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Abstract

Deep sea ecosystem is not only the largest but also the most remote biome of the
biosphere. Exploration of sea depths has resulted in the discovery of several new
microbial habitats with unique nutritional composition and high microbial diver-
sity. Microorganisms present in deep sea play a fundamental role in global
biogeochemical cycles, and with their functional activities, they allow the exis-
tence of life. To survive and multiply in cold regions of deep sea, microorganisms
should be able to adapt to a variety of changing conditions and stresses.
Adaptations to fluctuations in temperature and pressure are possibly the most
common; thus, psychropiezophilic microbes dominate in cold regions of the deep
sea. These microorganisms make numerous adjustments to cope up with
temperatures and pressure lower or higher than optimum. Benthic microbes
exhibit both autotrophic and heterotrophic modes of nutrition in obligate oligo-
trophic environments of the deep sea. The rearrangement of simple metabolic
strategies might help these microbes to metabolize in nutrient-poor environments.
Further understanding of the genetic switches regulating the metabolism versatil-
ity at the deep sea could help us use and manipulate deep sea microbial strains for
improved bioprocesses.
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3.1 Introduction

Ecological biodiversity is always a subject of interest for researchers, and a vast
amount of information about the distribution of microorganisms around the world
has also been collected. Several researchers have focused in recent years on the great
potential of marine microbial treasures as a prolific producer of bioactive substances
as well as a potential source of drug and antimicrobial compounds (Gimmler et al.
2016). Furthermore, the use of deep sea microbes in biogeochemical processes,
biotechnology, pollution, and health has become increasingly interesting. The
microbes that inhabit these unusual habitats are usually extremophiles.
Extremophiles are the microbes that are capable of surviving in extreme
environments. These microbes can survive in conditions like elevated (thermophilic)
or low-temperature (psychrophilic), heavy ionic strength (halophilic), acid or alka-
line conditions (acidophilic, alkalophilic), anaerobic environment, higher pressure
(piezophilic), UV rays and polyextremophilic conditions, such as thermoacidophilic
and thermohalophilic values. In cold regions of the deep sea, temperatures would be
cold (2–3 �C), and the pressure can be more than 10 MPa, and thus microbes living
there are called psychropiezophiles, and if the temperature is high like 400 �C (near
hydrothermal vents), then microbes living there are called thermo-piezophiles,
respectively (Fang et al. 2010). Extremophiles thrive in hot, cold, and high-pressure
environments owing to their lipids, enzymes, and other biopolymers having specific
properties/features to function in extreme conditions.

The Earth’s biosphere is dominated by low-temperature ecosystems which are
effectively colonized by a wide number of cold-adapted organisms. Although
microorganisms, particularly, bacteria, yeasts, archaea, and protists, predominate
in these cold habitats, microorganisms such as algae and microalgae have also been
reported in these ecosystems. The ability of psychrophilic microorganisms to prevail
in these conditions reflects their adaptability to the cold deep sea environment
(Margesin and Collins 2019). This is accomplished through a set of morphological
and physiological adaptations of all cellular elements, from a molecule level to
whole cells and even complete ecosystems. In the deep sea, life is encountered
with low temperature and high pressure. In addition to reduced thermal energy, low
temperatures often contribute to more physicochemical constraints such as higher
viscosity of solvents and solubility of the gases (such as oxygen and reactive oxygen
species). Low temperature also lead to decreased solubility of solutes and nutrients,
reduced diffusion, increased osmotic tension, desiccation, and ice formation. Vari-
ous cold habitats are also marked with other extreme conditions including high
salinity, oxidative stress, low nutrient levels, low water activity, and freeze-thaw
cycles. Microorganisms in extreme sea interior and subglacial conditions are often
subjected to the additional stress of high pressure. Thus, a multitude of synergistic
adaptations are required for life in the cold biosphere, to react to not only the
low-temperature threat but also the multitude of other interactive stresses imposed
by particular environmental conditions. Importantly, many of these methods have
multiple uses and can be used to address a variety of problems or combinations of
problems. Unraveling the various interacting parameters and deciphering the precise
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role of a specific trait, whether it is a specific response to low temperatures or another
(or other) environmental stressor (s) common to a particular habitat, is a common
problem with the classification of cold-adapted microorganisms. Moreover,
microorganisms do not necessarily use all resources in their “cold adaptation”
toolbox. In reality, each organism will use its strategy or combination of strategies,
depending on its specific requirements and the environmental parameters, and the
microbial community structure.

High hydrostatic pressure (HHP) is an important parameter in the deep oceans as
the average hydrostatic pressure is estimated at 38 MPa. Piezophiles are the species
that survive at a pressure higher than ambient pressure (0.1 MPa) with an optimum
growth rate. The effects of HHP on the physiological functioning of microbes have
been studied in piezosensitive mesophilic (e.g., Escherichia coli) and psychrophilic
bacteria (e.g., Photobacterium profundum SS9). In piezo-sensitive bacteria, due to
HHP, compaction of lipid constituents of the cytoplasmic membrane occurs, and it
turns to a rigid structure, whereas piezophiles counteract this constraint by altering
the composition of the membrane lipids, particularly the ratio of monounsaturated
fatty acids. For example, P. profundum SS9, a piezophilic bacterium, has a high ratio
of unsaturated/saturated membrane lipids in the membrane which increases the
membrane fluidity under HHP. The effect of HHP on piezophiles could arise through
multiple pathways directly related to the composition of the membrane-like altered
functioning of cellular transporters, motility, and respiratory chain components.
Therefore, understanding the regulation of genes and enzymes involved in the
respiratory chain of piezophiles is important to have an insight into differential
mechanisms involved to counteract the effect of HHP. In this chapter, we will
discuss the various concepts about psychrophiles and piezophiles, living in cold
regions of the deep sea.

3.2 Deep Sea as a Microbial Habitat

3.2.1 With Low Temperature

For the past three million years, the relationship between microbial diversity and
temperature is one of the most fascinating ecological phenomena (Tittensor et al.
2010). The mechanisms involved in this relationship have been explained through
various hypothetical theories based on ecology and evolution. However, due to the
inability to reach the deep sea region, accessible microbial diversity is still restricted
to a few taxa. Also, the numerous theories suggested so far are still controversial
(Brown and Thatje 2014), posing the requirement for more detailed studies with
comparative analysis under natural conditions. Since current Intergovernmental
Panel on Climate Change (IPCC) scenarios indicate that temperatures in most
ocean regions will change rapidly in the coming decades, one of the main objectives
of current ecological research is to gain a better understanding of potential responses
to these changes. During the glacial/interglacial cycles of the Late Quaternary, deep
sea temperatures in glacials were ~4 �C cooler than in interglacials.
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Palaeoceanographic data showed 1–2 �C temperature variations in deep sea both on
millennial and centennial time scales. Deep-water temperatures in the Labrador sea
have demonstrated complex decadal variation at rates of change of up to 0.5 �C per
decade over the last 60 years. Abrupt changes in temperature of deep-water temper-
ature can impact physical and biological processes occurring down in the sea (Canals
et al. 2006). There are significant differences in deep sea temperature, especially
between oceans. There are exceptionally high deep sea temperatures in certain
marginal seas, such as the Mediterranean, Red, and Sulu seas (from around 13 �C
for the Mediterranean to >20 �C for the Red sea at a depth of 2000 m). Some deep
waters are very cold at high latitudes, with temperatures close to �2 �C (e.g.,
Antarctic bottom water). Sometimes deep sea organisms are sensitive to even
minor temperature changes because they encounter less seasonal variation in tem-
perature compared to surface-sea organisms. The microorganisms that travel from
shallow-sea environments to the deep sea are thought to be more temperature
tolerant compared to those that originated at deep sea.

3.2.2 With High Pressure

The relationship between the rate of change in pressure and ocean depth is linear. In
the shallower areas, the relative rate of pressure change is much higher with depth.
For example, a microbe descending from 500 to 1000 m will experience a 101.2%
pressure change, whereas an organism going from 9500 to 10,000 m will experience
a pressure change of just 5.3%, while the absolute change is still ~500 dbar (decibar)
per 500 m. Therefore, vertical migration does not generally account for any shifts in
the regular pressure faced by benthic fauna. Likewise, the pressure difference is also
negligible if an organism traverses a smooth and vast abyssal plain. If, however, an
entity travels in any direction inside the trench perpendicular to the trench axis, then
compression (if heading toward the axis) or decompression is encountered
(if moving away from the axis). The pressure increases by 30–60 dbar per km across
the abyssal plains (4000–6000 m). As the sea surface rises and falls, the atmospheric
hydrostatic pressure is subject to tidal cycles regardless of changes in depth or
distance traveled overground. Pressure data from the Kermadec Trench from 4329
to 8547 m, taken both in 2007 and 2009, indicate a cumulative mean tidal duration of
12.42 h 0.64 S.D. (semidiurnal), implying the presence of an internal tidal period of
M2 (lunar semidiurnal tide). The M2 tidal cycle is one of the region’s dominant
semidiurnal tides and rotates around New Zealand anti-clockwise (Chiswell and
Moore 1999). It is also common in conditions that are bathyal and abyssal. It was
found that the mean amplitude (peak to trough) of these cycles of pressure was 1.26
dbar 0.19 S.D., approximating a swell of 1 m. In the Kermadec Trench, as well as in
all other stations examined during the HADEEP project, these tidal cycles have been
found as deep as 9900 m, regardless of depth (Kermadec, Tonga, Izu-Bonin, Japan,
and Peru-Chile trenches). The same signature of the cycle is seen as deep as 7700 m
in the North Pacific trenches. Hadal species would therefore likely be able to detect
minor tidal variations in pressure.
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3.3 Microbial Diversity in Deep Sea

Microbes are found everywhere on Earth. Microbial activities (nitrogen fixation,
phosphate solubilization, etc.) are affected by various environmental factors and
climatic changes (Kaur et al. 2014; Kaur and Gosal 2015, 2017). The deep seafloor
comprises the largest ecological realm of the world. In deep sea sediments, bacteria
and archaea (mostly in deep sea hyperthermal vents) and some fungi comprise the
largest fraction of taxonomic richness and biomass at deep sea, playing a major role
in remineralizing the organic matter as well as in nutrient cycling (Jørgensen and
Boetius 2007; Wei et al. 2010). The highest sea depth reported for microbial
occurrence in the deep sea is 10,898 m for bacteria Dermacoccus abyssi MT1.1 T
(Pathom-aree et al. 2006) and Shewanella benthica DB21MT-2 (Kato et al. 1998;
Nogi and Kato 1999). Understanding the spatial patterns of microbial diversity could
pave the way toward better insight into mechanisms of diversification in the deep sea
(Varliero et al. 2019) (Table 1.1).

3.4 Microbial Adaptations at Deep Sea

Microorganisms are novel living agents which can tolerate extreme environmental
conditions existing on earth. Many environmental conditions on earth may be
unideal for the survival of living agents. These conditions may exist normally or
due to some external forces. Among them, physical extreme conditions, temperature,
and pressure are important. Below are the details of various adaptation mechanisms
adopted by microorganisms to thrive under deep sea extreme environmental
conditions like low temperature and high pressure.

3.4.1 Low-Temperature Adaptations

Permanently cold environments existing on earth (like the deep sea and polar
regions) have been successfully colonized by microbial species. Microbes surviving
in deep sea or polar regions are referred to as psychrotolerants or psychrotrophs,
based on their ability to grow at different temperature ranges (Morita 1975).
Depending on the temperature, the abundance and composition of the microbial
community vary. Variation in temperature only changes the types of microbes but
not their ability to grow under such an environment. This novel property has made
psychrophiles able to tolerate the effects of lower temperature like high viscosity
(increases by drop-down of 2 �C) and negative effects on biochemical reactions.
These effects of low temperature are successfully overcome by some of the
psychrophiles (Moritella profunda). Moritella profunda has the ability to survive
under a temperature range of 2–12 �C (Xu et al. 2003a, b). Other microorganisms
also show adaptations to the cold environment by evolving various mechanisms
which are discussed below.
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3.4.1.1 Maintenance of Membrane Structure by the Generation
of Unsaturated Fatty Acids

Enzymes are responsible for various conversions (Kaur et al. 2020). Due to a
decrease in temperature, certain enzyme-mediated changes occur in the microbial
cell membrane fatty acid profile. One such conversion is a change of saturated fatty
acids to unsaturated fatty acids. This conversion is carried out by desaturase enzyme.
These changes may occur to maintain optimum fluidity. Desaturase is also known to
preferentially synthesize various types of fatty acids which may include short-chain
fatty acids, branched-chain fatty acids, and anteiso fatty acids (Suutari and Laakso
1994). Some of the microbes involved in carrying out these functions are Micrococ-
cus roseus, Sphingobacterium antarcticus, and Pseudomonas syringae
(Chattopadhyay and Jagannadham 2001). Anteiso saturated fatty acid (a-C15:0)
plays a major role in the survivability of psychrophiles (Annous et al. 1997).
Kumar et al. (2002) described the role of hydroxy fatty acids in homeoviscous
adaptation (an adaptation of lipid composition in the cell membrane) of outer
membrane fluidity. It was demonstrated using P. syringae that when bacteria were
incubated at a low temperature, there was an increased concentration of hydroxy
fatty acids in lipopolysaccharides. When Bacillus subtilis, a mesophilic bacterium,
was incubated in a psychrophilic condition, there was a transcriptional upregulation
of some of the genes which were involved in coding those enzymes that degrade
amino acid with branched chains (Kaan et al. 2002). Compounds like isobutyryl-
CoA and α -methylbutyryl-CoA which are the intermediate product of valine and
isoleucine degradation are utilized as a part of the cellular mechanism (synthesis of
branched chain fatty acids) to maintain fluidity at low temperature. This indicates
that not only anabolic pathways but catabolic pathways are also involved in
maintaining membrane fluidity.

To thrive under cold conditions, many bacteria have evolved various other
different mechanisms like the synthesis of unsaturated fatty acids in the case of
B. subtilis under low temperature. In order to regulate glycerophospholipid,
B. subtilis harbors a sensory system called DesK (dimeric histidine kinase). It has
two domains that include five transmembrane helical domains and cytosolic kinase/
phosphate domains. Under cold conditions, DesK changes from phosphatase active
site to kinase active site leading to autophosphorylation. This phenomenon activates
the DesR which in turn activates 5-lipid desaturase, which transforms saturated lipid
acyl chains to unsaturated. Once the conditions become normal, DesK returns to the
phosphatase active site, and dephosphorylation occurs, inactivates the DesR, and
stalls the production of desaturase.

3.4.1.2 Cold-Shock Proteins (CSP)
A sudden downshift in temperature leads to harmful effects on the cells. Such
damages are counteracted by proteins called cold-shock proteins (Phadtare 2004).
These proteins are activated only under cold shock. Immediately after its synthesis,
other proteins are recruited for growth synthesizes leading to the growth under cold
conditions but at a slower pace (Ermolenko and Makhatadze 2002). Recent studies

70 J. Kaur et al.



have revealed the role of cold-shock proteins in bacterial stress tolerance (Schmid
et al. 2009).

CSPs are “small nucleic acid-binding proteins” whose length ranges between
65 and 75 amino acids (Czapski and Trun 2014). These proteins occur in
psychrophiles as well as mesophiles (Jin et al. 2014). There is a total of nine CSPs
(CspA to CspI) which are homologous to each other and share 46–91% similarity
(Yamanaka et al. 2001). Among all, CspA plays an important role during cold shock,
and its role has been described in E. coli (Goldstein et al. 1990).

Even though all CSPs share structural similarity, still their thermostability varies
(Jin et al. 2014). CspA protein can even tolerate the mesophilic temperature of 40 �C
(Lee et al. 2013). This nature of the protein helps them survive in varying
temperatures (Jin et al. 2014). It was first identified in Listeria monocytogenes (Jin
et al. 2014). At mesophilic temperature, mRNA of cspA is highly unstable. Usually
under mesophilic range, half-life will be very less (12 s) but increases up to 20 min
under cold conditions (Mitta et al. 1997). Under cold conditions, it is essential to
transiently stabilize cspA mRNA as it plays a greater role in inducing CspA
(Phadtare and Severinov 2005).

Functions of Cold-Shock Proteins
The highly conserved nucleic acid-binding domain of CSPs is called cold-shock
domain (CSD) (Graumann and Marahiel 1996). Ribonucleoproteins 1 and 2 are two
important nucleic acid-binding motifs of CSD (Lee et al. 2013). These help the
protein to bind to its target RNA or DNA. Jiang et al. (1997) stated that the binding
ability of CspA to RNA is weak and is responsible for minimal specificity for RNA.
CSPs are known as molecular chaperones because they disrupt the secondary
structure of RNA thereby helping transcription and translation to occur smoothly.
This process is highly dependent on the mode of attachment of CSP to RNA. If CSP
binds strongly to RNA, then, their role as molecular chaperon will be interrupted.
CSPs are also known as anti-terminators as they terminate the formation of hairpin
structures, which halt the transcription (Phadtare et al. 2002). Usually, during cold
shock, CspA, CspB, CspE, CspG, and CspI are induced, but during the first
temperature downshift, only CspA and CspB are synthesized (Jung et al. 2010).

3.4.1.3 Viable but Non-Culturable Cell (VBNC)
Viable but non-culturable cells (VBNC) are live bacteria that neither grow nor divide
but are alive and capable of performing necessary metabolic operations for their
survival. Generally, VBNC has greater physical and chemical resistance compared
to culturable cells because of reduced metabolic activity and high content of
peptidoglycan (Signoretto et al. 2000). Bacteria do not directly enter into VBNC
state; before it, they enter into a persister cell phase (Bigger 1944). Persister cells
refer to phenotypic variants in the population. Till today, persister cells are consid-
ered to be a nongrowing state of the cell. These are also known to tolerate antibiotics.
Ayrapetyan et al. (2015) stated that “VBNC and persister cells are closely related
states of a shared dormancy continuum.” It suggests that logarithmic phase cells may
enter into the persister state before entering the VBNC state.
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Mechanism of VBNC Formation
The mechanism by which bacteria enter to VBNC state is not thoroughly under-
stood. Various hypotheses have been put forward to explain the mechanism lying
behind it. Among them, three important include the following: firstly, the severe
conditions may lead to cells with poor quality which may result in null activity, and
such cells cannot be cultured (Nystrom 2003). Secondly, it is described as a strategy
of survivability in order to overcome harsh environmental conditions (Oliver 2005).
Thirdly, it has been stated that genes are involved in the formation of VBNC
(Ayrapetyan and Oliver 2016). The third hypothesis is widely accepted by scientists.
Although the molecular mechanism of VBNC formation is not understood
completely, several genes involved in its formation have been identified. One
among them is the rpoS gene, which codes for the stress regulator protein RpoS
which is known to enhance the efficiency of bacterial survivability under extreme
conditions. If bacteria cannot produce this protein, then bacteria may enter VBNC.
Research over a longer period revealed the role of ppGpp in VBNC formation.
ppGpp is considered as a regulatory signaling molecule that regulates RpoS. The
higher the ppGpp concentration, the greater the synthesis of RpoS, which contributes
to resistance and persistence of cells under stress. Thus, ppGpp is considered as an
inducer of the VBNC state.

3.4.1.4 Antifreeze Proteins
Antifreeze proteins (AFPs) refer to a class of polypeptides produced by certain
animals, plants, fungi, and bacteria that enable their survivability in freezing temper-
ature. These proteins are also known as ice structuring proteins. The main functions
of AFPs are to bind to ice crystals and prevent growth and recrystallization (Collins
and Margesin 2019). Unlike ethylene glycol (automotive antifreeze agent), they will
not reduce freezing point but instead work in a non-colligative manner. This
phenomenon enables them to be better antifreeze agents. These are known to act
as an antifreeze agent at a concentration of 1/300th to 1/500th. As it is highly
effective at lower concentrations, it doesn’t have any side effects on the organism.
A unique property of AFP is to bind to the particular ice crystals and immediately
prevent their formation. AFPs mechanism is completely based on thermal hysteresis
(TH) (Zhang et al. 2008). Thermal hysterisis refers to “a difference between the
melting and freezing point” (busting temperature of AFP bound ice crystal). Ther-
modynamically favored growth of ice crystals can be inhibited by the addition of
AFP between the solid ice and liquid water. Kinetically, ice growth can be inhibited
by AFP that covers the water-accessible surfaces of ice.

Mechanism of AFP
The mechanism adopted by AFP is not frozen avoidance but freeze tolerance.
Crystallization involves two major steps: nucleation (formation of a stable crystal
nucleus) and extending the synthesis of crystals by nucleus growth. Based on the
occurrence, nucleation is classified into two groups, i.e., nucleation taking place
around the foreign molecule called heterogeneous nucleation and spontaneous
formation of nucleus due to natural fluctuations called homogeneous nucleation.
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Homogeneous nucleation occurs in the case of absolutely pure water. Crystallization
is a cyclic process that may occur again and again; this is due to fluctuation in
temperature within the subzero range. This fluctuation is the result of the dissolving
of small crystals and the formation of larger crystals. This phenomenon may cause
more damage to the cells and tissues (Hassas-Roudsari and Goff 2012).

As mentioned earlier, AFP mechanism is based on TH, which prevents the death
of cells by various mechanisms like modification of ice crystal morphology
(Kontogiorgos et al. 2007), recrystallization inhibition (Zhang et al. 2008), and
intensifying integrity of the cell. All these properties are the result of interactions
occurring between AFP, water, and ice. Freezing point depression occurs through a
non-colligative mechanism (occurrence of protein between water ice interface to
modify the growth of ice crystals). On to the outer world, the mechanism seems to be
the adsorption-inhibition process (antifreeze agents bind to the surface of growing
crystals). According to this, crystals of ice grow between adjacent antifreeze
molecules with high surface curvature. High energy is required for the addition of
water molecules to the convex surface. The whole process is nothing but mainte-
nance of freezing point keeping the melting point at constant. This phenomenon is
called as Kelvin effect. There are two models (mattress model and step pinning
model) that justify the Kelvin effect. In the mattress model, the growth of ice crystals
perpendicular to the ice surface is prevented by adsorbed molecules, whereas in the
case of the step pinning model, molecules are blocked by ice growth (Bouvet and
Ben 2003).

3.4.1.5 Adaptation Mechanism of Psychrophilic Enzymes
A higher degree of structural flexibility, lower thermostability, and specific activity
are some of the characteristics of psychrophilic enzymes. Increased structural flexi-
bility of psychrophilic enzymes may be restricted to a catalytic site which helps them
exist in a disordered state. Increased flexibility in turn intensifies the degree of
compatibility between catalytic site and substrate. This leads to an increase in
substrate turnover rate and a decrease in activation energy. Multiple mechanisms
have been evolved by psychrophilic enzymes to enhance their flexibility and activity
and decrease thermostability. Among them, one mechanism involves reducing
amino acids like arginine and proline. These amino acids are known to reduce
conformational flexibility by the formation of a large number of hydrogen bonds
and salt bridges. This mechanism has been observed in many psychrophilic
enzymes. Some of the psychrophilic bacteria (Shewanella sp.) were known to
have less alanine content, while others (Psychrobacter arcticus) lack proline/argi-
nine content (particularly in those proteins involved in reproduction and cell divi-
sion) (Zhao et al. 2010). Some other compositional variations found in the
psychrophilic enzymes are increased content of methionine, asparagine, and glycine.
These amino acids are found especially in the catalytic site which is known to
contribute to local mobility. Increased lysine/arginine ratio is known to lower the
hydrogen bond and salt bridge formation. Psychrophilic proteins with a longer
external loop and reduced proline content result in less compact and highly stable
proteins and also a catalytic site with more flexibility and mobility. Electron
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microscopic study of cold-adapted enzymes revealed that they contain a greater
number of cavities with a larger size compared to that of mesophiles (Paredes et al.
2011). Larger cavities can hold a maximum number of hydrophilic groups thereby
binding the large number of water molecules which enhance the flexibility by
increasing internal salvation. For example, a region present near the helical lid of
the psychrophilic enzyme lipase M37 found in Photobacterium lipolyticum consists
of the surface cavity (Jung et al. 2008). The destabilizing effects of these surface
cavities may provide flexibility to the helical lid thereby enhancing the lateral
movement when substrate binds to it.

3.4.1.6 Piezophiles/Barophiles
Piezophiles or barophiles are organisms with the ability to survive under high
pressure (depth of sea/ocean). Piezophiles are primarily found in ocean depths,
with an average pressure of 10 MPa (megapascals). Some of the microbes are also
found in the deepest point in the ocean (Mariana trench) where the pressure is around
110 MPa (Abe and Horikoshi 2001). Pyrococcus yayanosii, an extremophile, could
survive in pressures ranging up to 150 MPa (Zeng et al. 2009). To counteract the
effects of the elevated pressure, these organisms have evolved various mechanisms.
As of yet, very little information is gathered regarding the piezophiles. Preliminary
research on piezophiles indicated their potential applications in the industrial and
biotechnological field (Abe and Horikoshi 2001).

3.4.2 Adaptation Mechanism of Piezophiles (High-Pressure
Adaptations)

3.4.2.1 Membrane Lipid Adaptation
The effect of high pressure is similar to that of low temperature as both are involved
in decreasing fluidity by increasing packing of the fatty acyl chains of phospholipids.
Piezophiles found in the depths of the ocean need to acclimatize not only to high
pressure but also low temperature. Intense hydrostatic pressure reduces membrane
fluidity which results in the formation of the gel-like membrane that may interfere
with the uptake of nutrients and cell signaling. These problems in piezophiles can be
avoided by increasing the number of mono- and polyunsaturated fatty acids in their
membranes. These fatty acids are difficult to be packed tightly. This nature of fatty
acids makes the movement of the membrane easier (Bartlett 1999). An example is
mentioned below.

Synechocystis, a phototrophic bacterium, has a two-component regulatory system
to control the expression of desaturase which is involved in regulating membrane
viscosity. A key regulatory element involved in inducing the expression of desB
gene (codes for desaturase) is histidine kinase 33 (Hik33) (Suzuki et al. 2001). Hik33
are the key regulatory element in homeoviscous adaptation also known to regulate
more than two dozens of the gene. There are several highly conserved domains in
Hik33 which include HAMP domain (histidine kinases, adenyl cyclases, methyl-
accepting chemotaxis proteins, and phosphatases), a leucine zipper domain which
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transfers signals to the 2-helix bundle in DesK, and a PAS domain (Per, Arnt, Sim
sensor proteins) acting as a light-sensitive module in Hik33. Two helical regions of
HAMP domain present adjacent to each other are involved in converting cold stress
signal by structural modification. HAMP domain signal transmission is mediated by
homo-dimeric, four-helical, parallel coiled coils. Hik33 gets activated by the
enhanced molecular lipid packing (Los and Murata 2004), but the underlying sensor
mechanism remains to be unknown.

3.4.2.2 Outer Membrane Porins
In response to high pressure, the membrane becomes highly rigid which has a greater
influence on the movement and nutrient uptake. Many different proteins are involved
in order to get acclimatized to these situations. The best example is Photobacterium
profundum SS9, which regulates the outer membrane protein under high pressure.
These bacteria consist of a specialized protein called OmpH. Its concentration
increases with increasing pressure. It is usually expressed at a pressure of 28 MPa
which is the minimum pressure required by the P. profundum SS9 for its growth (Chi
and Bartlett 1993). Another protein involved is ompL which acts simultaneously
along with ompH, but ompL is encoded by pressure-regulated genes that express at
0.1 MPa (decreases with increasing pressure); therefore, ompH contributes more to
the pressure regulation when compared to ompL (Le Bihan et al. 2013). These both
are the fourth most expressed proteins at high pressure. At elevated pressure,
P. profundum lacking the ompH is not greatly affected. OmpH is also known to
play a greater role under nutrient-deprived low-pressure conditions. There are a
series of nine genes that are known to be present on the outer membrane, but the
functions of these genes are not analyzed yet. Among these genes, ompC and two
others, hypothetical maltoporins, are studied to some extent. These two maltoporins
are known to express usually at constant pressure, while other genes, pbpra2139,
express at elevated pressure. Porin-encoding genes that express at high pressure are a
counter-intuitive example to show how difficult it would be to survive at high
pressure. Increased porin produces many different compounds to boost survivability
in the nutrient-scare ecosystem (Bartlett et al. 1993).

3.4.2.3 Membrane Transport
High hydrostatic pressure (HHP) has a greater influence on the transportation system
in the bacterial cell membrane (Vezzi et al. 2005). Due to high hydrostatic pressure,
fluidity is affected which may interfere with the transportation of nutrients across the
membrane. HHP leads to an increase in volume, inhibits certain reactions, and makes
amino acid (histidine, lysine, leucine, and tryptophan) movement difficult (Abe and
Horikoshi 2001). Some of the bacteria in the sea/ocean use a higher amount of
acetate and glutamate at elevated pressure. In P. profundum SS9, amino acid
synthesis and ion transport were upregulated at 0.1 MPa. This is the best example
that represents the adaptation of P. profundum SS9 transporters to high pressure. A
variety of transporters such as ion, sugar, and phosphate transporters have isoforms
known to function at varying pressure. It is essential to regulate the transporters in
order to survive in the case of marine bacteria. Some hypothetical models have been

3 Microbial Life in Cold Regions of the Deep Sea 75



explained to reveal the mechanism of transportation under high pressure, but a much
detailed study has not been done yet.

3.4.2.4 Respiratory Chain
The respiration mechanism in piezophiles is quite different from other organisms to
survive under extreme conditions. These consist of two kinds of electron transport
systems in the inner membrane. A model organism used to study the respiratory
chain in the deep sea is Shewanella benthica (Kato et al. 1999). A series of steps are
involved in the respiratory chain of this organism: Initially, NADH2 is oxidized to
NAD by transferring two electrons to quinone(Q), that quinone get reduces to quinol
(QH2), and it is carried out by NADH-dehydrogenase (ionic complex I). Within
complex III (cytochrome c-551), electrons are exchanged between quinol and
cytochrome c-551. These electrons are then passed to the active complex which
covalently binds to the terminal cytochrome oxidase (a soluble protein). Later,
oxygen is broken down to water by periplasmic oxidase and pumps proton to the
cell. Not only periplasmic oxidase but also BC1 complex pumps proton to the cell,
and this leads to the synthesis of ATP in the cytoplasm which is catalyzed by an
enzyme called ATP synthase.

Under high pressure (60 MPa), the respiratory chain becomes more compact.
During this situation, electrons are donated to quinol oxidase reducing the supply of
oxygen to cytochrome c-551. This leads to the pumping of protons to the periplasmic
vacuum. At elevated pressure, cytochrome c-552 will not be produced. The ability of
a piezophile Shewanella violacea DSS12, to survive under high pressure
depends 40% on its strain and 60% on cytochrome bc-1 complex. Streptococcus
existing under high pressure contain two forms of soluble cytochrome. Under high
hydrostatic pressure, cytochrome cA (belongs to c5 group) is constitutively
expressed, whereas cytochrome cB is repressed. Three terminal oxidases exist
under HHP, i.e., one terminal cytochrome c-oxidase, two bo, and bd-type quinol
oxidases. At low oxygen high pressure, bd-type quinol oxidase increases, while all
other terminal oxidase genes decrease. Bd-type quinol oxidase plays a greater role at
high pressure and also makes a significant contribution to respiration. These kinds of
variation do not occur in all types of microbes but only in piezophiles.

3.4.2.5 Motility Under High Pressure
Motility is a critical process for the survivability of bacteria as it enables bacteria to
escape unfavorable conditions and helps to move toward the nutrient-rich environ-
ment. Motility occurs due to flagella. Flagella are found attached to cell envelopes
and extended to extracellular space (Schuhmacher et al. 2015). The basic structure of
flagella includes basal body, hook, and filament. The basal body has a C-shaped ring
with a rod attached to it. All three parts of the flagellum are assembled by a type III
secretion system. Approximately 25 different types of proteins are assembled in
flagella. An important component of flagella is flagellin protein; 20,000–30,000
flagellin subunits are found at the distal end of the flagella. The synthesis of flagella
is a highly complex process as there is the involvement of many genes. These genes
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are classified as early, middle, and late genes based on their involvement in the
synthesis (Merino et al. 2006).

Flagellar structure and its role under high pressure are studied using two
piezophiles, i.e., Shewanella piezotolerans WP3 and Photobacterium profundum
SS9; these will have either polar or lateral flagella (Campanaro et al. 2005). Lateral
flagella (LF) have a complex structure, encoded by 40 genes, and have higher GC
content. There are two different kinds of motors for the motion of flagella, i.e.,
sodium-driven motors (Shewanella piezotolerans WP3) and proton-driven motors
(Photobacterium profundum SS9) (Wang et al. 2008). Two genes identified to be
away from the flagellar cluster were responsible for the movement of both types of
flagella. Two flagellin genes ( flaA, flaC) are known to regulate flagella in
S. piezotolerans WP3 whereas three ( flaA, flaC, and flab) in case of P. profundum
SS9. Recent studies have confirmed that high pressure inhibits the flaA and flaC and
prevents motility. Under high physical tension and viscosity, lateral flagella enable
the bacteria to swarm rather them swim. Under nutrient-deprived status, motA and
flaB are not expressed leading to non-motility. Mutants of any of the genes in the
flagella inhibit either swimming or swarming. It is revealed that the developmental
process is responsible for the proper functioning of flagella. Destruction of polar
flagella either genetically or physically leads to activation of lateral flagella and vice
versa.

3.4.2.6 Enzymes Adaptations Under High Pressure
Microbes are the richest source of enzymes; they help microbes to carry out
biochemical reactions (Kaur et al. 2020). These proteins under high pressure may
undergo physical damage; hence, microbes have developed a certain mechanism for
their protection. Piezophilic microbes contain proteins that are homologs
mesophilic proteins. When a comparison is made between them, some mesophilic
proteins are found to be pressure adapted but not all. Microbes are found in the
deepest region of the ocean, i.e., Mariana trench (temp. 1–4 �C, pressure 1.1 kbar)
and in the hydrothermal vent (temp. �100 �C, pressure ~0.5 kbar), describing
microbes’ ability to survive by acclimatizing to varying temperature and
pressure (Prieur et al. 2009). Therefore, it is confirmed that microbes’ survival is
based on their adapting mechanism; among them, protein protection mechanisms are
explained below.

Low Stability
One of the common enzymes found in the piezophiles is DHFR (dihydrofolate
reductase) which is used as a model to explain piezotolerant enzymes. Usually,
enzymes found in high-pressure areas will have low stability because low stability is
associated with high flexibility. So far, DFHR is less stable which is indicated by
ΔGu. Unlike fatty acid conversion in psychrophiles, low stability is not a driving
force for survivability. It just prevents enzymes from being ruptured under high
pressure. It is not essential to adapt a feature of low stability in the piezophilic
microbe. Low stability may also exist in microbes under normal pressure. Overall, it
can be inferred that low stability and greater flexibility appear to be favorable for the
survival of enzymes under cold and high-pressure conditions.
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High Compressibility
A common feature found in all piezophilic enzymes is high compressibility. The
presence of a larger internal cavity makes the protein more susceptible to pressure
unfolding. Maintaining normal protein structures under high pressure without lead-
ing them to get distorted keeps the microbes highly active (Kato et al. 1998). A study
on crystal structures of piezophilic enzymes revealed that enzymes are loosely
packed and highly hydrated with a large internal cavity. Piezophilic enzyme will
have a greater number of small cavities instead of a single larger cavity (Fig. 3.1).
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High Absolute Activity
Regardless of temperature and pressure, one mechanism adapted by microbes to
retain their catalytic activity is maintaining high absolute activity. The turnover
number (kcat) of most of the piezophilic microbes is usually four or five times greater
than other enzymes. It indicates that even activity of microbes is reduced at low
temperature and high pressure, and still they can survive at their GTP. This is due to
greater versatility, as they have lower stability and novel modifications to enhance
the catalytic activity. But, some of the enzymes isolated from Shewanella normally
have high catalytic activity. They do not possess any absolute activity to retain
catalytic activity. Recent studies have confirmed that the catalytic activity of
enzymes greatly depends on microbes rather than the condition they exist.

High Relative Activity at High Pressures
Increased relative activity helps the piezophilic microbes to maintain catalytic
activity under high-pressure conditions. Many piezophilic enzymes maintain high
relative activity to retain catalytic activity with available GTP. In some enzymes,
increased pressure enhances both relative and absolute activity. An example is
D27E, a mutant of DFHR which shows increased relative activity with a 50%
increase in kcat and a slight 2 kJ/mol increase in ΔGu (Ohmae et al. 2013). An
amino acid residue Asp27 in DFHR plays a central role in hydride transfer (Schnell
et al. 2004). This indicates that DFHR has a slightly opened substrate-binding cleft
which is the explanation for the increased activity of DFHR under high pressure.
Low stability of DFHR leads them to decrease their activity above 500 bar.

3.5 Microbial Nutrition and Metabolism in Deep Sea

3.5.1 Chemistry of Deep Sea

Seawater is an open ecosystem serving as a sink of nutrients from various reservoirs.
The knowledge of chemical features of seawater can provide an insight into the net
functioning as well as the inflow and outflow of energy from the system. Sea
surfaces have complex nutritional composition and are rich in ionic forms of
nutrients especially nitrogen and sulfur. Urban storm, water runoff, irrigation drain-
age, agricultural runoff, creeks, rivers, and estuaries are the general portals of entry
of nutrients into the marine environment (Akinde and Obire 2011). Unlike the
organisms of the terrestrial ecosystem, marine organisms are dependent on dissolved
forms of nutrients. Carbon, the major building block of life forms, can enter the sea
interior from the atmosphere through a network of processes, where it can be stored
or sequestered for millennia. Of the stored carbon on Earth, deep ocean zones
constitute the largest reservoir (3150 Pmol, 1 Petamole ¼ 1015 moles). It also
corresponds to more than 50 times the amount of carbon present in the atmosphere
(currently estimated as 62.5 Pmol) and more than one order of magnitude greater
than all the carbon present in microbes, terrestrial vegetation, and soils combined.
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Aside from atmospheric carbon, there are many other sources of carbon entry into
the marine system (Table 3.2).

3.5.2 Microbial Metabolism in Deep Sea

Nutrient availability is a key factor for microbial existence and activity in any
environment. The deep sea is an extreme oligotrophic environment that is often
thought to set limits for microbial activity. However, this challenging environment is
a habitat for great microbial diversity (Molari et al. 2013). The ability to survive in
such contrasting extremes of temperature and pressure is assumed to have arisen
from the adaptive route they followed to reprogramme their metabolism, scavenge
the limiting nutrients, and bypass starvation.

The dark conditions of the deep sea enable microbes to develop photopigments;
therefore, the major source of energy for benthic microbes is the downward flux of
organic matter from primary producers on the sea surface (Danovaro et al. 2014). In
marine environments, phytoplanktons are the primary producers (Azam and Malfatti
2007) and thereby the continuous source of organic matter for other life forms. A

Table 3.2 Major nutrient forms at deep sea levels and their source of origin [Source: Jørgensen
et al. (2019), Thompson and Johnston (2017), Voss et al. (2013), Jasińska et al. (2012)]

Nutrient form Source

Carbon

Dissolved organic carbon
(DOC)

Living plants and marine organisms (mainly
phytoplankton), organic-rich detritus, or as dissolved
organic carbon

Inorganic (carbonic acid,
bicarbonate, and carbonate)

Atmospheric carbon dioxide

Sulfur

Sulfate (So4
2�) Sediments, weathering and leaching of rocks, biological or

chemical oxidation of sulfides, sulfur partitioning, and
riverine inflow

Sulfide Sulfate (So4
2�) reduction by marine microbes

Iron sulfide (FeS); pyrite (FeS2) Product of sulfide oxidation in the presence of Corg and
Fe3+; Pyritization of H2S and FeS

Nitrogen

Dissolved organic nitrogen
(DON)

Rivers, atmospheric processes, wind, Ekman upwelling,
biomass of surface autotrophs

No2
� Regeneration of particles, microbial nitrification

No3
� Wind, convective overturning, and Ekman upwelling, eddy

activity/gyres, rivers, atmospheric deposition, shelf
processes, regeneration of particles, microbial nitrification

NH4
+ Diffusion, atmospheric deposition, regeneration of

particles, decomposition of debris

N2O Bacterial and archaeal nitrification, intermediate of
denitrification
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large fraction of their primary production is released as dissolved organic matter
(DOM) into the system, either by the producers or by the degradative action of other
organisms (Ducklow and Carlson 1992). Almost half of the DOM is consumed by
higher-trophic-level organisms, while the remaining (1–2%) reach the benthic
microbes (chemoorganoheterotrophs), which they assimilate into their biomass and
re-mineralize the excess into inorganic nutrients that re-enter the nutrient cycle.
Therefore, microbes play a critical role in the marine food web by organic matter
turnover and establishing a balance between net energy flux (Mason et al. 2009). It is
estimated that about one-third of the CO2 produced in oceans originates from the
microbial transformations at sea bottom (Arístegui et al. 2005). Despite the hetero-
trophic C metabolism, there is evidence for the existence of microbes with an
expression of enzymes involved in autotrophic nutrition, especially the Calvin
cycle and 3-hydroxypropionate pathway subsidizing autotrophic nutrition.

Benthic microbes can also metabolize several reduced inorganic compounds to
accomplish heterotrophic nutrition. These compounds usually serve as an additional
source of energy for support. The most prevalent of these is the oxidation of sulfur
compounds via chemolithoheterotrophy (Ghosh and Dam 2009). On an average,
10% of microbes from marine environments are found with genes (sox) for sulfur
oxidation (Venter et al. 2004). Microbes at sea sediments are also found with the
ability of nitrification, the oxidation of ammonia to nitrite and nitrate. These
microbes hold 21–50% of the total oxygen demand of the deep sea and mainly
belong to the group of Gammaproteobacteria and Archaea (Könneke et al. 2005;
Swan et al. 2011). The energy derived from nitrification is usually associated with
carbon-dioxide fixation (chemolithoautotrophs) in dark regions of the deep sea. The
process of carbon-dioxide fixation in these heterotrophs is not to derive biomass
carbon like autotrophs but for the transformation of organic compounds into
precursors of central metabolism using assimilatory carboxylases (Wuchter et al.
2006; Middelburg 2011). This is often termed as “mixotrophic nutrition,” since the
fixation of inorganic CO2 without photoactivity often costs much energy to an
organism, while, here, the energy is supplied from heterophony.

Despite the evidence of diverse metabolic activity at deep sea levels, it is
important to understand the stress-derived metabolic alterations in microbes in
their natural environment. Studies are based on quantifying the metabolic fluxes of
marine microbes under conditions of varying temperature and pressure. The metab-
olism of model psychrophilic bacterium Colwellia psychrerythraea 34H at 4 �C (the
temperature at natural environment) and under heat-stressed conditions was com-
pared with cold-stressed and mesophilic E.coli, respectively (Jeffrey et al. 2018).
Genetic analysis revealed that both bacteria had a similar metabolic network, but
34H had certain metabolic alterations that allow it to survive as an obligate
psychrophile. These include the ability to suppress catabolic repression under a
complex medium, activation of anaplerotic reactions to supplement TCA
intermediates via CO2 fixation, and therefore the maintenance of high cell biomass
and metabolic flux. In contrast to E. coli, 34H favored ED pathway as the primary
glycolytic route under glucose-rich medium. The potential driving force behind is
the thermodynamic advantage of the ED pathway (ΔG ¼ �36 kJ/mol) to the
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bacterium as compared to EMP pathway (ΔG ¼ �8 kJ/mol) at low temperature.
Therefore, it can be said till further evidence that marine heterotrophs also use
simplified metabolic strategies but are rearranged to overcome the thermodynamic
constraints imposed by the environment.

3.6 Conclusion

The microorganisms thriving the extreme environmental conditions indeed have
uniquely adapted enzymatic and metabolic systems as discussed in the chapter.
These unique metabolic and enzymatic mechanisms are the most promising
resources for the isolation of cold-adapted and pressure-tolerant enzyme systems.
This potential appears even larger with psychrophiles than for peizophiles in terms of
their diversity and potential uses in industries. Presently, huge data is available on
biochemical/physicochemical reaction and protein and enzyme structure of
peizizophiles and psychrophiles which open twomajor research avenues: (1) detailed
insights in survival mechanism of these extremophiles and (2) application of these
mechanisms for biotechnological applications. These extremophiles provide an
immense genetic resource for manipulating industrial strain to work under extreme
environmental conditions, thus delimiting the various stress factors during industrial
production. Finally, combining the basic knowledge of extreme pressure and tem-
perature effects on biochemical/physical reaction and advanced molecular biology
techniques opens greater possibilities toward generating clean, efficient, and energy-
saving industrial applications.
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