
Chapter 2
Photovoltaic and Pyroelectric Solitons

2.1 The Photovoltaic Effect

The conventional photovoltaic effect is a phenomenonwhich describes the generation
of a voltage or electric current in a photovoltaic cell when sunlight is incident upon
it. The cells within a solar panel convert sunlight to electrical energy. The solar cells
are made of two joined p-type and n-type semiconductors which result in a p–n
junction. A space charge field is formed at the junction as electrons diffuse to the
p-side and holes diffuse to the n-side. This field causes a potential difference which
can be harnessed as electrical energy.

The photovoltaic effect in which we are interested is different from the above
described p–n junction photovoltaic effect described in solar cells. The bulk photo-
voltaic effect is known to occur in semiconductors and insulators. The bulk photo-
voltaic effect is also known to as “anomalous”. That is so because the typical
photovoltage produced by incident light is much greater than the band gap of the
semiconductor. In certain crystals, the photovoltage may be of the order of ~ 103 V.

The main phenomenon behind the bulk photovoltaic effect is that various electron
related processes occur with different rates in different directions. Photo-excitation,
scattering, and relaxation have a different probability of occuring in different direc-
tions with respect to the motion of the electron. This results in generation of a large
photovoltage [1, 2].

Another mechanism involves development of parallel stripes ferroelectric
domains in certain materials. Each domain acts like a photovoltaic and the domain
wall behaves like a contact connecting the adjacent photovoltaics. The domains add
in series, and hence the overall open-circuit voltage is quite large.

In Fig. 2.1, a simple system is illustrated through which we can understand the
bulk photovoltaic effect. Consider two electronic levels separated by an energy gap
of say, 3 eV in a unit cell. The blue and pink arrows show radiative and non radiative
transitions respectively. An electron can move from A to B by absorbing a photon.
Conversely, it may move from B to A by emitting a photon. The purple arrows
indicate non radiative transitions. Here, it is implied that an electron can move from
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Fig. 2.1 The photovoltaic effect illustrated

B to C via lattice vibrations or emitting phonons, or vice versa by absorption of
phonons.

If a light beam is incident upon a photovoltaic crystal, considering the above
scenario, an electron can go fromA to B to C by absorbing photons. But, the electron
does not move in the opposite direction, i.e., from C to A through B, since the
shift from C to B proceeds if a large thermal variation is present which in turn is
improbable. Hence, we see a net rightward photocurrent.

There are many interesting features of the bulk photovoltaic effect distinguishing
it from the conventional photovoltaic effect. Within the region of power generation
in the characteristic I-V curve, electrons and holes are move towards higher and
lower fermi levels respectively. We expect the opposite based on the drift diffusion
equation. For example, power generation in a silicon solar cell is possible due to
splitting of the quasi-fermi levels which implies the fact that the motion of electrons
is towards the decreasing quasi Fermi level and the motion of holes is towards the
increasing quasi Fermi level as per the drift diffusion equation. In contrast, power is
generated in a bulk photovoltaic without any splitting of quasi-fermi levels.

The drift diffusion effect predicts that freely moving electrons will lessen the
photocurrent and consequently diminish the photovoltaic effect. So, appreciable
open-circuit voltages are observed only in crystals that exhibit very low dark
conductivity.

The net motion of electrons due to the bulk photovoltaic effect is in the opposite
direction to that expected due to the drift–diffusion equation. Hence, the quantum
efficiency lessens considerably even for a thick device. Large amount of photons (of
the order of 106) may be needed to transport an electron between the two electrodes.
An increase in thickness results in voltage going up and a decrease in current. Also,
the current may have different directions depending on the light polarization. Such
effects are unheard of in silicon or any other ordinary solar cell.
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2.2 Screening Photovoltaic Solitons

2.2.1 Theoretical Foundation

Until now, we have considered an externally biased non photovoltaic photorefrac-
tive crystal for studying steady state optical spatial solitons. However, if we take
a photorefractive crystal also having a finite photovoltaic coefficient, the question
arises as to whether it can support optical spatial solitons in the presence of an
external bias? In [3], the authors have studied this in detail and we shall study these
screening photovoltaic solitons in this section. Taking the electric field envelope as−→
E = x̂φ(x, z)exp(ikz), the paraxial equation of diffraction is [4],
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The induced space charge field can be derived from the set of rate equations,
continuity equations and Gauss law in one dimension for steady state [5],
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where the symbols have their usual meanings. There is one change in these equations
if we compare them with those used in previous chapters. We have now considered
kp to be the photovoltaic constant which contributes the photovoltaic current term.
As usual, any z spatial dependence has been ignored assuming a much more rapid
variation in x. Now, in typical photovoltaic-photorefractive media, N+

D � n, ND �
n, and NA � n. Hence, (2.2) and (2.3) give,
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If the intensity of the light beam varies relatively slowly with respect to x, the
term ε0εr

eNA

∂Esc
∂x can be ignored, as it is of the order of much less than unity. So, from
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(2.6) and (2.7) it can be inferred that,

N+
D = NA (2.8)

n = si (ND − NA)

γRNA
(I + Id) (2.9)

In regions of constant illumination, we know, I (x → ±∞, z) =
I∞, Esc(x → ±∞, z) = E0 where E0 is the external bias field. From (2.7),
electron density at x → ±∞, i.e., n∞ can be obtained as,
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From (2.4), we know that,

J∞ = J (x → ±∞, z) = eμn∞E0 + kpsi (ND − NA)I∞ (2.11)

Substituting (2.10) into (2.11),
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where, Ep = kpγRNA/(eμ).
Again, from (2.2) and (2.4), we get,
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From (2.5), we can infer that the current is constant everywhere, so, from (2.12)
and (2.13),
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Finally, we can obtain the space charge field from (2.14) as,
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The final dynamical evolution equation can now be setup by substituting (2.15)
into (2.1),
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where we use the dimensionless co-ordinates, ξ = z/
(
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)
, s = x/x0, φ =
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2.2.2 Spatial Soliton States

Once the dynamical evolution (2.16) has been obtained, it is a simple matter now to
solve this get soliton states. As earlier, we proceed to solve the PDE by numerical
techniques. Considering first the bright solitons, ρ = 0, and hence, (2.16) becomes,
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Again, neglecting the effect of diffusion which is plausible if we consider a large
value of the photovoltaic and bias field,
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Substituting the bright soliton solution ansatz U = r1/2y(s)exp(ivξ), where r =
I (0)/Id and 0 ≤ y(s) ≤ 1 along with the requisite boundary conditions of bright
solitons as discussed before in (2.18), we get,
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y
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where ÿ = d2 y
ds2 .

Integrating (2.19) once and applying the boundary conditions,
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The bright field profile can now found by numerical integration as follows,
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In (2.21), we can clearly see that the quantity in square brackets is positive since
y(s) is bounded between 0 and 1, and since the LHS is also necessarily positive, we
get the condition β + α > 0 for existence of screening photovoltaic bright solitons.

For the dark screening photovoltaic solitons, substituting the appropriate ansatz
U = ρ1/2y(s)exp(ivξ) along with the dark soliton boundary conditions as stated
before, y(0) = 0, ẏ(0) = 0, y(s → ±∞) = 1 in (2.16) and neglecting the diffusion
effect,
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Using the boundary conditions, one can readily deduce that,

v = −β (2.24)
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The soliton field profile can be obtained by numerical integration of (2.25) as
follows,
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In (2.25), the quantity in square brackets is positive since y(s) is bounded below
one, and hence, we can see clearly that β + α < 0 should be satisfied for the RHS
to remain positive.

What we can infer from this discussion is that bright or dark solitons can be
obtained in photovoltaic photorefractive crystals for suitable conditions. For instance,
in Lithium Niobate crystals, where α < 0, if the external applied bias field is such
that |β| < |α|, then dark solitons can be observed irrespective of the polarity of
the external electric field. Again, there are some photovoltaic materials where the
photovoltaic constant changes sign under polarization rotation and hence α will
be positive or negative depending on the polarization of light. In case α > 0, the
polarity of the external electric field must be reversed to observe dark solitons. Using
the values of the Lithium Niobate Crystals as shown in Table 2.1, the normalized
intensities of the dark solitons using (2.26) are plotted in Fig. 2.2.

For the grey solitons, we shall employ the grey soliton ansatz, U (s, ξ) =
ρ1/2y(s)exp

[
i
(
vξ + ∫ Qds

y2(s)

)]
along with the grey soliton boundary conditions,
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Table 2.1 Typical
parameters used for lithium
niobate crystal in the
calculation [3]

Parameter Value Parameter Value

λ0 0.5 μm α −355.13

x0 40 μm E0 (a) 2 × 106 Vm−1

(b) −2 × 106

Vm−1

ne 2.2 β (a) 177.57,
(b) −177.57

(respective to
E0)

r33 30 × 10−12 mV−1 ρ 10

Ep 4 × 106 Vm−1

Fig. 2.2 Normalized spatial profiles for the dark screening photovoltaic soliton [3]

y2(s = 0) = m(0 < m < 1), y(s → ±∞) = 1, ẏ(0) = 0. Hence, (2.16)
becomes,
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Applying the boundary conditions of the grey solitons at infinity, we have,

Q2 = −2(v + β) (2.29)

(2.28) yields after an integration,
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Applying the boundary conditions of grey solitons at zero in (2.30), we get,
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From (2.29) and (2.31),
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in series,we can see that the quantity inside

the square bracket in (2.32) is positive. That in turn implies the condition for existence
of grey solitons in photorefractive photovoltaic media reduces to, (α + β) < 0.
Additionally, the values of (α, β, ρ,m) must be chosen judiciously so as to always
have ẏ2 > 0 and Q2 > 0. Integrating (2.32) once again gives the spatial profile,
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Using (2.33), the normalized spatial profile of the grey soliton is plotted in Fig. 2.3
using typical parameters of the lithium niobate crystal as shown in Table 2.2. Also,
unlike the bright and dark screening photovoltaic solitons, the phase is not constant
across s. This is evident from the grey soliton ansatz and using (2.29) and (2.31).
Figure 2.4 shows the phase profile across the grey soliton.

The screening photovoltaic solitons have a different existential theoretical foun-
dation as compared to screening solitons. There is an inherent interplay of the photo-
voltaic field with the external bias field. It is interesting to note a few special cases
here. If α = 0, i.e., we take a non-photovoltaic crystal in (2.16), we retrieve the
bright, dark and grey screening solitons formulation. While if we set β = 0, i.e.,
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Fig. 2.3 Normalized spatial profiles for the grey screening photovoltaic soliton (reprinted from
Optics Communications, 181, Chunfeng Hou, Yan Li, Xiaofu Zhang, Baohong Yuan, Xiudong
Sun, Grey screening-photovoltaic spatial soliton in biased photovoltaic photorefractive crystals.,
141–144, Copyright 2000, with permission from Elsevier)

Table 2.2 Typical parameters used for lithium niobate crystal in the calculation [3]

Parameter Value Parameter Value

λ0 0.5 μm α −355

x0 40 μm E0 (a) 1 × 106 Vm−1

(b) 2 × 106 Vm−1

(c) 3 × 106 Vm−1

ne 2.2 β (a) 89, (b) 178, (c) 266 (respective to E0)

r33 30 × 10−12 mV−1 m 0.4

Ep 4 × 106 Vm−1 ρ 5

Fig. 2.4 Phase profiles for
the grey screening
photovoltaic soliton
(reprinted from Optics
Communications, 181,
Chunfeng Hou, Yan Li,
Xiaofu Zhang, Baohong
Yuan, Xiudong Sun, Grey
screening-photovoltaic
spatial soliton in biased
photovoltaic photorefractive
crystals, 141–144, Copyright
2000, with permission from
Elsevier)
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we switch off the external bias, we obtain the expressions for bright, dark and grey
photovoltaic solitons in closed circuit realization (J �= 0 within the crystal) under
suitable values of α. For bright photovoltaic solitons, we need α = r(J + 1)/2 while
for dark solitons we need α = −(J + 1)/[2(ρ + 1)].

2.2.3 Further Reading

The reader is referred to [6, 7] where the authors have detailed the photovoltaic
solitons. The general formulation presented here branches out to systems of photore-
fractive crystal which is open circuited or closed circuited and without the external
bias field.

2.3 The Pyroelectric Effect

Pyroelectricity is a phenomenon in which a transient voltage is induced in a material
when it is heated or cooled. The reason behind this is that when temperature changes
momentarily, atoms move around within the crystal lattice and their positions are
modified slightly resulting in a changeof net polarization.Thenet polarization change
results in a voltage appearing across the crystal. This induced voltage known is
known as the pyroelectric voltage and is transient. It will gradually vanish due to
leakage current if the temperature remains constant afterward. The leakage current
can be present due to a number of causes like movement of electrons through the
crystal, movement of ions through the air, or leakage current through a voltmeter
attached across the crystal. Contrasting temperature changes induce opposite charges.
If heating induces a positive charge on one face, coolingwill induce a negative charge
at the same face. Quantitatively, pyroelectricity can be said to be the change in net
polarization proportional to a change in temperature. The pyroelectric coefficient is
defined as,

pi = ∂P

∂T
(2.34)

The total pyroelectric coefficient depends upon the primary as well the secondary
pyroelectric effect. At constant stress, the piezoelectric contribution from thermal
expansion must be added to the pyroelectric coefficients at constant strain to obtain
the total pyroelectric coefficient.

All crystal structures can be classified to belong to a set of thirty-two crystal
classes, also known as point groups. Twenty-one of these thirty two are non-
centrosymmetric. Again, twenty of these twenty one display direct piezoelectricity.
In turn, ten of these twenty piezoelectric classes can be expressed to possess a spon-
taneous polarization, and hence are known as polar classes. Notable is the fact that
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these also contain a dipole in their unit cell in addition to exhibiting pyroelectricity.
Such a material is also ferroelectric if an applied electric field reverses the dipole.
In summary, out of the 32 crystal classes, 10 are polar. Since all polar crystals are
pyroelectric, so these crystal classes are also known as pyroelectric classes.

2.4 Pyroelectric Solitons (the “Pyroliton”)

Pyroelectric solitons, or pyrolitons have been subject of intense research in recent
times [8–10]. The transient pyroelectric field alone can cause a stable self trapping
as we will see in this section. Combing the transient pyroelectric field with the
photovoltaic field or the external electric field can yield interesting effects on the
self trapping. There are two conditions which need to be satisfied for the formation
of such pyroelectric solitons, firstly that the transient pyroelectric field magnitude
is relatively large and secondly, that the the pyroelectric field’s relaxation time be
greater than the soliton formation time. Assuming the homogeneous heating of a
crystal, the pyroelectric field can be expressed as,

Epy = 1

ε0εr

∂P

∂T
�T (2.35)

�T is the temperature change. The relaxation time for the pyroelectric field can
be given by,

�T
τ = ε0εr

σd

(2.36)

where σd is the dark conductivity of the crystal. Taking typical parameters of the
LiNbO3 crystal(εr = 28, σd ~ 10–17 (Ωcm)−1), we find that that the pyroelectric field
can remain at significant values for a fewweeks. For SBNcrystals, the relaxation time
is much less as compared to LiNbO3, but this increases considerably if the doping of
Ce in SBN crystals > 0.1 wt%. So these are among themost often used crystals which
are used for illustration and applications. If we consider a ferroelectric crystal, the
distribution of charge present on the crystal faces cancels out the electric field induced
due to spontaneous polarization and hence the net field inside a ferroelectric crystal is
zero at equilibrium. A temperature change can induces a change in the spontaneous
polarization resulting in an electric field Epy. This field is not immediately balanced
and consequently, a drift current is set up analogous to the effect an external bias
has on the crystal. The transient pyroelectric field Epy again induces a space charge
field which persist to form an index waveguide supporting a soliton. The transient
pyroelectric field can replace the external electric field used for screening solitons,
with multiple advantages, the main being no need of identifying the c-axis since the
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pyroelectric field automatically manifests along the c-axis and secondly, no need of
electrodes on the crystal among others [11, 12].

2.4.1 Theoretical Formulation

Consider a light beam propagating along the z-axis and assume the diffraction only
in x-direction. The soliton beam is polarized along the positive x-direction. The
crystal is kept such that its c-axis coincides with the positive x axis. A tempera-
ture controlled (via a Peltier cell) metal plate is kept in contact with the crystal. In
addition, a thermally insulating cover is kept on top of the crystal for minimizing
undesirable external effects on the temperature. The incident beam can be stated as
a slowly varying envelope E = x̂ A(x, z) exp(ikz) where k = k0ne, ne is the unper-
turbed refractive index, n′

e is the refractive index along the c-axis and λ0 is the free
space wavelength. Under these assumptions, the paraxial diffraction equation for the
dynamical evolution becomes,

i
∂φ

∂z
+ 1

2k

∂2φ

∂x2
− k0n3ere f f E pysc

2
φ = 0 (2.37)

where reff is the electro-optic coefficient, Epysc is the space charge field induced
solely by the pyroelectric effect [8]. It is essential to now obtain an expression for the
induced space charge field Epysc due to the pyroelectric effect. To this end, Ohm’s
law in differential form can be stated as,

	j = σ
−→
E (2.38)

The continuity equation is,

∂ρ

∂t
+ ∇. 	j = 0 (2.39)

While the Gauss Law states,

∇ · −→
D = ρ (2.40)

where 	j is the total current, σ = κ I+σd is the total conductivity,E is the total electric
field. P is the space charge field density, κ is the specific photoconductivity and D is
the electric displacement. The light intensity is I = (ne/2η0)|φ|2 and is a function of
x being expressed as, I (x) = I0exp

[−2(x/x1)
2
]
. x1 is the characteristic beam radius

and I0 is the maximum intensity at the beam center. Then, the total conductivity will
be stated as, σ = σ0

[
exp

[−2(x/x1)
2
] + η

]
with σ0 = κ I0 and η = Id/I0 and Id is the

dark irradiance. Since we consider an SBN crystal in open circuit, and considering
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the illuminated region to be narrow compared to the thickness of the crystal, total
current j can be expressed as,

j = jd = σd
V

H
= σd Epy (2.41)

where jd is the divergence less current which satisfies the boundary conditions.
Solving (2.38)-(2.40), we get,

∇ ·
[

ε0εr
∂
−→
E

∂t
+ σ

−→
E

]

= 0 (2.42)

Considering the boundary conditions and assuming negligible effect of diffusion
and photovoltaic effects,

ε0εr
∂
−→
E

∂t
+ σ

−→
E = 	jd (2.43)

Solving the partial differential Eq. (2.43),

E
(
t, x1

) = V

H

⎧
⎨

⎩

η

exp(−2x2/x21)+η
+

exp(−2x2/x21)
exp(−2x2/x21)+η

exp
[−t

(
exp

(−2x2/x21
) + η

)]

⎫
⎬

⎭
(2.44)

where t = t/td , τ = ε0εr/σ0 is known as the characteristic Maxwell time. Now,
two components constitute the total electric field, E = Epy + Epysc . Epy is the
homogeneous pyroelectric field induced by the homogeneous heating. This causes a
homogeneous refractive index change.Epysc is the inhomogeneous space charge field
which causes an inhomogeneous refractive index change. The origin of self trapping
lies in this refractive index waveguide. Hence,

Epysc = E − Epy = Epy
exp

(−2x2/x21
)

exp
(−2x2/x21

) + η

{
exp

[−t
(
exp

(−2x2/x21
) + η

)] − 1
}

(2.45)

For t = 0, it is plain that Epysc = 0 which implies that pyroelectric field has not
been screened yet in the illuminated region. At steady state, we know t � 1 and
hence the terms in the curly brackets in (2.45) tends to −1,

Epysc = −Epy
I

I + Id
(2.46)
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The value of the pyroelectric space charge field is dependent upon Epy and hence
the change in temperature�T .The expression is also similar to the space charge field
in open circuit photovoltaics.

Substituting (2.46) into (2.37), we have,

i
∂U

∂ξ
+ 1

2

∂2U

∂s2
+ α

|U |2
1 + |U |2U = 0 (2.47)

where we have used the usual dimensionless coordinates, ξ = z/
(
kx20

)
, s =

x/x0, φ = (2η0 Id/ne)
1/2U with x0 to be an arbitrary spatial width and the intensity

scaled with the dark irradiance Id, ρ = I∞/Id , α = (k0x0)2
(
n4ere f f /2

)
Epy .

2.4.2 Bright, Dark and Grey Solitons

For the solution of the bright solitons, it is now straightforward with the above
theoretical foundation. Using the bright soliton ansatz, U = r1/2y(s)exp(ivξ) with
the bright soliton boundary conditions, y(0) = 1, ẏ(0) = 0, y(s → ±∞) = 0. y(s)
a bounded function such that 0 ≤ y(s) ≤ 1 and r = I (0)/Id . Substituting the bright
soliton ansatz in (2.47), we get,

d2y

ds2
= 2vy − 2α

r y3

1 + r y2
(2.48)

Integrating (2.48), we can obtain the soliton field profile,

s = ±
1∫

y

{
2α

r

[
ln

(
1 + r ỹ2

) − ỹ2ln(1 + r)
]}−1/2

d ỹ (2.49)

For the dark soliton solution, using the equivalent dark soliton ansatz U =
ρ1/2y(s)exp(iμξ) along with the boundary conditions, we substitute in (2.47) and
integrate to obtain for the spatial profile,

s = ±
1∫

y

{
−2α

[
y2 − 1

1 + ρ
− 1

ρ
ln

(
1 + ρ ỹ2

1 + ρ

)]}−1/2

d ỹ (2.50)

Similarly, for the grey soliton, we shall substitute, U (s, ξ) =
ρ1/2y(s)exp

[
i
(
μξ + ∫ Qds

y2(s)

)]
into (2.47) and integrate once to yield,
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Table 2.3 Typical factors of
lithium niobate crystal used in
our calculation [8]

Parameter Value Parameter Value

λ0 532 nm ε0 8.85 × 10–12 F/m

x0 20 μm εr 3400

ne 2.35 ∂P
∂T −3 × 10–4 Cm−2

K−1

reff 237 × 10−12

mV−1
r,ρ 10

(
dy

ds

)2

= 2μ
(
y2 − 1

) −
(

1

y2
− 1

)
Q2 − 2α

ρ

[
ρ
(
y2 − 1

) − ln

(
1 + ρy2

1 + ρ

)]

(2.51)

The boundary conditions are, y2(s = 0) = m(0 < m < 1), ẏ(0) = 0,
y(s → ±∞) = 1.

Using the boundary conditions, we can easily find,

Q2 = 2α
ρ

1 + ρ
− 2μ (2.52)

μ = 1

2(m − 1)2

{
(1 − m)

(
2αρ

1 + ρ

)
+ 2mα

ρ

[
ρ(m − 1) − ln

(
1 + ρm

1 + ρ

)]}
(2.53)

The normalized intensity profile of the grey soliton can be obtained by numerically
integrating (2.51) alongwith (2.52) and (2.53). Table 2.3 shows the typical parameters
used for calculation. Using this and (2.48)–(2.52), the bright, dark and grey soliton
intensity profiles have been plotted in Figs. 2.5,2.6,2.7 (Table 2.4).

We can see clearly in (2.49) that the quantity within brackets is positive only if α >
0. So we need to take the change of temperature as positive, i.e.,�T > 0 and we need
a heating of the crystal. Similarly, for the dark solitons, the term inside brackets in

Fig. 2.5 Normalized spatial
profile of the bright soliton
for a �T = 10 °C b �T =
20 °C c �T = 30 °C
(reprinted from Optik, 126,
Yanli Su, Qichang Jiang,
Xuanmang Ji,
Photorefractive spatial
solitons supported by
pyroelectric effects in
strontium barium niobate
crystals, 1621–1624,
Copyright 2015, with
permission from Elsevier)
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Fig. 2.6 Normalized spatial
profile of the grey soliton for
a �T = −10 °C, m = 0.5
b �T = −10 °C, m = 0.4
c �T = −10 °C, m = 0.3
(reprinted from Optik, 126,
Yanli Su, Qichang Jiang,
Xuanmang Ji,
Photorefractive spatial
solitons supported by
pyroelectric effects in
strontium barium niobate
crystals, 1621–1624,
Copyright 2015, with
permission from Elsevier)

Fig. 2.7 Normalized spatial
profile of the dark soliton for
a �T = −10 °C b �T = −
20 °C c �T = −30 °C.
(reprinted from Optik, 126,
Yanli Su, Qichang Jiang,
Xuanmang Ji,
Photorefractive spatial
solitons supported by
pyroelectric effects in
strontium barium niobate
crystals, 1621–1624,
Copyright 2015, with
permission from Elsevier)

Table 2.4 Values of α for
diverse values of the
temperature change using
Table 2.3

ΔT (oC) α

10 20.1

20 30.2

30 40.2

−10 −20.1

−20 −30.2

−30 −40.2

(2.50) is positive only if α < 0. Hence, we need a cooling of the crystal with �T < 0
for observing dark solitons. The same concept carries forward for grey solitons also
where again we need a cooling of the crystal for their observation. The important
thing to note here is that the nonlinearity is controlled by the term α which is in turn
dependent upon the temperature change, pyroelectric coefficient and electro-optic
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coefficient. Varying these values for different types of crystals can result in different
characteristics and spatial profiles of the pyrolectric solitons. (Fig. 2.6)

2.5 Photovoltaic Effect and Pyroelectric Solitons

Photorefractive solitons observed in steady state can be said to be broadly of
three types, i.e., screening solitons, photovoltaic solitons and screening–photovoltaic
solitons [3, 4, 7].

An external electric field leads to a screening of the induced space charge field
and hence the name “screening solitons”. The photorefractive effect is basically a
refractive index change by the electro-optic effect. The electro-optic effect comes
into play because of the induced space charge field due to the drift and diffusion of
photogenerated charge carriers. In case of photovoltaic solitons, the space chargefield
ismodulated by the bulk photovoltaic fieldwhile screeningphotovoltaic solitons form
in photorefractive photovoltaic crystals due to the combination of both the external
field and bulk photovoltaic field. Aswe havementioned before, replacing the external
electric fieldwith the pyroelectric field hasmany advantages. It is logical to now think
of the combination of the external bias field, photovoltaic field and pyroelectric field
andhow they canhave an interplaywhile inducing a space–chargefield and in turn self
trapping a light beam. Such type of solitons are screening photovoltaic pyroelectric
solitons. Also, the transient pyroelectric field can be induced by externally controlled
temperature changes or by absorption of the incident beam’s energy. The former case
has already been seen in the previous section. In the following, we now discuss the
effect of pyroelectricity due to the absorption of energy of the beam itself.

2.5.1 Theoretical Model

We consider the usual setup for the soliton beam as defined before. In addition, the
crystal is covered with a thermally insulating cover so as to stabilize the temperature
and avoid any temperature gradient. The slowly varying envelope for the incident
beam reads as, E = x̂ A(x, z)exp(ikz)where k= k0ne, ne is the unchanged refractive
index, n′

e is the perturbed refractive index along the direction of the extraordinary
or c-axis and λ0 is the wavelength in free space. Beginning with the usual paraxial
diffraction equation,

(
i

∂

∂z
+ 1

2k

∂2

∂x2
+ k

ne
�n

)
A(x, z) = 0 (2.54)

�n = −1

2
n3ereffEsc (2.55)
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Here, Esc is the space charge field resulting as a consequence of both, the photo-
voltaic drift and the pyroelectric field. Again there are three constituent components
of the total space charge field, which are the space charge field due to the external
bias, the photovoltaic contribution and the pyroelectric space charge field,

Esc = E1 + E2 + E3 (2.56)

The space charge field (E1 + E2) results in biased photorefractive crystals
supporting screening photovoltaic solitons. We have already studied it in detail in
the previous section,

E1 + E2 = E0
I∞ + Id
I + Id

+ Ep
I∞ − I

I + Id
(2.57)

The value of Ep is reliant on the state of polarization of the beam and one can
infer the sign from the photovoltaic constant. Epysc is the space–charge field forming
as a consequence of the transient pyroelectric field Epy which results in turn from
a change in temperature. A pulse of light can transfer energy to the material and
hence induce the pyroelectric effect comparable to that brought about by a change in
temperature [8, 10, 13–16]. For a short pulse of light, the pyroelectric space charge
field Epysc can be expressed as, [8, 10, 13–16],

E3 = Epysc = − 1

εrε0

∂Ps
∂T

tp
2

σph

ε0εr
�T (t) = −Epy

tp
2

σph

ε0εr
(2.58)

Now, the value of Epysc is implicitly a function of the intensity of the beam. For
our calculation, we need an explicit dependence and hence we approximate the space
charge field as [8, 10],

Epysc = −Epy
tp
2

σph

ε0εr
≈ −Epy

ϑ I

Id
(2.59)

where, tp is the pulse duration, σph is the photoconductivity, ϑ is a material parameter
dependent on the crystal. Since the photoconductivity σph is proportional to the
intensity I., this approximation is reasonable. From the values of the parameters
Epy, tp,ε0, εr [8, 10, 13–16], we can say that λI

Id
< 1. Again, this can be verified

independently as the pyroelectric space charge field can reach a substantial fraction
of the pyroelectric field a under continuous wave laser beam [15]. The following
potential condition in steady state can be used to find the value of E0,

−
l/2∫

−l/2

Escdx = ε (2.60)
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where the transverse thickness of the crystal is represented by l, and the external bias
is denoted by ε. Substituting (2.57)–(2.60) in (2.56), we get,

Esc = −(
εη + Epση − Epyγ λη

) I∞ + Id
I + Id

+ Ep
I∞ − I

I + Id
− Epy

λI

Id
(2.61)

where η = 1
∫l/2

−l/2
I∞+Id
I+Id

dx
, σ = ∫ l/2

−l/2
I∞−I
I+Id

dx and γ = ∫ l/2
−l/2

I
Id
dx .

Using (2.61) in the paraxial diffraction equation, we obtain the dynamical
evolution equation as follows,

iUξ + 1

2
Uss + β

(|U |2)U − α(ρ − (|U |2)
(
1 + |U |2) U − δ

(1 + ρ)
(
1 + |U |2)U = 0 (2.62)

where we have used the previously defined dimensionless coordinates and, β = Epy,
τ = (k0x0)2n4ereff/2, α = τ Ep, δ = −(

εη + Epση − Epyγ λη
)
τ .

Other symbols have their meaning as defined before.

2.5.2 Spatial Soliton States

Using the bright soliton ansatz, U = r
1
2 f (s) exp(iμξ) and substituting in (2.62),

f̈ = 2μ f − 2β
(
r f 2

)
f − 2α

(
r f 2

)
f

1 + r f 2
+ 2δ

f

1 + r f 2
(2.63)

where f̈ = d2 f
ds2 .

Integrating (2.63), and by use of the boundary conditions for bright solitons,

ḟ 2 = 2μ f 2 − βr f 4 +
(
2(δ + α) log

(
1 + r f 2

) − 2αr f 2
)

r
+ c (2.64)

with

c = 0 (2.65)

μ = βr

2
−

(
δ

r
+ α

r

)
log(1 + r) + α (2.66)

Integrating (2.14) once again, we get the envelope,
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s = ±
1∫

f

rd f̃

2μr f̃ 2 − βr2 f̃ 4 + 2(δ + α) log
(
1 + r f̃ 2

)
− 2αr f̃ 2

(67a)

As ḟ has to be real and bounded like 0 ≤ f (s) ≤ 1, the sufficient condition to
keep RHS positive can be inferred from (2.64),

−βr

2
+ μ − α ≥ −δ + α

r
log(1 + r) (67b)

For bright spatial solitons, we need positive refractive index perturbation. If we
consider a lithium niobate crystal for illustration, the refractive index perturbation
is negative due to there being a self-defocussing due to its negative photovoltaic
coefficient. In open circuit crystals, a bright soliton can still be self trapped in the
event that the self focusing induced due to the pyroelectric effect more than offsets
the self-defocussing due to the photovoltaic effect [9].

If an external bias is applied, this condition is liable to be modified slightly. An
external electric field applied along the c-axis results in self focussing while leading
to self defocussing if applied in the opposite direction [4]. Hence, the photovoltaic
self defocussing can be boosted or reduced by controlling the direction of the voltage
bias. This, in turn has the tendency to change the degree of self focusing induced by
the pyroelectric effect. In summary, these changes to the nonlinearity will result in
an alteration of the FWHM of the soliton.

Now, with regards to the wavelength of incident light, we need to consider a
wavelength for which absorption of energy is relatively large so that the heating
of the crystal can take place [10]. The light absorption in LiNbO3 is significant
for the blue-violet light ~405 nm [11] and hence will be used in our simulation.
Now, the photoconductivity increases substantially when considering light in the
blue violet region as compared to the red light and hence the photovoltaic field also
decreases substantially as it is inversely proportional to the photoconductivity [17–
19]. Also, the photovoltaic field has a sub-linear dependence on the incident light
intensity in case of undoped LiNbO3[20]. At the chosen wavelength and intensity we
consider, we should use a lesser value of Ep than that considered before for LiNbO3

(in Sect. 2.4, as in [3, 6, 7]). So, a judicious conjecture would be Ep = −2 × 105

V/m [10]. The transient pyroelectric field is approximately taken to be ~40 kV/cm,
which correlates to a temperature change of the order of around ~10 K in the crystal
[12]. To summarize [10], λ0 = 405 nm, x0 = 20 μm., Ep = −2 × 105 V/m ~ −2
kV/cm, Epy = 4.0 × 106 V/m, reff = r33 ~ 35 × 10−12 m V−1, ne = 2.2, λ = 0.5, r
= 10.

With the above parameters, we obtain the value of α = −6.846 and β = 67.275.
The soliton profiles for an applied voltage ε = ± 4000 V are shown in Fig. 2.8.
The thickness of the crystal l = 10 mm. Again, if we consider (hypothetically)
the photovoltaic field constant Ep = + 2 kV/cm and rest of the parameters same as
before, we find that the photovoltaic effect will work to support the pyroelectric effect
augmenting the self trapping. This case is shown in Fig. 2.9. Hence, the interaction
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Fig. 2.8 Spatial intensity profile of the solitons when α = −6.846, β = 67.275, r = 10 (reprinted
from Physics Letters A, 381, Aavishkar Katti, R.A. Yadav, Spatial solitons in biased photovoltaic
photo refractive materials with the pyroelectric effect, 166–170, Copyright 2017, with permission
from Elsevier)

between the photovoltaic effect, external bias and the pyroelectric field can be clearly
seen [10].

For the dark soliton, we take the field profile, as usual, U = ρ
1
2 g(s) exp(iνξ)

where g(s) is a bounded function and along with the boundary conditions of dark
solitons as specified before. Substituting the dark soliton ansatz in in (2.62), we get,

g̈ = 2νg − 2β
(
ρg2

)
g + 2α

(
ρ − ρg2

)
g

1 + ρg2
+ 2δ

(ρ + 1)g

1 + ρg2
(2.68)

where g̈ = d2g
ds2 .

By using the boundary conditions at infinity in (2.68),

ν = βρ − δ (2.70)

Integrating (2.68) once,

ġ2 = 2νg2 − βρg4 + 2δ(1 + ρ) log
(
1 + ρg2

)

ρ
− 2αg2
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Fig. 2.9 Spatial intensity profile of the solitons when α = 6.846, β = 67.275, r = 10 (reprinted
from Physics Letters A, 381, Aavishkar Katti, R.A. Yadav, Spatial solitons in biased photovoltaic
photo refractive materials with the pyroelectric effect, 166–170, Copyright 2017, with permission
from Elsevier)

+ 2α(1 + ρ) log
(
1 + ρg2

)

ρ
+ 2c (2.71)

Using the boundary conditions in (2.71) at infinity, we can obtain c,

c = −ν + βρ

2
+ α − (α + δ)(1 + ρ) log(1 + ρ)

ρ
(2.72)

Integrating (2.71) using the value of c by (2.72), the soliton envelope can be
derived as,

s = ±
g∫

0

ρdg̃

2νρ g̃2 − βρ2 g̃4 + 2(δ + α)(1 + ρ) log
(
1 + ρ g̃2

) − 2αρ g̃2 + 2ρc

(2.73)

Analogous to the case of bright solitons, the refractive index change is expected to
be negative for self-defocussing to happen and dark solitons to form.The photovoltaic
induced self defocussing should counteract the self-focussing induced by the the
external bias field and the pyroelectric effect for a dark soliton to form. So, it is apt to
consider the external bias values as ε = 4000V and ε = 40,000V. If the voltage bias is
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Fig. 2.10 The normalized intensities of the solitons when α = −6.846, β = 6.7275, ρ = 10
(reprinted from Physics Letters A, 381, Aavishkar Katti, R.A. Yadav, Spatial solitons in biased
photovoltaic photorefractivematerials with the pyroelectric effect, 166–170, Copyright 2017, with
permission from Elsevier)

negative, the electric field is parallel to the c-axis. So the overwhelming self focussing
effect due to the induced pyroelectric space charge field prevents self defocussing.
Hence, we consider [10], the following parameters, λ0 = 405 nm, x0 = 20 μm., Ep

= −2.0 × 105 V/m, Epy = 4.0 × 105 V/m, reff = 35 × 10−12 m V−1, ne = 2.2, λ =
0.5, ρ = 10. Also, we have, α = −6.846, β = 6.7275. The soliton profiles are shown
in Fig. 2.10.

2.6 Concluding Remarks and Further Reading

We have studied a comprehensive theory for optical spatial solitons in photovoltaic
and pyroelectric photorefractive crystals. The band transport model is used to obtain
the space charge field due to photovoltaic effects and the dynamical evolution equa-
tion for light beams propagating in biased photovoltaic photorefractive crystals. The
general formulation presented here branches out to systems of photorefractive crystal
which is open circuited or closed circuited and without the external bias field. The
pyroelectric space charge field and the dynamical evolution equation is also obtained
using simple considerations of charge transport and continuity equations. Screening
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photovoltaic pyroelectric solitons are studied to investigate the interplay between the
pyroelectric field, external bias and photovoltaic field.

Buse [13–16] give an understanding of the different characteristics of the pyro-
electric effect in photorefractive crystals. Sincewe focus on the theory behind the self
trapping due to different configurations of pyroelectric photorefractive crystals, the
author is referred to [8, 9, 11, 21] for further details of pyroliton in the experimental
context. [10] has detailed exposition of screening photovoltaic pyroelectric solitons.
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