection in the oral cavity can spread to distant sites in the body—‘Focal infection
theory’ (Miller 1891). The theory proposed by W Miller in 1891 speculated diffu-
sion of microbes and their toxins from the focal infection to a distant body site.
Immunocompromised hosts suffering from chronic diseases viz. cancer, diabetes
arthritis or patients receiving immunosuppressive treatment are more prone to focal
infection. Moreover, marginal and apical periodontitis can be a potential risk factor
for the development of systemic diseases. Various dental conditions viz. alveolar
abscesses, pyorrhoea alveolaris (periodontitis), and apical periodontitis, cellulitis,
general oral sepsis and endodontically treated teeth, pulppless teeth, with the infec-
tion caused by viridans group streptococci are the major cause of focal infection
(Easlick 1951; Pallasch and Wahl 2000; Murray and Saunders 2000). Various dental
procedures including endodontic treatment, periodontal surgery or even tooth extrac-
tion and root scaling to treat these conditions facilitate the dissemination of bacteria
into the systemic circulation. This dissemination leading to bacteraemia may occur
within a minute after the oral procedure. The displaced microbes can reach the
peripheral blood capillary system, lungs and heart causing injury through local
infection, microbial toxins and inflammation (Kilian 1982).

The SilverSol® product—Ag-gel has been shown to have remarkable activity by
Tran et al. against bacteria contributing to tooth decay and plaque formation—
Sect. 2.4.1 (Tran et al. 2019). It was found to be bactericidal and was able to prevent
biofilm formation. The above-mentioned clinical experience of Andrew Willoughby
during dental procedures enables authors to extrapolate that the effect of SilverSol®

may have the potential to control focal infections and the resulting systemic conse-
quences described above. However, experimental evidence have to be generated
through further studies.
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Preclinical Models for Wound-Healing
and Repair Studies

Subramani Parasuraman

1 Introduction

The skin is a physical barrier and protects against microbial invasions and maintains
temperature and fluid homeostasis. Destruction of skin barrier causes wound and this
wound is major causes of gangrene and septic death (Öhnstedt et al. 2019). In
addition, wound environment, including bacterial infection, oxidative stress, hyp-
oxia, and ischemia are playing a major role in wound progression (Whittam et al.
2016). In recent years, many of the natural, synthetic, and semisynthetic compounds
are explored for their pharmacological properties including wound care.

A wound is a form of injury that occurs relatively rapidly when the skin is torn,
sliced, or punctured or when a contusion is created by blunt force trauma and
therefore compromises its protective function; as a result, the wound can be con-
taminated by microorganism (Kenneth 2017). Healing is a process where the normal
structure and functions of the injured cells are restored by two distinct processes such
as regeneration and repair (Mohan and Mohan 2011). Acute and chronic wounds are
the different forms of the wound (Demidova-Rice et al. 2012). In acute wounds, the
normal processes of regeneration, tissue development, and remodeling occur in a
timely manner. In a chronic wound, the wound fails to heal due to various patho-
logical and physiological reasons that contribute to impaired healing (Clark. 2014;
Krzyszczyk et al. 2018).
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2 Wound Healing

Wound healing is a normal biological process that consists of four phases: hemo-
stasis, inflammation, proliferation, and tissue remodeling or resolution. The process
of wound healing depends on the patient factor (age, underlying illnesses/disease,
and the effect of the injury on healing), wound factor (organ or tissue injured, extent
of injury, nature of injury, contamination or infection), and other local factors such as
hemostasis and debridement, and timing of closure (Wound Management).

Wounds that show impaired healing have not progressed through the normal
stages of the wound healing process and become a condition of pathologic inflam-
mation. In the United States, nonhealing wounds affect around 3–6 million people
and result in an immense annual expense of >$3 billion per year (Zarubova et al.
2020). The percentage of nonhealing wounds is increasing globally; hence, the
search for newer agents has also increased. To study the therapeutic efficacy of
newer agents, preclinical models are used. These models are used to study the
complex biochemical and cellular process of wound healing and repair and to
study the safety, efficacy, and potency of any investigational compounds. In this
chapter, the animal models used in wound healing and repair studies are briefly
described.

3 Preclinical Models

The preclinical models are used to study the pharmacological and toxicological
properties of investigational drugs/compounds. In pharmacological studies, drug
release patterns (pharmacokinetic) and efficacy are evaluated using cell lines or
animal models. In toxicological studies, local and systemic toxicities are studies.
The pharmacological models used in wound-healing and repair studies are summa-
rized in Table 1 and different types of rodent wound models are summarized in
Fig. 1.

Mice, rats, pigs, and rabbits are most commonly used as experimental animals in
wound-healing research. In that, pig models have a higher correlation to human
healing. In wound-healing research, in vivo models are most commonly used,
because these models allow investigating the biochemical, molecular, and histolog-
ical changes in wound and healing parameters. In vivo models are simulating the real
body condition and the experiment is clinically relevant but it is a time-consuming
process. All the in vivo experiments should be carried out with the prior approval of
the Institute ethical committee.

In recent decades, in vitro experiments are recommended in preclinical research
to avoid the utilization of animals in research. In vitro experiments also reduce the
duration of the experiment and help the researchers to screen the larger number of
investigational compounds in a short duration. The in vitro experiment has few
limitations which include, (1) not suitable for the long-term pharmacological and
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toxicological experiment; (2) may give false-positive results because of low speci-
ficity; (3) in general, the culture methods are more expensive.

3.1 Cell Proliferation Assay

Coagulation, inflammation, migration-proliferation, and remodeling are four differ-
ent phases of wound healing. After tissue injury, the wound margins may exhibit a
higher proliferative activity. The proliferative activities may be influenced by the
various growth factors and cytokines, keratinocytes. The effect of the investigational
compounds on cell migration, cell proliferation, and wound healing is studied using
scratch assays.

Requirement: Human keratinocyte cell or Human peritoneal mesothelial cells,
mouse keratinocyte cell, culture media, EDTA-trypsin solution, methylthiazol tetra-
zolium (MTT), colorimetric assay, culture flasks/microtiter plate, contrast
microscopy.

Table 1 Pharmacological models used in wound healing and repair studies

Type of study Model

In vitro Cell proliferation assay

Ex vivo Skin explant

In vivo (acute wound models) Excision wound

Incision wound

Burn wound

Dead-space

Wound chamber

In vivo Ischemic wound (ear wound)

Pressure ulcer

Pressure-induced deep tissue injury

Biofilm-infected wound

Diabetic wound

Flap surgery

Chemically impaired wound healing

Parabiosis

Denervated wound

Tape stripping

Xeno-grafts

In silico Molecular docking studies
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3.1.1 Procedure

• Cutaneous wound healing is a multistep process involving different types of cells,
including epidermal keratinocytes, endothelial cells, fibroblasts, and peripheral
nerve cells. During wound healing, re-epithelialization could be a critical step
involving the relocation and proliferation of keratinocytes from the encompassing
epidermis and appendages. Keratinocytes at the wound margin continue to
proliferate behind actively moving cells after an injury, resulting in a dense,
hyperproliferative epithelium seen at the wound margin as migrating cell sheets.
(Hara-Chikuma and Verkman 2008).

• Human keratinocyte cell cultures: Neonatal human keratinocytes (cultured within
keratinocyte basal medium [KBM]) or Human keratinocytes from adult skin
(cultured within Dulbecco’s Modified Eagle Medium [DMEM] with 10% heat-
inactivated fetal bovine serum [FBS] and 1% L-glutamine) are cultured in
suitable culture medium. EDTA-trypsin solution is used for detaching cells
from flasks/microtiter plates (Hara-Chikuma and Verkman 2008). In vitro
wound-healing assay is used to measure cell proliferation and cell migration.

Fig. 1 Different types of rodent wounds models A: Excisional wound; B: Excisional splinted
wound; C: Incisional wound; D: Ischemia/Reperfusion ulcer; E: Ischemic wound; F: Open ulcer; G:
Skin fold chamber; H: Burn model; I: Infected wound and J: Xenograft. (Reprinted with permission
from Elsevier (License Number 4886771206862; Dated 12 Aug 2020); Reference: Sami et al. 2019)
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– Cell proliferation assay: Cell proliferation activity is evaluated by using the
MTT colorimetric assay. The assay is based on the reduction of a yellow
tetrazolium salt to purple formazan crystals. The cells are seeded at a density of
1 � 104 cells/well in a 96-well microtiter plate, incubated at 37 �C under 5%
CO2 for 24 h prior to treatment. Later, 100 μL of test compound (different
concentration) is added to the well and incubated at 37 �C under 5% CO2 for
48 h. After the exposure, cell viability is determined by the MTT assay. An
aliquot of MTT solution (25 μL, 5 mg/mL) is added into each well and
incubated at 37 �C in a 5% CO2 incubator. After 3 hours (h) incubation,
200 μL of Dimethyl sulfoxide (DMSO) is added to each well and shaken
for 10 min to dissolve the purple formazan crystals formed. The Optical
Density (OD) of the resulting purple dye is measured at 570 nm using an
ELISA plate reader (Wang et al. 2011).

– Wound scratch assay: The cells are seeded at a density of 5 � 104 cells per
well are seeded in six-well cell culture plates. The cells are allowed to grow to
70–80% confluence as a monolayer. Later the monolayer confluent cells are
scrapped over the horizontally with a sterile pipette tip. Another scratch is
made in a perpendicular way to the first, making a cross in each well. After
scratching, the medium is removed by washing with phosphate-buffered saline
(PBS). Later, a fresh medium containing 5% V/V of heat-inactivated FBS and
treatments is added to each well, and cells are grown for 24 h (Governa et al.
2019). The scratch induced that represented wound is photographed at 0 h
(before the treatment) and 24 h (after the treatment) using phase-contrast
microscopy at� 40 magnifications. Wound region and total area are measured
using suitable software. The rate (percentage) of wound closure is calculated
mathematically.

Percentage of wound closure ¼ Wound area 0 h�Wound area 24 hð Þ
Wound area 0 h

� 100

• Rat/Human peritoneal mesothelial cells: Rat peritoneal mesothelial cells are
obtained from the peritoneal walls of male Wistar rats and identified by immu-
nocytochemical assay techniques (Matsumoto et al. 2012). Human peritoneal
mesothelial cells are collected from the omental tissue of the patients who are
experiencing abdominal surgery (Ryu et al. 2012). The peritoneal mesothelial
cells are maintained in DMEM containing glucose (5.6 mM), FBS (10%),
penicillin (100 units/ml), and streptomycin (100 μg/ml) in 5% CO2 at 37 �C
(Matsumoto et al. 2012). In vitro wound-healing assay is used to measure cell
migration.
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– Wound Scratch Assay: The cells are seeded in a 24-well culture plate at a
density of 2 � 105 cells/well in DMEM medium, incubated at 37 �C and 5%
CO2. The cells are allowed to grow to 70–80% confluence as a mono-
layer. Later the monolayer confluent cells are scrapped over the horizontally
with a sterile pipette tip and debris is removed by washing with PBS. The cells
are treated at various concentrations of investigational compound by diluting
with serum-free DMEM. The scratch induced that represented the wound is
photographed at 0 h (before the treatment) and 24 h (after the treatment) using
phase-contrast microscopy at � 40 magnifications. The migration rate is
calculated using suitable software and wound closure is calculated mathemat-
ically (Muniandy et al. 2018).

Percentage of wound closure ¼ Measurement at 0 h�Measurment at 24 hð Þ
Measurement at 0 h

� 100

– Cell spreading assay: Increased cell spreading can enhance epithelial wound
closure. The intestinal epithelial cells are seeded on 13-mm collagen-coated
coverslips at �40 confluencies, and allowed to adhere overnight. Later, the
cells are stimulated with an investigational compound for 4 h. Prior to the
experiment and after the stimulation of cells, the cell surface area is measured
and compared to nonactivated cells. E-Cadherin, a junctional marker is to
strain the cell surface area and individual cell surface area is quantified using
the images obtained from confocal microscopy with the help of suitable
software (Sumagin et al. 2013).

3.2 Skin Explant

Skin explant is an ex vivo model. In this model, explant culture is used for
quantitative assessment of the wound epithelialization. It is also used to study the
marker of interest in the epithelialization process at specific time points (Mazzalupo
et al. 2002). Human and Swine skin are used as a model in skin explant wound.

Requirement: Hair remover, 70% ethanol, anesthetic agent, rodent surgical table,
surgical scalpel handle, scalpel blade, surgical scissors, surgical sutures, rodent cage
with fasting grills, cotton, polyethylene bottle, hydroxyproline.

3.2.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.
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• Human skin: Human abdominal skin is obtained from healthy donors. Dermal
fragments are obtained by cutting fresh skin samples in sterile conditions in
1 mm3 fragment (Isnard et al. 2001).

• Swine skin: Skin specimen is excised from the paravertebral region of a young
swine (2–4 months old). The skin is excised with an electrokeratome at a depth of
0.2–0.3 mm and explants are prepared using the sterile technique (Hebda. 1988).

• Explants are incubated in a culture medium (contains culture medium, FBS,
antibiotics, and growth factors) and examined daily under a phase-contrast
microscope.

• The medium is replenished with a DMSO vehicle or investigational compound
daily. Equal numbers of cells are seeded in the culture plate. The control cultures
are maintained in order to determine the increase in cell number during the
incubation period (Isnard et al. 2001).

• Explants are examined daily for initiation of epidermal outgrowth under phase
contrast microscope. Representative outgrowths are photographed and the region
of outgrowth is approximated as the result of the width and height measurements.
(Mazzalupo et al. 2002). Normally, the percentage growth of explants is mea-
sured on days 1, 2, and 3, and the radius of outgrowth is measured on days 2, 4,
and 7 of the experiment (Fig. 2).

3.3 Excision Wound

The rodent excision wound model is one of the widely accepted models to study the
effect of the investigational compound for its wound-healing activity because of the
simplicity and reproducibility of the method. The rodent excisional wound model is

Fig. 2 Method for adherent ex vivo cultivation (adapted from Andjelic et al. 2014)
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an acute model and widely used to study the healing index of any investigational
compound. This model is considered to resemble acute clinical wounds that required
healing by second intention. Wound healing in rodents is primarily by contraction
whereas a human heals by re-epithelialization. Mice, rats, rabbits, and pigs are
commonly used as experimental animals in the excision wound model.

Requirement: Hair remover, 70% ethanol, anesthetic agent, rodent surgical table,
surgical scalpel handle, scalpel blade, surgical scissors, rodent cage with fasting
grills, cotton, graph paper.

3.3.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table.
• The back of the animals is shaved. If requires, a hair remover can be applied to

remove the hair on the dorsal surface. Preferably on the thoracic region (1 cm
away from the vertebral column and 5 cm away from the ear of the rats).

• After shaving the skin surface is cleaned with 70% ethanol.
• Later, an area of 7 � 7 mm or about �500 mm2 is marked to make an excision.
• An excision wound is created by a surgical blade and the wound is left

undressed (Fig. 3).
• The wounded animals are house individually on rodent cages that contain fasting

grills to avoid coprophagia and other infections.
• After the creation of the wound, the investigational compounds are applied once/

twice daily for 21/24 consecutive days.
• The wound area is measured at regular intervals after the creation of the wound

with the help of a transparent sheet using millimeter-scale graph paper. Generally,
wound contraction is measured at every 4 days interval until completion of the
study.

  
Excision wound on Day 1 Excision wound on Day 15 

Fig. 3 Excision wound model (adapted from Nayak et al. 2011)
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• The wound-healing effect of the investigational compound is compared with the
untreated group and the percentage of wound healing is calculated using the
following formula (James and Victoria. 2010; Murthy et al. 2013):

Percentage of wound healing ¼ Healed area
Total wound area

� 100

• At the end of the study, tissue of the excision wound is collected and used for
histopathological analysis to study the microscopic structure of inflammatory
cells, necrotic cells, fibroblast cells, collagen fibers, and blood vessels.

3.4 Incision Wound

The rodent incisional wound model is an acute model. Incisional is classified as
primary (first intention) or secondary closure (second intention) and sutured imme-
diately after wound infliction or not respectively. Primary and secondary closure is
the model to study the biomechanical investigation of wound strength and examine
scarring at late time points, respectively (Masson-Meyers et al. 2020). Mice, rats,
rabbits, and porcine are commonly used as experimental animals in the incision
wound model.

Requirement: Hair remover, 70% ethanol, anesthetic agent, rodent surgical table,
surgical scalpel handle, scalpel blade, surgical scissors, surgical sutures, rodent cage
with fasting grills, cotton, polyethylene bottle, hydroxyproline.

3.4.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table.
• The back of the animals is shaved. If requires, hair remover can be applied to

remove the hair on the dorsal surface of the paravertebral area.
• About 6-cm long, two linear-paravertebral incisions are made using a sterile

surgical blade through the full thickness of the shaved skin at a distance of
1.5 cm (for rats) from the dorsal midline of each side of the vertebral column.

• Later, the wound is closed with three surgical interrupted sutures (non-absorbable
braided non-capillary and siliconized) of 1 cm apart (Fig. 4).

• The wounded animals are house individually on rodent cages that contain fasting
grills to avoid coprophagia and other infections.

• After the creation of the wound, the investigational compounds are applied once/
twice daily for 8 consecutive days.
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• The sutures are removed eighth post wound day and skin breaking strength,
protein content and collagen content are measured on the tenth day.

• Measurement of breaking strength: On day 10, the animals are sacrificed using a
suitable euthanasia method. Later, the sutures are gently removed and wound
stripes of equal size (width) are cut and removed. Both the ends of the wound
stripes are fixed at a fixed distance using steel clips. One side of the wound stripe
is connected with a polyethylene bottle and it is filled with water gradually till the
wound strip is broken at the site of the wound. The volume of water requires to
break the wound is noted and expressed as the tensile strength of the wound in
gram (Fig. 4) (Patil et al. 2012).

• Estimation of protein content: The total protein content of the skin tissue is
measured by the Lowry method using bovine serum albumin as a standard.

• Estimation of collagen (hydroxyproline content): The collagen content of wound
tissue is measured using a hydroxyproline assay. The sample is incubated at
60 �C for 15 min to get the dry weight. Then the sample is homogenized with 6 N
hydrochloric acid (HCl) and incubated for 4 h at 130 �C to promote acid
hydrolysis. Later, the pH is adjusted to 7.0 at room temperature. The concentra-
tion of hydroxyproline in wound tissue is measured by the interpolation method
(using the absorbance of hydroxyproline standard solutions). The hydroxyproline
standards are prepared at a concentration of 1.0–100 μg/mL. A 10 μL of standard
and samples are transferred to a 96-well microplate. Then, 90 μL of 0.056 M
chloramine-T solution and 100 μL of Ehrlich reagent are added to each well. The
absorbance of standards and sample is measured at 550 nm. The concentrations of
hydroxyproline in tissue homogenates are calculated by the amount of HCl used
and finally per milligram of dry tissue, based on a standard curve (Caetano et al.
2016).

• Immunohistochemistry and Western blotting: During the study, skin sample from
wound area is collected from different time points and used for immunohisto-
chemistry and Western blotting analysis to study the protein expression rate.

  

Incision wound on Day 1 Measurement of tensile strength on 10
th

 day 

using water flow technique 

Fig. 4 Incision wound model (adapted from Demilew et al. 2018)
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3.5 Burn Wound

A burn wound is created by heat (thermal), chemical, or radiation to the skin or
tissues. Burn is one of the common injuries that can lead to serious morbidities.
Healing response in burn wound is due to the effects of their impact on the viability
of cells and tissue. A burn wound by thermal injury is used to measure angiogenesis,
contraction, re-epithelialization, granulation tissue formation, scarring, and wound
tissue biochemistry (Masson-Meyers et al. 2020). The rate of wound healing is
depended on the depth of the burn. Thermal burns create an extensive zone of
frank necrosis including dead cells. Rats are commonly used as experimental
animals.

Requirement: Hair remover, 70% ethanol, anesthetic agent, rodent surgical table,
hot plate, rodent cage with fasting grills, cotton, graph paper.

3.5.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table.
• In the dorsal surface of the animal between the lower parts of both scapulas are

shaved and hair is removed.
• Later, a partial thickness burn is made by placing a hot plate (size may vary

depending on animal model) on the prepared area for 10 s at the temperature of
75 �C.

• The burnt area is about 10% of the total body surface area.
• The wounded animals are housed individually on rodent cages that contain

fasting grills to avoid coprophagia and other infections.
• After the creation of the wound, the investigational compound is applied once/

twice daily for 14 consecutive days.
• Immediately after the burn and on days 3, 7, 10, and 14 after burn injury, the burnt

area is measured using millimeter-scale graph paper.
• The lesion/injury of the wounds of animals is evaluated using color, exudates,

swelling of the wound surface, wound bed, and the consistency of tissues
encompassing the wound.

• The wound-healing effect of the investigational compound is compared with the
untreated group and the percentage of wound healing is calculated using the
following formula.
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Percentage of wound healing ¼ 1

� Wound area on the corresponding day cm2ð Þ
Wound area on day zero cm2ð Þ

� �

� 100

• At the end of the experiment, the animals are sacrificed using a suitable euthana-
sia method, and tissue of the healed wound is collected for histological exami-
nation (Somboonwong et al. 2012).

3.6 Dead-Space

This model is used to study the physical changes in granuloma tissues and ideal for
biochemical assessment. Rats are commonly used as experimental animals in dead-
space wound model.

Requirement: Hair remover, 70% ethanol, anesthetic agent, rodent surgical table,
polypropylene tube/sterile cotton pellets, rodent cage with fasting grills, cotton, and
other chemicals for biochemical/histopathological analysis.

3.6.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table.
• The dorsal surface of the animal (in the regions of dorsal and lumbar vertebrae) is

shaved and hair is removed.
• Later, 1 cm incision is made on dorsolumbar part (two sides) and a polypropylene

tube (0.5 � 2.5 cm2) or sterile cotton pellets (5 mg each) is placed on the dead-
space of the lumbar region on the dorsal surface of the rat on each side and
wounds are closed with suture material.

• In this model, the investigational compounds are administered orally.
• On the tenth post-wounding day, the experimental animals are sacrificed and

granulation tissue formed around the implanted tubes/sterile cotton pellets are
carefully dissected out.

• The wet weight of the tissue is measured and tensile strength (force required to
open a healing skin wound) is determined using a tensiometer. Collected granu-
lation tissue is processed for the estimation of free radicals, antioxidants, and
collagen (hydroxyproline, a major component of the protein collagen) tissue
parameters. The tissue sample is also used to study histology.

• The collected granulation tissue samples are dried at 60 �C for 12 h and used for
the determination of dry granulation tissue weight. The dried tissue is added with
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5 ml 6 N HCl and kept at 110 �C for 24 h. The neutralized acid hydrolysate of the
dry tissue is used for the determination of hydroxyproline (Murthy et al. 2013;
Nayak et al. 2009; Agarwal et al. 2009; Gautam et al. 2014).

3.7 Wound Chambers

This model is useful to observe the wound healing process, such as angiogenesis and
extravasation of blood-borne inflammatory cells into the wound site (Davidson et al.
2013). Rats and pigs are commonly used as experimental animals in the wound
chambers model.

Requirement: Hair remover, 70% ethanol, anesthetic agent, rodent surgical table,
wound chambers, animal/rodent cage with fasting grills, cotton, and other chemicals
for biochemical/histopathological analysis.

3.7.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table.
• The dorsal surface of the animal (from the scapula to pelvis) is shaved and hair is

removed and sterilized with polyvidone iodine.
• A full-thickness skin incision is made vertical to the spine through the panniculus

carnosus to the fascial plane. A space that is around the same estimate as the
chamber is opened under the dermis and the sterile wound chambers (wound
chambers are made of stainless steel wire mesh measuring 1 cm � 2.5 cm long
and they are closed at both ends by Teflon caps/titanium) with caps are slipped
below the skin. The incisions are closed through individual 4.0 nylon
sutures (Fig. 5).

• Two/four champers are implanted on the dorsum of each animal and the inves-
tigational compounds are injected directly into the chamber.

• Evaluation plan 1:

– Wound in a skin island: In this model, wound healing is monitored for 4 and
8 days. This model comprises two concentric punch (4 mm) biopsies, which
results in a central full-thickness wound encompassed by a skin island. A
4 mm punch is used to create a full-thickness wound extending through the
panniculus carnosus muscle. The encompassing skin island is then concentric
on the original full-thickness wound using a 10 mm punch biopsy needle.

– Wound without skin: In this model, wound healing is monitored for 10 days. In
this model, a 10-mm punch is used to make a full-thickness wound and the
outer rim of the wound encompasses the edge of the wound chamber. In both
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wound models, the wound chamber is inserted with the flange buried under the
skin edges.

– In this model wound contraction, wound closure, and re-epithelialization are
evaluated.

– Wound contraction and wound closure are evaluated by measuring tattooed
margins from macroscopic wound images and comparing the digital photo-
graphs of the wounds on different time points respectively.

– At the end of the experiment, wounds are biopsied and the tissue samples are
fixed in 4% neutral buffered formalin for histopathological examination. The
tissue sample is embedded in paraffin and sectioned for staining with
hematoxylin-eosin (H&E). The stained tissue sections are examined for
re-epithelialization under a light microscope (Nuutila et al. 2016).

• Evaluation plan 2:

– After implantation, the rats are sacrificed on days 3, 7, 12, 18, or 22 after
chamber implantation and wound fluid is collected by aspiration with the help
of a syringe and discarded. The substance deposited in the chambers is
collected with a scalpel and stored at �80 �C until analysis. From the sample
total protein, collagen (hydroxyproline content), and glycosaminoglycans
(GAG) leaves are estimated (Siméon et al. 2000).

3.8 Ear Wound

The ear wound model is used to measure epithelialization and neovascularization of
the wound in living animals. In this model, mice and rabbits are used as experimental
animals.

Requirement: Hair remover, 70% ethanol, anesthetic agent, rodent surgical table,
wound chambers, animal/ rodent cage with fasting grills, cotton, and other chemicals
for biochemical/histopathological analysis.

Skin
chamber

Intravital microscopy

Fig. 5 Dorsal skin fold chamber (adapted from Wong et al. 2010)
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3.8.1 Procedure

• The ear wound model is an ischemic wound model and has been used in
reperfusion injuries, burn studies, and flap necrosis.

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table.
• In mice, 2-mm full-thickness hole punched through the center of each ear is made

to create a wound (Buckley et al. 2011).
• In rabbits, 6 mm full-thickness dermal punches (4 numbers) are made on the inner

surface of both ears down to bare cartilage by removing the epidermis, dermis,
and perichondrium. The wound in one ear is served as control and a wound in the
other ear is treated with the investigational compound (Jia et al. 2011).

• In the ear wound model, the animals are treated for a week’s time. The animals are
sacrificed on the eighth post-wounding day and tissue samples are collected in
two parts. One part is used for histological examination and the other part of the
tissue is used for biochemical or protein analysis.

• The major limitations of the ear wound model are the process of healing over an
avascular cartilage base on materials testing and thickness of the skin as com-
pared to the trunk (Davidson et al. 2013).

• Ischemic wound model:

– This model requires anesthesia. Ears of the experimental animals are shaved
and injected with pre-anesthetic medication. Later, the animal is anesthetized
and placed on the surgical table. One ear of the animal is rendered ischemic
and the other ear serves non-ischemic control. The dorsal surface of the animal
(rabbit) ears is saved and the surgical site is cleaned with betadine solution.
Using a #15 blade, a small incision is made to the level of bare cartilage at the
base of the ear. The caudal, central arteries, and circumferential circulation are
identified and ligated so the ear is perfused only rostral artery with preservation
of the caudal, central, and rostral veins to render the rabbit ear ischemia. This
method results in ischemia in 7–10 days.

– The incision is closed with 4–0 or 5–0 polypropylene suture and covered with
sterile gauze.

– Six-millimeter full-thickness dermal punches (4 numbers) are made on the
inner surface of both ears down to bare cartilage by removing the epidermis,
dermis, and perichondrium. The distance between the wounds is a minimum of
20–30 mm. The wound in one ear is served as control and a wound in the other
ear is treated with investigational compound. To keep the wound from being
desiccated, an occlusive dressing is used to cover the wound site (Fig. 6).

– The use of aged rabbits may delay the healing process and healing may take up
to 26 days (Jia et al. 2011; Chien and Wilhelmi 2012).
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3.9 Pressure Ulcer

This model is a resemblance of localized skin/underlying tissue damage due to bone
prominence due to pressure. Rats and mice are used as experimental animals in
pressure ulcer models.

Requirement: Hair remover, 70% ethanol, anesthetic agent, rodent surgical table,
wound chambers, animal/rodent cage with fasting grills, cotton, and other chemicals
for biochemical/histopathological analysis.

3.9.1 Procedure

• This model is also referred to as “Vessel ligation”.
• This model requires anesthesia. The animals are anesthetized with a suitable

anesthetic agent.
• The animal is placed on a rodent surgical table.
• The dorsal surface of the animal is shaved and hair is removed and cleaned with

70% isopropanol.
• A prototype is used to mark the location of the magnetic plates in animals. The

dorsal surface of the skin is carefully pulled up and positioned between two,
circular ceramic magnetic plates that are 12 mm diameter and 5.0 mm thick, with
a mean weight of 2.4 g and 1000 G magnetic force. This technique is designed to
leave a 5.0-mm skin bridge between the two magnets (Fig. 7) (Lanzafame et al.
2007).

• During ischemia–reperfusion cycles, animals are not immobilized, anesthetized
and animals are allowed food and water ad libitum.

• The use of the magnet compressed the skin and reduced blood flow causes
ischemia, and removal of the magnet allows blood to reperfuse into the ischemic
region of the skin. During the ischemic phase of the ischemia–reperfusion cycle,
magnets are held to the skin purely by magnetic attraction (Peirce et al. 2000).

• One ischemia–reperfusion cycle consisted of 2 h of ischemia and 0.5 h of
reperfusion. A maximum of five compression cycles (five ischemia–reperfusion
cycles) is administered per day followed by a period of 11.5 h of reperfusion

Fig. 6 Ischemic wound
model in rabbit ears
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conducted for 2 or 3 days. After completion of the specified total number of
compression cycles, the magnets are removed for a final 11.5 h of reperfusion,
and the animals are euthanized and their treatment sites analyzed. Or 3 cycles of
12 h of ischemia and 12 h of reperfusion used to decubitus ulcer formation.

• The animals resume normal activity within a few minutes of magnet placement.
• The wounded animals are house individually on rodent cages and treated with the

investigational drug.
• Animals are observed over a 21-day period following the ischemia–reperfusion

cycles. The ulcer stage is graded using a standardized grading scale (Ulcer stage
0: Intact, normal, skin with normal capillary refill; Ulcer stage 1: Intact skin,
nonblanchable erythema; Ulcer stage 2: Superficial/partial skin loss involving
epidermis and dermis; Ulcer stage 3: Full-thickness loss with damage and necro-
sis of subcutaneous tissue; Ulcer stage 4: Full-thickness loss with extensive
destruction, tissue necrosis, and with exposure of muscle and bone) (Stadler
et al. 2004).

• Ulcer stages and skin temperature alterations are recorded at regular intervals.
Few animals in a group are euthanized on days 5, 10, 15, and 21 and the tissue
sample is collected for histologic evaluation.

Fig. 7 Pressure ulcer models (adapted from Wong et al. 2010)
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3.10 Pressure-Induced Deep Tissue Injury

It is a form of pressure ulcer and is induced by moderate compression. This model
mimics the pathology of pressure-induced deep tissue injury without producing any
morphological damage to the skin layer. In this model, rats are used as experimental
animals.

Requirement: Anesthesia, surgical table, povidone-iodine, isopropyl alcohol,
3 M™ Steri-Strip™ Reinforced Adhesive Skin Closures, others.

3.10.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table throughout the experimental
period and sustainability of the anesthetic level is determined by the whisker
movement.

• The fur on the compression site of the rat is removed and static pressure of
100 mmHg (13.3 kPa equivalent) is applied to an area of 1.5 cm2 in the tibialis
region of the right limb of the rats. The compression force applied to the rat is
continuously monitored by an electronic balance under the indenter (Teng et al.
2011). A laser Doppler flowmeter is used to monitor the blood flow at the
compression site.

• The duration of compression is 6 h on each of the two consecutive days. The
animals are allowed to recover from anesthesia and monitored for their ambula-
tory activities (ambulatory activity is restored �0.5 h after each compression
procedure).

• The investigational compound is administered to the animals for 14 or 21 days
and the wound healing effect is assessed by measuring wound area (Shi et al.
2016).

• At the end of the study, rats are euthanized and tibialis anterior muscles are
dissected and stored for histopathological analysis (Nelissen et al. 2018).

3.11 Biofilm-Infected Wound

Pathogenic biofilms represent a critical component of nonhealing wounds,
employing many specific strategies to suppress endogenous inflammatory responses
and to resistance to traditional therapeutics (Seth et al. 2012a). Mice, rats, and rabbits
are used as experimental animals in biofilm-infected wound models.

Requirement: Hair remover, 70% ethanol, anesthetic agent, local anesthetics,
rodent surgical table, wound chambers, wound-infective bacteria (example:
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Pseudomonas aeruginosa) culture, animal/rodent cage with fasting grills, cotton,
and other chemicals for biochemical/histopathological analysis.

3.11.1 Procedure

Rabbit ear model
• This model requires anesthesia. The animals are anesthetized with a suitable

anesthetic agent.
• The animal is placed on a rodent surgical table.
• The ears of the rabbits are shaved and hair is removed and cleaned with 70%

ethanol and injected 1% lidocaine/1:100,000 epinephrine, intradermally at the
planned wound sites.

• The wound is created down to the perichondrium on the ventral surface of the ear
and dressed with semi-occlusive transparent film (Tegaderm dressing). Individual
wounds are inoculated with bacteria (Pseudomonas aeruginosa) (106 colony-
forming units (CFU)/mL of bacteria at a volume of 10 μL) on postoperative day
3 (Seth et al. 2012b).

• The wound is treated with an investigational compound or redressed on postop-
erative days 4–12 days or until harvesting of wounds.

• At the end of the study, the animals are euthanized; wounds are harvested and
used to test for the presence of bacteria in the wound bed and bacterial counts.
Also, confirm biofilm formation scanning electron microscopy (SEM) analysis is
performed to visually confirm biofilm formation within the wound bed. Part of the
tissue is used for the histological analysis using H&E stain. The tissue sample is
also used for biochemical and molecular biological studies to determine the
protein levels (Gurjala et al. 2011; Seth et al. 2012c).

Rodent Model
• In the rodent model, a full-thickness, 1.5 � 1.5 cm surgical excision wound is

created on the dorsal of the body and covered with semi-occlusive/semipermeable
polyurethane transparent film. Approximately 2� 106 CFU/mL of Pseudomonas
aeruginosa strain applied topically to the wound of each rodent. The day when
the wound is created is designated day 0. Wounds are harvested at 8 h, and 1, 3,
and 7 days post wounding and then processed for biochemical, histological, and
immunohistochemical examinations (Watters et al. 2013; Kanno et al. 2010).

3.12 Diabetic Wound

The diabetic wound does not follow the normal wound healing pattern of events and
microbial infections further disrupt this process. Diabetic wound models are an
example of impaired wound healing. The animal models of diabetic wound healing
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are used in combination with additional inducing factors that delay healing (Elliot
et al. 2018). Rats are used as experimental animals in the diabetic wound model.

Requirement: Streptozotocin, tuberculin syringe (1 cc) with needle, glucometer,
others.

3.12.1 Procedure

• Induction of diabetics: In overnight-fasted rats, diabetes mellitus is induced by
administering freshly prepared, single intraperitoneal injection of streptozotocin
(55 mg/kg) in distilled water, pH 4 or cold 0.1 M citrate buffer, pH 4.5. Diabetes
mellitus is confirmed by measurement of fasting blood glucose level after 48 h of
induction. Rats with fasting blood glucose of >200 mg/dL are considered as
diabetics and used for the experiment (Parasuraman et al. 2019; Nayak et al.
2007).

• Diabetic animals used for further wound healing studies using incision wound/
excision wound/dead-space or wound chambers models.

3.13 Flap Surgery

Flap surgery is a type of chronic wound model and represents partial skin flap
necrosis in humans. This model is used to repair wounds caused by congenital
abnormalities, trauma, tumor excision, or other causes (Hsueh et al. 2016). Rats
are used as experimental animals in flap surgery wound models.

Requirement: Hair remover, 70% ethanol, anesthetic agent, local anesthetics,
rodent surgical table, wound chambers, animal/rodent cage with fasting grills,
cotton, and other chemicals for biochemical/histopathological analysis.

3.13.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table in the prone position and their
limbs are immobilized with adhesive tape.

• The dorsal thoracic region of the animal is shaved and hair is removed and
cleaned with 70% isopropanol or 0.5% topical alcoholic chlorhexidine solution.

• A skin flap measuring 10 � 4 cm (approx.) is raised with a cranial base on the
dorsal surface of a rat (Fig. 8) (Cury et al. 2013).

• The skin flap is elevated using an incision with a number 15 scalpel blade in the
delimited area and adjacent muscles are removed by using blunt scissors. The
skin flap is released from the encompassing tissues, brought up to the relevant
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area, and sutured with a simple interrupted suture at 4.0 monofilament nylon line.
The skin flap comprised superficial fascia, a fleshy panicle, subcutaneous tissue,
and skin (Estevão et al. 2013).

• Immediately, after the surgical procedure, the rats are treated at least once for
7 consecutive days. At the end of the study, the animals are anesthetized and
photographed with a digital camera with the demarcation of the necrotic area and
total area for calculating the percentage of the necrotic area (Estevão et al. 2013).

Percentage of flap necrosis ¼ Area equivalent of necrotic tissue
Total area to the flaps

� 100

• The tissue fragments are collected from cranial (containing healthy tissue),
median (between the cranial and caudal areas), and the caudal (including the
area of necrosis) areas for histological analysis.

3.14 Chemically Impaired Wound

It is an impaired wound healing model. Premature rabbits are used as animal models.

Requirement: Hair remover, anesthetic agent, rodent surgical table, concentrated
HCl (80%), cotton, graph paper.

Fig. 8 Ischemic flap model
(adapted from Wong et al.
2010)
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3.14.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The animal is placed on a rodent surgical table.
• The back of the animals is shaved. If required, a hair remover can be used to

remove the hair on the dorsal surface and left for 24 h.
• Few (two or three) drops of concentrated HCl (80%) are topically applied

carefully on the shaved skin. The skin-burned rabbits are housed separately
under sterile conditions in an isolated room (Abu-Zinadah 2009).

• After the creation of the wound, the investigational compounds are applied once/
twice daily for 5 weeks.

• The wound area is measured at regular intervals after creation of the wound using
millimeter-scale graph paper.

• The wound-healing effect of the investigational compound is compared with the
untreated group and the percentage of wound healing is calculated using the
following formula (James and Victoria 2010; Murthy et al. 2013).

Percentage of wound healing ¼ Healed area
Total wound area

� 100

3.15 Parabiosis

Parabiosis is the method of joining two animals so that they can share blood supply
with each other (Conese et al. 2017). In the parabiosis model, two animals are
surgically joined to establish common blood circulation to study the circulatory
physiology, immunology, metabolic diseases, cancer metastasis, and various bio-
logical processes including the hematopoietic cells migrating to the place of injury
from circulating blood in tissue remodeling and repair and roles of nonresident
progenitors/stem (Frozoni et al. 2012; Wong et al. 2010). Transgenic mice are
used in the parabiosis model.

Requirement: Anesthesia, surgical table, surgical instruments, povidine-iodine
solution, isopropyl alcohol, silk suture, painkiller, others.

3.15.1 Procedure

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• Age-matched, adult transgenic mice are used for the experiment.
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• The animals (two mice) are anesthetized and placed on a rodent surgical table.
• The surgical site of animals (both the animals) is shaved and sterilized with 5%

povidine-iodine solution. For both the animals, on the dorsal side, a skin incision
is made from the hip to the angle of the mandible. Animals are aligned, and the
connective tissue and the skin edges are sutured together with absorbable silk
suture material and joined with 7 or 9-mm wound clips at the dorsal side (Fig. 9)
(Frozoni et al. 2012; Sung et al. 2019).

• After surgery, each parabiont is administered with a suitable painkiller to relieve
both acute and chronic pain for the first 2 days. The parabiont is also administered
with sterile normal saline to prevent dehydration.

• The wound clips are removed after 2 weeks.
• Reparative dentinogenesis is stimulated by the administration of test compound

for the next 4 weeks (maybe varies based on study protocol).
• During/at the end of the experiment, changes in body weight, weight loss, levels

of pro-inflammatory cytokines are measured. This model is used to study the
importance of circulating cells in normal and diseased animals (Wong et al. 2010;
Sung et al. 2019).

Fig. 9 Parabiotic models permit (adapted from Wong et al. 2010)

Preclinical Models for Wound-Healing and Repair Studies 419



3.16 Denervated Wound

This model results in impaired healing of wounds and has lower inflammatory cells,
particularly macrophages. This model demonstrates decreased microvascular
responses due to denervation-induced desensitization of vascular smooth muscle.
Reduction in microvascular responses may delay wound healing (Shu et al. 2015).
Rats and mice are used in the denervated wound model.

Requirement: Anesthesia, a surgical instrument for rodent surgery, 70% ethanol,
rodent surgical table, surgical scalpel handle, scalpel blade, surgical scissors, rodent
cage with fasting grills, cotton, graph paper, others.

3.16.1 Procedure

• This model requires anesthesia.
• The animals are fasted overnight and anesthetized with a suitable anesthetic

agent. If a nude mouse is used no need to remove the fur. The normal mice or
rats are used as experimental animals fur should be removed on the surgical
surface.

• A midline skin incision (approx. 5 cm for rats/3 cm for mice) is made at the 13th
costovertebral angle (identified by palpation). The skin and subcutaneous tissues
are separated and the T9 to L1 vertebrae are exposed. The nerve roots are exposed
bilaterally, the nerve is transected distal to the point of trifurcation, and the wound
is closed. After recovery from anesthesia, the animal is checked for response to
stimuli on the wound site (if no response to the needle stimuli indicates successful
nerve resection).

• After 2 days of the nerve resection, the animal is re-anesthetized and two 5 mm
full-thickness excisional skin wounds are created on each side of the midline in
the denervated skins.

• The experimental animals are housed individually after surgery. The investiga-
tional compound/material is administered intradermally around the wound.

• The wound area is measured on 7, 14, and 21 days of the experiment. Wound
biopsies are also performed on 7, 14, and 21 days of the experiment including
encompassing unwounded tissues. The collected tissue sample is used for
enzyme-linked immunosorbent assay, histological, and immunohistochemical
analyses (Fukai et al. 2005; Shu et al. 2015).

3.17 Tape Stripping

In this model, the stratum corneum is removed with the help of adhesive tape.
Generally, the epidermal compartment is left intact in this model of wounding.
This model depends on various factors including pressure exerted when applying
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the tape onto the skin, adhesiveness of the tape, velocity and direction of tape
removal and the number of tape strips (Wilhelm et al. 2017). Mice are used in the
tape stripping model.

Requirement: Anesthesia, elastic adhesive bandage, homogenizer, others.

3.17.1 Procedure

• The tape stripping model is used to evaluate a topical antibiotic for Staphylococ-
cus aureus infections. This model is also known as the superficial skin bacterial
colonization and infection models.

• This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

• The fur is stripped (area of 2 cm2) from the anesthetized animal with an elastic
adhesive bandage.

• An elastic adhesive bandage is stripping the back of the animal 7–10 times in
succession, the transepidermal water loss (TEWL) reached approximately 70 g/
m2 h.

• Following this procedure, the animal skin becomes visibly damage and no frank
bleeding. The damage is characterized by glistening and reddening.

• After stripping off the animal skin, 5 μL droplets containing 107 Staphylococcus
aureus cells and allowed overnight to initiate bacterial infection (Dai et al. 2011).

• After 24 h of infection, animals are treated with respective assigned treatment.
During the study period, animals are sacrificed at different time points and skin
samples (area of 2 cm2) are collected and homogenated with water. The diluted
homogenate is used for the determination of colony-forming units (CFU)
(Hu et al. 2010).

3.18 Xeno-Grafts

Xeno-grafts are tissues transplanted from one species to another species. Xeno-grafts
protect wounds from bacterial and physical trauma, reduce pain, and increase
moisture and heat retention (Buchbinder and Buchbinder 2007). Athymic (nude)
mice and nude rats are used for the experiments.

Requirement: Anesthesia, surgical table, povidone-iodine, isopropyl alcohol,
3 M™ Steri-Strip™ Reinforced Adhesive Skin Closures, others.

3.18.1 Procedure

• Human skin harvest: Normal human skin is harvested from unidentified individ-
uals by elective abdominoplasty procedures. About 2 cm punch biopsy is used to
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harvest uniform samples of skin for engraftment. The dermis is dissected from the
underlying fat tissue; grafted tissue included the stratum germinativum. The
punch biopsy specimens are dissected and xenografted within 1 h of surgical
harvest (Shanmugam et al. 2015).

• Xeno-graft:

– This model requires anesthesia. The animals are anesthetized with a suitable
anesthetic agent.

– The animal is placed on a rodent surgical table and all the surgical procedures
are performed in sterile conditions.

– The dorsal region of the animal is sterilized using povidone-iodine followed
by isopropyl alcohol.

– On the flank region (both sides) two graft beds of 2 cm in diameter are
removed. Full-thickness human skin xenografts are placed on each mouse
wound bed and secured using 3 M™ Steri-Strip™ Reinforced Adhesive Skin
Closures.

– On postoperative days 7 and 14 dressings are changed at which time 3 M™
Steri-Strip™ Reinforced Adhesive Skin Closures are removed. Xenografts
remained dressed until day 30. Graft viability is assessed at 2 months.

– The animals are housed separately under sterile conditions and allowed to
engraft.

– At the end of the experiment imaging analysis, histochemical analysis, and
immunohistochemistry are performed (Shanmugam et al. 2015).

3.19 In Silico Models

In silico models, the experiment is performed on the computer or via computer
simulation. It was first introduced to the public in 1989 in the workshop “Cellular
Automata: Theory and Applications” in Los Alamos, New Mexico (Vanjari et al.
2012). Drug discovery is a time-consuming multi-step process comprising synthesis,
quality control, preclinical testing, toxicity testing, and clinical trials. With the help
of in silico approach, the biological activity and toxicity profile of any investiga-
tional compounds are predicted using computer programs and this may help the
researchers to find promising compounds with better therapeutic efficacy. These
promising compounds can be taken for the further drug discovery process. In silico
approaches are reducing the time gap between synthesis and clinical trials, and also
reduce the cost.

The ligand-based or target-based virtual screening method is used to predict the
binding affinity between investigational compounds and target receptors. Restora-
tion of injured tissue/skin is mediated through blood cells, cytokines, and growth
factors activity. Regulation of growth factors and inflammatory cytokine and inhi-
bition of Glycogen synthase kinase 3-β (GSK3-β) enzyme are essential to enhance
the wound-healing process (Tatke 2020). Many of in silico studies are reported on
the prediction of the interaction between the investigational compound and GSK3-β,
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which minimize the cost and time duration of the experiment (Raja Naika et al. 2015;
Harish et al. 2008).

4 Summary

Humans and other mammals are complex organisms that involve a complex network
of cells, circulating factors, and hormones. The use of animals in preclinical research
may give the lead for the therapeutic effect and toxicological properties of the
investigational drugs/compounds. In preclinical research, in vitro models are also
used to screen the therapeutic effect and toxicological properties, but the test is
carried out with specific cells or organs and it may not give the effect of investiga-
tional drugs on the whole organism. In vitro studies may reduce the number of
animals used for the experiment. In recent years, the disease models are emerging
from in vitro studies but they must be validated in a whole organism; otherwise, they
remain speculative (Barré-Sinoussi and Montagutelli 2015).

Wound healing is a complex process and various animal models are used to study
the effect of drugs on the healing process and the factors affecting the healing
process. In vitro models are relatively inexpensive, convenient, and fast for the
researcher and helpful to obtain the results in a short time. In vitro studies are also
used to screen multiple samples simultaneously using specific cell lines. However,
in vitro models are difficult to simulate a “real world” application (Perez and Davis
2008). The in vivo animal models are used to study the safety and efficacy of the
investigational compound. The rodents and small mammals are commonly used as
experimental animals in wound healing research but time-consuming process. The
animal experiment should be performed with prior approval from Institute Animal
Ethical Committee and followed the three Rs (Reduction, Refinement, and Replace-
ment) principles to minimize the discomfort to the animals and reduce the number of
animals in the experiment. Features of general wound models are represented in
Fig. 10.

Wound healing models involved surgical procedures, which can increase the pain
and experimental stress to the animals. Whenever possible, the wound healing
models can be refining to reduce the pain and experimental stress to the animals.
Also, the appropriate measures should be taken on postoperative or post-
experimental care. Another major issue with the experiment is the disposal of
biological waste and animal carcasses. Once the experiment is over, or any animal
died during the experiment it should be disposed of as per Institutional biosafety
guidelines to prevent environmental contamination.

In recent years, the wound healing research focus has moved to in silico and
in vitro models to avoid the use of a large number of animals in the research which
helps to understand the cell growth and phases of wound healing (Sami et al. 2019).
A simulation model (mathematical/computational modeling) is also available to
understand the healing mechanism, which is also called a non-animal model. This
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Fig. 10 Features of general wound models. Reprinted with permission from Elsevier (License
Number 4886770742994; Dated 12 Aug 2020); Reference: Grada et al. 2018)
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model helps to predict the treatment of wounds with novel therapies and reduces the
cost and duration of the experiment (Flegg et al. 2015).
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Chronic Wounds: An Overview of Wound
Healing and Experimental Models
for Wound Studies

Diana G. Sami and Ahmed Abdellatif

1 Introduction

The skin is the first-line defense against the environment. Other functions of the skin
include thermoregulation, fluid homeostasis and immune surveillance (Clark 2014).
Delayed wound healing is a serious problem affecting millions of patients and costs
healthcare systems billions of dollars annually (Steiner et al. 2006; Badia et al.
2017).

Wound management is a challenge for healthcare providers (Sibbald et al. 2012).
It is expected that the annual wound care products market will reach $15–22 billion
by 2024 (Sen 2019). Chronic infections and resistant wounds increase the length of
hospital stay and cost billions of dollars of patient care (Gainza et al. 2015; Sen 2019;
Han and Ceilley 2017). Chronic wounds also cause high mortality rates (Escandon
et al. 2011; Sen 2019).

Wound healing models are necessary to understand the pathophysiology of
wound healing, as well as to test new therapeutic approaches (Ud-Din and Bayat
2017). Wound models can be designed In silico, In vitro, Ex vivo, and In vivo using
computational, cell culture, wound biopsies, and animal models (Andrade et al.
2015; Ud-Din and Bayat 2017).

In this chapter, we will provide an overview of skin anatomy, types of wounds,
and the mechanism of healing in acute and chronic wounds. Also, we will discuss the
wound microbiome in different wounds and experimental methods to assess wound
healing.
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2 Skin Anatomy

2.1 Skin Histology

The epidermis is the superficial layer of the skin (Carmichael 2014; Yousef et al.
2020). The epidermis is composed of different cell types organized in various layers,
e.g., Stratum spinosum, Stratum granulosum, Stratum lucidum, and Stratum
corneum as the outermost layer, made of keratin and dead keratinocytes (Fig. 1)
(Murphrey et al. 2020; Schlüter et al. 2014; Yousef et al. 2020).

The dermis is the connective tissue layer underneath the epidermis. It consists of
the papillary dermis and the deeper reticular dermis. The dermis contains sweat
glands, blood vessels, hair follicles, muscles, and sensory neurons (Brown and
Krishnamurthy 2020). The hypodermis or subcutaneous tissue is deep to the

Fig. 1 Anatomy of the human skin. Wikimedia Commons, USGOV (Public Domain)
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dermis and contains adipose lobules that insulate and protects the skin (Yousef et al.
2020).

2.2 Skin Proteomics

Tissues have distinctive architecture and functional characteristics. The extracellular
matrix and its proteins contribute to the structure and function of the skin. Proteins
such as glycoproteins, collagen, and regulators of collagen assembly are known as
small leucine-rich proteoglycans (SLRPs) (Mikesh et al. 2013).

The basement membrane is rich in collagen type IV, laminin, nidogen/entactin,
and heparin sulfate proteoglycans (Yurchenco and Schittny 1990). Collagen VII and
anchoring fibrils connect the basal and reticular lamina in the basement membrane,
thus promoting dermal to epidermal adhesion (Burgeson et al. 1990).

The dermis contains collagen types I and III (Watt and Fujiwara 2011). Fibril-
associated collagens such as collagen types XII and XIV are distributed throughout
the matrix (Kielty and Shuttleworth 1997). Collagen type XII plays a part in the
stromal architecture, while collagen type XIV is important for the regulation of
fibrillogenesis (Ansorge et al. 2009; Young et al. 2002). Tenascin-X is an extracel-
lular matrix protein that is also found in the dermis (Egging et al. 2007).

2.3 Skin Immunological System

Communication between immune and non-immune cells and the skin microbiota
contributes to the produce immune responses. Some anatomical sites are considered
immunologically important such as hair follicles and sweat glands (Kabashima et al.
2019). In addition to their function as a physical barrier, Keratinocytes are the main
component of the epidermis and are considered as part of the innate immune system.
On inflammation, Keratinocytes express antigen identification receptors and secrete
cytokines, such as tumor necrosis factor (TNF), and Interleukins (IL-33 and IL-1)
(Carmi-Levy et al. 2011). These cytokines, in turn, activate and recruit other immune
cells (Nestle et al. 2009). The hair follicle is classified as a site of immune privilege
(Paus et al. 2003). Hair follicles also house Tissue-resident memory T cells (TRM
cells), which are responsible for long-term skin immunity (Adachi et al. 2015).

Sebaceous glands produce lipids that contribute to forming the skin barrier and its
function. Also, they produce antimicrobial peptides, cytokines, and chemokines that
regulate skin immunity (Mattii et al. 2018). In vitro analysis showed that
Propionibacterium acnes induced production of IL-6, Transforming growth factor
β) TGFβ, and IL-1β, which activates dermal dendritic cells to prime TH17 cells,
which promote neutrophil recruitment and inflammation. For further details, see
(Kabashima et al. 2019).
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The skin is covered with numerous microorganisms that significantly affect the
immune system (Byrd et al. 2018). Microbiota composition vary between the surface
and deeper areas of the skin (Grice et al. 2008). The metabolites and the structural
components of microorganisms might affect both innate and adaptive immunity.
Staphylococcus epidermidis, is the most common commensal bacteria of the skin,
produces lipoteichoic acid, which inhibits the release of inflammatory cytokines
from keratinocytes (Lai et al. 2009). Pathogenic microorganisms stimulate the
production of inflammatory cytokines and chemokines, therefore recruiting neutro-
phils and monocytes, leading to infections such as folliculitis and hidradenitis. On
the other hand, viruses invade the skin and produce latent infections and form their
nest in skin appendages, probably due to their unique immune nature (Egawa et al.
2015).

The dermis is characterized by extracellular matrix (ECM), which provides a
scaffold for immune cell migration (Wolf et al. 2003). A network of blood and
lymphatic vessels and neurons is distributed through the ECM. This vascular system
constantly recruits immune cells to the skin, including skin-resident dendritic cells
(DCs), macrophages, neutrophils, and T cells, which detect foreign pathogens.
Dendritic cells that have caught antigens go to the draining lymph nodes through
the lymphatic system (Tomura et al. 2010). Neurons provide the sensory function to
the skin and can communicate directly with the immune system (Riol-Blanco et al.
2014).

Adipose tissue has a group of immune cells, including T cells, B cells, and
macrophages. It is essential for the defense against S. aureus infection as they
produce cathelicidin, which kills bacteria (Zhang et al. 2015).

3 Chronic Wounds

The healing of acute wounds depends on the extent of the injury. Clinical assessment
of acute wounds takes into consideration the method of injury and damage to the soft
tissues and bony structures to optimize wound care and ensure sound healing (Nagle
et al. 2020). Wounds that do not heal within 2–3 weeks are considered chronic.
These wounds negatively impact the quality of life of patients (Rahman et al. 2010;
Han and Ceilley 2017). Chronic wounds are caused mainly by the following causes;
vascular, traumatic, malignant, pressure, and diabetic wounds (McCosker et al.
2019; Iyun et al. 2016).

3.1 Diabetic Wounds

Diabetic wounds and foot infections are a major problem affecting about 20% of
diabetic patients worldwide (Ogurtsova et al. 2017). Diabetic foot management costs
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nearly USD10 billion annually (Raghav et al. 2018). Foot complications include
infection, ulceration, and gangrene (Ray et al. 2005).

Metabolic complications due to diabetes, hyperglycemia, peripheral neuropathy,
and impaired circulation disrupt the wound healing process (Popov 2010; Zhao et al.
2016b; Baltzis et al. 2014). Poor oxygenation and circulation are contributing factors
to poor wound healing in diabetic patients (Berlanga-Acosta et al. 2013).

3.2 Pressure Ulcers

Pressure ulcers or bedsores are the most common example of tissue necrosis (Roaf
2006), developing mainly in elderly and bedridden patients (Tubaishat et al. 2018;
Grey et al. 2006). Pressure ulcers affect about 2.5 million patients per year in the
USA and cost over 10 billion USD per year. Skin surfaces over the bony promi-
nences (e.g., hips, ankles, heels, coccyx, scapulae) are the most vulnerable areas
(Baron et al. 2016; Mendoza-Garcia et al. 2015).

Pressure, shear, friction, and moisture are the main factors involved in the
pathogenesis of pressure ulcers (Grey et al. 2006). Due to continuous pressure, the
blood supply to the skin is obstructed, leading to poor circulation resulting in tissue
death and ulcer development (Anders et al. 2010). Pressure ulcers may be prevented
by changing patient positions frequently (Nageswaran et al. 2015).

3.3 Other Types of Ulcers

Venous Leg Ulcers occur due to chronic venous insufficiency, especially in the
lower limbs (Guest et al. 2018; Comerota and Lurie 2015), due to the local rise in
blood pressure and leakage of macromolecules into the extra-vascular space. Tissue
edema and fibrosis impair oxygen diffusion, therefore, causing tissue ischemia and
death (Guenin-Macé et al. 2014; Morton and Phillips 2016).

Arterial Ulcers are a less common type of ulcers. They occur because of arterial
insufficiency and poor perfusion, leading to insufficient skin oxygenation and tissue
breakdown (Guenin-Macé et al. 2014).

Traumatic wounds usually occur after road traffic injuries, gunshot wounds, and
bone fractures, these wounds are, in some cases, life-threatening, depending on the
site of injury. In most cases, traumatic wounds are usually contaminated by skin flora
and to a certain level by environmental organisms (Robson 1997). Infected traumatic
wounds cause heavy bacterial burden, which impacts wound healing negatively by
increasing the metabolic requirements of the patient, and by stimulating
pro-inflammatory cytokines and by the effects of cytokines secreted by bacteria
(Devriendt and de Rooster 2017). The presence of necrotic tissue at the wound site
increases the severity of infection, complicates healing, and prolongs care.
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Malignant wounds usually occur as a complication of cancer spreading to the
subcutaneous tissues. They are commonly seen on the breast and chest wall.
Malignant wounds are usually complicated with the poor general condition and
the associated pain, exudate, and sometimes hemorrhage. Treatment of malignant
wounds is primarily palliative to relieve pain and control infection (Ramasubbu et al.
2017).

Other types of skin ulceration include burn and immune dysfunction (Tomioka
et al. 2018).

4 Mechanism of Wound Healing

4.1 Normal Healing Process

The normal healing process of the skin is characterized by coagulation, acute
inflammation, proliferation, and remodeling (Khodaeian et al. 2015).

After the acute injury, the coagulation cascade is activated, leading to the
formation of a clot to prevent bleeding (Gilbert et al. 2016), and to protect the
wound from infection (Bielefeld et al. 2013). The release of pro-inflammatory
cytokines and growth factors from activated plates recruits inflammatory cells to
the wound and initiates an inflammatory phase (Gilbert et al. 2016; Hameedaldeen
et al. 2014). Neutrophils and macrophages are key players in this phase. Neutrophils
remove bacteria, foreign objects from the wound and produce proteolytic enzymes
such as matrix metalloproteinase (MMP) to break down dead tissue (Hameedaldeen
et al. 2014). Monocytes later differentiate to macrophages and phagocytose foreign
organisms and dead neutrophils, and also release transforming growth factor ß
(TGF-ß) and other cytokines, therefore, enhance fibroblasts and epithelial cells
migration into the wound area (Bielefeld et al. 2013; Hameedaldeen et al. 2014).

The proliferation phase is characterized by angiogenesis, extracellular matrix
(ECM) synthesis, and re-epithelialization (Gilbert et al. 2016; Emanuelli et al.
2016). Macrophages shift to an anti-inflammatory phenotype expressing anti-
inflammatory mediators, proteases, and growth factors, such as vascular endothelial
growth factor (VEGF) and TGF- ß to encourage cell proliferation and protein
synthesis. Endothelial cells and fibroblasts then enhance new blood vessels and
fibrous tissue formation to form granulation tissue (Tsourdi et al. 2013).

The remodeling phase is the last step leading to skin recovery. Immature ECM
and collagen type III are degraded byMMPs and replaced with collagen type I (Zhao
et al. 2016a; Gilbert et al. 2016; Bielefeld et al. 2013). Subsequently, collagen fibers
rearrange across tension lines, facilitating cross-linking, and increasing the tensile
strength of the wound (Emanuelli et al. 2016; Baltzis et al. 2014).
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4.2 Chronic Wound Healing Process

In chronic wounds, reactive oxygen species (ROS) are the key players. Elevated
levels of ROS cause oxidative damage in DNA, proteins, and lipids leading to tissue
damage (Donato-Trancoso et al. 2016). They induce inflammation, which in turn
leads to epithelial dysfunction, decreased reperfusion, impaired angiogenesis
resulting in poor ulcer healing (Blakytny and Jude 2006). Chronic skin ulcers are
characterized by reduced levels of tissue inhibitors of matrix metalloproteinases,
which result in elevated levels of matrix metalloproteinases to accelerate tissue
degradation (Baltzis et al. 2014; Amin and Doupis 2016). MMPs destroy growth
factors involved in healing, such as TGF- β1, insulin growth factor (IGF-I), and
platelet-derived growth factor (PDGF), which are crucial for the healing process,
there inhibiting re-epithelization (Falanga 2005). High concentrations of ROS and
low TGF- β1 expression level increase macrophage chemoattractant protein-1
(MCP-1) levels, which attracts greater numbers of macrophage, leading to sustained
inflammation (Blakytny and Jude 2009). Impaired angiogenesis is seen in patients
with chronic ulcers. Hypoxia-inducible factor-1α (HIF-1α), which iduces angiogen-
esis is induced in response to hypoxia resulting in the transcription of growth factors
like VEGF, which is important for angiogenesis. In chronic ulcers, HIF-1α is
downregulated, leading to low expression of VEGF as a result of poor angiogenesis
and impaired wound healing (Catrina et al. 2004; Larouche et al. 2018).

5 Wound Management

Pressure ulcer prevention requires risk assessment, patient mobility and nutrition,
skincare, and regular pressure redistribution (Langemo et al. 2015). Treatment plans
may include the use of local (topical) treatment, such as antimicrobials, antioxi-
dants, growth factors, and analgesics (Gupta et al. 2017). Although antibiotics are
the first line of treatment of wounds to prevent infection, the extensive use of
antibiotics leads to antimicrobial resistance (Norman et al. 2016; Ayukekbong
et al. 2017).

Wound Dressings have been used to protect wounds and accelerate healing. The
choice of dressing varies depending on the type of the wound, its location, and the
amount of exudate (Gupta et al. 2017). Non-healing or chronic and infected wounds
may require debridement or the excision of necrotic tissue to clean the wound, and
decrease infection (Leaper et al. 2011; Burtis and Dobbs 2009). Debridement is done
surgically or biologically (Woo et al. 2015; Falabella 2006). Biological debridement
employs the use of enzymes, which may lead to inflammation, while surgical
debridement removes necrotic and healthy tissues non-selectively (Falabella 2006).

Other plans include the use of Vacuum-Assisted Closure (VAC), or negative
pressure to accelerate chronic wound healing (Nain et al. 2011; Han and Ceilley
2017). The vacuum enhances oxygenation, blood flow, and tissue repair (Schreiber
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2016; Huang et al. 2014). Alternative plans include the use of Hyperbaric Oxygen
therapy (HBOT), aiming to increase the oxygen concentration in the patient’s
blood. There are still some doubts that high oxygen pressure might harm the brain
(Tuk et al. 2014). Finally, some cases require surgical treatment and the use of
autologous, full, or partial thickness skin grafts (Serena 2015).

Artificial Intelligence andMachine Learning can lead to a revolution in wound
care practice. In the past few years, applications for wound photography and
measurement of the wound area were developed. Such electronic tools can be
integrated easily with the use of telemedicine and the use of electronic medical
record systems (Queen 2019). Machine learning tools can analyze the wound area
and recommend treatment for effective wound management (Queen 2019).

6 Wound Microbiome

Skin commensal microorganisms are essential for the development of the host
immune response and protection against pathogenic microorganisms (Tr et al.
2018). In the following part, we will discuss the microbiome of healthy skin and
how this microbiome is disturbed in acute and chronic wounds. Understanding the
wound microbiome may improve the understanding of wound healing and lead to
advances in treatment strategies.

6.1 The Healthy Skin Microbiome

Over 1000 bacterial species belonging to 19 phyla are commensals of the superficial
layers of the skin (Grice et al. 2008, 2009). The bacterial composition differs
according to the anatomical location of the skin and its moisture content.
Propionibacterium and Staphylococci species dominate sites with many sebaceous
glands (Tr et al. 2018), while sites with high moisture are dominated by
Corynebacteria and Staphylococci spp. (Grice et al. 2009). Whereas dry sites are
highly abundant in β-proteobacteria, Flavobacteriales, and other Gram-Negative
organisms (Grice and Segre 2011). Recent studies proved that the healthy skin
microbiome extends into the deeper parts of the dermis with higher proportions of
Proteobacteria and Actinobacteria (Tr et al. 2018). In contrast to the bacterial
microbiome, the mycobiome (fungal microbiome) component differs by anatomical
location rather than moisture or sebaceous content (Findley et al. 2013). The fungal
skin community is mainly composed of the Malassezia genus (Paulino et al. 2008).
Feet as an exception are characterized by high fungal diversity and lower stability.
This explains why diseases of the feet are common sites of recurrent fungal infec-
tions. Most recent, high throughput metagenomic sequencing has identified the
Human Polyomavirus and Circoviruses are the main constituents of the skin virome
(Tr et al. 2018). Moreover, bacteriophages (Staphylococcus phages) are also major
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components of the skin virome (Landini et al. 2015). Recent studies have shown that
environmental and genetic factors help define normal skin flora (Chen and Tsao
2013).

6.2 Acute Wound Microbiome

Understanding the microbiome of acute wounds helps in the understanding of the
healing process (Xu and Hsia 2018). One study investigated the microbiota of open
fractures. There were significant differences in the bacterial composition of wounds
at initial admission in the hospital and after discharge. On admission, Pseudomonas,
Corynebacterium, and Anaerococcus were more abundant in wounds if compared to
normal skin. After the wound was healed, the skin was rich in Staphylococcus and
decreased in Pseudomonas (Hannigan et al. 2014). Another study investigated the
microbiome of burn wound patients. Burn wounds in these patients show an
abundance of thermophilic organisms such as Aeribacillus and Nesterenkonia and
a decrease of Corynebacterium (Plichta et al. 2017). There was a significant rela-
tionship between different bacterial species present and postburn complications, as
wound infection, sepsis & pneumonia. Propionibacterium acnes was associated
with a greater risk of pneumonia and wound infection (Xu and Hsia 2018).

The microbes available in acute wounds do not obstruct the inflammatory
response. Staphylococcus epidermidis produces lipoteichoic acid, which decreases
inflammation. Keratinocytes express antimicrobial peptides (AMPs) that provide
protection against pathogenic bacteria. Probiotic supplements such as Lactobacillus
reuteri may accelerate wound healing. Bacteria such as Staphylococcus aureus
produce superantigens that reduce interleukin (IL-17) and consequently enhance
the wound healing process. Pseudomonas enhances epithelization and angiogenesis
through transforming growth factor beta-activated kinase 1 (TAK1) signaling.
(Tr et al. 2018).

6.3 Chronic Wound Microbiome

Polymicrobial biofilms play a critical role in impaired wound healing (James et al.
2008). Non-healing wounds have high numbers of microorganisms, including
anaerobic bacteria, which may hinder the healing process. These bacterial biofilms
increase the expression of cytokines IL-1B, IL-8, IL-6, chemokine ligands 1 and
8, and TNF-α. IL-8 is a potent neutrophil chemoattractant. The biofilm decreases
matrix metalloproteinase �3, and vascular endothelial growth factor (VEGF)
expression. Thus contributing to poor vascularization of the wound bed further
prevents the delivery of exogenous therapeutics. Although chronic wounds have
inflammation phase, the total number of macrophages and activated fibroblasts are
low preventing healing (Tr et al. 2018).
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Modern tools such as next-generation sequencing shed more light on the diversity
of the wound microbiome. For example, in pressure ulcers, the most dominant phyla
observed were Firmicutes, Proteobacteria, and Actinobacteria (Ammons et al. 2015).

There is a clear difference in the microbial composition of pressure ulcers in diabetic
and non-diabetic patients (Xu and Hsia 2018). In diabetic foot ulcers, the most
abundant bacteria found were Corynebacterium, Bacteroides, Peptoniphilus,
Finegoldia, Anaerococcus, Streptococcus, and Serratia spp. (den Reijer et al.
2016). Another study showed that Streptococcus and Clostridiales Family XI, a
family of anaerobic bacteria, were more abundant in diabetic rather than
non-diabetic patients (Clark 1989). Deeper non-healing ulcers have high levels of
anaerobes and Gram-negative bacteria. Shallow healed ulcers showed a high abun-
dance of Staphylococcus aureus. The most dominating fungal species found in
diabetic foot ulcers (DFU) are Candida (parapsilosis, albicans, and tropicalis) and
Trichophyton mentagrophytes as (Uberoi et al. 2020). Finally, in venous ulcer, the
most dominant bacteria include Bacteroides species, S. aureus, Pseudomonas, Cory-
nebacterium species, various anaerobes, and Serratia (Thomsen et al. 2010). A study
used debridement samples to demonstrate the association between bacteria and ulcer
healing. They found that non-healed wounds at 6 months showed higher bacterial
abundance and diversity. Those wounds had significantly high Actinomycetales and
low Pseudomonas if compared with healed ulcers (Tuttle et al. 2011).

7 Experimental Wound Models

7.1 In Silico Models

Computational and mathematical models or in silico models utilize data analysis and
bioinformatics to study wound healing. They may be used to test potential thera-
peutics and to design synthetic tissues for skin regeneration. Their main disadvan-
tage is that they rely on the parameters that are chosen by the researcher and lack the
biological complexity of the human skin. The outcome of such studies should be
applied in a biological model to confirm the results (Menke et al. 2010).

7.2 In Vitro

The pathogenesis of wound healing may be studied in vitro; such models may help
understand scar formation and healing processes (van den Broek et al. 2014).
Examples of these models include single-layer cell cultures and co-cultures. Skin
explants are also used as or three-dimensional cultures (Fig. 2).
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8 Single or Mono-layer Cell Culture

Conventional cell culture is a relatively easy and fast approach to wound healing
study (van den Broek et al. 2014). Single or Mono-layers of cells, e.g., human or
animal fibroblasts or keratinocytes, are commonly grown in culture. The layer of
cells is disrupted using a scratch tool (sterile glass or plastic instrument) (Fig. 2). this
scratch assay is commonly used to study the migration of cells in vitro. This method
is usually utilized when studying various factors or drugs that affect cell migration
and proliferation. The cell culture environment is controlled, which may be seen as
an advantage for this technique, where factors may be added or removed depending
on the purpose of the study (Henemyre-Harris et al. 2008). Human skin is a complex
organ with many interacting cell types, which makes this model of limited value
(Henemyre-Harris et al. 2008).

8.1 Co-Cultured Cell Cultures

To overcome the problems of single-layer cell culture, different systems are devel-
oped to allow for the co-culture of different cell types to study (van den Broek et al.
2014). The trans-well system employs a chamber (Boyden Chamber) with a filter
membrane separating it into two. The pore size is used to control the migration of
cells (Fig. 2) (Boyden 1962).

Co-cultures provide insight into the factors affecting migration and cell–cell
interaction. (Werner et al. 2007). However, this system is a two-dimensional system
with the availability to study only two cell types at a time, which limits its use
(Ud-Din and Bayat 2017).

Fig. 2 Different types of In vitro wound healing assays. (a) Scratch Assay in mono-layer cell
culture. (b) Boyden co-culture Chamber. (c) Skin Explant. (with permission from Sami et al. 2019)
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8.2 Ex Vivo Models

Skin explant is a type of culture in which the top layers of the skin are grown in vitro
after removing fat and subcutaneous tissue (Fig. 2). Healthy and diseased skin
samples may be collected from surgical procedures. This model is used for the
study of wound repair and inflammation and to test the effects of different drugs
(Cho et al. 2013; Ud-Din and Bayat 2017; Reus et al. 2012). This system has the
advantage of being a three-dimensional structure with multiple cell types in which
the micro-environment can be studied (Cho et al. 2013; Nayak et al. 2013;
Karamichos et al. 2009). Other factors can be controlled and changed to simulate
in vivo conditions such as pH, nutrients, and temperature (Nayak et al. 2013).

A major disadvantage is the lack of nerve supply, which is thought to be essential
in skin repair (Cho et al. 2013). This model is also highly variable depending on the
age, sex, and health condition of the donor.

Other examples of Ex vivo models are used to study scars and evaluate thera-
peutics affecting keloids and hypertrophic scars (Iqbal et al. 2010; Zhang et al. 2009;
Syed et al. 2013).

8.3 In Vivo Models

Models utilizing living animals are the most clinically relevant models in wound
healing studies. Humans, small and large animals, are often used. They provide a
complex biological environment involving multiple aspects of the pathophysiology
of wound healing. Animal models are essential for testing new therapeutic tech-
niques before moving to human clinical trials (Stephens et al. 2013). For a full
review of the different wound models see Sami et al. 2019.

8.3.1 Human Wound Models

Using humans as a model is the ideal situation for wound research since the
pathophysiology of healing, especially in acute wounds, is almost identical among
all human beings. They are clinically important, especially in clinical trials (Wilhelm
et al. 2017). A summary of some of the acute wound models is shown in Table 1.
Unfortunately, such studies have legal, ethical, and practical concerns (Trøstrup
et al. 2016).

Chronic wounds include venous leg ulcers, diabetic ulcers, and pressure ulcers,
and others (Frykberg and Banks 2015). Human chronic wounds provide an oppor-
tunity to study the delayed healing process. They are accessible, and scientists are
able to get wound tissue samples post debridement surgery. Wound swabs and tissue
specimens from chronic ulcers also can be obtained during outpatient visits (Pastar
et al. 2018). They thus provide a better opportunity to study the underlying factors of

442 D. G. Sami and A. Abdellatif



Table 1 Acute wound models in human

Model
Technique and
depth Comments Applications References

Partial
thickness
model

Skin stripping with
adhesive tape.
Limited to stratum
corneum, without
affecting the dermal
blood vessels

Simple and non-in-
vasive.
Variable wound,
depending on the
number of strips,
pressure, and adhe-
sive power.

Used to assess new
wound dressing,
therapeutic agents
& skincare
products.

Sobiepanek
et al. (2019),
Gao et al.
(2013)

Suction blister
model involves the
epidermis.

The negative pres-
sure causes splitting
in the basal mem-
brane and separation
between epidermis
and dermis.

To assess healing
and collagen syn-
thesis.
Measurements of
pharmacological
agents.

Koivukangas
and
Oikarinen
(2003)

Abrasive wound
model involves the
epidermis.

A semi-invasive
technique using sur-
gical brush to
scrub skin.

Useful for differen-
tiating wound
dressing properties

Wigger-
Alberti et al.
(2009)

Laser wounds.
Variable depth

A laser used to
induce superficial
wounds affecting
epidermis or deeper
layers.
High wound
reproducibility.

Useful for topical
pharmacological
studies

Marquardt
et al. (2015)

Microdermabrasion
(MDA).
Variable depth

A minimally inva-
sive technique using
abrasive crystals to
cause mechanical
abrasion and remov-
ing the stratum
corneum.
Less expensive than
lasers.

A nonsurgical cos-
metic procedures to
treat scars, photoag-
ing.
Improves the trans-
dermal drug
delivery

Shah and
Crane (2020)

Split-thickness
wounds.
Variable depth

It involves the
removal of a 100–
1500 micron-thick
layer of the epider-
mis/upper dermis
using a sharp blade.
The epidermal
appendages are left
to determine
re-epithelization.

It is used to evaluate
the effect of age on
wound healing and
to test the topical
application of thera-
peutics and growth
factors.

Wilhelm et al.
(2017)

Full-
thickness
wound
model

A full-thickness
wound and com-
plete removal of
epidermis and
dermis.

A scalpel or derma-
tome is used to create
standardized
wounds.

It is used to test new
treatments.

Misic, et al.
(2014)
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wound healing on the molecular and histopathological levels (Pastar et al. 2018).
Another point is that wound fluid is rich in information on metabolomics, proteo-
mics, and wound microbiome environment, which plays an important role in the
impaired healing process. Such studies will lead to personalized and targeted
treatments that result in improvements in the outcome (Dowd et al. 2011).

Many difficulties prevent the widespread use of patients with chronic wounds as
study subjects. For example, histological studies require multiple biopsies at multi-
ple time points, which is not practical as it disturbs the healing process and is
counterintuitive to the study’s purpose of improving healing. Patients compliance
and cooperation is also a major factor in establishing a well-controlled and statisti-
cally significant study (Nuutila et al. 2014). Moreover, ethical considerations prevent
infecting the human wound or the use of an untreated control subject (Ud-Din and
Bayat 2017; Ito and Cotsarelis 2008).

8.3.2 Rodents

The skin anatomy of the rodents is different from that of humans, as rodents have a
thin epidermis and dense hair, as well as the presence of subcutaneous muscle
(Panniculus carnosus), which accelerate wound healing (Dorsett-Martin 2004; Ito
and Cotsarelis 2008). Also, rodents lack apocrine and eccrine glands (Dorsett-Martin
2004 and have endogenous vitamin C, which is crucial in all phases of healing
(Wong et al. 2011; Moores 2013; Dorsett-Martin 2004). Finally, the rodents’
immune system is stronger compared to humans (Seaton et al. 2015).

Despite all these differences, rodents remain extensively used in wound healing
studies due to their low cost, availability, which makes them suitable for large
studies (Trøstrup et al. 2016). Different models of wounds were developed to
study acute and chronic wounds (Fig. 3).

8.3.3 Rabbits

The rabbit ear is commonly used as a model for wound healing. The cartilage of the
rabbit ear heals by re-epithelialization and granulation formation. It is characterized
by high vascularization, which is similar to the human dermis. The high breeding
cost is the main disadvantage of using rabbits (Rittié 2016). Table 2 summarizes
previous research using rabbits as a model for wound healing.

8.3.4 Pigs

Porcine (pigs) have shared anatomical and physiological similarities to humans that
make them promising models for wound healing. Pigs have thick skin with apocrine
glands, sparse hair, and rely on exogenous vitamin C. Wounds heal by
re-epithelization. In contrast to humans, pigs have poor dermis vasculature
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(Summerfield et al. 2015). Pigs are not an ideal model due to the high cost and the
requirement for large experimental setups, which limits their use, especially in large-
scale experiments where a large number of animals is needed (Parnell and Volk
2019). Table 3 is a summary of previous research that used pigs as a wound model.

8.3.5 Zebrafish

Zebrafish (Danio rerio) are small freshwater fish that are commonly used in biolog-
ical research (Li et al. 2011; Trompouki et al. 2011). Among other models, zebrafish
have several advantages. They have a high degree of genetic conservation with
humans, a large number of offspring, and their maintenance cost is cheap
(Trompouki et al. 2011). Wounds in the epidermis of zebrafish and mammalian
embryos close in the same way both of them re-epithelialize without inflammation,
granulation tissue formation, and scarring (Brockes et al. 2004). The caudal fin of the
zebrafish is unique since it can fully regenerate within 10–14 days (Alvarez et al.
2018). A previous study used a laser to introduce full-thickness wounds on the flank
of adult zebrafish (Richardson et al. 2013). They showed that wound
re-epithelialized rapidly without inflammation and blood clot formation (Richardson
et al. 2013). From our point of view, this model is not suitable to study acute wounds
that occur in humans as they do not go through the phases of wound healing
(inflammation, granulation, and scaring).
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Fig. 3 Different types of wound models in rodents. (with permission from Sami et al. 2019)
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8.3.6 Caenorhabditis elegans

The epidermis of Caenorhabditis elegans consists of a simple epithelium on top of a
basal lamina. Epithelial cells secrete flexible collagenous cuticles (Chisholm and
Hsiao 2012). C. elegans has been used as a model to study the different biological

Table 2 The use of rabbit ear as wound Models

Wound type Method Comment References

Excisional
wound
model

A full-thickness excision on the
backside of the ears.

This model imitates the acute
healing process in humans.

Qian et al.
(2017)

Diabetic
model

A full-thickness wound on the ear
in diabetic animals.
Diabetes is induced by Alloxan,
or Streptozotocin (STZ), or by a
high-fat diet.

Application
Useful to study diabetic
wounds.
Limitations
High mortality rate of dia-
betic rabbits.

Wang et al.
(2010)

Cutaneous
ischemia-
reperfusion
ulcer

Ischemia/reperfusion injury was
induced by applying and remov-
ing magnets over the ear between
the central artery and marginal
veins.

Application
This model is used to study
type 1 pressure ulcers.
Limitations
A small sample size (four
animals) was used in this
study.

Schivo et al.
(2017)

Ischemic
skin wound
model

Ligation of two arteries at the base
of the ear. A punch biopsy was
used to create deep ulcers.

Application
Used to study pressure ulcers
as it resembles the healing
process of the human.

Ahn and
Mustoe
(1990)

Skinfold
chamber
model

A chamber is placed on top of
holes punched through the
cartilage.

Application
To study the vascular
changes in the presence of
shear stress.

Ichioka et al.
(1997)

Burn wound
model

Heated rod (90 �C) to induce
burns.

Application
It is considered a good
model example to study
hypertrophic scar.

Friedrich
et al. (2017)

Infected
model

Bacteria were inoculated in full-
thickness wounds.

Application
It is used to study the
antibacterial effect of drugs
in chronic and infected
wounds.

Dai et al.
(2011), Seth
et al. (2012)

Parabiosis
model

Two rabbits are joined surgically
at the ears.

Application
It is used to study immunol-
ogy, cancer metastasis, and
metabolic disorders.
Limitations
High risk of mortality.

Andresen
et al. (1957),
Dai et al.
(2011)

Denervated
wound
model

Surgical excision of the sensory
nerves of one ear.

Limitations
Wound completely healed
by 15 days.

Yagmur
et al. (2011)
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Table 3 The use of pigs as wound Models (modified from Sami et al. 2019)

Wound
Type Method Comment References

Excisional
wound
model

Full-thickness wounds are
created on the back of the
animal in normal or
diabetic pigs.

Limitations
High cost and small
sample size.
Wounds in diabetic pigs
heal faster (18 days) com-
pared to humans.

Singer and McClain
(2003)

Radiation-
induced
wound

The leg was irradiated, and
a full-thickness excision
is made.

Limitations
Skin became normal after
2 weeks later.
High cost

Bernatchez et al.
(1998)

Cutaneous
ischemia-
reperfusion
ulcer

Two magnets are implanted
subcutaneously and exter-
nal magnets are applied to
cause compression and
ischemia of the skin.

Application
Used to study vascular
supply and the circulation
of the skin.
Limitations
The small sample size
used in the study.

Vaena et al. (2017)

Ischemic
skin wound
model

A skin flap is created and a
silicone sheet to avoid
reattachment.
Circular excisional wounds
are made in the flap.

Decreased blood reperfu-
sion and delayed macro-
phages occurred in the
ischemic wounds.
Limitations
High surgical skills are
required
Pocket filled with fluid
form under the flap.
Small sample size and
small wounds are hard to
analyze.

Patil et al. (2017),
Roy et al. (2009),
Seaton, et al. (2015)

Burn
wound
model

A heated metal bar (80–
110 �C) is used to create
burn wound.

Application
A simple, non-invasive
model for burn wounds.
It is important to study the
therapeutic effect of new
drugs and study hypertro-
phic scarring.
May be used to study
wound infection.
Limitations
Small burn area.
A modification uses a
steel bar to control the
depth of the burn.

Rapp et al. (2015)

Infected
wound
model

An incisional/excisional
wound is created and inoc-
ulated with microorgan-
isms, or foreign bodies, in
normal and diabetic pigs.

Application
Used to study
antibacterial drugs.
Used to study bacterial
interaction in the wound

Dai et al. (2011);
Hirsch et al. (2008),
Kalan et al. (2016),
Seaton et al. (2015)

(continued)
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processes involved in wound healing. Its development is well understood, which
enables researchers to trace the lineage of different cells involved in the wound repair
process (Bao et al. 2006).

9 Conclusion

The wound healing process is complex and requires extensive research to be
understood and for the development of new therapeutic strategies. To the best of
our knowledge, there are no animal models that demonstrate identical wound healing
criteria to human wound pathophysiology. Since human models are of limited value
to research, various animal models have been developed to enhance our understand-
ing of the healing process. Multiple models should be used to study different types of
wounds, either sequentially or in combination, e.g., in vitro and in silico models
could be used before moving to animal models. Despite the ethical concerns and
their associated disadvantages, animal models remain necessary for the study of the
complex pathophysiology of wound healing and for testing different treatment
approaches.

Table 3 (continued)

Wound
Type Method Comment References

environment.
Useful to study infection
in chronic diabetic
wound.
Limitations
Diabeteic wound healing
did not resemble human
wound healing pattern.

Dead space
wound
model

Skin incision and removing
part of the back muscles.

Application
The model was useful to
study the effect of nega-
tive pressure wound
therapy.

Huang et al. (2014),
Murthy et al. (2013),
Nayak et al. (1999)

Denervated
wound
model

Nerve is cut followed by
skin compression.

Application
Suitable to study bed-
sores.
Limitations
Requires high surgical
skills and is complicated
by muscle atrophy.
Wound heals within
3 weeks, which does not
allow for studying chronic
wounds.

Seaton et al. (2015)

448 D. G. Sami and A. Abdellatif



Rodent models are the most cost-effective, and therefore, large numbers can be
used, leading to statistically significant studies. Rats are, in our view, are preferred
for wound studies despite the presence of the subcutaneous muscle (Panniculus
carnosus). Recent studies (Maldonado et al. 2014; Sami and Abdellatif 2020) report
wound models that overcome the contraction element of the subcutaneous muscle
and create ulcers very similar to human pressure ulcers, which provide an excellent
tool for future wound research.

Many reliable wound assessment tools have been developed (Lima et al. 2018) to
assess wound healing in small animal models with high reliability, therefore making
these models even more significant for translational wound research.
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Experimental Wound-Care Models: In
Vitro/In Vivo Models and Recent Advances
Based on Skin-on-a-Chip Models

Sónia P. Miguel, Maximiano P. Ribeiro, and Paula Coutinho

1 Introduction

The ageing of the EU population, generally associated with comorbidities, is a
considerable challenge for the healthcare systems. Chronic wounds are one of the
most frequent comorbidities related to aged populations (Frykberg and Banks 2015).

The treatment of complicated skin injuries continues to be an emergent problem
for the scientific and medical community. Although many available therapeutic
options in the clinical environment to treat skin lesions, like conventional
(e.g. gauzes, adhesive strips), advanced dressings (e.g. hydrocolloids, hydrogels,
creams), implants, and skin substitutes, they do not present the “ideal” properties
(Sood et al. 2014). So, the researchers have been concentrating on the production of
wound dressings, able to reduce the healing process time, as well as re-establish the
quality of patients’ life (Dreifke et al. 2015; Rezvani Ghomi et al. 2019).

Further, the clinical translation of wound devices is greatly correlated to the
physicochemical characterisation and preclinical evaluation that assess the formula-
tions’ quality, safety, and efficacy (Ruggeri et al. 2020). Moreover, the wound-
healing therapies’ commercialisation process is laborious, expensive, and prolonged
involving the in vitro, in vivo, and clinical assays. The preclinical evaluation of most
therapies is performed through in vitro and in vivo animal models, that present low
predictability when tested in humans (Dellambra et al. 2019). Apart from these facts,
the EU’s seventh Amendment to the Cosmetics Directive banned animal models for
testing cosmetic products, and different agencies have supported the 3R principle
(Replacement, Reduction, Refinement) (Ranganatha and Kuppast 2012; Doke and
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Dhawale 2015). Also, the European Medicines Agency (EMA) described the guide-
lines to implement the 3Rs policy in the testing of medicinal products, referring to
the requirements to test medical products for human use, as reviewed by Dal Negro
et al. (2018)

In this way, different efforts made by companies (e.g. GlaxoSmithKline, Johnson
& Johnson, L’Oréal, Novartis, Proctor & Gamble, and Unilever) and researchers
have resulted in the use of non-animal alternative strategies to estimate the biological
performance of therapies through the development of in vitro 3D models. Several
industries already developed skin models, skin tissue engineered and protocols to
evaluate skin features, such as SkinEthic®, epiCS®, EpiDerm®, and EpiSkin®. These
are examples of reconstructed skin models validated, available in the market, and
able to be used as an alternative to the in vivo assays (European Commission, 2020).

In this way, it was possible to obtain in vitro assays with reproducibility, by using
skin constructs to characterise genetic damage from topical therapeutic formulations;
full-thickness skin models to study the drug penetration into damaged skin; and skin
structures to ascertain the effect of the LED light in the acne’ therapy (Yu et al. 2019;
Wei et al. 2020).

However, most of these 3D skin models are static and cannot reproduce all skin
functional and morphological features, as well as cell interactions, and dynamic
microenvironment found on native human skin (Wufuer et al. 2016; Sriram et al.
2018; Wang et al. 2017).

Taking this into account, the organ-on-a-chip platforms arise as revolutionary
systems that require a small quantity of reagents, cells, and samples to replicate the
structure, morphology, and dynamic conditions of a specific tissue. Furthermore, this
preclinical system affords vast possibilities to replicate different disease conditions
by perfusing the chip with diverse molecules (Low and Tagle 2017; van den Berg
et al. 2019; Wu et al. 2020).

This chapter describes the leading preclinical platforms used for the biological
evaluation of wound healing therapies, evidencing their main advantages and dis-
advantages. Special attention is dedicated to the new promising in vitro skin models,
reporting the main production techniques and their use as a platform for testing
wound dressings, topical formulations, and cosmetic products or studying patholog-
ical and physiological alterations associated with skin diseases. We also address the
main future perspectives enrolling in the development of the skin models accelerat-
ing the clinical translation of different innovative wound healing therapies.
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2 Biological Assessment of Wound Healing Therapies:
Actual Preclinical Platforms

The constant development of wound healing therapies has revolutionised the pre-
clinical research area. The evaluation of safety, toxicity, and efficacy in a dose-
response trend are some parameters that need to be determined before the clinical
trials, following the regulatory guidelines, as reviewed by Bernard et al. (2018)

In the first instance, the wound healing process is assessed through in vitro assays
(e.g. wound scratch or transwell migration assays) (Grada et al. 2017; Liang et al.
2007; Van Meerloo et al. 2011). These are easily executed, and are approachable
assays that can be used to evaluate the primary skin cells’ migration ability
(keratinocytes and fibroblasts). These in vitro models afford an effective
first approach to discover and screen the drug’s effects (Abd et al. 2016).

However, to reproduce the biological conditions (immune response, cell–cell and
cell–matrix interactions) on wound healing mechanisms, researchers have created
the organotypic cultures. These are composed of two layers: dermis and the epider-
mis, being used to characterise the keratinocyte–fibroblast crosstalk during the
wound healing mechanism and evaluate the therapeutic effects of a topical treatment
applied in 3D cultures (Oh et al. 2013; Weinmüllner et al. 2020).

Similarly, the ex vivo human wound samples have been employed to study the
mechanism of wound epithelialization.

Even so, animal models remain the standard preclinical platform that gives a
complete knowledge of the biological response of therapies at the local and systemic
level (Barre-Sinoussi and Montagutelli 2015).

However, the use of alternatives to animal experimentation has been a topic very
explored by cosmetic and pharmaceutical companies, due to ethical and economic
concerns.

Herein, we depict the most current in vivo, ex vivo, and in vitro models in the skin
regeneration area, describing their advantages and disadvantages. It is also discussed
the recent innovations performed in the development of the skin-on-a-chip, which
are classified as micro-engineered models that replicate the morphology and func-
tions of the human skin.

2.1 In vivo Models

Actually, the preclinical testing is essentially conducted through in vivo models. In
general, in vivo wound models have several potential features since they enable:
(1) the study of multiple interactions between diverse cell populations that normally
occur during the wound repair process; (2) the search of multiple players enrolled in
the healing process (e.g. cytokines, hormones, growth factors); (3) the specific
reduction/silencing of target genes to evaluate their impact on healing process;
(4) the investigation of an efficient immune response; (5) the induction of various
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wounds in the same animal, and (6) the induction of different types of wounds
(burns, surgical injuries, crushing, etc.) (Barre-Sinoussi and Montagutelli 2015;
Masson-Meyers et al. 2020; Sami et al. 2019).

The utilisation of in vivo animal models for studying the pathophysiology of
cutaneous wound repair and testing/optimising novel therapeutic approaches enables
the evaluation of biological performance under systemic conditions, making possi-
ble the promotion of cell communications and interactions between local cells, and
immune cells recruitment (Barre-Sinoussi and Montagutelli 2015; Sami et al. 2019).

Thus, different animal models have been employed for wound healing assay,
including rodents (e.g. mice and rats), pigs, rabbits, and zebrafish, which share some
anatomic and physiologic properties with human skin, as illustrated in Fig. 1.

Among the different animal models, rodents are the most utilised in wound-
healing studies since they are easily available, to handle and low cost to acquire and
preserve. Further, its small body size avoids high quantities of chemical use, and the
duration of wound healing assay is shorter (� 21 days).

Besides, the mice and/or rats used in in vivo assays are genetically modified
organisms (transgenic or various knockouts/knockins) that simplifies the study of the
molecular pathways, and they can be easily controlled to reproduce the particular
wound conditions (e.g. diabetes, skin infections, hypoxia, and ischemia) (Dellambra
et al. 2019; Pastar et al. 2018; Wilhelm et al. 2017).

During the wound healing assay, the histology analysis, and the mechanical
properties of the regenerated skin tissue, biochemistry as well as the expression of
genes provide essential parameters to estimate the progression of the wound healing
process. Furthermore, non-invasive methods like bioluminescence and laser Doppler
imaging can also examine blood flow and other wound healing parameters.

The incisional wound, obtained by cutting the skin with a sharp blade, is a model
suitable to study the scar tissue formation over long periods, but not appropriate for
the characterisation of the epithelialisation process. Excisional wound models are
mostly used for the characterisation of the contraction rate and epithelialization in
murine models, which allow the identification of the essential signalling pathways
related to the wound healing progress, such as Wnt/β-catenin, transforming growth
factor-β (TGF-β), Notch, and bone morphogenetic proteins (BMPs) (Pastar et al.
2018). Additionally, to evaluate the biological processes dependent on
epithelialisation, cell proliferation, and angiogenesis, a silicon splint wound murine
model is employed (Park et al. 2015). Further, the parabiosis model has been
exploited to evidence the role of cytokines and cells (inflammatory and mesenchy-
mal cells) on delayed wounding in diabetic mice (Song et al. 2010; Wong et al.
2010).

The dorsal skinfold chamber enables real-time high-resolution microscopic imag-
ing, and it is widely applied in the study of vasculature physiology (Wong et al.
2010). Finally, the least invasive murine wound model is the tape-striping wound
model, which consists of disruption of the epidermal layer by withdrawing just the
stratum corneum and stratum granulosum. However, to reproduce the partial-
thickness wounds, the murine skin is not suitable since it possesses a thin epidermis
and large hair follicles, compromising the induction of superficial wounds
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which assure the consistency and reproducibility (Dellambra et al. 2019; Sami et al.
2019).

Fig. 1 Representative illustration and description of the “skin” structure and composition of the
in vivo animal models commonly used in wound healing assays and the human skin
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On the other hand, considering the clinical relevance and prevalence of chronic
wounds in the human population, significant efforts were made to create diabetic
models for wound healing studies, namely the diabetic db/db mice, which exhibited
a pronounced impaired wound healing (excisional and incisional wounds) in com-
parison to the normal in vivo models (Mendes et al. 2012).

Mertz and Eaglstein in 1978 created a porcine wound-healing model to study the
wound-healing processes, namely the formation of scar tissue, the skin regeneration,
and the microorganisms colonisation at the wound site (Meyer et al. 1978; Sullivan
et al. 2001).

Amongst all in vivo models, the porcine model possesses a similar skin structure
in comparison to the human skin, concerning features like epidermal and dermal
thickness, arrangements of hair follicles, and blood vessels (Dellambra et al. 2019).
Moreover, the compounds of the dermis (e.g. collagen and elastin) are analogous to
human skin and present a comparable distribution of immune cells and melanocyte.
Also, the pigskin sticks to underlying tissue like human skin.

More important, the wound healing process in pig animals occurs essentially due
to the epithelialization process in a similar way to humans.

Due to these resemblances, the pig is a model used in several dermatological
subjects (melanoma, depigmentation and vitiligo disorders, and wound healing
therapies) (Dellambra et al. 2019; Pastar et al. 2018).

On the other hand, the porcine model enables the biological evaluation of distinct
therapies in the same animal since it can induce multiple wounds. Indeed, a few
wound healing pig models were already developed namely, the incisional, excisional
injuries, skin infection, burns, UV radiation injury, and skin hypoxia. The porcine
models have been validated for the assessment of the biological effect of diverse
wound healing therapies, including various common wound care products available
in the market (Rittié et al. 2013).

However, these models are expensive and have some limitations such as the lack
of the eccrine sweat glands, their larger size and complexity which implies the
management by skilled professionals, as well as the challenging induction and
maintenance of diabetes in pigs. On the other hand, the development of transgenic
pigs is more complex than mice and rats (Pastar et al. 2018).

In turn, the rabbit ear model has been applied in the research of deregulated
wound healing in the situations as ischemia and infection, which are determinant in
the progression of chronic wounds. This model has also been used to test the effects
of bacterial contamination on wound healing and discover/develop new potential
treatments (Chien and Wilhelmi 2012).

Further, the ischemic wound model is also widely used in the rabbit ear, which is
generated by suturing off the ear’s arterial blood supply. This model is relatively
inexpensive to maintain and create multiple wounds in a single animal. Despite this,
the rabbit ear model is incapable of fully recapitulating the human setting since the
dermis is firmly connected to the cartilage and it is avascular (Chien and Wilhelmi
2012; Pastar et al. 2014).

Finally, zebrafish is an animal model generally used, since this model presents a
genome analogous to humans, embryonic transparency, rapid embryonic
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development, many offspring, and easily manipulated genetic content (Spitsbergen
and Kent 2003; Chávez et al. 2016).

The “zebrafish” skin is composed of an epidermis separated by a basal membrane
from a collagen-based dermis, becoming this model proper for wound healing
studies, since it possesses a structure and primary mechanisms similar to the
human wound healing process (Li and Uitto 2014; Richardson et al. 2013).

On the other hand, zebrafish are also used in studies regarding melanogenesis,
pigment disorders, and melanoma (Choi et al. 2007; van Rooijen et al. 2017).
Indeed, the zebrafish skin possesses cells with black pigment, which present a
similar behaviour to the human melanocytes (Li and Uitto 2014; Li et al. 2011).
However, the zebrafish did not possess an epidermal barrier and skin appendages.

Despite the potential of using animal models in the testing/screening of wound
care products, recently, the researchers/industries have been centred on discovering
non-animal alternative approaches. The animal experiments are expensive, time-
consuming, require ethical concerns, and the results are frequently non-predictive
when tested in humans (Stirland et al. 2013). According to the Humane Society
International Organization, about 90% of the medicines that displayed promising
results in animal models were unsuccessful when tested on humans. Also, different
agencies (European Union Reference Laboratory-European Centre for the Valida-
tion of Alternative Methods (ECVAM) and Organisation for Economic Cooperation
and Development (OECD)) are enforcing the 3 Rs strategy, which defends the
reduction, refinement, and replacement of animal use in experimentation. The
ex vivo and in vitro models are detailed in the following sub-sections, evidencing
the primary potentialities.

2.2 Ex vivo Models

The ex vivo skin models are widely used to determine topical or injected therapies’
effectiveness due to their time and cost-effectiveness. Compared to the in vitro skin
models, ex vivo models can replicate the structure of extracellular matrix (ECM),
cell signalling mechanisms and metabolism, incorporation of skin appendages, and
the effects of dermal absorption (Flaten et al. 2015).

These models’ skin samples are typically acquired from surgical operations such
as abdominoplasty (Xu et al. 2012a). The skin is separated from underlying fat to
enable the appropriate attachment of the dermis layer to the culture plate. Different
types of wounds can be induced, like an excisional wound with a punch (3–4 mm)
and a full-thickness skin injury by using biopsy punch (8–10 mm). After that, the
therapeutic approaches can be directly applied to the wound site, and then the
reepithelisation mechanism can be monitored through histomorphometric analysis
and keratin immunostaining (Planz et al. 2016).

Ex vivo skin models are more appropriate to determine the effect of drug
formulations, transdermal delivery, topical penetration, and percutaneous absorp-
tion. As potential advantages, the human ex vivo wound models present the total
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thickness of epidermis and dermis, Langerhans cells, melanocyte cells, and nerve
endings, allowing the establishment of standardised wound depths (Pastar et al.
2014).

However, ex vivo models fail in the blood supply, restricting the assays including
immune cell infiltrates, and the culture of the human skin ex vivo during at least
2 weeks is too laborious, as highlighted in the literature (Pastar et al. 2014; Gordon
et al. 2015).

The NativeSkin® is an ex vivo skin model currently available in the market. It
consists of skin biopsies obtained from patients submitted to the surgery, in which
skin samples are placed within the supportive matrix that provides a suitable moist
environment for skin dermis. This model has been utilised as a standardised ex vivo
skin model before clinical trials since it possesses a protective and physiological
barrier and stratum corneum layer appropriated for absorption assays. However,
NativeSkin® is not able to replicate a pathological condition.

Another wound model example is the murine skin explant utilised to characterise
the keratinocytes’migration. In this case, the fascia is separated from the mouse skin,
and the removed skin sample is immersed in the cell culture medium. After that, the
influence of pharmacological therapies on keratinocyte migration can be assessed.
This model can study the interaction between keratinocytes and fibroblasts. How-
ever, it does not possess immune cells, blood supply, and the ECM (Pastar et al.
2014).

Also, porcine skin samples can be used as ex vivo models for wound infection
and screening the activity of antimicrobial therapies. In the first instance, the porcine
skin sample is sterilised, and the partial-thickness wounds can be induced with a
dermatome. In contrast, the chronic wound environment can be mimicked by the
growth of bacterial biofilms (e.g. Pseudomonas aeruginosa (P. aeruginosa) and
Staphylococcus aureus (S. aureus)) on wounds. This type of model was already used
to evaluate the therapeutic effect of formulations containing iodine and silver,
surfactant-based dressings, and honey ointments. This model presents similar cuta-
neous physiology to the human skin, and the tissue can be easily achieved from meat
processing. However, the porcine ex vivo skin models exhibit a limited host immune
response, and the commensal microbiome is not present (due to the sterilisation
process) (Gordon et al. 2015).

Having in mind, the limitations of material used in ex vivo explants,
bioengineered skin substitutes have emerged. Different improvements have been
performed in tissue engineering, allowing the development of diverse wound
reepithelialization models.

2.3 In vitro Skin Models

The in vitro skin models arise as an alternative more accessible, rapid, no presenting
ethical concerns neither immune responses. In general, in vitro models to test/screen
the wound healing therapies are subdivided into: (1) 2D skin models; (2) 3D static
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skin models and more recent; (3) Skin-on-a-chip models based on microfluidic
systems.

Figure 2 summarises the main strong points and limitations of these in vitro skin
models.

In the initial phase of the drug screening process, the 2D in vitro assays are the
most used to investigate the formulations’ biocompatibility and ability to promote
cell activities. These conventional assays are commonly used since they are easy,
cheap, and relatively fast, providing a quick assessment of a large number of samples
under controlled conditions (Abd et al. 2016).

Cell 2D monolayers are extensively used to screen compounds for initial assess-
ment of the toxicity profile of therapeutic formulations. Such assays act as quick and
pre-selective screening tools (Planz et al. 2016).

Fig. 2 Representation of the main in vitro models used for testing/screening wound healing
therapies, describing their advantages and disadvantages and their temporal evolution
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The skin irritancy was the first assay performed by evaluating the products’ effect
in normal human keratinocytes (Rheinwald 1989).

In turn, the cell proliferation assay is done to ascertain the material/drug com-
pound’s ability to promote cell growth, whereas the cell cytotoxicity assay evaluates
the cytotoxic effect of the therapies on cell viability (Wilhelm et al. 2017).

In general, the cytotoxicity is evaluated following the guidelines described in ISO
10993-5 standard, which was updated in 2009. There are available in vitro cytotoxic
assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) that ascertain the percentage of viable cells through the quantification of
the formazan converted by the mitochondrial enzymes. The quantity of formazan
converted by the cells’ metabolic activity is correlated to the percentage of viable
cells (Van Meerloo et al. 2011). Other cytotoxicity assays include the neutral red
uptake (NRU) test, colony formation test, and (2,3-bis-(2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxanilide) (XTT) test. In these assays, the cell
cultures should be selected according to the intended in vivo application.

The cytotoxicity assays afford qualitative and quantitative approximations about
the cytotoxic potential of a therapeutic formulation since it is possible to examine the
cell morphology (through optic microscopy) and the cells’ activity (Bernard et al.
2018). The continuous (immortalised) cell lines such as HeLa, L929, WI-38, 3 T3 or
CHO are most used in the screening phase (Pizzoferrato et al. 1994). In the
evaluation of materials for wound healing purposes, the fibroblasts are the most
used cell type, since they are the main cells enrolled on the different mechanisms of
the healing process, namely in the production of the ECM compounds. Further, the
keratinocytes can also be used considering their role in maintaining the epidermal
layer and other mechanisms of the wound healing process (Bernard et al. 2018).

Another in vitro experiment widely done by researchers is the scratch wound-
healing assays that evaluate the “materials” ability to induce cell migration and
proliferation (Liang et al. 2007). This assay enables the measurement of the gap
“closure” rates and/or the cell number that migrate to the “wound gap”. However,
this assay does not mimic the intricate relationship between cell migration and
proliferation (Buenzli et al. 2020; Jin et al. 2020).

On the other hand, 2D co-cultures have also been used, since they give more
insight regarding cell–cell interaction, namely the keratinocytes and fibroblasts
interaction which is relevant during the wound healing and scar formation processes.
However, the 2D cell culture model does not precisely imitate the in vivo cell
microenvironment. These models are unable to simulate the complex interaction
between the epidermal layer, skin and immune cells, as well as are insufficient to the
accurate representation of what occurs in vivo (Sami et al. 2019).

In this way, 3D in vitro models arise since they faithfully recapitulate the human
skin structure, cell–cell interactions and mimic the drug metabolism in a specific
environment. In 3D skin models, the structure encourages cell adhesion, favouring
tissue growth and development. So, the 3D skin models are produced in vitro by
using diverse cell types, and materials aim to provide: (1) an epidermal barrier with
keratinocytes, that prevent “microorganisms” infiltration and dehydration; and (2) a
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dermal layer containing mature fibroblast or stem cells able to stimulate the wound
healing mechanism (Flaten et al. 2015).

Researchers have used culture systems based on static 3D matrices that support
the epidermal differentiation and maturation, and the air–liquid interface that enables
the stratification process, allowing a more accurate evaluation of cell proliferation
into a microenvironment more similar to found in vivo conditions (Löwa et al. 2018;
Dhiman et al. 2005).

Similarly, to ex vivo wound models, the 3D in vitro models can also evaluate the
effects of diverse molecules on cells’ migration and keratinocyte–fibroblasts inter-
actions during the healing process. Generally, the human keratinocytes are seeded on
a matrix composed of type I collagen incorporating fibroblasts or devitalised human
dermis (Xu et al. 2012b; Mendoza-Garcia et al. 2015).

Furthermore, these models can be employed to examine the pathophysiology of
the healing process by inducing a wound through a biopsy punch. The wound can
also be induced through the CO2 laser, and needle punctures Then, the
reepithelialisation process is evaluated by histomorphometry analysis or
immunostaining (Pastar et al. 2014; Planz et al. 2016).

The most used 3D in vitro skin models are EpiDerm®, EpiSkin®, and SkinEthic®,
which are essentially composed of human fibroblasts and keratinocytes layers
inserted on the 3D supportive matrix. All the models present the proper cell
metabolic and mitotic activity, expressing the epidermal differentiation markers
(Flaten et al. 2015; Planz et al. 2016; Hänel et al. 2013).

However, this type of model presents some shortcomings, namely the basic
organisation and few cell types compared to the in vivo native skin. In this way,
the complex cellular interactions that occur during inflammation and angiogenesis
processes are not replicated. Further, the functional dermal–epidermal junction is not
mimicked, leading to incomplete differentiation and instability of cell interactions.
Also, these models presented other limitations like unability of: (1) replicating all
structural and functional properties of native skin; (2) promoting a controlled
microenvironment, (3) imitating the cell–cell interactions, nutrients and cytokines
diffusion, and (4) conducting the unreliable results in dermal penetration evaluation,
due to its weak barrier function (Wufuer et al. 2016; Sriram et al. 2018; Wang et al.
2017).

In this sense, a critical and actual trend is developing microfluidic devices for
better mimicking skin function and acting as wound healing research platforms.

The skin-on-a-chip technologies are the most recent in vitro models reported in
the literature, which have been developing to screen drugs and treatments. These
biomimetic platforms are characterised by possessing a small size and increased
complexity, requiring low quantities of samples (from nanoliters to picoliters) (van
den Berg et al. 2019; Wu et al. 2020; Lee et al. 2017). Skin-on-a-chip is a system that
allows the culture of skin tissues within a microfluidic platform, provides manage-
ment of physical and biochemical issues, as well as mimics the 3D microenviron-
ment of the native skin. It is also possible to generate the model with three layers,
sensory organs, appendages, and a full vascular network (van den Berg et al. 2019;
Kilic et al. 2018; Mori et al. 2017).
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These devices are typically composed of glass and silicone functionalised with
bioactive materials that aim to reproduce the specific organ microenvironment. The
multi-channel merged with a micro-perfusion system creates dynamic culture con-
ditions, enabling the delivery of nutrients for long periods of time, and simulta-
neously promote the transport of wastes and the maintenance of oxygen levels (Planz
et al. 2016; Stark et al. 2004).

After the creation of the chip, it can be incorporated into a multiorgan chips
system, simulating a full “organism” native environment, offering wide opportuni-
ties to develop more potent therapeutic approaches for wound healing disorders.

3 The Emergent Strategies to Fabricate In Vitro Skin
Models

Most skin models constitute a 3D structure that affords a guide for cell adhesion and
proliferation during wound healing and neovascularization processes. The morphol-
ogy, structural integrity, and elasticity are strongly influenced by the production
methodology. In this way, the researchers have been used different techniques that
allow obtaining 3D scaffolds with peculiar structural properties (as represented in
Fig. 3).

3.1 Freeze-Drying Technique

The freeze-drying method commonly uses water as a porogen to generate porous
hydrogels. In brief, after freezing the polymer solution, the lyophilisation process is
performed to promote solvent evaporation, and hence the pores are created within
the structure. The composition of a hydrogel, the freezing temperature, and the
duration of freeze-drying cycles are critical factors that influence the pore size and
scaffold morphology (O’Brien et al. 2005). This is an easy but time-consuming and
laborious method, that does not use organic solvents, requiring rigorous temperature
control to avoid the collapse of the internal pores hydrogel (O’Brien et al. 2005; Yun
et al. 2018; Nicholas et al. 2016).

Hilmi et al. produced chitosan scaffolds composed of a single layer for dermal
fibroblasts’ culture, through freeze-drying technique (Hilmi et al. 2013). They
presented a highly porous architecture (93 � 12.57%) with pore sizes between
40 and 140μm. The fibroblast cells were cultured into chitosan scaffolds, and cell–
chitosan interaction was enhanced, confirming structures’ suitability for acting as a
template for cell proliferation.

In turn, Ma et al. developed a bilayer skin model based on chitosan, which was
composed of a chitosan film (casting method) and a chitosan sponge layer
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Fig. 3 List of the main advantages and disadvantages of the techniques mostly used in the
production of skin models
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(freeze-drying technique) (Ma et al. 2001). The stability of the bilayer model
structure promoted the fibroblasts’ proliferation during 4 weeks.

3.2 Electrospinning

The electrospinning technique uses outside the applied electric field to produce thin
fibres from a polymeric solution injected through a syringe. During the ejection
process of polymeric solution, the solvent evaporates, and the fibres are deposited in
a collector (Yun et al. 2018; Nicholas et al. 2016; Miguel et al. 2018).

The electrospinning enables the production of networks of interconnected fibres
with dimensions and morphology similar to the skin ECM’s collagen fibres. Further,
the electrospun membranes are also characterised by possessing high porosity and
surface-to-volume ratio, which afford a surface area suitable for cell activity (Yun
et al. 2018; Nicholas et al. 2016; Miguel et al. 2018).

Different polymers, natural and synthetic, or blends can be employed to fabricate
electrospun membranes. However, electrospinning still has some challenges, includ-
ing the low tensile strength, restricted control of pore sizes, and incapacity to
produce complex 3D morphology. Besides, the low cellular infiltration into
electrospun scaffolds is a significant issue, which has been overcome by managing
the diameter of fibre and pores as well as combining biological signs that propel the
cell migration and proliferation (Miguel et al. 2018; Heydarkhan-Hagvall et al.
2008).

Recently, Miguel et al. created a bilayer skin substitute by using PCL/silk fibroin
to produce the top layer, mimicking the epidermis features. In contrast, the silk
fibroin/hyaluronic acid/thymol combination was used to obtain a dermis bottom
layer to absorb the exudate excess and promote cell proliferation (Miguel et al.
2019a). The results evidenced that the top layer presented a higher fibre diameter
(471.4 � 151.6 nm), low porosity (64.28 � 2.59%), high water contact angle
(103.10 � 6.57�), and avoid the S. aureus and P. aeruginosa infiltration. On the
other side, the bottom layer exhibited a lower fibre diameter (295.4� 88.4 nm), high
porosity (85.24 � 2.47%), high swelling ratio (�45), low water contact angle
(38.77 � 5.32�), which promoted the fibroblasts attachment and proliferation.

The same authors also fabricated a bilayer skin substitute combining
electrospinning and 3D printing techniques (Miguel et al. 2019b). To accomplish
that, the authors electrospun PCL/silk sericin to obtain the top layer and 3D printed a
chitosan/sodium alginate to achieve a hydrogel-based bottom layer. The authors
verified that the epidermis layer was mimicked by a dense polymeric electrospun
membrane. In contrast, a 3D printed hydrogel reproduced the dermis layer with
suitable hydrophilic character, porosity, and biological properties for promoting cell
activity.
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3.3 3D Printing

3D printing is a newer technology that enables the production of 3D structures with
accurate control structure and composition of the 3D matrix (Yun et al. 2018;
Nicholas et al. 2016). This technique also displays other strong points, namely the
custom design, high reproducibility, and high throughput (Koch et al. 2012; Koch
et al. 2010).

Inkjet printing, laser-assisted printing, fused deposition model (FDM), and
stereolithography are some examples of the 3D printing techniques developed.
The laser printing technique was optimised to arrange the keratinocytes and fibro-
blasts impregnated into a 3D collagen matrix (Koch et al. 2012).

To accomplish the production of a multicellular skin graft, the bio-ink was
composed of: (1) NIH-3 T3 fibroblasts; (2) HaCaT keratinocytes; (3) a collagen
hydrogel; and (4) a sheet of Matriderm®, that act as a supportive matrix.

Lee et al. reported the layer-by-layer assembly of the collagen and keratinocytes
and fibroblasts cells (Lee et al. 2014). The authors verified that the cell viability on
3D skin construct was high (>94%), and the skin tissue displayed 3–7 different cell
layers, after 14 days of air–liquid interface culture.

However, these 3D-printed skin models cannot fully reproduce the human skin
due to the lack of the vascular network, which is determinant for the cellular supply
of nutrients and growth factors.

In this way, the potential of 3D printing has been explored in microfluidic systems
production. This approach will allow obtaining structures with tailored geometry and
size containing a spatial distribution of stem cells and/or bioactive molecules,
essential in the healing process.

In work performed by Leng et al. a skin microfluidic device was produced by 3D
printing (Leng et al. 2013). A mixture of alginate and collagen was employed as a
supportive matrix for cell proliferation. The human fibroblast cells were integrated
within the biopolymer sheet, which was continuously extruded, under spatiotempo-
ral control in terms of cellular localisation and density. In vivo experiments were
done on immunodeficient mice, and the printed biopolymer sheets were placed on
the excision position, revealing that the skin substitute promoted the keratinisation
and wound healing process (demonstrated through the trichrome and keratin
14 staining). Additionally, the printing process of this device (1 m2) lasts only
48 min.

Apart from producing microfluidic devices, 3D printing can promote cell incor-
poration into structures, since it can deposit different cell lines in a precise location,
creating diverse cell patterns in 3D structures. In general, the cell patterning in skin
models consists essentially of incorporating just skin cells in bilayer substitutes
recapitulating the native skin structure. However, to match the human skin consti-
tution, other skin’ compounds like melanocytes, stem cells, and glands should also
be incorporated (Koch et al. 2012; Lee et al. 2014).

Another challenge is the post-processing steps customarily used in 3D printing
techniques. Some examples of post-processing steps that complicate the workflow
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and increase the duration and the cost are the thermal treatment and filtration and the
photopolymerisation process (Yun et al. 2018; Nicholas et al. 2016).

More recently, significant research is centred on producing novel biomaterials for
3D printing—referred to as 4D printing. The 3D printing of these stimuli-responsive
materials enables to modify/functionalise the constructs’ shape after the printing
process, by exposing it to an external stimulus. Lastly, the issues regarding regula-
tory aspects for printed skin models need to be established to allow the use of these
materials in clinical trials (Ashammakhi et al. 2018).

3.4 Micropatterning and Micromolding

Advanced techniques like micropatterning and micromolding enable to produce 3D
structures with specific geometry and size. Nowadays, these technologies are the
most used in the production of microfluidic platforms (Nicholas et al. 2016;
Verhulsel et al. 2014).

The microfluidics-based platforms have been received significant attention since
it allows accurate adjustment of skin-on-a-chip models’ cellular microenvironment,
controlling, at the microscale, the fluid flow and operation factors (e.g. gaseous
exchanges, temperature, mechanical force).

Soft lithography is one example of how to create these patterns, which consisted
of the micromolding of hydrogel solution using a stamp composed of
polydimethylsiloxane (PDMS) (Song et al. 2017; Lee and Sung 2018).

Through this strategy, it is possible to obtain several channels running throughout
a hydrogel, which can be personalised according to the stamp’s design. Furthermore,
live cells can be incorporated inside the hydrogel solution, obtaining a structure with
a homogeneous cell distribution. Stereolithography and laser microstructuration are
other micropatterning methods that can be used to produce such structures (Nicholas
et al. 2016; Verhulsel et al. 2014).

Also, the skin-on-a-chip devices can recapitulate the highly organised skin tissue
architecture and confer a microenvironment that simulates the dynamic forces
exerted during the healing process (Yun et al. 2018; Lee and Sung 2018).

In general, the microfluidic technology requires small fluid’ volumes (10�9 to
10�18 L) in hollow microchannels, which exhibit an appropriated laminar flow
within the microfluidic systems (Mohammadi et al. 2016; Hasan et al. 2014).
Further, the samples’ required small amount overcome the limitations associated
with the low availability of the patient-derived samples. The use of low amounts of
reagents and drugs to be tested enables the detection of biomarkers with more
sensitivity (Lee et al. 2017; Mohammadi et al. 2016; Hasan et al. 2014).

Wufuer et al. created a microfluidic-based skin-on-a-chip system, which was
composed of three layers: keratinocytes (epidermal), fibroblasts (dermal), and endo-
thelial cells (vascular), composed of PDMS and separated by transparent and porous
membranes (Wufuer et al. 2016). To simulate the inflammatory condition into the
device, the tumour necrosis factor-α (TNF-α) was perfused and then was evaluated
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the effect of dexamethasone. The results indicated that the skin-on-chip model can
be used for screening and testing the drugs’ therapeutic effect, replacing animal
experimentation. On the other hand, Lee et al. engineered a 3D in vitro skin chip by
using PDMS and collagen hydrogels with vascular structure. After that, the dermal
fibroblasts and keratinocytes were perfused into the microfluidic device, and the cells
remained viable for 10 days (Lee et al. 2017).

In turn, Mah et al. produced a microfluidic system to be used in in vitro assays for
skin permeation studies. It requires low medium volumes (70–200 μL) and a small
skin tissue sample (0.283 cm3), which makes it a device widely employed in the
pre-formulation assays for testing expensive and low-available drugs (Mah et al.
2013).

The combination of conventional microfluidic and tissue engineering technolo-
gies has enabled the fabrication of the more complex skin microsystems, offering
helpful and effective platforms for evaluation of the drug screening (Wang et al.
2017).

Besides, in situ biosensors could be incorporated into the chip to provide
real-time readouts about wound healing parameters and simultaneously detect the
therapeutic responses to the drugs (Kilic et al. 2018). Such emerging technology is
up-and-coming and can constitute a precious device for animal-free testing, namely
in the cosmetic and pharmaceutical industries.

4 Applications of the In vitro Skin Models

In general, the main purposes of developing in vitro skin models are the testing of the
efficacy and penetration of drugs on the skin and the study/evaluation of the
mechanisms and therapeutic effects on skin disease conditions (e.g. wounding,
burns, psoriasis, or melanoma). The main in vitro skin models developed for drug
screening and skin disorders study purposes will be described in the following
subsections.

4.1 Evaluation of Drugs Toxicity and Penetration

The majority of the currently available in vitro skin models are intended to mimic the
main skin layers (epidermis, dermis). EpiSkin® and EpiDerm® were the first skin
models validated, in 1998, by ECVAM as a predictive skin corrosion model,
accepted in 2004, with the publication of the OECD test guideline (Fentem and
Botham 2002).

Afterward, the EpiDerm® SIT and the SkinEthic® Reconstructed Human Epider-
mis (RHE) were approved as skin irritation model in 2008 (Alepee et al. 2010;
Kandarova et al. 2009), and SkinEthic®, epiCS®, EpiDerm®, and EpiSkin® as
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in vitro artificial skin models for skin irradiation, corrosion and phototoxicity
evaluation.

SkinEthic®, epiCS®, EpiDerm® are composed of keratinocytes seeded on poly-
carbonate membrane, whereas EpiSkin® consists of a stratified differentiated human
keratinocytes cell layer seeded on a type I bovine collagen matrix and type IV human
collagen film.

The LabCyte EPI-MODEL 24 was produced in Japan as a reconstructed human
epidermis model and validated for hazard prediction. This model is formed by a
human keratinocytes layer cultured under favourable conditions at an air–liquid
interface, creating the stratified structure characteristic to the “skin” epidermis after
14 days.

Apart from these skin models that replicate the epidermis and dermis layers, the
skin models incorporating additional skin compounds can reproduce the physiolog-
ical and functional features of the native human skin, which will contribute to obtain
results more predictive.

Concerning the drug screening/testing purpose, different skin models were
already developed as extensively reviewed in (Planz et al. 2016; Mathes et al. 2014).

Among different works reported, we highlighted the work conducted by Abaci
et al. who prepared a human skin-on-a-chip system comprised of epidermal and
dermal compounds and then incorporated into a pumpless microfluidics system
(Abaci et al. 2015). The chip was created to display a stable air–liquid interface
enabling the blood circulation rate similar to that found in human skin tissues. The
size of the chip decreases the volume of the culture medium and the cells needed.
The medium’s recirculation at the desired flow rate was achieved without using a
pump or external tube connection, and this system was suitable to maintain the
barrier function for 3 weeks. Further, the immunohistochemistry assays indicated
that the keratinocytes’ differentiation and location were achieved, forming the
epidermis’ sub-layers, after 1 week of the culture. The authors also validated the
skin-on-a-chip potential to act as a preclinical platform for drug testing purposes.
The haematoxylin/eosin staining and immunostaining assays showed that the doxo-
rubicin promotes a spatial detachment of the basal layer.

In turn, Mori and co-workers described an alternative strategy to fabricate a
perfusable vasculature in human skin equivalents (Mori et al. 2017). The evaluation
of cell distribution within the perfused and non-perfused skin-equivalents enabled to
evidence the important role of the vascular channels in the transport of the nutrients
essentials to maintain the cell proliferation and viability (as shown in Fig. 4).

Afterward, the diffusion of different drug molecules from the epidermal layer to
the vascular channels was measured under perfusion. All data gathered demonstrated
that the skin-on-a-chip system exhibits promising properties to be used in drug
testing, evidencing the importance of vascular perfusion.

In another work, Wagner and co-workers reported a multiorgan microfluidic
device production able to maintain 3D tissues derived from human primary hepato-
cytes and human skin biopsies (Wagner et al. 2013). This two-organ system main-
tains a long-term functionality for at least 28 days, promoting the tissues’ molecular
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Fig. 4 Histological analysis relating to the assessment of the barrier function of in vitro skin model:
Perfused and non-perfused skin equivalents stained with haematoxylin and eosin staining (a, b);
Histological and immunostained images of epidermal layers (c–f) and vascular channels (g–l);
Confocal images of vascular channel immunostained with ZO-1 antibody (m); Evaluation of barrier
function through the “water” repellency by the epidermal layer (n); Assessment of barrier function
by measurement of capacitance (o). Reprinted from Biomaterials, vol. 116, Mori et al. Skin
integrated with perfusable vascular channels on a chip, 48–56, with permission from Elsevier
(Mori et al. 2017)
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interplay. Also, this platform revealed an outstanding performance in the testing of
troglitazone at different molecular levels.

4.2 Skin Diseases Models

As previously mentioned, the skin models that mimic specific skin disorders are
equally relevant in discovering new and more effective therapies. In this way,
cutaneous wounds, inflammatory skin diseases, and skin cancer are examples of
the pathologies that were already replicated in in vitro skin models, as reviewed by
(Randall et al. 2018; Semlin et al. 2011; Sarkiri et al. 2019). Some disease models are
also commercially available, such as MelanoDerm®, Melanoma®, and Psoriasis®

(Amelian et al. 2017).
For example, the full-thickness skin models utilised as a photodermatitis model

enabling the evaluation of UV light exposition. On the other hand, the skin inflam-
mation response to UV stimulus can be induced by incorporating into the epidermal
layer dendritic cells.

Additionally, several approaches to induce wounds on skin model, including
abrading, burning, and scratching. The most common injury model is the burn
induced by a brass string heat to 150 �C (Emanuelsson and Kratz 1997). As an
alternative, Vaughan et al. used the laser to induce wounds (6 mm� 1 mm� 400μm)
for assessing the reepithelialisation and ageing in vitro (Vaughan et al. 2004).

Wufuer et al. replicated the inflammation and edema mechanisms on an in vitro
human skin-on-a-chip device (Wufuer et al. 2016). In order to accomplish such a
purpose, the chip was composed of three PDMS layers interspersed by porous
membranes that allow the co-culture of three cell layers (keratinocytes, fibroblasts,
and endothelial cells) mimicking the skin structure. Then, TNF-α was perfused
through the microfluidic channels to mimic an inflammatory condition. The drug’
efficacy is based on dexamethasone’s perfusion within the microfluidic platform,
and the results evidenced that the levels of IL-1β, IL-6, and IL-8 were decreased.
Further, the results also highlighted that the permeability of chips treated with
dexamethasone was lower than the chips treated just with TNF-α (Fig. 5). The
authors could conclude that the perfusion of culture medium and other bioactive
compounds into microfluidic channels of the skin-on-a-chip device allowed to
recreate the microenvironment peculiar to the native human tissue.

Further, the skin disorders such as atopic dermatitis and psoriasis have been
replicated in artificial skin models.

The researchers started to generate in vitro skin substitutes by utilising skin cells
isolated from psoriasis’ patients. As an example, the TESTSKIN™ model was
employed to study psoriasis, in which it was verified that the psoriatic “donors
fibroblasts induce the healthy donors” keratinocytes hyperproliferation (Saiag et al.
1985).

Besides, the inflammation was already induced (through the perfusion of the CD4
+ T cells) in the human primary keratinocytes’ culture after being seeded on the
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decellularised dermis for 7 days at the air–liquid interface (Lorthois et al. 2019; Shin
et al. 2020).

On the other side, the psoriatic phenotype was postulated into in vitro skin models
through the addition of IL-22. The secretion of IL-22 by Th17 cells is the most potent
keratinocyte activation (Bernard et al. 2012; Boniface et al. 2005; Boniface et al.
2007). The gene expression results revealed that the IL-22 treatment induced a
decline in the expression of filaggrin, loricrin, and involucrin, the main keratinocyte
differentiation markers.

Considering this, BIOalternatives, Dermatest GmbH, MatTek Corporation, or
Straticell construct organotypic psoriatic models for compounds screening (Bernard
et al. 2012).

Besides that, the skin cancer models were also developed by incorporating the
tumour cells into a 3D matrix. Among different skin carcinoma models,
Commandeur et al. proved the suitability of a cell carcinoma for drug development
(Commandeur et al. 2012).

Fig. 5 Analysis of the permeability and therapeutic effect on skin-on-a-chip edema model.
Illustrative representation of the edema skin model induced by TNF-α, resulting in vascular leakage
(a); Schematic representation of the skin edema model in the microfluidic device with TNF-α
exposure after the treatment with Dexamethasone (b); The chip treated with TNF-α presented
improved permeability to FITC-dextran in comparison to the non-treated chips (c). Reprinted from
Scientific Reports, vol. 6, Wufuer et al. Skin-on-a-chip model simulating inflammation, edema and
drug-based treatment, 37,471, open-access article with permission from Springer Nature (Wufuer
et al. 2016)
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An organotypic hybrid system replicating the metastatic melanoma was also
developed (Vorsmann et al. 2013). In this case, the melanoma spheroids with
standard sizes were incorporated into the dermal matrix to mimic the 3D structure
and multicellular complexity of tumour in vivo (Fig. 6). The authors verified that the
TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) cell sensitisation
and co-application of sublethal doses of UV-B cisplatin was distinguished between
2D and 3D models. In 2D culture, both treatments affected equally the cancer cell
line. However, the melanoma spheroids embedded into skin equivalent were
potently compromised by TRAIL+cisplatin treatment, whereas the TRAIL+UVB
combination did not affect the melanoma spheroids. Through this work, the authors
could establish a human skin model that recreates the melanoma conditions, which
will help improve the search for tailored therapies.

5 Conclusions and Future Perspectives

The preclinical development of innovative skin therapies requires the realisation of
assays aims to assess their absorption, efficacy, and safety.

In this way, the human skin excised and animal models are still the “gold-
standard” methodologies that better mimic the structural and physiological features.

Fig. 6 Production of an organotypic melanoma-spheroid skin model. The melanoma cells were
seeded on a non-adhesive petri dish with PBS and incubated for 15 days, which promote the
formation of the melanoma spheroids with 500μm of diameter. The live/dead assay was then
performed on spheroids, staining the live and dead cells with green and red colour, respectively
(a); The spheroids were collected and mixed with fibroblasts and collagen I to constitute the dermal
section of the full-thickness skin substitute (b). Reprinted from Cell death & disease, vol.
11, Vorsmann et al. Development of a human three-dimensional organotypic skin-melanoma
spheroid model for in vitro drug testing, open-access article with permission from Springer Nature
(Vorsmann et al. 2013)
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Nevertheless, due to the restricted accessibility, differences in anatomy and physi-
ological processes, and ethical concerns, these strategies have been replaced by
using non-animal alternatives. Thus, different in vitro 3D models have been created
and applied to rapidly screen and optimise skin formulations. In general, these 3D
models mimic the skin “layers’” epidermis and dermis, and they are cultured in air–
liquid interface conditions. However, most skin 3D models available are static,
incapable of recapitulating the cell interactions and dynamic environment found
on native skin tissue.

In this way, with the recent advances in the wound care area, the combination of
3D printing and microfluidic devices arises as an attractive future direction for the
production of the microengineered skin-on-a-chip platforms capable of incorporat-
ing different skin cells and compounds as well as providing control over dynamic
conditions of the cell culture within the microfluidic system (blood and nutrients
flow, mechanical forces, etc.).

In these systems, the “cells” growth occurs in a microenvironment, in which
dynamic perfusion of the nutrients, gases are possible, promoting the epidermal
morphogenesis and differentiation. Such strategy constitutes the starting point for
developing preclinical models that more precisely represent the human conditions.

However, the economic and technical constraints related to the microfluidic
devices require further investigations to adjust these procedures. The production of
accessible, readily and reproducible, with elevated robustness and at a low price, has
not yet been achieved. Furthermore, future developments should include the addition
of other cells (immune and endothelial cells) and skin appendages (sweat glands or
hair follicles), providing a more realistic in vivo situation.

Future efforts for implementing these models have also to be performed, as for
(1) establish systemic methodologies to improve the predictability; (2) correlate
in vivo data and systematic investigation; and (3) adjust the cultivation procedures
to obtain tissue structures similar to the native conditions.

Overall, the future trend depends on the advancement of multi-organ-chips
aiming to generate human-on-a-chip systems able to replace animal experimentation
during preclinical assessment, and consequently speed up the commercialisation
process of the new therapeutic formulations. We believe that the 3D skin models will
become a crucial tool for developing more effective therapeutic formulation for skin
disorders.
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Potential Biomedical Applications
of Marine Sponge-Derived Chitosan:
Current Breakthroughs in Drug Delivery
for Wound Care

Harekrishna Roy, Asha Gummadi, and Sisir Nandi

1 Introduction

Chitosan is a polymer of natural origin linear polysaccharide obtained from marine
shrimp, crabs, and cell walls of yeasts and fungi. Commercially various grades of
chitosan are produced from chitin. It is available in the market in various forms
ranging from dry flakes to fine powder. Some techniques including capillary vis-
cometers, size exclusion chromatography with light scattering, and ultracentrifuga-
tion are used to estimate the average molecular weight of chitosan. Based on the
process and degree of deacetylation (DDA), the molecular weight varies from about
3800 to 2,000,000 Da (Barbosa et al. 2011). Chitosan has unique features of the
amino-polysaccharide group which possesses a high binding capacity and unique
functionality and makes it available for wide applicability (Salehi et al. 2016).

Chitosan solubility primarily depends upon the quantity of protonated amino
groups within the polymeric chains, i.e., the proportion of acetylated and
non-acetylated D-glucosamine units. It is soluble in organic and inorganic acids
like perchloric, nitric, acetic, hydrochloric, and phosphoric acids (El-Gamal et al.
2016). The solubility of chitosan in water is pH dependent which allows processing
ability under several conditions, which makes it available to a good range of
applications particularly within the field of the cosmetic industry (Croisier and
Jérôme 2013). Prompt differences between chitin and chitosan are remarked by
their solubility in a different solvent system. The chitin is soluble in N,
N-dimethylacetamide (DMAc) in the presence of 5–10% w/v lithium chloride and
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insoluble in dilute acid solutions while the reverse is for chitosan (El-Gamal et al.
2016).

According to Cheung et al. (2015), chitosan-related drug delivery systems are
extensively used in gels, tablets, films, and particulate dosage forms in the form of a
novel carrier of delivering the active ingredient. Few techniques are being widely
used, especially chemical crosslinking, ionic gelation, microemulsion, and spray
drying method. Though they are beneficial, having some limitations including time-
consuming, less profitability, and more processing cost makes chitosan to be used
less on a commercial scale (Badhe et al. 2015). Chitosan has been extensively
studied for various applications because of its nontoxicity, biocompatibility, less
immunogenicity, biodegradability, easy availability, derivability, and inexpensive-
ness. It shows wound healing actions due to hemostasis and bactericidal and
antimicrobial properties and also acts as a biomedical drug carrier in the pharma-
ceutical product (Abdul Khalil et al. 2016). Other than the pharmaceutical field,
chitosan is being used in the process of food product manufacturing, food preserva-
tive, and biocompatible film and recycling of products during waste material man-
agement in the food industry. Chitosan has also been used as an absorbent for the
treatment of wastewater including pollutants, heavy metals, dyes, as well as the
complexation process (Al-Manhel et al. 2018).

2 Degree of Deacetylation of Chitin for the Synthesis
of Chitosan

The degree of deacetylation defines the molar ratio of the D-glucosamine units to the
sum of both portions of N-acetyl-D-glucosamine and D-glucosamine units (Fig. 1).
The enzymes like lipases, lysozyme, and glucosaminidases cause depolymerization
of chitosan and yield active chitooligosaccharides which are having greater antimi-
crobial activity, and its monomeric products like glucosamine are quickly metabo-
lized and eliminated from the human body. Hence chitosan is regarded as mostly
biodegradable and biocompatible with the human body organs (Logith Kumar et al.
2016). Successfully it has been used in the treatment of Alzheimer’s disease, along
with few more brain diseases such as anxiety, and glaucoma by Xu et al. The study
also reported significant increases in the permeability of the hydrophobic drug
compounds (Xu et al. 2017). According to Chiappisi and Gradzielski (2015),
chitosan helps to self-associate the hydrophobic polymers and origin. This inherent
tendency can be further improved by suitable hydrophobic modification of chitosan
such as N-alkylation as seen in other hydrophilic polymers. Several research papers
were published on the biocompatibility issue of chitosan, but it was extensively
studied and reported with a degree of deacetylation by Giri and coworkers. The study
reported that the entrapment of biological cells in hydrogel made by chitosan did not
produce incompatibility with normal biological function (Giri et al. 2012).
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3 Biomedical Applications

The biocompatible chitosan molecule has many amino moieties, due to the proton-
ation of amino groups; it may produce many positive heads and can bind with the
negative charged microbial cell membrane and ultimately damage the membrane,
which causes leakage of intracellular microbial components residues. The very
simple mechanism of antimicrobial actions of chitosan may have great attention in
the generation of various biomedical formulations (Fig. 2).

3.1 Chitosan in Cosmetic Technology

Libio et al. (2016) studied and suggested chitosan to be suitable for cosmetic
applications. The study reported biocompatible film made up of chitosan utilizing
citrate and acetate as a salt neutralizer (Libio et al. 2016). The cosmetic film was
prepared with an appropriate concentration of excipients. During the study, the
plasticizer such as glycerol was added and further evaluated for moisture content,
the thickness of the biofilm, swelling index, acid-soluble substances, X-ray diffrac-
tion, and differential scanning calorimetry (DSC). The citrate-neutralized chitosan
film exhibited greater stability along with acceptable thickness value, swelling
property, low moisture value, and reduced solubility in the acidic buffer. The DSC
study revealed possible interaction with water molecules, a critical factor in the
cosmetic industry. From the relevant study, it was supposed to provide a more stable
biofilm in citrate medium without the presence of glycerol; hence, the release study
of hyaluronic acid (HA) was ascertained in the skin model. The in vivo model

Fig. 1 Conversion of chitin to chitosan on deacetylation
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showed the desquamation of stratum corneum with or without the presence of HA on
the application of film and resulted in hydration. The study also suggested that the
citrate-based chitosan film in the absence of glycerol produced exfoliation of the skin
needed in cosmetic preparation.

Chitosan and its derivatives being highly soluble in water make them most
preferable in the cosmetic industry. Carboxymethylated chitin and chitosan have
their similarity characteristic in the three-dimensional arrangement of polysaccha-
rides, which makes them hydrophilic, improved viscosity, cationic binding property,
satisfied osmotic value, gelling property, and biodegradability. Moreover, modified
chitosan and chitin could function as a biological membrane permeability barrier, as
seen in hyaluronate, which formed a protective layer surrounding the human ovum.
Similarly in another review, the carboxymethyl chitosan in the cosmetic industry for
potential applications is being used and discussed in terms of antioxidant, drug
delivery, and antibacterial property, the stability of the emulsion, and moisture
retention property (Jimtaisong and Saewan 2016).

Chitosan is one of the few popular cationic polymers of natural origin that has
been used in the cosmetic industry for the preparation of lotions, skincare products,
nail paints, creams, and other skincare and hair treatment products. Chitosan on
application as topical preparation forms an elastic film that protects and moisturizes
the skin surface. In cosmetic formulation, chitosan is being popularly used as
moisturizers such as in sunscreen preparation, lotion, etc. (Chen 2008). It protects
and smoothens the skin from harsh environmental conditions and topical exposure to
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chemicals. It also showed that chitosan drastically increases the hydration property
of HA. The study already proved that it protects the skin and lips from UVA and UV
B radiation from sunlight and moisturizes in the winter season (Chen 2008). In lip
care preparation, the addition of chitosan makes the lips softer and also retains the
color for a long period with excellent water repellant property. In another study,
Tzaneva and coworkers studied the antimicrobial property of chitosan in deodorant
preparation. The result revealed the microbial enzyme inhibition character of
chitosan which resulted in the antimicrobial property (Tzaneva et al. 2017). The
anti-odor property, adhesion property, and compatibility with the biological mem-
brane of chitosan formulation were found superior to triclosan (Tzaneva et al. 2017).

3.2 Antimicrobial Activity of Chitosan

The antimicrobial property of chitosan and its related derivatives have proved to be
most effective against the majority of viruses, fungus, bacteria, and yeast (Rabea
et al. 2003). It is reported to have added advantages and a significantly broad range
of antimicrobial properties, as well as chances of transmitting the pathogenic antigen
toward human cells are the least (Campaniello et al. 2008; Campaniello and Corbo
2010). Hence, there has been a tremendous use of chitosan in most food and
packaging industries for a broad range of antimicrobial properties (Ganguly 2013).
Chitosan can be fabricated and molded to biofilms which form a protective barrier
and can effectively protect against disease-causing pathogens. A literature study
revealed an excellent solubility of chitosan under acidic conditions which facilitated
easy incorporation into solid and liquid dosage products. Friedman and coworkers
found effective use of low-molecular-weight chitosan at acidic medium preferably
below pH 6.0 for its antioxidant, antimicrobial, and preservative activity in solid and
liquid content (Friedman and Juneja 2010; Goy et al. 2009). There has been market
availability of few chitosan-related products especially for wound treatment, such as
Kyoto cell™ and Chitoderm™ (Jardine and Sayed 2014; Cheung et al. 2015), and
fabrics with antimicrobial properties, such as CRABYON™ and Bac-Shield™ (Lim
and Hudson 2003). In the recent era, there is a big challenge for the formulators to
develop an antimicrobial drug against antimicrobial resistance. Few articles were
published with the key focus of chitosan and derived products for its unique
antimicrobial activity for the quest of new antimicrobials (Tomayko et al. 2014).
In brief, it can be stated that the prominent antimicrobial activity, as well as the least
precipitation of toxicity in the human body, made it favorable in the wide application
of food and packaging, in topical preparations, and also in the seed industry.
However, the exact underlying mechanism of chitosan interaction with a microbial
strand for antimicrobial effect is still to be unveiled. Few scientists argue for the
minimum inhibitory concentration (MIC) below 20 ppm for chitosan to be reliably
used in systemic infection and novel techniques of medicine preservation. However,
chemical modification of the chitosan principal structure could make it possible to
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achieve the above stated, whereas such modification may result in desired polymeric
character, biocompatibility, and so on.

3.3 Chitosan as Anti-Infective

The drug molecule and the excipients such as chitosan derived from natural
resources are the most preferable sources by the pharmaceutical industry. Natural
products including chitosan have added advantages including biocompatibility,
biosafety, green source, biodegradability, and expected broad range of antimicrobial
activity (Atay 2019). Dai and coworkers reported its significant advantage over other
antimicrobials in terms of low toxicity, prominent antimicrobial activity, higher drug
diffusion through polymer mass, and less chance to develop microbial resistance
(Dai et al. 2011). It was observed that chitosan targets through the outer cell
membrane of bacteria and interacts mainly with lipopolysaccharide and peptidogly-
can along with teichoic acid for gram-negative and gram-positive bacteria, respec-
tively. The groups such as N-acetyl glucosamine and muramic acid, carboxy, and
most importantly phosphate groups interact tightly with polycations of chitosan
(Sashiwa and Aiba 2004). Chitosan also forms a complex with covalent ions present
on the surface of the microbial wall and ultimately damages the outer cell membrane.
Similarly, the antibacterial activity of chitosan was found at a concentration
of 200 mg/l; it found that polycationic chitosan binds to a charged phosphate layer
of bacteria and causes agglutination. At higher concentrations, the higher amount of
cations most easily maximizes the net positive charge on the bacterial surface,
ultimately increases density, and makes the bacterial colony in suspension (Sashiwa
and Aiba 2004). Chitosan profoundly acts on the microbial cell membrane and
changes cellular permeability. In a UV-spectrophotometric absorption study, it
ascertained the leakage of intracellular components by chitosan binding. The sub-
sequent disruption of the cellular membrane could be the result of cellular depolar-
ization. Furthermore, it is well described as toxins to microbes and their growth
(Raafat et al. 2008; Badawy and Rabea 2011). There are few more antimicrobial
mechanisms well described including inhibition of the microbial enzyme, solubili-
zation of the bacterial toxins, and excretion as a soluble mass from the host cell.
Another major mechanism is the inhibition of mRNA and protein formation by
interacting cationic chitosan with microbial including bacteria, fungus, and yeast
deoxyribonucleic acid (DNA) (de Britto et al. 2011). It also reported dose-dependent
microbial inhibitory action in the in vitro study (Bakshi et al. 2018).

Rabea and coworkers provided extended information on the antimicrobial effect
of chitosan, generally extraneous and intrinsic factors such as degree of
deacetylation (DDA), temperature, pH of the medium, molecular weight of chitosan,
polymerization, solubility in the solvent, organisms, etc. The wider antimicrobial
activity of chitosan was reported to be further increased by chemical modifications
such as the incorporation of a new functional group and complexation by polyelec-
trolyte between microbes and polymers (Rabea et al. 2003). The chitosan-derived
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mass does possess the same principle of the antibacterial mechanism as that of
chitosan (Kong et al. 2010). Kim and coworkers prepared quaternary chitosan and
observed the antimicrobial property. They observed that combined with pentameric
alkyl compound the said derived chitosan possessed an additive effect on microbes
(Kim et al. 1997). Similarly, it reported that the quaternary salt of chitosan was
superior to parent chitosan and gradually the antimicrobial activity increased with an
increase in alkyl chain length, which could be attributed to the hydrophobicity
of alkylated chitosan (Xu et al. 2010). In another study, the quaternary compound
of chitosan was successfully evaluated for antimicrobial action against a broad range
of bacteria, fungus, and yeast. It assumed that the strong interaction between
hydrophobic alkylated chitosan and microbial phospholipid attenuated antimicrobial
property (Rúnarsson et al. 2010; Fu et al. 2011). Likewise, Jia and co-researchers
developed several moieties of quaternary chitosan and tested effectiveness on
Escherichia coli. It was observed that those salts exhibited superior activity in an
acidic condition against E. coli as compared to chitosan. Streptococcus species are
commonly responsible for major dental caries in humans. It reported that chitosan-
oligosaccharide along with glycidyl trimethylammonium chloride linked via cova-
lent bond was found to be effective against Streptococcus species (Badawy 2010; Jia
and Xu 2001; Kim and Choi 2002). Similarly, Belalia and coworkers successfully
found and reported the antimicrobial effect of quaternary chitosan salt against
Listeria monocytogenes (96%) and Salmonella typhimurium (100%) (Belalia et al.
2008). Likewise, trimethoxy chitosan (TMC) was tested for antimicrobial effective-
ness in wound healing; the experiment provided evidence of electrospun mats of
TMC/polyvinyl alcohol and mats of TMC/polyvinyl pyrrolidone for antimicrobial
activity against E.coli and S. aureus (Avadi et al. 2004). Trimethyl chitosan is
preferred as one of the most studied quaternary salts of chitosan for its MIC at
0.125 μg/ml against E. coli and 0.0625 μg/ml against S. aureus (Sajomsang et al.
2008, 2009). Few other bacteria such as Enterococcus feacalis and Pseudomonas
aeruginosa are also found to be susceptible to TMC, with an MIC of chitosan as
128 μg/ml and 256 μg/ml, respectively (Kim et al. 2003). Similarly, bactericidal
cotton fabrics are also designed and impregnated with alkylated chitosan and further
quaternary substitution and methylation. From the relevant research, it proved that
the incorporation of quaternary ammonium salts in chitosan structure increased
antimicrobial property in wound healing including hydrophilic character (Belalia
et al. 2008).

3.4 Lyophilized Chitosan Sponges for Wound Dressing

Biomedical sponges fabricated with chitosan were reported to be used in many
topical drug delivery devices (Freier et al. 2005). The chitosan-loaded sponges
with enormous micropores have their unique benefit, which includes ease in soaking
the medicament, lightweight, and absorption of excess amount of medicament. To
fabricate and develop chitosan sponges, there have been reported many processes
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including leaching, gas foaming, and lyophilization (Lim and Hudson 2003;
Pezeshki-Modaress et al. 2014; Gupta and Shivakumar 2010; Ji et al. 2011), but
the most accessible and popular technique to design the sponges is the process of
lyophilization. In the case of wound recovery, the process to accelerate the natural
healing mechanism and compatibility with host cells by chitosan proved to be a
major advantage in sponge fabrication consideration (Tucci et al. 2001; Khor and
Lim 2003; Harkins et al. 2014). It was reported that chitosan-based sponges are
preferably hydrophilic as the presence of the amino group keeps the contact tissue
area moist and prevents the loss of moisture in dosage delivery consideration
(Harkins et al. 2014; Ozkaynak et al. 2005). There is a significant finding in severe
musculoskeletal wound treatment about chitosan sponge. It has been observed that
there is a drawback of systematic antibiotics which are unable to reach the injury site
and the poor blood flow to the infected site diminishes the natural healing process
and thus immunity. Hence to overcome the difficulty, antibiotics loaded in chitosan
sponge are considered as a better alternative in local delivery (Dai et al. 2011;
Hanssen 2005). On application, over time chitosan sponges facilitate the drug release
to the wound area without compromising the biocompatibility, frequency of admin-
istration, and secondary topical treatment.

3.5 Chitosan-Based Coatings Formed by Chemical Bonding
Methods

The technique such as the phase inversion method was successfully employed to fix
chitosan on fabric materials, e.g., cellulose and cotton by chemical and mechanical
bonding method (nonwoven) (Wang et al. 2016), for effective treatment in wound
healing. It was noticed that fabrics bonded with chitosan exhibited a decrease in
water absorption property as well as antimicrobial property (Wang et al. 2016).
Fibroblasts are the key point during the process of tissue repair in wound healing and
migration to the broken tissue is needed during the healing process (Rahmati et al.
2020). A study was done by Lou (2008) on a mice model that compared chemically
bonded fabrics and an untreated one. The result indicated a superior healing process
and there was no significant cytotoxic effect even after 24 h of chitosan impregnated
fabricated material (Lou 2008).

3.6 Marine Sponge Collagen as a Template for Wound
Treatment

Collagen is termed as a matrix system of a three-dimensional network enclosing
connective tissue and forms a porous network in a dense network. Generally, they
are arranged as a layer of a network and also termed as a sponge. The presence of
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porosity and unique surface character of the network like mesh is an essential and
important characteristic of collagen sponge (Lim et al. 2019). In several biomedical
applications including wound repair and bone tissue engineering, the antigenic
property of sponge collagen of the marine source must be considered (Nakamura
et al. 2019; Meyer 2019). The structural finding of marine collagen reveals a lack of
tyrosine which is responsible for the antigenic property (Bardakova et al. 2018),
whereas the antigenic telopeptide region comprised of helical C and N terminal
easily cleaved by pepsin and other enzymes ultimately loses the antigenic property
of the collagen sponge. The unique clinical approach of collagen sponge is in wound
care, cartilage and bone repair, intravaginal contraception, implants, cosmetics, and
drug delivery because of its excellent moisture-retaining property (Chvapil 1977,
1982). In a study carried by Lin and coworkers, Callyspongiidae is a family of
marine sponges collected from the coast of Western Australia and assessed for the
characteristic by using scanning electron microscopy (SEM) and eosin. The result
found the excellent bioabsorbable character, cell attachment, and most ideal property
for ideal biomedical collagen (Lin et al. 2011). As discussed earlier in this chapter,
chitosan and its carboxymethylated derivatives have excellent antimicrobial proper-
ties. Hence there is a quest for the suitability of chitosan along with marine collagen
sponge in biomedical applications including wound care and bandage, bone and
tissue regeneration, and novel drug delivery system (Khor and Lim 2003).

It already reported the use of chitosan in prosthetics, orthopedic, hernia treatment,
implants, etc. (Khor and Lim 2003). Fibrin glue is a biodegradable agent used in
abdominal operations for the stoppage of bleeding and wound healing. In a study, it
prepared bioadhesive gel of photo cross-linkable chitosan including azide and
lactose group and exhibited superior adhesive property than fibrin glue (Kucharska
et al. 2010). Similarly, chitosan does possess the required characteristics for ideal
contact lenses such as gas permeability, clarity, stability, wettability, and optical
corrections (Ishihara et al. 2001).

3.7 Role of Chitosan in Gene Delivery

Popularly chitosan is used as a vector in a nonviral genetic delivery strategy. It
strongly binds with deoxyribonucleic acid by electrostatic interaction and is
followed by cellular endocytosis without disrupting the chitosan–DNA complex
(Grossman and Nwabunma 2013). It also plays a significant role in both membrane
attachment and lysosomal degradation and removal of the encapsulated complex for
efficient cellular genetic transmission (Bergmann and Stumpf 2013). It was reported
to develop a novel hybrid DNA–chitosan complex and fabricated to a nanosphere
system. The complex is further conjugated with a ligand for effecting targeting and
to accelerate the process of macromolecular endocytosis. During the study, a suitable
amount of lysosomotropic agents was incorporated for protection against lysosomes.
It reported that the prepared complex resisted serum nuclease and could help
encapsulate other biomedical agents without compromising stability on long-term
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storage and several procedures including lyophilization (Kumar et al. 2004; Tehrani
et al. 2012).

The major drawback associated with chitosan-fabricated DNA nanoparticles
reported poor solubility in water and low passage across the cell. Few strategies
were adopted for improving transfection and aqueous solubility in the case of
chitosan and its derivatives at different pH labels. Successfully chitosan-anchored
DNA nanoparticles were administered through oral, peroral, topical, and pulmonary
routes. In most cases, loaded chitosan nanoparticles were generally prepared by ion
gelation technique with genetic material optimized by altering as well as a selection
of suitable excipients. In most cases, chitosan-tripolyphosphate (TPP)-impregnated
nanoparticles showed promised results.

3.8 Chitosan in Tissue Engineering

In the case of tissue engineering, chitosan has been successfully used as a
bio-scaffold for skin and tissue regeneration (Hoemann et al. 2007). Chitosan and
its derivatives gradually biodegrade as new tissues formed at the application site.
Moreover, it does not develop any kind of inflammatory response and toxicity,
making it most ideal for a scaffold in tissue engineering. Likewise, microporous
chitosan structures are successfully being employed as scaffolds for bone osteoblasts
as well as cutaneous repair and regeneration process (Sarkar et al. 2013; Romanova
et al. 2015; Cañas et al. 2016). The three-dimensional arrangement of chitosan and
scaffold makes it more similar in relating extracellular matrix components; hence, it
provides a stimuli response for regeneration, proliferation, and adhesiveness to
tissues (Keong and Halim 2009). Reports already published related to biocompati-
bility, broad antimicrobial activity, and wound repair property make it more prefer-
able for bone and tissue engineering. The marketed formulations comprising
chitosan and fabricated scaffolds for biomedical applications such as sponges,
biofilms, topical, and cutaneous gels were successfully developed (Arca and Senel
2008). Similarly, a review reported by Hsieh and coworkers in 2015 reported
chitosan applicability in soft and adipose tissue, hepatic target delivery, central
nervous system, optical delivery, and blood capillary reengineering (Hsieh et al.
2015).

3.9 Clinical Studies on Chitosan-Based Medical Textile
Products for Wound Care

The manufacturing of fabrics made by either natural or synthetic fibers needs a deep
study on charge development characteristics. Successfully it studied the prevention
of induced static charge on polysaccharide fiber surface by a chitosan or derived
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chitosan coating (Lim and Hudson 2003). In the medical-related textile field, it has
profoundly been used in surgical wound threads, nanocomposite fibers, nonwoven
fibers, antimicrobial sponges, and sutures. Lim and Hudson in 2003 published a
manuscript on antimicrobial cotton impregnated by derivatized chitosan in wound
care (Lim and Hudson 2003). On a severe battlefield, there is always a need for
emergency treatment for bleeding. In this connection, HemCon® chitosan-coated
hemostatic bandage was developed for the treatment of emergency hemorrhage on
the battlefield. Likewise, Celox™ and ChitoGauze® invented by the US military
exactly work in a similar way to that of surgical gauze. The underlying mechanism
reveals swelling and the formation of a gel-like network on exposure to blood. The
unique mechanism says that it does not interfere with the normal clotting mechanism
even also best work on heparinized blood (Bennet et al. 2014). Recently, similar to
that mentioned above ChitoGauze®, ChitoFlex®, and GuardaCare® are few surgical
dressings with antimicrobial property developed by US military services. A com-
parison was made in a clinical trial between Celox™ and traditional pressure
bandage. It showed extreme effectiveness in hemostasis in limb injury by Celox™
(Hatamabadi et al. 2015). Likewise, Chito-Seal™ and Clo-SurPLUS PAD are a few
topical hemostasis chitosan-fabricated products developed for improving hemostasis
in the vascular and percutaneous site. The mechanism reveals that positive charge
chitosan binds to negatively charged red blood cell and shortens the clotting time and
also hemostasis time. Chitosan is equally effective in binding the platelets and
shortens the hemostasis time (Nguyen et al. 2007). Few of the wound dressing
marketed products such as Tegasorb™ and Tegaderm™ are effectively being used
in the prevention of infection in severe burns, deep wounds, dermal ulcers, and limb
cosmetic surgery. Chitosan generally swells and develops three-dimensional gel on
the wound surface and promotes the healing process (Weng 2008). Similarly, few
more marketed products available for wound care are ChiGel, Chitopack C®, and
TraumaStat™.

4 Drug Delivery Systems Utilizing Chitosan Based Sponges

The topic discusses and provides a summary of chitosan along with a sponge-related
scaffold in biomedical applications (Murray et al. 2019; Bramhachari et al. 2016).
Generally, sponges are the porous structure comprising of all evolutionary organ-
isms of the lowest multicellular animal Phylum Porifera, pore bearing species.
Generally, they comprise several layers in the body cells having layers of porous
channels that allow water and water-soluble substances to circulate through. Ideally,
these contain a thin layer of specialized cells that represent a sandwich-like structure
consisting of jelly but spongy like mesophyll (internal ground tissue). Unlike other
animals, they are asymmetrical (round, cylindrical, and sac-like) with unique
two-layer (outer dermal and gastral innermost layer). Most sponges comprise an
internal skeleton of silicon dioxide or calcium carbonate which allows the maximum
amount of water to flow and leave through the osculum. Sessile aquatic organisms

Potential Biomedical Applications of Marine Sponge-Derived Chitosan:. . . 497



including sponges and corals were found under the wall of deep water (Pisani et al.
2015; Blanquer and Uriz 2011). Diverse marine microbial dense sponges which
include the yellow tube sponge, Aplysina fistularis, the purple vase sponge, Niphates
digitalis, the red encrusting sponge, Spiratrella coccinea, and the gray rope sponge,
Callyspongia sponge, have attracted the attention of the global community including
drug delivery, organ-specific delivery, and regeneration of tissue. Recently, scien-
tists from the global community including oncology have been devoted to the
application of sponge in biomaterial study, bone and tissue engineering, antimicro-
bial study, wound care and regenerative medicine, and advanced methodologies
used for the bioprospection of marine microorganisms (Bramhachari et al. 2016).
There has been a tremendous discovery of marine-derived sources and their bio-
pharmaceutical applications including chitosan. This study also gave a brief account
of the potent antimicrobial bioactivity of chitosan and fabricated sponge (Matica
et al. 2019) along with their biomedical applications in drug delivery systems and
targeting (Fig. 3).

In biomedical and tissue engineering in bone and cartilage, the scaffold systems
by sources from natural origin have gained much more attention from scientists. In
this scenario, a tri-scaffold system was successfully prepared by lyophilization and
freeze-drying technique. The mentioned scaffold system (Chi-HAp-MSCol) com-
prises chitosan (Chi), hydroxyapatite (HAp), and marine sponge collagen (MSCol)

Chitosan

Marine sponges

Chitosan-marine sponge scaffold

Bone gra�ing and healing Wound healing and an�microbial ac�vity

Fig. 3 Chitosan-marine sponge scaffold in biomedical application
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of Ircinia fusca. The system was successfully characterized and tested for signifi-
cance in bone grafting and healing. During the study, the individual components
such as Chi, Chi-HAp, and tri-scaffold were compared with each other (Pallela et al.
2012). The report says, Chi and HAp obtained from marine sponge collagen together
are considered for successful novel drug delivery systems including nanoparticles,
nanosphere, and microparticulate dosage form. Successfully a nanocomposite sys-
tem comprised chitosan/gelatin/nanohydroxyapatite (nHA) prepared by Bagheri-
Khoulenjani and coworkers in 2013. While preparing the nanosphere, few variables
and their effect on nanocomposite were considered such as chitosan to gelatin ratio,
gelatin to nanohydroxyapatite ratio, the concentration of chitosan, and stirring rate
studied. The result showed the excellent value in particulate size, morphology, and
rate of healing in cartilage tissue injury (Bagheri-Khoulenjani et al. 2013). Similarly,
a localized drug delivery system for the treatment of severe gum injury was
formulated utilizing a suitable combination of chitosan and polyvinyl alcohol
(PVA). The emulsification technique (water in oil) was employed for fabricating
the core active carboxymethylated chitosan and tested for antimicrobial and healing
efficacy in gum disease (Wang et al. 2009). There have been suitable considerations
of chitosan–nHA nanocomposite in cell regeneration and proliferation, healing,
increased expression of the protein, and cartilage formation (Liu et al. 2013).
Similarly, a chitosan with nHA was successfully used in the scaffold system to
release prenylated flavonol glycoside (icariin) for bone regeneration and healing
(Fan et al. 2012). Venkatesan and coworkers designed a multiwalled carbon nano-
tube (f-MWCNT) scaffold system utilizing marine sponge-derived natural hydroxy-
apatite along with chitosan employing the freeze-drying technique. Later on, the
multiwalled nanotube was characterized and tested for efficacy in drug delivery
related to bone repair and graft substitute (Venkatesan et al. 2011).

In the recent century, the novel drug delivery system utilizes natural origin
especially chitosan as an active carrier (Dash et al. 2011; Sonia and Sharma 2011).
Earlier stated in the chapter, chitosan along with other bioactive material has
profoundly been used in controlled drug delivery devices because of its nontoxic
and biocompatible properties (Sharma et al. 2015). Chitosan as an excipient as well
as active constituent is used in many pharmaceutical products such as in hydrogel,
biodegradable implants, polyelectrolyte complex, and bioconjugates. Similarly, it
has successfully been used in protein and peptide delivery, gene therapy, integration
with growth factors, vaccine delivery, antimicrobial agent delivery, and bioimaging
procedures (Habibi and Lucia 2012; Grossman and Nwabunma 2013; Kumar et al.
2004). Chitosan is a kind of excipient, which is successfully used in almost all routes
of drug delivery which includes oral, ocular, topical, and targeted drug delivery
(Hagenaars et al. 2009; Verheul 2010; Subbiah et al. 2012). Few reports have already
been published on chitosan as a carrier along with bioactive materials including
marine-derived sponges in nanospheres, nanogels, biofilms, etc. (Subbiah et al.
2012; Benediktsdóttir et al. 2014). There has been a tremendous survey on the
mucoadhesive character of chitosan, as its positive charge can easily undergo ionic
interaction with a negatively charged mucus layer. The negative charge to mucus is
attributed to sialic and sulfonic acid only (Jayakumar et al. 2010; Abd Elgadir et al.
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2015). Few scientists also claimed its penetration enhancement property as well as in
nasal drug delivery (Kim 2013; Pardeshi and Belgamwar 2016; Rassu et al. 2016).
Several chitosan formulations have been proposed and commercially available for
the brain targeting the delivery of drugs (solutions, suspension, gels, microemulsion,
and powders). As discussed in this section, chitosan and its derivatives along with
marine sponges and other suitable excipients are also effective in dosage design,
targeting, and delivering drugs (Anitha et al. 2011a, b, Anitha et al. 2012).

5 Chitosan in Biotechonology

Cytolytic T-lymphocytes are the class of lymphocytes termed as killer T cell which
kills cancerous cells as well as the cells infected with viruses. It has been reported
that chitosan possesses antiviral property as it can successfully kill infected cells as
well as cancerous cells. Hence it has already been reported as successful in various
biomedical systems (Snima et al. 2012; Kim and Rajapakse 2005). The unique
cationic charges of amino groups of chitosan could possess additional functional
property to activate both immune and defense systems. On the lab scale, it was
observed that chitosan and its derivatives can stimulate the extracellular lysosomal
activity in mammalian cells followed by the formation of connective tissue. It also
found chitosan to act as a self-defense mechanism against microbial infection in
almost all biological cells. The free radical scavenging activity and antioxidant
property of chitosan were evaluated by Klotzbach in 2008. The study demonstrated
chitooligosaccharides had potential scavenging activity on lab-induced free radicals
in the cellular system (Klotzbach et al. 2008). In biotechnology, there has been a
potential role of enzyme immobilization technique (Urrutia et al. 2018). Successfully
it has been involved in the immobilization technique to preserve the property of
enzyme and protein. The preservation helps in structurally redesigning enzymes,
improvement of stability, three-dimensional configuration, the introduction of new
functional group, and improvement of selectivity toward macromolecular structure,
which is highly essential for biotransformation (Coma 2013).

6 Recent Patents on Chitosan Based Sponges Promoting
Wound Healing

Chitosan-based biofilm was successfully developed and studied for bactericidal
efficacy along with tricrotic acid (Hoggarth and Hardy 2015). Villaneuva et al.
(2016) successfully invented an edible bioactive film of chitosan with extracted
quinoa protein (Villaneuva et al. 2016). Similarly, an invention was made on water-
soluble modified chitosan carried out by Michael addition with
2-methacryloyloxyethyl choline phosphate. The antibacterial film coating was
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further studied and characterized by the antimicrobial property (Jie et al. 2019). Liu
et al. (2007) prepared marine-derived chitosan/carboxymethyl chitosan-based rapid
hemostatic sponge having long hemostasis time and limited hemostasis capability
toward the wounds with a large amount of bleeding during use (Liu et al. 2007). The
hemostatic material of the invention has good toughness, can be bent and folded at
will, has short hemostasis time, can be used for treating the wounds with a larger
amount of bleeding, achieves a more rapid hemostasis effect in clinical application,
and can be used for hemostasis in clinical surgeries and promoting wound healing.
Yu et al. (2010) and coworkers formulated a water-soluble chitosan-based hemo-
static sponge and described its preparation method. This formulation is used for
stanching and boosting wound healing of clinical operation (Xiao-Juan et al. 2010).
In an attempt made by Arthur and coworkers, a highly dense chitosan structure
utilizing simultaneous vacuum and high compression technique was prepared. The
technique resulted in denied chitosan membrane which possessed satisfied charac-
terization along with significant clinical activity in mammals (Decarlo et al. 2014).
Further, in 2012, patent number CN102526795A has been published. This invention
relates to chitosan-based styptic sponge with a thrombin immobilization effect, and
the chitosan-based styptic sponge is a porous sponge made from chitosan with the
thrombin immobilization effect and hemostatic. The preparation method of the
chitosan-based styptic sponge provided by the invention comprises the following
steps: immobilizing thrombin with chitosan or carboxymethyl chitosan; adding other
styptics, cryoprotectants, and crosslinking agents to prepare the porous styptic
sponge, wherein the weight ratio of the chitosan or carboxymethyl chitosan to the
thrombin is 100:(0.1–20); and pre-freezing, lyophilizing in a vacuum, casting,
cutting, encapsulating, and sterilizing to prepare the chitosan-based styptic sponge.
According to the chitosan-based styptic sponge, the thrombin is immobilized
through the chitosan or carboxymethyl chitosan, so that the stability and
procoagulant activity of the thrombin can be improved, and the property of the
prepared chitosan-based styptic sponge is more stable, the procoagulant and wound
healing effects are remarkably improved, and the chitosan-based styptic sponge can
be widely applied to wound or surgery hemostasis (Guo et al. 2012). Chitosan
microfibrils and chitosan-alginate microfibrils with the addition of calcium were
used to construct dressing material. The microfibrils are fabricated in a sponge form
and successfully evaluated in the wound healing procedure. The prepared microfi-
brils were evaluated for mechanical strength, uptake of biological fluid, compatibil-
ity to the cell, and hemostatic property, which showed that the prepared sponge
meets the basic criteria of the physicomechanical and biological activity. This
demonstrated the use of chitosan-based microfibril as an effective dressings material
for the treatment of wounds (Polish patent application no. P 385031 and P
385032, 2008).
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7 Conclusion

The wound is damage and breakdown of cellular components of tissues. Growth and
regeneration of cellular moieties initiate the healing process which consists of a
series of biological reactions to regenerate and reestablish the cellular components in
broken tissue. Therefore, the wound healing process should be carried out in a
normal biological way with the help of a drug formulation having zero toxicity. If
it is delayed due to abnormal reactions or side effects, it may produce cancer. Such a
situation can be controlled by the activation of the caspase-mediated apoptotic
program with the application of natural formulations having zero side effects. One
of the important natural polymers is marine-sourced chitosan which can be incor-
porated to produce many formulations to achieve this effect. Therefore, it could be
an attempt to develop marine sponge-derived chitosan-incorporated formulations,
may stimulate the apoptotic system, as well as impart wound healing actions.
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Biomedical Applications of Biodegradable
Polymers in Wound Care

Sónia P. Miguel, Maximiano P. Ribeiro, and Paula Coutinho

1 Introduction

Until nowadays, the health care professionals continue to concern with the pain/
complications induced by the different skin injuries, namely to the wounds difficult
to treat and heal, which can evolve to a chronic state (Frykberg and Banks 2015).
The treatment implies to cover the wound site with a dressing that confers protection
to the injury against harmful external agents and dehydration. Furthermore, an active
dressing can provide a moist environment adequate for stimulating the healing
process (Mogoşanu and Grumezescu 2014). Indeed, several biomaterials such as
foams, gauzes, hydrocolloids, hydrogels, and films are recommended for wound
coverage. These dressings possess unique features such as (i) protect the peri-wound
skin, (ii) sustain suitable moisture at the wound and prevent the dehydration, (iii)
restrict microbial biofilms, (iv) clean the damaged tissues, (v) reduce the pain,
(vi) remove dead and nonviable tissues, and (vii) limit the odors (Mogoşanu and
Grumezescu 2014; Song et al. 2018).

Apart from these properties, essential requirements for a wound dressing are the
biocompatibility and biodegradability. When an ‘ideal’ wound dressing is implanted
on human body, it must not elicit any immunological response, and it should be
degraded at a controlled rate, presenting non-toxic degradation products easily
metabolized and eliminated (Mogoşanu and Grumezescu 2014; Song et al. 2018).
The wound dressing should act as a transitory supportive matrix for cell migration,
adhesion and proliferation until tissue regeneration process is attained. So, the
biodegradable materials are preferable because the non-degradable materials require
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removing/replacement, increasing the pain/discomfort to the patient and risk of
infection (Song et al. 2018; Mogoşanu et al. 2012).

Among different types of biodegradable materials, the natural polymers such as
polysaccharides (e.g., alginates, chitosan, heparin, hyaluronic acid), proteins (e.g.,
collagen, gelatin, keratin, silk fibroin) and proteoglycans are broadly used in wound
care, due to their biocompatibility, biodegradability and similarity to macromole-
cules recognized by the human body (Song et al. 2018; Mogoşanu et al. 2012).

Furthermore, synthetic biodegradable polymers like Poly(lactide-co-glycolide)
(PLGA), polyglycolic acid (PGA), polylactic acid (PLA), poly-ε-caprolactone
(PCL), polyurethane (PU) and polyethylene glycol (PEG) have also been explored
in the wound dressings field (Mir et al. 2018).

Despite the excellent biological properties exhibited by natural polymers, they
had weak stability and mechanical properties, whereas synthetic polymers present
remarkable mechanical performance but fail in the cell interaction. In this way, the
strategy most adopted by the researchers passes through the blending of natural and
synthetic polymers targeting the attractive properties of both types of biodegradable
polymers.

Here, we describe the biodegradable natural and synthetic polymers, presenting
their degradation mechanisms and application on wound dressings development and
respective biological effects in vitro and/or in vivo.

2 Biodegradable Polymers in Wound Care

2.1 Protein-Based Polymers

2.1.1 Collagen

Collagen remains the major extracellular matrix (ECM) proteic compound that
exhibits excellent biological properties for wound healing applications. Collagen is
mainly obtained from animal tissues. However, the collagen extracted from fish skin,
fins, scales, bones, or swim bladders has recently gained special attention
(Venkatesan et al. 2017; Nagai and Suzuki 2000; Zhang et al. 2014; Chandika
et al. 2015; Felician et al. 2018).

In general, the collagen has been widely employed in wound dressings produc-
tion due to their biological features, namely haemostatic, biocompatible, low anti-
genicity, controlled biodegradability, and ability to stimulate the cell attachment and
growth (Song et al. 2018; Chattopadhyay and Raines 2014; Lee et al. 2001).

Furthermore, the collagen dressings are flexible and can absorb high amounts of
exudate, acting as a competitive substrate for collagenase, which can reduce enzy-
matic degradation of tissue. Simultaneously, their low pH minimizes the risk of
bacterial colonization (Song et al. 2018; Chattopadhyay and Raines 2014).

The in vitro/in vivo degradation of collagen is essentially performed by enzymes
available on the human body like matrix metalloproteinases and collagenases,
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resulting in amino acids fragments that exhibit chemotactic effect for cells enrolled
in the wound healing process (Song et al. 2018; Chattopadhyay and Raines 2014;
Lee et al. 2001). In general, the collagen’s biodegradability is manipulated by using
chemical crosslinker agents (e.g., glutaraldehyde, carbodiimides and succinimides),
which promotes the establishment of covalent bonds between amino and carboxyl
groups. Collagen can also be blended/mixed with other polymers (natural or syn-
thetic) or modified chemically to achieve the improvement of mechanical properties
and biodegradation profile.

In the literature, it is possible to find different collagen-based wound dressings
from powders, gels, films, scaffolds to electrospun membranes. Several works
reported the biocompatibility of collagen dressings in vitro (Parenteau-Bareil et al.
2010; Craciunescu et al. 2014) and in vivo (Chen et al. 2019; Oancea et al. 2000).
Furthermore, Promogran®, Biobrane®, Helitene®, ActiFoam®, and SkinTemp®
are examples of collagen-based wound dressings available in the market. In this
sub-section, different collagen-based wound dressings reported in the literature will
be described and listed in Table 1.

In Werner’s work, the collagen-based matrices’ performance was evaluated to
treat full-thickness wounds and compared with Matriderm® (a bioengineered con-
struct for dermal regeneration composed of bovine collagen coated with α-elastin
hydrolysate) (Petersen et al. 2016). The animal assays were performed using
minipigs as an animal model due to its anatomical and physiological similarities to
human skin. The authors noticed that the developed biomaterials promoted a signif-
icant acceleration and improvement of dermal wound repair since the interconnected
porous structure of scaffold enables keratinocytes, fibroblasts, and endothelial cells
migration.

In turn, Serdar and their co-workers used the electrospinning technique to obtain
three-layered doxycycline (DOX) collagen-loaded nanofibrous membranes (Tort
et al. 2017a). To accomplish that, the authors produced the first layer, which was
composed of coaxial nanofibers containing 1% PCL and 4.5% collagen in the core,
while the shell was composed of 2.5% DOX and 2.5% polyethylene oxide. Then, the
chitosan (CS) was used to produce the second layer, and the sodium alginate to
fabricate the third layer.

Through this layered structure, the authors intend that the first and second layers
would contact the wound to reduce/control the inflammation, whereas the collagen–
DOX coaxial nanofibers (third layer) will improve the wound healing process. The
incorporation of DOX into the shell allowed its rapid release, which is crucial to
inhibit matrix metalloproteinase (MMP-2). On the other hand, the core part of
coaxial nanofibers composed of collagen will create an appropriate environment to
promote cell proliferation in the production of an ECM-like structure at the wound
site. The main findings revealed that this layered nanofiber wound dressings
presented good bioadhesion, mechanical and wettability properties.

Alternatively, Mehta et al. compared the performance of collagen dressings
impregnating silver sulfadiazine with conventional dressings in second-degree
burns (Mehta et al. 2019). The authors applied silver-sulphadiazine-impregnated
collagen and conventional dressings in 25 patients with similar burn wounds to
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accomplish such a purpose. The results evidenced that the patients treated with
silver-sulphadiazine-impregnated collagen presented an improved wound healing
after 7 days of treatment. Contrarily, for the group treated with conventional
dressings, the wound healing process was enhanced in just 14 patients. Such
evidence reinforces the silver-sulphadiazine-impregnated collagen’s ability to treat
second-degree burn wounds since it controlled infection, reduced the pain and did
not induce any severe complications.

As already mentioned, the most source of collagen used is the bovine and/or
porcine animal. These sources can present some limitations associated with immune
rejection, viral transmission, and others. In this way, the researchers identified the
marine collagen as a new promising viable alternative. For example, Zhang et al.
showed that collagen extracted from Tilapia skin presented biocompatibility, and it
is absorbed and degraded by tissues (Zhang et al. 2016).

Further, the same team evaluated wound healing properties of tilapia collagen
sponges (pepsin soluble collagen sponge (PCS) and acid-soluble collagen sponge
(ACS) compared with bovine collagen sponge (BCS) and bovine collagen
electrospun (BCE I and BCE II) in in vivo assays using rats full-thickness wounds
(Chen et al. 2019). The results revealed improved wound healing in the PCS, ACS,
BCE I and BCE II groups, as well as an increase in hydroxyproline and protein
contents. Also the fibroblasts proliferation and the synthesis of collagen was
enhanced in these groups when compared to control group and the groups treated
with BCS and Woundplast. Furthermore, histopathological and immunohistochem-
ical examinations confirmed the positive effect of PCS, ACS, BCE I, BCE II on
neovascularization, collagen synthesis, fibroblasts’ proliferation, re-epithelialization
and restoration of skin appendages. Then, the collagen-based materials’ ability to
induce the angiogenesis was evaluated through the staining of the vascular endo-
thelial marker CD31 (Fig. 1). The results confirmed that the CD31 expression was
significantly encouraged by PCS, ACS, BCE I and BCE II, indicating the vascular-
ization process as fundamental in the progression of the healing.

Regarding the augment of wound dressings’ healing potential, researchers have
been combined the collagen with other natural polymers, including CS, alginate,
gelatin and others. For example, Xie et al. prepared a composite dressing blending
collagen, CS and alginate (Xie et al. 2018). The CS–collagen–alginate composite
(CCA) produced by paintcoat and lyophilization presented swelling ability, porosity,
degradation and mechanical properties proper for wound dressing applications.
Moreover, the in vivo assays revealed that CCA composite dressing, gauze and
CS healing rates of 48.49 � 1.07%, 28.02 � 6.4% and 38.97 � 8.53%, respectively,
after 5 days, as shown in Fig. 2. Further, the CCA composite dressing exhibited, in
the early stage, a stimulatory effect on the epidermal growth factor (EGF), basic
fibroblast growth factor (bFGF), transforming growth factor β (TGF-β) and CD31
expression.

In turn, Lin and their collaborators immobilized antimicrobial peptides (AMP) on
top of the substrate of alginate, collagen and hyaluronic acid (HA) to develop a new
antimicrobial wound dressing (Lin et al. 2019). After that, the chemical crosslinking
between compounds was achieved, obtaining the ALG/HA/COL–AMP composite
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wound dressing. The chemical bonding approach allowed the modulation of the
porosity, elongation at break, tensile strength, swelling profile, and biodegradability,
as demonstrated in vitro. The weight loss of dressings increased when the incubation
time also increases, i.e., the dressings degraded 25%–30%, 55%–60% and 80%–

90% after one, two and four weeks, respectively. Furthermore, the AMP-loaded
wound dressing promoted a sustained release of AMP, had good biocompatibility,
and displayed antimicrobial activity. Finally, the authors also verified that the
ALG/HA/COL–AMP wound dressing improved the recovery process of infected
full-thickness wounds in animal models, inhibiting or killing bacteria in these
infected wounds (Escherichia coli and Staphylococcus aureus) (as shown in Fig. 3).

2.1.2 Gelatin

Gelatin is derived from collagen through thermal, acid or alkaline treatment. It is
broadly used in regenerative medicine due to its abundance, low cost and biological
properties, namely biocompatibility, biodegradability and low antigenicity
(Mogoşanu and Grumezescu 2014). The gelatin is known as an excellent biological

Fig. 1 Immunohistochemical analysis of CD31 expression and the microvessel density (MVD) in
wounded tissues. Reprinted from Marine Drugs, vol. 17, Chen et al., Fish Collagen Surgical
Compress Repairing Characteristics on Wound Healing Process In vivo, 33, open-access article
with permission from MDPI (Chen et al. 2019)
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material since it contains adhesive peptide sequences (arginine–glycine–aspartic
acid (RGD) domains) recognized by integrin cell receptors, playing a crucial role
in cell adhesion mechanism (Ulubayram et al. 2002).

In the wound dressing’s field, the more attractive characteristics of gelatin are
biodegradability and biocompatibility. It promotes cell adhesion and proliferation
and presents reduced immunogenicity and risk of pathogen transmission in relation
to the collagen.

Fig. 2 Evaluation of in vivo performance of the chitosan–collagen–alginate (CCA) composite
dressings on the treatment of wounds induced on rats: Macroscopic images of the wound surface at
different timepoints (a) and the wound healing ratio of the dressings and the gauze control group
(b). Reprinted from International Journal of Biological Macromolecules, vol. 107, Xie et al.,
Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound
healing, 93–104, with permission from Elsevier (Xie et al. 2018)
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However, the weak mechanical properties and water stability of gelatin are the
main complications in wound dressings production. For example, gelatin has been
chemically functionalized with unsaturated methacrylic and thiol groups, and cross-
linked by genipin, glutaraldehyde or periodate-oxidized alginate (Song et al. 2018).
Besides, the gelatin can be used in blends with other polymers (natural and synthetic)
to augment gelatin-based wound dressings’ structural integrity.

Fig. 3 Determination of the antibacterial properties of the wound dressings: E. coli and S. aureus
colonies obtained from the wound tissues treated with gauze, alginate/hyaluronic acid/collagen
(ALG/HA/COL), ALG/HA/COL-antimicrobial peptides (AMP), Aquacel Ag and formed on agar
plates (a); Quantification of the number of bacteria remaining in wound area at day 4 (b). Reprinted
from International Journal of Biological Macromolecules, vol. 140, Lin et al., Biofunctions of
antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote
wound healing of a mixed-bacteria-infected wound, 330–342, with permission from Elsevier (Lin
et al. 2019)
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Thus, gelatin has been used to develop the different biomaterials (hydrogels,
sponges, hydrofilms, membranes etc.) as listed in Table 2. In the clinic, the gelatin is
used as a haemostatic sponge (Hu et al. 2012).

Ramalingam et al. reported the in vitro effect of integration gelatin into the
PCL/Gymnema sylvestre extract on the physical and biological properties
(Ramalingam et al. 2019). The authors produced electrospun nanofibers by combin-
ing PCL (8%), gelatin (4%) and natural herbal extracts. The different assays dem-
onstrated that gelatin’s inclusion into nanofibers resulted in increased wettability,
which encourages fibroblasts and keratinocytes attachment, spreading and prolifer-
ation (Fig. 4). Additionally, the initial burst release of extracts from electrospun
membranes is crucial to avoid bacterial colonization. Overall, Gymnema sylvestre
loaded PCL/Gel hybrid mats are suggested to be used as an anti-infective
nanofibrous wound dressing.

Posteriorly, Zhao et al., chemically modified gelatin with UV-crosslinkable
monomers, yielding to a gelatin methacrylate hydrogel (GelMA) (Zhao et al.
2020b). The authors incorporated into hydrogel isolated exosomes derived from
human umbilical vein endothelial cells (HUVECs). The in vitro assays showed the
internalization of HUVECs-exosomes by keratinocytes and fibroblast cells, as well
as the promotion of cells’ proliferation and migration. In turn, in vivo assays
demonstrated the controlled release of HUVECs-exosomes from GelMA hydrogel
promoted the re-epithelialization, collagen deposition and angiogenesis, which have
beneficial effects on the wound healing progression.

More recently, Rehman et al. reported GelMA-based hydrogels’ production
incorporating different concentrations of reduced graphene oxide (rGO) to be used
in the chronic wound care (Rehman et al. 2019). To accomplish such purpose, the
authors initially modified gelatin with methacrylate groups and then mixed directly
with rGO (at 0.001, 0.002 and 0.004%) and photoinitiator (Irgacure 2959), enabling
the production of porous hydrogels (pore size of 50μm) after 10 seconds under UV
irradiation. Furthermore, the authors observed a slight decrease on the degradation
rate by the incorporation of rGO into GelMA hydrogel, presenting a degradation rate
of �40% in GelMA_rGO in comparison to GelMA hydrogel, which presented
�70% of degradation rate, after incubation in phosphate-buffered saline (PBS)
solution for 28 days. The in vitro assays with fibroblasts, keratinocytes and endo-
thelial cells evidenced the hydrogels’ biocompatibility, highlighting its ability to
promote cell migration. The authors also performed the in vivo chicken embryo
angiogenesis assay, and they verified that GelMA hydrogel inclosing 0.002% w/w
rGO improved the production of a highly branched capillary network compared to
the blank GelMA hydrogel (as shown in Fig. 5).

In another study, the gelatin was grafted with dopamine to improve the adhesive-
ness, haemostatic and antioxidant assets (Liang et al. 2019b). The authors also added
polydopamine-coated carbon nanotubes (CNT-PDA) with excellent photothermal
effect and antibiotic DOX to treat the infected wounds. All results suggested that
CNT-PDA concentration influenced the porosity, conductivity, mechanical and
rheological properties, swelling and biodegradability. Moreover, hemo- and bio-
compatibility of these hydrogels were confirmed by haemolysis and culture of
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mouse fibroblast cells. In contrast, the hydrogels’ in vivo performance in an infected
wound was demonstrated by wound closure rate, collagen metabolism, granulation
tissue thickness, epidermis regeneration and immunofluorescence staining of
TGF-β3 and CD31.

Further, to obtain a bilayer wound dressing, Garcia-Orue and their co-workers
succeeded in a bilayer wound dressing with gelatin and different crosslinkers

Fig. 4 Fluorescence microscopic images showing that the human primary dermal fibroblasts (a)
and keratinocytes (d) adhered and proliferated at the surface of electrospun mats. F-Actin of
fibroblasts and keratinocytes cells was stained green and red, respectively; the nuclei were stained
blue. Scale bar corresponds to 20μm. Reprinted from Nanomaterials, vol. 9, Ramalingam et al.,
Poly-ε-caprolactone/gelatin hybrid electrospun composite nanofibrous mats containing ultrasound-
assisted herbal extract: Antimicrobial and cell proliferation study, 462, open-access article with
permission from MDPI (Ramalingam et al. 2019)
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(Garcia-Orue et al. 2019). To accomplish that, they developed a resistant and
non-degradable upper layer by lactose-mediated crosslinking of gelatin and a porous
lower layer with a great swelling ability through the crosslinking of gelatin with
citric acid. Additionally, to improve its wound healing ability CS was incorporated
into the lower layer. Further, the authors evaluated the stability of the hydrofilms,
and the results showed that all hydrofilms, when immersed in PBS for 72 h,
maintained about 96% of their dry weight. In general, the dressings presented
good swelling and occlusivity features, and they did not show cytotoxicity
in vitro. The authors also performed an ex vivo assay, where the biological perfor-
mance of hydrofilms was determined by incubating them with skin explants samples.
The results proved the biocompatibility of the dressings and their excellent beneficial
effect on the wound healing process.

Fig. 5 In vivo Chicken Embryo Angiogenesis (CEO) assay to evaluate the angiogenic potential of
the GelMA hydrogels: the formation of the matured blood vessels (marked with black arrows) was
increased on group treated with 0.002 wt% rGO nanoparticles (GrG2) (a); Quantification of the
different angiogenic parameters (blood vessel junction, length and thickness) (b–d). Reprinted from
International Journal of Nanomedicine, vol. 14, Rehman et al., Reduced Graphene Oxide Incor-
porated GelMA Hydrogel Promotes Angiogenesis For Wound Healing Applications, 9603, open-
access article with permission from Dove Medical Press Limited (Rehman et al. 2019)
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In turn, Adeli-Sardou et al. evaluated the role of electrospun polycaprolactone-
gelatin nanofibres containing lawsone in wound healing (Adeli-Sardou et al. 2019).
Initially, the authors incorporated lawsone (at different concentrations: 0.5%, 1%
and 1.5%) into PCL/gelatin nanofibers, through coaxial electrospinning. After
nanofibers’ production, authors confirmed by electronic microscopy the nanofibres
core shell structure, bead less morphology, with a mean diameter of�200 nm. Then,
the determination of nanofibers’ weight loss in PBS revealed that the PCL/gelatin
mats had the lowest weight loss (�12%) in comparison to PCL/gelatin/0.5%
lawsone (�20%), PCL/gelatin/1% lawsone (� 30%) and PCL/gelatin/1.5% lawsone
(� 40%) after 14 days of incubation. The coaxial PCL/gelatin nanofibers prolonged
the lawsone release for 20 days, which increased the cell attachment and prolifera-
tion. The gene expression of TGF-β1, collagen (COL1) and EGF were also quanti-
fied in vitro, evidencing that the PCL/gelatin incorporating 0.5% and 1% of lawsone
significantly promoted the gene expression of TGF-β1 and COL1. About in vivo
assays, the data revealed the PCL/gelatin/1% lawsone have the highest impact on
healing, with an increase of wound reepithelization after 14 days.

2.1.3 Silk Fibroin

Silk is a natural protein extracted from the silkworm Bombyx mori. Silk fibroin
(SF) is sorted out the mulberry silk after removing silk sericin (Altman et al. 2003). It
is a semi-crystalline structure that exhibits remarkable mechanical properties, with
superior tensile strength, exceptional elasticity and flexibility (Jao et al. 2016).

Furthermore, SF can also be obtained from spiders, such as Antheraea mylitta,
which produce silks with better cell adhesion and mechanical properties, and
reduced solubility in acidic solvents (Jao et al. 2016).

Besides, SF possesses excellent biocompatibility, controllable biodegradability,
low immunogenicity and inflammatory potential, and water vapour and oxygen
permeability, making them an attractive option for skin regeneration applications
(Kundu et al. 2013). More importantly, it has been reported that SF promotes human
keratinocytes and fibroblasts adhesion and enhances the type I collagen deposition
in vitro.

Likewise, SF possesses a diverse variety of amino acids on its backbone structure
that enable the functionalization through the attachment of biomolecules or anti-
bodies (Jao et al. 2016; Kundu et al. 2013).

On the other hand, SF can also be blended with other polymers and crosslinked to
achieve stable and biocompatible wound dressings. Finally, SF presents a responsive
intrinsic capacity to pH changes, allowing the control of the biodegradation mech-
anism, which occurs through the proteolytic body enzymes (Jao et al. 2016).

It is easy to modify its structure, which controls the degradability, tensile strength,
elasticity and flexibility of SF-based wound dressings. Furthermore, SF enables the
introduction of physical crosslinker, haemostatic and self-healing agents and their
processing into different constructs, such as films, hydrogels and sponges (as listed
in Table 3).
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Table 3 List of recent works reporting the production and characterization of silk fibroin-based
wound dressings

Polymeric
combinations

Incorporated
bioactive
compounds

Type of
wound
dressing Main findings Refs.

SF/soy protein None Electrospun
membrane

– The incorporation of soy
protein enhanced the hydro-
philicity and water retention
ability of electrospun mem-
branes
– The scaffolds were bio-
compatible and promoted
the full-thickness wounds
healing, in rat models

(Varshney
et al. 2020)

SF Zinc oxide
nanoparticles

Hydrogel – The SF hydrogels were
coated with zinc oxide
nanoparticles to confer anti-
microbial properties to the
dressings
– The fibroblasts cells
adhered and proliferated at
the surface of SF hydrogels
coated with zinc oxide
nanoparticles
– The hydrogel presented
antibacterial effect against
E. coli

(Majumder
et al. 2020)

SF/PCL/
quaternized
chitin

None Nanofiber
film

– The SF/PCL nanofibers
were obtained through
electrospinning technique,
and then were
functionalized with
quaternized chitin by layer-
by-layer self-assembly
approach
– The dressings presented
suitable flexibility, tensile
strength and antibacterial
activity
– In vivo assays demon-
strated the acceleration of
the in vivo vascular recon-
struction within 15 days

(Hu et al.
2020)

SF None Film and
sponge

– The SF films induced
higher cell migration in
comparison with collagen
films
– The cells on the surface of
SF films exhibited higher
gene expression associated
with wound repair than on
the collagen films

(Hashimoto
et al. 2020)

(continued)
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Table 3 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Type of
wound
dressing Main findings Refs.

– The ECM-production-
related were upregulated in
cells seeded on SF sponges

SF/HA Zinc oxide
nanoparticles

Coaxial
electrospun
nanofibers

– The core-shell configura-
tion of nanofibers improved
the sustained release of the
antimicrobial agent (zinc
oxide nanoparticles)
– The addition of zinc oxide
nanoparticles conferred
antibacterial activity to the
dressings in a dose-
dependent fashion
– High concentrations of
zinc oxide (>3 wt%)
induced cytotoxic effects on
the cells
– The incorporation of zinc
oxide nanoparticles signifi-
cantly reduced the in vivo
inflammatory response

(Hadisi
et al. 2020)

SF/CS/alginate Diclofenac
sodium

Membrane – The membranes combined
the mechanical properties of
SF, the antimicrobial action
of CS and the ideal exudate
absorption of alginate
– The diclofenac sodium
was released from the mem-
branes in 7 h when incu-
bated in a simulated solution
of wound exudate
– The biocompatibility of
the membranes was demon-
strated in contact with
fibroblasts

(Pacheco
et al. 2020)

SF Poly
(hexamethylene
biguanide)
hydrochloride
(PHMB)

Sponge – The PHMB-loaded
sponges presented pore sizes
of 80–300μm
– The PHMB was continu-
ously released from sponges
for up to 20 days
– The PHMB-loaded
sponges promoted the
growth inhibition of E. coli
and S. aureus

(Liang et al.
2020)

(continued)
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Table 3 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Type of
wound
dressing Main findings Refs.

SF/
polydopamine
(PDA)

None Electrospun
membrane

– The PDA coating
enhanced the wettability and
protein adsorption capacity
of SF nanofibers
– The adhesion as well as
cell proliferation were
improved by SF nanofibers
coated with PDA
– The membranes enhanced
wound healing in animal
model compared to the
commercial dressing (3 M™
Tegaderm™)

(Zhang et al.
2019b)

SF/paramylon None Film – Paramylon possessed suit-
able biological properties
that improve the immune
response
– The films presented high
thermal stability and high
stiffness values
– The SF/paramylon films
showed blood and cells’
compatibility

(Arthe et al.
2020)

SF Curcumin Film – The films presented a
prolonged release of
curcumin, flexibility and gas
permeability
– The prepared films pro-
vided a significant protec-
tive barrier against bacterial
penetration, without induc-
ing cytotoxic effects on cells

(Zhang et al.
2019a)

SF/PDA None Film – The SF was obtained
through Antheraea perny,
which is rich in Arg-Gly-
Asp adhesive sequences
– The PDA presence
induced the roughness and
hydrophilicity of films
– The histological analysis
demonstrates that the
PDA-coated SF films mini-
mized the wound inflamma-
tion and improved the
epithelialization and colla-
gen deposition

(Wang et al.
2019a)

(continued)

Biomedical Applications of Biodegradable Polymers in Wound Care 537



Table 3 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Type of
wound
dressing Main findings Refs.

SF/CS Polydopamine
nanoparticles
(PDA-NPs)

Cryogel – The cryogel possessed an
ECM-like macroporous
structure, enabling the cell
adhesion and tissue
ingrowth
– The cryogel presented
antioxidative activity during
inflammatory responses
– The cryogel containing
PDA-NPs exhibited
photothermally assisted
antibacterial activity
– The combination of
photobiostimulation of
infrared light enabled to the
cryogel perform the bio-
chemo-photothermal syner-
gistic therapy

(Han et al.
2019)

Sf/PVA None Electrospun
membrane

– The methanol-treated
SF/PVA membranes mim-
icked the structure of the
endogenous ECM
– The in vivo assays dem-
onstrated that the dressings
seeded with epidermal stem
cells promoted granulation
tissue regeneration on the
third day

(Huang
et al. 2019)

SF/Konjac
glucomannan

None Sponge – The blend ratio of
SF/konjac glucomannan
sponges influenced the pore
structure
– The konjac glucomannan
improved the water absorp-
tion and compression
strength of sponges
– The dermal fibroblast cells
adhered and proliferated on
sponges

(Feng et al.
2019)

SF Gelatin micro-
spheres loaded
with neurotensin

Membrane – Neurotensin is an inflam-
matory modulator in wound
healing
– The SF-based film pro-
moted the best healing per-
formance in the treatment of
wounds on rat diabetic
models, promoting the
fibroblast proliferation and
the formation of collagen
fibres

(Liu et al.
2019)

(continued)
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Table 3 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Type of
wound
dressing Main findings Refs.

– The gelatin microspheres
presented suitable properties
to acts as a carrier for con-
trolled release drugs

SF/HA/alginate None Sponge – The scaffold presented soft
and elastic properties with a
mean pore diameter of 93μm
– The scaffold exhibited
good physical stability
– The fibroblasts adhered
and proliferated on scaffolds
– The scaffold showed an
improved reepithelialization
and ECM remodelling

(Yang et al.
2019)

SF Silver
nanoparticles

Electrospun
membrane

– The SF nanofibrous mats
were coated by silver
nanoparticles in situ using
dandelion leaf extract
– The silver nanoparticles-
coated SF mats showed
good mechanical strength,
water absorption and ade-
quate porosity
– The nanofibrous mat could
be used as a therapeutic
device, drug delivery vehi-
cle and tissue-engineered
constructs

(Srivastava
et al. 2019)

SF/
carboxymethyl
chitosan
(CMCS)

None Electrospun
membrane

– After the production of SF
electrospun nanofibers,
CMCS was adsorbed at its
surface, through electro-
static layer-by-layer self-
assembly techniques
– The mats presented
remarkable hydrophilicity
and robust mechanical
properties
– The modified mats were
biocompatible and
presented enhanced
antibacterial activity

(Tu et al.
2019)

SF/PCL
SF/HA

Thymol Electrospun
membrane

– SF was blended with PCL
to obtain a dense and pro-
tective upper layer of an
asymmetric membrane
– The combination of SF

(Miguel
et al. 2019)

(continued)
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Table 3 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Type of
wound
dressing Main findings Refs.

with HA enabled to obtain a
porous and bioactive bottom
layer that avoids the exudate
accumulation and promote
cell migration
– The electrospun asym-
metric wound dressings
presented excellent biologi-
cal properties and structural
similarities to the native skin
structure

SF EGF Electrospun
membrane

– The SF nanofibers were
functionalized with EGF
aims to improve the biolog-
ical performance in the
wound healing process
treatment of chronic wounds
– The EGF-functionalized
membranes promoted the
adhesion of fibroblasts until
2.5-fold
– The controlled release of
EGF from membranes
reduced the wound area in
an in vitro wound model
until 15%

(Woltje
et al. 2018)

SF/alginate Amniotic fluid Hydrogel
and
electrospun
fibres

– The electrospun SF fibre
was combined with alginate
hydrogel loading amniotic
fluid to produce a bioactive
wound dressing
– The amniotic fluid is
composed of multiple bio-
active molecules that pro-
mote the wound healing
– An increase in amniotic
fluid improved the cell
adhesion, proliferation and
collagen deposition

(Ghalei
et al. 2018)

SF Recombinant
spider silk pro-
tein (4RepCT)

Electrospun
membrane

– The SF nanofibrous scaf-
fold was coated with
4RepCT to promote the cell
binding, growth and confer
antimicrobial features
– The recombinant spider
silk protein was linkage to
the SF surface of the scaf-
fold by self-assembly
– The functionalized SF

(Chouhan
et al. 2018a)

(continued)
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Table 3 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Type of
wound
dressing Main findings Refs.

scaffolds allowed the
cocultivation of different
cell types

SF/collagen Fenugreek Electrospun
membrane

– The SF content improved
the fibre diameter and tensile
strength of membranes
– The nanofibres showed
excellent antioxidant prop-
erties
– The presence of collagen
enhanced the migration of
fibroblasts

(Selvaraj
et al. 2018)

SF/chitin Silver
nanoparticles

Sponge – The 3D porous scaffolds
inhibited the growth of
E. coli, S. aureus and
C. albicans
– The scaffolds were bio-
compatible and promoted
cell attachment

(Mehrabani
et al. 2018)

SF/PVA/aloe
vera

Vitamin E Electrospun
membrane

– Starch nanoparticles
loaded with vitamin E were
incorporated into SF/PVA/
aloe vera nanofibres
– The VE release was con-
trolled, which improved the
antioxidant activity and
promoted the wound healing
process
– The electrospun mem-
branes promoted the fibro-
blast adhesion, proliferation
and collagen secretion

(Kheradvar
et al. 2018)

SF/glucose None Film – The addition of glucose to
the SF films improved the
flexibility and absorption
capacity, without affecting
the biocompatibility of the
dressing
– The films were biocom-
patible and supported the
wound closure

(Panico
et al. 2019)

SF/PVA EGF, bFGF,
LL-37

Electrospun
membrane

– After 14 days of treatment,
the SF-based dressings
accelerated the wound clo-
sure
– The dressings promoted

(Chouhan
et al. 2018b)

(continued)
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Table 3 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Type of
wound
dressing Main findings Refs.

the development of angio-
genesis, granulation tissue,
and wound
reepithelialization
– A more organized and
resistant ECM were noticed
for SF-based dressings

SF None Electrospun
membrane

– SF nanomatrix promoted
the decrease of wound size
effectively and promoted the
epithelialization
– The expression of collagen
in the dermis was aug-
mented on wound area cov-
ered with SF nanomatrix
– The expression of inflam-
matory cytokines (IL-1α and
TGF-β1) were also con-
trolled by SF membranes

(Ju et al.
2016)

SF None Film – The SF film demonstrated
to be waterproofness, acting
as a barrier against bacterial
penetration
– The SF film effectively
reduced the average wound
healing time in rabbit full-
thickness skin defect
– The biological perfor-
mance and long-term safety
of SF films were demon-
strated in porcine models
and clinical trials

(Zhang et al.
2017)

SF Cys-KR12 Electrospun
membrane

– The antimicrobial peptide
motif (Cys-KR12) was
immobilized on SF
electrospun membranes
– The functionalized SF
membranes exhibited anti-
microbial activity
– The membranes also
supported skin cells prolif-
eration, suppressing the
expression of the TNF-α

(Song et al.
2016)
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To the best of our knowledge, to date only three SF-based medical products have
been approved for clinical use: SeriScaffold® (Allergan Medical, Inc.) from the
U.S. Food and Drug Administration (FDA), TymPaSil® (CG Bio Inc.) from the
Ministry of Food and Drug Safety of South Korea and Sidaiyi® (Suzhou Soho
Biomaterial Science and Technology Co., Ltd) from the China Food and Drug
Administration (CFDA). Among these, only Sidaiyi® has application on skin
wound healing (Zhang et al. 2017).

Regarding the literature, Zhang and their collaborators developed a SF film
clinically oriented for skin repair (Zhang et al. 2017). In the first instance, the
morphology of SF film was compared with the Suprathel® and Sidaiyi® films. SF
films revealed fluid handling capacity, gaseous permeability, good transmittance,
waterproofness, as well as biocompatibility and acting as a bacterial barrier. After
that, SF films’ effect on the full-thickness skin defects healing was assessed in
animal models, rabbits and porcine. Concerning the rabbit full-thickness skin
defects, the groups treated with the SF films healed after 14 days post-surgery,
whereas the groups treated with Suprathel or Sidaiyi healed after 17 and 21 days,
respectively. Further, the wounds covered with the SF films presented a faster
re-epithelialization, better angiogenesis, and more hair follicles compared to other
groups. With respect to the porcine full-thickness skin defects, the long-term bio-
compatibility evaluation of the SF films (30 and 90 days post-implantation) has
demonstrated that the regenerating skin attained the thickness of normal skin after
30 and 90 days, which revealed improved remodelling than other groups. Notably,
the data obtained highlighted the superior healing time performance of SF film
compared to other spongy wound dressings. Besides, the SF film promoted a fast
and remarkable skin regeneration process without antimicrobial agents’ addition.
Moreover, the efficacy and safety of the SF film were assessed in a randomized,
single-blind parallel controlled clinical study with 71 patients. The results confirmed
the SF’s excellent biological properties, promoting faster wound healing than
Sidaiyi® with a median healing time of (9.86 � 1.79 vs 11.35 � 3.03 days). Such
evidence of a short healing time is of great importance to reduce hospitalization stay
and health care costs.

SF’s promising properties on skin defects treatment have been motivating several
researchers to develop different types of SF-based biomaterials. For example, Ju
et al. developed an SF nanomatrix through the electrospinning technique and then,
evaluated their performance in a burn rat model (Ju et al. 2016). To accomplish that,
the authors mixed SF with polyethylene oxide and electrospun the solution onto a
rotating drum collector, in which sodium chloride crystals were dispensed. The
sodium chloride crystals act as porogens that increase the thickness and pore size
of SF nanomatrix. After the electrospinning process, SF nanomatrix was immersed
in ethanol 100%, for 1 h for SF’s re-crystallization, after be drying. In turn, the
in vivo assays showed that the SF nanomatrix accelerated the burn wounds healing
in rats, which was substantiated by the wound size reduction, collagen, epitheliali-
zation and PCNA expression. At the molecular level, the data obtained noticed that
the SF nanomatrix suppressed the pro-inflammatory cytokines (IL-1α, IL-6, IL-10
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and TGF-β), stimulating the re-epithelialization and reducing the duration of wound
healing process and formation of scar.

Furthermore, Han et al. produced a mussel-inspired CS/SF cryogel functionalized
with polydopamine nanoparticles (PDA-NPs) responsive to near-infrared light (Han
et al. 2019). The cryogel was obtained through the cryo-gelation of CS, SF and
PDA-NPs at sub-zero temperatures. CS/SF cryogel combines the excellent biocom-
patibility and inherent antibacterial properties of CS with high air permeability,
breathability, flexibility, tensile strength and SF’s moisture retention. In turn, the
PDA-NPs promote both cell activity and skin tissue regeneration process, preventing
the microbial infection and controlling ROS’s accumulation at the wound site.

After the cryogel production, the water absorption ability was characterized by
monitoring the adsorbed water mass after immersion in deionized water for 24 h.
The results revealed that the PDA-NPs-CS/SF cryogel can maintain a moist envi-
ronment at wound bed. In this work, the authors also immobilized EGF into
cryogels, and they determined that the EGF release profile was gradual along time.
Then, the photothermal effect of the PDA-NPs-CS/SF cryogels was confirmed in the
antibacterial and antioxidant assays, where the NIR irradiation of cryogels promoted
an enhanced antibacterial effect and a decrease on the level of ROS. Similar findings
were observed in in vivo assays, where NIR irradiation groups showed improved
tissue regeneration and wound healing.

On the other hand, the SF obtained from wild silkworm Antheraea pernyi is rich
in RGD sequences and was used by Wang et al. to develop a wound dressing (Wang
et al. 2019a). Firstly, the authors coated the SF film with polydopamine (PDA)-
(PAF) to improve cell adhesion and wound healing. Indeed, roughness and hydro-
philicity were increased by the PDA coating (water contact angle values decreased
from 61.17 � 0.80� to 40.30 � 1.28�). In this way, the attachment and spreading of
rat marrow mesenchymal stem cells (rMSCs) was improved on PAF films, where it
is possible to see the cell lamellipodia and filopodia (Fig. 6a). Furthermore, the cell
activity in PAF presence was characterized (as shown in Fig. 6b). The authors also
evaluated the films’ ability to induce the migration of rMSCs, and the PAF films
showed better results (Fig. 6c and d). In turn, the in vivo assays proved that the PAF
films improved wound healing in rats, promoting the formation of the hair follicle,
new epithelial tissue, collagen deposition and reduced inflammatory cell infiltration.

In turn, Hashimoto et al. investigated the application SF biomaterials as wound
dressing, compared with a commercial collagen material (Hashimoto et al. 2020).
So, the SF films and sponges were produced, and then fibroblasts were cultured on
these SF-based biomaterials. In the SF films, the cell migration assays were done
using time-lapse imaging, and the results evidenced that the migration rate of
fibroblasts on SF film was more than triple about collagen film and glass surfaces.
On the other hand, the authors also characterized the gene expression profiles of
MMP3, FGF2, IL-1β, Col3a1 and TGF-β1 for fibroblasts seeded on SF sponges. In
general, the results showed that SF sponges could accelerate skin epithelialization,
reconstruction, wound repair and minimize scar tissue formation.
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2.1.4 Keratin

Keratin, a major fibrous protein, constitutes the body’s outer coverings such as hair,
wool, nail, etc. Recently, keratin due to its outstanding biocompatibility and biode-
gradability has attracted enough attention. The good mechanical durability of keratin
is assured by the presence of disulphide bonds (Rouse and Van Dyke 2010). It also
contains various amino acids, namely cystine, lysine, proline and serine, and it can
be handily processed into various types of wound dressings (Rouse and Van Dyke
2010).

The degradation of the keratin complex supramolecular organization is mainly
accomplished by the synergic action of microbial keratinases and other keratinolytic
enzymes. The resulting predominant product is the cysteine, which is readily
available to other microbial hydrolytic enzymes (Jin et al. 2017).

Additionally, the keratin-based wound dressings are suitable for accelerating
wound healing mainly in chronic wounds due to the interaction with the proteolytic
environment at the wound site. Moreover, keratin extracted from hair contains RGD
and leucine–aspartic acid–valine (LDV) cell adhesion sequences, noticed also in
different ECM proteins namely fibronectin (Hamasaki et al. 2008). This contributes
to the role of keratin on the support of cell adhesion and proliferation. Indeed,
Yamauchi et al. verified improved fibroblasts adhesion and proliferation in the
presence of keratin than type I collagen (Yamauchi et al. 1998).

Table 4 describes different keratin-based biomaterials reported in the literature
employed in skin regeneration applications.

Wang et al. extracted through the action of urea, sodium dodecyl sulphate (SDS)
and 2-mercaptoethanol, keratin from human hair. The authors then combined keratin
with PU and silver nanoparticles (AgNPs) to produce nanofibrous mats (Wang et al.
2016). The presence of keratin on mats’ composition improved the hydrophilic
character (water contact angle reached 39 � 3.5� at 30% of keratin), promoting an
enhanced cell interaction, adhesion and spreading. The cells cultured on PU/keratin
mats displayed cytoplasmic extensions, evidencing the bioadhesive character of the
keratin. On the other hand, the PU/keratin/AgNPs mats presented a pronounced
antibacterial effect against S. aureus and E. coli. In turn, the in vivo assays proved
that the composite nanofibrous mats did not elicit TNF-α secretion and promoted the
skin regeneration process.

Despite the advantages of the keratin, hair keratin possesses fragility and brittle-
ness, limiting its biomedical application. In this way, the researchers overcome such
limitation through the blend or crosslink keratin with other materials. Hartrianti et al.
produced a sponge of human hair keratin with alginate crosslinked by 1-ethyl-3-
dimethylaminopropyl carbodiimide hydrochloride (EDC) (Hartrianti et al. 2017).
The chemical interaction between keratin and alginate was promoted by EDC, which
resulted in amide bonds between carboxylic and amine groups found on compounds.
After preparing the alginate–EDC–keratin mixture, it was subjected to a freeze-
drying cycle to attain a sponge. The mechanical assays revealed a higher value of
compression and tensile modulus for the crosslinked keratin–alginate sponges. The
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enzymatic degradation assays were also done by incubating the sponges with
proteinase K and chymotrypsin for 30 days. The data obtained revealed that the
sponges with the highest keratin content presented a higher weight loss of their
original weight (74.5 � 4.5%) in comparison to the sponges with highest alginate
content (17.5 � 3.7%) when incubated with proteinase K. Unlike, when the sponges
were immersed in contact with chymotrypsin, the keratin-alginate sponges were
more resistant. Moreover, in vitro and in vivo assays highlighted the high keratin
content in sponges promoted the adhesion and proliferation of fibroblasts, controlled
the immunological reaction and supported the cellular infiltration, neotissue forma-
tion and neovascularization.

In turn, Lin et al. developed a composite membrane composed of keratin and CS
via UV irradiation (Lin et al. 2018). To perform that, the keratin was prepared from
human hair, mixed with CS-azide and exposed for 15 min to UV radiation. The SEM
analysis noticed that the samples had a compact structure, presenting great structural
integrity. On the other hand, the composite membranes with more keratin amount
presented a lower water contact angles, i.e., keratin: CS at 0.25:1, 0.5:1 and 1:1 ratios
had water contact angles values of 101 � 3�, 95 � 4� and 86 � 3�, respectively.
Afterwards, the composite membranes’ ability to induce cell migration was evalu-
ated, and the results revealed that the keratin had a crucial role in cell migration
(as shown in Fig. 7). Then, the subcutaneous implantation of membranes in animals
highlighted the biocompatibility and biodegradability of the wound dressings.

More recently, Konop and their co-workers evaluated the role of insoluble
fur (from mouse) keratin-derived powder loading silver nanoparticles (Konop
et al. 2020). After preparing keratin-derived wound dressing, it was coated with
the colloidal silver suspension by soaking for 60 min. The keratin dressings
containing AgNPs exerted excellent antimicrobial properties against E. coli and
S. aureus. Concerning the in vivo biological evaluation, the dressings promoted a
faster epithelialization compared to the control wounds, encouraging the epithelial
cellular migration and proliferation. Besides, the keratin dressings provided a suit-
able moist environment for wound healing mechanisms.

In turn, Navarro et al. produced a 3D keratin-based construct by UV crosslinking
in a lithography-based printer (Navarro et al. 2020). In the first instance, the keratin
was obtained from human hair and then combined with a photosensitive initiator-
catalyst-inhibitor (riboflavin-SPS-hydroquinone) solution 0.001% wt/vol hydroqui-
none (the small molecule that reduces the scarring of severe burn wounds). After the
printing process with the lithography-based printer, the keratin hydrogels were
exposed to the UV radiation. The in vivo efficacy of Halofuginone-loaded hydrogels
on dermal wound healing using a porcine burn model showed that the printed
hydrogels provided a low inflammation environment, low late-stage vascular prolif-
eration, with the improvement in collagen deposition over 70 days. Further, keratin
and Halofuginone’s combination displayed significant healing enhancement from
30 to 70 day.
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2.2 Naturally-Derived Polysaccharides

Apart from the natural biodegradable proteins, the natural polysaccharides are also
considered an attractive therapeutic option for wound dressings development.
Among different natural polysaccharides described in the literature, this section
will only focus on the natural polysaccharides-based wound dressings most reported
in the literature, namely HA, CS and alginate.

Fig. 7 Evaluation of keratin-chitosan membranes’ ability to induce the migration of the fibroblast
cells. The microscopic images were acquired at 0 h, 2 h, 6 h, 8 h, and 16 h after removing the
culture-insert well mould. Reprinted from Polymers, vol. 10, Lin et al., Photo-crosslinked keratin/
chitosan membranes as potential wound dressing materials, 987, open-access article with permis-
sion from MDPI (Lin et al. 2018)
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2.2.1 Hyaluronic Acid

Hyaluronic acid (HA) is a natural polymer included in heteropolysaccharides group
known as glycosaminoglycans (GAGs), and can be found in the human vitreous
humour, joints, rooster comb, umbilical cord, skin and connective tissues. HA is
comprised of repeated disaccharide units of β-d-glucuronic acid and N-acetyl-d-
glucosamine, alternately linked by β-1,3 and β-1,4 glycosidic bonds (Graça et al.
2020). HA possesses unique viscoelastic properties, good biocompatibility and
biodegradability, making it a promising material for regenerative medicine. In
wound healing applications, HA offers a high potential due to its high-water uptake
capacity, preventing the wound dehydration, providing moist environment and
promoting the healing process (Voigt and Driver 2012). HA is rapidly metabolized
by hyaluronidases, with half-lives going from hours to days.

At initial phases of wound healing, HA acts a transitory matrix that helps the
nutrients supply and remove waste products from wounds. Further, HA promotes the
keratinocytes proliferation and migration. Also, HA induces the activity of endothe-
lial cells and macrophages, which can contribute to blood vessels formation and
regulate the collagen fibres production (Voigt and Driver 2012). HA can interact
with endothelial cell receptors (CD44), promoting cell proliferation and angiogen-
esis, enhancing collagen deposition, and increasing the re-epithelialization in skin
regeneration (Seol et al. 2018; Silva et al. 2016).

However, the weak mechanical properties and biodegradation profile of HA can
be modulated through the blending of other polymers or producing HA chemical
derivatives. Many carboxyl and hydroxyl groups, available within the HA structure,
enable easy chemical modification and chemical crosslinking (Graça et al. 2020).

Different HA-based wound dressings were already developed from the clinical
perspective, such as HylaSponge® System, Hyalomatrix® and Hyalosafe®, and
others (Graça et al. 2020). However, the researchers have been developing
HA-based wound dressings to overcome shortcomings of commercial HA-based
wound dressings (e.g., high production costs and low mechanical stability). Table 5
described the more recent works dedicated to the production and characterization of
HA-based wound dressings.

Wu et al. produced a hydrogel of gelatin and HA crosslinked by EDC (Wu et al.
2017). Through this strategy, the composite gelatin and HA hydrogel will meet both
components’ excellent biological properties. The crosslinked hydrogels presented a
porosity between 40% and 70% with a pore size of 100–400μm. Further, in vitro
assays confirmed hydrogels biocompatibility and ability to induce fibroblasts migra-
tion, while in vivo assays indicated that the hydrogels promoted the wound healing
process on animal wound models.

Hong et al. produced two kinds of HA-based hydrogels: one is made through
physical crosslinking of HA solution (HA1) and other by chemical crosslinking of
HA (HA2) (Hong et al. 2018). The authors then evaluated the healing effect of HA
hydrogels in the repair of full-thickness skin defects on rabbits and they noticed that
the HA2 hydrogel presented a great promotion in wound reduction and healing
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Table 5 Description of the most recent work reporting the production and characterization of
several hyaluronic acid-based wound dressings

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

HA/ε-polylysine
(EPL)

None Hydrogel – The sol-gel transition
occurred due to horse-
radish peroxidase enzy-
matic cross-linking and
Schiff base reaction
– The hydrogel promoted
the death of bacteria on
the surface of wounds
effectively
– The rats treated with
hydrogel dressings
presented high thickness
of the newborn skin and
density of granulation
tissue

(Liu et al.
2020)

HA/
Polygalacturonic
acid

Silver
nanoparticles

Electrospun
membrane

– The nanofibrous
membrane-embedded
silver nanoparticles
displayed antimicrobial
properties both Gram-
positive and Gram-
negative bacteria
– The in vivo assay in
albino rat revealed that
wound epithelization and
collagen fibres formation
reached maximum
values after 14 days of
treatment with
electrospun membranes

(El-Aassar
et al. 2020)

HA/pullulan Curcumin Film – The films containing
curcumin had a higher
swelling ratio, enhanced
cell proliferation and
exhibited bactericidal
activity
– The materials also
showed antioxidant
activity
– The films promoted an
effective wound healing
process

(Duan et al.
2020)

HA/CS None Film – The HA incorporation
into CS matrix reduced
the film transparency and
homogeneity
– The HA presence

(Silvestro
et al. 2020)

(continued)
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Table 5 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

improved the swelling
and wettability of the
film
– The concentration of
HA � 5% avoided the
adhesion of S. epidermis

HA/lysozyme None Gel – The gel presented suit-
able viscoelasticity and
excellent adhesion to the
skin
– The gel promoted a
faster epithelial tissue
regeneration and higher
collagen deposition than
the commercial 3 M
dressing

(Zhao et al.
2020a)

HA/fibrin None Membrane – The fibrin-HA bioma-
terial was grafted in
immunodeficient mice
for 8 weeks and com-
pared to the autograft, a
fibroin-agarose biomate-
rial and Biobrane®
– All groups showed a
proper clinical integra-
tion and epithelialization
after eight weeks
– The autografts and
fibrin-HA dressing
presented better skin
structuration and higher
expression of
cytokeratins

(Sierra-
Sanchez et al.
2020)

HA/PU Propolis Electrospun
membrane

– The HA-based
nanofibres were loaded
with ethanolic extract of
propolis to endow
antibacterial properties to
the dressing
– The samples displayed
greater antibacterial
activity in S. aureus and
E. coli
– The membranes were
biocompatible and accel-
erated wound closure,
improving dermis

(Eskandarinia
et al. 2020a)

(continued)
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Table 5 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

development and colla-
gen deposition

HA/alginate None Powder – The HA/alginate pow-
ders presented a better
water adsorption ability
and shorter blood
clotting time than com-
mercial haemostatic
agents
– The dressings
exhibited a controlled
degradation profile in the
presence of hyaluroni-
dase and lysozyme
– Cell proliferation and
migration of fibroblasts
were noticed when they
were seeded in contact
with dressings

(Chen et al.
2020)

HA/PU/starch None Electrospun
membrane

– The SEM and TEM
analysis evidenced the
core-shell membrane
– The coaxial nanofibres
presented suitable
mechanical properties for
wound dressing applica-
tions
– The in vitro cytotoxic-
ity assays revealed that
the nanofibres were bio-
compatible, which posi-
tively affect the wound
healing

(Movahedi
et al. 2020)

HA/PDA None Hydrogel – The HA-based hydro-
gel was developed based
on the Michael addition
reaction between PDA
and thiolated HA
– The inclusion of PDA
into HA hydrogel
improved the cell affinity
and tissue adhesion
– The PDA-bearing
hybrid hydrogel
inhibited bacterial
growth

(Yu et al.
2020)

(continued)
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Table 5 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

HA None 3D-printed
hydrogel

– HA was modified with
methacrylic anhydride
and 3,30-dithiobis
(propionylhydrazide)
aims to crosslink the
3D-printed hydrogel
through UV irradiation
and click reaction
– The storage modulus of
hydrogels was directly
related to the increase on
methacrylated HA con-
centration
– The hydrogel presented
a high swelling ratio and
sustained degradation
rate

(Si et al. 2019)

HA/PVDF Active pharma-
ceutical ingre-
dient ionic
liquids
(API-ILs)

Membrane – The API-ILs were
blended in a bilayer
membrane made of
PVDF and HA layers
– Cell adhesion was
noticed on the surface of
the bilayer membrane
– The release of API-ILs
from dressings was cru-
cial to avoid an exuber-
ant inflammation
response

(Abednejad
et al. 2019b)

HA None Membrane – A dressing was devel-
oped by using high- and
low-molecular weight
HA
– The dressings reduced
the inflammation bio-
markers and accelerated
the healing process
– The samples treated
with HA dressings
showed a higher expres-
sion of defensin-2 (anti-
microbial peptide),
suggesting antibacterial
functions

(D'Agostino
et al. 2019)

HA Platelet-rich
plasma (PRP)

Scaffold – The biofunctionalized
HA scaffold composed
of PRP and HA

(De Angelis
et al. 2019)

(continued)
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Table 5 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

promoted a rapid
reepithelization
(96.8 � 1.5%) after
30 days
– PRP + HA scaffold
revealed more substantial
regenerative potential
compared with other
groups

HA ZIF-8 Film – The HA films modified
with ZIF-8 promoted an
augment in Young’s
modulus and a decline in
water contact angle
values
– The films promoted
cell activity as well as
ameliorated the
antibacterial properties

(Abednejad
et al. 2019a)

HA Silver
nanoparticles

Hydrogel – The silver
nanoparticles were
biosynthesized by green
technique (microwave-
assisted) using corn silk
extract
– The gels had good
mechanical properties
with gelation tempera-
ture close to the body
temperature
– The hydrogels were
biocompatible and
presented antibacterial
activity both Gram-
positive and Gram-
negative bacteria
– The hydrogels allowed
a faster wound closure
and repair in in vitro
model of wound healing

(Makvandi
et al. 2019)

HA Adipose-
derived stem
cells

Membrane – The dressing stimu-
lated the healing and
reduced the inflamma-
tion when applied on
burn wounds in a rat
model
– IL-1β and TGF-β1

(Alemzadeh
et al. 2020)

(continued)
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Table 5 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

levels were lower in
wounds treated with HA
dressing with stem cells
– HA membranes seeded
with adipose stem cells
accelerated wound
healing, with increased
expression levels of
bFGF and decreased
TGF-β1 in burns

HA/corn starch Propolis extract Film – The HA films incorpo-
rating propolis extract
exhibited a higher
antibacterial activity
– The films did not pre-
sent any cytotoxic effect
in fibroblast cells
– The enrichment of
cornstarch wound dress-
ings with HA and prop-
olis extract improved the
wound healing process in
rats’ skin excisions

(Eskandarinia
et al. 2019)

HA/collagen None Hydrogel – The hydrogel was pro-
duced through in situ
couplings of phenol
moieties of both com-
pounds
– The hydrogel pos-
sessed a porous structure
suitable for water, nutri-
ents and gaseous
exchanges
– The endothelial cells
and fibroblasts prolifer-
ated within hydrogel’
structure
– The healing ration of
the wounds treated with
hydrogel was higher in
comparison to the com-
mercial drug
– The collagen and HA
combination promoted
the development of the
vasculature, epithelial
layer and collagen fibres

(Ying et al.
2019)

(continued)
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Table 5 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

HA/ Nanocrys-
talline cellulose

CS
nanoparticles
loaded with
GM-CSF

Membrane – The composite dress-
ing showed appropriated
mechanical properties,
swelling capacity and
controlled release of
GM-CSF
– The wounds covered
with composite dressing
exhibited a faster wound
closure and
reepithelialization

(Karimi
Dehkordi
et al. 2019)

HA/PDA rGO Hydrogel – The hydrogel-based on
HA-graft-dopamine and
rGO by using a H2O2/
HPR system was
obtained
– The hydrogels
displayed similar
mechanical properties to
human skin, high swell-
ing ratio and adequate
degradation profile
– The addition of PDA to
the hydrogel composi-
tion conferred it antioxi-
dant and haemostatic
capacity and tissue adhe-
siveness
– The NIR irradiation
improved in vivo
antibacterial behaviour
– The hydrogel promoted
the collagen deposition,
granulation tissue thick-
ness and vascularization

(Liang et al.
2019a)

HA/collagen Heparin-bind-
ing EGF-like
growth factor
(HB-EGF)

Hydrogel – HB-EGF in hydrogels
containing HA and col-
lagen was released over
at least 72 h, promoting
keratinocyte migration,
EGFR-signalling and
HGF expression in der-
mal fibroblasts
– Hydrogels induced the
epithelial tissue forma-
tion in wounds in a por-
cine skin organ culture
model

(Thones et al.
2019)

(continued)
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Table 5 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

HA/PVA Cyclodextrin
Naproxen

Electrospun
membrane

– The addition of cyclo-
dextrin in solutions pro-
moted a stabilization
during the
electrospinning process
– The nanofibrous mem-
branes were stable in
water after chemical
crosslinking using
EDC/NHS chemistry
– The naproxen was
loaded into nanofibres
and presented a maxi-
mum release during the
first 24 h of incubation

(Seon-Lutz
et al. 2019)

HA None Hydrogel – The HA-based
hydrogels were prepared
through physical
freezing-thawing (HA1),
and chemical cross-
linking (HA2)
– HA2 was the most
promising treatment in
promoting the wound
healing with a least
severe scar formation on
rabbits
– HA2 enhanced VEGF
and α-SMA secretion;
improved the skin regen-
eration and reduced the
wound inflammation and
scar development

(Hong et al.
2018)

HA/gelatin None Hydrogel – The hydrogels
displayed appropriate
fluid uptake capacity and
suitable water vapour
transmission rate
– The hydrogels were
biocompatible and pro-
moted cell proliferation
and wound healing
in vivo

(Wu et al.
2017)

Biomedical Applications of Biodegradable Polymers in Wound Care 561



acceleration. Furthermore, the HA2 hydrogel also improved the secretion of
α-smooth muscle actin (α-SMA) and vascular endothelial growth factor (VEGF),
which is beneficial for wound contraction angiogenesis mechanisms.

An injectable nanocomposite hydrogel dressing composed by HA and reduced
graphene oxide (rGO) with adhesiveness, good mechanical properties, as well as
antibacterial and radical scavenging abilities was produced by Liang and their
collaborators (Liang et al. 2019a). To accomplish such purpose, the HA-graft-
dopamine conjugate (HA-DA) was produced by a chemical EDC procedure to
confer HA adhesiveness and antioxidant property. Afterwards, the HA-DA polymer
chains were crosslinked with rGO@ polydopamine (PDA) by oxidative coupling of
catechol groups between them and using as an initiator system H2O2/horseradish
peroxidase (HRP). Then, the authors determined the water uptake ability of
hydrogels, which achieved a maximum water absorption of �300% after 3 days.
Unlike, the hydrogels degradation rate depended on the rGO@PDA concentration.
Further, the presence of rGO into hydrogel formulation conferred to HA-DA/rGO
hydrogels with photothermal property, which was crucial to impair the E. coli and
S. aureus growth in vitro and in vivo infected skin wound model. Additionally, the
hydrogels comparing to commercial Tegaderm® film showed higher in vivo wound
healing effect regarding collagen metabolism, granulation thickness and wound
closure.

As an alternative, Ying et al. explored an approach to improve HA hydrogels’
mechanical strength through the enzymatic crosslinking method (Ying et al. 2019).
In this work, the HA/collagen (COL) hydrogel was produced through the action of
HRP. In the first instance, HA and collagen were branched with phenolic hydroxyl
groups, which result in HA-Tyr and COL-P, covalently crosslinked with HRP and
H2O2.

The swelling assays revealed that the individual HA-Tyr hydrogel (95%) was
higher than individual COL-P hydrogel (30%), after 3 days of incubation, evidenc-
ing the high absorption ability of HA. In terms of enzymatic degradability, the
COL-HA hydrogel showed at first 6 h an initial burst phase, when incubated with
collagenase and hyaluronidase. In contrast, the hydrogels maintained about 70% of
its weight when incubated without enzymes’ presence.

In respect to the in vitro assays, the COL-HA hydrogel was biocompatible,
allowing the vascular cells infiltration, while in vivo assays showed that the hydrogel
stimulated the angiogenesis epithelium and consequently the reestablishment of skin
tissue. Moreover, COL-HA hydrogel mimicked ECM for cell proliferation and
differentiation, which promoted the formation of the vessels and collagen fibres
(Fig. 8).

On the other hand, De Angelis et al. reported in vitro and in vivo assessment of a
bio-functionalized scaffold composed of platelet-rich plasma (PRP) and HA in an
observational study including 182 patients with chronic ulcers (diabetic and vascu-
lar) (De Angelis et al. 2019). Overall, the results evidenced that Group treated with
PRP + HA encouraged the skin regeneration process, reducing the healing time. The
HA provides a moist environment, induces the growth factors secretion, and acting
as a transitory dermal substitute, while PRP promotes the cells’ activity.
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Additionally, after 80 days of treatment, the patients treated with PRP + HA had
98.4% � 1.3% of re-epithelization compared to 87.8% � 4.1% in the group treated
only with HA. Based on data gathered, this work suggests that the combined use
with PRP and HA constitutes a promising treatment for chronic ulcer.

Si et al. used the 3D bioprinting technique to produce double-crosslinked
HA-based hydrogels (Si et al. 2019). Firstly, the authors synthesized two different
HA chemical derivatives to improve HA hydrogels’ mechanical properties. The HA
can be crosslinked via click reaction by modification with 3,30-dithiobis
(propionylhydrazide) (DTP) (HA-SH), and UV-crosslinked with methacrylic anhy-
dride (HA-MA). Afterwards, the HA derivatives solutions were mixed and

Fig. 8 Histomorphological evaluation of skin tissues stained by the haematoxylin and eosin after
4, 7 and 14 of wound induction. The groups were treated with Yunnan powder, HA-Tyr hydrogel,
COL-P hydrogel and COL-HA hydrogel. The black arrow, red arrow and red round represented
epidermal layer, inflammatory cells and fibroblasts and collagen fibre, respectively. Reprinted from
Materials Science and Engineering C, vol. 101, Ying et al., In situ formed collagen-hyaluronic acid
hydrogel as a biomimetic dressing for promoting spontaneous wound healing, 487–498, with
permission from Elsevier (Ying et al. 2019)
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bioprinted, and then exposed to UV LED curing system. In this way, the HA-SH was
crosslinked by click reaction, and simultaneously through the UV irradiation,
obtaining a double-crosslinked HA-MA/SH hydrogel. The morphological charac-
terization of hydrogels revealed that all hydrogels possessed a microporous structure
with a pore size between 30 and 50μm. The swelling ratio decreased with the
increase of HA-SH content (the lowest ratio was 20.62% � 9.13%), but when the
proportion between HA-SH and HA-MA is same, the water absorption performance
was more controlled along 12 h of incubation. In turn, the in vitro assays demon-
strated that hydrogels hyaluronidase degradation exceeded 55% in 3 days, which
differ with the ratio of the HA-MA on hydrogels’ composition. The biocompatibility
of hydrogels was also confirmed, and the 3D bioprinting of hydrogels enables to
obtain structures with pre-determined architecture, which can be tailored to different
wound dressings applications.

Further, Movahedi et al. produced core-shell structured PU/starch (St) and PU/St/
HA nanofibres through coaxial electrospinning technique (Movahedi et al. 2020).
The nanofibres’wettability was evaluated through the determination of water contact
angles, and the results confirmed the hydrophilicity of the membranes presenting
values of 61.4 � and 42.8� for PU/St and PU/St/HA. About the biodegradation
profile, the assays revealed that, after 3 weeks of incubation in PBS solution,
85–93% of the weight of electrospun membranes remained, whereas the PU/St/
HA nanofibres swelling ratio were higher (625.23%). In vitro and in vivo assays
evidenced that the nanofibres were biocompatible, promoted the cell adhesion and
accelerated the wound closure. Such results were attributed to HA’ properties, such
as (i) induction of the cellular activity, (ii) provision of a moist environment and (iii)
improvement of the tissue repair (Table 5).

2.2.2 Chitosan

Chitosan (CS) is a naturally biodegradable polysaccharide, broadly used in wound
healing applications. CS, derived from the alkaline N-deacetylation of chitin, is the
crustacean exoskeleton’s main structural component. Chitin is composed of glucos-
amine and N-acetyl glucosamine linked by β(1–4) glycosylic bonds.

CS, a cationic polysaccharide, displays several promising properties such as low
immunogenicity, haemostasis, biocompatibility, degradability, scar prevention and
antimicrobial activity with relevance for wound healing and tissue engineering
(Song et al. 2018; Matica et al. 2019).

CS is biodegraded by enzymes, namely the lysozymes able to disrupt the acety-
lated units linkages, or by acid hydrolysis, resulting in CS oligosaccharides, able to
stimulate macrophages and fibroblasts migration and proliferation (Kim et al. 2008).

Further, CS and derivatives possess antimicrobial activity through different
mechanisms: i) The CS positively charged groups interacts with the negatively
charged groups found on the bacterial cell wall, inducing internal osmotic imbal-
ances and hence inhibiting microorganisms’ growth; ii) CS forms a polymeric layer
around bacteria, impairing the cellular transport mechanisms and nutrients
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absorption; and iii) CS chelate Ca2+ or Mg2+ found in the bacterial cell wall,
inhibiting the bacterial growth (Simões et al. 2018).

However, CS application as wound dressings presents some limitations like the
low mechanical resistance and weak water solubility. In this way, the crosslinking
agents have been employed to allow the formation of the linkages between poly-
meric chains, adjusting the elasticity and resistance of the CS-based materials (Song
et al. 2018). Furthermore, CS can also be chemically modified and combined with
other polymers to overcome such handicaps (Ahsan et al. 2018). For example,
methodologies like alkylation, acetylation and carboxymethylation can be adopted
to tailor the CS solubility (Song et al. 2018).

CS has been widely investigated for wound healing applications owing its
excellent intrinsic features. Indeed, there are already available many commercial
CS-based wound dressings and works reporting its in vitro and in vivo performance
(as presented in Table 6).

Intini et al. used CS as a raw material to produce skin 3D-printed scaffolds (Intini
et al. 2018). The authors used an extrusion-based 3D printing technique to achieve a
precise shape and spatial distribution of the 3D-CS structures. After that, co-cultures
of fibroblasts and keratinocytes were seeded on 3D scaffolds, and the SEM images
set the successful cellular colonization of the 3D structures. After 35 days, scaffolds
were filled by cells, developing a skin-like layer composed of a co-culture of
fibroblasts and keratinocytes. Moreover, in vivo assays on diabetic rat models
evidenced that the CS scaffolds promoted the tissue regeneration with improved
functionality compared to the wounds treated with a commercial product (wound
dressing composed of a blend of carboxymethylcellulose and calcium alginate
coated with a semi-permeable layer of PU).

On the other hand, Hou et al. developed cryogels with glycol chitosan (GC) and
ε-polylysine (EPL) with outstanding antibacterial efficacy and haemostatic property
(Hou et al. 2020). To achieve that, GC-EPL cryogels were produced by copolymer-
ization of GC methacrylate and EPL acrylamide at sub-zero temperature (�20 �C).
The cryogels presented a swelling ratio around 4000%, and an interconnected porous
construct with pore size between 10 and 100μm. In turn, the cryogels showed higher
clotting rate and lower blood clotting index in comparison to groups treated with
Combat Gauze and gelatin sponge. On the other hand, in vivo haemostatic assay also
demonstrated that the GC-EPL cryogels could decrease the blood loss (90%)
compared to the untreated group. The improved haemostatic properties of
GC-EPL cryogels is due to the potentiated effect of CS and EPL combination that
allow increasing the positive charges. Further, the cryogels showed 77.84% bacterial
killing efficiency front to Methicillin-resistant S. aureus (MRSA) and 68.59% to
E. coli. However, the increment in EPL concentration to 0.5% w/v promoted an
augment on the killing efficiency to 99.61% and 99.84%. Finally, the in vivo assays
suggested that the cryogels facilitated the normal wound healing process in MRSA
infected skin injuries.

Another work performed by Chalitangkoon and their collaborators, a water-
soluble derivative of CS (hydroxyethylacryl chitosan (HC)) was blended with
sodium alginate (SA) to obtain films (Chalitangkoon et al. 2020). HC is a water-
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soluble CS resulted from the modification of CS via Michael addition reaction with
hydroxyethylacrylate. The authors also added Ag particles to HC/SA films through
an in situ chemical reduction immersion method to augment the films antibacterial
activity. As main results, the authors verified that Ag incorporation into HC/SA films
improved the mechanical attributes and antibacterial activity, without compromising
the biocompatibility.

Wang et al. produced a self-adapting hydrogel of CS and oxidized
konjac glucomannan (OKGM) through the dynamic Schiff-base bond formation,
allowing adaptation to irregular wounds under natural conditions (Wang et al.
2020b). In this way, CS was selected as backbone and OKGM as crosslinker, to
obtain the hydrogel network. Since CS presents a limited solubility in aqueous
media, a protonated tranexamic acid aqueous solution was selected to dissolve
CS. Further, the aldehyde groups of OKGM can perform the reduction of silver
nitrate to elemental silver to stabilize the reduced Ag. The authors then evaluated the
hydrogels’ adhesion ability by a lap shear test, where the higher adhesion strengths
of hydrogels could be attributed to the hydrogen-bonding linkages and chemical
crosslinking due to the Schiff-base reaction between amine groups of tissue proteins
and the aldehyde groups of the hydrogels. It is also possible to verify that the
hydrogel possessed self-adaptability, making viable its application as an injectable
hydrogel. The antibacterial assay demonstrated that the in situ synthesized AgNPs
avoided the E. coli and S. aureus growth. In contrast, the hydrogels did not induce
cytotoxicity when they were incubated with mouse fibroblast cells, and they showed
higher therapeutic effect than commercial hydrogel (AquacelAg®) when applied on
the full-thickness skin injury.

Shahzadi et al. prepared CS membranes by freeze gelation method incorporating
a pro-angiogenic molecule (thyroxine) (Shahzadi et al. 2020). After the CS hydrogel
production, it was performed an immersion in thyroxine solution overnight to
promote the total absorption of thyroxine into CS hydrogel. Afterwards, the authors
characterized the hydrogels’ swelling rate, and they verified that the CS-thyroxine
hydrogel started swelling from 200% (after 15 min) and then increased and reached
to 1300% after 8 days of incubation. Similarly, the hydrogels released 15–20% of
drug within 15–20 min, and after 24 h, almost 70%. Also, the thyroxine incorporated
into hydrogels was crucial to induce the blood vessels’ formation and in combination
with CS encouraged the healing process.

In turn, Wang et al. used a water-soluble CS derivative- CMCS and genipin
(as crosslinker agent) to produce several wound dressings: hydrogel, membrane and
sponge (Wang et al. 2020a). Concerning the water absorption ability, the CMCS
sponges presented a higher ability due to its porous structure. Further, the expression
of α-SMA, MMP-1 and TGF-β1 were determined and the results demonstrated that:
i) the maximum amount of α-SMA protein was registered on CMCS sponges, ii)
CMCS sponges also induced the secretion of TGF-β1 by fibroblasts and iii) CMCS
sponges demonstrated the lowest expression of MMP-1 protein. From the in vivo
assays, the wounds treated with CMCS sponges revealed faster-wound closure and
complete re-epithelialization after 14 days.
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2.2.3 Alginate

Alginate is an anionic polysaccharide obtained from the brown seaweed cell wall
and excreted by some bacteria. It has low cost, excellent biodegradability, biocom-
patibility, gelling ability, and is ease to functionalize (Pawar and Edgar 2012).

In wound dressing applications, alginate is widely used due to its biocompatibil-
ity, chemical and physical cross-linking abilities, mild and physical gelation process,
non-thrombogenic nature, and the structural similarity to the structure of ECM. In
general, alginate-based wound dressings are accurately accepted due to its
favourable ability to maintain a physiological moist environment, minimize bacterial
colonization and facilitate the healing process (Song et al. 2018; Chandika et al.
2015).

However, alginate’s main drawbacks are the weak mechanical features, low cell
adhesion, and non-degradability in mammals, since they did not possess the enzyme
(i.e., alginase) responsible for cleaving the polymer chains. Thus, scientists have
been combined alginate with other polymers or molecules to boost their mechanical
properties and degradability (Lee and Mooney 2012). The ionically cross-linked
alginate gels can be disintegrated by releasing the divalent cations, due to exchange
reactions with monovalent ions such as sodium ions.

Despite the existence of some alginate-based wound dressings offered by the
market (e.g., Algisite Ag®, Sorbalgon Ag®, Gentell Calcium Alginate Ag®)
(Sarheed et al. 2016), the researchers have been dedicating to the design of more
promising alginate-based wound dressings (as presented in Table 7).

Summa et al. reported the composite polymeric material’s characterization based
on SA and povidone-iodine (PVPI) in animal model (Summa et al. 2018). Such
combination enabled to combine the outstanding alginate’ wound healing properties
with the PVPI’ antimicrobial (bactericidal and fungicidal) properties. So, the
SA/PVPI films were prepared through the casting technique, and then its biocom-
patibility was demonstrated since the percentage of viable cells was 93.2%, after
seeded for 24 h in contact with films. Further, the in vitro and in vivo anti-
inflammatory assays showed the inhibition of the production of pro-inflammatory
cytokines (IL-1β and IL-6) by the films, which was essential to regulate the inflam-
mation phase of the healing process. Similarly, the SA/PVPI films increased the
hydroxyproline levels and reduced the re-epithelialization time.

Further, Ahmed et al. prepared calcium alginate (CA) wafer dressings incorpo-
rating ciprofloxacin (CIP) (Ahmed et al. 2018). To accomplish such purpose, the
CA-CIP mixtures were subjected to the lyophilization cycles to obtain wafers. The
authors then determined the swelling, porosity, moisture content and water absorp-
tion of dressings, verifying that the CA-CIP wafer dressings can manage wound
exudate, preventing the maceration of healthy skin cells. Further, the initial burst
release of CIP (59.40 � 0.64, 74.39 � 3.59 and 91.43 � 1.21% of CIP was released
after 6 h, from the wafers loaded with 0.005, 0.010 and 0.025% of CIP) lead to the
rapid eradication of the E. coli, S. aureus and P. aeruginosa. More important, the
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Table 7 Description of the most recent works reporting the production and characterization of
alginate-based wound dressings

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

Alginate Papain Membrane – The papain was
immobilized at the
surface of alginate
membranes to
improve its wound
healing properties
– The enzyme
remained active after
immobilization, while
the matrix protected
the enzyme from
deactivation
– About 64.1% of the
enzyme was released
from the membrane
after 24 h of
incubation

(Moreira
Filho et al.
2020)

Sodium alginate
(SA)/PEG

Satureja cuneifolia
plant extract (SC)

3D-printed
scaffolds

– The 3D scaffolds
restrained E. coli and
S. aureus growth
– The fibroblasts
remained viable
on/within 3D alginate
scaffolds

(Ilhan et al.
2020)

Alginate Ibuprofen Hydrogel – The loading of ibu-
profen into the scaf-
fold was improved by
cause the high surface
area of the alginate
hydrogels
– The ibuprofen was
sustained release over
12–24 h
– The hydrogel
supported the in vivo
wound healing process
by suppressing the
inflammation and
maintaining the
wound hydration

(Johnson
et al. 2020)

SA/pNIPAM Diclofenac sodium
Basic fibroblast
growth factor
(bFGF)

Hydrogel – The thermosensitive
hydrogels were pro-
duced by incorporat-
ing nanogels of
pNIPAM loaded with
diclofenac sodium and
basic fibroblast growth

(Lin et al.
2020)

(continued)
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Table 7 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

– The hydrogels
presented a desirable
storage modulus, high
swelling ratio, and a
suitable water vapour
transmission rate
– The controlled
release of diclofenac
(92%) and bFGF
(80%) promoted a
better healing effect
with a wound contrac-
tion of 96% after
14 days

SA Borosilicate
bioglass (BBG)

Membrane – The composite
dressing possessed
good water absorption
performance
– The dressings
showed outstanding
wound healing ability
in full-thickness skin
defects in rats

(Wu et al.
2020)

Alginate Sulphanilamide Hydrogel – The alginate fibres
crosslinked with glu-
taraldehyde presented
higher mechanical
properties and low
swelling degree
– The hydrogel fibres
exhibited bactericidal
activity towards
S. aureus and E. coli
– The surface of
hydrogel fibres stimu-
lated the cells adhe-
sion and proliferation

(Sun et al.
2020)

Alginate Vicenin-2 Film – The film dressings
were smooth, translu-
cent, and with good
flexibility
– The film was able to
promote the release of
Vicenin-2 to the
wound area in a con-
trolled manner

(Tan et al.
2020)

(continued)
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Table 7 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

SA/kappa-
carrageenan

Silver nanoparticles Bio-
platform

– The polymeric
bio-platforms
exhibited exceptional
antibacterial proper-
ties towards S. aureus
and E. coli
– The dressings pro-
moted the formation of
fibrous tissues, hair
follicles and wound
area contraction on
mice with a second-
degree burn

(Zia et al.
2020)

SA/PLA/PVA None Electrospun
membrane

– In vitro experiments
showed that
nanofibrous mem-
branes provide ade-
quate support for
human and rat fibro-
blasts growth
– The electrospun
membranes enhanced
the wound healing
in vivo
– The SA/PLA/PVA
dressing reduced the
inflammatory response
and promoted the pro-
tein deposition

(Bi et al.
2020)

SA/poloxamer
407/ pluronic
F-127/PVA

Amikacin Hydrogel – The hydrogel mem-
brane had good
mechanical properties,
outstanding swelling
properties and surface
porosity
– The amikacin-
loaded hydrogels
exhibited higher zone
inhibition towards
S. aureus and
P. aeruginosa
– The hydrogel mem-
branes promoted the
formation of granula-
tion tissue,
re-epithelization and
faster wound closure

(Abbasi et al.
2020)

(continued)
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Table 7 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

Alginate None Membrane – A clinical trial was
done to compare the
therapeutic properties
of the alginate dress-
ing and negative pres-
sure wound therapy
– The alginate demon-
strated similar healing
efficacy to that of
negative pressure
wound therapy

(Casanova
et al. 2020)

Alginate Vitamin D3 Hydrogel – The hydrogels were
biodegradable
presenting a weight
loss percentage of
89% after 14 days
– The hydrogels were
cytocompatible and
haemocompatible
– In vivo assays dem-
onstrated that the
hydrogels promoted
the re-epithelialization
and granular tissue
formation

(Ehterami
et al. 2020)

Alginate Chlorhexidine
hexametaphosphate
(CHX-HMP)

Film – The alginate film
provided the release of
CHX over 14 days
– The dressings
exerted an inhibitory
effect against bacterial
growth
– After 7 days, the
alginate film incorpo-
rated with CHX
presented an enhanced
antibacterial effect in
comparison to the sil-
ver alginate

(Duckworth
et al. 2020)

Alginate Naringenin Hydrogel – The developed
hydrogels presented a
suitable porosity with
interconnected pores
and an appropriate
biodegradation profile
(89% after 14 days)

(Salehi et al.
2020)

(continued)
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Table 7 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

– The hydrogels were
biocompatible and
promoted a greater
wound closure than
the gauze-treated
wound

Alginate Zinc oxide
nanoparticles (ZnO)

Electrospun
membrane

– The fibroblasts and
keratinocytes prolifer-
ated at the surface of
alginate membranes,
and ZnO provided
strong antibacterial
properties
– The mats exhibited
mechanical properties
and water vapour per-
meability values simi-
lar to those found on
human skin

(Dodero et al.
2019)

Bacterial
cellulose

Alginate Membrane – The alginate was
impregnated into bac-
terial cellulose
hydrogels in order to
contribute to moist
environment at the
wound site
– The composite
dressings presented
enhanced water-
retention properties,
antibacterial activity,
and reduced adhesive-
ness to the wound
tissue

(Sulaeva et al.
2020)

Sodium algi-
nate/alginate

None Self-healing
hydrogel

– The self-healing
hydrogel was pro-
duced by mixing
adipic acid
dihydrazide-modified
gelatin with
monoaldehyde-
modified sodium algi-
nate
– The spraying of the
two-precursor solution
resulted in rapid
filming after 2–21 s

(Du et al.
2020)

(continued)
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Table 7 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

– The antibacterial
experiments showed
that an effective bar-
rier was formed during
12 h

Alginate/pectin Bovine serum
albumin

Foam – The composite
foams were
crosslinked by using
calcium ions and
presented suitable rhe-
ological properties
– High levels of pectin
induced an increase in
the water absorption
capacity of the foams
– The pectin content
also influenced the
drug-release ability of
foams

(Oh et al.
2020)

Alginate PCL nanoparticles
loaded with
curcumin

Membrane – The membrane
exhibited a high
swelling capacity and
adherence to the skin
– The dressing was
able to regulate the
loss of transepidermal
water, and its trans-
parent aspects enabled
the wound monitoring
– The loading of
curcumin into
nanoparticles facili-
tated the drug
permeation

(Guadarrama-
Acevedo
et al. 2019)

TEMPO Alginate 3D-printed
scaffolds

– The alginate scaffold
was obtained through
the ionic crosslinking
with calcium chloride
– The aerogels with a
remarkable water
absorption ability
were achieved by the
freeze drying of the
3D-printed hydrogels

(Espinosa
et al. 2019)

Alginate Eudragit
nanoparticles
containing
edaravone

Hydrogel – The nanoparticles
containing edaravone
conferred the remark-
able antioxidant abil-
ity, sequestrating the
ROS

(Fan et al.
2019)

(continued)
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Table 7 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

– The hydrogels
improved the wound
healing process in dia-
betic mice

Alginate/PVA Honey Electrospun
membrane

– The increase in
honey content
improved the antioxi-
dant activity of the
nanofibrous mem-
branes
– The honey-loaded
nanofibres also dem-
onstrated antibacterial
effects towards
S. aureus and E. coli

(Tang et al.
2019)

Alginate Ciprofloxacin Wafers – The alginate-based
wafers possessed the
ideal wound healing
features (wettability
and porosity)
– The ciprofloxacin
release showed an ini-
tial burst peak, which
is crucial to inhibit the
bacterial growth
– The dressings
showed biocompati-
bility with human
adult keratinocytes

(Ahmed et al.
2018)

Oxidized
sodium alginate
and polyacryl-
amide (PAM)

Dopamine Hydrogel – The self-healing of
the hydrogel was
achieved by the
hydrogen bonds and
dynamic Schiff cross-
linking
– The hydrogel
exhibited efficient
self-healing ability,
high tensile strength
and ultrastretchability
– The catechol groups
of dopamine aug-
mented the cell and
tissue interaction with
hydrogel

(Chen et al.
2018a)

(continued)
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CIP-loaded wafers exhibited enhanced water absorption capacity, bacterial inhibi-
tion and biocompatibility than Algisite Ag® commercial dressing.

In another study, Tang et al. used SA combined with polyvinyl alcohol (PVA) to
produce electrospun membranes loaded with honey, by using the electrospinning
technique (Tang et al. 2019). After the preparation of PVA and SA aqueous
solutions, the honey was added at different concentrations. The authors verified
that the honey incorporation from 0% to 20% augmented the nanofibres’ diameter
from 379 � 65 nm to 528 � 160 nm. Furthermore, the nanofibrous membrane with
20% of honey presented the lowest fluid handling ability (12 � 8%) and the highest
weight loss (84.82 � 0.42%) in PBS for 24 h. Also, honey promoted a high radical
scavenging activity (66 � 7% after 9 h of interaction) and high bacterial inhibition
for E. coli and S. aureus. However, the honey/SA/PVA nanofibrous membrane
presented excellent biocompatibility, facilitating cell proliferation.

Du et al. prepared a self-healing hydrogel formed between adipic acid
dihydrazide modified gelatin (Gel-ADH) and monoaldehyde-modified sodium algi-
nate (SA-mCHO) (Du et al. 2020). Through these chemical modifications, the
hydrogel is obtained by dynamic and Schiff base bonds between monoaldehyde-
modified SA and ADH-modified Gel, resulting in rapid gelation (2 -21 s). Besides,
the rapid spray filming ability offers rapidity and flexibility for covering wounds
with different shapes and sizes. The hydrogels showed superior cytocompatibility,
and the bacterial barrier assays evidenced that the hydrogels provide significant
barriers to S. aureus and Candida albicans for 12 h.

Recently, Dodero et al. produced alginate membranes incorporating zinc oxide
(ZnO) nanoparticles through the electrospinning technique, which was then exposed
to a washing cross-linking process to achieve greatly stable wound dressings

Table 7 (continued)

Polymeric
combinations

Incorporated
bioactive
compounds

Types of
wound
dressing Main findings Refs.

Sodium alginate Povidone-iodine Film – The dressing
blended the wound
healing properties of
alginates with the bac-
tericidal and fungi-
cidal of povidone-
iodine
– The films reduced
the inflammatory
response in in vivo
and in vitro assays
– The animals treated
with films showed a
higher wound closure
when compared to
untreated animals

(Summa et al.
2018)
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(Dodero et al. 2019). In this way, the mats’ crosslinking process was done using
different ionic crosslinking agents (Ca2+, Sr2+ or Ba2+ ions) and its influence on
biological properties was evaluated. The in vitro assays demonstrated that the
strontium- and barium-cross-linked membranes promoted cell viability results sim-
ilar to the commercial porcine collagen membrane (control group). However, the
calcium-cross-linked mats displayed good stability over 10 days of incubation in
physiological conditions. In turn, the antibacterial experiments confirmed that the
ZnO nanoparticles confer antibacterial activity of mats against E. coli, maintaining
the cells’ viability. Overall, the results suggested that the alginate-based mats could
be successfully used to prepare surgical patches and wound healing products.

In another work, Johnson et al. used pressurized gas expanded liquid technology
(PGX) to produce alginate hydrogels with a very high surface area that facilitated the
ibuprofen loading (Johnson et al. 2020). As the main findings, the authors verified
that the PGX processing generated highly interconnected networks of alginate with
high internal surfaces areas (�200 m2/g), which allowed high loadings of ibuprofen
(> 8 wt%). Moreover, the drug-loaded alginate scaffolds were crosslinked with
calcium ions resulting in durable, bulk and structured hydrogels. In vivo results
suggested that the drug-loaded alginate hydrogels accelerated the wound healing and
restoration of native skin structure within 21 days. The combination of the alginate
(provides to the wound site a moist environment) with the delivery of ibuprofen
(regulates the inflammatory response) presented promising properties to be
employed in skin injuries treatment.

2.3 Synthetic Polymers

The natural polymers have revealed excellent biological performance on the wound
healing process, however, the control of their mechanical features and degradation
rates is a major limitation. Unlike, synthetic polymers with predictable, reproducible
and improved mechanical and physical properties can be synthesized under stan-
dardized conditions. In this way, the degradable synthetic polymers are preferred to
non-degradable polymers, since they can be replaced by new skin tissue.

Among different biodegradable polymers, Poly(lactide-co-glycolide) (PLGA),
Polyethylene glycol (PEG), Polyurethane (PU) and Polycaprolactone (PCL) are
the most reported in wound dressing applications.

PLGA can be synthesized varying lactide/glycolide ratios to tailor the degrada-
tion rates, hydrophobic/hydrophilic balance, mechanical properties and crystallinity.
This biodegradable copolymer, approved by the FDA displays biocompatibility,
mechanical performance and are easily manipulated to obtain selected shapes and
sizes (Song et al. 2018; Lanao et al. 2013). Zhao et al. prepared PLGA nanofibre
constructs through the electrospinning technique (Zhao et al. 2019). To improve the
electrospun scaffold’s biological performance, the authors modified the nanofibres’
surface with PDA and then loaded them with bFGF and ponericin G1 to improve
tissue remodelling and antibacterial properties of the membrane. After that, the
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authors verified that the PLGA nanofibre scaffold functionalized with PDA
presented morphological and surface character that can encounter skin regeneration
requirements. Besides, the loading of bFGF and ponericin G1 on the nanofibrous
constructs improved the adhesion and proliferation of cells, promoting the
increasement of the expression of epidermal repair-related genes. Finally, the
in vivo assays confirmed the PDA-PLGA/bFGF/ponericin G1 nanofibre scaffold’s
excellent potential to promote wound healing, collagen deposition and tissue
vascularization.

PEG is a biocompatible, flexible, hydrophilic and non-immunogenic polymer,
making it a promising material for the development of wound dressings (Song et al.
2018). Further, its mechanical, thermal properties and crystallinity can be stabilized
through blending the PEG with other polymers, whereas the biological features can
be improved by the functionalization with bioactive molecules, like growth factors
(Shahverdi et al. 2014). Chen et al. produced a PEG-based hydrogel to be used as
wound sealants (Chen et al. 2018b). According to the obtained data, the PEG-based
hydrogels showed good biocompatibility and presented better results in wound
closure and bleeding control compared to a commercial product (Coloskin). In
general, the results demonstrated that the biodegradable adhesive PEG-based
hydrogels present suitable handling procedures, worthy tissue adhesion, controlled
degradability and elastomeric mechanical properties to be used as tissue adhesive
sealant.

PU has been a favourable choice for medical devices, due to its toughness,
durability, biocompatibility, biostability and biodegradability (Guelcher 2008). PU
presents semi-permeability, protecting the wound from external environment and
bacterial invasion. The PU membrane provides favourable moist environment for
cell proliferation and hence healing process (Song et al. 2018). The limited adher-
ence of PU-based wound dressings can be surpassed through the covering by
collagen or collagen-based peptides, promoting the cell adhesion (El-Sayed et al.
2011). Namviriyachote et al. developed a PU foam dressing with the addition of
natural polyols and incorporating silver and asiaticoside to endow antimicrobial
properties (Namviriyachote et al. 2019). The incorporation of alginate and
hydroxypropyl methylcellulose in PU foams improved the water absorption ability
and compressive strength. In turn, the foam dressings showed satisfactory release of
silver and asiaticoside. When applied in a deep partial-thickness wounds porcine
model, the groups treated with PU foams incorporating antimicrobial molecules
presented an improved epithelial cells and fibroblasts proliferation and consequently
tissue repair process.

Finally, PCL is a saturated aliphatic biodegradable polyester employed in differ-
ent biomedical applications and has been approved by FDA. PCL can result from the
degradation of linear aliphatic polyester and autocatalyzed bulk hydrolysis (Labet
and Thielemans 2009). It has distinctive mechanical properties, and is highly valued
as non-toxic, biodegradable and bioresorbable polymer, be easily sorted out into
different forms and shapes (Mir et al. 2018).

PCL is degraded by microorganisms, hydrolytic and enzymatic (under physio-
logical conditions), or intracellular mechanisms. However, the PCL degradation rate
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is slow (2–4 years) in comparison to the PLGA. Due to this reason, PCL is more
attractive and preferably employed for applications on long-term implants and drug
delivery systems (Song et al. 2018).

In skin regeneration purposes, PCL is mainly used to produce electrospun
membranes, since it is easily electrospunable and provides the structural integrity
to the electrospun nanofibres. Gámez-Herrera et al. decorated the PCL-based
nanofibres with electrosprayed PLGA microparticles containing the natural
antibacterial compound—thymol (Gámez-Herrera et al. 2020). Through this strat-
egy, the authors obtained dressings that inhibit bacterial growth, without
compromising the human dermal fibroblasts and keratinocytes cells. Furthermore,
the in vivo assays indicated that the synthesized dressings reduced the bacterial load
after 7 days in infected murine excisional wounds.

3 Conclusions and Future Perspectives

The wounds treatment (acute and chronic) constitutes a significant clinical challenge
worldwide. Nowadays, the clinicians protect the wounds by using dressing materials
capable of assuring a moist environment and offering alleviation of pain symptoms.
However, the most used wound dressings are non-degradable, impairing the healing
process during its removal/replacement. In this way, the biodegradable polymers
have arisen as an excellent strategy to produce biodegradable wound dressings able
to act as a transitory supportive matrix as well as providing cues and signals to
stimulate the functional tissue connections during tissue regeneration.

In general, natural biodegradable polymers are preferable to synthetic polymers
because of their excellent intrinsic biocompatibility. Despite this, natural polymers
are mechanically inferior, and the modulation of their chemical properties is not easy
as for synthetic polymers.

Thus, it seems that the future for biodegradable polymers is the development of
hybrid polymers, mixing different polymers, via various procedures like blending,
chemical and grafting reactions. Indeed, numerous recent studies have been demon-
strated the excellent effects of these polymeric combinations in wound healing
applications.

Nevertheless, an emerging interest arise in the development of 3D matrices that
act simultaneously as a matrix for cell proliferation and drug delivery system,
incorporating and delivering bioactive agents that propel the healing process. In
this way, the future passes by using more precise and advanced technologies (e.g.,
3D bioprinting techniques and electrospinning) and nanotechnology to produce the
nanosized particles for drug delivery that will boost the wound healing process. Such
combination of advanced manufacturing techniques and nanotechnology will con-
stitute an excellent strategy to produce more efficient biodegradable wound dress-
ings to treat severe and devastating skin injuries that affect millions of people
worldwide.
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Role of Biodegradable Polymer-Based
Biomaterials in Advanced Wound Care

Haren Gosai, Payal Patel, Hiral Trivedi, and Usha Joshi

1 Introduction

Skin is considered as the largest organ in the body and any breakage, tearing, or
defects in the skin are termed as wounds. Wounds generally develop as a result of
physical/thermal damage or due to presence of any underlying pathological condi-
tions (Percival 2002). Wounds are classified on the basis of skin damage, nature of
wound repair process, number of skin layers damaged, and area of the skin disrupted
(Xiao Liu and Jia 2018). They can be further categorized into either acute or chronic,
based on the mechanism of the wound healing. Acute wound most commonly
includes tissue injuries and healed within 8–12 weeks. However, chronic wounds
have tendency to last longer and the recovery process can take up to 12 weeks or
more (Bryant and Nix 2015). The presence of co-morbidities like diabetes, osteoar-
thritis and infection makes treatment of wounds even more precarious. In people
with such co-morbidities, chronic wounds are often observed and if they left
untreated it may lead to hospitalization and in some extreme cases lead to amputa-
tions (Frykberg and Banks 2015).

Wound healing is a complex, dynamic, and multi-phase physiological process
which involves cellular, biochemical, and enzymatic components (Sezer and Cevher
2011). Even though, wounds have capability to heal by themselves, appropriate
wound-dressing is necessary as it prevents infection and accelerate the rate of wound
repair (Mir et al. 2018). Since, ancient time humans have used various natural
materials such as honey, animal fats, and plant fibers for wound-dressing, as found
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in written medical records in Egypt (Mir et al. 2018; Sezer and Cevher 2011).
Traditionally, dry dressings—cotton, lint, wool bandages, and gauzes are used for
treatment of small wounds and cuts. These materials keep the wounded area dry and
allow the blood, exudates, and tissues to scab over. However, they provide poor
barrier against germ invasion, need adhesives, and can damage new tissues during
replacement or removal (Lei et al. 2019). Hence, studies conducted have put forward
the hypothesis that modern moist-dressings are comparatively better than
dry-dressings and promote higher rate of healing. One such study conducted by
Shi et al. (2020) has reported that modern moist-dressings have better biocompati-
bility, degradability, improve the microenvironment and relieve pain.

In the last few years, a wide range of wound-dressings have been introduced with
properties suitable for treatment of different kinds of wounds (Table 1), with the

Table 1 Types of wound dressings

Dressing Advantages Limitations Trade name

Gauze Cost effective, readily avail-
able at clinics and pharmacy,
easy to use

Dry dressing, poor barrier
protection, tissue damage on
replacement/removal, once
saturated with exudate
becomes ineffective

PETRONET®,
Medifin™,
Bactisafe™,
CutiCell™

Foam Available in different shapes
and sizes, comfortable, easy
to apply, easy to remove

Additional tape/adhesive
needed if non-adherent, not
useful for dry/non-draining
wounds, need frequent
changing to prevent excess
moisture accumulation

Aquacel™,
Biatain®,
PolyMem®,
Tegaderm™

Film Transparent, examination
without removal is possible,
impermeable, reduces friction

Does not absorb moisture,
sticks to the wounds, not for
draining wounds

Bioclusive®,
Cardinal
Health,
DermaView™

Alginate Highly absorptive,
non-occlusive, hemostatic
properties for bleeding
wounds, easily removable,
can be used on infected
wounds

Secondary dressing required
for adherence, produces odor,
not suitable for dry wounds,
burns

Maxorb®,
Sorbalgon®,
Algicell®

Hydrofiber Highly absorptive, no need
for frequent changing, easy to
remove

Non-adherent, requires sec-
ondary dressing, not suitable
for dry wounds

DuoDERM™,
Versiva®

Hydrocolloid Self-adherent, comfortable,
available indifferent shapes/
sizes/thickness, reduces pain,
moderately absorptive, ther-
mal insulation

Sometimes difficult to
remove, produces odor, may
leave residue in wound bed,
not suitable for heavy
draining wounds

Amerex®,
Comfeel®,
CovaWound™

Hydrogel Rehydrate wound, reduces
pain, promotes autolytic
debridement, easily remov-
able, can be used for infection
with topical medications

Non-adherent, require sec-
ondary dressing, not suitable
for heavy draining wounds,
may macerate skin sometimes

Biolex™,
DermaGel™,
Carrasyn®
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choice of dressing dependent on the location, surface area/depth, type of tissue
damaged, exudate, and condition of the wounded skin (Weir 2020). A perfect
wound-dressing absorbs wound exudates, provides efficient barrier, maintain a
moist microenvironment, thermal stability, and prevents further tissue damage
(Das and Baker 2016). Though, it must be acknowledged that there is no one specific
dressing that can be used to manage a variety of wounds let alone at different stages
of healing process (Psimadas et al. 2012).

Biodegradable polymer-based wound-dressings have emerged as the new
improved, efficient, and eco-friendly option for the management of the wounds. It
has been estimated that the global market for biopolymer based wound-care is
expanding and will continue to do so in the following years (Song et al. 2018).
Biodegradable polymers or biopolymers as the name indicates are polymers of
natural or synthetic derivation that can be broken down into simpler components.
They are diverse in compositions and have tunable physical behavior. Moreover,
they are renewable, cost effective, and found in wide range of variety (Smith et al.
2016). Furthermore, biopolymers are regarded as excellent source material for
wound-care because of their bioactive properties that facilitates cell growth, has
potential for regeneration, provides antimicrobial environment and
immunomodulation (Sahana and Rekha 2018). Another property that makes bio-
polymers a potential candidate for wound-care is their capacity to absorb a huge
quantity of water. Use of biopolymers with drugs that are directly released into
wounds have also become popular in last few years (Smith et al. 2016). Both natural
and synthetic types of biopolymers are being used in wound-care but natural bio-
polymers are preferred for to their biodegradability, lower antigenicity and renew-
ability (Sezer and Cevher 2011).

Natural biopolymers include proteins, polysaccharides, polyesters, and proteo-
glycans with alginate, cellulose, carrageen chitosan, collagen, etc. being the most
extensively used biopolymers (Moohan et al. 2020). Despite having certain advan-
tages, the mechanical properties and rate of degradation are not easily manipulated in
natural biopolymers. In contrast, synthetic biopolymers have demonstrated to be
more easily modified as they are produced under controlled conditions. Some of the
synthetic biopolymers used such as saturated aliphatic polyesters (polyglycolic acid,
PLA), polyanhydrides, polyurethane, and polyphosphazenes in wound management
(Song et al. 2018).

Engineering of biopolymer to construct suitable biomaterial for wound manage-
ment also plays a major role (Piraino and Selimović 2015) in the development
process. The selection of the polymer used for developing biomaterial is a crucial
factor in defining the properties of the given biomaterial. When designing biomate-
rial, the most essential requirement is biocompatibility—property that ensures that a
particular material can perform with a suitable host response (Piskin 1995). This
biocompatibility is dependent on several biological and physicochemical properties
of the biopolymer including shape-structure, biodegradability, hydrophobicity/
hydrophilicity, molecular weight, solubility, and material chemistry (Kohane and
Langer 2008). Some other properties of the biopolymers aside from biocompatibility
that needs to be considered are a) should not generate a continued inflammatory
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response, (b) should have degradation rate that coincides with their function,
(c) should have mechanical properties that are suitable for their appropriate use,
(d) should not produce toxic degradation products that cannot be easily resorbed or
excreted, and (e) should have necessary permeability and processability for intended
use (Ulery et al. 2011). Advancements in technology have allowed the development
of several biomaterials for wound care and management. Wound dressings com-
posed of foam, hydrogels, hydrocolloidal, or those with incorporated biologicals
with specific properties have become more readily available. Other advanced treat-
ments like artificial skin substitutes are also being studied along with many other
techniques that will find their application in the future (Dai et al. 2020).

In this book chapter, we have taken a measured look on the specific properties of
several biopolymers which could be helpful to select appropriate biopolymers for
wound care management. The novel biomaterials, their designing and applications
have been also discussed. The chapter also focused on the recent development in the
field of wound care management and the most probable direction it could gain in
coming years. This chapter could be useful to researchers, students, and stakeholders
for generating effective wound care management.

2 Wound Healing Process

Wound healing process developed as an evolutionary advantage and necessary
factor for survival after injury (Sorg et al. 2017). The process of wound healing is
complicated and involves extensive mediation between the different cellular con-
stituents of the skin cells and the surrounding extracellular matrix (ECM), in a highly
sophisticated manner (Eming et al. 2016). Since, wound healing is a frequent cause
of mortality and morbidity, it poses an immense challenge to the field of clinical care.
To promote healing of the injuries, to limit the scarring on patients, and restoration of
tissue functions are the major goals of the wound repair system. To accomplish these
objectives, there have been several advancements to develop better dressings,
therapies, and techniques for wound management (Velnar et al. 2009). Thus, fully
understanding the mechanism of wound healing at a cellular and biochemical level is
crucial for designing better therapeutic approaches. The events taking place during
the wound healing process can be arranged into three overlapping and sequential
phases: the inflammatory phase, the proliferation phase, and the remodelling phase
(Cañedo-Dorantes and Cañedo-Ayala 2019).

2.1 The Inflammatory Phase

The early vascular inflammatory phase begins immediately within few seconds of
the injury and involves coagulation and hemostasis. The major target of this phase is
to sound alarm to the body and prevent further damage. The activation of
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coagulation cascade is initiated upon breaking of the skin, which leads to platelet
coagulation and formation of a “clot plug” to stop exsanguination and infection
(Robson et al. 2001). The next secondary inflammatory phase is responsible for
elimination of the pathogen and cleaning the wound. Vasodilation takes place to
facilitate the migration of leukocytes to the wound area, this is followed by charac-
teristic inflammation features—edema, dolour, and erythema (swelling, pain, and
redness). The cell response starts within 24 hours and can last up to 2–4 days
(Gonzalez et al. 2016). The predominant phagocytic cells (macrophage and neutro-
phils) along with the activated immune cells mount a host response against the
invading pathogens and helps in cleaning the wound by or autolyzing the necrotic
tissues and debris (Shankar et al. 2017).

2.2 The Proliferation Phase

The proliferation phase begins approximately around 48 hours after the injury and
continues for around 2 weeks, thereafter. The phase occurs when homeostasis and an
immune response have been achieved and is characterized by tissue damage repair
(Sorg et al. 2017). The proliferative phase focuses on: (i) the proliferation of
fibroblasts and their differentiation, (ii) production of collagen III and its interaction
with skin cells, (iii) formation of new tissues by reepithelization, (iv) angiogenesis—
formation of new vessels by endothelial proliferation, and (v) repairing of the
damaged nerves and regeneration. Most of the functions involved in the proliferative
phase are carried out by the predominant macrophage cells (Cañedo-Dorantes and
Cañedo-Ayala 2019). The final step in the proliferative phase is the formation of
granulation tissues comprising of a highly dense mixture of fibroblasts,
granulocytes, macrophages, capillaries, and loose collagen bundles (Reinke and
Sorg 2012).

2.3 The Remodelling Phase

The concluding phase of the wound repair process is termed as the remodelling
phase and takes place from 21st day of the injury and continues for around 1 year or
more. The phase is characterized by wound maturation and regaining of skin
integrity. This is achieved by the turnover of collagen III into collagen I along
with the decrease in the cellularity due to apoptosis (Thiruvoth et al. 2015). During
this phase, the development of new epithelium and formation of scar tissues is
observed. Scar demarcation can be identified as the end of the remodelling phase.
However, the tissues in the wound area gain only 80% of their previously demon-
strated tensile strength (Gurtner and Wong 2013). The damage sustained by the hair
follicles and the sweat glands present at the wound area cannot be repaired and they
are permanently lost after the wound repair (Robson et al. 2001).
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3 Factors Affecting Wound Healing Process

Several factors play a significant role in impeding the healing process of the wounds.
These factors may either be local—those impacting wounds only or systemic—any
underlying morbidity that could interfere with the repairing mechanism (Beyene
et al. 2020). Some of these factors have been reported to be interlinked and work
concurrently to impair the healing process.

Hypoxia: Though most of the wounds are hypoxic due to sustained tissue
damage, a certain amount of oxygen is necessary for wounds to get healed. Oxygen
is required by the neutrophils and macrophages to conduct phagocytosis. It has also
been found to be essential in collagen deposition for tissue repair (Harper et al.
2014).

Infection: Infection indicates the presence of pathogens in the wound area.
Microorganisms that are present in environment or skin surface can enter the body
through wounds and colonize or multiply there. This leads to prolongation of the
inflammatory phase ultimately causing delay in wound repair (Guo and DiPietro
2010).

Necrosis: Presence of dead or necrotic tissues can delay healing. Both slough
(wet tissue) and dry eschar must first be removed by either wound cleansing or
phagocytic cells to continue with the healing process (Thomas Hess 2011).

Immunosuppression: People suffering from cancer, HIV, or malnutrition have
been reported to have immunosuppression, which is responsible for interfering with
the regular wound repair process. Additionally, drugs or therapies (radiation) taken
for the treatment of the disease may aggravate inflammation and ultimately hamper
the healing cascade (Harper et al. 2014).

Chronic Diseases: Diabetes mellitus, coronary artery disease, and vascular artery
disease are some of the chronic diseases that have been reported to impede wound
healing. Cardiorespiratory diseases alter the available oxygen supply, creating a
hypoxic environment unsuitable for wound repairment. In case of diabetes, the
high blood sugar level influences the working of leukocyte preventing them from
carrying out their part in the healing process (Tsioufis et al. 2012).

Since numerous factors influence wound healing process, maintenance of a
healthy, sterile, and stable microenvironment is a prerequisite for efficient wound
repairment. An acute wound may turn into a chronic wound if required steps are
ignored. To prevent this, it is critical to select the appropriate wound dressing, ensure
their proper application, to carry out effective wound cleansing, and perform con-
stant monitoring of the wound. The dressings must be changed regularly to make
sure there is no infection, exudate leakage, or presence of odor. If some chronic
illness is present, specific precautions pertaining to that disease must be followed to
avoid any complications in wound healing (Armstrong et al. 2018).

604 H. Gosai et al.



4 Biodegradable Polymers and their Properties

As discussed earlier, complex process like wound healing requires a material that is
biocompatible with host tissue. Biocompatibility can be defined as the ability of any
biomaterial to function with a suitable host response in a particular wound healing
process (Piskin 1995). Host tissue response to the material is controlled by many
biological and physiochemical factors of biodegradable polymers. Some of the
factors that can be mentioned are surface energy, material chemistry, molecular
weight, solubility, mechanism of degradation and/or erosion, lubricity, hydrophilic-
ity or hydrophobicity, and shape and structure of the biodegradable polymer can
influence the material’s biocompatibility (Kohane and Langer 2008). Biocompati-
bility of a polymer with host tissue should be constant phenomenon as the physico-
chemical, mechanical, and biological properties of a biodegradable polymer can
differ with time. Essentially, biodegradation of polymers changes their properties
like tensile strength, color, and shape and therefore, the polymer under consideration
should exhibit compatibility to the host tissue during the whole healing process.
Moreover, the degradability not only depends on the environmental factors like heat,
light of chemicals, but also on the chemical structure of polymer and environmental
condition (Bismarck et al. 2002). The products generated in the degradation process
of a polymer will differ in compatibility to the host tissue when compared to the
parent material. A biopolymer can be considered ideal for healing process if its
degradation products are not harmful to the body.

Several other important properties must be considered while selecting the biode-
gradable polymers. These are as follows:

• Time taken by biomaterial for degradation should be equal to the regeneration or
healing process to ensure proper remodelling of the tissue.

• Biopolymer should constantly exhibit appropriate permeability and processability
for its specific wound healing application.

• The mechanical properties and compatibility of biopolymer should remain
unchanged during the entire degradation process. In addition to this, the proper-
ties should remain unaffected during the patient’s day-to-day activities (Song
et al. 2018).

• When the biopolymer under consideration implanted in vivo, it should not
stimulate a toxic response or inflammation to the host tissue (Williams 2009).

• The material should have an acceptable shelf life.
• Degradation products should not be harmful, and easily digested and removed

from the host body (Schmitt and Polistina 1963).
• In the case of scaffold-guided tissue engineering, the biodegradable polymer

should be processable into a proper shape fitting the defect’s site, with a proper
micro-nanostructure (Puppi et al. 2010).

• The polymeric materials should be designed into a scaffold structure so as to carry
mechanical properties and degradation rate which is suitable for maintaining the
spaces required for cell ingrowth and matrix creation. Furthermore, it should be
able to bear stresses and loading (Nair and Laurencin 2007).

Role of Biodegradable Polymer-Based Biomaterials in Advanced Wound Care 605



Other essential qualities of polymers, like particle size, bulk density, surface area,
and morphology should be considered when the polymers are used as controlled
drug delivery systems because these may affect drug release from the system.

Both naturally derived and synthetic polymers find their applications in biomed-
ical field (Table 2). Plant-based natural polymers include polysaccharides like
cellulose, alginate, and dextran while animal-based polymers are collagen, silk,
chitosan, etc. These biomaterials must be selected carefully because they have
characteristic bioactivity and therefore, show high variation in compatibility to the
host tissue. If they are not compatible, these biomaterials can provoke immunogenic
response when used in the healing process. In contrast to this, synthetic polymers
exhibit more predictable physical properties and are generated by chemically
engineered degradation profiles, which render them biologically inert. Synthetic
polymers like polyglycolide (PGL), polylactide (PLA), and polycaprolactone
(PCL) are exploited highly as they are linked by ester bond which enables their
hydrolytic degradation. Other hydrolytically degradable molecules include anhy-
dride, carbonate, urea, amide, thioester, urethane, imine, and imide bonds, which
have the sites for cleavage under biological conditions. Enzymatic cleavage between
carbon�carbon bonds leading to the susceptibility to hydrolysis using acid and base
in many molecules such as sulfonamides, phosphonates, and ethers. However,
electronic biodegradable polymers utilize the above-mentioned hydrolyzable link-
ages to degrade in physiological, aqueous conditions (Feig et al. 2018).

5 Novel Biomaterials (Natural and Synthetic)

Human body has a complex structure and it is difficult to find the desired character-
istics from the single polymeric biomaterials for the wound healing process.
Recently researchers have shown the advancement in synthesis and design of
biodegradable polymer and polymers are being designed for specific medical appli-
cations (Bianchera et al. 2020). This has led to integration of versatile and combi-
national approaches to design the biomaterial which has paved path for innovation in
discovering novel biodegradable biomaterials. This area has witnessed more
advances and researchers now have developed medical devices like delivery vehicles
for pharmacological applications, three-dimensional (3D) porous scaffolds for tissue
engineering, and temporary prostheses (Li et al. 2020). Efforts are being made to use
biomaterials as bio-ink for 3D bioprinting because biodegradable materials owing
biological and physicochemical properties, can replicate the properties of different
tissues (Zidarič et al. 2020).

One more area that has shown progress is the generation of tissue repairing
hydrogels. These hydrogels have the property of dual adhesiveness, which adheres
to both tissue and implant biomaterial. Moreover, these gels show bioactivity which
helps in the regeneration of tissues. For instance, Gao et al. (2019) have developed a
unique bioglass (BG) (oxidized sodium alginate (OSA)) composite hydrogel with
dual adhesive and bioactive properties. This has opened a vast area for potential
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Table 2 Properties of biodegradable polymers and medical use

Biodegradable
polymer Source Property Medical use References

Collagen Fibroblasts High biocompati-
bility and
biodegradability

Nerve regeneration,
drug delivery
Vitreous replace-
ment, skin replace-
ment, skin patches,
bond-filling and
repair, enhanced
epithelialization
rate

Powell
et al.
(2008)

Gelatin Skin, bones, and
connective tissues
of animals such as
domesticated cattle,
chicken, pigs, and
fish

Biocompatible,
biodegradable, and
nonimmunogenic

Treatment of severe
burn wounds

Jaipan
et al.
(2017)

Silk fibroin Nephila clavipes
and Araneus
diadematus spiders,
Bombyx mori
domestic silk-
worms, and
Antheraea pernyi
and Samia
cynthiaricini wild
silkworms

Robust mechanical
strength with high
tensile strength,
modulus, stiffness,
and extensibility,
enzymatic biodeg-
radation with con-
trollable rate,
payloads stabiliza-
tion capability due
to hydrophobic
interactions with
β-sheet crystallite
domains

Biological drug
delivery, gene ther-
apy, wound
healing, bone
regeneration

Shavandi
et al.
(2017)

Keratins (Ker) Wool, hair, nails,
feathers, and horns

Biodegradability,
biocompatibility,
and mechanical
durability

Drug delivery,
wound healing, tis-
sue engineering,
and cosmetic
applications

Arslan
et al.
(2017)

Chitosan (CS) Exoskeletons and
shells of
crustaceans

Biocompatibility
analgesic effect,
hemostatic effect,
antitumor activity,
and muco-adhesive
properties

Antitumor drug
delivery, gene
delivery, protein
and peptide drug
delivery, antibiotic
delivery, polyphe-
nol delivery

Zhao et al.
(2015)

Hyaluronic
acid (HA)

Connective tissue
of mammals

Non-immunogenic
polysaccharide,
hygroscopic nature

Promotion a scar-
free wound regen-
eration
Drug delivery agent
for different routes
such as nasal, oral,
pulmonary,

Mele
(2016)

(continued)
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clinical applications. Kaygusuz et al. (2017) have invented the alginate-based wound
dressings by combining it with antimicrobial properties of cerium ions and chitosan.
To generate these dressings, alginate films were crosslinked with chitosan mixed
cerium (III) solution. These dressings were flexible, ultraviolet protecting, and
antibacterial.

In addition to this, there is a growing interest in the development of tunable and
versatile electrospun biocomposite fibers as wound dressings. The main advantage
of using these fibers in wound healing process is their resemblance to natural
extracellular matrix which fastens the healing process. Their high surface area-to-
volume ratio, tunable porosity, sufficient gas exchange, and possibility to include
different active substances and living cells into the fibers further enhances the
process. Both solution (blend, coaxial, and emulsion) electrospinning and green
solvent-free electrospinning approaches can be utilized to produce ultrafine biocom-
patible fibers from different materials which can be utilized for wound (Palo et al.
2019).

6 Wound Healing Mechanism of Natural Polymers

Wound healing is a complex process expecting the use of an ideal dressing material
for facilitation of the process. According to current trends, biodegradable materials
are frequently exploited for the wound healing processes. There are various diverse

Table 2 (continued)

Biodegradable
polymer Source Property Medical use References

ophthalmic, topical,
and parenteral, as
an aid in eye
surgery

Alginate (Alg) Brown algae and
also produced by
some bacteria

Biocompatibility
and gelation can be
done easily

Stimulate repara-
tive wound
processes

Patel et al.
(2007)

BSA fibers Purified from blood Biocompatible and
biodegradable

Wound
applications

Dror et al.
(2008)

Polyurethanes
and their
derivatives

Synthetic Biocompatibility,
strength, and
flexibility

Wound dressing, to
make surgical
drapes, tubing, hos-
pital bedding, and
injection equipment
implants

Davis and
Mitchell
(2008)

Silicone Synthetic Nontoxic,
nonallergenic, and
highly
biocompatible

Skin treatment in
severe burns and
wounds

Momeni
et al.
(2009)
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mechanisms developed for these materials that how they act on wound and partic-
ipate in different stages of wound healing process. Each biomaterial has its own
mechanism and role in wound healing process.

As discussed earlier, wound healing process consists of precisely regulated and
well-balanced events like coagulation and inflammatory phase, hemostatic phase,
remodeling phase, and proliferation phase. Biopolymers used for wound care or
wound healing process must exhibit their impact on any wound healing process to
stimulate rapid healing in less time. Biopolymers were found to exhibit a positive
impact on every stage in this process as indicated in Fig. 1. Frequently used bio-
polymers for wound healing process are chitosan, alginate, collagen, fucoidan, etc.
(Sahana and Rekha 2018).

6.1 Chitosan

As described before in this chapter, healing of wound composed of four diverse
stages. Chitosan alone and chitosan-based polymer has known to have positive
impact on each and every step after application as wound healing material.

Coagulation and hemostasis: Surface-induced thrombosis accompanied with
blood coagulation and fast coagulation in vivo by affecting platelet activation can
be stimulated by Chitosan. It also helps to block endings with pain reduction and
blood clotting by acting as hemostat.

The inflammatory phase: Chitosan-based hydrogels forms a suitable microenvi-
ronment to conduct healing process by regulating associated cells and releasing
factors. This hydrogel-based dressing material can restrict secretions of

Fig. 1 Role of biopolymers in wound healing process
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inflammatory mediators such as interleukin 1β, interleukin 8, prostaglandin E, and
others with increasing different tissue repairing processes (Jayakumar et al. 2011).
Previous work also indicated that action of leukocytes, neutrophils, and macro-
phages, tissue granulation stimulation for suitable inflammatory reaction are also
enhanced by Chitosan-based hydrogels (Takei et al. 2012).

Proliferation: Platelets are responsible for releasing growth factors,
Transforming Growth Factor (TGF)-β1 and platelet derived growth fac-
tor (PDGF)-AB, which can be stimulated by chitin and Chitosan, especially when
applied in high concentrations (Okamoto et al. 2003). It also activates tumoricidal
activity of macrophages for 3D growth by supplying non-protein matrix. Hydrogels
based on chitosan could promote regular collagen deposition, angiogenesis, fibro-
blast proliferation, and amplify level of natural hyaluronic acid (HA) production at
the wound site by depolymerizing itself for the liberation of N-acetyl-β-D-glucos-
amine (Jayakumar et al. 2011).

Remodeling: Dermal tissue component, the N-acetyl glucosamine (NAG) plays a
key role in repair of scar tissues, present in chitin and chitosan (Archana et al. 2013).
It had been already proved that chitosan films of low deacetylation degree were
found significant in dressing superficial wounds (Borderud et al. 2015).

Chitosan alone, able to heal the acute wounds but chronic wounds have different
patterned mechanism could be utilized (Ito et al. 2013). Chitosan-based hydrogels
are appropriate to deliver growth factors, stem cells antimicrobial agents, and
peptides to balance the biochemical events of inflammation in the chronic wound
and thus enhance healing.

6.2 Collagen

Collagen is the main component of ECM and predominant inside connective tissues.
The key points to maintaining balance between synthesis and breakdown of collagen
which decides future of wound healing (Schwartz et al. 2002). It has an important
role in an inflammatory phase as numerous proteolytic enzymes are secreted and
small fragments of collagen [Arg-Gly-Asp] acting as mitogenic for fibroblast and
chemotactic for macrophages thus stimulating proliferation and formation of gran-
ulation tissue (Bellis 2011). It also promotes migration as gelatin interacts with
keratinocytes and epithelial–mesenchymal transmission necessary for tissue repair
(Pastar et al. 2014). There are various processes utilized such as reduction in size to
nanoscale, surface modification, and tagging with anti-inflammatory. Depolymeri-
zation and antimicrobial substances for the enhancement of physiological action of
collagen. There are various collagen-based healing materials used such as membrane,
films, powder, sponges, and hydrogel. Most frequently used are Derma Col,
Fibracol, Biopad, citrix, Cellerate, Cutimed, Stimulen, Helix bioactive collagen,
and Biostep (Sahana and Rekha 2018).
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6.3 Alginate

At the wound bed, alginate presents a wet environment and takes in exudates.
Alginates found to decrease infection, pain, and odor. It also plays role in hemostasis
phase of healing process. Ion exchange occurs when dressing having alginate
material comes in contact with exudates of wound. Alginate dressing materials
have calcium ions and exudates or blood has sodium ions, so replacement takes
place and as a result of which alginate fibers forms a gel (Jones et al. 2006).
Alginates are also able to promote monocytes and thus directly affect the healing
process. Alginates have low adhesive properties and so mixed with chitosan to
increase adhesion, proliferation, and cell interaction (Yao et al. 2012). Several
commercially available wound care products have alginate as their main ingredient
such as Nu-dermetc, Kaltostat, Algicell, Calcicare, 3 M Tegaderm, Algisite,
Cutimed alginate, and Dermalginate (Sahana and Rekha 2018).

6.4 Hyaluronic Acid

D-glucuronic acid and N-acetyl-d-glucosamine are repeating units joined by β-1,4
and β-1,3 glycosidic linkages alternatively to form hyaluronic acid. High molecular
weight hyaluronan possesses anti-inflammatory properties while in case of low
molecular weight, it has pro-inflammatory activities. The pro-angiogenic effect is
carried out by the degradation product of HA. It is found to alter healing process with
reduction of scar and decreased collagen synthesis when post-injury supplementa-
tion of exogenous is carried out. Several commercial wound care products having
HA are Dermaplex, Regenecare, Hyalomatrix, Hyalofill, etc. It is also part of skin
care protective products with cosmetics outcomes (Litwiniuk et al. 2016; Sahana and
Rekha 2018).

6.5 Cellulose

Cellulose is preferred in wound care as it has properties to retain moisture and wet
wounds are found to heal quicker because of sufficient delivery of growth factors
and other molecules to the healing tissue (Sulaeva et al. 2015). Cellulose has a
porous structure that mimics ECM of skin and helps in tissue regeneration. It can
absorb exudates and result in intake of cell debris (Kucińska-Lipka et al. 2015).
Cellulose-based commercially available dressings are Suprasorb, Dermafill, and
Curity Exu-Dry Cellulose (Sahana and Rekha 2018).

Each biopolymer has its own mechanism to cure wounds as indicated in Table 3.
It suggests the ability of biopolymers to connect themselves with the ongoing events
of wound healing and increase the healing rate by stimulating various processes.
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Biopolymers also possess their appropriateness toward the types of wounds as
indicated in Table 4. Collagen, cellulose, alginate, HA and Chitosan have their own
priority for the type of wounds which also indicate their specific mechanism of
action but at the same time they can carry various disadvantages such as collagen
cannot be used for patience allergic to birds, products of swine or cattle, third degree
burns and dry wounds. Similarly, cellulose could not be utilized for burns of second
and third degree. Alginate is also not applicable to treat dry, eschar wounds, and also
for third-degree wounds (Sahana and Rekha 2018).

Thus, biopolymers have been successively utilized for wound care. Biopolymers
with diversified origins are well studied because of their excellent environment-
friendly properties. Still many issues related to the use of biopolymers that restrict
their use but it will be solved in future and biopolymers will emerge as one of the
most significant wound healing mechanisms.

Table 3 Biological mechanism of different biopolymers

Biopolymer Biological mechanism

Collagen Chemotactic for macrophages, stimulates proliferation of
fibroblast, induces release of ECM components by
fibroblast

Bellis (2011); Pastar
et al. (2014)

Cellulose Maintenance of moisture, exudates absorption Kim et al. (2018)

Alginic
acid

Promoted monocytes, stimulate fibroblast proliferation and
migration

Jones et al. (2006)

Hyaluronic
acid

Proliferation and migration, promote fibroblasts and
keratinocytes, anti-inflammatory

Huang et al. (2018)

Chitosan Migration and proliferation, induce fibroblast and
keratinocytes

Shi et al. (2018)

Fucoidan Mitogenic to keratinocytes and fibroblast, Angiogenic Park et al. (2017)

Table 4 Specificity of biopolymer toward types of wounds

Biopolymer Wound types References

Collagen Foot ulcers, chronic wounds, large open cuts, bed-
sores, surgical wounds, minor burns, heavy-to-low
excretion wounds

Rehfeld et al. (2017); Bellis
(2011)

Cellulose Plastic/reconstructive surgeries, chronic wounds,
burns

Sulaeva et al. (2015)

Alginate Cavity wounds, postoperative wounds, infected
wounds, heavy to moderately exhausting wound,
surgical incisions or dehisced wounds, pressure
ulcers, partial and full-thickness wounds, dermal
wounds

Aderibigbe and Buyana
(2018); Yang and Jones
(2009)

Hyaluronic
acid

Chronic wounds, wounds having partial and full
thickness

Litwiniuk et al. (2016)

Chitosan Acute wounds and pressure ulcers Ahmed and Ikram (2016)
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7 Applications of Biodegradable Materials in Wound
Healing

Healing of wound, a tightly restricted physiological progression involving different
subsequent stages and any destruction in this sequence can lead toward chronic
wounds and indirectly affecting the quality of life of patients. Nowadays, novel
wound dressing material is highly expected to have astonishing wound repair and
skin rejuvenation advantage instead of preventing wound infection (Qu et al. 2019).
Traditional wound healing process involves the use of gauze made up from cotton
(Sezer and Cevher 2011) having numerous drawbacks like disrupting epithelium,
which was newly formed leading to eliminate and fast damaging newly formed
epithelium upon removal and causing rapid drying out of the wound bed
(Siritientong et al. 2014) but they became popular due to their lower cost. The
standard protocol carried out today is swabbing, dressing, and cleaning (Dreifke
et al. 2015). If a skin lesion is extended, allograft or autograft might be used and
could give rise to immunological issues like immune rejection (Suarato et al. 2018).
As far as characteristics are concerned about the ideal dressing material, it must
eliminate unnecessary exudates to escape maceration of tissue, support autolytic
debridement, maintains wetness, sufficient water vapor, and oxygen permissible
within the wound. In favor of application/removal from patient’s body, it should
be adhesive and flexible.

Hence, in search of dressing materials with novel functions that could resolve the
troubles of traditional dressing materials, various biomaterials have gained attention
of scientific community due to their biodegradability and biocompatibility. Natural
protein- as well as carbohydrate-based biomaterials are exploited for their use in
wound dressing material.

Protein-based biomaterials include utilization of collagen, gelatin, silk protein,
etc. Collagen is considered as protein which is abundant in animal providing strong
support to tissues (An et al. 2016). Collagen offers verities of dressing material in
different forms like electrospun fibers, scaffolds, and hydrogels, which could be
applied on ulcers and burn wounds (Yoon et al. 2018). A multistructured
nanofibrous dressing material is synthesized using poly-ε-collagen electrospun
matrix having transforming growth factor-β1 (TGF-β1) and customized with
polypeptide-based nanocarriers found to speed up healing and wound closure
(Albright et al. 2018). Mimura et al. (2008) had suggested a significant role of
gelatin in wound healing process by performing and concluded that wound healing
process of cornea can be promoted through gelatin hydrogels by transplanting
fibroblast precursors into corneal stroma. Silk protein synthesized by various arthro-
pods like spiders and silkworms has also attracted the focus as in vitro study revealed
that silk mats having epidermal growth factors and ciprofloxacin (Chouhan et al.
2017) increased keratinocytes proliferation and human dermal fibroblast.

Naturally, derived polysaccharides have also been found efficient in this field.
Lloyd et al. (1998) stated that homoglycans are biocompatible material that occurs
naturally and exploited in wound healing to modulate the cellular responses.
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Hyaluronic acid (HA) has a hygroscopic nature and so it is exploited to synthesize
hydrogel structure so it can promote a scar-free wound healing and keratinocyte
migration and angiogenesis (Dreifke et al. 2015). Chitosan (CS) being intrinsic
antifungal, antibacterial, mucoadhesive, and hemostatic makes it the most preferable
dressing material. Du et al. (2009) had reported the role of chitosan membrane in
prop up healing process of wound and reduced scar tissue formation in a corneal
alkali burn of rabbit. There are numerous CS-based dressing materials proposed like
CS-gelatin sponge (Lanzhen et al. 2007), CS-silk hydrogels (Silva et al. 2012), and
CS-aloe-vera membrane (Wani et al. 2010). Alginate also offers its use in this field
by removing microbial cells and necrotic tissues when utilized along with enzymatic
components and antimicrobial. It can also initiate reparative wound healing process
by providing polysaccharide base during its utilization (Patel et al. 2007).

7.1 Advantages of Biopolymers to Limit Microbial Formation
on Wound

There are many studies that reported the formation of biofilms on chronic and acute
wounds, mixed etiologies and full-thickness burns, etc. (Metcalf and Bowler 2013).
Reports also suggest that half of the chronic wounds contain biofilm. If a majority of
biofilm-containing wounds have delayed healing mechanisms then biofilm could be
contributing many billions of dollars to the global cost for wound management
process. Thus, based on the clinical and in vivo experiments, it is required to devise
effective anti-biofilm strategies, to encourage wound healing in clinical practice.
Various potential anti-biofilm agents have been proposed such as
ethylenediaminetetraacetic acid (EDTA), xylitol, and lactoferrin, however, they do
not have higher efficiency to prevent biofilm formation on wound. Recent studies
suggested that biodegradable polymers such as chitosan, collagen,
and polyhydroxyalkanoates are found to be effective antibiotic carriers (Pavithra
and Doble 2008). Mogoşanu and Grumezescu (2014) have reported cellulose and
nanocellulose prevent and control biofilm formation on wound. Ward et al. (2020)
have also reported that a medium chain length polyhydroxyalkanoate prevents
colonization of Pseudomonas aeruginosa, one of the most common bacteria that
infect chronic wounds.

1. Limitations of biopolymers as wound dressing materials

• Sometimes advantages may come with some restrictions also. Biopolymers/
biomaterials are biocompatible with human tissue which is their main advan-
tage but due to this property it cannot be exploited for extended time periods.

• Productivity is another main concern since they are derived from the natural
resources so it is very difficult to synthesis a sufficient quantity of products for
practical use.
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• Origin of synthesis also limits the use of these materials as products may vary
slightly in physiological and biological activities even though they are pro-
duced by same animal but residing in different areas.

• These products are easily degradable under various conditions like heat and
light. So they must be utilized instantly after extraction to avoid any kind of
non-uniformity.

• These materials can provide an excellent growth environment for microorgan-
isms due to which chances of contamination increase while their sterilization
can also stimulate negative impacts on the structural properties.

Despite having many disadvantages, biodegradable and biocompatible polymers
have gained attention from scientific community due to their diversified role in
wound healing process.

2. Future perspectives

Many approaches for wound healing are present nowdays, still the consequences
of healing during chronic conditions are still conceded. Thus, the medical and
healthcare community required wound care products having tunable physicochem-
ical and biochemical properties such as hemostasis, bioresponsive, and antimicro-
bial. Therefore, advancement in knowledge of biopolymer with these properties will
lead to the developments in technologies of bioengineering and regenerative med-
icine and aid in wound healing and tissue engineering. Moreover, the addition of
knowledge and understanding of biopolymer and their mechanisms will lead to the
successful application of biopolymer-based scaffolds, drug, or growth factors loaded
dressing, 3D artificial skin, etc. Also, advances in biopolymer engineering with
nanotechnology will help to develop effective technologies such as bioprinting
and 3D electrospinning. These technologies which could be alternate solutions in
replacement of extracellular matrices by growth factor delivery, cell-based therapy,
and tissue engineering to restore injured tissue.

8 Conclusion

This book chapter discussed recent advancements and the advantages of biopoly-
mers looked at their applications in wound healing management. Wound healing is a
very complex and dynamic process and depends on interaction between the cells,
growth factors, and extracellular matrix. Various biopolymers have been extensively
studied and reported as excellent biocompatible and bioactive compounds. Cur-
rently, collagen, alginate, chitosan, etc. are the biopolymers that are frequently used
in the wound care industry. Advancements in the knowledge and understanding of
convergent technology for biopolymers will shape the future of medical and
healthcare industry to satisfy the unmet needs.
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Atmospheric Pressure Plasma Therapy
for Wound Healing and Disinfection: A
Review

Alphonsa Joseph, Ramkrishna Rane, and Akshay Vaid

1 Introduction

The wound healing process, particularly in the skin, has been studied extensively for
more than a century. A wound typically involves breaking the layers of the skin and
damaging the underlying tissues. An array of biochemical events takes place when
the layers of skin are broken to repair the damage for healing. They are blood
clotting, inflammation, tissue growth, and tissue remodeling (Nguyen et al. 2009;
Rieger et al. 2015). Several signal molecules like cytokines, chemokine, enzymes,
and proteins also participate in the healing process. The healing process is complex
in nature as it is prone to be interrupted by various factors like infection, diabetes,
venous or arterial diseases, and metabolic deficiencies. The wound then becomes
chronic in nature and takes longer time to heal (Enoch and Price 2004). The main
features of these wounds include severe inflammation, relentless infections, and drug
resilient biofilms. This is mainly due to the excessive amounts of signal molecules
like pro-inflammatory cytokines, proteases, senescent keratinocytes, endothelial,
fibroblasts, and macrophages (Woo et al. 2007; Stojadinovic et al. 2008). Hence,
maintaining a proper balance of signal molecules and growth factors can reverse the
chronicity of wounds for improved healing.

It is well known that some wounds are burdened with different levels of bacterial
or microbial loads. Bryant et al. defined that the microbial load in a wound exists in
five forms: contamination, colonization, critical colonization, biofilm, and infection
(Bryant and Nix 2011). Hence, asepsis of microbes is primarily important. There are
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many methods used to reduce the bacterial load and they include debridement,
appropriate wound cleansing, use of antibiotic medicines, application of ointments,
and use of proper bandages. However, in most wounds, the effect of these traditional
medical antiseptics and ointments are not effective due to the presence of some
bacteria which are resistant to drugs like Methicillin-Resistant Staphylococcus
aureus (MRSA). Therefore, there is a need for a new method for skin disinfection
to attend to the quick healing of chronic wounds (Vasilets et al. 2009; Lloyd et al.
2010; Haertel et al. 2014; Weltmann and von Woedtke 2017).

While there are innumerable traditional and non-traditional treatments available
for wound healing therapy, very few have shown their effectiveness in accelerating
wound repair. It has been found that traditional treatments are expensive and the
recovery time is very long (Xiong 2018). Moreover, modern synthetic allopathic-
based medicines also have limitations like they are allergic and resistant in some
patients. Some medicines are also very expensive (Majumdar and Sangole 2016). It
is also reported that though several curative wound healing techniques are employed;
very few satisfactory therapies for chronic wounds are available (Xu et al. 2015a, b,
2015). This has provoked the scientists and researchers to discover alternative novel
technologies for wound healing and disinfection and validate its use.

Cold atmospheric pressure (CAP) plasma-based techniques are recently being
considered as a potential alternative therapy for chronic wound healing and disin-
fection (Salehi et al. 2015). Cold atmospheric plasmas are generated at atmospheric
pressure and exist in weakly ionized gaseous state. They consist of ground and
excited atoms, radicals, neutral molecules, ions, negatively charged particles, and
ultraviolet radiation (Lieberman and Lichtenberg 2005). As the temperature of these
plasmas are low (approx. 40 �C), living tissues can be easily treated. The Reactive
Nitrogen Oxygen Species (RNOS) along with electric fields generated from these
plasmas have been shown to decrease bacteria in wounds to promote healing
(Duchesne et al. 2018). For this reason, CAP plasma has been extensively used in
the last decade in biomedical research, particularly in dermatology, wound healing,
blood coagulation, treatment of cancer, disinfection of infectious matter, sterilization
of medical devices, and cosmetics (Daeschlein et al. 2015; Mohd Nasir et al. 2016;
Klämpfl et al. 2012; Chatraie et al. 2018; Schmidt et al. 2017; Isbary et al. 2012;
Heinlin et al. 2010; Duval et al. 2013; Kang et al. 2014; Vandamme et al. 2012;
Nasruddina et al. 2014; O’Connor et al. 2014). CAP plasma is also popular for
sterilizing heat-sensitive surfaces and medical equipment (Kong et al. 2009). Vari-
ous in vitro and in vivo investigations with CAP plasma have indicated the growth
and migration of fibroblasts as well as epithelial cells to the site of inflammation.
Moreover, CAP plasma has also shown an affirmative effect on the epidermal
growth factors and initiation of angiogenesis for promoting chronic wound healing
(Fridman et al. 2008). About less than 5% ROS and more than 80% RNS generated
from plasma have been reported to penetrate tissues having thicknesses of 500μm
(Woedtke et al. 2013). However, the actual penetration depths of plasma are yet not
clear. Studies of CAP plasma on chronically infected wounds, pruritus, shingles, and
various skin diseases have been reported to be treated successfully (Lademann et al.
2011; Ulrich et al. 2015). Hence, since CAP plasma treatments are pain free; have
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short treatment times, nontoxic, non-allergic, and have sterilizing properties, they are
favorable for wound healing (Daeschlein et al. 2012; Lademann et al. 2013).

1.1 Plasma as a Useful Tool in Medical Field

Though, plasma is a familiar word in biology, where it is described as one of the
components of blood, the term “Plasma” used in this chapter is the fourth state of
matter. This state of matter is obtained by providing energy to the gaseous state of
matter. Naturally, there are always few electrons and ions in any volume of neutral
gas. The source of these free charged particles can be due to the interaction of cosmic
rays or radioactive radiation with the gas (Conrads and Schmidt 2000). Usually,
laboratory plasma is formed by supplying electrical energy to the neutral gas. On
application of an electric field, free charge carriers already present in the gases
accelerate and collide with gas molecules. The charged particles also collide with
the surfaces of the electrodes. These collisions result in multiplication of charged
particles. This generation of charged particles is eventually balanced by the loss of
the charged particle so that steady-state plasma is developed (Conrads and Schmidt
2000). The plasma, thus produced is an ionized gas containing approximately the
same numbers of ions and electrons. It also contains neutrals that are not ionized.
Along with electrons and ions, enormous amount of reactive species are produced
depending upon the type of gas used for formation of plasma. Various power sources
like direct current (DC), capacitive coupled radio frequency (RF), inductively
coupled RF, and microwave can be used to form plasma.

Non-thermal (cold) and thermal (hot) plasmas are the common two types of
plasmas. In non-thermal plasma, the temperature of ions and neutrals is less than
the electron temperature. In the case of thermal plasmas, the temperature is relatively
similar for electrons and heavy particles and can typically reach temperatures of
several thousand degrees kelvin (Roth 1995). These plasmas can function over a
wide span of pressure regimes. Accordingly, plasmas are further categorized as low
pressure and atmospheric pressure plasmas. Typically, low-pressure plasma operates
in a glow discharge mode with typical pressure range of 10–100 Pa while atmo-
spheric pressure plasma operates in an arc discharge mode, also called as hot plasma
(Lieberman and Lichtenberg 2005). Even though the generation of low-pressure
plasma is comparatively easy, it requires vacuum chamber and pumping systems
which are costly. Secondly, continuous plasma treatment is not possible by using
low-pressure plasmas. Hence, atmospheric pressure plasmas are more preferred for
applications like material processing, biomedical applications where expensive
pumping systems can be avoided (Becker et al. 2005).

Both thermal as well as non-thermal plasmas are useful for few biomedical
applications. The thermal plasmas that are hot are mainly used for ablation and
cauterization of biological tissue and in cosmetics, e.g., Argon plasma coagulation
(APC), for removal of wrinkles, regeneration of skin (Canard and Védrenne 2001;
Pereira-Lima et al. 2000; Foster et al. 2008). Non-thermal plasmas on the other hand
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do not exhibit any damaging effect as obtained from thermal plasma due to its
ambient temperatures and are hence known as Cold Atmospheric Pressure (CAP)
plasma. Such plasmas are widely applicable in the area of medicine. The “Plasma
Medicine” term usually relates to the use of plasma for biomedical applications.
Plasma medicine includes several low-temperature applications of plasmas like
sterilization; wound healing; cancer treatment; dermatology, dentistry, and treatment
of implants (Laroussi 2018).

1.2 Cold Atmospheric Pressure Plasma Devices

According to classical Paschen law, if one goes for atmospheric pressure, inter-
electrode distance has to be reduced. In case of plasmas generated at atmospheric
pressure, the gap between the electrodes is few millimeters (Eliasson and
Kogelschatz 1991). Mostly, the plasmas produced at atmospheric pressure are
thermal plasmas where the neutral gas temperatures are very high and are similar
to the temperature of other species like electrons and ions. Now the question remains
that whether there is any method to produce atmospheric pressure plasma at low
temperatures? The answer is yes. This type of plasma with low temperature and
generated at atmospheric pressure can be achieved by maintaining proper electrode
geometry, discharge gas, and frequency of the applied voltage (Kogelschatz 2003).
As far as biomedical applications are concerned, the dielectric barrier discharge
(DBD) plasma and pencil-like plasma produced by Atmospheric Pressure Plasma Jet
(APPJ) have been used extensively. Dielectric barrier discharges are very much
suitable for obtaining the atmospheric pressure diffused plasma in large volumes
while APPJ is suitable for localized treatment like skin infection or tooth cleaning.

1.2.1 Dielectric Barrier Discharge

DBD (Eliasson and Kogelschatz 1991; Kogelschatz 2003) is a kind of AC discharge
that operates at atmospheric or higher pressures. This DBD discharges are also
employed for the production of ozone gas using air or oxygen (Yao et al. 2015).
Nowadays, Ozonizers are effective tools for ozone generation and are being used
worldwide for water treatment. In these discharges, the presence of dielectric
material on one or both the electrodes is important while generating the plasma.
The gap between the two electrodes for the discharge is very small (~few millime-
ters). These discharges at atmospheric pressure are created using AC high voltage
generators of 1–50 kV and frequencies of 50 kHz to 1 MHz. Figure. 1 shows various
electrode configurations, which are used to generate DBD discharges.

Typically, in the DBD, a dielectric material exists on one of the metal electrodes.
The ceramic materials, glass, quartz, and thin layers of polymers are preferred as
dielectric materials. As the dielectric material does not permit the DC current to flow,
alternating voltages (AC) are used for operating these discharges. Also, the stability
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of the discharge mostly depends upon the type of discharge gas. The helium gas
gives a stable glow discharge while gases like nitrogen, oxygen, and argon are
unstable and change to filamentary discharges. However, it is still possible to operate
them in the stable glow discharge mode by changing electrode configuration.
The dielectric constant, as well as the thickness of the dielectric material, determines
the displacement current passing through dielectric layer. In most applications, the
dielectric material attached to the electrode limits the high current and hence arcing
phenomenon in the gas space. Such type of DBD plasma is more suitable for
continuous surface modifications at atmospheric pressure. As compared to other
types of discharges, the DBD is the most suitable method to produce non-thermal
plasma at atmospheric pressure. In addition to that scaling up to higher dimensions is
comparatively easy in the DBD.

1.2.2 Atmospheric Pressure Plasma Jet

Recently, many researchers have developed an atmospheric pressure plasma jet, a
kind of DBD in cylindrical electrode configuration. The discharge generated using
atmospheric pressure plasma jet shows many characteristics similar to conventional
glow discharge produced at low pressure. A typical schematic of an atmospheric
pressure plasma jet and the APPJ device developed by the Institute for Plasma
Research (IPR) in contact with human skin is shown in Fig. 2. This configuration
composed of two cylindrical electrodes. The plasma-generating gas like helium,
argon, oxygen, or their combinations are used. By applying high voltages between
the electrodes, plasma is produced. The ionized gas that exits through a nozzle is
termed as plasma jet. The plasma jet or plume coming out through the nozzle is used
to treat the substrate, which is kept at few millimeters. Non-thermal plasma jets
operating at atmospheric pressure are emerging as a novel research topic in plasma
physics. The ongoing and future research in this field will be beneficial for material
treatment as well as for medical applications. The main advantage of this type of
plasma is its capability to supply significant amounts of reactive species at low gas

Fig. 2 Atmospheric pressure Plasma Jet developed by the Institute for Plasma Research (a)
Schematic and (b) Plasma jet in contact with human skin
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temperatures. The plasma plume that comes out from the nozzle interacts with its
surrounding environment like ambient air. The interaction changes the properties of
the discharge plasma by releasing reactive species and in turn also the treated
surface. Thus, this type of plasma jet is not restricted by defined physical walls,
but increases their usage for material treatment applications like human skin and
teeth (Pan 2010).

In the last few decades, developments have been made in the design of an APPJ
for its application in different areas. Various plasma jet arrangements exist
depending upon the electrode configuration, gases employed, and power supply
used to generate the plasma. Plasma jets can be transferred arc or non-transferred arc.
When one of the electrodes is outside the body of jet, it is referred to as transferred
arc jet. In a non-transferred arc jet, an electric field is generated between the two
electrodes and the plasma jet or plume protrudes outside due to the flow of plasma
generating gas. Plasma jets have been generated using noble gases like argon and
helium. There exist different configurations of the plasma jets depending upon the
usage of dielectric material and they can be categorized as Dielectric free electrode
(DFE) (Babayan and Jeong 1998; Jeong et al. 1998), Dielectric barrier discharge
(DBD) (Abuzairi et al. 2016; Lu et al. 2008), and DBD-like jets (Léveillé and
Coulombe 2005; Shashurin et al. 2009). Some configurations are also of single
electrode (SE) type plasma jets (Stoffels et al. 2003; Lu 2009). In case of DFE jets, in
absence of dielectric material, the plasma produced touches the electrodes. However,
the widely used configuration of DBD jets composed of the quartz tube, which acts
as a dielectric material and the electrodes are present on the external side of this tube.

Both DBD and APPJ devices are used for biomedical applications. Recently,
many plasma devices are commercially available for wound healing. Some of them
are kINPen, a CE certified RF argon plasma jet, PlasmaDerm, MicroPlasma α and β
device, and Plasma jet (Tigres, Plasma MEF technology) (Xiong 2018).

2 Interactions of Cold Atmospheric Plasma
with a Living Cell

Atmospheric pressure plasma interacts with the living cells by various mechanisms
as reported in the literature. Plasma contains charged particles, various reactive
oxygen species (ROS), reactive nitrogen oxygen species (RNOS), excited mole-
cules, and ultraviolet (UV) photons and these play an important role when plasma
interacts with the biological matter. It is reported in the literature that (Moisan et al.
2001; Stoffels et al. 2008; Boudam et al. 2006):

1. Microbial DNA in the cell gets destroyed by UV radiation.
2. Intrinsic photo desorption erodes the microorganism by breaking their chemical

bonds.
3. Atomic and molecular radicals etch the cell surface, thus destroying them.
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4. Oxidative damage is done to the membranes and DNA by ROS/RNOS species.
5. Charged particle accumulates on the cell membrane thus leading to its rupture.

Cellular proliferation, differentiation, and viability are also influenced by active
species in the plasma (Lin et al. 2015). Both ROS and RNOS play a vital part as
normal components of the cellular metabolism. ROS and RNOS include hydroxyl
ions, atomic oxygen, singlet delta oxygen, superoxide, hydrogen peroxide, and nitric
oxide. Various reactions involved in the production of ROS and RNOS are given in
Tables 1 and 2, respectively (Arjunan 2011). For example, peroxidation of unsatu-
rated fatty acids is caused by hydroxyl species. It has been reported both ROS and
RNOS assist in wound healing. ROS induces oxidative stress. Wound healing is
positively influenced at lower concentration of ROS. The regulation of immune
deficiencies, cell proliferation, induction of phagocytosis, control on collagen syn-
thesis, and angiogenesis are mainly affected by RNOS. It is established in the
literature that nitric oxide regulates the biological functions by working as intracel-
lular messenger (Mone et al. 2014; Stallmeyer et al. 1999; Lu 2008). Both ROS and
RNOS are capable of reducing the microbiological burdens and bacterial coloniza-
tion which is one of the main contributing and well-recognized factor of impairing
wound healing. Moreover, a direct influence on the cellular level during wound
healing is also demonstrated by the presence of these species. For this reason,
atmospheric pressure plasma jet has a greater potential for the treatment of chronic
and non-healing wounds.

Table 1 Production of ROS from plasma

ROS Formula Plasma reaction

Hydrogen peroxide H2O2 OH. + OH.!H2O2

Hydroxyl radical OH. e + N2 + M ! Nþ
2 + 2e + M

Nþ
2 + H2O ! N2 + H2O

+

H2O
+ + H2O !OH. + H3O

+

Superoxide O�
2 e + O2 + M ! O�

2 + M

Singlet oxygen O2 Δ1
g

� �
O2 + e ! O2 Δ1

g

� �
+ e

(M- third body particle)

Table 2 Production of RNS from plasma

RNS Formula Plasma reaction

Nitric oxide NO N2 + e ! N + N + e
N + O + N2!NO + N2

Peroxynitrite ONOO� NO+ + O�
2 ! ONOO�

Nitrite NO2� NO + O3$ NO2 + O2

2 NO2 + H2O !HNO2(aq) + HNO3(aq)
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3 Anti-Microbial Ability of APPJ for Disinfection ofWound
on Skin

Researchers have shown from their works that plasma has disinfectant properties and
can be used in various skin-related treatments. Scholz et al. have reported that APPJ
has potential to inactivate both Gram-positive and -negative bacteria, fungi, viruses,
and yeasts (Scholz et al. 2015). It is well known that excluding the gut, the next place
in the body where more microorganisms are found is the skin. Among the microor-
ganisms, bacteria are found to be the most abundant followed by fungi and viruses
on a normal skin of a healthy human. Bacteria usually enter into the body through
cuts, punctures, surgery, burns, or preexisting skin disorder and develop skin
infection thereby hindering the process of wound healing (Robson 1997). As plasma
is demonstrated to deactivate bacteria with high efficiency, the use of APPJ can help
in reduction of the bacterial load in open wounds. Among the various types of
bacteria, nine different species are present on a relevant wound and their strains were
identified as shown in Table 3 (Daeschlein et al. 2012).

Daeschlein et al. showed that after APPJ treatment for two minutes using argon
gas, highest reduction factor (RF) was found for PA followed by HS, MSSA, CA,
and EF (Helmke et al. 2011). Darmawati et al. also studied microorganisms like SA,
PA, Methicillin-Resistant Staphylococcus aureus (MRSA), and Carbapenem-
Resistant Pseudomonas aeruginosa (CRPA), with argon-based APPJ for 2 min of
treatment. They observed that the inhibition zones were highest for CRPA and
lowest for SA. These and the previous results indicate that APPJ was more effective
for Gram negative bacteria inactivation (Darmawati et al. 2019). It is known that the
sensitivity of killing is dependent on cell wall thickness (Ermolaeva et al. 2011).
APPJ treatment was more effective in deactivating Gram negative than the Gram
positive bacteria because of the presence of their thin cell wall thickness. It has been
reported by many researchers that the surface of the living organisms undergo a
mechanical action referred to as “etching” due to the various reactive species

Table 3 Common microbial reference strains used for in vitro studies

Sr. No. Species Reference strain

1. Escherichia coli (EC) ATCC 25922

2. Pseudomonas aeruginosa (PA) ATCC 15442;
ATCC 9027

3. Klebsiella group (K. pneumoniae sp. pneumoniae, K. oxytoca) ATCC 700324

4. Methicillin-sensitive Staphylococcus aureus (MSSA) ATCC 1924

Staphylococcus aureus (SA), ATCC 6538

5. Staphylococcus epidermidis (SE) ATCC 12228

6. Proteus group (P. mirabilis, P. vulgaris) ATCC 6380

7. Enterococcus faecalis (EF) ATCC 29212

Enterococcus faecium (EF) ATCC 6057

8. Candida albicans (CA) ATCC 10231

9. Hemolytic streptococci (HS) (group A and B) ATCC 27956
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produced by plasma (Chau et al. 1996; Lerouge et al. 2000). The so-called etching
causes fissure in the membranes of microorganism, which leads to their deactivation.
Laroussi et al. compared the inactivation of E. coli (106 CFU/ml) on agar for 120 s
using a plasma formed using helium gas alone and mixture of helium with oxygen
gases. They observed that the inactivated area was more by using helium/oxygen gas
mixtures compared to that obtained by pure helium (Laroussi et al. 2006). A more
detailed review of the use of APPJ for microbial inactivation can be obtained from
the work done by Ehlbeck et.al ( 2011). Hort et al. demonstrated the effect of APPJ
using both air and nitrogen gases at 100 W powers on P. aeruginosa, S. aureus, and
C. albicans. It was seen that air and nitrogen plasma significantly affected
P. aeruginosa and S. aureus than C. albicans. Among the gases employed in
APPJ, nitrogen exhibited a greater microbiocidal effect (Hort et al. 2017). Hence,
for bacterial disinfection gases like argon, helium with oxygen gas mixture, and
nitrogen are commonly used depending upon the type of bacteria.

Chronic wounds do not heal because of the presence of biofilms and they are
observed in 90% of chronic wounds. Biofilms are a collection of different bacterial
species (planktonic form of bacteria) having a protective layer adhering to the wound
surface in the form of glycocalyx (Attinger and Wolcott 2012). As these biofilms are
resistant to antimicrobial treatments therefore they need to be eradicated. Conven-
tional techniques that use high heat and chemicals are not recommended as they use
toxic chemicals and cause surface degradation. APPJ has also shown to have a great
potential to deactivate the biofilms. Most bacteria that are present in the biofilm are
E. coli, P. aeruginosa, S. aureus, and Streptococcus pyogenes. Xu et al. in their work
demonstrated that atmospheric pressure plasma jet (APPJ) with helium gas
completely inactivated S. aureus biofilms in 10 min and reported a 99% reduction
in biofilm as compared to untreated samples. They attributed the biofilm inactivation
to the presence of reactive species present in the plasma and plasma-induced
intracellular ROS (Xu et al. 2015a, b, 2015). Theinkom et al. also studied the effect
of APPJ using air against E. faecalis (EF) for 10 min treatment and reported a
reduction in CFU of E. faecalis by �5 log. It was observed that the results obtained
by chlorhexidine and UVC radiation were also comparable with the effectiveness of
APPJ. On examination by spectrometric measurements, it was observed that cyto-
plasmic membranes were intact after this treatment (Theinkom et al. 2019). Patenall
et al. studied the growth of biofilms using helium CAP plasma jet for 5 min. Biofilm
grown for 8 h showed 4–5 log reduction in bacterial cells compared to 2 log
reductions which were achieved on biofilms grown for 12 h. Hence, reducing the
formation of biofilms by CAP plasma is time dependent (Patenall et al. 2018).

4 In Vitro Studies Using APPJ on Skin

Skin is the largest organ of the body and it covers about 2 m2 on the body. Life would
not be possible without skin. The epidermis, which is the outermost part of the skin,
is considered to be the most immunologic organ as it is responsible for all types of
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skin diseases (Wende et al. 2010). The wound healing occurs only when the skin
cells stop cell division and migrate for wound closure (Liu et al. 2017). It is reported
that wound closure is induced in the infected 2-D skin model using APPJ (Hunt et al.
2000). This was achieved as there was an enhancement of proliferation rate of skin
cells after APPJ treatment, which is a key requirement for healing wounds. More-
over, after plasma treatment, the overall antibacterial efficacy also increased due to
extracellular trap formation (Fritsch 1998). All these factors are responsible for
reduction in wound inflammation and aids wound healing.

Several researchers have indicated that the plasma cell interactions mainly depend
on the plasma source, time duration as well the type of cell it is being treated (Kim
et al. 2010, Kalghatgi et al. 2011, O’Connell et al. 2011). Low plasma treatment
durations are beneficial as it stimulates cell viability, proliferation, differentiation,
and migration, whereas longer time durations lead to cell apoptosis/necrosis (Xiong
2018). Most of the skin cells such as keratinocytes, fibroblasts, and endothelial cells
are affected in a positive manner by the CAP plasma treatment as reported in the
literature. It is seen that these cells migrate in wound beds resulting in timely wound
healing. Duchesne et al. found that a quicker scratch closure was observed at 24 hrs.
After the scratch when the treatment time was fixed for 1 min. Among the three cells
studied, i.e., keratinocyte, endothelial, and fibroblasts cells, they showed 70%, 50%,
and 25% smaller scratches, respectively, than that of the control sample. The short-
lived ROS and RNS species were chiefly responsible for improving the scratch
wound closures (Duchesne et al. 2018).

During the complex process of wound healing, both keratinocytes and fibroblasts
secrete various cytokines such as IL-1 and IL-6 and growth factors like transforming
growth factor α (TGF-α), which facilitate via intracellular signaling pathways. This
in turn influences cellular mechanisms such as proliferation, migration, adhesion, or
a contraction for wound healing. Arndt et al. studied fibroblasts cells using two types
of plasma jets that are commercially available namely MicroplaSter and KINpen.
Treatment on fibroblasts with the MicroplaSter and KINpen devices induced expres-
sions of diverse wound healing relevant cytokines as well as growth factors for
influencing cellular mechanisms that are important for wound healing. In their
investigations, they indicated that the plasma not only activates the fibroblasts but
also helps to convert into myofibroblasts which are responsible for wound contrac-
tion. Skin homeostasis and physiological tissue repair are maintained by
myofibroblasts (Hinz 2016, Arndt et al. 2018).

In another study by Arndt et al. an exposure of APPJ for 2 min was done on
primary human dermal fibroblasts (2F0621, 9F0438, 9F0889). A significant amount
of increase in several proteins, e.g., CD 40 Ligand (CD154), GRO alpha (CXCL1),
IL-1 ra (IL-1F3), IL-6, IL-8, MCP-1(CCL2), and Serpine E1 (PAI-1) were observed
after treatment (Arndt et al. 2013). The same jet was also used to study Human
Cytokine Arrays (array kit ARY005) for a treatment time of 2 min. After incubating
for 24 hrs, it was found that on mRNA level, molecules of TGF-ß1 and TGF-ß2 were
induced after the APPJ treatment. Since these transforming growth factors are
responsible for cell migration and proliferation, synthesis of extracellular matrix,
angiogenesis, remodeling, and the breaking strength of the repaired tissue, it can be
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suggested that APPJ activates and facilitates in healing wound (Amento and Beck
1991). It is also necessary that extracellular matrix (ECM) components like α-SMA
are produced for wound healing. After APPJ treatment it was found that both
collagen type 1 and α-SMA mRNA expressions were induced suggesting that it
influenced both collagen synthesis and activation of fibroblasts. Hence, all the
studies mentioned above revealed that the important genes, which are crucial for
wound healing, are activated by CAP plasma treatment (Folkman 2006).

Endothelial cells play an important role in angiogenesis where they produce
growth factors like fibroblast growth factor-2 (FGF2) which is involved in the
formation of blood vessels. Several chemical signals secreted by the body control
the process of angiogenesis. These signals along with the growth factors induce
endothelial cells for the development of new blood vessels (Nugent and Iozzo 2000;
Shekhter et al. 2005). Kalghatgi et al. studied endothelial cells after treating it with
APPJ for 30 seconds and demonstrated that the proliferation rate was twice than that
of the untreated cells after five days of plasma treatment. The high rate of prolifer-
ation was due to the fibroblast growth factor-2 and reactive oxygen species
(Kalghatgi et al. 2010).

Other factors responsible for wound healing are the adhesion molecules like α2
and β1-integrin, E-cadherin, and the epidermal growth factor receptor (EGFR),
which play a key role in cell migration and proliferation for cell–cell and cell–matrix
interactions. Haertal et al. demonstrated the application of APPJ (kINPen) device on
HaCaT-keratinocytes for 10 and 30 s and the adhesion molecules were observed to
increase significantly after 10 s (Haertel et al. 2011).

Studies have also been carried out using the Tigres MEF plasma device on 3D
skin models consisting of a keratinocyte containing an epidermal layer and a
fibroblast/collagen dermal matrix. Various plasma parameters like process gas
(air/nitrogen), input power (80–300 W), and treatment time (5 to 20s) were varied
to understand the effect on 3D skin model. It was observed that less treatment
durations exhibited better cell compatibility. Compared to nitrogen gas, usage of
air was more damaging. Moreover, higher input power gave adverse effects on 3D
skin model morphology and also on the release of inflammatory cytokines. Hence,
low treatment times, lower input power, and use of nitrogen gas were recommended
for wound decontamination (Wiegand et al. 2016).

5 In Vivo Studies of APPJ on Mice

Xu et al. studied the effect of argon gas APPJ on wound healing in the skin of the
mice (Xu et al. 2015a, b, 2015). Two full-thickness wounds of 4 mm diameter were
made on either side of the dorsal midline of each mouse. APPJ treatment was given
for 10– 50 s in intervals of 10s for 14 days without any interruption on one wound of
each mouse. It was found that there was an improvement and almost complete
closure of the wound toward the 13th day when the treatment time was less than
40 s compared to the other wounds that was not treated by APPJ. Whereas when the
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treatment time was 50 s, the healing of wound was lesser even on the 14th day. The
reactive species so formed were able to inactivate the bacteria around wound and
promote its healing. However, as the treatment time increased, the same reactive
species played a detrimental role in wound healing causing cell death by apoptosis or
necrosis (Xu et al. 2015a, b, 2015). Both Dunnill et al. and Kurahashi et al. in their
studies reported that ROS was not only responsible for disinfection during the
inflammatory phase, but also in the regulation of tissue repair which involves
migration, proliferation, and angiogenesis (Dunnill et al. 2017; Kurahashi and
Fujii 2015). However, excessive ROS production creates an imbalanced redox
homeostasis, which in turn hinders the healing process (Dunnill et al. 2017,
Kurahashi and Fujii 2015).

Kubinova et al. and Zhang et al. analyzed the effect of APPJ when operated with
air on the healing of skin wound model in rats (Kubinova et al. 2017; Zhang et al.
2019). The skin wounds were treated daily for 14 days for 1 and 2 min. It was
observed that on the seventh day, there was a significant epithelization and wound
contraction compared to the wounds that were not treated. Gene expression analysis
indicated no enhanced inflammatory reaction which would interrupt the process of
wound healing (Kubinova et al. 2017, Zhang et al. 2019). When compared to Xu
et al.’s work, the APPJ treatment performed by Kubinova et.al gave better results
with air as a processing gas; they attributed the reason for better results to the
increased NO species produced with plasma. On evaluation of the species formed
from the plasma, it was found that air plasma treatment was able to produce a large
amount of NO species in the living tissue which, in turn, accelerated the healing of
the wound and its closure (Hsu et al. 2006).

A study was conducted by Arndt et al. using MicroPlaSter beta device for 2 min
using argon gas on mice, which was subjected to two 6-mm full-thickness wounds
made on both sides of the dorsal midline (Arndt et al. 2013). The results were then
compared with mice which were treated with only argon gas without creating
plasma. Improved wound closure was observed with Argon plasma treatment on
the third and fifth day and the wounds healed after 15 days. However, there were
some differences between the two treatments. After APPJ treatment, an increased
quantity of macrophages was observed in the early phases of wound healing mainly
due to an elevation of the immune defense which cleans the wound area by inducing
phagocytosis. (Arndt et al. 2013).

6 Clinical Studies Using APPJ

Clinical trials using atmospheric pressure plasma jet have been done for disinfection
of infectious matter which is essential for healing chronic wounds. Clinical trials
have also been carried out on patients, to evaluate the change in the wound
dimensions in both width and length using some of the commercially available
plasma jets.
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Isbary et al. carried out clinical studies using argon-based MicroPlaSter alpha and
beta commercially available plasma jet devices on 24 patients infected with chronic
wounds. The treatment was carried out for 2 min every day. The results were
compared with another study on 36 patients using APPJ for 5 min. Using standard
procedures bacterial load was measured after the treatments for different times with
these devices. It was observed that MicroPlaSter beta device showed a major
reduction in bacterial load (23.5%, P < 0.008) compared to that treated by
MicroPlaSter alpha device (40%, P < 0.016). The treatment did not have any side
effects on the patients. Both the devices were found to be effective with 2 min on
chronic wounds (Isbary et al. 2010).

In order to assess the wound closure dimensions after APPJ treatment using
MicroPlaSter device Isbary et al. conducted another study on 70 patients with
chronic wounds and the treatment time varied from 3–7 min. Wound dimensions
were measured before and after the treatment and compared with wounds that were
not treated. The same treatment was also performed on patients having chronic
venous ulcers for 3–7 min. A significant reduction in the dimensions, i.e., width
and length of the wounds were observed in patients with chronic wounds whereas
there was only a reduction in ulcer width in patient having chronic venous ulcers.
The studies indicate that further research with the use of APPJ for chronic venous
ulcers has to be pursued (Isbary et al. 2013). Clinical studies using PlasmaDerm and
KINPen have also been tried on patients and have indicated a reduction in bacterial
colonization by tenfold in the wound volume than the patients who have not been
given the plasma treatment (Emmert et al. 2013; Lademann et al. 2013).

7 Mechanisms Involved in Wound Healing Using Plasma

Wound healing is a complex phenomenon involving various pathways. Reactive
Oxygen Species (ROS) and Reactive Nitrogen Oxygen Species (RNOS) of CAP
play a vital role in healing and sterilization of the wounds. Wound healing mecha-
nisms by atmospheric pressure plasma is proposed in the following two ways:

1. Interaction of ROS with the affected area.
2. Interaction of RNOS with the affected area.

Both these mechanisms help side by side in order to heal the wound and by
assisting in one or more ways during hemostatic, inflammatory, proliferative, and
maturation phases. The major species in ROS and RNOS which interact with the
wound area are hydrogen peroxide (H2O2) and nitrogen oxide (NO). Both these
mechanisms are explained as below:

Effect of ROS

1. ROS are involved in fibroblast-associated collagen production and the synthesis
of growth factors (Sen et al. 2002).
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2. In the initial stage of homeostasis, ROS helps in recruiting platelet, platelet
activation, and mediating tissue factors such as TF-mRNA (Graves 2012).

3. ROS increases messenger ribonucleic acid (mRNA) expression of anti-
inflammatory cytokines and decreases mRNA expression of pro-inflammatory
cytokines (Lee et al. 2016).

4. ROS induces the expression of TGF-β (Fathollah et al. 2016).
5. ROS (H2O2) behaves as a second messenger for platelet-derived growth factors,

vascular endothelial growth factors, and tissue growth factors (Graves 2012).

Effect of RNOS

1. Nitric oxide (NO) gas molecules help in the expansion of microvessel lumens
during growth of new blood capillaries and in the opening of reserve collateral,
which helps in the improvement of tissue nutrition and renewal of cell population
(Vasilets et al. 2015).

2. Scar tissues soften as collagen bundles are loosened by NO resulting in forming
younger tissues with the renewal of cell pool of fibroblasts (Vasilets et al. 2015).

3. NO also prevents dysplastic transformation of fibroblasts and recurrent keloid
growth (Vasilets et al. 2015).

4. The NO synthase is responsible for the inflammatory and proliferative phase of
the healing process and they are significantly found in bone fracture areas and
also in wounds developed due to burns (Fridman and Freidman 2013).

5. Nitrogen oxide species (NOS) are linked to macrophage activation in the wound,
cytokine synthesis, proliferation of fibroblasts, and epithelialization (Fridman and
Freidman 2013).

6. NO helps in the delivery of immune system components to the site of infection
because of increasing the microcirculation (Fridman and Freidman 2013).

7. RNOS forms nitrated fatty acids (NO2-FAs) which are electrophile biomolecule.
It induces anti-inflammatory polymorphic neutrophils, which help in wound
healing (Fridman and Freidman 2013).

8 Conclusion

Cold atmospheric pressure plasma addresses several modes of wound healing action
like anti-inflammatory, antimicrobial, tissue stimulation, re-epithelialization, and
neovascularization. From the in vitro and in vivo studies, the antimicrobial as well
as the wound healing properties of plasma have been clearly established. Further-
more, CAP plasma has also successfully demonstrated wound healing capabilities
during clinical studies without any side effects. Cold atmospheric pressure based
plasma devices indeed show a high potential in wound healing as it helps in
inactivating the microorganisms in the first stage and in the later stage stimulates
cell proliferation and migration. This makes plasma a novel and a promising
alternative remedial technique for wound healing, particularly, chronic wounds.
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Quorum Sensing as a Therapeutic Target
in the Treatment of Chronic Wound
Infections

VT Anju, Madhu Dyavaiah, and Busi Siddhardha

1 Introduction

Wound is defined as a simple or a serious skin or tissue injury, which can spread to
other tissues and anatomical structures such as muscles, subcutaneous tissue, nerves,
tendons, and bone. Skin is the most probable organ which has a high risk for
impairment, injury, scratches and burns. A wound is created when a damage occurs
to the epithelium layer and connective tissues which eventually weakens the primary
immune system of the human body. Thus, reconstruction of functions of epithelium
or other layers of skin is most important. This process is called wound repair or
healing. Wound healing follows through a cascade of overlapping phases (Negut
et al. 2018). The biology of wound healing involves the coagulation or hemostasis,
inflammation, migration, proliferation, re-epithelialization and finally restoration
(Fig. 1) (Garraud et al. 2017). As soon as wound develops, thromboxane A2 and
prostaglandin helps in the rapid vasoconstriction at the site of injury. A cascade of
clotting processes initiates along with vasoconstriction. The first to arrive at the site
are platelets, which favours hemostasis and produces several growth factors and
cytokines (vascular endothelial growth factor, platelet-derived growth factor and
fibroblast growth factor). These chemoattractants encourage the movement of
inflammatory cells like monocytes, neutrophils, lymphocytes and macrophages to
the site of injury. Initially, at 24 hours the neutrophils land at wound site to
phagocytize bacteria and to clear microbial and other debris from the damaged
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area. Reactive oxygen species produced by polymorphonuclear leukocytes mediates
the elimination of external contaminants. The vital step that proceeds in 48–72 hours
during the process of wound healing is the accumulation of macrophages. The phase
of proliferation usually starts with migrated macrophages, which helps in the
inflammatory healing through the discharge of cytokines, attraction of blast cells,
and removal of debris. In the remodelling phase, fibroblast cells lay down for the
components of extracellular matrix and allow re-epithelialization. Eventually, the
wound is fully repaired up to 70–80% of its original tensile strength after angiogen-
esis and new capillary bed formation by epithelial cells. Wound contracture is
completed by myofibroblasts through actin filaments (Rodrigues et al. 2019).

The processes involved in wound healing should occur at the exact time and
endure for a specific period. Wound healing is delayed when these conditions fail to
occur. There are several factors that interfere with different phases of wound healing
and results in improper or impaired healing. Wounds that failed to accomplish rapid
healing process due to the impaired tissue repair are delayed acute and chronic
wounds. These wounds never follow a normal wound healing process rather enters
into a stage of pathologic inflammation. Most non-healing chronic wounds are
related to diabetes mellitus, blood pressure or venous stasis disease and ischemia
(Guo and DiPietro 2010). Current statistics draws to the fact that more than six
million of the world population is severely affected by chronic wounds. In a study
conducted in India, says that 4.5 and 10.5 per 1000 population are affected by
chronic and acute wounds, respectively (Shukla et al. 2005). Acute wounds are
emerged due to external damage caused by bites, surgical injuries, abrasions, burns,
lacerations, gunshot injuries or burns. Acute wounds heal within a stipulated time
irrespective of the wound's nature (Bowler et al. 2001). Generally, chronic wounds
arise as minor traumatic injuries such as insect bites, simple scratch on dry skin or
penetrating injuries. These injuries are supposed to heal within few days to weeks.
Patients with underlying pathologies may cause non-healing chronic wounds. These
pathologies include non-diabetic neuropathies, diabetic-induced pathologies, venous
insufficiency, atherosclerosis, thrombosis, arterial insufficiency, varicosis,

Fig. 1 Illustration of different stages of wound healing, progression of microorganisms and
biofilms in the wounds
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macroangiopathy, microangiopathy, immobility and excessive pressure. Different
types of chronic wounds are venous ulcers, arterial ulcers, diabetic ulcers and
pressure ulcers. Different pathologies of these wounds are elongated inflammation,
tenacious infections and development of antibiotic-resistant biofilms contributed by
microbial species, which leads to the formation of non-healing wounds (Demidova-
Rice et al. 2012).

Impaired wound healing may also have contributed by dysbiosis of host skin
microbiota. Microbial species present on the skin are beneficial to the host and the
dysbiosis of skin microbiota can alter their normal gene expression levels to path-
ogenesis. A small injury on the skin may cause the reason for colonization and
proliferation of skin microbiota and other pathogenic microorganisms in the wounds,
which impede the healing process (Williams et al. 2018). Some studies suggested a
multifaceted impact of cutaneous microbiome on wound healing. In order to stim-
ulate the skin health and rejuvenation, an equilibrium among different types of
microorganisms is required. Most skin microbiome is composed of the species of
Streptococcus, Corynebacterium, Staphylococcus, various anaerobes and Pseudo-
monas (Cogen et al. 2008). These microbes have contributed to both favourable and
harmful effects on the host, based on their load and cutaneous environment. The
ultimate role of skin commensal is to dissuade the invasion of pathogens and to
stimulate the host immune system. This is interrupted often by the development of
tissue injury and ultimately causes delayed wound healing (Johnson et al. 2018).

A series of local and systemic host responses are initiated at the wound surface
and surrounding areas after the colonization by microorganisms. These host
responses can be purulent discharge or painful erythrema. Generally, acute and
chronic wounds are populated mainly by polymicrobial communities. The severity
of infection is likely to be dependent on various factors like, site, type and size of
wounds, incidence of exogenous contamination, burden and nature of microorgan-
ism, immune status of host and pathogenicity contributed by the microbial load in
the wound (Bowler et al. 2001).

2 Chronic Wound Biofilms

The transition of wounds from acute to chronic state is greatly influenced by the
establishment of several microbial populations and development of biofilms in the
wound bed. It is also reported that biofilms present in 6% and 90% of total acute and
chronic wounds, respectively (Attinger and Wolcott 2012). The microbial biofilms
found to be residing in non-healing wounds include species of Pseudomonas,
Staphylococcus, Corynebacterium and other varieties of organisms. These biofilms
are recalcitrant to antibiotics and thus exert negative impact on wound healing
(Williams et al. 2018). Biofilms are generally regarded as a population of microor-
ganisms either of single or mixed species attached to a substrate or host surface and
protected from external harsh stimuli through their exopolymeric substances (EPS)
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matrix. Around, 99.9% of all microorganisms found in natural and pathogenic
environments exist in their biofilm state (Black and Costerton 2010) (Fig. 1).

As these biofilm exhibits extreme resistance to antibiotics and exhibits biofilm
tolerance, their significant risk on public health is a challenging threat. These
biofilms are responsible for several chronic and persistent infections such as cystic
fibrosis, otitis media, pneumonia and so on. Biofilm communities may also form by
fungi and viruses other than bacteria. Their EPS matrix contains proteins, extracel-
lular DNA, carbohydrates and other biomolecules (Clinton and Carter 2015).
Biofilms resist the action of antibiotics through decreased metabolic activity, EPS
which acts as a mechanical barrier and expression of antibiotic-resistant genes
through plasmids. The physiology of biofilms inhibits the penetration of various
immune cells thus escape easily from host-mediated phagocytosis. Even, biofilms
stimulate the chronic inflammation in the wound environment and thus deteriorate
the healing cycle (Goldberg and Diegelmann 2020).

Majority of the pathogens causing biofilm infections occur as polymicrobial
which increases the severity of infection and complicates the treatment. Biofilms
are dynamic architectures that includes 5 stages of formation and they are reversible
attachment to surface, irreversible attachment, cell proliferation, growth and differ-
entiation and dispersion of cells. Biofilms escape from antibiotic therapy through the
production of various virulence factors and toxins. A cell-to-cell communication,
called quorum sensing is associated with the production of different virulence factors
and the development of biofilms (Clinton and Carter 2015).

Wound infections are often caused when the epidermal barrier is removed or
damaged due to some reasons. This damage invites microbial contamination and
colonization in the wounds. Chronic wounds often fail to heal or delay the healing
process owing to the development of chronic biofilms. In a previous report, wounds
formed in patients suffering from cystic fibrosis were not healed or responded to
antibiotic treatment. This was further explained that polymorphonuclear leukocytes
and antibiotics failed to remove refractory biofilms of P. aeruginosa present in their
chronic wounds (Li et al. 2020). According to the studies, only a small population of
microorganisms surviving in the wounds are identified and others are yet to be
revealed. If one could explore the whole microbiome involved in non-healing
chronic wounds, more therapeutic strategies can be developed based on the type of
host–pathogen interactions. A study by a group of researchers surveyed microbiome
of 30 wounds found in humans. They could identify 12 different bacterial genera
from wounds. A large population of microbes from wounds were strict and faculta-
tive anaerobes, among which many were not identified using standard culturing
techniques and this provided an evidence of incredibly diverse microbial flora in
chronic wounds (Dalton et al. 2011).

Wound microbiome conferring to various infections can be explored using
various in vitro, in vivo and in silico approaches. The application of in vitro culture
techniques enables to study the types of microbial flora or biofilms, immune
responses of host, virulence factors of biofilms and to mimic the wound microbiome
in laboratory for further analysis. In silico techniques including various sequencing
strategies helps in the identification and detection of microbial population in genera
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or species wise and also target its various virulence traits. There are several
established animal models to study the wound microbiome. Animal models are
well suited to study single species or polymicrobial species-related infections in
acute and chronic wounds (Dalton et al. 2011).

There are several strategies to target biofilms at wound sites. Among them, some
are thought to be involved in the sharp removal of biofilms which enhances the
susceptibility of planktonic bacteria to antimicrobial therapy. But biofilms initiate to
regain its mature form within 48–72 hours. BBWC, known as the Biofilm Based
Wound Care is a treatment algorithm that properly focuses on the resistance of
biofilms to antibiotics and highlights the necessity to develop successive and con-
current treatment methods (Hurlow et al. 2016). Traditional and current therapeutic
strategies to control the growth of biofilms in wounds are discussed below.

3 Traditional Therapeutic Strategies

As the wound biofilm shows extreme tolerance to antimicrobial agents and therapy,
potential strategies or agents are required to eliminate them from wounds. The
available methods mainly target three steps: either prevent the formation of biofilms
or removes the biofilms or kills the bacteria involved in biofilms. The antibiofilm
strategies involving prevention include: aseptic methods and barrier dressings to
prevent contamination, probiotics, QS inhibitors and anti-deposition agents to pre-
vent expression of EPS and colonization and management of wound environment
through pH, moisture and bacterial entrapment to prevent infection. The removal
methods include biofilm disruption by physical (ultrasound methods, surfactants,
biofilm entrapment etc.) or chemical methods (enzymatic, chelation methods etc.).
Administration of topical antiseptics or systemic antimicrobial agents facilitates the
inhibition or killing of biofilms (Metcalf et al. 2016). Sharp debridement is one of the
wound debridement techniques firstly employed to remove bacterial biofilms. In this
first step, necrotic tissue, inactivated tissue, poor healing tissue and foreign bodies
are removed in the clinical practice. This wound debridement helps in the prevention
of initial attachment or colonization of bacterial biofilms, especially by Staphylo-
coccus aureus and P. aeruginosa which may further cause secondary bacterial
infections. Hydrosurgical debridement is developed recently to eliminate the disad-
vantage of other debridement techniques and this focuses on the painless removal of
necrotic or damaged tissue (Schultz et al. 2018; Kim and Steinberg 2012; Caputo
et al. 2008).

Negative pressure wound therapy is another extensively used method for the
treatment of wounds from the past 20 years. The merits of this therapy involve
improved blood flow near the wound site, enhanced growth of granulation tissue,
reduced tissue oedema and effective reduction of wound bioburden (Matiasek et al.
2017; Han and Ceilley 2017). Guoqi et al. 2018 showed that negative pressure
wound treatment decreased the production of virulence factors and biofilm compo-
nents of P. aeruginosa and enhanced the wound healing in an in vivo model of rabbit
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with ear biofilm infection. They used different atmospheric pressure of �75, �125
and � 200 mmHg which significantly reduced the motility of bacteria and improved
the wound healing in rabbit ear (Guoqi et al. 2018). Ultrasound is another method
employed to remove biofilms. In addition, antibiotics combined with ultrasound
enabled the destruction of biofilm to a long extent. In a study, gentamycin activity on
biofilms of P. aeruginosa and Escherichia coli was significantly enhanced by
ultrasound. Also, ultrasound in clinical wound care achieved much attention in the
last few years (LuTheryn et al. 2020).

Nanomedicine in biofilm wound care is also popular as other therapeutic strate-
gies. Nanoparticles are nanosized particles that exhibited various bioactive proper-
ties. They are widely applied in the antibiofilm therapy against various bacteria.
There are nanoparticles which designed as antimicrobial agents against bacteria
found in wound surface or used for targeted drug delivery towards the wound
biofilms owing to their unique physical and chemical properties. Several
nanoparticles-based antimicrobial coatings or dressings are available as treatment
methods for biofilms present in the wounds. For instance, silver nanoparticle dress-
ings, a broad-spectrum dressing agent was considered to be the first choice of
treatment for bacterial biofilms. Around 90% of bacteria in the wounds were killed,
when 5 to10 g/ml of silver ion was used. The ability of silver ions to inhibit the
growth of bacterial biofilms and to reduce the local anti-inflammatory effect, ulti-
mately led to the rapid healing of the wounds (Koo et al. 2017; Toy and Macera
2011).

The mechanism of antibiofilm agents on the biofilm disruption is different. Some
alter the cell envelop and some dislocate the matrix. There are some categories that
encourages apoptosis. D-leucine and D-tyrosine act on cell envelope by interfering
with the amyloid fibres required for the tight packing of biofilm structure. Zaragozic
acid is another example of biofilm inhibitor which perturbs lipid rafts and cell
membrane. Norspermidine, AA-861 and parthenolide are biofilm inhibitors that
aids in the dislocation of EPS. Nitric oxide is an apoptosis-inducing biofilm inhib-
itor, which causes the disintegration of bacterial biofilms (Oppenheimer-Shaanan
et al. 2013).

One of the antibiofilm agents, N-acetyl cysteine was successfully used to resolve
chronic wound biofilms of P. aeruginosa. In this study, an in vitro biofilm system
was employed which developed using the biofilms obtained from diabetic mouse
chronic wounds. The action of this agent on wound healing was through the
reduction of the biofilm mass and disruption of EPS. Thus, N-acetyl cysteine was
able to mitigate the wound biofilms causing chronic infections in vitro (Li et al.
2020). As EPS is the hallmark of biofilm structure, dispersion of biofilm EPS can
result in the destruction of biofilms. The combination of dispersion agents with
antibiotics is always thought to be a good therapy against wound biofilms. Beta
amylase, an enzyme formed by oral bacteria has been reformulated as a dispersion
agent as it targets exopolysaccharide bonds and disrupts biofilms.
Deoxyribonuclease I, DNase and glycoside hydrolase dispersion B are few examples
of EPS dispersing agents. Aminoimidazole, a synthetic dispersion agent showed
potential activity against biofilms of S. aureus (Clinton and Carter 2015).

648 VT Anju et al.



Altogether, based on the data available so far, the first and most important step in
the treatment of biofilms in the wounds is to apply antibiofilm agents, specific
biocides and antibiotics which can physically remove the biofilms and/or later inhibit
them. The evidence states that the management of superficial infections initiated
with the design and development of topical antimicrobial agents such as
polymyxin B, bacitracin and neomycin. The topical application of antibiofilm agents
combined with antibiotics provided excellent results in biofilm wound care and this
therapy is known to be ubiquitous (Jones and Kennedy 2012). Now, more attention
is paid to the biofilm wound care to link the gap between wound clinics and in vitro
microbiology conditions. This facilitated more therapeutic advancements in the field
of biofilm wound care.

4 Cell to Cell Signalling in Chronic Wounds

The production of various signalling molecules in the wound area leads to
intercellular interactions among organisms which may lead to either single or
multi species biofilms. The cell-to-cell communications in wound biofilms are
mediated mainly by acyl-homoserine lactones or autoinducer 2 molecules. Acylated
homoserine lactone molecules and furanone-based systems or autoinducer 2 are
observed in cell-to-cell signalling by Gram negative and Gram positive bacteria.
From the available reports, these two signalling molecules are found in the majority
of the chronic wounds (Rickard et al. 2010). In general, quorum sensing (QS) is
regarded as a biochemical or molecular cell-to-cell signalling or intercellular com-
munications dependent mainly on the production of autoinducers outside the cell.
The change in the host–pathogen interactions and pathogenicity occurs when the
population of bacteria detects these signalling molecules and responds to
it. Microorganisms exhibit antibiotic tolerance, chronic and persistent infections
and enhanced pathogenicity through quorum sensing pathways. QS is also found
in biofilms rendering more antimicrobial resistance to them. Other than their EPS
matrix, biofilms escape from host immune response by activating QS pathways. The
treatment of chronic wound infections is challenged by the biofilm-activated QS
pathways (Ng and Bassler 2009; Miller and Bassler 2001; Leid 2009).

The most common pathogens that worsen the healing of wounds and transforms
into chronic wounds are P. aeruginosa and S. aureus. The quorum sensing systems
of P. aeruginosa and S. aureus interfere with the healing of wounds. The roles of QS
systems in the pathogenicity of wounds are studied using various wound infection
animal models (Nakagami et al. 2011). In some circumstances, these two pathogens
interact in the site of injury and leave a negative impact on the virulence through
their multispecies interactions. The evolutionary dynamics among these pathogens
light into the evolutionary successions, separation of niches and co-evolution of
resistance, which helped them to modify the pathogenesis and damage on host. In
addition, it also stated that the pathogen–pathogen interaction can also be competi-
tion other than the cooperation for resources (Rezzoagli et al. 2020).
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The QS pathway is initiated when the concentration of autoinducer molecules
reaches its threshold level and interacts with its cognate receptor proteins. The
interaction of protein and its ligand, in turn, controls the regulation of several
virulence factors. The major QS systems of P. aeruginosa are N-acyl-homoserine
lactone (HSL) based RhlR-RhlI and LasR-LasI pathways, and the Pseudomonas
quinolone signal (PQS) system. The LasI and RhlI are two HSL synthases that
mediate the synthesis of autoinducers, N-(3-oxo-dodecanoyl)-L-homoserine lactone
and N-butanoyl-L-homoserine lactone, respectively. The QS-dependent virulence
factors of P. aeruginosa are pyocyanin, pyoverdin, exotoxin, elastase, alkaline
protease and staphylolytic proteases. Other QS and biofilm-dependent factors are
rhamnolipids, alginate, exopolysaccharides, siderophores and different types of
motility. These toxic factors help in the colonization, differentiation and pathogen-
esis of P. aeruginosa in wound niches (Lee and Zhang 2014). There are clinical
evidence showing interference of healing process in chronic wounds by QS path-
ways of P. aeruginosa (Rickard et al. 2010). The categories at great risk to develop
infections caused by QS systems of P. aeruginosa are patients with severe burns,
complication of diabetes and chronic cutaneous wounds (Mihai et al. 2014;
Weinstein and Mayhall 2003). As this pathogen is able to cause persistent infections
and continuous inflammation, it is difficult to mitigate using commonly used anti-
biotics from chronic wounds (Chaney et al. 2017).

Staphylococcus aureus is another commonly found pathogen in chronic wounds,
which intrudes the wound healing process through the QS mediated virulence and
toxin production. The QS pathway of this Gram positive bacteria is called as AGR
(accessory gene regulator) system. The autoinducer molecules are peptides (AIPs or
autoinducing peptides) encoded by agr gene. Accessory gene regulator causes the
activation of several toxins, virulence factors and biofilm-mediated infections. The
recalcitrance of these bacteria towards antibiotics is due to the activation of QS
systems in biofilms and their interaction with innate immune responses and that
leads to elevated inflammation (Kong et al. 2006; Yarwood et al. 2004). Therefore,
the role of QS inhibition in the management and treatment of chronic wound
infections and its effect on wound healing are discussed below.

5 QS as Therapeutic Target to Treat Chronic Wound
Infections

Thus, QS of these bacteria helps to attach, colonize and proliferate within the wound
tissues through the production of cell-associated and extracellular virulence factors.
The inhibition of QS pathways in wound surfaces aids in the anti-infection therapy to
reduce the inflammation and delayed wound healing. Quorum quenching or
inhibiting agents (QSIs) are mainly classified into two groups. They are signal
supply and response inhibitors (Rutherford and Bassler 2012; LaSarre and Federle
2013). The process of quorum quenching is defined as the enzymatic cleavage of QS
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signals, which abolish their signalling process. AHL lactonases and acylases are two
quorum quenching enzymes that chop HSL rings and amide bond of AHL respec-
tively (Nusrat et al. 2011). There are enzymes that alter the activity of AHL such as
AHL reductases and oxidases. Thus, these QSIs block cell–cell signalling among
bacteria or other microbes such that only host–pathogen interaction is altered
through decreased virulence factor production without impeding the growth of
bacteria. Thus, later immune cells eradicate these bacteria, which are less virulent
and more antibiotic susceptible (Brackman and Coenye 2014; Das and Singh 2018).

Several animal models of wound infection are employed to examine the effect
and inhibition of QS in wound healing and to correlate the type of clinical infection.
However, studies related to QS inhibition in the wound healing are scarce. The
mechanism of action of QS inhibitor or quenching molecules is through the inhibi-
tion or reduction of virulence factor production and biofilm formation. The applica-
tion of QS inhibitors along with clinical antibiotics as adjuvant or combination
therapy yields promising results. Yet, their ability to repair epithelial infection is
not elucidated (Kalia 2013; Bhardwaj et al. 2013). The ability of QS inhibitor to
abrogate the production of various factors and its effect on injured airway epithelial
cells was investigated by Ruffin and co-workers in 2016 (Ruffin et al. 2016).
Different strains of P. aeruginosa from laboratory and clinical CF and non-CF
samples were used to assess the effect of 4-hydroxy-2,5-dimethyl-3(2H)-furanone
on wound healing, proliferation rates, migration rates and repair of human airway
epithelial cells of primary non-cystic fibrosis. The study showed a decrease in QS
through the repair of airway epithelial cells. Finally, they concluded, that the
inhibitor was able to act on bacterial exoproducts and counteracted with its harmful
effect on wound repair. Altogether, they suggested the use of human airway epithe-
lial cells from cystic fibrosis patients as a clinically significant pathological model to
assess chronic Pseudomonal infection in wounds (Ruffin et al. 2016).

The role of traditional folk medicine and herbal formulation in wound care was
always fascinating. There are few researchers still interested in exploring the herbal
medicine in wound care in the modern era. Since pre-historic era, people found
traditional and complementary medicine as adorable and affordable with maximum
efficiency and even after the advent of modern medicine (Dorai 2012). A group of
researchers investigated the anti-infective potential of herboheal (a polyherbal for-
mulation) on wound infective bacteria. Herboheal inhibited the production of
QS-associated pigments by multidrug-resistant bacteria causing wound infections.
Herboheal interfered with the QS signal response of C. violaceum, P. aeruginosa
and S. marcescens. This herbal-based preparation also reduced virulence in nema-
tode model, Caenorhabditis elegans infected with P. aeruginosa. Overall, this study
validated the use of herboheal as a wound care formulation against these bacterial
infections (Patel et al. 2019).

Another polyherbal preparation named as Panchvalkal is mentioned in Indian
traditional medicine. This herbal formulation affected the QS-associated virulence
factors of P. aeruginosa in vitro and in vivo. Around 14% of the pathogen genome
was significantly affected by Panchvalkal formulation. This formulation was able to
rescue C. elegans from P. aeruginosa mediated killing. Also, the formulation
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enhanced the susceptibility of P. aeruginosa to different antibiotics such as tetracy-
cline and cephalexin (Joshi et al. 2019). Panchvalkal formulation enhanced the
wound healing cycle by reducing the burden of microorganisms associated with
the wounds. In a study, some bacteria associated with wound infections such as
Chromobacterium violaceum, S. aureus and Serratia marcescens were reduced
significantly by the QS modulating property of Panchvalkal. Thus, suggested the
application of Panchvalkal formulation in the treatment of wound infection and
delayed wound healing (Patel et al. 2018). Manuka-type honeys always gained
attention in wound care due to their broad-spectrum antimicrobial properties and
low capacity to develop microbial resistance. Sugars present in honey are associated
with the reduction of QS and biofilms in P. aeruginosa. Likewise, honey is proposed
as a promising agent for wound dressings to treat the wound infections caused by
this bacterium (Lu et al. 2019). In a similar study, honey showed a potent effect on
virulence factors (exotoxin) and QS systems (LasR and RhlR) of P. aeruginosa
(Ahmed and Salih 2019).

Abbas and Shaldam 2017 investigated the ability of Glyceryl trinitrate to inhibit
QS systems of P. aeruginosa and five more clinical strains of P. aeruginosa from
burn wound infections. Glyceryl trinitrate is a FDA accepted drug with antimicrobial
and wound healing activity. Also, this compound possesses antifungal activity and
antibiofilm activity against Candida albicans and P. aeruginosa, respectively. This
compound showed QS quenching property against Chromobacterium violaceum
through the reduction of pigment, violacein. This indicated the effect of glyceryl
trinitrate on QS inhibition. They also showed a decrease in the production of several
virulence determinants including pyocyanin and protease. Computational
approaches exposed the strong affinity of glyceryl trinitrate to bind with the LasR
and RhlR regulators in comparison to the native ligands. Therefore, they
recommended the use of this QSI as a topical or systemic agent for the treatment
of burn infections caused by the drug-resistant P. aeruginosa and its biofilms (Abbas
and Shaldam 2017).

In the below section, animal models investigated to study the impact of QS
inhibition in chronic wound infections are discussed.

6 Animal Models to Study QS Interference in Chronic
Wounds

There are several advantages of using animal wound healing models over human
models. They enable to elucidate the mechanisms of wound regeneration and repair,
to test the efficiency and safety of new therapeutic methods and allows to use
animals with impaired wound healing regardless of harmful effect, which is strictly
prohibited in the use of humans (Grada et al. 2018). There are several murine models
used for assessing the QS regulated pathogenesis of P. aeruginosa and its inhibition
through antibacterial, anti-persister or anti-virulence therapy. These therapies serve
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important roles in the drug development trials against multidrug-resistant
P. aeruginosa, which are the need of the hour. The different murine wound models
practiced so far to evaluate/assess the therapeutic efficacy of QS inhibitors and
antibiotics are, role of QS systems in infection, efficacy of inhibitors of antibiotic
tolerance, therapeutic efficacy of antibacterial agents against acute pneumonia and
effectiveness of combined topical and systemic antibiotic agents are full-skin thick-
ness burn injury model, abdominal burn and infection model, murine persistent/
relapsing full-skin thickness burn injury model, large area burn wound model, acute
lung infection and open wound infection model of P. aeruginosa (Maura et al.
2018).

The quantification or presence of autoinducers in the wounds is a directive
indicative of QS and severity of infections. Researchers quantified autoinducer,
HSL produced as a result of QS signal of P. aeruginosa in a rat ischemic wound
infection model. The study revealed the ability to speculate the severity of infection
by QS pathway and this data could be applied to suggest the exact treatment to
abolish QS signalling in chronic wound infections (Nakagami et al. 2008). In a
study, sodium salicylate was reported to interfere with QS regulated virulence factor
production in chronic wound infections caused P. aeruginosa in a simulated wound
fluid. The QS inhibitor decreased virulence phenotypes and expression of virulence
genes contributed by Las, Rhl and Pqs systems. There were other bacterial strains
isolated from wounds that also produced QS signals. The QS inhibitor was active
against most of the wound strains other than P. aeruginosa. Thus, the study
suggested the use of sodium salicylate as QS inhibitory agent against wound
infections caused by a broad range of bacteria and serves as an alternative to the
traditional antibiotic therapy (Gerner et al. 2020).

Green tea is one of the popular drinks worldwide owing to its exceptional benefits
on human health. In addition to this, traditional Chinese medicine has tagged tea
with medicinal properties and as a healthful drink. One of the tea phytochemical,
polyphenols holds potential biological properties such as antimicrobial,
neuroprotective, anti-inflammatory, anti-carcinogenic, antioxidant and cholesterol-
reducing properties. Yin et al. 2015 investigated the ability of tea polyphenols to
block the QS pathways and to interrupt QS regulated virulence factor production by
P. aeruginosa. The prophylactic potential of these phytochemicals was evidenced
with reduced bacterial pathogenesis in in vivo infection models of C. elegans and
excision wound mice. A significant decrease in biofilm development, elastase
production, total proteolytic activity and motility and enhanced wound healing
were witnessed in wound infection models. The study potentiated the application
of tea polyphenols as a QSI in the treatment of infections caused by P. aeruginosa
(Yin et al. 2015).

The efficacy of QSIs which target signal biosynthesis to prevent the bacterial
infections of chronic wounds was demonstrated using a murine burn wound model
of P. aeruginosa infection. In this study, topical application of lactonases and
ciprofloxacin together, reduced the systematic spread of bacteria and morality in
murine burn wound model. The combined topical application of enzymes and
antibiotics inhibited the population so that quorum was not formed and thus
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prevented its spread. Therefore, the study provided more light into the quenching of
QS to treat chronic wound infections (Gupta et al. 2015). Wang and co-workers
elaborated the anti-QS potential of chlorogenic acid on P. aeruginosa using in vitro,
in silico and C. elegans and mouse wound infection models. Chlorogenic acid
protected the nematode from death from the colonization of pathogen in the gut
and its pathogenesis. Also in wound infection model, the reduced pathogenicity of
P. aeruginosa was supported by strong hastening effect in wound healing cycle. The
study concluded the possibility of using chlorogenic acid in anti-virulence therapy in
chronic wound infections caused by P. aeruginosa (Wang et al. 2019).

QS pathway was targeted in another study which coordinately regulated the
virulence determinants of the pan-resistant pathogen, P. aeruginosa. Halogenated
anthranilic acid (primary precursor in the biosynthetic pathway involved in PQS
systems) analogues were used in the above study which significantly inhibited the
PQS pathway and downregulated the expression of genes associated with multiple
virulence factor regulator, MvfR. The thermal injury mice model which received the
bacterial infection could restrict the systemic dissemination of bacteria and reduced
the mortality rate when administered with anthranilic acid analogues. Also, the QSI
showed increased osmosensitivity of other clinically relevant pathogens. Thus these
analogues could be exploited in future for the design and development of potential
anti-infective agents to block the infections caused by P. aeruginosa and other
clinically relevant pathogens (Lesic et al. 2007).

Quorum sensing agents combined with antibiotics are used as adjuvant therapy
for enhanced healing of infected wounds. Thus in a study, RNAIII inhibiting peptide
(RIP) along with tigecycline unveiled negative effect on methicillin-resistant
S. aureus (MRSA)-linked murine wound infection model. RIP is thought to be
interfering with the agr system of MRSA. FS10, a RIP-derived compound along
with antibiotic reduced the formation of biofilm and production of toxins by MRSA
in the murine model. The animal group which received FS10 soaked and parenteral
administration of tigecycline exhibited significant healing, more epithelialization
and collagen deposition. This was correlated to the reduced bacterial load in the test
groups in comparison to the control groups. In the future, topical application of FS10
and parenteral administration of tigecycline as adjuvants may show positive effect
on wound infections caused by MRSA through a novel therapeutic target known as
QS (Simonetti et al. 2016). Likewise, another RIP derivative FS8 and tigecycline
were combined and tested its anti-QS efficacy in a rat model with staphylococcal
vascular graft infection to prevent prosthesis biofilm. The QS inhibitor, FS8 was
recommended as an adjuvant for traditional antibiotics to remove staphylococcal
biofilm infections from wounds (Simonetti et al. 2013).

A group of researchers reported that the contents present in the extract of
Brazilian pepper tree could be used as an anti-virulence agent to treat MRSA skin
and tissue infections, which are resistant to antibiotics. Brazilian pepper tree has
already found a place in Brazilian Pharmacopoeia and it was considered always as
chief in the Brazilian traditional medicine. This is owing to the medicinal properties
of tree such as their anti-inflammatory and anti-septic properties in the healing of
ulcers and wounds. A flavone-rich extract named 430D-F5 quenched the agr system
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of S. aureus and subsided the dermonecrosis in mouse skin infection model. The
study explained the wide potential of non-biocide inhibitory agents in the manage-
ment of skin infections (Muhs et al. 2017).

Anti-virulence strategy targeting the biosynthesis of signal involved in QS of
Gram negative pathogens is always a best treatment modality. Todd et al. 2017
identified a small molecule lead, ambuic acid which significantly inhibited the
production of AIP in clinically significant pathogen, MRSA. They also demonstrated
the same in a mouse model of MRSA skin challenge model. The QS inhibitor was
able to prevent the tissue injury induced by MRSA in the animal model. Together,
the outcome of work introduced a new lead for the development of QS inhibitor
which targets the biosynthesis of AIP by Gram positive pathogens. Also, they
exposed the possibility to convert in translational medicine for skin infections
(Todd et al. 2017).

7 Future Directions and Conclusions

There are several studies dealing with the anti-QS activity of compounds or drugs in
the prevention of chronic wound biofilms and associated infections in vitro condi-
tions. Quorum sensing is regarded as a virulence strategy produced by several
multidrug-resistant pathogens and its biofilms. The inhibition or quenching of
quorum sensing is considered as an effective tactic to reduce and prevent the chronic
infections of wounds. Among several wound infection models available, murine
models are recommended to study the impact of QS and the effect of QSIs on drug-
resistant bacteria. This is also due to the close physiological similarity between
humans and mice. They are important as pre-clinical experiments before the human
clinical trials. To date, little information is available on different animal models of
wound infection. Their application in the screening steps of QSIs is dramatically
reduced due to practical and ethical concerns. Another problem with animal models
relies on the difficulty to compare the outcome with the clinical infections. This is
owing to the need for a high load of microorganisms to mimic infections in the
in vivo model and the terrible physical and mental traumatization faced by the
animals. In this context, other animal models should be recommended or developed
as an alternative to murine and rat models to screen different QSIs.

Several natural quorum sensing inhibitors were tested successfully against
multidrug-resistant pathogens. Nevertheless, more insights are required for the
application of natural QSIs to treat wound infections, as these molecules may be
less toxic for topical or systemic application. In addition, more investigations are
required to extract the full potential of anti-QS agents along with the antibiotic
adjuvants against drug-resistant bacteria. The translation of QSIs and antibiotics into
therapeutic dressing materials would be a potential method to prevent and reduce the
bacterial biofilms in chronic wounds. Integration of QSIs to other antimicrobial
therapy could serve as an excellent strategy to remove antibiotic-resistant strains.
Antimicrobial photodynamic therapy (aPDT) is emerged as an alternative cure to
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eliminate antibiotic-resistant strains. aPDT requires a photosensitizer or drug which
will get activated in presence of oxygen and light and leads to the generation of
reactive free radicals. Thus, antimicrobial photodynamic therapy along with
photoactive QSIs could be applied to treat wound infections which prevent the
generation of resistant strains in the future. Also, future studies dealing with the
depth of QSIs in wound care would explore a different arsenal of therapeutic agents
in comparison to the conventional antimicrobial agents.
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Biofilm: A Challenge to Overcome
in Wound Healing

Debaprasad Parai, Pia Dey, and Samir Kumar Mukherjee

1 From Planktonic to Biofilm

Nature is often unfavourable due to its unpredictability. Everyone prefers to follow
the principle of ‘strength through unity’ for combatting it rather than individually.
Microbes are also not out of this rule as they are commonly found in the form of
multicellular aggregates known as biofilm. This is a cluster of microbial cells
attached to various biotic and/or abiotic surfaces and interfaces by the formation of
a protective extracellular polymeric substances [EPS] matrix (Costerton et al. 1999;
Stoodley et al. 2002; Hall-Stoodley et al. 2004). Many bacterial species transform
themselves from planktonic to biofilm, depending on the physical stress in their
growing environment and to take advantage of the greater nutrients’ availability
from the substrata. The biofilm mode of lifestyle can also afford UV exposure, metal
toxicity, acid exposure, dehydration and it could restrict the penetration of antibiotics
and antimicrobial agents as well (Grossart 2010; Teschler et al. 2015; Yin et al.
2019). Hence, bacterial biofilms remain a major concern in a broad range of area like
the environment, food industry and especially the biomedical sector.

2 How this Lifestyle Grows Up?

Microbial species adopt a wide variety of mechanisms through which they can
contact a surface, firmly attach, promote cellular communications and initiate growth
as a complex structure. In contrast to the establishment of individual microorganisms
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by classical competition of natural selection, the bacterial community in a biofilm
develops entirely by self-organization and cooperation (Hall-Stoodley et al. 2004;
Jefferson 2004). The formation of biofilm follows a sequence of mechanical,
chemical and biological processes. Microbes enter into biofilm state through five
stages (Fig. 1), which is initiated by a preliminary reversible attachment, then an
irreversible attachment followed by maturation stage I, maturation stage II and
finally dispersion of the bacterial consortium within the developed biofilm (Sauer
et al. 2002; Stoodley et al. 2002; Kaplan 2010). The initial two stages involve with
the adhesion of planktonic microbial cells to the substratum by physical forces like
van der Waals forces, steric interactions and electrostatic interactions (Marić and
Vranes 2007; Garrett et al. 2008). It can also attach to the surfaces employing
bacterial appendages such as pili or flagella, which is further modulated by different
types of factors like temperature, pressure and surface functionality. Hydrophobic
interaction between the surface and the bacteria plays an important role in biofilm
cells aggregation where the bacteria can adhere to a hydrophobic nonpolar surface
through this interaction (Garrett et al. 2008; Tribedi and Sil 2014). The extent of
microbial attachment is greatly influenced by cell surface hydrophobicity which is
further strengthened by the presence of extracellular filamentous appendages.
Hydrophobic interactions act by increasing the non-polarity between the adhering
surface and the attached microbial cells. Concisely, microbial cells initiate biofilm
formation with a loose adhesion followed by specific, strong and irreversible binding
to a particular substratum (Hall-Stoodley et al. 2004).

The first two stages of biofilm development are followed by maturation stages
with the construction of complex architecture, channels and pores (Davies 1998).
This phase witness the onset of microbial communications by the production of
autoinducers that orchestrate the expression of biofilm-specific genes (Dubern and

Fig. 1 Schematic diagram depicting the stages involved in biofilm development
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Diggle 2008; Joo and Otto 2012; Parai et al. 2018). This particular phase involves a
set of precisely synchronized events which includes the development of EPS matrix
to stabilize the biofilm network along with the production of extracellular DNA
(eDNA) for cellular communication and stabilization of biofilm. Experimental
evidence has reported that young Pseudomonad biofilms are an easy target for
DNase treatment than their mature counterparts which suggest the stabilizing role
played by eDNA during the initial stages of biofilm formation when EPS compo-
nents are barely present (Whitchurch et al. 2002; Gloag et al. 2013). Irreversible
adhesion leads to cellular aggregation followed by the formation of microcolonies.
In the maturation stage, biofilms adapt to the external environment by manipulating
their integral structures, physiological aspects and basic metabolism. The final stage
in the lifecycle of biofilm is the dispersion phase where the bacterial cells dissem-
inate from the biofilm matrix and revive to their motile form from their sessile form.
Various biochemical changes occur within the dispersing biofilm such as the pro-
duction of different saccharolytic enzymes responsible for the degradation of stabi-
lizing polysaccharides, thereby aiding the colonization of the bacterial cells to new
surfaces (Sutherland 2001; Guilhen et al. 2017). The dispersal strategies can be
broadly explained by three different mechanisms, namely seeding, erosion and
sloughing. Seeding dispersal was best explained in non-mucoid Pseudomonas
aeruginosa biofilms, where the microcolonies differentiate to form stationary bac-
teria of sessile phenotype, and the inner region containing liquefied microcolonies of
motile cells. These planktonic motile cells then come out of that colony structures via
swimming which leaves a hollow mound inside. Staphylococcus aureus exhibit
erosion dispersal where their biofilm aggregates surrounded by EPS are found to
be continuously shed from the core structure. These dispersed cells are found to have
physiological similarity with the biofilm rather than their planktonic parts. Another
strategy for biofilm dispersal happens in the later phase of biofilm development
where a large portion of the biofilm detaches suddenly from the core aggregation.
Although it is known that single cells can actively move across surfaces through
gliding and twitching motility in some species, there are pieces of findings for shear-
mediated motion exhibited by P. aeruginosa and mixed-species biofilms (Hall-
Stoodley et al. 2004; Kaplan 2010).

3 Antimicrobial Resistance of Biofilm

Biofilms show increased survival and resistance to conventional antibiotics mainly
by the protection conferred by EPS. Biofilm forming bacteria have a general trait of
increased antibiotic resistance (Stewart and William Costerton 2001; Davies 2003).
Biofilm cells are 10 to 1000 times less susceptible to a specific antibiotic as
compared to their planktonic counterparts (Gilbert et al. 2002). Several mechanisms
are accounted for the drug resistance mechanisms conferred by biofilm, viz.
(i) formation of chemical and physical barriers against antibiotic penetration;
(ii) evolution of resistant phenotypes called persister or mutator cells; (iii)
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antimicrobial agent inactivation by chemical modification, hydrolysis, alteration of
the target sites and activation of efflux pumps; (iv) presence of eDNA to chelate
cationic antibiotics; (v) expression of antibiotic resistance genes and
(vi) heterogenicity in biofilm cells population which indeed trigger stress responses
under unfavourable conditions like low oxygen and nutrients (Mah and O’Toole
2001; Davies 2003; Høiby et al. 2010). Even sub-inhibitory concentrations of
aminoglycosides could induce biofilm formation in Escherichia coli and
P. aeruginosa as part of their defensive mechanisms (Hoffman et al. 2005). Since
biofilm formation is common for most bacterial pathogens found in chronic wound
infection, the increasing antibiotic resistance of biofilm is a serious concern in
wound healing (Donlan 2001; Metcalf and Bowler 2013).

4 Biofilm and its Clinical Relevance

The adherent behaviour of bacteria is more predominant and a clinically relevant
process over the planktonic one. Biofilms have severe harmful pathogenic manifes-
tations on human health, that contribute to almost 80% of the total chronic and
recurrent microbial infection (Römling and Balsalobre 2012). This is mainly due to
the increased antibiotic resistance of biofilm compared to its planktonic counterparts
from the same bacterial culture (Hall-Stoodley and Stoodley 2009; Vasudevan
2014). Biofilm formation has been robustly found in diseases like otitis media,
dental caries, chronic wound infection, osteomyelitis, chronic rhinosinusitis, recur-
rent urinary tract infection, endocarditis, cystic fibrosis-associated lung infection and
many more. Some common bacteria which are frequently produced biofilm during
the establishment of the disease include S. aureus, P. aeruginosa, E. coli, Staphy-
lococcus epidermidis, Streptococcus sp., Candida sp. A complete list can be found
in Table 1. Biofilms are also a major concern in clinical settings causing medical
device-related infections. Surface depositions of biofilm on medical devices like
intravenous catheters and cardiac pacemakers were first observed by an electron
microscope in the early 1980s (Donlan and Costerton 2002). Microorganisms like
S. epidermidis and S. aureus are most frequently found in association with medical
devices, followed by P. aeruginosa and an array of other opportunistic pathogens
which cause infections during an invasive medical intervention or chemotherapy in
an immune-compromised individual. Biofilm formation on medical implants has
even led to the characterization of a new infectious disease called chronic polymer-
associated infection. Medical devices that are well documented as biofilm substra-
tum are mainly intravenous catheters, cardiac pacemakers, joint prostheses, pros-
thetic heart valves, peritoneal dialysis catheters, dentures, contact lenses,
cerebrospinal fluid shunts and endotracheal tubes (Donlan and Costerton 2002;
Litzler et al. 2007; Veerachamy et al. 2014; Yadav et al. 2020).
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5 Characteristics of Chronic Wounds

The physiological process of wound healing is attributed to four overlapping phases
of haemostasis, inflammation, proliferation and repair of the matrix involving
epithelialization and remodelling. A chronic wound can be defined as a wound
that is restrained from progressing through an inflammatory stage to its next subse-
quent stages, thereby disrupting the orderly events of wound healing (Attinger and
Randy 2012). Depending upon their aetiologies and pathogenesis, they can be
categorized into three groups: venous leg ulcers, diabetic foot ulcers and pressure
ulcers. Owing to their unique origins, non-healing chronic wounds are unlikely to
have a customary cure for all its types. However, non-healing chronic wounds share
certain common features, such as the release of excessive levels of proinflammatory
cytokines by the necrotic tissues, proteases, reactive oxygen species (ROS) and
senescent cells. The situation is worsened by the collateral existence of persistent
infections along with a deficiency of functional stem cells. The constant influx of

Table 1 List of biofilm-associated diseases and their causative organisms

Disease name Biofilm forming microorganism References

Cystic fibrosis Staphylococcus aureus, Pseudomonas aeruginosa,
Haemophilus influenzae, Streptococcus pneumoniae

Ciofu et al.
(2015)

Chronic wound
infection

S. aureus, P. aeruginosa, Enterococcus faecalis,
Proteus spp.

James et al.
(2008a, b)

Chronic otitis media S. aureus, P. aeruginosa, Staphylococcus
epidermidis, S. pneumoniae, H. influenzae,Moraxella
catarrhalis

Thornton et al.
(2011)

Endocarditis Streptococcus spp., Staphylococcus spp., Candida
spp., Aspergillus fumigatus

Donlan and
Costerton
(2002)

Periodontitis and
dental caries

Fusobacterium nucleatum, Peptostreptococcus
micros, Bacteroides intermedius, Bacteroides
forsythus, Porphyromonas gingivalis, Tannerella
forsythia, Treponema denticola, Bifidobacterium
denticum

Colombo and
Tanner (2019)

Pleuropulmonary
infections

P. aeruginosa, S. aureus, H. influenzae, Candida
albicans, S. pneumoniae, Klebsiella sp., Escherichia
coli, Acinetobacter sp., A. fumigatus

Boisvert et al.
(2016)

Osteoarticular infec-
tions (osteomyelitis)

S. aureus, Streptococcus pyogenes, H. influenzae,
Enterococcus spp.

Brady et al.
(2008)

Skin infection S. aureus, S. epidermidis, Propionibacterium acnes Coenye et al.
(2008)

Rhinosinusitis S. aureus, S. pneumoniae, H. influenzae,
M. catarrhalis

Maina et al.
(2018)

Urinary tract infection E. coli, Klebsiella pneumoniae, Proteus mirabilis,
Serratia spp., P. aeruginosa, S. aureus, E. faecalis

Hatt and Rather
(2008)

Medical device-
related infection

S. aureus, S. epidermidis, P. aeruginosa,
K. pneumoniae, E. faecalis, C. albicans, P. mirabilis

Jamal et al.
(2018)
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immune cells are secondarily stimulated by repetitive tissue injury that ends up in a
prolonged proinflammatory cytokine cascade which further elevates the level of
proteases (Frykberg and Banks 2015). Inside acute wounds, proteases are meticu-
lously regulated by their inhibitors but these protease levels surpass the inhibitor
counts in case of chronic wounds. Proteases are tightly regulated by their inhibitors
in acute wounds but in the case of chronic wounds, protease levels exceed their
respective inhibitor counts. This causes the destruction of extracellular matrices
(ECM), and the degradation of the growth factors and their receptors. The feature
prevents the wound from proceeding into the proliferative phase and also attracts
further inflammatory cells, thus lengthens the inflammatory stage (Mccarty and
Percival 2013). Similarly, increased ROS production in chronic wounds damages
the ECM proteins and causes other cell damages instead of providing defence
against microorganisms (Schreml et al. 2010). Fibroblasts are essential cells in the
wound healing process, which in case of venous leg ulcers and pressure ulcers
become phenotypically altered and exhibit senescence with diminished ability to
proliferate for the formation of granulation tissue (Stanley and Osler 2001; Clark
2008). Additionally, non-functional senescent keratinocytes at the periphery of
wounds proliferate, but they cannot fully differentiate into migrating keratinocytes
(Morasso and Tomic-canic 2005). These ultimately advance the epithelial build-up,
often seen around the edge of the chronic wounds (Attinger and Randy 2012).
Mesenchymal stem cells (MSC) are reported to have a crucial role in wound healing
(Ennis et al. 2013). But deficient and defective MSCs in case of chronic wounds are
found to obstruct the remodelling of microvasculature for which they get recruited
into the circulation in response to injury. Hence, the key to reverse the chronicity of
non-healing wounds is by exploring the underlying molecular and physiological
mechanisms behind the phenomenon of non-healing and restoring the optimal
balance of cytokines, growth factors, proteases and metabolically competent cells
which can, in turn, improve the extent of healing.

6 Biofilm in Chronic Wounds

The assemblage of three-dimensional bacterial biofilm is the prevailing phenotype of
bacteria in a chronic non-healing wound bed fused with the extracellular matrix. This
sessile form of bacteria assists its inhabitation in a chronic wound more proficiently
than its planktonic counterparts (Wei et al. 2019a, b). Evidence has confirmed the
presence of bacterial biofilms in chronic wounds by experimentally inducing it in
animal models along with the demonstration of clinical wounds (Wright et al. 1999;
Thomson 2011; Metcalf et al. 2014). Various topologically distinct types of wound
biofilm viz. static, colonized, slimy, pigmented found in human chronic infections
are represented in Fig. 2. Bacterial biofilm levels up the severity of chronic wounds
by diverse factors starting from the heterogeneous nature of biofilm consortium to
interspecies relation within that mixed population. The presence of biofilm gradient
and persister cell community, incompetent antimicrobial penetration along
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with variable pathogenesis imposed by respective residing microorganisms further
intensifies the chronicity. The spread of infection is not dependent on the number of
species present within the biofilm, rather it can be regulated by the abundance in
normal skin microflora (Brandwein et al. 2016). Though some pathogenic species
(notably S. aureus and P. aeruginosa) can replace the harmless skin commensals and
cause infection, which then requires probiotic therapy in the form of re-colonization
with ‘healthy commensal’ bacteria (Krutmann 2009). Interspecies relation is another
important factor that determines the net behaviour of the community whether they
belong to ‘functional equivalent pathogroups’ where they act synergistically leading
to a chronic wound (Lewis 2005). Most of the chronic wounds are persistent
infections and the biofilms found here are pre-formed (Ito et al. 2009; Li et al.
2020). Inhibition of biofilm formation is always easier than to eradicate a pre-formed
or mature biofilm which already consists of a special type of cells called persister
cells which neither grow nor die easily. Moreover, these cells are almost resistant to
conventional antibiotic dosages which further emerge the threat of antimicrobial
resistant strains when tried with higher dosages for their removal in clinical settings.
In vitro studies have found that a test antibiofilm compound can disperse a
pre-formed biofilm only in higher concentration compared to the dose required for
the inhibition of the same biofilm during formation (de la Fuente-Núñez et al. 2014;

Fig. 2 Different visualization of wound biofilm. A static, non-progressing wound on a stable
diabetic patient. Arrows indicate the suspected appearance of biofilm (a). A heavily colonized
biofilm in wound bed of a stage IV pressure ulcer. Arrow indicates a possible biofilm layer with a
slightly thicker and opaque appearance (b). An ischaemic and infected wound with suspected
biofilm-forming through and over a previously-applied gauze dressing (c). A chronic wound bed
with green pigmented biofilm (d). Viscous, pale, green-blue, slimy suspected biofilm covered on a
forefoot amputation (e). Wound surface exhibited yellow suspected biofilm, possibly mixed with
slough as found in a failed surgical wound (f). Biofilm re-formed quickly over granulation tissue in
an ischaemic wound (g). The same suspected biofilm could be removed atraumatically using
forceps to reveal the granulation tissue beneath (h). Images are reproduced with kind permissions
from authors (Metcalf et al. (2014) and the Journal of Wound Care
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Algburi et al. 2017). One of the major reasons behind this is the reversible features of
the first two phases in a biofilm developmental pathway as discussed earlier. Once it
starts to establish the complex interactions among the cell population and modulates
phenotypically, it becomes ready to escape and endure regular antibiotic treatments
(Keren et al. 2004; Percival et al. 2011; Olsen 2015). Clinical studies have also
reported re-emergence of biofilm communities from wound bed even after their
successful removal following surgical debridement of chronic wounds. Addition-
ally, biofilms in chronic wounds may differ from the types of infection hindering the
application of specific treatment approaches for chronic wounds (Wright et al. 2002).

7 Role of Biofilm Matrix in Wounds

The prolonged persistence of bacterial biofilm interferes with the potentiality of their
treatment within chronic wounds. Bacterial biofilm can invade such wounds earliest
by 10 hours after its inception, and persist until the wound remains open (Harrison-
Balestra et al. 2003; Kim and Steinberg 2012). An array of growth associated factors
like oxygen, nutrient, pH, osmolality and chemical agent concentration regulates the
microenvironment of a biofilm. The main reason behind this prevalence is biofilm
composition, which includes EPS along with proteins, polysaccharides, lipids,
eDNA, water, ions and nutrients. This concomitantly determines the types and stages
of microorganisms present within the biofilm matrix (Percival et al. 2011; Jensen
et al. 2017). Biofilms evade antimicrobial challenges by multiple mechanisms as
discussed earlier, of which the most important being resistance imparted by EPS.
Incomplete penetration of the antimicrobials to a chronic wound completely differs
from its acute state in terms of susceptibility towards antimicrobials. The inert nature
of EPS retards the diffusion of antibiotics, making biofilms a predominant cause of
persistent infections (Metcalf and Bowler 2013; Mendoza et al. 2019).

8 Prevalence, Detection and Management of Biofilm
in Wounds

Bacterial biofilms are one of the most predominant causes behind delayed healing of
approximately 60–80% of chronic non-healing skin wounds (James et al. 2008a, b;
Brandenburg et al. 2018). Factors like wound size, position, moisture content, host
immunity, comorbidity can influence the chronicity and healing time of wound
infection. The microenvironment of chronic wounds facilitates biofilm form of
bacterial growth, as it accommodates necrotic debris with low oxygen tension and
dampened but sustained host immune response (Wu et al. 2019). The lethality of a
chronic wound may vary from prolonged inflammation to debridement and even
amputation of distal limbs in extreme cases. However, the prevalence of biofilm in
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the case of acute wounds is not at par with their chronic counterparts. About 60% of
chronic non-healing wounds requiring debridement are connected with biofilms,
while 6% of acute wounds were identified to be laden with biofilm (James et al.
2008a, b; Metcalf and Bowler 2013).

Detection of biofilm in chronic wound infection mainly focuses on two primary
aspects: biofilm localization and identification of the causative organisms. Although
the presence of biofilms have been reported widely in a majority of chronic
non-healing wounds, yet there is a lack of precise techniques to achieve these two
primary goals (Hurlow et al. 2016). Tissue biopsy from debrided wound base is
crucial for precise identification of the causative organism other than inefficient
superficial wound swabbing (Lipsky et al. 2012; Høiby et al. 2014). Current biofilm
detection methods can be broadly categorized into morphological assay, microbio-
logical assay and molecular assay.

8.1 Morphological Methods

With a thickness of less than 100μm, lack of distinct distinguishable feature and
heterogeneous distribution throughout the wound base and eschars make it difficult
to visualize wound biofilms with the naked eye (Bjarnsholt et al. 2013). Thus, more
than one sample should be drawn both from upper and deep wound layers to increase
the accuracy of the respective diagnostic methodology (Wu et al. 2019). Slough,
debris or exudates are sometimes visually mistaken as biofilms by healthcare pro-
fessionals. Hence diagnosis of biofilm rely upon high-resolution microscopy such as
scanning electron microscopy (SEM) and confocal laser scanning microscopy
(CLSM) since wound swabbing or histological examinations may lead to false-
negative results depending on the sample collection site. Microbial electrochemical
technology is another precise optical method to visualize electrochemically active
biofilms which can be explored by healthcare professionals for uncomplicated
identification of biofilms (Schmidt et al. 2017).

8.2 Microbiological Methods

Microbiological assays are almost carried out daily in clinical settings to identify the
causative agents of acute infections. On contrary, biofilm-associated chronic wound
infections are challenging because chronic wounds harbour multiple pathogens,
typically 2–5 species co-existing within one ulcerative wound (Dowd et al. 2008).
Most of the bacteria in chronic wounds enter a slow-growing stationary phase which
is characterized as a viable but non-culturable (VBNC) state (Li et al. 2014). This
might be an adaptive mechanism for surviving a stressful microenvironment
consisting of antimicrobial exposure, low pH, less oxygen and limited nutrients.
Culturing becomes even more difficult by the presence of multispecies within the
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same biofilm matrix. Moreover, VBNC bacteria require special cultural techniques,
such as under temperature stress and starvation. Several other physical methods like
sonication, and chemical methods like dithiothreitol treatments along with standard
tissue culture methods are reported for acquiring clinical samples. But neither a
single method exhibits a gold standard for the collection of chronic wound samples
through microbiological assays nor any study has examined the effectiveness of
these methods.

8.3 Molecular Methods

Metagenomic evaluations utilizing conserved 16S ribosomal RNA sequences were
developed to overcome the limitations encountered by microbiological assays with
direct identification of the pathogens involved in chronic wound associated biofilm
formation. Development of several advanced techniques such as denaturing gradient
gel electrophoresis (DGGE), which is a common method for semi-quantitative
(around 40%) analysis of complex biofilm diversity within a chronic wound.
DGGE separates DNA sequences having identical length but different sequences
based on greater stability as observed in the case of G–C pairing over A–T pairing
when exposed to the DNA denaturants (Kolbert and Persing 1999; Davies et al.
2004). Other sophisticated methods include partial ribosomal amplification and
pyrosequencing (PRAPS), full ribosomal amplification, cloning and Sanger
sequencing (FRACS) and partial ribosomal amplification, denaturing gradient gel
electrophoresis, and Sanger sequencing (PRADS) applied individually or in combi-
nation to identify, characterize and quantify bacterial strains that escape conven-
tional culturing technique (Dowd et al. 2008). Partial ribosomal amplification holds
the capability of amplifying up to 600-bp only but full ribosomal amplification can
amplify the entire 16S rRNA of a bacteria. Due to the diversity and variability of
bacterial load within a chronic wound, different types of molecular methods are
employed to determine bacterial identity, diversity and epidemiology (Dowd et al.
2008). These technologies are quite old in the study of environmental microbiota and
are being used nowadays to extensively examine the complex microbiological
structure in a chronic wound biofilm. Peptide nucleic acid (PNA) is a synthetic
DNA analogue that displays more appropriate and easy nucleic acid binding and
fluorescence in situ hybridization (FISH) is a popular method to detect specific DNA
sequence on a chromosome. PNA-FISH is a modified and combined form of PNA
and FISH with higher specificity and sensitivity, that is designed to target the 16S
rRNA of specific bacterial species within a biofilm. PNA-FISH in combination with
CLSM is a useful tool to separately identify each species clusters present in a tissue
sample collected from a wound of heterogeneous biofilm (Malic et al. 2009;
Kirketerp-Møller et al. 2008).
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8.4 Other Methods

A set of methodologies falling under a particular category cannot meet the demand
of accurately detecting biofilms in chronic wounds in a complex, intricate clinical
scenario. Although molecular techniques appear to be quite promising in identifying
the causative bacteria of biofilm, it fails to differentiate between true pathogens from
other contaminations (Dowd et al. 2008). Henceforth, the newly emerging diagnostic
methods for chronic wound biofilms come into play. This involves two techniques:
wound blotting which is a newly proposed methodology to provide a non-invasive
and precise evaluation of wound beds. Another one is a transcriptomics approach to
differentiate true pathogens from other bacteria in the biofilm matrix. Next-
generation sequencing of RNA (RNAseq) is a highly modern approach to identify
the gene expression in a chronic wound biofilm and thus noted as a cutting-edge
technique to evaluate a huge sample pool in a short time.

Acute infections are predominantly involved with planktonic phenotypes having
more aggressive and rapidly dividing cells that invade the host tissues and stimulate
a strong inflammatory response (Mendoza et al. 2019). Acute infections can be
eradicated via the combined action of antimicrobials with cellular and humoral host
immune responses. Chronic non-healing infections composed of highly tolerant
bacterial biofilms require removal of the colonized device in most of the cases or
surgical excision of infected tissue (Frykberg and Banks 2015). The immense
contribution of biofilms in the chronicity of non-healing wounds has forced
researchers to propose new guidelines for biofilm-based wound care (Schultz et al.
2017). This involves meticulous sharp debridement, application of broad-spectrum
antibiotics with the administration of local antibiofilm agents in case of chronic and
critically ischemic wounds (Wolcott and Rhoads 2008). Modern approaches like
ultrasound-based debridement, nanoparticle therapies, phage therapy, quorum sens-
ing inhibitors (QSIs), cationic antimicrobial peptides, phytochemicals, EPS
degrading enzymes are now being implemented to manage the wound infections
and subsequently to attenuate biofilm progression (Jones and Kennedy 2012; Wei
et al. 2019a, b; Dhar and Han 2020). Among these, QSIs are a well-known class of
antibiofilm agents that aim to disrupt biofilm formation and to impede virulence
factor productions by blocking quorum sensing pathways (Kalia et al. 2014). The
formation of an inactive complex with QS receptors leads to the cessation of the
whole signalling pathway as found by the QSIs mode of action (El-Mowafy et al.
2014; Maisuria et al. 2016; Parai et al. 2020). There are facets of QSI limitations also
which either completely or partially block the QSI activity, for example C-30
injections can negatively regulate the expression of some QS-mediated virulence
genes such as lasA, lasB, hcnAB, rhlAB, chiC, phnAB and phzABCDEFG without
hindering the expression of lasI/R and rhlI/R gene clusters (Hentzer et al. 2003).
Fatty acids are currently reported to exhibit selective inhibition and/or cause com-
plete disruption of biofilm formation, due to their wide diversity and ability to block
biofilm formation by interfering with microbial virulence. They mainly act by
enhancing the susceptibility of microorganisms towards other antimicrobials or
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sometimes by acting as a signal molecule, targeting several QS regulated gene
functions (Kumar et al. 2020).

9 Implications of Biofilm on Wound Healing

The process of wound healing is a complex biological process that proceeds in an
orderly manner involving four distinct but overlapping phases—homeostasis,
inflammation, proliferation and remodelling. The phases involve explicit temporal
interactions between numerous types of cells, extracellular matrix molecules and
soluble factors (Velnar et al. 2009). The implications of biofilm on chronic wounds
are not only confined to retard healing or as a financial burden, but it also can
develop into an overt or persistent infection derived from the insertion of a medical
prosthetic device. The situation can also give rise to antimicrobial resistance along
with the increasing risk of tissue toxicity (Mendoza et al. 2019). Generally, wound
healing involves an orderly transition that includes epithelialization, granulation
tissue formation, inflammatory phase of angiogenesis, tissue reorganization and
tissue regeneration (Dovi et al. 2004). Unlike normal wound healing where the
inflammatory phase is generally short and lasts for a few days, chronic wounds
exhibit an extended inflammatory phase, which ultimately delays the progression of
wound healing. This prolonged inflammatory phase witnesses the release of a wide
variety of cytokines and blood cells, especially neutrophils and macrophages, with
changes in oxygen gradient and pH level at the wound site. Bacterial biofilms often
avail a fringe benefit of this situation by manipulating cellular (leukocytes,
keratinocytes, endothelial cells and fibroblasts) functions, inflammatory cellular
response, cutaneous innate immune response and repair phase (Zhao et al. 2016;
Omar et al. 2017). The diversity of microbial species in a bacterial biofilm enclosed
within the protective layer of EPS ensures their uninterrupted presence in chronic
wounds throughout infection. The inert nature of EPS safeguards the bacteria from
antibiotic medicament, thereby imparting antibiotic resistance along with persistent
infection. Antibiotics mainly target metabolically active and actively proliferating
bacterial cells. As a result, bacteria within a biofilm matrix have reduced suscepti-
bility towards antibiotic treatments as the biofilm is mainly dominated by slow-
growing or starved dormant cells, which are usually exposed to nutrient limitation
(Crabbé et al. 2019). Furthermore, spatial heterogeneity of bacterial cells within
biofilms empowers an important survival strategy whereby some of the cells under
different metabolic states, are more definite to survive in any metabolically directed
attack (Mah and O’Toole 2001).
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10 Future Perspective

Although non-healing wounds have various in vivo limitations that restrains their
recovery or complete cure but biofilm remains to be one of the predominant causes
behind its lack of rehabilitation. Biofilms on the other hand are difficult to eradicate
due to various constraints regarding their isolation, identification and accurate
remediation. Despite an array of potential treatments for biofilm-associated chronic
wounds are present to clinicians, no reliable diagnostic methods are currently
available for the detection and identification of biofilms. Sophisticated imaging
techniques are available but they always require special equipment, highly trained
personnel and precision of time. Sometimes it seems to be impractical in clinical
settings on the regular basis owing to its huge percentage of patients. However, the
current methods available such as wound blotting-based sharp debridement can
precisely remove the biofilm-affected wound portion without causing much collat-
eral damage to adjacent tissue. A comprehensive understanding of the chronic
recurrent infection caused by biofilms and its drug-resistance mechanism can help
to chalk out explicit therapeutic care. In a parallel approach, studying the host–
microbe interaction on a molecular level can unlock the underlying intricate mech-
anisms which can further be used in understanding and improvising the strategies
dealing with the chronicity of non-healing wounds. Rapid progress in the field of
biofilm research along with innovative strategies may set the foundation for accurate
diagnostics and effective treatment of chronic wounds. Although new antibiotic
therapeutics are being constantly explored, novel findings and their applications
are poles apart due to some unresolved constraints. The primarily high concentration
of the therapeutics beyond the permissible limit, followed by cost-effectiveness and
effectual storage potential are a few reasons. Therefore, recently virulence attenua-
tion approaches are being examined that involve drugs that do not kill the bacteria
but interfere with their ability to produce virulence factors. This in turn will enfeeble
the biofilm, sensitizing the bacteria to antibiotics and eventually accelerating or
resuming wound healing.
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The Potential of Essential Oils as Topical
Antimicrobial Agents in the Age of Artificial
Intelligence

Polly Soo Xi Yap, Rabiha Seboussi, Kok Song Lai, and Swee Hua Erin Lim

1 Introduction

The ability to effectively heal wounds is the key to our survival because a slow
healing wound will continuously expose the devitalized tissue to colonization and
establishment of a wide variety of endogenous and potentially harmful microorgan-
isms, which can result in life-threatening infections. In this case, surgical site
infection (SSI) can result in delays in wound healing, impaired cosmetic outcome,
and increased healthcare cost (Badia et al. 2017). Topical antibiotics are applied to
surgical wounds with dressing after surgery to reduce the risk of SSI. A clinician
may choose to prescribe a topical antibiotic on a wound after careful consideration of
the underlying infective process and assessing the risks and benefits of treatment. As
the action of topical antibiotics is localized, there is a reduced likelihood for
undesirable effects that could affect the body systemically, exhibiting symptoms
such as nausea and diarrhea. Therefore, effective wound dressing loaded with
antimicrobial agents after surgery is necessary to deal with such pathological
conditions, with the aim of reducing SSIs. The main function of antibiotics in
wound healing is to prevent the growth of pathogens causing the infection and
potentially, to promote healing (Altoe et al. 2019). However, the use of antibiotics in
modern medicine has given rise to the development of antimicrobial resistance
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(AMR). Antibiotic- and multidrug-resistant isolates are increasingly reported in
infected wounds (Godebo et al. 2013; Pirvanescu et al. 2014) and one of the common
causes of community-acquired infections (van Duin and Paterson 2016). Hence,
wound healing and infection without effective antimicrobials in place pose a formi-
dable medical challenge.

The emergence of AMR is accelerated by injudicious use of antibiotics; thus there
remains an urgent necessity for novel or alternative antimicrobials to fight against
bacterial evolution that continues to resist new drug classes. Due to concerns with
regard to AMR spread, natural products, particularly, essential oils (EOs) are viewed
as a promising yet understudied group of potential antimicrobial agents that can be
incorporated into wound dressings. Over the last decade, many studies have been
conducted to explore the use of natural products as alternative therapies, for exam-
ple, testing against resistant bacteria (Moo et al. 2020; Yang et al. 2019; Yap et al.
2013) and developing formulations for antimicrobial wound dressing (Edwards-
Jones et al. 2004; Pereira Dos Santos et al. 2019). However, conventional drug
screening methods are too slow as opposed to the more rapidly developing levels of
resistance, notwithstanding other scientific obstacles such as molecular target vali-
dation (Hughes et al. 2011), endogenous resistance potential as well as drug perme-
ability and intracellular accumulation (Silver 2011). Advances in genetics,
genomics, and artificial intelligence (AI) represent a new paradigm for drug discov-
ery to combat AMR. In this chapter, we aim to explore the potential of taking
AI-based approaches as applied in the screening of novel antimicrobial peptides
(AMPs), and applying these approaches on topical antimicrobial discovery from
EOs. While majority of the essential oil screening studies remain in vitro and in vivo,
computational and statistical framework involving AI, machine learning, and deep
learning models is a step forward for in silico research to help guide EO drug
discovery. This is in tandem with increased chances of success in the wet laboratory
that can be performed after predictive models have been established in silico.

2 Practical Outlook for Essential Oils Drug Discovery
in Topical Wound Care

The wide range of therapeutic properties such as bactericidal, virucidal, and fungi-
cidal effects of EOs has garnered considerable attention of great medicinal impor-
tance (Swamy et al. 2016). Their structural diversity and complex chemical
composition with about 20–60 different bioactive compounds present in many of
these EOs fit the multitarget hypothesis in which they are not subject to contributing
to resistance by this very attribute of possessing multiple molecular targets (Silver
2011). A literature survey was performed on both PubMed® and Google Scholar,
with search keywords including “essential oil,” “antibacterial activity,” “induction of
resistance*”, and “reduce susceptibility*” (https://pubmed.ncbi.nlm.nih.gov/ and
https://scholar.google.com/, accessed 2020 October 25). No evidence of resistance
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for major clinically important pathogens has yet to be reported on EOs. Most EOs are
composed of only two to three major compounds which are present in fairly high
proportions (20–70%) and other minor compounds that present in low amounts. EOs
are composed of mainly compounds from the terpenes family and other aromatic and
aliphatic constituents (Swamy et al. 2016). Despite exhibiting a wide range of
pharmacophores that offer great potential for physiochemical properties, EOs are
often excluded in drug discovery (Lipinski 2016), partially due to their volatility and
hydrophobicity (Feyaerts et al. 2020). It is also important to note that the chemical
constituents of plant EOs can be affected by various factors such as geographical
location, climate, and stage of maturity; these factors subsequently affecting the
antimicrobial properties (Pichersky et al. 2006). Additionally, difference in extrac-
tion methods is also related to difference in the stereochemical properties of the EOs
(Lahlou 2004). Hence, a highly integrated interdisciplinary approach is necessary to
assess the drug-likeness potential of EOs and the components in silico, to ensure
fewer false positives and late-stage attritions in lead development. Although EOs
were known to have possessed some undesirable characteristics that result in their
exclusion from Lipinski’s well-known Rule of Five (Ro5) as drug candidates with
good oral bioavailability (Lipinski 2016), they have some unique properties that
make them ideal for topical applications. One of the key challenges for topical
antimicrobial agents is that the highest concentration may remain at the skin surface
and decline in the subcutaneous fat, hence, there is a potential that the local
concentrations may not remain above the minimal inhibitory concentrations for
high-level resistant strains. Natural terpenes are widely recognized for use as safe
transdermal permeation enhancers in the pharmaceutical industry (Fox et al. 2011;
Gao and Singh 1998). Previous studies have indicated that terpenes are a favorable
group of compounds for transdermal administration together with lipophilic and
hydrophilic topical antimicrobials in wound healing with the purpose of maximizing
therapeutic effects (AbdelSamie et al. 2016; Sims et al. 2018). It is because the
principal step for the dressing of infectious wounds is to prevent infection by
delivering sufficiently high concentrations of antibiotics to the wound site; at the
same time being biocompatible without exerting adverse effects to the surrounding
tissue.

Other than enhancing the antibiotic efficacy, real potential of EOs as antimicro-
bial molecules is still under-scrutinized with present-day methods. As noted above,
while vast majority of the EOs major compounds have so far been identified and
characterized (Dhifi et al. 2016), conventional screening of EOs for drug discovery is
likely to produce a library of previously seen compounds. Thus, the AI-based
screening perspective should focus on models of seeing which had not previously
been seen.
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3 Applications of Artificial Intelligence for Antimicrobial
Resistance

The commonly used framework for predictive antimicrobial testing and drug dis-
covery includes families of algorithms of both supervised and unsupervised learning
methods, including naïve Bayes (NB), Support Vector Machines (SVM), and arti-
ficial neural networks (ANN) (Table 1).

3.1 Prediction of Antimicrobial Resistance

Currently, there are two main conventional methods to detect AMR. The first one is
antimicrobial susceptibility testing (AST) and establishment of the minimal inhibi-
tory concentration (MIC) (Vasala et al. 2020), and second one is an emerging
method, whole-genome sequencing method for antimicrobial susceptibility testing
(WGS-AST) (Su et al. 2019; Vasala et al. 2020). The classic AST technique only
allows quantification of AMR levels, but it does not explain the resistance mecha-
nisms at mechanistic or molecular levels. On the other hand, WGS-AST is a robust
and accurate tool for AMR detection with insights into the resistance mechanisms
and evolution of the pathogens (Ellington et al. 2017). This is achieved by the
growing effort of various types of AMR phenotypes and genome-based databases,
such as complete genome multilocus sequence typing (cgMLST) (Feijao et al.
2018), Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org)
(Wattam et al. 2014; Wattam et al. 2017), Comprehensive Antibiotic Resistance
Database (CARD, https://card.mcmaster.ca/) (Alcock et al. 2020; Jia et al. 2017),
ARG-ANNOT (Antibiotic Resistance Gene-ANNOTation) (Gupta et al. 2014), and
Virulence Factor Database (VFDB, http://www.mgc.ac.cn/VFs/main.htm) (Chen
et al. 2016; Liu et al. 2019). Detecting AMR phenotypes from bacterial genomic
data employs basic concepts in the genome-wide association studies (GWAS), i.e.,
to gain knowledge of the changes of DNA sequences, or mutations that present
among bacterial strains and understand how these variations impact the phenotypes.
Researchers have since build phenotype identification algorithms based on variants
for some clinically important bacteria, such as Escherichia coli, Klebsiella
pneumoniae, and Staphylococcus aureus (Gordon et al. 2014; Stoesser et al.
2013). Davis et al. have computed a k-mer-based machine learning algorithm to
classify the AMR SIR (Susceptible, Intermediate, or Resistant) of Acinetobacter
baumannii, Mycobacterium tuberculosis, S. aureus, and Streptococcus pneumoniae
on a wide range of antibiotics including carbapenem, beta-lactam, and
co-trimoxazole, from the metadata in PATRIC (Davis et al. 2016). On the other
hand, a protein sequence-based machine learning algorithm was established to
classify the Gram-negative bacteria for acetyltransferase (aac), beta-lactamase
(bla), and dihydrofolate reductase (dfr). The study considered both AMR and
non-AMR bacterial protein sequences by using game theory to identify protein
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Table 1 Artificial intelligence algorithms and predictive models for antimicrobial drug discovery

Type Algorithm Resource Description Website Ref.

Unsupervised
learning

Principal
Component
Analysis
(PCA)

Scikit-learn Cluster analysis to
identify represen-
tative compounds
with strong in vitro
antimicrobial
activity

https://
scikit-
learn.org/
stable/

(Ragno et al.
2020)

Composite
non-negative
matrix factor-
ization
(cNMF)

Ianevski
et al.

Prediction of drug
combination
synergy

– (Ianevski
et al. 2019)

Semi-
supervized

Hedge
(Adaboost)

Davis et al. Species-specific
AMR phenotype
and genotype pre-
diction with RAST
and PATRIC
annotation
services

– (Davis et al.
2016)

Supervized
learning

Support Vec-
tor Machine
(SVM)

Chowdhury
et al.

Game theory
approach to iden-
tify AMR genes

– (Chowdhury
et al. 2019)

Artini et al. Binary classifica-
tion model to
identify chemical
components
involved in the
inhibition of bio-
film formation

– (Artini et al.
2018)

Patsilinakos
et al.

Binary classifica-
tion model to
identify chemical
components
responsible for
inhibition of bio-
film formation

– (Patsilinakos
et al. 2019)

Artificial
neural net-
works (ANN)

Fast Artifi-
cial Neural
Network
(FANN)
library

Prediction of anti-
microbial activi-
ties based on
chemical
composition

http://
leenissen.
dk/fann/
wp/

(Daynac
et al. 2015)

ALOGPS v
2.0

Interactive online
prediction of logP

http://
www.
vcclab.
org/lab/
alogps/

(Tetko et al.
2001)

DeepTox Computational
method for toxic-
ity prediction

http://
www.
bioinf.
jku.at/

(Mayr et al.
2016)

(continued)
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features for the machine learning model. Finally, a supervised method, SVM, was
used to predict AMR genes (Chowdhury et al. 2019).

AI-based computational tools have also been applied to predict the antimicrobial
activity of EOs or to classify the EOs based on their antimicrobial activities (Su et al.
2019). As mentioned earlier, the inherent variability in composition in EOs has been
a serious concern in drug screening. To overcome this, an ANN approach has been
developed to select EOs with comparable antimicrobial activities, without consid-
ering their chemical variations. Daynac et al. screened several EOs chemical com-
positions with corresponding AST data against S. aureus, E. coli, Clostridium
perfringens, and Candida albicans and retained only compounds with known
antimicrobial properties (Daynac et al. 2015). The study demonstrated that the fast
artificial neural network (FANN) software was able to predict the antimicrobial
activities of two or more microorganisms simultaneously while the most accurate
prediction was observed for S. aureus (Daynac et al. 2015). Rajkovic et al. showed
that model based on ANN incorporated with the genetic algorithm were able to allow
optimization for the experimental variables (e.g., test duration, test compound
concentrations, and mass ratio), and at the same time provided good prediction
accuracy for the antifungal effects of Thymus vulgaris L. and Cinnamomum cassia
L. EOs (Rajkovic et al. 2015).

A growing amount of scientific and clinical evidence has implicated that bacterial
biofilm formation plays a significant role in impeding wound healing (Metcalf and
Bowler 2013) and it is also one of the main resistance mechanisms that make a
bacterial infection hard to eradicate (Sharma et al. 2019). In general, Gram-positive
bacteria such as S. aureus, S. epidermidis, and Streptococcus pyogenes are predom-
inant species identified in the early stage of SSIs, while Gram-negative bacteria such
as E. coli, K. pneumoniae, and P. aeruginosa are mainly responsible for the chronic
infections (Negut et al. 2018; Simoes et al. 2018). Many experimental data has
pointed to the unique anti-biofilm potential of EOs against both Gram-positive and
Gram-negative bacteria (Bilcu et al. 2014; Cabarkapa et al. 2019; Firmino et al.
2018; Kumari et al. 2017; Lagha et al. 2019). Therefore, EOs with anti-biofilm
activity pose a better chance as good drug candidates for wound dressing and
treating infections. Experimentally, the exact mechanism on how or which EO
components influenced biofilm production remains unclear and understudied. A
few studies have demonstrated how AI-based applications can solve the complex
matrix of EOs compositions and experimental anti-biofilm potencies leading to

Table 1 (continued)

Type Algorithm Resource Description Website Ref.

research/
DeepTox

ANN-genetic
algorithm

Rajkovic
et al.

Process variables
optimization for
EO mixture anti-
microbial testing

– (Rajkovic
et al. 2015)
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identification of chemical components that are mainly responsible for the anti-
biofilm activity or prediction of EOs that can inhibit bacterial growth (Artini et al.
2018; Patsilinakos et al. 2019; Ragno et al. 2020).

One of the limitations of genome-based AMR prediction is that, the predictive
power is dependent on the accuracy and consistency of the culture-based AST data
for model training. Thus, efforts should be put on standardizing and maintaining the
quality of the data for phenotypic testing so that the prediction outcomes do not
diverge over time. Additionally, it is necessary to establish a comprehensive data-
base for multiple bacterial species, because a large training dataset is required to
optimize the key parameters for specific species and infections.

3.2 AI-Based Synergy Testing

The approach of combining drugs has attracted much interest due to some promising
positive outcomes, such as synergizing therapeutic efficacy, reducing side effects,
and preventing the emergence of AMR. Many studies have also demonstrated the
potential of natural products to act synergistically with antibiotics (Khameneh et al.
2019; Naghmouchi et al. 2012; Pizzolato-Cezar et al. 2019; Yap et al. 2013), aiming
to reduce antibiotic burden and restore the activity of the antibiotic. Antimicrobial
peptides (AMPs) remain at the forefront of the arena in antimicrobial discoveries
(Magana et al. 2020), in which they are key components of the body’s innate
immune system for defense against a plethora of pathogens. AMPs and the deriva-
tives also offer great potential in terms of chemical space and they are widely
distributed in nature including unconventional sources such as unculturable soil
and marine bacteria (Magana et al. 2020). However, it is time-consuming and
labor-intensive to identify optimal drug-natural product combinations from a large
number of possible spaces (e.g., medicinal plants, Eos, and antimicrobial peptides).
Hence, AI-based technologies offer a new paradigm to speed up and optimize the
drug screening process. The enormous amount of natural product-based compounds
available and the diversity of plausible combinations have resulted in the accumu-
lation of the ever-expanding and highly diversified volume of low- and high-
throughput experimental data. While a growing number of reports claiming to
have identified promising synergisms and the respective modes of action (Cho
et al. 2020; Yang et al. 2017; Yang et al. 2020), the challenge remains to find the
most optimistic combination and mechanism of action to tackle specific infections
and to mitigate specific resistance mechanisms in the context of lead discovery.
Hence, mining the bibliome for experimental antimicrobial combinatorial data pro-
vides scientists another elevated dimension to evaluate the most promising combi-
nation on test. Existing text mining tools have also been demonstrated to be useful
for extracting and reconstructing pharmacokinetic drug–drug interactions from
experimental evidences and clinical text (Iyer et al. 2014; Kolchinsky et al. 2015).
Jorge et al. were inspired by these computational frameworks and an iterative
workflow to curate AMP and antibiotic combinations tested against major pathogens
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was developed (Jorge et al. 2012; Jorge et al. 2016). As a result, the curated database
(http://sing.ei.uvigo.es/antimicrobialCombination/.) encompasses 1556 combina-
tions (345 AMPs and 282 drugs), tested against P. aeruginosa, S. aureus, E. coli,
Listeria monocytogenes, and C. albicans (Jorge et al. 2016). Although this workflow
has been integrated between the state-of-art text mining and expert manual curation,
it offers great potential to further investigate the utilization of deep learning
approaches to speed up the manual curation process, and possibly for application
on EOs antimicrobial testing in literature and test on pathogens that frequently cause
wound infections.

Lanevski et al. employed a novel unsupervised learning algorithm, composite
non-negative matrix factorization (cNMF), and significantly reduce the number of
drug combination experiments, at the same time maintain high accuracy, by using
the drug combination response prediction (DECREASE) model (Ianevski et al.
2019). The output of DECREASE is expressed in the predicted combination
response matrices which are compatible with SynergyFinder (Ianevski et al. 2017)
and Combenefit (Di Veroli et al. 2016) for synergy scoring and determination.
Intriguingly, the only input needed for the DECREASE model is a submatrix of
the drug combination dose–response measurements, without the need for synergistic
mechanisms, or structural and/or target information. Such mechanism-unbiased
approach is therefore posing great potential in identifying new synergies.

Widespread interest of AMPs have yielded unprecedented amount of AI based
AMP databases and platforms (Cardoso et al. 2019; Lv et al. 2020), and this no doubt
significantly contribute to training the AI models more precisely. Nevertheless, most
AI-based AMP approaches are binary classification models that do not take contin-
uous activity information into consideration. While the evolution of resistant bacteria
is growing at an alarming rate, an AI model which can understand and predict the
activity of drugs continuously against specific bacteria will be valuable for future
study. On the other hand, AMPs are composed of bioactive small proteins, which
allow sequence-based training and prediction that offers high precision (Bhadra et al.
2018) and room for drug design and optimization (Magana et al. 2020). In compar-
ison, EOs stand a greater chance in fragment-based drug discovery; while the
experimental data and phytochemical database of EOs remain largely unstructured.
Hence, a substantial amount of public AI-based EOs databases are warranted.

3.3 Drug Discovery Parameters and Filters

Ideally, compounds with a possible dermal application must be able to cross the
lipids layer barrier and be soluble in both lipophilic and hydrophilic environments.
The n-octanol/water partition coefficient (denoted as log P) is often used as a gold
standard to evaluate the compound properties (Valko 2004). However, laboratory
determination of log P is not only time and resource consuming; it is also compli-
cated due to the complexity of the real interaction between human skin tissue and the
test compound (Kosina et al. 2018). Hence, many nonexperimental approaches
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employing mainly quantitative structure–activity relationship (QSAR) techniques
and multiple linear regression analysis have since been developed for the estimation
of log P (Katritzky et al. 2000). Tetko et al. developed a method, ALOGPS v2.0
(http://www.vcclab.org/lab/alogps/) to assess the n-octanol/water partition coeffi-
cient on the basis of neural networks trained using 12,908 molecules available from
PHYSPROP database of Syracuse Research Corporation (Tetko et al. 2001). When
comparing the prediction ability of ALOGPS to other log P prediction programs, it
was concluded that the prediction performance was primarily determined by the
diverseness of the molecular structures subjected to train the methods rather than the
design of the methods or algorithms (Tetko et al. 2001). This study also demon-
strated the effectiveness of using heuristics on neural networks to obtain important
results without tapping into the complex problems of solvation theory for log
P determination. Combination of experimental (chromatographic) and computa-
tional (ALOGPS v2.1) methods have been applied to study the influence of log
P on wound healing, and it was found that compounds with higher lipophilicity
(higher log P) exerted greater wound healing activity (Bakht et al. 2014). Feyaerts
et al. subsequently extrapolated the ALOGPS model alongside with structure–
activity relationship analyses from public databases (such as PubChem and
ChemSpider) to predict the bioavailability of EOs (Feyaerts et al. 2020). By using
computational and statistical methods, the study ascertained that, contrary to the
established drug discovery filters such as Ro5 and Lead Likeness, most EO compo-
nents passed the stringent criteria for good drug candidates (Feyaerts et al. 2020).

Early identification of potential toxicity in drug discovery is crucial to prevent
significant financial and resource loss in late-stage attritions. Many AI-based pre-
dictive algorithms have been developed for this purpose to flag potentially toxic
compounds. The rise of deep learning, a machine learning method based on multi-
layer perceptron networks outperformed traditional machine learning approaches
(e.g., naïve Bayes, SVM, and random forests) in accurately predicting toxicity in the
Tox21 Data Challenge (Mayr et al. 2016). As a result, DeepTox pipeline (http://
www.bioinf.jku.at/research/DeepTox/) ensemble a multitask deep neural networks
model for toxicity prediction was developed. The pipeline uncovered not only
previously known toxicophores but also novel, previously undiscovered
toxicophores, suggesting that deep learning algorithms could potentially unfold
new chemical knowledge (Mayr et al. 2016). In the context of topical applications,
several classification models derived from machine learning algorithms (e.g., clas-
sification and regression tree, SVM, and ANN) have been developed to predict the
skin sensitization potency (Wilm et al. 2018). However, training datasets of these
models were primarily based on the rodent local lymph node assay while human
experimental data remain scarce, let alone well-characterized, high-quality datasets
as compiled by Hoffmann et al. (2018). For these reasons, the predictive power of
skin sensitization on human health is limited by insufficient data for model training
in both theoretical and experimental approaches.
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4 Current Understanding and Future Perspective

AI-based technologies could significantly reduce the number of possible drug
candidates, in vitro and in vivo experiments, thus accelerating the drug discovery
process with less cost than conventional approaches. The practice of AI is said to
depend largely (~80%) on processing and cleaning the aggregated data and rela-
tively less on the algorithm application (~20%) (Vamathevan et al. 2019). Thus, the
predictive power of any AI approach relies heavily on the availability of high-quality
dataset in large volumes. Training data for the algorithm needs to be accurate, and as
complete as possible in order to maximize predictability. Therefore, in order to
optimize key parameters specifically for EOs exploration, many public databases
on commercial and non-commercial EOs have to be built to prevent possible
selection bias. AI-based methods ensemble methodological and experimental data
mining also prone to a high risk of bias. Various important information about the
experimental methods such as natural products extraction method, antibiotic, statis-
tical analysis, and animal model, may collectively compromise the reproducibility of
the studies. Such opinion has been formed on the basis of studies performed largely
in vitro during the last two decades that may have oversight when these bacteria are
investigated together with the wounds. It should be emphasized that the studies
reported did not investigate specifically the antimicrobial effects of the EOs on
wound healing but rather the in vitro activities.

Data in various formats, such as chemical compounds, genomic and protein
sequences, AST, and literature text, have been employed to train different
AI-based models. Whether the type of data is even appropriate and what data should
be experimentally generated and curated are also the fundamental considerations for
AI-based technologies. AI-based applications are more powerful when trained by
data curated with good annotations in a systematic manner, to minimize the effect of
noisy training (Vamathevan et al. 2019). As discussed above, many applications
presented had been developed from largely unstructured sources with variable data
quality. These methods may also be subjected to bias during selection of parameters
applied for data processing and cleaning. Thus, ongoing efforts should be empha-
sized to generate good quality open annotated data to foster the application of AI in
EOs for drug discovery. Next, a sufficiently large set of experimental data relating to
pharmacological endpoint of EOs for the validation of AI models is important. As
had been previously mentioned, the most important part of any AI-based approach is
the quality and quantity of the underlying data used to train the models. Unlike
AMPs, the limited availability of data on EOs and the compounds that make the final
stage into approved drugs has limited the number of pharmacological end-points
forecasted by the available machine learning tools. Looking at the increasing
incidences of SSI associated with AMR, there is currently an unmet need for in
silico predictive tools for topical medicine drug discovery targeting wound
infections.

Among the machine learning methods, emphasis has been given to the QSAR,
which applies physicochemical properties to predict the biological activity of the
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AMPs or the peptide sequences (Cardoso et al. 2019). It is hypothesized that, the
integration of the AI-based methods, especially the antimicrobial patterns would
improve the output quality (Porto et al. 2018). This hypothesis was tested on an
algorithm, named Joker, which combined the AMPs sequences with linguistic
model-based antimicrobial patterns, and hit searches were improved against bacteria
(Porto et al. 2018). There is also a gap between selecting drug candidates that fulfil
drug discovery criteria and at the same be time effective in treating resistant bacteria
in wound infections. AI-based approaches that are applied to predict AST results and
drug synergism, coupled with QSAR, have the potential to improve the predictive
analytics and aid decision-making along the drug discovery pipeline.
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