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Abstract The random Fourier feature kernel least mean square (RFF-KLMS) algo-
rithm provides a finite dimensional approximation to the kernel least mean square
algorithm with radially symmetric Gaussian kernel. RFF-KLMS was introduced to
curb the continuously growing radial basis function (RBF) network which prohibits
online application of KLMS. RFF-KLMS assumes a fixed kernel size and the appli-
cation of the method in nonlinear online regression can be quite tedious because it
is not always obvious which kernel size to choose for a particular problem. In this
paper, we incorporate a stochastic gradient approach in RFF-KLMS to update the
kernel size. The efficacy of the new approach is demonstrated in the online prediction
of time series generated from two different chaotic systems. In both examples, the
RFF-KLMS algorithm with adaptive kernel size demonstrates very good tracking
ability.

Keywords Kernel methods · Kernel least mean square · Random fourier
features · Chaotic time series prediction · Machine learning

1 Introduction

Modeling of processes in complex systems can be divided into two basic approaches;
i) the study ofmathematical models which tries to capture themost important qualita-
tive features of the complex systems behavior, ii) the reconstruction of the underlying
structure of a nonlinear dynamical system from measured data with use of methods
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of mathematical statistics, statistical learning, data mining and so on. The second
approach is more popularly known as time-delay embedding (also known as the
Taken’s delay embedding theorem [1]). The theorem states that the dynamics of a
system (i.e. the attractor) can be reconstructed from vectors of time-shifted (shift T )
states of single variable with nested dimension N

x(t) = (x(t), x(t + T ), ..., x(t + [N − 1] T ))T ,

where N > 2dA + 1 and dA is the dimension of the attractor. Takens embedding
theorem lays the foundation for nonlinear time series analysis that allows for the
reconstruction of complete system dynamics using a single time series [1]. Although
the initialmotivation of the theoremwas to look for chaotic behaviour in experimental
systems, the potential use of the method in a broader range of signal processing
activities was soon recognized [2, 3].

Recent developments in chaotic time series prediction witness an increasing num-
ber of effort in online time series prediction [4–11]. Online prediction is a sequential
or adaptive learning process where the underlying pattern representations from time
series data are extracted in a sequential manner. When new data arrive at any time,
they are observed and learned by the system. In addition, as soon as the learning
procedure is completed, the observations are discarded, without having the necessity
to store too much historical information. The online learning setting is significantly
in contrast with offline learning, where the learning process has access to the entire
data, and is able to go through the data multiple times to train a model, leading to
higher accuracy than their online counterparts. Nonlinear online learning [12–14]
has drawn a considerable amount of attention as it captures nonlinearity in the data
which cannot be effectively modeled in a linear online learning method, and usually
achieves better accuracy. One group of nonlinear online learning is based on kernels,
that is, kernel-based online learning.

Kernel adaptive learning is a class of kernel-based online learning which are
derived in Reproducing Kernel Hilbert Space (RKHS) [15]. In contrast to nonlinear
approximators such as the polynomial state-space models [16] and neural networks
[10], kernel based learning inherits the convex optimization of its linear counterparts.
Typical algorithms from the kernel adaptive filtering (KAF) family include Kernel
LeastMean Square (KLMS) [17], Kernel Recursive Least Square [18], Kernel Affine
ProjectionAlgorithms [19], ExtendedKernel Recursive Least Squares [20]. KLMS is
by far the simplest to implement and has been proven to be computationally efficient.
InKLMS (andKAFs in general), the solution is given in terms of a linear expansion of
kernel functions (centered at the current input data). This linear expansion growswith
each incoming data rendering its application prohibitive both in terms of memory
as well as computational resources. The centers that make up the linear expansion
of solution constitutes the so-called dictionary. Sparsification methods [21, 22] are
commonly used to keep the dictionary sufficiently small, however they too require
significant computational resources.

A more recent trend in curbing the ever growing structure of the KAFs algorithm
is by using approximation methods such as the Nystrommethod [23] and the random
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Fourier features (RFF) [24–27].While the Nystrom based method is data-dependent,
the RFF based methods are drawn from a distribution that is randomly independent
from the training data hence providing a good solution in non-stationary circum-
stances. The RFF-KLMS algorithm [24, 25] can be seen as a finite-dimensional
approximation of the conventional KLMS algorithm, in which the kernel function is
approximated by a finite-dimensional inner products. The RFF-KLMS algorithm has
been proven to provide good approximation of the Gaussian kernel due to its symme-
try and the shift-invariant property [25, 26]. The normalized Gaussian kernel is

κ(x(i), x( j)) = e−‖x(i)−x( j)‖2/2σ 2
, (1)

where σ > 0 is the kernel size. In both KLMS and RFF-KLMS, the kernel size is
treated as a free parameter which is often manually set. The choice of kernel size
can be very different from one data set to another, therefore to choose an appropriate
kernel size, one may have to resort to empirical approach. Although there are vari-
ous methods to choose kernel size in batch learning such as using cross validation
[28–30], penalizing functions [31] and plug-in methods [31, 32], these methods are
computationally intensive and unsuitable for online kernel learning.

In this paper, we introduce a variant of the RFF-KLMS algorithm which allows
the kernel size to be adapted using a stochastic gradient method. This technique for
adapting kernel size is similar to the technique used in [33, 34]. The effectiveness
of our method is demonstrated through the online prediction of chaotic time series
generated by twodynamical systems, 1) theLorenz system, and, 2) the chaotic system
proposed by Zhang et al. [36]. The rest of this paper is structured as follows: In Sect. 2
we give a description of nonlinear regression in RKHS, and extend the discussion
to online regression via KLMS and RFF-KLMS algorithms in Sect. 3. In Sect. 4, we
provide an outline of the RFF-KLMS algorithm with adaptive kernel size, followed
by example applications in Sect. 5. Finally, we present the conclusion in Sect. 6.

2 Nonlinear Regression in RKHS

Assume we have a discrete system generating a time series at a single time step
forward of the form {x(1), x(2), x(3), . . . , x(n), . . . }, a general nonlinear prediction
model of the time series is of the form [1, 2, 37, 38]

x(n + 1) ≈ y(n) = F(x(n)) ∈ V,

where x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]T , V is a vector space which we
hope to contain the attractor that explains the long-term dynamics of the time series,
and N > 2dA + 1 where N is the dimension of V and dA is the dimension of the
attractor. If the basis functions of V is known, φ1(.), φ2(.), . . . , φN (.) say, then we
may write F as a linearly separable function in terms of the basis functions so that
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y(n) = Φ(x(n))Tw = w1φ1(x(n)) + w2φ2(x(n)) + · · · + wNφN (x(n)).

The least squares approach to determining the parameters w = [w1, w2, . . . , wN ]T
requires the minimization of a loss function of the form

f (w) =
n∑

i=1

∣∣x(i + 1) − wTΦ(x(i))
∣∣2 . (2)

This problem is just a standard nonlinear regression and this is the approach used in
[16, 39, 40] where the basis functions are assumed to be from a class of universal
approximators. The difficulty in this approach is that the state space V is most likely
infinite dimensional which means N has to be very large to achieve sufficiently
accurate prediction.

Alternatively one can avoidworkingwithΦ directly by transforming vectors in the
state space construction into the so-calledReproducingKernelHilbert space (RKHS).
Let x(1), x(2), . . . , x(n) ∈ R

N and let the RKHS be H. The similarity between the
elements inH ismeasured using its associated inner product (., .)H and it is computed
via a kernel function κ : RN × R

N → R such that (xi , x j ) → κ(xi , x j ). For positive
definite kernel functions, we can ensure that for all x, x′ ∈ R

N ,

(Φ(x),Φ(x′))H = κ(x, x′). (3)

The property in (3) is called the ‘kernel trick’ [41]. In RKHS, the optimum prediction
model, if determined using the least squares approach, is a minimization problem of
the form

min
w∈RN

n∑

i=1

|x(i + 1) − (w, Φ(x(i))|2 . (4)

The loss function in (4) can be written as

f (w) = ‖x̂ − Kw‖2 = x̂T x̂ − 2x̂TKw + wTKTKw, (5)

where

x̂ = [x(2), x(3), . . . , x(n + 1)]T , K = [Φ(x(1),Φ(x(2)), . . . , Φ(x(n))]T .

Matrix G = KTK has entries Gi j = (Φ(x(i)),Φ(x(i))H = κ(x(i), x( j)) which is
positive definite if the kernel function κ(., .) is positive definite. As a consequence,
the loss function in (5) is a convex function and the problem in (4) is a convex
minimization. To guarantee a convex minimization problem, in the rest of the paper,
we adopt the Gaussian kernel in (1).
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3 Online Regression in the RKHS via Kernel Least Mean
Square Algorithm

In the online scenario, data is collected one at a time in a sequential manner and
only a limited set of the most current data is stored while older data are discarded.
In this situation, due to the incomplete knowledge of the data set, the loss function
(5) needs to be estimated in order to determine the regression parameters. One way
to perform online regression is to use the instantaneous approximation of (5), where
at any particular time n the current prediction of the time series is of the form
(Φ(x(n)),w)H and the estimated loss function is given by

finst (w) = (e(n))2 = (x(n + 1) − (Φ(x(n)),w)H)2. (6)

A gradient based minimization of (6) searches for the optimum parameter vector w
along the negative instantaneous gradient direction which is given by

− ∇w f (w) = 2e(n)Φ(x(n)). (7)

The update equation for w is then

w(n + 1) = w(n) + μe(n)Φ(x(n)). (8)

Assuming w(0) = 0, it can be shown that [15]

w(n) = μ

n−1∑

i=0

e(i)Φ(x(i)). (9)

As a result, the current prediction can be update as follows:

y(n) = (Φ(x(n)),w(n))H = μ

n∑

i=0

e(i)(Φ(x(n)),Φ(x(i))H

= μ

n∑

i=0

e(i)κ(x(n), x(i)). (10)

It is clear from (10) that the current prediction can be computed using only knowledge
of the kernel function.

Next,wedescribe twoonline gradient based algorithmswhich attempt tominimize
the instantaneous estimated loss function (6).
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3.1 The KLMS Algorithm

A straightforward implementation of (7)–(10) leads to the Kernel LeastMean Square
(KLMS) algorithm. The basic sequential rule for KLMS is as follows:

Input: Training samples {(x(n), d(n))}, step-size μ, kernel function κ(., .), set
y(0) = 0
For n = 1, 2, . . .
ŷ(n) = ∑n−1

i=0 e(i)κ(x(n), x(i))
e(n) = d(n) − y(n − 1)
y(n) = ŷ(n) + μe(n)κ(x(n), .)

where ŷ(n) is the apriori prediction. The apriori prediction is an ever-growing sum;
the size of the sum grows with each update and it relies on the entire dictionary
{x(1), x(2), . . . , x(n − 1)}. The ever-growing dictionary size results in an increase
in computational resources andmemory, thusmaking the application ofKLMS rather
prohibitive.

3.2 Random Fourier Feature KLMS (RFF-KLMS)

The prediction in the KLMS algorithm is achieved by first mapping the state vector
x(n) to an infinite dimensional RKHS H, using an implicit map φ(x(n)), and with
the help of the kernel trick, computes the prediction after n data updates as a linear
expansion (10)whichgrows indefinitely asn increases. Toovercome the growing sum
problem, Rahimi and Recht [24] proposed mapping the state-space vector x(n) onto
a finite dimensional Euclidean space using a randomized map Θ : RN → R

D . The
Bochner’s theorem [42] guarantees that the Fourier transform of a positive definite,
appropriately scaled, shift-invariant kernel is a probability density, p(θ) say, such that

k(x(i) − x( j)) = k(x(i), x( j))

=
∫

RN

p(θ)e jθT (x(i)−x( j)dθ = E[Θ(x(i))HΘ(x( j))], (11)

where, the last equality in (11) is obtained by defining Θ(x) = e jθT x (H is the
conjugate transpose). According to [43], given (11), the D-dimensional random
Fourier feature (RFF) of the state-space vector x(n) that can approximate κ(., .)

with L2 error less than O(1/
√
D) is given by

Θ(x) = [ψ1(x), ψ2(x), . . . , ψD(x)]T , (12)

where ψi (x) = √
2 cos(θT

i x + bi ), i = 1, 2, . . . , D, with θi ∈ RN . In other words,
Θ(x(i))HΘ(x( j)) is an unbiased estimate of κ(x(i), x( j)) when θ is drawn from
p. Here we exploit the symmetric property of κ(., .) in which case Θ(x(n)) can be
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expressed using real-valued cosine bases. For approximating a Gaussian kernel of
size σ given in (1), θi is drawn from the Gaussian distribution with zero-mean and
covariance matrix 1

σ 2 IN with IN being an N × N identity matrix, and, bi is uniformly
sampled from [0, 2π ] [26, 44].

With the finite dimensional map Θ(.) defined by (12), the prediction at time n is
just Θ(x(n))Tw, and the instantaneous loss function is then

Finst (w) = (e(n))2 = (x(n + 1) − Θ(x(n))Tw)2. (13)

It follows that, the negative instantaneous gradient direction with respect to w is
−∇wF(w) = 2e(n)Θ(x(n)) which results in an update equation for w in the form

w(n + 1) = w(n) + μe(n)Θ(x(n)). (14)

The update equation in (14) results in the RFF-KLMS algorithm and it requires
a computational complexity of a fixed linear order which is O(D). Mean square
convergence of RFF-KLMS is presented in [45].

4 RFF-KLMS with Adaptive Kernel Size

In the KLMS and the RFF-KLMS algorithm described in this paper, the kernel
function is defined in the form given in (1). This definition requires knowledge of a
pre-determined parameter which is the kernel size σ . In the large sample size regime,
the asymptotic properties of the mean square approximation are independent of σ ,
i.e., the choice of σ does not affect the convergence of KLMS and RFF-KLMS.
However, σ does affect the dynamics of the algorithm. In particular, in the transient
stage when the sample size is small, an optimal kernel size is important to speed up
the convergence to the neighbourhood of the optimal solution.

A method for adjusting σ in a sequential optimization framework is proposed in
[33] for the KLMS algorithm. An update equation for σ is derived from the mini-
mization of the instantaneous loss function (6) and optimizing it along the negative
gradient direction (with respect to σ ), i.e.,

σn+1 = σn − ρ
∂ finst
∂σn

,

where σn is the kernel size at time n and ρ is a step-size parameter. The resulting
update equation is given by

σn+1 = σn + ρe(n − 1)e(n)‖x(n − 1) − x(n)‖22
κσn (x(n − 1), x(n))

σ 3
n

. (15)
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Table 1 The RFF-KLMS algorithm with adaptive kernel size

Input:
1. Sequential input of time series data x(1), x(2), x(3), . . .

2. State-space dimension N ; step-size parameter μ; step-size parameter ρ;

random Fourier dimension D.

Output:
1. The one-step ahead predictions y(1), y(2), y(3), . . .

2. The N -dimensional weight vector w; the optimum kernel size σopt .

Initialization:
1. Initial weight vector w(0);

2. Sample θ
(0)
i ∈ R

N , i = 1, 2, . . . , D from Gaussian distribution with zero-mean and

covariance matrix IN ;

3. Sample bi , i = 1, 2, . . . , D uniformly from [0, 2π ].
For n = 1, 2, . . .

(1) Update the state-space vector: x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]
(2) With ψi (x(n)) = √

2 cos(θ(n−1)T
i x(n) + bi ), i = 1, 2, . . . , D, compute the random

Fourier feature vector:

Θ(x(n)) = [ψ1(x(n)), ψ2(x(n)), . . . , ψD(x(n))]T .

(3) Compute the apriori error e(n) = x(n + 1) − Θ(x(n))Tw(n − 1).

(4) Update the weight vector: w(n) = w(n − 1) + μe(n)Θ(x(n)).

(5) Compute current prediction: y(n) = Θ(x(n))Tw(n).

(6) Update σ :

σn = σn−1 + ρe(n − 1)e(n)‖x(n − 1) − x(n)‖22
exp(‖x(n−1)−x(n)‖2/2σ 2

n−1)

σ 3
n−1

.

(7) Sample θ
(n)
i ∈ R

N , i = 1, 2, . . . , D from Gaussian distribution with zero-mean and

covariance matrix 1
σ 2
n
IN ;

EndFor.

Since RFF-KLMS is an approximation of KLMS in a D dimensional space,
the update equation in (15) can also be used to adapt the kernel size in the RFF-
KLMS algorithm. In RFF-KLMS, the kernel size determines the probability density
function p(θ) from which θi (i = 1, 2, . . . , N ) is drawn. Thus, adjusting σ also
means adjusting θ . To incorporate this adjustment in the algorithm, we initialize θi
with an N -dimensional vector drawn from the Gaussian distribution with zero-mean
and covariance matrix IN . At each update at time n, a new vector θ

(n)
i is used in

place of θi , where θ
(n)
i is drawn from the Gaussian distribution with zero-mean and

covariance matrix 1
σ 2
n
IN . The complete algorithm is summarized in Table1.
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5 Simulation Examples

In this section, we present several examples to illustrates the performance and appli-
cation of RFF-KLMS algorithm with adaptive kernel size in short-term prediction
of chaotic time series. Two chaotic systems are used: i) the Lorenz system [35], and,
ii) the chaotic system proposed by Zhang et al. [36].

5.1 Example 1: Lorenz Chaotic System

Consider the Lorenz oscillator whose state equations are

dx

dt
= −βx + yz

dy

dt
= δ(z − y) (16)

dz

dt
= −xy + λy − z

where parameters are set as β = 8/3, δ = 10 and λ = 28. Sample time series of
x , y and z are given in Fig. 1. The goal is to predict x(t), y(t) and z(t) using the
previous eight consecutive samples. The well-known Lorenz attractor is observable
in 3-dimensional space (i.e. dA = 3), therefore it is reasonable to choose N = 8 >

2dA + 1.

Mean Squared Error (MSE) Performance. First, we compare the performance
of RFF-KLMS with fixed kernel sizes (σ = 1, 2, 5) and RFF-KLMS with adaptive
kernel size. The parameter values used in this experiment are as follows: μ = 0.5,
ρ = 0.005 and D = 500.

For each kernel size, 20 independent (Monte Carlo) simulations are run with
different segments of the time series. In each segment, 1000 samples are used for
training and a further 100 samples are used for testing. To evaluate the convergence
behaviour of the algorithm, the mean squared error (MSE) is used which is defined
as MSE = (

∑ntest
i ê(i)2)/ntest , where ntest is the length of test data. The i th test error

ê(i) is computed based on the test data using the learned weight vector w(n) and σn

at that iteration, i.e., ê(i) = xtest (i + 1) − Θσn (xtest (i))
Tw(n). All simulation results

are averaged over 20 Monte Carlo runs.
Convergence of MSE for each kernel size is shown in Fig. 2(left). It can be seen

that RFF-KLMS achieves the best performance in terms of convergence as well
as achieving the minimum steady-state MSE. The evolution of the value of kernel
size during the learning process is shown in Fig. 2(right) where it is observed that
the steady-state (optimum) kernel size is about 3.2. The steady-state MSE for the
training and testing are listed in Table2. The relative sizes of training and testingMSE
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Fig. 1 Time series of the three states in the Lorenz system
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Fig. 2 (Left) Comparison of MSE performance of RFF-KLMS between fixed kernel sizes (σ =
1, 2, 5) and adaptive kernel size. (Right) Evolution of adaptive kernel size in the course of iteration

are comparable between all kernel sizes which shows that tendency to overlearn is
comparable between all kernel sizes.

Prediction. Here we present the time series and the associated Lorenz attractor. The
predicted Lorenz attractor is constructed based on the values of the predictions at
steady-state.

The Constructed Time Series. Due to space limitation, only the learned prediction of
state variable x is presented and this is shown in Fig. 3. The prediction is compared
for different values of the kernel size. As expected, the predicted model trained using
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Table 2 Steady-state MSE

Kernel size Training MSE Testing MSE

σ = 1 16.7317 21.2890

σ = 2 0.8227 1.8943

σ = 5 0.2401 2.8094

Adaptive kernel size 0.1062 0.9333
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Fig. 3 Predicted time series for state variable x during training

RFF-KLMS with adaptive kernel size is able to capture the dynamics of the time
series optimally at steady-state.

Construction of the Lorenz Attractor. Next we reconstruct the Lorenz attractor using
the steady-state prediction of state variables x , y and z. For ease of comparison, we
choose to present the views of the predicted Lorenz attractor in the 2D planes (x, y)
and (x, z) respectively. In Fig. 4, the plots on the left depicts the phase reconstruc-
tion using our trained model while the plots on the right depicts the actual Lorentz
attractor. It is clearly observed that RFF-KLMS has successfully captured the overall
structure of the attractor.

Predicting Sudden Change in Dynamics. In online prediction it is important to
analyze the ability of an algorithm to track a time series which is subjected to sudden
changes. In order to do so, we have created two time series, (x (1), y(1), z(1)) and
(x (2), y(2), z(2)), each of which is generated from Lorenz systems with two different
values of the parameter λ (the other two parameters are fixed, i.e., β = 10/3 and
δ = 10). The time series (x (1), y(1), z(1)) is generated with λ = 28 while the time
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Fig. 4 Lorenz attractor in (x, y) plane (top) and in the (x, z) plane (bottom): Predicted (left),
original (right)

series (x (2), y(2), z(2)) is generated with λ = 15. These two values results in two
completely different dynamics; λ = 28 results in time series that lie in an invariant
manifold associated with the Lorenz chaotic attractor while λ = 15 results in an
invariant manifold associated with a stable focus.

Tracking of Time Series. Only the tracking of the time series of state variable x is
shown for the purpose of illustration and this is found in Fig. 5 (Top). The sudden
change in the time series occurs at sample n = 5861. The corresponding evolution
of kernel size σn during the tracking process in shown in Fig. 5 (Bottom). It is clearly
seen in Fig. 5 that, as the RFF-KLMS algorithm tracks the optimum kernel size the
predicted time series becomes more similar to the actual time series. Moreover, once
the optimum kernel size is found, minimal adaptation is needed to detect the change
in dynamics.

Tracking of Invariant Manifolds. The invariant manifolds are reconstructed from the
predicted time series x , y and z. The views of the predicted invariant manifolds in the
2D planes (x, y) and (x, z) are presented in Figs. 6 and 7 respectively. In both Figs. 6
and 7, the top figure depicts the predicted manifolds while the bottom figure depicts
the actual observed manifolds. It is evident from these figures that, regardless of the
sudden change in λ at n = 5861, the overall structure of the manifolds before and
after the change have clearly been captured well. This results confirm the extremely
good tracking ability of the RFF-KLMS algorithm with adaptive kernel size.



Chaotic Time Series Prediction Using RFF-KLMS ... 321

0 1000 2000 3000 4000 5000 6000 7000
Iteration, n

-20

0

20
x
(t

)

Prediction
Actual

0 1000 2000 3000 4000 5000 6000 7000
Iteration, n

1

2

3

4

K
e
rn

e
l 
s
iz

e
, 

n

 = 28  = 15

 = 28  = 15

Fig. 5 Tracking sudden changes in the time series: Sudden change occurs at sample n = 5861
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Fig. 6 Lorenz system: Invariant manifold in (x, y) plane. Predicted (top), original (bottom)
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Fig. 7 Lorenz system: Invariant manifold in (x, z) plane. Predicted (top), original (bottom)

5.2 Example 2: Chaotic System by Zhang et al. [36]

The chaotic system proposed in [36] is a system of differential equations in term of
state variables x , y and z given by

dx

dt
= −ax + by − yz

dy

dt
= x + xz (17)

dz

dt
= cz + y2

where parameters are set as a = 10, b = 28 and c = 6. In this section, all experiments
are conducted using noisy time series where the time series of x , y and z are corrupted
by zero-mean Gaussian noise with variance 0.01, 0.1 and 1, with equivalent signal-
to-noise ratio (SNR) of 40.8dB, 30.8dB and 20.8dB respectively.

Prediction. Prediction of the chaotic attractor of (17) is done for the three SNR
values: 40.8dB, 30.8dB and 20.8dB. The predicted chaotic attractor is constructed
based on the values of the time series predictions at steady-state.

The Constructed Time Series. For the purpose of illustration, only the prediction
of state variable x is presented and this is shown in Fig. 8. The prediction is com-
pared for different SNR values. Here it is observed that the decrease in SNR value
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Fig. 8 Predicted time series for state variable x during training

Table 3 Steady-state MSE for different SNR values

SNR (dB) MSE for x (dB) MSE for y (dB) MSE for z (dB)

Clean –2.451 0.376 1.340

40.8 –1.288 1.352 1.864

30.8 –0.523 1.556 4.449

20.8 7.672 5.896 6.372

(i.e. increase in noise strength) does have some effect on the accuracy of predictions.
Table3 provides a list of the steady-state training MSE for the three different values
of SNR from which one can see the increase in steady-state MSE as SNR decreases.
This gives a quantitative measure of the decrease in performance as noise strength
increases.

Construction of the Chaotic Attractor. The choice of the parameters a = 10, b = 28
and c = 6 is associatedwith a chaotic attractor [36]. Using the steady-state prediction
of state variables x , y and z, the projections of the attractor in the 2D planes (x, y)
and (x, z) are reconstructed and for all the SNR values used in the experiments, it
is observed that RFF-KLMS is able to capture the overall structure of the attractor.
However the accuracy of the trajectories tend to reduce as SNR value decreases. As
an illustration, the reconstruction of the chaotic attractor in the (x, y) plane is shown
in Fig. 9 for the three SNR values.
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Fig. 9 Reconstruction of the chaotic attractor in the (x, y) plane for different levels of noise strength

Predicting Sudden Change in Dynamics. To investigate the capibility of the RFF-
KLMS algorithm with adaptive kernel size in predicting change in dynamics, we
have created two time series, (x (1), y(1), z(1)) and (x (2), y(2), z(2)), each of which
is generated from (17) with two different values of the parameter c (the other two
parameters are fixed, i.e., a = 10 and b = 28). The time series (x (1), y(1), z(1)) is
generatedwith c = 6while the time series (x (2), y(2), z(2)) is generatedwith c = 158.
These two values results in two completely different dynamics; c = 6 results in time
series that lie in an invariant manifold associated with the chaotic attractor while
c = 158 results in an invariant manifold associated with a stable limit cycle [36].
To study the capability of RFF-KLMS in predicting the change in dynamics in the
presence of noise, zero-mean Gaussian noise with variances 0.01 (SNR = 40.8dB),
0.1 (SNR = 30.8dB) and 1 (SNR = 20.8dB) is added to both time series.

Tracking of Time Series. Only the tracking of the time series of state variable x is
shown for the purpose of illustration. The sudden change in the time series occurs
at sample n = 6197. The steady-state time series obtained with clean input signal x
is compared with the steady-state time series obtained for input signals having SNR
40.8 dB, 30.8 dB and 20.8 dB respectively and the result is shown in Fig. 10. It is
clearly seen in Fig. 10 that the sudden change in dynamics is successfully detected
by RFF-KLMS algorithm with adaptive kernel size and its ability does not appear
to be affected much by the presence of noise. Although some accuracy is loss in the
predicted time series when SNR = 20.8 dB, but the overall behaviour of the time
series is quite apparent.
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Fig. 10 Comparison of the predicted time series for the state variable x with and without noise:
Sudden change in the time series occurs at n = 6197.

Tracking of Invariant Manifolds. The invariant manifolds are reconstructed from the
predicted time series x , y and z obtained for input signals having SNR 40.8 dB, 30.8
dB and 20.8 dB respectively and the results are compared with the invariant manifold
obtained from clean input signal. The views of the predicted invariant manifolds in
the 2D planes (x, y) and (x, z) are shown in Figs. 11 and 12 respectively for the most
severe case (i.e. SNR = 20.8 dB). In both Figs. 11 and 12, the top figure depicts the
predictedmanifolds for c = 6while the bottomfigure depicts the predictedmanifolds
for c = 158. It is evident from these figures that, regardless of the sudden change in c
at n = 6197, the overall structure of the manifolds before and after the change have
clearly been captured well. The presence of noise somewhat affects the accuracy
of trajectories within the manifold, but the presence of the invariant structures are
still evident. This results further confirm the robustness of the RFF-KLMS algorithm
with adaptive kernel size.
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Fig. 11 Invariant manifold in (x, y) plane: c = 6 (top), c = 158 (bottom), clean input signal (left),
noisy input signal (right)
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6 Conclusion

The kernel size in RFF-KLMS determines the probability density function from
which the random features are drawn. In other words, it determines the finite dimen-
sional subspace defines by the featuremaps inRFF-KLMS.Quality of approximation
by RFF-KLMS is directly determined by this subspace. Therefore, for optimal finite-
dimensional mapping, optimal kernel size is needed.

In this paper, we described a procedure for optimizing the kernel size sequentially
using a stochastic gradient descent approach. Empirical studies on online prediction
of chaotic time series highlights the tracking capability of RFF-KLMSwith adaptive
kernel size. It not only tracks the time series and the ensuing dynamics of the system
well, but the algorithm is also capable of predicting sudden change in dynamics.MSE
performance of RFF-KLMS algorithmwith adaptive kernel size is alsomore superior
than the MSE of RFF-KLMS with fixed kernel size. The experimental results also
highlight the robustness of the algorithm with respect to noise in the input signal.
Although some loss in accuracy is observed in the presence of noise, the algorithm
can still capture the overall steady-state dynamics of a system.

An immediate future direction of this study is to explore other aspects of the
algorithm, for example, combining kernel size adaptation with stepsize adaptation.
It is also interesting to investigate the application of RFF-KLMSwith adaptive kernel
size to look into the possibility of predicting other aspects of system dynamics such
as the Lyapunov exponent.
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