
Direct Numerical Simulation
of Preignition and Knock in Engine
Conditions

Minh Bau Luong and Hong G. Im

Abstract Theoretical framework and high-fidelity direct numerical simulations
(DNS) on preignition and knock encountered in internal combustion (IC) engines
are briefly reviewed in this chapter. The theoretical framework is presented first, and
systematically followed by one-dimensional and multi-dimensional simulations. A
number of high-fidelity simulations under realistic IC-engine conditionswere used to
demonstrate the super-knock mechanism in the presence of the complex chemistry-
turbulence interaction. The ratio of ignition delay time to eddy-turnover time, τig/τt ,
and the ratio of the most energetic length scale of turbulence and temperature fluctu-
ations, lt/ lT , affect the knock intensities are discussed. Different statistical metrics
extracted from the multi-dimensional simulations to predict knock intensity are also
presented. The quantitative determination of strong and weak ignition modes using
the predicted Sa-based metrics is also cover in this chapter.

Keywords Direct numerical simulation (DNS) · Ignition criteria · Strong
ignition · Weak ignition

1 Introduction

Moderndownsized andboosted internal combustion (IC) engines provide higher ther-
modynamic efficiencies and cleaner combustion. However, these engines operated
under extreme conditions of high load suffer from a higher possibility of abnormal
preignition process, a premature auto-ignition induced by hot spots leading to ignition
front propagation [1–7]. The mechanism and the source of such irregular preignition
events are still not well-understood [8]. The early flames developed from preigni-
tion kernels increase the temperature and pressure of the end-gas that may induce
a stronger end-gas auto-ignition, leading to extremely high-knock intensities, and
even super-knock under high-load and/or high-temperature conditions. As represen-
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Fig. 1 Examples of in-cylinder pressure traces show preignition and superknock in a turbocharged
SI engine: super-knock cycle (S2) with preignition at 19 CAD BTD and KI ∼ 14.5 MPa, moderate
knock cycle (K2) with preignition at 6 CAD BTDC and KI ∼ 2.4 MPa, and normal (N2) cycle
without preignition (taken from Refs. [6, 7])

tatively shown in Fig. 1 [6], super-knock cycle (S2) is characterized by high-pressure
amplitudes and intensities due to localized detonation development that may lead to
severe structural damage to the engine components. Therefore, a reliable criterion to
predict irregular combustion phenomena is of critical importance [1, 3, 4, 6, 9–12].

A large spectrum of turbulence length and time scales combined with extremely
short time scales of complex combustion process in detonation simulations pose a
significant challenge in reproducing the phenomena using computational simula-
tions, which require extremely fine spatial and temporal resolutions to capture the
highly intermittent localized characteristics. This chapter reviews our recent efforts
to investigate the fundamental issues of the knock events using high-fidelity direct
numerical simulations (DNS) with the capability of fully resolving all temporal and
spatial scales and the complex interaction of thermochemistry and turbulence [3, 4,
13, 14]. First-principle DNS is capable of unraveling the complex interplay between
turbulence and chemical reactions to provide a better understanding of the mecha-
nism of detonation development encountered in modern combustion devices under
extreme high-load operating conditions, and to develop a reliable predictive model
for real-world industrial applications [15–31].

In the following, a theoretical framework on super-knock development encoun-
tered in internal combustion (IC) engines is briefly reviewed, followed by high-
fidelity DNSs in the subsequent sections. A systematically parametric set of two-
dimensional (2-D) and three-dimensional (3D) DNS simulations are conducted at
engine-relevant conditions [1–4, 32]. Effects of various parameters such as length
and time scales of turbulence and scalar fluctuations on the occurrence and intensity
of detonation are examined and a scaling relation for knock prediction is proposed
[33–43].
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2 Developing Detonation Regime Diagram

2.1 Theoretical Background

2.2 Zeldovich’s Theory on Reactivity Gradient

According to Zeldovich’s theory [44], a spontaneous ignition front is defined as a suc-
cessive ignition events in the presence of spatial reactivity gradients. Its propagation
speed, Ssp, is determined as

Ssp = |∇τig|−1 , (1)

where τig is the ignition delay time of the local reactant mixture as schematically
shown in Fig. 2, defined as the time to reach the maximum heat release as illustrated
in Fig. 3.

Based on the relative ratio of Ssp to the laminar flame speed, Ssp/SL , and to the
sound speed, Ssp/a, of the local mixture as illustrated in Figs. 2 and 3, Zeldovich [44]
classified four different ignition regimes of a reaction front propagation in a com-
bustible gaseous mixture:

1. weak ignition: In the presence of large spatial variations in τig, Ssp ∼ SL ,
the local ignition establishes a slow-speed thin-front deflagration (see Figs. 2c
and 3).

2. spontaneous ignition: For a mixture with a smaller level of τig variations,
Ssp � a, the mixture ignites spontaneously and Ssp exhibits a rapid ignition
front propagation (see Figs. 2a and 3).

3. detonation: If Ssp is sufficiently large and comparable to the sound speed, Ssp ∼ a
as visually shown in Fig. 2b, the combustion wave couple with the acoustic
wave may lead to detonation development characterized by extremely high-peak
amplitudes of pressure oscillations.

4. homogeneous ignition: In the asymptotic limit of zero gradient, Ssp becomes
infinity, resulting in the purely homogeneous ignition mode.

2.3 ε−ξ Regime Diagram

Gu and Bradley [45] further mapped different propagation modes into a regime
diagram characterized by two key non-dimensional parameters, ξ and ε, which are
defined as:

ξ =a/Ssp , (2)

ε=(rhs/a)/τe , (3)
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Fig. 2 Schematic of 1-D spatially monotonic distribution of ignition delay times, τ 1ig < τ 2ig · · · <

τ 6ig, (first row), and the relative speed between the reaction front and the acoustic wave (second row)
with a spontaneous ignition, b detonation with a perfect coupling between the reaction front and
acoustic wave, and c deflagration

Fig. 3 Representative 2D contours of HRR show deflagrations (first row) and spontaneous ignition
fronts (second row) and their temporal evolutions of HRR (right column). The definition of ignition
delay time, τig, and excitation time, τe (the time duration from 5% of the peak HRR to the peak
HRR), are shown in the right column
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Fig. 4 Conditions for the
occurrence of developing
detonations in terms of Xi
and epsilon for a
stoichiometric
50%H2–50%CO/air mixture
at 5 atm [45, 46]. Three
points (S2, K2, and N2) in
the red line correspond to the
three pressure traces shown
in Fig. 1 (taken from
Refs. [6, 7])
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where ε is defined as the ratio of the residence time, rhs/a, of the acoustic wave
within the hot spot with a radius, rhs, to the excitation time, τe, in which most of the
chemical energy is released. τe is typically defined as the time interval between 5%
of the peak heat release rate (HRR) and the peak HRR as schematically illustrated
in Fig. 3.

Based on the range of ξ , five different modes of ignition front propagation within
a hot spot were identified [45, 46]:

1. ξ = 0 for instant thermal explosion,
2. 0 < ξ < ξl for spontaneous (supersonic) ignition where the autoignitive wave is

ahead of acoustic wave,
3. ξl < ξ < ξu developing and developed detonation, through the thermoacoustic

coupling process referred to as the shock wave amplification by coherent energy
release (SWACER) mechanism [47, 48]),

4. ξl ≥ ξ < a/SL subsonic autoignitive deflagration where SL is the laminar burn-
ing velocity,

5. ξl ≥ ξ < a/SL laminar burning deflagration propagating at the speed compara-
ble to the laminar flame speed.

Figure4 shows the ξ−ε peninsula with the upper and lower limit, ξu and ξl ,
respectively, between which the developing detonation regime is identified for a
stoichiometric 50%H2–50%CO/air mixture at 5 atm [45, 46]. Note that the upper and
lower ξ limits of the C-shaped curve strongly depend on the initial conditions of T0,
P0, and φ0, fuel types, and the kinetic model used in simulations [49, 50]. In general,
the developing detonation regime is expected when ξ ranges between 1 and O(10)
quantity [49, 50]. As representatively shown in Fig. 5, due to the NTC behavior
of two-stage ignition fuels (e.g., DME), they are much more prone to detonation
development (gray region with roughly 1 < ξ < 10) than single-stage ignition fuels
(e.g., ethanol) for the same initial conditions of temperature, pressure, equivalence
ratio, temperature gradient.
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Fig. 5 The ξ values as a
function of temperature for
ethanol/air mixtures (red)
and DME/air mixtures (blue)
at φ of 0.5 and 1.0, and
pressure of 35 atm, and
∂T /∂r = −2 K/mm. The
shaded region of 1 ≤ ξ ≤ 10
is prone to the developing
detonation for a small hot
spot, i.e., ε < 10
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2.4 Quantitative Analysis

Luong et al. [3] proposed three a posteriori statistical metrics to quantitatively assess
the knock intensity, defined as follows:

FH =
∑ 〈 q̇| P > 1.1Pe〉

∑
q̇

, (4)

FCJ =
∑ 〈 q̇| P > PCJ〉

∑
q̇

, (5)

FVN =
∑ 〈 q̇| P > PVN〉

∑
q̇

, (6)

where q̇ is the HRR; Pe, PCJ and PVN correspond to the homogeneous constant-
volume equilibrium pressure, the Chapman–Jouguet pressure, and the von Neumann
pressure, respectively. The summation is operated over all the cells of the computa-
tional domain and integrated over time. As such, Fi (i = e,C J, V N ) measures the
fraction of HRR associated with higher pressures exceeding the corresponding Pi ,
evaluated at the initial conditions of T0, P0, and φ0.

According to Fig. 4 [45], the developing detonation regime is bounded by the
upper and lower ξ limits of the C-shaped curve, ξu and ξl , respectively, suggesting
that the detonation intensity depends strongly on the statistical quantities extracted
from the spatial distribution of ξ such as its volume-average ξ , probability density
function. To this end, FD , defined as the volume fraction of ξu < ξ < ξl , is proposed
to predict knock intensity:

FD =
ξu∫

ξl

P(ξ)dξ, (7)

which serves as an a priori predictive indicator of the subsequent detonation devel-
opment while FH is an a posteriori statistical assessment of knock intensity. Note
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that both FD and FH range from zero to unity. FD was found to have a strong corre-
lation with the fraction of the total heat release associated with detonation extracted
from the full DNS data, FH [3]. The mixture is found to be more prone to strong
detonation as FD approaches unity if εp � 1. For each initial condition, FD together
with the volume-average, ξ , and probability density function, P(ξ), are computed to
quantify the knock intensity [3].

In the next sections, the above predictive criteria are discussed using 1D simula-
tions first, followed by selected 2D and 3D simulations with and without turbulence
in order to characterize the spontaneous ignition and detonation development.

2.5 One-Dimensional Detonation Development

The developing detonation ε−ξ diagram [45, 46] has been used in many 1-D studies
to investigate the interaction between flame propagation and end-gas auto-ignition,
and the effects of boundary conditions, domain size, hot-spot location, hot-spot inter-
action, and cool flames on subsequent detonation formulation [6, 49–71]. The effects
of the bulk-mixture gradient on developing detonation were also studied by Sow et
al. [60] and Nogawa and Terashima [72]. In the following, two representative 1-D
cases with distinct detonation development characteristics are discussed.

The first case is shown in Fig. 6a features a deflagration to detonation transition
(DDT) event where a hot spot is developed into deflagration, gradually consuming
the unburned mixture, and finally accelerating to make a transition to detonation.
Specifically, the initial temperature profile is designed such that ξ ranges from 0 to
1000 within the hot spot (see Fig. 6). Figure7 shows the temporal evolution of the
temperature and pressure profiles. For such a strong ignition source, autoignition
immediately forms a detonation front within the hot spot length, which is subse-
quently attenuated quickly upon leaving the hot spot (lines 1–4 in Fig. 7). Due to the
low reactivity of the unburned mixture at T0 = 1000K, the heat release rate within
the reaction zone is not fast enough to sustain the detonation front such that it decays
quickly and transits back into deflagration at x ∼ 10 mm. Asmore fuel/air mixture is
gradually consumed by deflagration, the temperature and pressure of the remaining
unburned mixture ahead of the flame are increased due to the compression heating
effect (lines 5–7 in Fig. 7). Due to the increased reactivity of the unburned mixture
together with the flame acceleration, the deflagration front transits into detonation
at x ∼ 20 mm and rapidly consumes the rest of the unburned mixture (lines 8–12 in
Fig. 7). Much higher pressure peaks are observed during this period. These processes
are typically referred as to deflagration to detonation transition (DDT).

The second case (i.e., T0 of 1200K with Tpeak of 1264K in Fig. 6) features a direct
detonation initiation in which the reaction front and the pressure wave are perfectly
coupled to form an extremely high shock wave. The initial hot spot is designed for
ξ to range between 3 and 6 (see Fig. 6). Due to the high reactivity of the unburned
mixture with T0 of 1200K, the hot spot immediately gives rise to a detonation front
within the hot spot length, thereby rapidly consuming the unburned mixture (see
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Fig. 8). Once the detonation is established, the rapid heat release rate in the reaction
zone is able to sustain the steady detonation front that propagates and consumes the
rest of the unburned mixture.

The above cases show that the two parameters, ξ and ε, within the hot spot and
the bulk mixture determines the nature of the early detonation development. Figure9
shows the compiled results of a series of 1-D simulations for various combinations
of these parameters. For a fixed T0 of 1200K and φ of 1, the 1-D simulations were
performed by varying Ths and rhs such that both ξ and ε are varied accordingly. As
seen in Fig. 9, the maximum pressure above the equilibrium pressure (i.e., > 1.1Pe)
for 0.2 < ξ < 20. The peak Pmax occurs at ξ ∼ 6where the perfect coupling between
the reaction front and the acoustic wave evolving into a stable detonation shockwave.
The range of ξ was used to determine the volume fraction of ξ and FD to predict the
amplitude of knock intensity in multi-dimensional cases.
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Fig. 6 Two representative initial conditions of a hot spot with a 1-D linear-temperature profile: a
T0 = 1000 K and Tmax = 2000 K featuring deflagration to detonation transition (DDT) (see Fig. 7),
and b T0 = 1200 K and Tmax = 1264 K featuring direct detonation development (perfect coupling
between the acoustic wave and ignition front, see Fig. 8). The speed of sound, a, and ξ are evaluated
at the center of hot spots (marked as dots). The spatial distribution of ξ within the hot spots is also
shown. Note that τig and τe are computed by using a 0-D homogeneous adiabatic constant-volume
reactor using the localized temperature and pressure
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Fig. 8 The temporal evolutions of a temperature and b pressure at different time.The initial con-
ditions of T0 of 1000K and P0 of 35 atm (see Fig. 6), a stoichiometric ethanol/air mixture
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2.6 2-D and 3-D Simulations of Super-Knock Under Realistic
IC-engine Conditions

The basic characterization in 1D problem is now extended to multi-dimensional
conditions in the presence of spatial fluctuations in temperature and velocity fields.
Parametric 2-D and 3-D simulations were systematically performed to validate the
criteria proposed in Fig. 2.4. The distribution of ξ and ε were varied by changing
T ′ over a wide range from 0.5 to 20K, and lT of 1, 2, 5, and 10mm. For each
initial condition, the full detailed information of spatial distribution of ξ and the
corresponding statistical quantities of ξ can be computed. Figure10 shows the spatial
distribution of ξ of four cases with different T ′ and lT that result in no-knock, mild-
knock and super-knock [3].

Figure11 shows a representative 2-D contour of temperature field with T0 of
1200K, T ′ of 15K, and lT of 5mm.According toPeters et al. [53, 73], the temperature
field is subdivided into the dissipation elements over which the temperature profile
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(a) lT = 1 mm, T ′ = 15 K, no knock (b) lT = 2 mm, T ′ = 15 K, mild knock

(c) lT = 5 mm, T ′ = 15 K, super-knock (d) lT = 5 mm, T ′ = 0.6 K, mild knock

Fig. 10 Representative 2-D contours of ξ distribution computed from four different initial condi-
tions for three different lT of 1mm, 2mm, 5mm, with T ′ of 15K (a–c) and 0.6K (d)

Fig. 11 Representative 2-D
contour of temperature field
with T0 of 1200K, T ′ of
15K, and lT of 5mm
overlaid by the dissipation
elements. The white lines
mark the boundary between
the dissipation elements
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is monotonic, ranging from the peak to the trough of each dissipation element. For
isotropic temperature field fluctuations, Peters et al. [53] found rhs comparable with
the mean distance of the dissipation elements, lDE, and approximated as lDE ≈2λT ,
where λT is the Taylor mixing scale [53]. In the multi-dimensional problems, lDE is
believed to be a minimum size of a hot spot of unburned reactants required so that it
allows a sufficient run-up distance of detonation development [12, 53].

Based on the Taylormixing scale, Towery et al. [12] proposed a statisticalmodel to
evaluate the predictive εp for highly compressible homogeneous isotropic turbulence
fluctuations. εp is defined as

εp =2λT /(armsτexo) (8)

where a and τexo are the mass-weighted sound speed and exothermicity time, respec-
tively (see Ref. [12] for details). In Refs. [3, 4], at the the initial conditions of
T0 = 1200 K, P0 = 35 K, and φ0 = 1, εp = 1 corresponds to the initial temperature
field of lT = 3.3 mm. The cases with εp < 1 (i.e., lT of 1 and 2mm with εp of 0.3
and 0.6) are less likely to develop detonation while the cases with εp of 1.2, 1.4, and
3.8 for lT of 4mm, 5mm, and 10mm, respectively, are more likely to develop strong
detonation if 1 < ξ < 10.

For a uniform mixture with only thermal fluctuations, the predictive ξp is scaled
as [11, 12]

ξp = a|dτig
dT

∇T | ∼= a

∣
∣
∣
∣
dτig
dT

∣
∣
∣
∣ |∇̃T | (9)

where the statistical mean temperature gradient is further approximated by |∇̃T | ∼=
T ′/λT , with the Taylor mixing length scale, λT

∼= (lTα/T ′)0.5 [11]. These predictive
parameters, ξp, and εp, will be validated in the subsequent sections.

2.6.1 Baseline Cases with No Turbulence

In this subsection, three baseline (no turbulence) cases with lT of 1mm, 2mm, and
5mm denoted as BL1, BL2, and BL5, respectively, are chosen for discussion. The
probability density functions (PDF) of ξ , the temporal evolution of the normalized
Pmax, and the contours of pressure at the timeof the peak of FH for three baseline cases
are shown in Figs. 12 and 13. According to the scaling of ξp above, with a fixed T ′
of 15K, increasing lT from 1 to 5mm decreases ξp which is consistent with the PDF
of ξ shifting toward the developing detonation regime (see Fig. 12). Consequently,
BL5 is predicted to be more prone to developing detonation as compared to BL1 and
BL2.

Consistent with the PDFs of ξ and εp = 0.3, Pmax ≤ PVN and the isocontours of
pressure in Figs. 12 and 13, respectively, confirm that BL1 features a spontaneous
ignition process. BL2 with FVN ≈ 0.07 is characterized as a mild detonation process
as also quantitatively predicted by εp = 0.6.UnlikeBL1andBL2, a strongdetonation
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Fig. 12 a The probability density functions (PDF) of ξ for three baseline cases (without turbulence)
with three different most energetic length scale of temperature, lT of 1mm, 2mm, and 5mm,
featuring no knock, mild knock, and super-knock, respectively, and b their temporal evolution of
the normalized maximum pressure, Pmax/PVN, [4]. The gray area in the PDF figure depicts the
region of 1 < ξ < 10 determined by a series of 1-D simulations under the same initial conditions,
which is prone to developing detonation (see Fig. 9a) (adapted from Luong et al. [3, 4])

Fig. 13 Representative 2-D contours of pressure for three cases with the same T ′ of 15K, and lT of
1mm, 2mm, and 5mmwith no knock, mild knock, and super-knock, from left to right, respectively
(adapted from Luong et al. [3])

process is observed for BL5, quantified by FVN ≈ 0.2 and Pmax � PVN, which is
accurately predicted by εp = 1.6 for BL5.

The statistical quantities, FH , FD and ξ , of all the baseline cases are plotted in
Fig. 14. Three main points are noted from Fig. 14. First, FD has a better agreement
with FH for εp > 1 (i.e., caseswith lT > 4mm in Fig. 14b). Second, themagnitude of
FH for 3-D cases is comparable with the corresponding 2-D cases as seen in Fig. 14a
despite the peak FVN of the 3-D cases slightly lower than that of the 2-D cases
[3]. Third, Fig. 14 also reveals a good correlation between ξ and the knock intensity
characterized by the FH magnitude. The correlation indicates that the conditionswith
ξ ranging between 0.5 and 30 experience developing detonation and the strongest
detonation intensity (FH approaches unity) occurs at ξ ∼ 6 with εp > 1. Specifically,
the maximum values of FH at ξ ∼ 6 are approximately 0.18, 0.22, 0.55, and 0.75
for lT of 1mm, 2mm, 5mm, and 10mm, respectively. These results verify that the
prediction of εp for knock propensity is consistent with FH , the detonation intensity
is greatly alleviated with decreasing lT (mild-to-no detonation for lT < 3.3 mmwith
εp < 1).
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0.5K to 20K for different lT ranging from 1mm to 10mm, b the correlation between FH and FD .
Filled (open) symbols are for 3-D (2-D) cases (taken from Luong et al. [3])

2.6.2 Effect of Turbulence

The previous subsection demonstrated that no detonationwas observed forBL1while
BL5 exhibited a strong detonation process because a minimum run-up distance is
required for developing detonation as accurately predicted by εt . The results suggest
that decreasing (increasing) the length scale of temperature fluctuations (hence the
dissipation element length) is a key parameter to alleviate (promote) knock intensity.
In this subsection, the additional effect of turbulent velocity fields on knock intensity
is also investigated [4].

The isocontours of pressure and HRR of two representative 2-D simulations and
a 3-D simulation in Figs. 15, 16 and 17 are chosen for discussion. With the same tur-
bulent velocity fluctuation, u′ of 83.3m/s, and root-mean-square temperature fluctu-
ation, T ′ of 15K, lT / le and τig/τt were found to be two key parameters to determine
knock propensity.

First, increasing turbulent intensity by increasing u′ and fixing le = 5 mm is not
effective in reducing knock intensity since with τig/τt of 1.0, turbulence is not fast
enough to modify the autoignition and the subsequent detonation process as visually
seen in Fig. 16. Rather, the main effect of turbulent eddies is to weakly wrinkle and
distort the detonation fronts. Second, a finer turbulence structure, le of 1mm� lT =
5 mm, and τig/τt of 5.0, effectively attenuates the detonation intensity as visually
seen in Figs. 16 and 17. High turbulence intensity together with a short mixing-
time scale significantly increases the amount of reactants burned by corrugating
turbulent flames rather than by the developing detonation phase. Fast and small
turbulence structures also induce smaller and finer localized detonation waves during
the developing detonation process. Third, for the 3-D cases with a slightly lower FH ,
a consistent agreement between the 2-D and 3-D cases was observed in terms of
Pmax, the duration of detonation process, and the level of pressure oscillations, P ′
[4].
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Fig. 15 Two-dimensional contours of pressure and heat release rate (HRR) at the times of onset of
detonation development (left) and the peak detonation intensity (right) for a 2-D case with the most
energetic length scale of temperature and turbulent field, lT of 5mm and le of 5mm, respectively,
the turbulent velocity fluctuation, u′ of 83.3m/s, and the ratio of the ignition delay time to turbulent
time scale τig/τt of 1.0 [4] (taken from Desai et al. [14])

Fig. 16 Two-dimensional contours of pressure and heat release rate (HRR) at the times of onset of
detonation development (left) and the peak detonation intensity (right) for a 2-D case with the most
energetic length scale of temperature and turbulent field, lT of 5mm and le of 1mm, respectively,
the turbulent velocity fluctuation, u′ of 83.3m/s, and the ratio of the ignition delay time to turbulent
time scale τig/τt of 5.0 [4] (taken from Desai et al. [14])

Contrary to the casewith le = 1mm� lT = 5mmbeing able to attenuate detona-
tion intensity, a fast turbulent mixing, τig/τt of 5, together with le = 5 mm� lT = 1
mm, promotes detonation development as seen in Fig. 18. Turbulence with a larger
eddy size effectively spreads the temperature field over a wider area, stretching out
the run-up distance, and thus facilitates the developing detonation [4].
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Fig. 17 The volume rendering of HRR and the iso-surface of pressure (green) with P = PCJ at
successive times prior to the onset of the detonation formation (top row) until the detonation intensity
reaches its peak (bottom row) for a 3-D case with the most energetic length scale of temperature
and turbulent field, lT of 5mm and le of 1mm, respectively, the turbulent velocity fluctuation, u′
of 83.3m/s, and the ratio of the ignition delay time to turbulent time scale τig/τt of 5.0 [4] (taken
from Desai et al. [14])

Fig. 18 Temporal evolution
of the normalized maximum
pressure, Pmax/PVN for the
cases with lT of 1mm with
different le and u′ (adapted
from Luong et al. [4])
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3 Weak and Strong Ignition Modes

3.1 Theoretical Background

Based on Zeldovich’s theory and validated by high-fidelity DNS data, Sankaran et
al. [15] proposed a criterion to delineate the weak or strong ignition modes, referred
to as the Sankaran number (Sa) herein, which is based on the ratio of laminar flame
speed, SL , to the ignition front speed, Ssp = |∇τig|−1 [44].

Sa = β
SL
Ssp

, (10)

where β is a weighting factor of 0.5 to account for some delay in developing a
deflagration from the ignition kernel due to the interactions of thermal and radial
diffusion between the neighboring regions. Sa = 1 serves as the boundary between
the strong (Sa < 1) and the weak (Sa > 1) ignition.

In practical combustion devices, the detailed information of the spatially resolved
scalar fluctuations is not available, and thus the prediction for in a real engine should
be based on the statistical quantities such as the mean and variance of fluctuations in
RANS or LES simulations. Im et al. [11] conducted a theoretical scaling analysis by
incorporating the turbulent effect into the original Sankaran criterion to derive the
turbulent ignition regime diagram as shown in Fig. 19.

For compositionally homogeneous reactant mixtures with turbulent velocity and
temperature fluctuations, the diagram classifies ignition modes into three cate-
gories: weak exhibiting a dominant slow-speed deflagration mode of fuel consump-
tion, reaction-dominant strong, and mixing-dominant strong exhibiting a dominant
volumetric-ignition mode of fuel consumption. Pal et al. [74] and Luong et al. [1]
conducted a series of DNS simulations and found consistent results with the pre-

Fig. 19 Regime diagram
proposed by Im et al. [11] for
strong and weak ignition
modes for nearly
homogeneous reactant
mixture with velocity and
temperature fluctuations
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dictions by the turbulent ignition regime diagram. The ignition criterion [11] was
further extended to accommodate both temperature and concentration fluctuations
and validated for the mixtures with NTC and non-NTC behaviors [1].

The gradient of ignition delay time,∇τig, for amixturewith a uniformcomposition
and pressure is solely due to temperature variations expanded by the chain rule as
[11]:

|∇τig| =
∣
∣
∣
∣
dτig
dT

∇T

∣
∣
∣
∣ , (11)

where dτig/dT represents the ignition delay sensitivity to temperature as represen-
tatively shown in Fig. 20b, and ∇T is the temperature gradient of the bulk mixture
[11, 74]. In turbulent conditions, the temperature gradient is approximated by the
statistical mean temperature gradient, ˜|∇T |, which is estimated based on the variance
of the temperature, T ′, fluctuations and the Taylor mixing scale, λT , as

˜|∇T | ≈ T ′

λT
, (12)

where the Taylor mixing scale is approximated as

λT = lRe−0.5
l , (13)

with Rel = u′l/ν being the turbulent Reynolds number, ν the kinematic viscosity of
the bulk mixture gas, u′ the root mean square (RMS) turbulent velocity fluctuation,
and l the integral scale of velocity field.

Further scaling analysis yields the expression for the predicted Sankaran number,
Sap, [11] as follows:

Sa p = KDa−1/2
l , K = β

1

(τ f τig)1/2

∣
∣
∣
∣
dτig
dT

T ′
∣
∣
∣
∣ , (14)

where Dal = τt /τig is the ignition Damköhler number, defined as the ratio of the
turbulence integral time scale, l/u′, to the ignition delay time, and τ f = α/S2L is
the characteristic flame time, where α is the thermal diffusivity of the initial bulk
mixture. K is referred to as the normalized thermal ignition sensitivity.

In the presence of both temperature and equivalence ratio (concentration) fluctu-
ations, τig is a function of T and φ such that |∇τig| is expanded by using the chain
rule as flows:

|∇τig| =
∣
∣
∣
∣
∂τig

∂T
∇T + ∂τig

∂φ
∇φ

∣
∣
∣
∣, (15)

where ∇φ and ∂τig/∂φ are the equivalence ratio gradients, and the ignition delay
sensitivity to equivalence ratio, respectively [1]. Assuming that the temperature and
equivalence ratio fields are correlated with the turbulent flow field, it results in a
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comparable integral length scale, lT ∼ lφ ∼ le, and ∇̃φ ∼ φ′/λT as approximated in
the temperature case.

As such K in Fig. 14 is extended as:

K = β
1

(τ f τig)1/2

(∣
∣
∣
∣
∂τig

∂T
T ′

∣
∣
∣
∣ + s

∣
∣
∣
∣
∂τig

∂φ
φ′

∣
∣
∣
∣

)

, (16)

where the sign of s is to account for the NTC behavior and the correlation of T -φ
distribution. s is positive if T and φ fluctuations are uncorrelated, thereby being
additive to |∇τig| that synergistically promotes the deflagration mode regardless of
the NTC regime. s adopts a negative (positive) sign for a negative T − φ correlation
if the product of ∂τig/∂T and ∂τig/∂φ is positive (negative) that the combined effects
of T and φ on K become subtractive (additive).

3.2 Prediction of Weak/strong Combustion Modes

Many fuelswith andwithout theNTCbehaviorwere chosen to investigate the effect of
temperature and equivalence ratio fluctuations on the combustion modes by varying
the initial mean temperatures and different fluctuation levels [1, 20, 27, 28, 30,
75–77]. The initial conditions and physical parameters are chosen to be relevant to
IC engine conditions [1, 33–43]. The DNS solution were processed to verify the
predictive accuracy of the ignition criteria.

Figure20 shows the homogeneous ignition delay time of DME/air mixtures and
ethanol/air mixtures and the sensitivity of ignition delay time to temperature that is
needed to compute Sap. DME exhibits the negative-temperature coefficient (NTC)
regime in which τig increases with increasing temperature such that its τig varies
non-monotonically with temperature. As such, within/near the NTC regime, the
variation of dτig/dT for DME is small compared to that of single-stage fuels (e.g.,
ethanol), which in turn leads to a small |∇τig| for the same temperature fluctuation
level. It suggests that within/near the NTC regime, the mixture with T ′ only is more
susceptible to spontaneous ignition as quantitatively predicted by Sap in Fig. 21 [2].

Figure22 shows a typical initial condition used in the simulations. These DNS
cases were adopted to perform the statistical analysis of Sa such that the volume-
average (mean) Sa, Sa, the probability density function of Sa, P(Sa), and the volume
fraction of the regions with Sa <1, FSa,S , extracted from the spatial Sa distribution
are obtained. In addition, Sap for each simulation was also computed based on the
information of the initial mean bulk mixture condition such as T0, p0, and φ0, and
the RMS values, T ′ and φ′ as representatively shown in Fig. 21 as a function of
temperature.

The isocontours of HRR for some representative DME cases are shown in Fig. 23.
Spontaneous ignition characterized by volumetric ignition is dominant even with T ′
of 60K at T0 of 900K due to a small variation of τigwith temperature within/near the
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Fig. 20 a The 0-D homogeneous ignition delay time, τig, and b the absolute value of the sensitivity
of τig to temperature, |dτig/dT |, as a function of temperature for ethanol/air mixtures (red) and
DME/air mixtures (blue) at φ of 0.5 and 1.0, and pressure of 35 atm

Fig. 21 The predicted Sa
number, Sap , as a function of
temperature for ethanol/air
mixtures (red) and DME/air
mixtures (blue) at φ of 0.5
and 1.0, and pressure of 35
atm, and assuming the
identical integral length scale
of velocities and temperature
field, lt = lT = 1 mm,
τt/τig = 1, and T ′ = 15 K.
The shaded region of
Sap < 1 is for strong
ignition, while the region of
Sap > 1 is for weak ignition T (K)

S
a p

600 800 1000 1200
10-1

100

101

102

Ethanol, φ = 1
DME, φ = 1
Ethanol, φ = 0.5
DME, φ = 0.5

NTC regime as shown in Fig. 20). On the contrary, deflagration propagation becomes
dominant for the cases with T0 of 680 and 1045K outside the NTC regime. Similar
results were found for n-heptane [20, 29–31, 75, 76, 78, 79].

Contrary to the T ′-only cases, in the presence of both T and φ, especially when
they are negatively correlated, T0 of 900K results in a much lower HRR (due to the
synergistic effect of T ′ and φ′) than those of T0 outside the NTC regime (due to the
subtractive effect of T ′ and φ′ for the cases with T0 of 770 and 1045K), as seen in
the bottom row of Fig. 23.

Quantitative assessment of combustion modes for the previous cases was also
conducted. For each initial field of a DNS case, the exact distribution of Sa within the
domain and its associated statistical quantities canbe computed. For direct validations
with the predictive quantities such as FS and Sa, the fractional contributions of weak
and strong ignition to the total heat release were extracted from the detailed DNS
solution.

Figure22a-b shows representative initial fields of temperature and equivalence
ratio distribution. Based on these detailed DNS information, the spatial distribution
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Fig. 22 a–b initial fields of temperature and equivalence ratio with a negative T –φ distribution at
the initial mean temperature and equivalence ratio of 900K–0.5 with their fluctuation of T ′ and φ′
of 30K and 0.15, respectively, and c–d the corresponding ignition delay time and Sa distribution.
The black iso-lines of Sa = 1 delineates two distinct combustion modes of strong (Sa < 1) and weak
(Sa > 1) ignition (taken from Luong et al. [2])

of τig and Sa, and the corresponding probability density function (PDF) of Sa, P(Sa)
are computed in Figs. 22c–d and 24, respectively. The volume fraction of the regions
attributed to strong ignition was also estimated as

FSa,S =
1∫

0

P(Sa)dSa , (17)

which was proposed as a quantitative metric to predict the fractional cumulative heat
release rate associated with strong ignition directly computed from DNS solution
fields, FDa,S as [20, 27, 28, 30, 75, 76]

FDa,S =
∑ 〈 q̇|Da > Da0〉

∑
q̇

, (18)

where the summation is operated over the total number of computational cells in the
DNS domain, q̇ is the HRR, and Da is Damköhler number defined as the ratio of the
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Fig. 23 2-D contours of the normalized HRR at the maximum spatial-averaged HRR occurrence
for the DME/air mixtures at the initial pressure of 30 atm. The first (second) row corresponds to the
cases with temperature fluctuations only, T ′ of 60K, (with both temperature and equivalence ratio
fluctuations, T ′ of 30K and φ of 0.15 [2]) (adapted from Luong et al. [1])

local reaction and diffusion terms for a selected scalar variable [16, 17, 20, 28, 30,
71, 75, 76, 80]. Strong ignition is dominant if FSa,S ∼ 1. Strong and weak ignition
is delineated by a threshold value, Da0, of order unity that depends on the chosen
initial condition. The significance of the Sa-based metric is that the prediction of
combustion modes is based purely on the initial conditions.

Consistent with the qualitative observations in the previous section, Sa and FSa,S
for the DME cases of T0 at 680K, 900K, and 1045K are found to be, respectively,
4.2 & 0.20, 0.5 & 0.92, and 1.3 & 0.4. The cases with T0 of 680K and 1045K have
Sa greater than one, suggesting a weak-ignition dominance, while for the case with
T0 of 900K, a strong ignition is expected. The predictive accuracy of Sa and FSa,S
is further verified by the magnitude of FDa,S as shown in Fig. 25.

Figure25 shows a strong correlation betweenSan=Sa/(1+Sa) and FSa,S regardless
of T0, T ′, φ′, and fuel types. A good correlation between Sap and FSa,S was also
demonstrated, which is attributed to the agreement between the predicted Sap and
the volume-average Sa. Based on this universal correlation, the magnitude of either
Sa or Sap can be used to quantitatively infer FSa,S , which characterize the combustion
intensity. In general, a higher Sa corresponds to a lower FSa,S , which translates into a
lower combustion intensity. In particular, San = 0.5 serves as a transition point from
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Fig. 24 A representative
probability density function
of Sa distribution, PDF(Sa).
SI and WI denote strong
ignition and weak ignition,
respectively with a threshold
of Sa = 1 (taken from Luong
et al. [2])
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Fig. 25 The volumetric
fraction of Sa < 1, FSa,S , as
a function of the normalized
Sa, San=Sa/(1+Sa) to fit
within a range between 0 and
1, with 0.5 corresponding to
Sa = 1 (taken from Luong et
al. [1])
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SI to WI dominance with 60% heat released by spontaneous ignition mode (FSa,S

= 0.6). Spontaneous ignition dominance (FSa,S = 1.0) occurs at Sa < 0.3. On the
contrary, weak ignition is expected to be dominant at Sa > 1.0. In summary, either
Sa or Sap can be used to quantitatively predict the combustion modes over a wide
range of initial conditions and different fuel types.

4 Summary

Recent developments in the theoretical study to predict detonation development in
IC engine conditions were summarized. A brief review was given on the theoretical
framework, starting from the original Zeldovich theory, and the regime diagrams per
Bradley [46] and Im [11], and various proposed predictive criteria by Luong et al. [3,
4]. A large collection of DNS simulation data were used for a priori and a posteriori
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test for the validation of different predictive criteria based on the initial solution field,
and its extension to large turbulent conditions with statistical average and variances
has been suggested.

In real combustion engines, additional complexities arise from the front-to-wall
and front-to-front interactions whichmay further enhance or suppress the occurrence
and intensity of the detonation event. This is of strong practical significance and is
currently being investigated by large-scale simulations [3, 4].

Acknowledgements This work was sponsored by King Abdullah University of Science and Tech-
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